
S1 at. Entered)
[ON PAGE Utldj C0OM'!,Eo:%Osv

AA 030 12. GOVT ACCESSION NO. 3. RECIPIEN1'S CATALOG NUMBER

4 ,iuej 5. TYPE OF REPORT & PERIOD COVERED

-IAda Compiler Validation Summary Report:R.R. Soft- I July 1988 to I July 1988
rware, Inc., JANUS/Ada, 2.0.2, Zenith Z-183 (Host) and
(Target), 880624WI.09120 S. PLRFORMING'bG. REPORT NUMBER

7. AUTNOR(s) 8. CONTRACT OR GRANT NUMBER(i)

Wright-Patterson AFB
Dayton, OH

g. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Wright-Patterson AFB
Dayton, OH

11. CONTROLLING OFFICE NAME AND APORESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense 13 . ob PAL;L
Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADDRESSIf different from Controlling Office) 15. SECURITY CLASS (ofthis report)

Wright-Patterson AFB UNCLASSIFIED
Dayton, OH 15a. ASjFICATION/DOWNvRADINGDayton,__ OH

I DU N/A
16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited. D T IC
1 A PR 1989D

17. DISTRIB JTION STATEMENT (of the absnracl entered i Block 20 if different from Repot)

UNCLASSIFIED '

18. SUPP.EMENIARY NOTES

19. KEYWORDS (Continue on reverse sidce if necessar) and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

R.R. Software, Inc., JANUS/Ada, 2.0.2, Wright-Patterson AFB, Zenith Z-183 under IBM

PC-DOS, 3.30 (Host) to Zenith Z-183 under IBM PC-DOS, 3.30 (Target), ACVC 1.9.

DD t"IM 1473 EDITION OF I NOV 65 IS OBSOLETE
S A m l 0102-LF-014-6501 ,UNCLASSIFIED

S9 0 OE (9 UR1t'r CLASSIFICATION OF THIS5 PAGE (Wthen Data Entered)

AVF Control Number: AVF-VSR-199.0189
88-04-15-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 880624W1.09120
R.R. Software, Inc.
JANUS/Ada, 2.0.2

Zenith Z-183

Completion of On-Site Testing:
1 July 1988

Accession For

Prepared By: NTIS GRA&I
Ada Validation Facility DTIC TAB

ASD/SCEL Unannouaced Q]
Wright-Patterson AFB OH 45433-6503 Justification

By-

Distribution/

Availability Codes

Prepared For: Avail _and/or

Ada Joint Program Office Dist Special

United States Department of Defense
Washington DC 20301-3081 A

Ada Compiler Validation Summary Report:

Compiler Name: JANUS/Ada, 2.0.2

Certificate Number: 880624wI.09120

Host: Target:
Zenith Z-183 under Zenith Z-183 under
IBM PC-DOS, 3.30 IBM PC-DOS, 3.30

Testing Completed 1 July 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validati6n Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Wiiam S. Ritchie
Acting Director
Department of Defense
Washington, DC 20301

2

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2

1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1I-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS.3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . • 3-4
3-7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5

3.7.3 Test Site 3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report _Q"ESY-) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capabilitya' AG) -_An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.K
Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

• To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 1 July 1988 at Madison, WI.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical

1-3

INTRODUCTION

support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are Ao explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

1-4

INTRODUCTION

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a ccrmiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modificat.ion. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

1-5

INTRODUCTION

place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: JANUS/Ada, 2.0.2

ACVC Version: 1.9

Certificate Number: 880624W1.09120

Host Computer:

Machine: Zenith Z-183

Operating System: IBM PC-DOS, 3.30

Memory Size: 640K

Target Computer:

Machine: Zenith Z-183

Operating System: IBM PC-DOS
3.30

Memory Size: 640K

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to 17 levels, and recursive procedures separately compiled
as subunits nested to 6 levels. The use of 65 levels of block
nesting exceeds the capacity of the compiler. It correctly
processes a compilation containing 723 variables in the same
declarative part. (See tests D55A03A..H (8 tests), D56001B,
D64005E..G (3 tests), and D29002K.)

• Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer caluulatiuns. (See tests
D4AO02A, D4AO02B, D4AO04A, and D4AO04B.)

• Predefined types.

This implementation supports the additional predefined type
LONG FLOAT in the package STANDARD. (See tests B86001C and
B86061D.)

• Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERICERROR or CONSTRAINTERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E24101A.)

. Expression evaluation.

Apparently some default initialization expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type.(See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4AO14A.)

Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX INT components raises no exception. (See test
C36003A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERICERROR is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises STORAGE ERROR when the array objects are declared. (See
test C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT ERROR when the length of a dimension
is calculated and exceeds INTEGER'LAST. (See test C52104Y.)

2-3

CONFIGURATION INFORMATION

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises no exception. (See
test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, index subtype
checks appear to be made as choices are evaluated. (See tests
C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

Not all choices are evaluated before CONSTRAINT ERROR is raised if
a bound in a nonnull range of a nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

2-4

CONFIGURATION INFORMATION

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
not supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are not supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are not
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are not supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are not supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is not supported for procedures. The pragma
INLINE is not supported for functions. (See tests LA3OO4A,
LA3004B, EA3004C, EA3004D, CA3OO4E, and CA3004F.)

Input/output.

The packages SEQUENTIAL_10 and DIRECT_10 can be instantiated with
record types with discriminants without defaults. (See tests
AE2101C, AE2101H, EE2201E, and EE2401G.)

The packages SEQUENTIAL_10 and DIRECT 10 cannot be instantiated
with unconstrained array types. (See tests EE2201D and EE2401D.)

Modes IN FILE and OUT FILE are supported for SEQUENTIAL 10 and
DIRECT_10. (See tests CE2102D and CE2102E)

Modes IN-FILE, OUT FILE, and INOUT FILE are supported for
DIRECT I0. (See tests CE2102F, CE2102Y, and CE2102J.)

2-5

CONFIGURATION INFORMATION

RESET and DELETE are supported for SEQUENTIAL IO and DIRECT10.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL IO and DIRECT IO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file does not truncate the file. (See
test CE2208B.)

An existing text file can be opened in OUTFILE mode, can be
created in OUT FILE mode, and can be created in INFILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text I/O for reading only. (See tests CE3111A..E (5
tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each external
file for sequential I/O for reading only. (See tests CE2107A..D
(4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct I/O for reading only. (See tests CE2107F..I (5
tests), CE2110B, and CE2111H.)

An internal sequential access file and an internal direct access
file cannot be associated with a single external file for writing.
(See test CE2107E.)

An external file associated with more than one internal file
cannot be deleted for SEQUENTIALIO, DIRECTIO, and TEXTIO. (See
test CE2110B.)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are not
deleted when they are closed. (See tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 288 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 30 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 106 1046 1587 10 14 44 2807

Inapplicable 4 5 266 7 4 2 288

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 _ 14

Passed 190 484 528 236 164 98 141 326 131 36 234 3 236 2807

Inapplicable 14 88 146 12 2 0 2 1 6 0 0 0 17 288

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C C34004A C35502P A35902C
C35904A C35904B C35AO3E C35A03R C37213H
C37213J C37215C C37215E C37215G C37215H
C38102C C41402A C45332A C45614C A74106C
C85018B C87BO4B CC1311B BC3105A ADlA01A
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 288 tests were inapplicable for the
reasons indicated:

C35502I..J (2 tests), C35502M..N (2 tests), C35507I..J (2 tests),
C35507M..N (2 tests), C35508I..J (2 tests), C35508M..N (2 tests),
A39005F, and C55B16A use enumeration representation clauses which
are not supported by this compiler.

C35702A uses SHORTFLOAT which is not supported by this
implementation.

3-2

TEST INFORMATION

" A39005C and C87B62B use length clauses with STORAGESIZE
specifications for access types which are not supported by this
implementation.

" A39005E uses length clauses with SMALL specifications which are
not supported by this implementation.

" A39005G uses a record representation clause which is not supported
by this compiler.

" The following tests use SHORTINTEGER, which is not supported by
this compiler:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55BO7B B55B09D

" The following tests use LONGINTEGER, which is not supported by
this compiler:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55B07A B55B09C

" C45231D requires a macro substitution for any predefined numeric
types other than INTEGER, SHORTINTEGER, LONG INTEGER, FLOAT,
SHORT-FLOAT, and LONGFLOAT. This compiler does not support any
such types.

" C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

" C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

" D55AO3E..H (4 tests) use more than 17 levels of loop nesting which
exceeds the capacity of the compiler.

D56001B uses 65 levels of block nesting which exceeds the capacity
of the compiler.

" D64005F and D64005G use nested procedures as subunits to a level
of 10 which exceeds the capacity of the compiler.

B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

C96005B requires the range of type DURATION to be different from
those of its base type; in this implementation they are the same.

3-3

TEST INFORMATION

. CA3004E, EA3004C, and LA3004A use the INLINE pragma for
procedures, which is not supported by this compiler.

0 CA3004F, EA3004D, and LA3004B use the INLINE pragma for functions,
which is not supported by this compiler.

. EE2201D and EE2401D use instantiations of package SEQUENTIAL_10
and DIRECT 10 with unconstrained array types. These
instantiations are rejected by this compiler.

. CE2107B..E (4 tests), CE2107G..I (3 tests), CE2110B, CE2111D,
CE2111H, CE3111B..E (4 tests), and CE3114B are inapplicable
because multiple internal files cannot be associated with the same
external file if any file is open for writing. The proper
exception is raised when multiple access is attempted.

. The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 30 Class B tests.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B24007A B24009A B25002A B26005A
B27005A B29001A B37106A B37201A B44001A
B49003A B49005A B51001A B55A01A B63001A
B63001B B64001A B91001H B95001A BA1101A
BA1101C BA1101E BA3006A BA3006B BA3007A

3-4

TEST INFORMATION

BA3008A BA3008B BA3013A BC2001D BC2001E

C45651A requires that the result of the expression in line 227 be in the
range given in line 228; however, this range excludes some acceptable
results. This implementation passes all other checks of this test, and the
AVO ruled that the test is passed.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the JANUS/Ada, 2.0.2 compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the JANUS/Ada, 2.0.2 compiler using ACVC Version 1.9 was
conducted on-site by a validation team from the AVF. The configuration
consisted of a Zenith Z-183 operating under IBM PC-DOS, 3.30.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the Zenith Z-183, and all executable tests were
run. Object files were linked and executed on the target. Results were
printed from the target computer.

The compiler was tested using command scripts provided by R.R. Software,
Inc. and reviewed by the validation team. The compiler was tested using
all default option settings except for the following:

Option Effect

/W Suppress warning messages.
/Q Suppress prompts at error messages.
/T Generate trimmable code.
/D Debugging code off.
/E Generate EXE file.

3-5

TEST INFORMATION

Tests were compiled, linked, and executed (as appropriate) using a single
host computer and target computer. Test output, compilation listings, and
job logs were captured on magnetic tape and archived at the AVF. The
listings examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Madison, WI and was completed on 1 July 1988.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

R.R. Software, Inc. has submitted the following
Declaration of Conformance concerning the JANUS/Ada,
2.0.2.

A-i

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: R.R. Software, Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: JANUS/Ada Version: 2.0.2
Host Architecture ISA: Zenith Z-183 OS&VER #: IBM PC-DOS, 3.30
Target Architecture ISA: Zenith Z-183 OS&VER #: IBM PC-DOS, 3.30

Iaplementor' a Declaration

I, the undersigned, representing R.R. Software, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in
the compiler(s) listed in this declaration. I declare that R.R. Software,
Inc. is the owner of record of the Ada language compiler(s) listed above
and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for
Ada language compiler(s) listed in this declaration shall be made only in
the owner's corporate name

Date: (/f"
James A. Stewart, General Manager

Owner's Declaration

I, the undersigned, representing R.R. Software, Inc., take full
responsibility for implementation and maintenance of the Ada compiler(s)
listed above, and agree to the public disclosure of the final Validation
Summary Report. I further agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. I declare
that all of the Ada language compilers listed, and their host/target
performance, are in compliance with the Ada Language Standard

ANSItIL-STD-1_15A.

James A. Stewart, General Manager

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the JANUS/Ada , 2.0.2 compiler, are described in the following sections,
which discuss topics in Appendix F of the Ada Standard.
Implementation-specific portions of the package STANDARD are also included
in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range -((2.0 *' 128) - (2.0 *' 104))
((2.0 * 128) - (2.0 " 104));

type LONGFLOAT is digits 15 range -((2.0 #* 1024) - (2.0 * 971))
((2.0 00 1024) - (2.0 *0 971));

type DURATION is delta 1.0/4096.0 range -((2.0 * 31) - 1)/4096.0
((2.0 * 31) - 1)/4096.0;

end STANDARD;

B-i

A Appendix F: Implementation Dependencies

F Implementation Dependencies

iis appendix specifies certain system-dependent characteristics of JANUS/Ada.
.!rsion 2.0.2.

1 Implementation Dependent Pragmas

addition to the required Ada pragmas, JANUS/Ada also provides several others.
me of these pragmas have a textual range. Such pragmas set some value of
portance to the compiler, usually a flag that may be On or Off. The value to be
ed by the compiler at a given point in a program depends on the parameter to
e most recent relevant pragma in the text of the program. For flags, if the
,rameter is the identifier On, then the flag is on: if the parameter is the
entifier Off, then the flag is off; if no such pragma has occurred, then a default
ilue is used.

ie range of a pragma - even a pragma that usually has a textual range - may
try if the pragma is not inside a compilation unit. This matters only if you put
iltiple compilation units in a file. The following rules apply:

1) If a pragma is inside a compilation unit, it affects only that unit.
2) If a pragma is outside a compilation unit, it affects all following

compilation units in the compilation.
-rtain required Ada pragmas, such as INLINE, would follow different rules:
,wever, as it turns out, JANUS/Ada Ignores all pragmas that would.

te following system-dependent pragmas are defined by JANUS/Ada. Unless
herwise stated, they may occur anywhere that a pragma may occur.

.LCHECKS Takes one of two identifiers On or Off as its argument. and has a
textual range. If the argument is Off, then this pragma causes
suppression of arithmetic checking (like pragma ARITHCHECK - see
below), range checking (like pragma RANGECHECK - see below).
storage error checking, and elaboration checking. If the argument is
On. then these checks are all performed as usual. Note that pragma
ALL CHECKS does not affect the status of the DEBUG pragma: for the
fastest run time code (and the worst run time checking), both
ALL CHECKS and DEBUG should be turned Off and the pragma
OPTIMIZE (Time) should be used. Note also that ALLCHECKS does not
affect the status of the ENUMTAB pragma. Combining check
suppression using the pragma ALLCHECKS and using the pragma
SUPPRESS may cause unexpected results: it should not be . done.
However, ALLCHECKS may be combined with the JANUS/Ada pragmas

B-2

ppendix F: Implementation Dependencies

ARITHCHECK and RANGECHECK; whichever relevant pragma has
occurred most recently will determine whether a given check is
performed. ALLCHECKS is on by default. Turning any checks off may
cause unpredictable results if execution would have caused the
corresponding assumption to be violated. Checks should be off only in
fully debugged and tested programs. After checks are turned off. full
testing should again be done, since any program that handles an
exception may expect results that will not occur if no checking is
done.

RITHCHECK Takes one of the two identifiers On or Off as its argument, and has a
textual range. Where ARITHCHECK is on, the compiler is permitted to
(and generally does) not generate checks for situations where it is
permitted to raise NUMERICERROR; these checks include overflow
checking and checking for division by zero. Combining check
suppression using the pragma ARITHCHECK and using the pragma
SUPPRESS may cause unexpected results; it should not he done.
However, ARITHCHECK may be combined with the JANUS/Ada pragma
ALL CHECKS; whichever pragma has occurred most recently will be
effective. ARITHCHECK is on by default. Turning any checks off may
cause unpredictable results if execution would have caused the
corresponding assumption to be violated. Checks should be off only in
fully debugged and tested programs. After checks are turned off, full
testing should again be done. since any program that handles an
exception may expect results that will not occur if no checking is
done.

_EANUP Takes an integer literal in the range 0..3 as its argument, and has a
textual range. Using this pragma allows the JANUS/Ada run-time
system to be less than meticulous about recovering temporary memory
space it uses. This pragma can allow for smaller and faster code, but
can be dangerous: certain constructs can cause memory to be used up
very quickly. The smaller the parameter, the more danger is permitted.
A value of three - the default value - causes the run-time system
to be its usual immaculate self. A value of zero causes no reclamation
of temporary space. Values of one and two allow compromising between
cleanliness and speed. Using values other than 3 adds some risk of
your program running out of memory, especially in loops which contain
certain constructs.

B-3

Appendix F: Implementation Dependencies

EBUG Takes one of the two identifiers On or Off as its argument, and has a
textual range. This pragma controls the generation of line number
code and procedure name code. When DEBUG is on, such code is
generated. When DEBUG is off, no line number code or procedure
names are generated. This information is used by the walkback which
is generated after a run-time error (e.g., an unhandled exception).
The walkback is still generated when DEBUG is off. but the line
numbers will be incorrect, and no subprogram names will be printed.
DEBUG's initial state can be set by the command line; if no explicit
option is given, then DEBUG is initially on. Turning DEBUG off saves
space, but causes the loss of much of JANUS/Ada's power in
describing run time errors.

Notes:
DEBUG should only be turned off when the program has no errors. The
information provided on an error when DEBUG is off is not very
useful.

If DEBUG is on at the beginning of a subprogram or package
specification, then it must be on at the end of the specification.
Conversely, if DEBUG is off at the beginning of such a specification,
it must be off at the end. If you want DEBUG to be off for an entire
compilation, then you can either put a DEBUG pragma in the context
clause of the compilation or you can use the appropriate compiler
option.

IUMTAB Takes one of the two Identifiers On or Off as its argument, and has a
textual range. This pragma controls the generation of enumeration
tables. Enumeration tables are used for the attributes IMAGE, VALUE,
and WIDTH, and hence to input and output enumeration values. The
tables are generated when ENUMTAB is on. The state of the ENUMTAB
flag is significant only at enumeration type definitions. If this pragma
is used to prevent generation of a type's enumeration tables, then
using the three mentioned attributes causes an erroneous program,
.with unpredictable results; furthermore, the type should not be used
as a generic actual discrete type, and in particular
TEXTIO.ENUMERATION_10 should not be instantiated for the type. If
the enumeration type is not needed for any of these purposes, the
tables, which use a lot of space, are unnecessary. ENUMTAB is on by
default.

B-4

kppendix F: Implementation Dependencies

'AGE_LENGTH
This pragma takes a single integer literal as its argument. It says
that a page break should be added to the listing after the each
occurrence of the given number of lines. The default page length is
32000, so that no page breaks are generated for most programs. Each
page starts with a header that looks like the following:

JANUS/ADA Version 2.0.0 compiling file on date at time

"ANGECHECKTakes one of the two identifiers On or Off as its argument, and has a
textual range. Where RANGECHECK is on, the compiler Is permitted to
(and generally does) not generate checks for situations where it is
expected to raise CONSTRAINT_ERROR; these checks include null
pointer checking, discrim-inant checking, iTdex checking, array length
checking, and range checking. Combining check suppression using the
pragma RANGECHECK and using the pragma SUPPRESS may cause
unexpected results; it should not be done. However, RANGECHECK may
be combined with the JANUS/Ada pragma ALL_CHECKS, whichever
pragma has occurred most recently will be effective. RANGECHECK is
on by default. Turning any checks off may cause unpredictable results
if execution would have caused the corresponding assumption to be
violated. Checks should be off only in fully debugged and tested
programs. After checks are turned off, full testing should again be
done, since any program that handles- an exception may expect results
that will not occur if no checking is done.

,YSLIB This pragma tells the compiler that the current unit is one of the
standard JANUS/Ada system libraries. It takes as a parameter an
integer literal in the range 1 .. 15; only the values one through four
are currently used. For example, system library number two provides
floating point support. Do not use this pragma unless you are writing
a package to replace one of the standard JANUS/Ada system libraries.

ERBOSE Takes On or Off as its argument, and has a textual range. VERBOSE
controls the amount of output on an error. If VERBOSE is on, the 2
lines preceding the error are printed, with an arrow pointing at the
error. If VERBOSE is off, only the line number is printed.

VERBOSE(Off):

Line 16 at Position 5
ERROR Identifier is not defined

B-5

Appendix F: Implementation Dependencies

VERBOSE(On):

15: if X = 10 then
16: Z := 10;

ERROR Identifier is not defined

The reason for this option is that an error message with VERBOSE on
can take a long time to be generated, especially in a large program.
VERBOSE's initial condition can be set by the compiler command line.

veral required Ada pragmas may have surprising effects in JANUS/Ada. The

:IORITY pragma may only take the value 0, since that is the only value In the

nge System.Priority. Specifying any OPTIMIZE pragma turns on optimization;
herwise, optimization is only done if specified on the compiler's command line.

ie SUPPRESS pragma is ignored unless it only has one parameter. Also, the

Ilowing pragmas are always ignored: CONTROLLED, INLINE, INTERFACE,

.MORY_SJZE. PACK, SHARED, STORAGE_UNIT, and SYSTEMNAME. Pragma

)NTROLLED is always ignored because JANUS/Ada does no automatic garbage
Ilection; thus, the effect of pragma CONTROLLED already applies to all access

pes. Pragma SHARED is similarly ignored: JANUS/Ada's non-preemptive task
neduling gives the appropriate effect to all variables. The pragmas INLINE,
CK. and SUPPRESS (with. two parameters) all provide recommendations to the
npiler; as Ada allows, the recommendations are ignored. No other languages are
pported that use the INTERFACE pragma. The pragmas MEMORYSIZE,
ORAGEUNIT, and SYSTEM NAME all attempt to make changes to constants in
. System package; in each case, JANUS/Ada allows only one value, so that the

igma is ignored.

I Implementation Dependent Attributes

"'US/Ada does not provide any attributes other than the required Ada
ributes.

,ie of the required Ada attributes provide system-dependent information; some
the interesting cases are listed below.

Address attribute in JANUS/Ada returns a value of the type System.Address,
ich refers to data segment addresses. For subprograms, packages, task types,
J labels, the conventional value 0 is returned (since these addresses are
.side the data segment). If the value returned by the address attribute is less
.n zero, it refers to an address that is 65536 greater than the given value;

B-6

ppendix F: Implementation Dependencies

!at is, the address can be considered to be a whole number in the standard 8086
)rmat.

.he Size attribute gives the size of the non-dynamic part of an object, type, or
.btype. For an array with non-static bounds, for example, the Size attribute
iturns the size of the array descriptor.

.he attribute StorageSize for an access type always returns the universal integer
alue 65536 (the size of the data segment). This occurs because, in theory, the
alues of an access type may take up all of the data segment. In practice, some
f the data setment will be taken up by other data.

.3 Specification of the Package SYSTEM

he package System for JANUS/Ada has the following definition.

package System is

-- System package for JANUS/Ada

type Address is new Integer;
type Name is (MSDOS2);

System Name : constant Name := MSDOS2;

:torage.Unit : constant := 8;
Memory Size : constant : 65536;

-- Note: The actual memory size of a program is determined
-- dynamically; this is the maximum number of bytes in the data
-- segment.

-- System Dependent Named Numbers:
Min lnt : constant :=-32768;
MaxInt : constant := 32767;
MaxDigits : constant := 15;
Max Mantissa : constant := 31;
FineDelta : constant := 2#1.0#E-31;

-- equivalently, 4.656612873077392578125E-10
Tick : constant := 0.01; -- Some machines have less accuracy;

-- for example, the IBM PC actually ticks about
-- every 0.06 seconds.

B-7

Appendix F: Implementation Dependencies

-- Other System Dependent Declarations
subtype Priority is Integer range 0..0;

type Byte is specially defined, see below;

end System;

ie type Byte in the System package corresponds to the 8-bit machine byte.

fte type System.Byte can be considered to be an enumeration type with no visible
terals. The type is discrete, so that values of the type may be obtained using
ie Val attribute. The parameter to the Val attribute must have a value between
and 255; if it is not, the exception CONSTRAINTERROR will be raised.

nce Byte is a discrete type, it can be used as the type of an array index, a
,op parameter, a case expression, and so on. It Is not a numeric type, so the
-edefined numeric operators cannot be used on objects of the type.

4 Restrictions on Representation Clauses

-NUS/Ada representation clauses are currently rather unpretentious. Specifically,
kNUS/Ada currently only allows certain representation clauses that simply echo
tiat the compiler would have chosen anyway. This minimal implementation of
presentation clauses helps the JANUS/Ada compiler to be fast and to fit in the
-nited memory address space of various machines.

)ecifically, there are the following restrictions:

length clause that specifies T'SIZE for a type T must give the default size for

length clause that specifies T'STORAGESIZE for an access type is not
ipported; JANUS/Ada uses a single large common heap.

length clause that specifies T'STORAGE_SIZE for a task type T is supported.
ly integer value can be specified, Values smaller than 256 will be rounded up to
'6 (the minumum T'Storage_Size), as the Ada standard does not allow raising an
:ception in this case.

B-8

ppendlx F: Implementation Dependencies

length clause that specifies T'SMALL for a fixed point type must give the
efault value of T'SMALL, namely the greatest power of two less than or equal to
-ie delta specified for the type. This value must be in the range

2.0 ** (-99) .. 2.0 ** 99,
.iclusive.

* n enumeration representation clause for a type T must map the values of the
.-pe T to consecutive integers starting with zero.

he expression in an alignment clause in a record representation clause must
iual one.

component clause must give a storage place that is equivalent to the default
alue of the POSITION attribute for such a component.

component clause must give a range that starts at zero and extends to one less
-ian the size of the component.

AXNUS/Ada does not support any address clauses; hence, JANUS/Ada does not
ipport any interrupt entries.

n e rules for representation clauses, together with the fact that the pragma PACK
ignored in JANUS/Ada, imply that type conversions cannot cause a change of

,presentation in JANUS/Ada.

5 Implementation Defined Names

NUS/'Ada uses no implementation generated names.

6 Address Clause Expressions

%NUS/Ada does not support any address clauses.

B-9

Appendix F: Implementation Dependencies

.7 Unchecked-Conversion Restrictions

e first make the following definitions:
type or subtype is said to be a simple type or a simple subtype (respectively)
it is a scalar (sub)type, an access (sub)type, a task (sub)type, or if it satisfies

ie following two conditions:
1) If it is an array type or subtype, then it is constrained and its index

constraint is static; and
2) If It is a composite type or subtype, then all of its subcomponents have a

simple subtype.

(sub)type which does not meet these conditions Is called non-simple.
scriminated records can be simple; variant records can be simple. However,

nstraints which depend on discriminants are non-simple (because they are

rn-static).

,NIJS/Ada imposes the following restriction on instantiations of
icheckedConversion: for such an instantiation to be legal, both the source

tual subtype and the target actual subtype must be simple subtypes, and they
ist have the same size.

3 Implementation Dependencies of I/O

-e syntax of a external file name depends on the operating system being used.

me external files do not really specify disk files; these are called devices.
vices are specified by special file names, and are treated specially by some of
a I/O routines.

The syntax of an MS-DOS 2.xx or 3.xx filename is:

[d:] [path] filename[.ext]

where "d:" is an optional disk name; "path" is an optional path consisting of

directory names, each followed by a backslash; "filename" is the filename
(maximum 8 characters); and ".ext" is the extension (or file type). See your
MS-DOS manual for a complete description. In addition, the following special
device names are recognized:

STI: MS-DOS standard input. The same as Standard_Input. Input is buffered
by lines, and all MS-DOS line editing characters may be used. Can
only be read.

B-10

.ppendix F: Implementation Dependencies

STO: MS-DOS standard output. The same as Standard_Output. Can only be
written.

ERR: MS-DOS standard error. The output to this device cannot be
redirected. Can only be written.

CON: The console device. Single character input with echoing. Due to the
design of MS-DOS, this device can be redirected. Can be read and
written.

AUX: The auxiliary device. Can be read or written.
LST: The list (printer) device. Can only be written.
KBD: The console input device. No character interpretation is performed,

and there is no character echo. Again, the input to this device can
be redirected, so it does not always refer to the physical keyboard.

The MS-DOS device files may also be used (CON, AUX, and PRN without
colons ':'). For compatibility reasons, we do not recommend the use of these
names.

The MS-DOS 2.xx version of the I/O system will do a search of the default
search path (set by the DOS PATH command) if the following conditions are
met:

1) No disk name or path is present in the file name; and
2) The name is not that of a device.

Alternatively, you may think of the search being done if the file name does
not contain any.of the characters ':', 'T, or 'T.

The default search path cannot be changed while the program is running, as
the path is copied by the JANUS/Ada program when it starts running.

Note:
Creates will never cause a path search as they must work in the current
directory.

pon normal completion of a program, any open external files are closed.
evertheless, to provide portability, we recommend explicitly closing any files that
re used.

.

B-1l

Appendix F: Implementation Dependencies

;haring external files between multiple file objects causes the corresponding
!xternal file to be opened multiple times by the operating system. The effects of
his are defined by your operating system. This is only allowed if all internal
lies associated with a single external file are opened only for reading (mode
nFile), and no internal file is Created. Use-Error is raised if this is violated. A
..eset to a writing mode of a file already opened for reading also raise UseError
f the external file also is shared by another internal file.

'inary I/O of values of access types will give meaningless results and should not
e done. Binary I/O of types which are not simple types (see definition in Section
'.7, above) will raise UseError when the file is opened. Such types require
pecification of the block size in the form, a capability which is not yet
upported.

'he form parameter for Sequential 10 and Direct IO is always expected to be the
Lull string.

'he type Count In the generic package Direct_10 is defined to have the range 0
2767.

.da specifies the existence of special markers called terminators in a text file.
ANUS/Ada defines the line terminator to be (LF> (line feed), with or without an
dditional <CR) (carriage return). The page terminator is. the (FF> (form feed)
haracter; if it is not preceded by a <LF>, a line terminator is also assumed.

he file terminator is the end-of-file returned by the host operating system. If no
.ne and/or page terminator directly precedes the file terminator, they are
ssumed. If the form "Z" is used, the (Ctrl>-Z character also represents the
nd-of-file. This form is not. necessary to correctly read. files produced with
ANUS/Ada and most other programs, but may be occasionally, necessary. The only
3gal forms for text files are "" (the null string) and "Z". All other forms raise
SE_ERROR.... .

the form is , the (Ctrl>-Z character is ignored on input. The <CR> character
always ignored on input. (They will not be returned by Get, for instance). All

ther control characters are sent directly to the user. Output of control characters
oes not affect the layout that Text_IO generates. In particular, output of a <LF>
efore a NewPage does not suppress the NewLine caused by the NewPage.

n output, the "Z" form causes the end-of-file to be marked by a (Ctrl>-Z;
.herwise, no explicit end-of-file character is used- The character pair (CR> (LF>
; written to represent the line terminator. Because (CR> are ignored on input,
*is is -compatible with input.

•

B-12

ppendix F: Implementation Dependencies

he type TextlO.Count has the range 0 .. 32767; the type TextIO.Field also has
ae range 0 .. 32767.

5..Exceptons.USEERROR Is raised if something cannot be done because of the
"xternal file system; such situations arise when one attempts:

to create or open a external file for writing when the external file is
already open (via a different internal file).

- to create or open a external file when the external file is already open for
writing (via a different internal file).

- to reset a file to a writing mode when the external file is already open (via
a different internal file), writing.

- to write to a full disk (Write, Close);
- to create a file in a full directory (Create);
- to have more files open than the OS allows (Open, Create);
- to open a device with an illegal mode;
- to create, reset, or delete a device;
- to create a file where a protected file (i.e., a directory or read-only file)

already exists;
- to delete a protected file;
- to use an illegal form (Open, Create); or
- to open a file for a non-simple type without specifying the block size;
- to open a device for direct I/O.

)_Exceptions.DEVICEERROR is raised if a hardware error other than those
vered by USEERROR occurs. These situations should never occur, but may on

ire occasions. For example, DEVICEERROR is raised when:
- a file is not found in a close or a delete;
- a seek error occurs on a direct Read or Write; or
- a seek error occurs. on a sequential End_OfFile.

he subtypes Standard.Positive and Standard.Natural, used by some I/O routines,
ave the maximum value 32767.

o package LowLevel 1O is provided.

.9 Running the compiler and linker

he JANUS/Ada compiler Is Invoked using the following format:

JANUS [d:j filename [.ext] [foptionj

B-13

Appendix F: Implementation Dependencies

7here filename is an MS/DOS file name with optional disk name [d:], optional
xtension I.extl, and compiler options {/optioni. If no disk name is specified, the
urrent disk is assumed. If no extension is specified, .PKG is assumed.

:he compiler options are:
Brief error messages. The line in error is not printed (equivalent to turning
off pragma VERBOSE).
Don't generate debugging code (equivalent to turning off pragma DEBUG)
Use in-line 8087 instructions for Floating point operations. By default the
compiler generates library calls for floating point operations. The 8087 may
be used to execute the library calls. A floating point support library Is still
required, even though this option is used.
Create a listing file with name filename.PRN on the same disk as filename.
The listing file will be a listing of only the last compilation unit in a file.

.d Create a listing file on specified disk 'd'. Choices are 'A' through 'W'.
)x Object code memory model. X Is 0 or 1. Memory model 0 creates faster,

smaller code, but limits all code in all units of a program to one MS-DOS
segment (i.e., 64 kilobytes); Memory model 1 allows code size limited only by
your machine and operating system. See the linker (JINK) manual for more
information. Memory model 0 is assumed if this option is not given. The
compiler records the memory model for which each library unit was compiled,
and it will complain if any mismatches occur. Thus, the compiler enforces
that if it is run using the /o1 option, then all of the withed units must
have been compiled with the same option.

i Quiet error messages. This option causes the compiler to not wait for the
user to interact, after an error. In the usual mode, the compiler will prompt
the user after each error to ask if the compilation should be aborted. This
option is useful if the user wants to take a coffee break while the compiler
is working, since all, user prompts are suppressed_ The errors (if any) will ,
not stay on the screen when this option Is used, therefore, the console
traffic should be sent to the printer or to a file. Be warned that certain
syntax errors can cause the compiler to print many error messages for each
and every line in the program. A lot of paper could be used this way! Note
that the /Q option disallows disk swapping, even if the /S option is given.

.d Route the JRL file to the specified disk 'd'. Choices are 'A' through 'W'. The
default is the same disk as filename.

d Route Scratch files to specified disk. This is useful if you have a RAM disk
or if your disk does not have much free space. The use of this option also
allows disk swapping to load package specification (.SYM) files. Normally,
after both the compiler and source file disks are searched for .SYM files, an
error is produced if they are not all found. However, when the /S option is
used, the compiler disk may be removed and replaced by a disk to search.
The linker has a similar option, which allows .the development of large
programs on systems. with a small disk capacity. Note that disk swapping is

B-14

3pendix P: Implementation Dependencies

not enabled by the /S option If the /Q (quiet option) is also given. The /Q
option is intended for batch mode compiles, and its purpose conflicts with
the disk swapping. The main problem is that when the /S option is used to
put scratch files on a RAMdisk, a batch file may stop waiting for a missing
.SYM or ERROR.MSG file; such behavior would not be appropriate when /Q is
specified.
Generate information which allows trimming unused subprograms from the
code. This option tells the compiler to generate information which can be
used by the remove subprograms from the final code. This option increases
the size of the .JRL files produced. We recommend that it be used on
reuseable libraries of code (like trig. libraries or stack packages) - that is
those compilations for which it is likely that some subprograms are not
called.
Don't print any warning messages. For more control of warning messages, use
the following option.

K Print only warnings of level less than the specified digit 'x'. The given
value of x may be from 1 to 9. The more warnings you are willing to see,
the higher the number you should give.
Handle eXtra symbol table information. This is for the use of debuggers and
other future tools. This option requires large quantities of memory and disk
space, and thus should be avoided if possible.
Turn on optimization. This has the same effect as if the pragma OPTIMIZE
were set to SPACE throughout your compilation.

te default values for the command line options are:
Error messages are verbose.
Debug code is generated.
Library calls are generated for floating point operations.
No listing file is generated..
Memory model 0 is used.
The compiler prompts for abort after every error.
The JRL file is put on the same disk as the input file.
Scratch files are put on the same disk as the compiler.
No trimming code is produced.
All warnings are printed.......
Extra symbol table information is not generated.
Optimization is done only where so specified by pragmas.

ading spaces are disregarded between the filename and the call to JANUS.
aces are otherwise not. recommended on the command line. The presence of
anks to separate the options or between the filename and the extension will be
.3ored.

B-15

Appendix F: Implementation Dependencies

xamples:
JANUS test/Q/L
JANUS test.run/V4
JANUS test
JANUS test .run /B /W/L

*.ie compiler produces a SYM (SYMbol table information) file when a specification
. compiled, and a SRL or JRL (Specification ReLocatable or Janus ReLocatable) file
nen a body is compiled. To make an executable program, the appropriate SRL and
IL files must be linked (combined) with the run-time libraries. This is
complished by running the JANUS/Ada linker, JLINK_

ie JANUS/Ada linker is invoked using the following format:

JLINK [d:] filename I/optioni

3re "filename" is the name of the SRL or JRL file created when the main program
as compiled (without the .SRL or .JRL extension) with optional disk name Id:j,
ad compiler options i/optioni. The filename usually corresponds to the first eight
tters of the name of your main program. A disk may be specified where the files
-e to be found. See the linker manual for more detailed directions. We summarize
!re, however, a few of the most commonly used linking options:

Create an EXE file. This is assumed if the /01 option is given. This allows
allow a slightly larger total program size if memory model is used.

JUse software floating point (the default).
2 Use hardware (8087) floating point.

Display lots of information about the loading process.
3 Use memory model 0 (the default); see the description of the /0 option in

the compiler, above.
1 Use. memory model 1.

Use quiet error messages; i.e., don't wait to interact after an error.
Trim unused subprograms from the code. This option tells the linker to
remove subprograms which are never called from the final output file. This
option reduces space usage of the final file by as much as 30K.

Kamples:
JLINK test
JLINK test /Q/L
JLINK test/O1/L/F2

ate that if you do not have a hardware floating point chip, and if you are using
emory model 0, then you generally will not need to use any linker options.*

B-16

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extcnsion .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGIDI (l..199 => 'A', 200 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (1..199 => 'A', 200 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (l..100 => 'A', 101 => '3', 102..200 => 'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG ID4 (1..100 => 'A', 101 => '4', 102..200 => 'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGINT LIT (1..197 => t0, 198..200 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIGREAL LIT (1..194 => '0', 195..200 => "69.0E1")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRINGI (1..100 => 'A')

A string literal which when
catenated with BIG STRING2
yields the image of BIG_IDI.

$BIGSTRING2 (101..199 => 'A', 200 => '1')
A string literal which when
catenated to the end of
BIG STRING1 yields the image of
BIGIDI.

$BLANKS (1..180 :> '
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 32_767
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$FIELD LAST 32_767
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILENAMEWITH BAD CHARS <BADI^>
An external -file name that
either contains invalid
characters or is too long.

$FILENAME WITH WILD CARDCHAR BAD*.*
An external f'ile name that
either contains a wild card
character or is too long.

$GREATERTHANDURATION 300000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

TEST PARAMETERS

Name and Meaning Value

$GREATERTHANDURATIONBASELAST 1.0E6
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNAL FILENAME FROBIIT
An external file name which
contains invalid characters.

$ILLEGAL EXTERNAL FILENAME2 <FROBIT>
An external file name which
is too long.

$INTEGER FIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUS_1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS THANDURATION -300_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHANDURATION BASE FIRST -1.OE6
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAXINLEN 200
Maximum input line length
permitted by the implementation.

$MAXINT 32767
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINTPLUS_1 32768
A universal integer literal
whose value is SYSTEM.MAXINT+1.

C-3

TEST PARAMETERS

Name and Meaning Value

$MAXLENINTBASEDLITERAL (1..2 => "2:", 3..197 => '0',
198..200 => "110")

A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAXLENREALBASEDLITERAL (1..3 => "16:", 4..197 => '0',
198..200 => "F.E:")

A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTRING LITERAL (1 => fill, 2..199 => 'A', 200 > ift)
A string literal of size
MAXINLEN, including the quote
characters.

$MININT -32768
A universal integer literal
whose value is SYSTEM.MININT.

$NAME NOTAPPLICABLE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

$NEGBASEDINT 16#FFFF#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"Al-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

" E28005C: This test requires that "PRAGMA LIST (ON);" not
appear in a listing that has been suspended by a previous
"PRAGMA LIST (OFF);"; the Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

*C34004A: The expression in line 168 yields a value outside

the range of the target type T, but there is no handler for
CONSTRAINTERROR.

" C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

" A35902C: The assignment in line 17 of the nominal upper
bound of a fixed-point type to an object raises
CONSTRAINT ERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line
28 wrongly raises CONSTRAINTERROR, because its upper bound
exceeds that of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when its compatibility is checked against
that of various types passed as actual generic parameters,
may, in fact, raise NUMERICERROR or CONSTRAINTERROR for
reasons not anticipated by the test.

D-1

WITHDRAWN TESTS

C35AO3E and C35AO3R: These tests assume that attribute
'MANTISSA returns 0 when applied to a fixed-point type with a
null range, but the Ada Standard does not support this
assumption.

• C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborated.

" C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINT ERROR.

" C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type CONS.

" C38102C: The fixed-point conversion on line 23 wrongly
raises CONSTRAINTERROR.

* C41402A: The attribute 'STORAGESIZE is incorrectly applied
to an object of an access type.

* C45332A: The test expects that either an expression in line
52 will raise an exception or else MACHINEOVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with a wider range than the
base type of the operands, and MACHINEOVERFLOWS may still be
TRUE.

" C45614C: The function call of IDENTINT in line 15 uses an
argument of the wrong type.

A74106C, C85018B, C87B04B, and CC1311B: A bound specified in
a fixed-point subtype declaration lies outside of that
calculated for the base type, raising CONSTRAINTERROR.
Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

• BC3105A: Lines 159 through 168 expect error messages, but
these lines are correct Ada.

" AD1A01A: The declaration of subtype SINT3 raises
CONSTRAINT ERROR for implementations which select INT'SIZE to
be 16 or greater.

• CE2401H: The record aggregates in lines 105 and 117 contain
the wrong values.

CE3208A: This test expects that an attempt to open the
default output file (after it was closed) with mode IN FILE
raises NAME ERROR or USEERROR; by Commentary AI-0048,
MODEERROR should be raised.

D-2

