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gonal zirconia particles. However, after long times at elevated temperatures, this class
of materials is susceptable to properties degradation due to the undesirable transforma-
tion of tetragonal zirconia to monoclinic zirconia upon cooling. Accordingly, a task
was initiated to examine the extent and magnitude of this phenomenon’s effect on the
properties.

Seven commercially available yttria-tetragonal zirconia polycrystal (Y-TZP) materials
were evaluated. Rogmi temperature properties were measured before and after heat
treatments at 1000°C. Microstructure and phase stability were also examined. In all but
one case, the Y-TZPs showed very little change in room temperature properties after
long times at this temperature. —Results show that the use of pressure-assisted process-
ing greatly improves the strength by reducing porosity and keeping the grain size
extremely fine, but this reduces ffie toughness because finer grains are more difficult to

transform. r e -~

In addition, a small amount of cubic zirconia appears to enhance the toughness of
fine-grained Y-TZP while maintaining good strength. During processing, a small amount
of cubic zirconia is formed and allowed to grow. This creates regions poor in yttria
which can transform spontaneously in the presence of a crack-tip stress field.
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FOREWORD

The work described herein is part of the Characterization of Transformation-Toughened
Ceramics Program which is a subtask of the Department of Energy (DoE) sponsored, Oak
Ridge National Laboratory (ORNL) monitored, Ceramic Technology for Advanced Heat
Engines Project (Interagency Agreement No. DE-AI05-840R21411). The purpose of this sub-
task is to examine commercial and experimental transformation-toughened ceramics for possi-
ble application in advanced heat engines.

The approach is two-fold: a) to determine the effects of long-term/elevated temperature
exposure on microstructure, phase stability, and room temperarature properties, and b) to
examine the high temperature performance of the most promising materials from a) using
stepped-temperature stress-rupture and stress-rupture tests. This report summarizes the
results of part a).

INTRODUCTION

A variety of structural ceramics are being considered for use in advanced diesel engines.
Currently, silicon nitride, silicon carbide, zirconia, and ceramic composites (e.g., zirconia-
toughened alumina) are being considered for monolithic applications. In addition, zirconia is
being examined as a possible thermal barrier coating. These materials possess some proper-
ties which are comparable to those desired of materials for use in advanced heat engines. as
described in Table 1.

Table 1. DESIRED MATERIAL PROPERTIES FOR AN ADVANCED
HEAT ENGINE APPLICATION (Ref. 1)

Temperature Limit, °F/ °C > 1800/982
Fracture Toughness, MPa*m'/2 > 8.0
Flexure Strength, MPa > 800
Thermal Conductivity, Cal/cm-sec-°C < 0.01
Thermal Shock Resistance, T °C > 500
Thermal Expansion x 10°%/°C > 10
Weibuil Modulus > 18

Time, Exposure, Hours > 1000

The potential benefits of incorporating these ceramics into advanced heat engines include
improved fuel economy, significantly higher performance, and reduced dependence on scarce
materials.

One broad class of materials, transformation-toughened zirconias (TTZ), has been
extensively examined for advanced heat engines. This particular class of materials possesses a
very low thermal conductivity and an unusual combination of high strength and fracture tough-
ness at room temperature. The material’s unusual mechanical properties stem from a

I. KAMO, R.. and BRYZIK. W. Cummins/TACOM Adyanced Adiabatic Engine. SAE Paper 840428. Adiabatic Engines: World Wide Review
SP-571, SAE International Congress and Exposition, Detroit, MI, 1984, p. 21-34.




stress-assisted “martensitic” phase transformation of a metastable tetragonal (t) phase to the
stable monoclinic (m) phase; hence the name “transformation toughening.”

The mechanisms of this toughening are believed to include one or more of the following:

e deflection of the crack tip

e microcracking which leads to crack branching and an increase in the energy required
for continued crack growth

e absorption of the crack tip energy by the phase transformation (t —m)>.

Pure zirconia exhibits three distinct polymorphs according to the following transformations:

950°C

. : oC 1.
Monoclinic Tetragonal .__2379°C__ Cubic —28%C_ Liquid.?

1150°C
In order to achieve some degree of transformation toughening, a stabilizer (typically CaO,
MgO, Y,03, or CeO;) must be added. The addition of one of these stabilizers lowers the
t — m chemical driving force and thus the t — m transformation temperature, enabling the
t-phase to be retained in a metastable state upon cooling to room temperature. With these
additions, new phases have also been identified. These include a high pressure orthorhombic
phase,* (which has been identified in CaO-stabilized cubic zirconia), a rhombohedral phase,’”’

and a nontransformable t'-phase®’ (in Y,Os-stabilized zirconia).

The addition of various stabilizers results in one of two types of TTZs: a) partially
stabilized zirconia (PSZ) or b) tetragonal zirconia polycrystalline (TZP) materials. Although
both PSZ and TZP are, in fact, “partially stabilized,” their microstructure and stabilizers are
quite different.

PSZ - -

This material is most commonly stabilized by MgO or CaO. The microstructure consists
of small (~0.5 um) coherent precipitates of metastable t-ZrO, in a large-grained (50-75 um)
cubic (c) ZrO, matrix. This material is obtained by annealing in the two-phase (t+c) field.
Toughening results when the tetragonal precipitates transform to the stable monoclinic phase
at the crack tip as the crack propagates through the material.

2. RUHLE, M., and HEUER, A. H. Phase Transformation in ZrO-Containing Ceramics:_ I, The Manensitic Reaction in 1-ZrO; Advances in
Ceramics, v. 12, Science and Technology of Zirconia, N. Claussen, M. Riihle, and A. H. Heuer, ed., The American Ceramic Society,
Columbus, OH, 1984, p. 14-32.

3. LARSEN, D. C, and ADAMS, J. W. Long-Term Stability and Properties of Zirconia Ceramics D%)r Hegay Duty Diesel Engine Components.
ll’9r§§ared for NASA-Lewis Research Center, for U.S. Department of Energy under Contract N 3-305 NASA CR-174943, September

1D9%¥l' S.Clz!isUézhld;NG, L. C., and MANGHANANI, M. H. Structural Transformation in Cubic Zirconia. J. Am. Ceram. Soc., v. 70, no. 9,
. P - .
H:g?EggvAWA, H. Rhombohedral Phase Produced in Abraded Surfaces of Partially Stabilized Zirconia (PSZ). J. Mat. Sci. Lett., v. 2, 1983,
p. 91-93.
S%K&Ighsd?, T.§9 3%SHIZAWA, Y. L, and SATO, H. The Rhombohedral Phase Produced in Partially-Stabilized Zirconia. J. Mat. Sci. Lett.,
v. 4, , P 29-30.
KITAN&Y., MORI, Y., and ISHITANI, A. Rhombohedral Phase in Y:0;3-Partially-Stabilized ZrO, ]. Am. Ceram. Soc., v. 71, no. 1, 1988,
p- C34-C36.
MILLER, R. A., SMIALEK, J. L., and GARLICK, R. G. Phase Stability in Plasma-Sprayed Partially Stabilized Zirconia-Yuria. Advances in
%snllmi vl. %S §cience and Technology of Zirconia, A. H. Heuer and L. W. Hobbs, ed., The American Ceramic Society, Columbus, OH,

, p- 241-253.
9. LANTERI], V., HEUER, A. H., and MITCHELL, T. E. Tetragonal Phase in the System ZrO>-Y203 Advances in Ceramics, v. 12, Science
am{ l’gei:%ology of Zirconia II, N. Claussen, M. Riihle, and A. H. Heuer, ed., The’American Ceramic Society, Columbus, OH, 1984,
p. 118-130.
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TZP

These materials are stabilized by Y,O3; or CeO,. Because the solubility of these oxides
in zirconia is much greater than that of MgO or CaO, it enables greater stability of t-ZrO,

grains against the t — m transformation, allowing the production of a 100% t-ZrO, material.

The t-ZrO_ grains are faceted and fine grained (~2 um or less). Riihle and Heuer” have
indicated that autocatalytic nucleation is important in these materials to enhance toughening.
That is, the stress created by a t-ZrO, grain which transforms is transferred to neighboring
grains causing further transformation, thus forming a discrete area of monoclinic grains around
the crack tip.

For both types of TTZs, Lange:10 has determined that for a given temperature there is a
critical grain size needed to prevent the spontaneous t —m transformation during cooling.
If the t-zirconia grains are below this critical size, the thermodynamic free energy for trans-
formation is higher and few grains transform. However, when grains are above this critical
size, the thermodynamic free energy decreases and the t-zirconia grains can transform spontan-
eously. This is important when considering TTZs for advanced heat engines, because the typi-
cal engine operating temperature is ~1000°C. This temperature is in the range where grain
growth can occur and the t-ZrO, phase is stable. As a result, mechanical properties, such as
strength and toughness, can decrease due to the increase in grain size and stability of the
t-phase.

Due to this potential degradation of mechanical properties at engine operating tempera-
ture, research has been done to evaluate the long-term stability of Mg-PSZ,s’u’12 Y-TZP,3‘”‘13
and Ce-TZP.!*"® This report summarizes the results of an effort to evaluate commercially
available Y-TZP materials for long-term stability at typical engine operating temperatures.

EXPERIMENTAL PROCEDURE

Billets of Y-TZP materials were obtained from a variety of manufacturers as illustrated in
Table 2. Type “B” bars (3 by 4 by 50 mm) were machined from these billets according to
MIL-STD-1942. Due to material limitations, the AC Sparkplug TZP-110 was machined into
“A” bars (1.5 by 2 by 30 mm) according to the same standard. The bulk density of each bar
was determined by measuring the mass and geometry, and a pulse-echo ultrasonic technique
was used to determine the modulus of elasticity (MOE). Bars from each manufacturer were
then randomly divided into three lots of 40, with each lot undergoing one of the following
heat treatments: : :

0 hr at 1000°C (as-received)
100 hr at 1000°C
500 hr at 1000°C.

10. LANGE, F. F. Tmmgormation T%zglemhg - Part [ - Size Effects Associated with the Thermodynamics of Constrained Transformations.
J. Mat. Sci., no. 17, 1982, p. 225-234.

11. SCHIOLER, L. I. Effect of Time and Temperature on Transformation Toughened Zirconias. U.S. Army Materials Technology Laboratory,
MTL TR 87-29, prepared for Oak Ridge National Laboratory for U.S. Department of Energy under Interagency Agreement
DE-AI05-840R-21411, June 1987.

12. FERBER, M. K, and HINE, T. Time-Dependent Mechanical Behavior of Partially Stabilized Zirconia for Diesel Engine Applications.
ORNL/Sub/85-27416/1, repared for Oak Ridge National Laboratory for U.S. Department of Energy under Contract
DE-AC05-840R21400, July 1988.

13. MA?A&I“T. Aé!f;hguz'cal Properties of Y203-Stabilized Tetragonal Polycrystals afier Aging at High Temperatures. J. Am. Ceram. Soc., v. 69,
no. 7, , p- 519-522.

14. TSUKMA, K Mechanical Pr;gpenies and Thermal Stability of CeO; Containing Tetragonal Zirconia Polycrystals. Am. Ceram. Soc. Bull,

v. 65, no. 10, 1986, p. 1386-1389.

15. TSUKUMA, K., and SHIMADA, M. Strength, Fracture Toughness and Vickers Hardness of CeO>-Stabilized Tetragonal ZrO: Polycrvsials

(Ce-TZP). }. Mat. Sci., v. 20, 1985, p. 1178-1184.




Table 2. EVALUATED MATERIALS

Code Manufacturer Material Process %Y203
Japanese

KY Kyocera 2-201 Sintered 28

TOSH Toshiba TASZIC Sintered 23

HIT Hitachi 1985 Hot-Pressed (?) 20

NGk NGK Locke Z-191 Sintered 3.0

KS Koransha 1986 Sintered 3.0

KH Koransha 1986 HiP'ed 3.0
Domestic

AC AC Sparkpiug TZP-110 Sintered 26

Heat treatments were done in air, at laboratory ambient humidity (40-60%), in an
unstressed condition with the bars on silicon carbide knife edges to assure uniform thermal
treatment. The knife edges supported the bars well outside the test area, assuring no effect
on the mechanical property evaluation. The density and MOE were again measured after
each thermal treatment. Thirty bars were then broken at room temperature with 4-point bend-
ing, according to MIL-STD-1942, with inner and outer spans of 20 mm and 40 mm,
respectively, and a crosshead speed of 0.5 mm/min. (For the type “A” bars, spans of 10 mm
and 20 mm were used.) The characteristic strength of the flexure specimen was then
calculated for the bar. This value was not corrected for volume and surface effects. Weibull
slopes were obtained by interpreting the strength data with a simple least-squares curve fit in
a standard Weibull two-parametei plot. The fracture surface of each bar was examined opti-
cally using a low magnification microscope in an attempt to determine the cause of failure.
In many cases, a scanning electron microscope (SEM) was needed to improve the chances of
determining the flaw type.

The “effective” fracture toughness (K.) was measured on the remaining 10 bars via the
Vickers indentation-strength techniqué outline in Ref. 16 using various indentation loads on
military standard “B” bars only. Prior to indentation, all bars were polished to a finish of 2-
microinch RMS or better on one of their 4 mm by 50 mm faces. The polishing was necess-
ary to remove any existing machining damage. The bars were broken using 4-point bending
immediately after indentation to minimize any environmental effects. Bars were examined
after failure to insure that the break had occurred at the indent. (Those that did not fail at
the indent were excluded from K, calculations.)

The linear intercept method'” was used to determine the average grain size. This
method was applied to SEM micrographs of specimens which were thermally etched at 1450°C
for 15 minutes. A transmission electron microscope (TEM) was employed to analyze any
grain-boundary phase that may be present in the material. Pieces of fractured bend bars
were prepared by ion milling for examination in the TEM. This analysis could not be com-
pleted on the military standard “A” bars because the small size made ion milling impossible.

16. CHANTIKUL, P, AN'I'IS G. R., LAWN, B. R, and MARSHALL, D. B. A Critical Evaluation of Indentation Techniques for Measuring
Fracture Touymcsr mgrh Method. 1. Am. Ceram. Soc., v. 64, no. 9, 1981, p. 539-543.

17. MENDELSON, M. L Average Grain Size in Polycrystalline Ceramics. J. Am. Ceram. Soc., v. 52, no. 8, 1969, p. 443-446.




The zirconia phases present were determined using X-ray diffraction with CuKe« radiation
over an angular range of 25° to 40° 26. The surface volume fraction of monoclinic and the
fraction of tetragonal-plus-cubic zirconia was calculated using the equations and constants in
Ref. 11, which take into account the difficulty in deconvoluting the tetragonal (101) and cubic
(111) peaks. These equation are:

1
\Y/ =
te = TH[(To/Ra) (Riro/Tir o]
and
Vi =1-Vic
where
Vi+c = volume fraction of tetragonal plus cubic zirconia
Va = volume fraction of the monoclinic (111) plus (11T) peaks
Ip = sum of the monoclinic (111) and (11T) integrated intensities
I+ = sum of the tetragonal plus cubic integrated intensities
Ri+c = sum of the tetragonal and cubic calculated intensities = 388.27
Rp = sum of the monoclinic (111) and (11T) calculated intensities = 227.02.

These volume fractions were obtained from as-machined, heat-treated specimens and from
the fracture surface of related specimens used in toughness testing. Deconvolution of the
high-angie tetragonal and cubic ;l)eaks and the calculation of their integrated intensities was
completed via computer analysis. 8 The data was collected using a step scan made with
incremental steps of 0.05° = 26 and a count time of 10 seconds over the 26 = 70° to 76°
region. Using these peaks and their respective integrated intensities allowed for the
determination of the relative amount of each phase.* Hardness was measured by Knoop
indentation with a 300g load on specimens which were polished on a lead lap using 6 um to
12 um diamond paste.

RESULTS

Strength and Toughness

Figures 1 and 2 suggest that the seven Y-TZP materic's may be divided into three gen-
eral groups according to their mechanical properties (as defined in Table 1) and ability to
retain these properties after heat treatments at 1000°C. The three groups are:

Group I: TZPs with excellent as-received strength and strength retention, but poor effec-
tive fracture toughness,

Group II: TZPs with good as-received strength, excellent strength retention, and good
effective fracture toughness, and

Group III: TZPs with good as-received strength but poor strength retention, and good
effective fracture toughness.

*Special thanks to Prof. Gary Leatherman and James Marra at Worcester Polytechnic Institute for this analysis.

18. DOUGLAS, C. Quantitative Phase Analysis of Partially Stabilized Zirconia by X-ray Diffraction. Masters Thesis, Worcestor Polytechnic
Institute, Worcestor, MA, September 1987.
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Group I includes Koransha “HIP’ed” (KH) and Hitachi “1985” (HIT). Both exhibit excel-
lent as-received strength, 1261 and 1169 MPa, respectively, and a slight strength loss (~15%)
after 100 hours at 1000°C, but no further loss after 500 hours at 1000°C. However, the effec-
tive fracture toughness was very low for both between 4 to 5 MPaxm'? before and after heat
treatments. The KH TZP also showed a color change with heat treatments. The as-received
material was dark gray but after both heat treatments it became off-white, similar to the
other six TZPs.

Group II includes NGK-Locke Z-191 (NGK), Toshiba “TASZIC” (TOSH), Koransha
“Sintered” (KS), and AC Sparkplug TZP-110 (AC). All of these TZPs have good as-received
strength, NGK having the highest at 873 MPa and TOSH the lowest at 633 MPa. All were
able to retain up to 85% of their strength after heat treatments.

The effective fracture toughness varied from material-to-material, and in two materials, as
a function of heat treatment time. The TOSH and AC TZPs both showed an increase in K,
from their as-received values as the length of heat treatment increased. TOSH increased
from 8.5 to 9.5 MPa*m'”? and AC increased from 5.6 to 7.2 MPasm'?. NGK and KS had
constant K. of 7.3 and 5.8 MPas+m'? before and after heat treatments.

The mechanical properties reported here for NGK agree very well with those reported by
Larsen and Adams® before and after exposure to 1000°C for 1000 hr, and with the as-
received properties reported by Hecht, et al.’® Also, Lintula, et al.,?’ determined the as-
received mechanical properties of NGK and KS. They report higher strength for both, but
they use smaller load spans, 10 mm and 30 mm, and only two to six specimens. The fracture
toughness of the NGK was about 40% less than reported here, but the results for KS agreed.

Group III included Kyocera Z-201 (KY). It has good as-received strength of 745 MPa,
but looses 37% and 55% of this strength after 100 and 500 hours, respectively, at 1000°C.
The as-received K. was 7 MPasm"2.  Toughness (K.) could not be obtained due to warping
of the bars during the heat treatment.

Others!®?° have also determined the as-received properties of the Group I1I TZP.
Hecht, et al.,!” obtained a much higher strength (957 MPa) and a lower toughness
(5.4 MPa*m'?), while Lintula, et al.,? reported even higher strength (1050 MPa) but the
toughness agreed (6.3 MPa«m'?). The discrepancy for the Hecht, et al., data cannot be
accounted for, but the higher strength reported by Lintula, et al., can be attributed to the dif-
ferent load spans and sample population.

Fractography

Optical fractography was done on all broken bars subjected to flexure strength testing.
Flaw origins along with mirror, mist, and hackle regions were easily observed in the Group I.
II. and the as-received bars of Group III. However, these regions on the fracture surtaces of
the Group III heat-treated bars were extremely difficult to see.

19. HECHT, N. L., MCCULLUM, D. E., GRANT, D. W, WOLF, J. D., GRAVES, G. A., and GOODRICH. S. The Experimental Evaluation
of Environmental Effects in Tothened Ceramics for Advanced Heat Engines. Proceedings of the 24th Automotive Technology Development
ontractors’ Coordination Meeting, Society of Automotive Engineers, Warrendale, PA."April 1987, p. 209-222.
20. LINTULA. P., LEPISTO, T.. LEVANEN, E., MANTYLA, T., and LEPISTO. T. Characterization of Commercial Zirconia Ceramics.
Ceram. Eng. Sci. Proc., v. 9, no. 9-10, 1988, p. 1279-1288.




Although optical fractography was helpful in examining the fracture surface features, in
most cases, it did not lend itself to determination of the flaw type. As a result, SEM was
used to examine selected fracture surfaces. Figure 3 shows that in most cases, the flaw type
is porosity related (i.e., pore, porous region, etc.) for all seven TZP materials, but other types
of flaws, such as large grain(s), inclusions, and machining damage were also observed. Gener-
ally, the flaws identified in Group I were much smaller than the flaws indentified in either
Group II or III. In the case of the heat-treated Group III TZPs, employment of the SEM
improved flaw type determination, but the process was extremely difficult, time-consuming, and
in many instances, the cause of fracture still could not be determined.

Microstructure

Figure 4 shows that all seven TZPs are extremely fine grained (<1.0 xm) and the grain
size is essentially independent of heat treatment time. In general, the grain size of Group I
is slightly finer than in Groups II and III except for NGK. Figures 5a through 5g are
examples of each microstructure. The micrographs indicate that each TZP has an essentially
uniform grain size distribution. However, large grains (3 to 5 times larger than the mean)
were found randomly dispersed in all but the HIT. The AC material also had randomly dis-
persed platelets of alumina (Figure Sf).

TEM was used to determine the composition of any grain boundary phases. This
revealed a thin, uniform boundary phase for all TZPs as shown in Figures 6a through 6f.
Due to the fine grain size and the small amount of grain boundary phase, attempts to deter-
mine the chemical compositions proved inconclusive. Twinned grains, probably m-ZrO,, were
commonly found in the KY material as in Figure 6f, but not nearly as frequently in the
remaining materials.

Phase Stability

The change in surface monoclinic (m) phase content with heat treatment time is shown in
Figure 7. The Group III TZP showed a progressive increase in m-zirconia with heat treat-
ment time, while, on the average, Group II had higher amounts of m-zirconia than Group I,
but lower than Group III. Group I and all but AC of Group II showed a decrease in m-
zirconia from the as-received condition after 100 hr at 1000°C and then exhibited a large
increase after 500 hr at 1000°C.

Deconvolution of the high-angle peaks revealed that only the NGK and KY TZPs con-
tained an appreciable amount of c-ZrO;, (between 7 and 11 volume percent for both) regard-
less of the heat treatment.

Table 3 summarizes the results from the X-ray analysis of the fracture surface of
specimens used in toughness determination. Group I (KH and HIT) and NGK from Group
Il have the lowest amount of m-ZrO, on the fracture surface.
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Figure 3. Common strangth limiting flaws.




-b
—
L

o
®
l
T

o
N
1
|

Padal

OIIIIIINY

N/

’V

o
F S

i

!
S

MN—® Z->2D0

(]
1
1

(um) 0.

e Ya%aavava%!
AMONOUONNNNONNNNNY

*

AOMOONNNANNNN

L

L L
AN

yd £

'NGK TOSH KS AC

A
=
<
uer

LKY

.
bee
—

B<XH As-Received [N 100 Hours [74600 Hours

THERMALLY ETCHED AT 1460°C FOR 16 MIN

Figure 4. Grain size of the seven Y-TZPs before and after heat freatment at 1000°C.

10




‘G @Jnbi4

«OIZSV 1. Bqiyso] eyi jo exmonisooy (p) L161-Z, O0T-HON oy jo e1nannscoN (o)

«S861.. 14oBIH eyl jo einonnsoin (aQ)

11




‘(pavoD) g By

102-2., ©10004) oy Jo eunjoruisoo (6)

Iv....dc—wt

—YSURION Ol JO oxMonsooy (o)

12




"9 esnbi4

Asepunoq uesB ,161-Z, MOOTHON
oy} Jo yduiBoiojus uUosONe uoissiuIsuBl) (9)

13

Asepunoq ujeiB pe,diH, BysueIo)y
oY) Jo :ﬂww%h_m_ncn_ ﬁ%wmﬂmwmhﬂ”m‘_:! 1 (q) oyt jo ydeiBosojuw vosoe|e uoissiwsues) ()




Asepunoq uieiB ,pessiuig, BysurRIOy
oy} jo ydusBoroy uoee uoissisuesl (e)

‘(pavoD) 9 by

Asepunoq ujesB ,102-2,, ©1090Ay
o4} Jo ydeiBosoywi uonoe|e uojssjwsues] ()

Arepunoq ueif ,0IZSVL. BqIusoy .
oy jo ydeiBoniw uonoeje vojssiwsuey (p)

14




70 T

60 +

40
30 +

20 -

10 %
0 m?J HIT L NGK TOSH K8 AC KY
1 , L . M

O0—Z~ro0Zzox #

[XH As-Received (SN 100 Hours [ZZ 500 Hours

SURFACE PHASE CONTENT

Figure 7. Surface monoclinic phase content of the seven Y-TZPs
before and after heat treatments at 1000°C.

Table 3. MONOCLINIC PHASE CONTENT ON THE FRACTURE

SURFACE OF AS-RECEIVED BARS
Material % Monoclinic % Tetragonal + Cubic
Koransha “HIP'ed” 25.4 74.6
Hitachi “1985” 14.2 85.8
NGK Locke “Z-191" 274 72.6
Toshiba “TASZIC” 65.0 35.0
Koransha “Sintered” 47.3 527
AC Sparkplug “TZP-110" 45.3 54.7
Kyocera “Z-201" 47.8 52.2

Other Property Information

Weibull numbers and other properties such as density, modulus of elasticity (MOE), and
hardness were also determined for these TZPs. Weibull analysis yielded numbers which
varied between materials, but also varied greatly within a given material depending on the
heat treatment. Since SEM fractography was limited to only selected specimens, more
involved fractography would be required to determine why the Weibull numbers varied with
heat treatments the way they did.

With the exception of the Group III materials, none of the TZPs showed a change in

density, MOE, or hardness with heat treatments. The Group III materials showed a slight
decrease in density with heat treatment time. These results are summarized in the Appendix.
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DISCUSSION

As with other materials being considered for use in advanced heat engines, an understand-
ing of the relationship between properties and microstructure, and how these may change with
time at elevated temperatures is important in determining the type and extent of application
for Y-TZP materials. The results for this study will be discussed with regard to defining
these relationships for the Y-TZPs examined.

The excellent as-received strength and strength retention of the Group I TZPs is due to
the fine-grained microstructure which, in turn, is a result of the manufacturing technique. It
is well known that the strength of a polycrystalline material mcreases with decreasing grain
size”! and that the use of hot isostatic prc:ssmg22 or hot pressmg increases the strength by
inhibiting grain growth and greatly reducing the amount and size of strength-limiting flaws
such as porosity. This grain size also accounts for the phase stability of these TZPs after
long times at 1000°C. As outlined previously, there is a critical grain size necessary to inhibit
the spontaneous transformation of t-ZrO, upon cooling. It appears that the Group I TZPs
are comprised of grains which are well below this critical size, since very little strength is lost
and only a small amount of monoclinic ZrO, is present on the surface. Fractography
indicated that the strength-limiting flaw in both of these TZPs is porosity related and does

not change with heat treatments.

Although the fine-grained microstructure is beneficial to the strength, it has an adverse
effect on the toughness of Group I. Because the t-ZrO, grains are so fine, very few trans-
form even in the presence of the crack-tip stress field as seen by the results in Table 3.
Since the t — m transformation is inhibited, there is minimal transformation toughening, and
thus, the effective fracture toughness is extremely low.

The color change that the KH TZP undergoes during heat treatment occurs because the
TZP is slightly reduced,”®?* during the HIPing process Heat treating in air oxidizes the
material, restoring oxygen stoichiometry. Others®® have found that the Fe 1mpurmes on the
order of parts/million, cause a color change as the Fe ions change from Fe** to Fe®* during
the oxidation. Irrespective of the mechanism, this oxidation does not appear to have an
effect on the room temperature properties of the TZP before or after heat treatments.

All of the Y-TZPs which comprise Group II were produced by pressureless sintering. As
a result, their strengths are much lower than those of Group I because they have a higher
amount of porosity and, on the average, a larger grain size. The large grain size is beneficial
in that it results in a higher effective fracture toughness.

Beyond these generalizations, there are differences between the Group II Y-TZPs which,
unlike Group I, requires that they be discussed individually rather than as a group.

21. KINGERY, W. D,, BOWEN, H. K, and UHLMANN, D. R. [ntroduction to Ceramics. John Wiley & Sons, Inc.. New York, NY, 1986.

22. %JlléMA, K, and SHIMADA, M. Hox Isostatic Pressing of Y203-Partially Stabilized Zirconia. Am. Ceram. Soc. Bull, v. 64, no. 2, 1985,
p. 310-3

23. SCHUBERT, H., CLAUSSEN, N., and RUHLE, M. Preparation of Y03-Stabilized Tetrg nal Pokcgstab (Y- TZP) ﬁm Different Powders.
Advances in Ceramics, v. 12, Science and Technology of Zirconia Il, N. Claussen, M. Ru le, and Heuer, ed e American Ceramic
Society, Columbus, OH, 1984, p. 766-773.

24. GROSS, V., and SWAIN, M. V. Mechanical 98£a-ne:mthcromucm of Sintered and Hot Isostatically Pressed Yuria-Partially Stabilized
Zirconia, J! Austr. Ceram. Soc., v. 22, no. 1, 1 1-12

25. MOYA, J. S MORENO R., REQUENA, J,, and SOR[A, J. Black Color in Partially Stabilized Zirconia. J. Am. Ceram. Soc., v. 71,
no. 11, 1988 'p. C479.C480.
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The best TZP of this group is NGK. Its average grain size is similar to that of Group I,
which results in the strongest and second toughest material of Group II. However, these
values are quite different from those of Group I due to the microstructure. The bimodal
microstructure (Figure 5c), shows a matrix of 0.2 um grains with larger grains (10 to 15
times) randomly dispersed. Examination of the fracture surface shows that the strength-
limiting flaw tends to be an agglomerate or porous region rather than a large grain. Thus,
these flaws limit the strength. However, the fine-grained microstructure ensures that a high
percentage of strength is retained after heat treatments by inhibiting the transformation of
t-Zl’Oz. .

It was shown previously that a very fine-grained tetragonal microstructure suppresses
toughening via the t — m transformation. Yet, NGK has an appreciably higher toughness
than either of the Group I TZPs. It is believed that the large grains present in the
microstructure are cubic, since X-ray analysis reveals the presence of the cubic phase. In
order that c-ZrO, grains be retained at room temperature, a combination of the following
must have occurred: first, the initial portion of the sintering process must have taken place in
the t+c phase field to nucleate c-ZrO,; second, the phase diagram (Figure 82 ) shows that to
obtain c-ZrO;, at room temperature, a minimum of ~8.0 mole percent Y,O3 is required.
Therefore, once nucleated, the c-ZrO, would grow during the remainder of the sintering pro-
cess, depleting the immediate surrounding grains of the Y,0;, enabling it to become cubic.
Although the surrounding region is yttria poor, it does not transform spontaneously because
the bulk material constrains it. However, these fine grains can now be easily transformed by
the crack-tip stress field, resulting in transformation toughemng This is supported by the
X-ray diffraction results which show that NGK has a higher amount of m-ZrO; on the frac-
ture surface than do the Group I TZPs. The presence of planar voids may also contribute
to the enhanced toughness through crack blunting. The existence and extent of contribution
of the latter mechanism has not been determined at this time. This appears to be a case of
microstructural tailoring where the fine-grained t-ZrO, matrix ensures the good strength, while
formation of a small amount of c-ZrO, provides improved toughness.

The TOSH material is one of the weakest Y-TZPs tested, but it’s the toughest. The
strength is limited primarily by the porosity, and to some extent, the large grain size.
Fractography shows that the most common cause of failure is a large (75-100 um), porous
region, similar to that in Figure 3. The excellent toughness is a result of the large-grained
microstructure. These grains are easy to transform, especially with respect to the Group I
TZPs, as indicated by the large amount of m-ZrO, on the fracture surface.

The difference in strength between Groups I and I is evident when comparing KS
(Group II) to KH (Group I). Both materials were produced from the same starting powder,
but using different techniques. They have the same final grain size, but the KS material has
approximately half the strength of KH. Again, this is due to the larger amount of porosity
in KS due tc sintering. Both have the same toughness and amount of m-ZrO,, giving further
support to the idea that grain size plays a major role in the transformability o/ the material.

The final Group II TZP is AC. It has the second highest strength, and fracture tough-
ness similar to KS. However, it has the largest grain size, and the microstructure contains
randomly dispersed hexagonal platelets of Al;O;. This does not fit the property-microstrucure

*Private communication with G. L. Leatherman.

26. RUH, R., MAZDIYASNI, K. S., VALENTINE, P. G., and BIELSTEIN, H. O. Phase Relations in the System ZrO»Y:03 at Low Y203
Conterss.” J. Am. Ceram. Soc., v. 67, no. 9, 1984, p- C190-C192.

17




relationships previously mentioned. However, Tsukama and Takahata®’ have shown that alu-
mina additions to Y- and Ce-TZP enhance strength while reducing toughness. For the

Y-TZP materials, additions of up to ~20 volume percent alumina enhanced strength and
reduced toughness.
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Figure 8. ZrO2-Y203 phase diagram for low Y203 contents (Ref. 26).

Further additions caused the strength to decrease because of a decrease in the contribu-
tion from the t — m transformation. The Al;O; content was obtained using a point count-
ing technique yielding an approximate value of 8%. This amount and the platelet shape

indicate that the Al,O; is probably an impurity that was picked up during the ball-milling step
of the processing.

The KY TZP of Group III is the only material examined which showed a significantly
large density and strength decrease with heat treatment time. The large increase in the
amount of m-ZrO, accounts for these losses. This increase is due to the ease in transform-
ing t-ZrO, to m-ZrO,. The ease of this transformation is probably due to a combination of
the coarse grain size and insufficient Y,03; to continue retaining t-ZrO;. These factors are
not problems in the other TZPs. As stated previously, the t — m transformation results in a
4% to 5% increase in volume, and thus, a decrease in density. As the amount of m-ZrO,
increases, the amount of the metastable t-ZrO, available to transform decreases; since there is

27. TSUKUMA, K, and TAKAHATA, T. Mechanical Pro, and Microstructure of TZP and TZP/Al20;3 Cos ites. Advanced Structural
Ceramics, P. F. Becher, M. V. Swain, and S. Somiya, ed., Mat. Res. Soc. Symp. Proc., v. 78, 1987, p. 123-135.

18




less t-ZrO, to transform, the strength decreases. The toughness of the as-received material
was good (7 MPam'?), but any change in toughness with heat treatment time could not be
determined because the specimens warped, which did not allow for proper polishing. The
loss in density and strength, and the increase in m-ZrO, with heat treatment time, is similar
to what others>!! have seen in MgO-PSZ materials.

The large amount of twinned grains in this material, when compared to the other TZPs,
is another indication of how easy it is to transform the tetragonal grains. Twinning probably
occurred due to the stresses imposed on the material during ion milling. The other TZPs
have a much lower amount of twinned grains, indicating that they could handle the ion mill-
ing stresses without transforming.

CONCLUSIONS

1. When considering a Y-TZP material for a structural application, one must determine
the importance of strength and toughness. If superior strength is needed, then an extremely
fine-grained, HIP’ed, or hot-pressed Y-TZP would be required. On the other hand, if tough-
ness is more important a coarser-grained, sintered Y-TZP appears sufficient.

2. In respect to the desired properties outlined in Table 1, none of the seven Y-TZPs
examined would maintain all the mechanical properties after 1000 hr at 982°C. A few TZPs
could maintain strength (Group I) or toughness (TOSH of Group II) but not both.

3. With the exception of Group III, the Y-TZPs examined showed very little change in
room temperature mechanical properties after long-term exposure to 1000°C.

4. Results show that the KY (Kyocera Z-201) TZP would not be adequate for structural
applications where temperatures of 1000°C or greater may be encountered. However, it does
not exclude this TZP from tructural applications where lower temperatures may be present.

5. If a combination of excellent strength and toughness is required in a structural applica-
tion, then a Y-TZP with a microstructure that could be tailored would be necessary to
achieve the best combination of properties. An example is the NGK TZP, where the produc-
tion of a small amount of c-ZrO, during processing appears to enhance the toughness of a
fine-grained Y-TZP, while maintaining high strength.

6. The manufacture of a Y-TZP material using a pressure-assisted process greatly
improves the room temperature strength before and after heat treatments by reducing porosity
and keeping a fine grain size. However, these small grains are resistant to the t — m trans-
formation. As a result, fracture toughness is low because there is little transformation
toughening.

7. Fracture toughness is a function of the t-ZrO, grain size. Small grains are difficult

to transform, thus, there is minimal contribution to the toughness from the t —. m trans-
formation. Large grains are easier to transform, and can enhance the toughness of a material.
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