
I I !TE T-1Ii

>04 S aa kntered) ,

- :[ON PAGE -!T :'uoPs

AD-A207 029 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

LLJ -4 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: Tandem 25 May 1988 to 25 May 1988
". Computers, Tandem Ada, Version T9270C10, Tandem NonStop

VLX (Host) and (Target), 880520W1.09060 6. PERFORMINGt*)RG. REPORT NUMBER

17. AUTHOR(s) 8. CONTRACT OR GRANT NUMBERs)

- Wright-Patterson AFB
Dayton, OH

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Wright-Patterson

Dayton, OH

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense 1 3. UM Uk FAU~ b
Washington, DC 2D301-3081

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (ofthis report)
UNCLASSIFIED

Wright-Patterson HSa. DUICATION/OWCRADING

Dayton, OH N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. D T IC
ELECTE

17. DISTRIBJTION STATEMENT (oftheabstractenteredinlock20 Ifdifferent from Report) 1

UNCLASSIFIED

18. SUPPLEMEhTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ad-,
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary anddentify by block number)

Tandem Computers, Tandem Ada, Version T9270C10, Wright-Patterson AFB, Tandem NonStop

VLX under GUARDIAN 90, Version C10 (Host) to Tandem NonStop VLX under GUARDIAN 90,
Version CIO (Target), ACVC 1.9.

DD "u" 1473 EDITION OF I NOv 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
S U ' CL&SSJICA1°TI OF I IS PACE (When Data Entered)

AVF Control Number: AVF-VSR-153.098887-11-11-TAN

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 880520W1.09060
Tandem Computers

Tandei. 4da, Version T9270C10
Tandem NonStop VLX

Completion of On-Site Testing:
25 May 1988

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

.Compiler Name: Tandem Ada, Version T9270C10

Certificate Number: 880520W1.09060

Host: Target:
Tandem NonStop VLX under Tandem NonStop VLX under
GUARDIAN 90, GUARDIAN 90,
Version C10 Version C10

Testing Completed 25 May 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Facility Acession For
Steven P. Wilson NTIS GRA&I
Technical Director

DTIC TAB

ASD/SCEL Unannounced Q
Wright-Patterson AFB OH 45433-6503 Justification

By

Distribution/

4- Availability Codes

Ada Validation Organization Ava ii a.ndor
Dr. John F. Kramer Dist Special
Institute for Defense Analyses
Alexandria VA 22311 A-1

Ada Joint Program Office
William S. Ritchie
Acting Director
Department of Defense
Washington, DC 20301

2

Ada Compiler Validation Summary Report:

Compiler Name: Tandem Ada, Version T9270C10

Certificate Number: 880520W1.09060

Host: Target:
Tandem NonStop VLX under Tandem NonStop VLX under

GUARDIAN 90, GUARDIAN 90,

Version C10 Version C10

Testing Completed 25 May 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Alexandria VA 22311

Ada Joint Program Office
Virginia L. Castor

Director
Department of Defense
Washington DC 20301

2

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS1-4
1.5 ACVC TEST CLASSES1-5

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 3-4
3.7 ADDITIONAL TESTING INFORMATION3-5
3.7.1 Prevalidation3-5
3.7.2 Test Method3-5
3.7.3 Test Site3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report 4 describes the extent to which aspecific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.

This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability -A3 .) An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.-)

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at bind time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

* To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

* To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 25 May 1988 at Cupertino, CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street

Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that test the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical

1-3

INTRODUCTION

support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the

language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce bind (link) errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada languag3)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

1-4

INTRODUCTION

Class B tests check that a compiler detects illegal language usage. Class

B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is

executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler

may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately crmpiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at bind (link) time--that is, an
attempt to execute the main program must generate an error message before
any declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT

provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is

checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

1-5

INTRODUCTION

place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system f r this validation was tested under the
following configuration:

Compiler: Tandem Ada, Version T9270C10

ACVC Version: 1.9

Certificate Number: 880520W1.09060

Host Computer:

Machine: Tandem NonStop VLX

Operating System: GUARDIAN 90
Version C10

Memory Size: 8 Mbytes

Target Computer:

Machine: Tandem NonStop VLX

Operating System: GUARDIAN 90
Version C10

Memory Size: 8 Mbytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See tests
D4AO02A, D4AOO2B, D4A004A, and D4AO04B.)

Predefined types.

This implementation supports the additional predefined types
SHORTINTEGER, LONGINTEGER, LONGFLOAT, and LONGLONGINTEGER in
the package STANDARD. (See tests B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

Expression evaluation.

This implementation exhibits behavior suggesting that no default
initialization expressions for record components are evaluated
before any value is checked to belong to a component's subtype.
(See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

CONSTRAINT ERROR is raised when a literal operand of type INTEGER
in a comparison test is outside the range of the base type. No
exception is raised when a literal operand of type INTEGER in a
membership test is outside the range of the base type. For the
largest integer type, NUMERIC ERROR is raised when a literal
operand in either a membership or comparison test is outside the
range of the type. (See test C45232A.)

NUMERIC ERROR is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

Underflow could not be tested for graduality. (See tests
C45524A..Z and the section in this document on inapplicable
tests.)

Rounding.

This implementation exhibits behavior suggesting that the method

used for rounding to integer and longest integer is round away
from zero. (See tests C46012A..Z.)

This implementation exhibits behavior suggesting that the method
used for rounding to integer in static universal real expressions
is round away from zero. (See test C4A014A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAXINT components raises CONSTRAINTERROR. (See test
C36003A.)

No exception is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

CONSTRAINT ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises CONSTRAINT ERROR when the array objects are sliced. (See
test C52103X.)

2-3

CONFIGURATION INFORMATION

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT ERROR when the length of a dimension
is calculated and exceeds INTEGER'LAST. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises no exception. (See

test E52103Y.)

This implementation exhibits behavior suggesting that, in
assigning one-dimensional array types, the expression is evaluated
in its entirety before CONSTRAINT ERROR is raised when checking
whether the expression's subtype is compatible with the target's
subtype. In assigning two-dimensional array types, the exhibited
behavior is that the expression is not evaluated in its entirety
before CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test

E38104A.)

This implementation exhibits behavior suggesting that, in
assigning record types with discriminants, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

" Aggregates.

This implementation exhibits behavior suggesting that, in the
evaluation of a multi-dimensional aggregate, all choices are
evaluated before checking against the index type. (See tests
C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

CONSTRAINT ERROR is raised before all choices are evaluated when a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-4

CONFIGURATION INFORMATION

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it. For this
implementation:

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
not supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are not supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are not
supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are not supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types are
supported. (See tests A390F5D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are supported. (See test A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INIINE is supported for procedures and functions. (See
tests LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL_10 cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT 10 cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101H, EE2401D, and EE2401G.)

2-5

CONFIGURATION INFORMATION

Modes INFILE and OUT FILE are supported for SEQUENTIAL.IO. (See
tests CE2102D and CE2102E.)

Modes INFILE, OUTFILE, and INOUT FILE are supported for
DIRECT i. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for SEQUENTIALIO and DIRECTIO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIALIO and DIRECTIO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUT FILE mode, cannot be
created in OUT FILE mode, and cannot be created in INFILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text input/output for reading only. (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each external
file for sequential input/output for reading only. (See tests
CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct input/output for reading only. (See tests
CE2107F..I (5 tests) and CE2110B)

An internal sequential access file and an internal direct access
file cannot be associated with a single external file for writing.
(See test CE2107E.)

Temporary sequential and direct files are given names. Temporary
files given names are deleted when they are closed. (See tests
CE2108A and CE2108C.)

Generics.

Separate compilation of generic bodies without specifications is
not supported by this implementation; they are rejected at compile
time. Compilation of a generic specification without its
corresponding body is supported. (See tests CA1O12A, CA2009C,
CA2009F, CA3011A, ,LA5008M..N (2 tests), BCI011C, BC3204C, and
BC3205D.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 265 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 187
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 53 tests were required to successfully demonstrate the test objective.

(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 104 1049 1602 17 14 44 2830

Inapplicable 6 2 251 0 4 2 265

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

__ _ _ _ _ 2 3 14 5 6 7 8 9 10 11 12 13 114

Passed 190 490 544 247 166 98 140 325 131 36 232 3 228 2830

Inapplicable 14 82 130 1 0 0 3 2 6 0 2 0 25 265

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C C34004A C35502P A35902C
C35904A C35904B C35AO3E C35AO3R C37213H
C37213J C37215C C37215E C37215G C37215H
C38102C C41402A C45332A C45614C A74106C
C85018B C87B04B CC1311B BC3105A AD1AO1A
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 265 tests were inapplicable for the
reasons indicated:

" A28004A uses the pragma PRIORITY, which is not supported, and
attempts to calculate PRIORTY'FIRST, where the predefined PRIORITY
subtype is a null range.

" C35502I..J (2 tests), C35502M..N (2 tests), C355071..J (2 tests),
C35507M..N (2 tests), C35508I..J (2 tests), C35508M..N (2 tests),
A39005F, and C55B16A use enumeration representation clauses which
are not supported by this compiler.

3-2

TEST INFORMATION

• C35702A uses SHORTFLOAT which is not supported by this
implementation.

. A39005C and C87B62B use length clauses with STORAGE SIZE
specifications for access types which are not supported by this
implementation.

. A39005G uses a record representation clause which is not supported
by this implementation.

• C45504B and C45632B expect an intermediate SHORT INTEGER value to
raise an exception, which is not done by this implementation.

. C45524A..Z (26 tests) require that F'MACHINE RADIX *
(F'MACHINEEMIN - 1) be distinct from the representation from
zero; however, the avo ruled that in light of the commentary
AI-00543 the requirement need no be met.

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

*C455310, C415531P, C455320, and C115532P use coarse '48-bit

fixed-point base types which are not supported by this compiler.

" C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT1

0.

" C87B62D and C92005B depend on the default STORAGE SIZE of a task
type, which for this implementation is 2 1, 18, out of the range
of type INTEGER.

" C96005B requires the range of type DURATION to be different from
those of its base type; in this implementation they are the same.

CA2009F and CA1012A compile generic subprogram declarations and
bodies in separate compilations. This compiler does not support
separate compilation of generic subprogram bodies.

" CA2009C, BC3204C, and BC3205D compile generic package
specifications and bodies in separate compilations. This compiler
does not support separate compilation of generic package bodies.

CA3011A and LA5008M..N (2 tests) compile generic unit bodies and
subunits in separate compilations. This compiler does not support
separate compilation of generic unit bodies and their subunits.

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler.

3-3

TEST INFORMATION

. AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected
by this compiler.

• CE2105A..B (2 tests), CE2111H, and CE3109A are inapplicable
because this implementation does not support CREATE with the MODE
parameter IN-FILE.

. CE2107B..E, G..I (7 tests), CE2110B, CE2111D, CE3111B..E (4
tests), CE3114B, and CE3115A are inapplicable because multiple
internal files cannot be associated with the same external file
unless all files are opened for reading only. The proper
exception is raised when multiple access is attempted.

. The following 173 tests require a floating-point accuracy that
exceeds the maximum of 16 digits supported by this implementation:

C24113M..Y (13 tests) C35707M..Y (13 tests)
C35706M..Y (13 tests) C35802M..Z (14 tests)
C35708M..Y (13 tests) C45321M..Y (13 tests)
C45241M..Y (13 tests) C45521M..Z (14 tests)
C45421M..Y (13 tests) C45621M..Z (14 tests)
C45641M..Y (13 tests) C46012M..Z (14 tests)
C35705M..Y (13 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

it is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 52 Class B tests and 1 Class C test.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B22004A B22004B B22004C B23004A
B23004B B24001A B24001B B24001C B24005A
B24005B B24007A B24009A B24204A B24204B
B24204C B26002A B28003C B29001A B2AO03A
B2AO03B B2AO03C B2AO07A B2AO1OA B33301A

3-4

TEST INFORMATION

B35101A B36002A B36201A B37201A B37307B
B38003A B38003B B38009A B38009B B39004H
B41202A B44001A B44004B B44004C B45205A
B51003A B55AOlA B64001A B67001A B67001B
B67001C B67001D B91003B BC1303F BC2001D
BC2001E BC3005B

CE3605A was modified to include the FORM parameter "FILE TYPE=E" when
CREATE is used, in order to create an "entry sequenced" type file rather
than the default "edit" type file, so that the 360 "A"s can be written to a
single line of the file.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the Tandem Ada compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Tandem Ada compiler using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The configuration consisted of
a Tandem NonStop VLX operating under GUARDIAN 90, Version C10.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-pint precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the Tandem NonStop VLX, and all executable tests
were run on the Tandem NonStop VLX. Results were printed from the host
computer.

The compiler was tested using command scripts provided by Tandem Computers
and reviewed by the validation team. The compiler was tested using all
default switch settings except for the following:

3-5

TEST INFORMATION

Switch Effect

SUPPRESSLISTING On executable tests, shortens listing to
include only the error and warning messages.

EXTENDEDSTACKSIZE Used with ADABIND (the linker) to increase the
memory space available for objects at runtime.

Tests were compiled, linked, and executed (as appropriate) using a single
host computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Cupertino, CA and was completed on 25 May 1988.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

Tandem Computers has submitted the following
Declaration of Conformance concerning the Tandem Ada
compiler.

A-i

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: Tandem Computers
Ada Validation Facility: Ada Validation Facility, ASD/SCEL,
Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: Tandem Ada Version: Version T9270C10
Host Architecture ISA: Tandem NonStop VLX OS&VER #: GUARDIAN 90, Version C10
Target Architecture ISA: Tandem NonStop VLX OS&VER #: GUARDIAN 90, Version C10

Implementor's Declaration

I, the undersigned, representing Tandem Computers, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in
the compiler(s) listed in this declaration. I declare that Tandem
Computers is the owner of record of the Ada language compiler(s) listed
above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for
Ada language compiler(s) listed in this declaration shall be made only in
the owner's corporate name.

_ _~_~_ Date: / /

Tandem Computers v
Dennis M-Evoy, Vice President
Software Development

Owner's Declaration

I, the undersigned, representing Tandem Computers, take full responsibility
for implementation and maintenance of the Ada compiler(s) listed above, and
agree to the public disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office. I declare that all of the Ada
language compilers listed, and their host/target performance, are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

" %-- Date: f ;/ '

T de Computers Da e _ _ _ _ _ _ _

Dennis McEvoy, Vice President
Software Development

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the Tandem Ada compiler, Version T9270C10 are described in the following
sections, as taken from Appendix F of the Tandem Ada documentation. All
references to other sections are not references to text within this VSR,
but rather, to sections of text in the Tandem Ada documentation, unless
otherwise noted. Implementation-specific portions of the package STANDARD
are also included in this appendix.

Contents

Implementation-Defined PragmasB-2
Restrictions on Predefined PragmasB-8
Restrictions on Standard Attributes B-11
Implementation-Defined Attributes B-1d
Standard Predefined PackagesB-13
Additional Tandem-Defined Packages B-29
Restrictions on Representation ClausesB-37
Restrictions on Unchecked Programming B-40
Tasking B-40
Implementation Limits B-41

B-I

APPENDIX F

IMPLEMETATION-DEPENDENT CHARACTERISTICS

This appendix describes the implementation dependencies of Tandem
Ada and is the Tandem version of the Appendix F that the Ada
standard requires for each Ada reference manual. The reference
manual for Tandem Ada is the ANSI Reference Manual for the
Ada Programming Language (ANSI/MIL-STD-1815A, January 1983), plus
this appendix.

This appendix discusses pragmas, attributes, packages, restric-
tions on representation clauses, restrictions on unchecked
programming, tasking, and implementation limits, in that order.

IMPLEMENTATION-DEFINED PRAGMAS

Tandem Ada includes five implementation-defined pragmas. This
subsection describes those pragmas in alphabetical order.

All five implementation-defined pragmas are for use in calling
TAL subprograms. They are discussed and used in examples in
Section 8, "Calling TAL Subprograms."

B-2

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
CONDITIONCODE Pragma

CONDITION-CODE Praqma

The CONDITION CODE pragma tells the compiler to generate code
that returns a condition code to the Ada program environment when
you call the specified TAL subprogram. You can use the function
CONDITION CODE to examine the returned condition code. You must
include this pragma for each TAL subprogram that sets a condition
code you wish to check in your Ada program.

The syntax-of the CONDITIONCODE pragma is:

pragma CONDITIONCODE (subprogram);

subprogram

is the Ada subprogram name for a TAL procedure.

Considerations

You must supply an INTERFACE pragma for any subprogram you
specify in a CONDITION CODE pragma. The INTERFACE pragma must
precede the CONDITION CODE pragma. If the compiler encounters
a CONDITION CODE pragma before it encounters a corresponding
INTERFACE pragma, it issues a warning message and ignores the
CONDITIONCODE pragma.

You use the CONDITION CODE function from the TAL TYPES package
to examine a condition code returned by a TAL subprogram
to which the CONDITION CODE pragma applies. For a full
explanation and an example that uses the CONDITION CODE
function, see the discussion of "Using Condition Codes" in
Section 8.

B-3

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
EXTENSIBLEARGUMENTLIST Pragma

EXTENSIBLEARGUMENTLIST Pragma

The EXTENSIBLE ARGUMENTLIST pragma tells the compiler that a
TAL subprogram has an extensible argument list. You must use
this pragma to declare any TAL subprogram that has an extensible
argument list.

The syntax of the EXTENSIBLEARGUMENTLIST pragma is:

pragma EXTENSIBLEARGUMENT LIST (subprogram);

subprogram

is the Ada subprogram name for a TAL procedure that has
an extensible argument list.

Considerations

You must supply an INTERFACE pragma for any subprogram you
specify in an EXTENSIBLE ARGUMENT LIST pragma. The INTERFACE
pragma must precede the EXTENSIBLE ARGUMENT LIST pragma. If
the compiler encounters an EXTENSIBLE ARGUMENT LIST pracma
before it encounters a corresponding INTERFACE-pragma, it
issues a warning message and ignores the
EXTENSIBLEARGUMENTLIST pragma.

Ada cannot determine whether the TAL subprogram you name in
an EXTENSIBLE ARGUMENT LIST pragma actually has an extensible
argument list. If it does not, the parameter list that Ada
generates will not correspond to the parameter list that TAL
expects. The specific symptoms of such an error are not
predictable.

If you specify both an EXTENSIBLEARGUMENTLIST pragma and
a VARIABLE ARGUMENT LIST pragma for the same subprogram, the
compiler ignores the VARIABLEARGUMENTLIST pragma.

B-4

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
EXTERNALNAME Pragma

*EXTERNALNAME Pragma

The EXTERNAL NAME pragma tells the compiler that a TAL subprogram
has a TAL procedure name that can be different from the Ada
subprogram name. You must use the EXTERNALNAME pragma for any
TAL subprogram whose TAL procedure name is not a legal Ada name.

The syntax of the EXTERNALNAME pragma is:

pragma EXTERNALNAME (Ada-name, "TAL-name");

Ada-name

is an Ada subprogram name for a TAL procedure.

"TAL-name"

is the name of a TAL procedure enclosed in quotation
marks.

Considerations

* You must supply an INTERFACE pragma for any subprogram you
specify in an EXTERNAL NAME pragma. The INTERFACE pragma must
precede the EXTERNALNAME pragma. If the compiler encounters
an EXTERNALNAME pragma before it encounters a corresponding
INTERFACE pragma, it issues a warning message and ignores the
EXTERNAL-NAME pragma.

* You should not use subprograms that have TAL names that begin
with RSL ^ . The Ada run-time environment uses procedure names
with this prefix; calling such routines might cause your Ada
program to work incorrectly. If you specify a name that
begins with RSL ^ as the second argument to the EXTERNAL NAME
pragma, the compiler issues a warning message.

B-5

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
PRIMARY Pragma

PRIMARY Pragma

The PRIMARY pragma tells the compiler to store the specified
objects in primary memory rather than extended memory. You must
use the PRIMARY. pragma for any nonscalar object to which you
apply the attributes 'WORD ADDR or 'STRINGADDR. You should also
use it for any scalar object to which you apply the attributes
'WORDADDR or 'STRINGADDR, though this is not required.

The syntax of the PRIMARY pragma is:

pragma PRIMARY (object [, object] ...

object

is the name of a variable that is declared by an object
declaration and that has a size known at compile time.

Considerations

* If you use the PRIMARY pragma for an object that is nested
(directly or indirectly) within a procedure or task body, the
compiler stores the object in the lower 32 KW of primary
memory. You can always apply the attribute 'STRINGADDR to
such an object. If the object is word-aligned, you can also
apply the attribute 'WORDADDR to the object.

* If you use the PRIMARY pragma for an object that is not
nested within a procedure or task body (such as an object
in a library package), the compiler stores the object in
primary memory but not necessarily within the lower 32 KW of
primary memory. You can apply the attribute 'WORD ADDR to
such an object, but applying the attribute 'STRINGADDR may
raise CONSTRAINTERROR.

* Tandem recommends that you use the PRIMARY pragma for any
object you use with the attributes 'WORD ADDR or 'STRINGADDR,
even if the compiler normally stores that object in primary
memory. Explicitly requesting primary memory makes your
program independent of default memory allocation, which might
change in a later release.

B-6

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
VARIABLEARGUMENTLIST Pragma

VARIABLEARGUMENTLIST Pragma

The VARIABLE ARGUMENT LIST pragma tells the compiler that a TAL
subprogram has a variable argument list. You must use this
pragma for any TAL subprogram that has a variable argument list.

The syntax of the VARIABLEARGUMENTLIST pragma is:

pragma VARIABLE ARGUMENTLIST (subprogram);

subprogram

is the Ada subprogram name for a TAL procedure that has
a variable argument list.

Considerations

You must supply an INTERFACE pragma for any subprogram you
specify in a VARIABLE ARGUMENT LIST pragma. The INTERFACE
pragma must precede the VARIABLE ARGUMENT LIST pragma. If
the compiler encounters a VARIABLE ARGUMENT LIST pragma before
it encounters a corresponding INTERFACE pragma, it issues a
warning message and ignores the VARIABLE_ARGUMENTLIST pragma.

Ada cannot determine whether the TAL subprogram you name in a
VARIABLE ARGUMENT LIST pragma actually has a variable argument
list. IT it does-not, the parameter list that Ada generates
will not correspond to the parameter list that TAL expects.
The specific symptoms of such an error are not predictable.

If you specify both a VARIABLE ARGUMENT LIST pragma and an
EXTENSIBLE ARGUMENT LIST pragma for the-same subprogram, the
compiler ignores thi VARIABLEARGUMENT LIST pragma.

B-7

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
INLINE Pragma

RESTRICTIONS ON PREDEFINED PRAGMAS

Tandem Ada restricts usage of some predefined pragmas. This
subsection explains such restrictions. The restricted pragmas
are listed and discussed in alphabetical order.

CONTROLLED Pragma

The CONTROLLED pragma has no effect. Everything is controlled in
Tandem Ada.

INLINE Pragma

If you specify the INLINE pragma for a subprogram, Tandem Ada
expands calls to that subprogram inline if it can do so. If it
cannot expand a subprogram call inline, it prints a message that
explains why it cannot do so.

These are typical messages that Tandem Ada issues when it cannot
expand a subprogram call inline:

The call to this Inline subprogram is not expanded
because its body is not available.

The call to this Inline subprogram is not expanded
because its return type is unconstrained.

The call to this Inline subprogram is not expanded
because it is either recursive or mutually recursive.

This list does not include all possible messages of this type.

Tandem Ada can expand calls to recursive subprograms though it
does not expand a recursive subprogram's call to itself. It
never expands calls to derived subprograms.

If you use the INLINE pragma and the compiler expands a
subprogram call inline, the compilation creates a compilation
dependency on the body of the called subprogram. You must
recompile the compilation unit if you change the body of the
called subprogram.

B-8

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
INTERFACE Pragma

If you use the OPTIMIZE switch for a compilation, Tandem Ada may
expand some subprogram calls inline even though you did not use
the INLINE pragma for the subprograms. The compiler does this
only for subprograms whose bodies are included in the compilation
unit, so such an expansion never creates a dependency on another
compilation unit.

INTERFACE Pragma

The only language you can specify in an INTERFACE pragma is TAL.

You cannot use the INTERFACE pragma for subprograms declared
within a procedure or task unit or nested within such a unit.
You must declare any subprogram that you specify in an INTERFACE
pragma within a library package or subpackage.

You cannot specify the INTERFACE pragma for a renamed subprogram.

See Section 8, "Calling TAL Subprograms," for detailed informa-
tion about calling TAL procedures from Ada and for examples that
use the INTERFACE pragma.

MEMORY-SIZE Pragma

If you use the MEMORY SIZE pragma, the compiler issues a warning
message and ignores t~e pragma. Tandem reserves this pragma for
use in internal development.

OPTIMIZE Pragma

The OPTIMIZE pragma has no effect. If you want more than the
default optimization, use the OPTIMIZE switch on the ADA compiler
command, as described in Section 3.

PACK Pragma

The PACK pragma does not affect data layout. If you use it, the
compiler issues a warning message and ignores the pragma.

B-9

IMPLEMENT AT ION-DEPENDENT CHARACTERISTICS
SYSTEM NAME Pragma

STORAGE-UNIT Pragma

If you use the STORAGE UNIT pragma, the compiler issues a warning
message and ignores the pragma. Tandem reserves this pragma for
use in internal development.

SUPPRESS Pragma

The SUPPRESS pragma does not affect the suppression or generation
of checking code. If you use it, the compiler issues a warning
message and ignores the pragma.

SYSTEMNAME Pragma

If you use the SYSTEMNAME pragma, the compiler issues a warning
message and ignores the pragma. Tandem reserves this pragma for
use in internal development.

B-10

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Restrictions on Standard Attributes

RESTRICTIONS ON STANDARD ATTRIBUTES

Tandem Ada supports all representation attributes, though the
attributes 'ADDRESS and 'STORAGE SIZE might not have meaningful
values, as explained below.

Restrictions on the 'ADDRESS Attribute

'ADDRESS returns the 32-bit extended address of an object that is
not a task object. For a task object, it returns the address of
the variable that contains the task identifier.

'ADDRESS returns a null address for objects that are constants
whose values are known at compile time. It returns a meaningful
address for other all objects.

Restrictions on the 'STORAGE-SIZE Attribute

The 'STORAGE SIZE attribute does not return a meaningful value
for access types or subtypes.

B-1I

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Implementation-Defined Attributes

IMPLEMENTATION-DEFINED ATTRIBUTES

Tandem Ada has three implementation-defined attributes:
'EXTENDEDADDR, 'WORD ADDR, and 'STRING ADDR.

* 'EXTENDED ADDR yields the 32-bit extended address of a vari-
able. The prefix for 'EXTENDED ADDR must be a variable
declared in an object declaration.

" 'WORD ADDR yields the 16-bit word address of a variable. The
prefix for 'WORDADDR must be a variable declared in an object
declaration.

'WORD ADDR raises CONSTRAINT ERROR if you apply it to a
variable that is not stored Tn primary memory.

* 'STRING ADDR yields the 16-bit string address of a variable.
The prefix for 'STRINGADDR must be a variable declared in an
object declaration.

'STRING ADDR raises CONSTRAINT ERROR if you apply it to a
variabli that is not stored in-the lower 32 KW of primary
memory.

All three of these attributes are for use in calling TAL
subprograms from Ada. S3e Section 8, "Calling TAL Subprograms,"
for information about how to use these attributes and for
examples that demonstrate their use.

B-12

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Standard Predefined Packages

STANDARD PREDEFINED PACKAGES

This section describes the implementation dependencies of the
predefined packages SYSTEM, STANDARD, LOWLEVEL_10, TEXT_10,
DIRECTIO, and SEQUENTIALIO, in that order.

SYSTEM Package

Figure F-i lists the specifications for the predefined package
SYSTEM.

package SYSTEM is

type ADDRESS is private;

type NAME is (NONSTOP);

SYSTEMNAME : constant NAME := NONSTOP;

STORAGE UNIT : constant := 8;
MEMORYSIZE : constant := 2 ** 30;

-- System-dependent named numbers:

MIN INT : constant := -9 223 372 036 854 775 808;
MAX-INT : constant := +9-223-372036854775-807;
MAX-DIGITS : constant : 16;
MAX-MANTISSA : constant := 31;
FINE DELTA : constant := 2.0 ** (-31);
TICK : constant := 0.01;

-- Other system-dependent declarations:

subtype PRIORITY is INTEGER range 0 .. -1;

private

end SYSTEM;

Figure F-i. SYSTEM Package

B-13

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
STANDARD Package

STANDARD Package

Figure F-2 lists the specifications for the predefined package
STANDARD.

type SHORT INTEGER is range -2 ** 7 .. 2 ** 7 - 1;
for SHORTTNTEGER'SIZE use 8;

type INTEGER is range -2 ** 15 .. 2 ** 15 - 1;
for INTEGER'SIZE use 16;

type LONG INTEGER is range -2 ** 31 .. 2 * 31 - 1;
for LONGINTEGER'SIZE use 32;

type LONG LONG INTEGER is range -2 ** 63 .. 2 ** 63 - 1;
for LONGEONGINTEGER'SIZE use 64;

type FLOAT is digits 6 range -(2 ***254 * (1 - 2 ** (-21)))
.. 2 ** 254 * (1 - 2 ** (-21));

-- range is -FLOAT'SAFELARGE .. FLOAT'SAFELARGE
for FLOAT'SIZE use 32;

type LONGFLOAT is digits 16
range -(2 ** 254 * (1 - 2 ** (-55)))

2 ** 254 * (1 - 2 ** (-55));
-- range is -LONG FLOAT'SAFE LARGE .. LONGFLOAT'SAFELARGE
for LONGFLOAT'SIZE use 64;

type DURATION is delta 1 / 2 ** 14
range -(2 ** 31 / 2 ** 14)

(2 ** 31 - 1) / 2 ** 14;
for DURATION'SIZE use 64;

for BOOLEAN'SIZE use 8;

for CHARACTER'SIZE use 8;

Figure F-2. STANDARD Package

B-14

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
LOW_LEVELIO Package

LOWLEVELIO Package

Tandem Ada includes the predefined package LOWLEVELIO, as
required by the Ada standard, but the subprograms in the package
do not perform input or output operations.

A call to either procedure in LOW LEVEL 10 always returns NO DATA
as the value of the parameter DATA. SuCh a call has no other
effect at run time, except for taking time and memory.

Figure F-3 lists the specifications for the LOWLEVEL_IO package.

package LOW LEVELIO is

type DEVICETYPE is (NODEVICE);

type DATA TYPE is (NODATA);

procedure SENDCONTROL (DEVICE : DEVICE TYPE;
DATA : in out-DATATYPE);

procedure RECEIVECONTROL (DEVICE : DEVICETYPE;
n DATA : in out DATA TYPE);

end LOW LEVEL 10;

Figure F-3. LOWLEVEL IO Package

B-15

IMPLEMENTAT ION-DEPENDENT C-HARACTER:STICS
TEXTIO Package

TEXT_IO Package

The TEXT IO package provides input-output operations for four
different types of disk files: EDIT files, unstructured files,
relative files, and entry-sequenced files. The default file type
for TEXT 10 is EDIT. See the ENSCRIBE Programmer's Guide if you
want detailed information about any of these file types.

The TEXT 10 package also provides input-output operations for
terminals and output operations for spoolers, though it does
not allow you to create either a terminal process or a spooler
process. TEXT 10 uses level 3 protocols for the first spooler
process that a program opens; it does not use level 3 protocols
for other spooler processes. See the Spooler Programmer's Guide
for further information about spooler processes.

Tandem Ada does not support input-output operations for processes
other than terminal and spooler processes. You can use TEXT 10
to open another type of process for output, but TEXTIO treaTs
the process as a spooler.

The maximum line length for TEXT 10 is 1320, but the actual
maximum line length for a specif~c file depends on the file type
and, in some cases, the contents of the line. For relative and
entry-sequenced files, the maximum line length is determined by
the record length, which can be as large as 1320. For EDIT
files, the maximum length of a line depends on the contents
of the line: any line can have up to 239 characters; lines
with appropriate contents can be longer, but 1320 characters is
the absolute maximum. (See the EDIT User's Guide and Reference
Manual if you need more information about the line length for
EDIT files.) Your program raises USE ERROR if you attempt to
write a line longer than the maximum line length for the line.

The range for TEXTIO.COUNT is 0 .. LONG INTEGER'LAST.

The range for TEXT I O.FIELD is 0 .. INTEGER'LAST.

There is no physical line terminator for a relative, entry-
sequenced, or EDIT file; a line is a record. The line terminator
for an odd unstructured file (an unstructured file created with
the ODDUNSTR parameter set) or an even unstructured file (an
unstructured file created without the ODDUNSTR parameter set)
that ends at an odd byte is a line feed (ASCII.LF). The line
terminator for an even unstructured file that ends at an even
byte is a double line feed (two ASCII.LF characters).

The page terminator for an unstructured file is a form feed and
a line feed (ASCII.FF followed by ASCII.LF) at the beginning of a
line. The page terminator for any other type of disk file is a
form feed (ASCII.FF) in a record by itself.

B-16

IMPLEMENTAT ION-DEPENDENT CHARACTERISTICS
TEXT IO Package

Creating Files with the TEXT_I0 Package

You use the CREATE procedure to create files with TEXT 10.
The CREATE procedure has two implementation-dependent parameters:
NAME and FORM.

For the NAME parameter, use a string that is a GUARDIAN 90 file
name. See Appendix B, "File Names," if you need information
about GUARDIAN 90 file names.

For the FORM parameter, use a string with the following syntax:

f null I
{ TEXTIO-create-option [, TEXTIO-create-option] }

null

is zero or more blanks and specifies that you want to
use the default TEXTIO file creation options.

TEXT_IC-create-option

is one of the options listed below. You can specify
creation options in any order, but you can only specify
each option once.

DATA_BLOCKLEN = block-length

specifies the block length for the new file. block-
length must be an integer in the range 1 to 4096. The
actual block length for a structured file must be a
multiple of 512, but Ada automatically rounds up to an
appropriate value. The default block length is 1024.

FILECODE = code-numnber

specifies the operating system file code for the new
file. code-number must be an integer in the range 0 to
65,535. You cannot use this option for an EDIT file;
Ada always uses file code 101. For other file types,
the default is 0.

B-17

IMPLEMENTATION-DEPENDENT CHARACTER: ST:CS
TEXTIO Package

PRIMARYEXTENTSIZE - primary-extent-size

specifies the size of the primary extent for the new
file. primary-extent-size must be an integer in the
range 0 to 65,535. The default is 4.

SECONDARY EXTENTSIZE = secondary-extent-size

specifies the size of the secondary extents for the new
file. secondary-extent-size must be an integer in the
range 0 to 65,535. The default is 16.

FILE-TYPE = type-code

specifies the file type for the new file, as follows:

tvpe-code File Type

D EDIT EDIT is the default.
U Unstructured
R Relative
E Entry-sequenced

RECORDLEN = record-length

specifies the maximum record length for a new relative
or entry-sequenced file. record-length must be an inte-
ger in the range 1 to 1320. You cannot use this option
for an EDIT or unstructured file. The default is 132
for a relative file and 1320 for an entry-sequenced
file.

ODDUNSTR

specifies that the new file allows reading and writing
of odd-numbered byte counts and positioning to odd-
numbered byte addresses. You can use this option only
for an unstructured file. The default is to create a
file that works only on even-numbered byte counts.

B-18

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
TEXTIO Package

Considerations for Creating Files With TEXT_10

Your program raises USEERROR if you attempt to create a file
with the same file name as an existing file, if you attempt to
create a file for input, if you attempt to create a terminal
or a spooler, or if you specify an incorrect FORM string.

The CREATE procedure always opens a new file in EXCLUSIVE
mode. No other process can read or write the file until your
program closes it.

Examples of Creating Files With TEXT I0

" This example creates an EDIT file named MYFILE on the same

system, volume, and subvolume as the executing program.

TEXT IO.CREATE (FILE => MYFILEVAR, NAME => "MYFILE");

" This example creates a relative file named MARCH on the
subvolume named SALES on the same system and volume as the
executing program. The new file has a record length of 200
and also has larger primary and secondary extents than normal.

TEXT IO.CREATE (FILE => SALESFILE,
MODE => OUT FILE,
NAME => "SAUES.MARCH",
FORM => "PRIMARY EXTENT SIZE = 10,

SECONDARY EXTENT SIZE = 40,
RECORDLEN = 200,
FILE TYPE = R");

* This example creates an unstructured file named EMPFILE that
can be accessed from odd-numbered byte positions. The file is
located on subvolume PAYROLL, volume $HR of the \HDQ system.
The block length for the new file is 4096, since Ada rounds up
the specified block length to the nearest multiple of 512.

TEXT IO.CREATE (FILE => EMP,
MODE => OUT FILE,

NAME => "\HDQ.$HR.PAYROLL.EMPFILE",
FORM => "FILE TYPE = U, ODDUNSTR,
DATABLOCKLEN-= 4000");

B-19

IMPLEMENTATION-DEPENDENT CHARACTER: STICS
DIRECT_10 Package

DIRECT_10 Package

The DIRECT 10 package provides input-output operations for rela-
tive disk -iles. See the ENSCRIBE Programmer's Guide if you want
detailed information about relative disk files.

The DIRECT 10 package determines the record length for a file
based on the size of the objects for the file. As a result, you
cannot instantiate DIRECT 10 for an unconstrained type, except
for a record that has disEriminants with default expressions.
In that case, DIRECT 10 uses the record length needed for the
largest possible object of the type.

The range for DIRECTIO.COUNT is 0 .. LONGINTEGER'LAST.

Your program raises DATA ERROR if you attempt to read a nonexis-
tent record from a DIRECT_10 file.

Creating Files With the DIRECT IO Package

Use the CREATE procedure to create files with DIRECT IO. The
CREATE procedure has two implementation-dependent parameters:
NAME and FORM.

For the NAME parameter, use a string that is a GUARDIAN 90 file
name. See Appendix B, "File Names," if you need information
about GUARDIAN 90 file names.

For the FORM parameter, use a string with the following syntax:

B-20

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
DIRECTIO Package

(null
(DIRECT_10-create-option E , DIRECTIO-create-option]

null

is zero or more blanks. A null form string specifies
that you want to use the default creation options.

DIRECT_10-create-option

is one of the creation options described below. You can
specify creation options in any order, but you can only
specify each option once.

DATABLOCKLEN = block-length

specifies the block length for the new file. block-
length must be an integer in the range I to 4096. The
actual block length is always a multiple of 512, but Ada
rounds up to an appropriate value. The default block
length is 1024.

FILECODE = code-number

specifies the operating system file code for the new
file. code-number must be an integer in the range 0 to
65,535. The default is 0.

PRIMARY EXTENTSIZE = primary-extent-size

specifies the size of the primary extent for the new
file. primary-extent-size must be an integer in the
range 0 to 65,535. The default is 4.

SECONDARYEXTENTSIZE = secondary-extent-size

specifies the size of the secondary extents for the new
file. secondary-extent-size must be an integer in the
range 0 to 65,535. The default is 16.

B-21

IMPL.EMENTATION-DEPENDENT CHARACTERISTICS
- DIRECTIO Package

Considerations for Creating Files With DIRECTIO

Your program raises USEERROR if you attempt to create a file
with the same file name as an existing file, if you attempt to
create a file with a record length of zero, if you attempt to
create a file for input, or if you specify an incorrect FORM
string.

The CREATE procedure always opens a new file in EXCLUSIVE
mode. No other process can read or write the file until your
program closes it.

Examples of Creating Files With DIRECTIO

* This example creates a relative file named RELFILE on the same

system, volume, and subvolume as the executing program.

DIRECTIO.CREATE (FILE => RELFILEVAR, NAME => "RELFILE");

* This example creates a relative file named TAXFILE that has
a block length of 2048 and a file code of 25. The file is
located on subvolume PAYROLL, volume SHR of the \HDQ system.

DIRECT IO.CREATE (FILE => TF,
MODE => OUT FILE,
NAME => "\HDQ.$HR.PAYROLL.TAXFILE",
FORM => "DATA BLOCKLEN = 2048,

FILECODE=25");

B-22

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
SEQUENTIALIO Package

SEQUENTIAL-I Package

The SEQUENTIAL 10 package provides input-output operations for
entry-sequenced disk files. See the ENSCRIBE Programmer's Guide
if you want detailed information about entry-sequenced disk
files.

The SEQUENTIAL 10 package determines the record length for a
file based on ihe size of the objects for the file. As a
result, you cannot instantiate SEQUENTIAL 10 for an unconstrained
type, except for a record that has discriminants with default
expressions. In that case, SEQUENTIAL 10 uses the record length
needed for the largest possible object-of the type.

Creating Files With the SEQUENTIALIO Package

You use the CREATE procedure to create files with SEQUENTIAL 10.
The CREATE procedure has two implementation-dependent parameters:
NAME and FORM.

For the NAME parameter, use a string that is a GUARDIAN 90 file
name. See Appendix B, "File Names," if you need information
about GUARDIAN 90 file names.

For the FORM parameter, use a string with the following syntax:

B-23

IMPLEMENTAT I ON-DEPENDENT CHARACTER" ST CS
SEQUENTIAL10 Package

(null }
(SEQio-create-option [, SEQ_IO-create-option] }

null

is zero or more blanks. A null form string specifies
that you want to use the default creation options.

SEQ_10-create-option

is one of the creation options described below. You can
specify creation options in any order, but you can only
specify each option once.

DATABLOCKLEN = block-length

specifies the block length for the new file. block-
length must be an integer in the range 1 to 4096. The
actual block length is always a multiple of 512, but Ada
rounds up to an appropriate value. The default is 1024.

FILECODE = code-number

specifies the operating system file code for the new
file. code-number must be an integer in the range 0 to
65,535. The default is 0.

PRIMARYEXTENTSIZE = primary-extent-size

specifies the size of the primary extent for the new
file. primary-extent-size must be an integer in the
range 0 to 65,535. The default is 4.

SECONDARYEXTENTSIZE = secondary-extent-size

specifies the size of the secondary extents for the new
file. secondary-extent-size must be an integer in the
range 0 to 65,535. The default is 16.

B-24

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
SEQUENTIAL 10 Package

Considerations for Creating Files With SEQUENTIAL IO

Your program raises USEERROR if you attempt to create a file
with the same file name as an existing file, if you attempt to
create a file with a record length of zero, if you attempt to
create a file for input, or if you specify an incorrect FORM
string.

The CREATE procedure always opens a new file in EXCLUSIVE
mode. No other process can read or write the file until your
program closes it.

Examples of Creating Files With SEQUENTIALIO

This example creates an entry-sequenced file named LOGFILE
on the same system, volume, and subvolume as the executing
program.

CREATE (FILE => LOGFILE, NAME => "LOGFILE");

This example creates an entry-sequenced file named DATA that
has a block length of 2048 and a primary extent size of 32.
The file is located on subvolume DALLAS, volume STEXAS of the
\US system.

SEQUENTIALIO.CREATE (FILE => FILEVAR,
MODE => OUT FILE,
NAME => "\US.$TEXAS.DALLAS.DATA",
FORM => "DATA BLOCKLEN = 2048,

PRIMARY EXTENTSIZE = 32");

B-25

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Opening Files With TEXTIO, DIRECTIO, or SEQUENTIALIO

Opening Files With TEXTIO, DIRECTIO, or SEQUENTIALIO

You use the OPEN procedure to open files with any I/0 package.
The OPEN procedure has two implementation-dependent parameters:
NAME and FORM.

For the NAME parameter, use a string that is a GUARDIAN 90 file
name. See Appendix B, "File Names," if you need information
about GUARDIAN 90 file names.

For the FORM parameter, use a string with the following syntax:

(SHARED 3
{ EXCLUSIVE I
(PROTECTED }
(null }

SHARED

specifies that other processes can read or write the
file while your process has it open. You cannot use
SHARED for a DIRECTIO file with mode INOUTFILE or
OUTFILE.

EXCLUSIVE

specifies that other processes cannot read or write the
file while your process has it open. You cannot use
EXCLUSIVE for a terminal or spooler.

PROTECTED

specifies that other processes can read the file while
your process has it open, but cannot write to it. You
cannot use PROTECTED for a terminal, a spooler, or a
DIRECTIO file with mode INOUTFILE or OUTFILE.

null

is zero or more blanks and specifies that you want to
use the default for the type of file you are opening.

B-26

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Opening Files With TEXT_IO, EIRECT_IO, or SEQUENTIALIO

Considerations for Calls to OPEN

The default for a disk file with mode IN FILE is SHARED. The
default for a disk file with mode OUT FIZE or mode INOUT FILE
is EXCLUSIVE. The default for a terminal or spooler is -
SHARED.

* Your program raises USEERROR if you make any error in the
FORM string parameter.

* You cannot open a DIRECT 10 file or a SEQUENTIALIO file with
a record length of zero or with a record length that is
different from the record length you used to instantiate the
package. Your program raises USEERROR if you attempt to do
SO.

* You cannot use TEXT_10 to open an entry-sequenced or relative
file with a maximum record length greater than 1320. Your
program raises USE ERROR if you attempt to do so.

* When you open an existing TEXT 10 or SEQUENTIAL 10 file with
mode OUT FILE, Ada deletes the-file and re-creates it. The
new file-has the same characteristics (block size, record
type, and so forth) as the original file but contains no data.

Examples of Calls to OPEN

* This example opens a file named DATA on the same system,
volume, and subvolume as the executing program. Other
programs can read or write to the file while this program has
it open.

OPEN (FILE => FILEVAR,
MODE => IN FILE,
NAME => "DATA",
FORM => "SHARED");

" This example opens a file named DATA located in subvolume
PAYROLL, volume SPERS, on system \HDQ. Other programs can
read the file while this program has it open, but they cannot
write to it.

OPEN (FILE => TAXFILE,
MODE => IN OUT FILE,
NAME => "\HDQ. PERS.PAYROLL.TAXES",
FORM => "PROTECTED");

B-27

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Standard Input and Output Files

Resetting Files

You can reset any type of file to mode IN FILE, but the
reset does not change the exclusion mode TSHARED, EXCLUSIVE, or
PROTECTED) in effect for the file.

If you reset a DIRECT 10 file to mode INOUT FILE or mode
OUT FILE, Ada closes the file and reopens it with an EXCLUSIVE
exclusion mode.

You cannot reset a TEXT IO'or SEQUENTIAL_10 file to mode
OUT FILE. If you attempt to do so, your program raises
USE ERROR.

Closing Files

Your program should close every file that it explicitly opens.
If you fail to close a file, you can leave it in an inconsistent
state, especially if it is an EDIT file.

Standard Input and Output Files

Ada automatically opens and closes the standard input and output
files using the TEXT 10 package. By default, both files are
the home terminal foF your program. You can change this by
specifying other file names with the IN and OUT parameters of the
RUN command that starts your program, as described in Section 5.

If you specify a standard input file that does not exist or
cannot be opened, Ada sends this message to the home terminal:

Cannot open Standard Input File.

If you specify a standard output file that does not exist,
TEXT 10 creates a new file of that name, using the default values
of TEXT 10 CREATE. If you specify a file that does exist,
TEXTIO deletes the file and re-creates it with the original
characteristics. If the file cannot be created (or deleted and
re-created) for some reason, Ada sends this message to the home
terminal:

Cannot create Standard Output File.

You program continues to execute even if Ada cannot open
the standard input and output files, but the program raises
STATUS ERROR if you attempt to read or write to an unopened file.

B-28

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Additional, Tandem-Defined Packages

ADDITIONAL, TANDEM-DEFINED PACKAGES

Tandem Ada includes four predefined packages in addition to
the standard packages with implementation dependencies. The
additional packages are:

" BITOPERATIONS

" COMMAND INTERPRETER INTERFACE

* TALTYPES

* SYSTEMCALLS

This subsection describes these packages in alphabetical order.

BIT-OPERATIONS Package

The BITOPERATIONS package provides Tandem Ada programs with bit-
manipulation capabilities similar to those of TAL. You can use
BIT OPERATIONS in any Tandem Ada program but it is primarily
intended for use in programs that call TAL procedures that use
unsigned quantities.

The BIT OPERATIONS package is described in detail in the subsec-
tion "BTt operations" in Section 8, "Calling TAL Subprograms."

COMMANDINTERPRETER.INTERFACE Package

The COMMAND INTERPRETER INTERFACE package provides Tandem Nda
programs with the ability to read information from STARTUP,
ASSIGN, and PARAM messages sent to the executing program by the
operating system command interpreter. Section 5, "Running Ada
Programs," discusses these messages. For additional information
about them, see the GUARDIAN 90 ODerating System Programmer's
Guide.

The TEXTIO, DIRECTIO, and SEQUENTIAL 10 packages name the
COMMAND INTERPRETER-INTERFACE package Tn a with clause and au-
tomatically read the STARTUP, ASSIGN, and PARAM messages. Your
program can also name the package in a with clause and use
the subprograms in the package to read these messages. The
elaboration code in the package reads the messages, so if you use
the package in the elaboration of another compilation unit, the
dependent unit must specify the ELABORATE pragma for the package.

B-29

IMPLEMENTATION-DEPENDENT CHARACTERiStICS
COMMANDINTERPRETERINTERFACE Package

The COMMAND INTERPRETER INTERFACE package includes types,
exceptions,-and subprograms. Figure F-4 lists the specifications
for the types and exceptions in the package. Figure F-5 lists
the specifications for subprograms that read the STARTUP message.
Figure F-6 lists the specifications for subprograms that read
the ASSIGN message. Figure F-7 lists the specifications for
subprograms that read the PARAM message.

package COMAND INTERPRETER INTERFACE is

CANT READ MESSAGES : exception;
-- Raised-by all routines if the Ada process could not
-- read the command interpreter messages.

FIELD NOT PRESENT : exception;
-- Ralsed-when a field selection of an assign message is
-- absent.

type ASSIGNMESSAGE T is private;

NO_ASSIGN : constant ASSIGNMESSAGET;

type FILE EXCLUSIONT is (SHARED, EXCLUSIVE, PROTECTED);

type FILEACCESST is (INOUT, INPUT, OUTPUT);

subtype LOGICALFILENAMET is STRING (I .. 31);

type PARAMMESSAGET is private;

NOPARAM : constant PARAMMESSAGET;

Figure F-4. Exceptions and Types From the
COMMANDINTERPRETER INTERFACE
Package

B-30

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
COMMANDINTERPRETERINTERFACE Package

function GET DEFAULT return STRING;
-- Returns t~e default volume and subvolume specified by
-- the startup message in the form SVOL.SUBVOL.

function GET INFILE return STRING;
-- Returns t~e IN file specified by the startup message
-- in the form $VOL.SUBVOL.DNAME.

function GET OUTFILE return STRING;
-- Returns the OUT file specified by the startup
-- message in the form $VOL.SUBVOL.DNAME.

function GET STARTUP MESSAGE PARAM return STRING;
-- Returns t"e parameter strIng specified in the RUN
-- command line from the startup message. The returned
-- string does not include any trailing null characters
-- with which the command interpreter padded the string.

Figure F-5. Subprograms to Read the STARTUP Message

procedure ASSIGN LIST RESET;
-- Resets the pointer to the first assign message.

function GET NEXT ASSIGN return ASSIGN MESSAGET;
-- Returns t~e neit message from the assign message list
-- or, if no message is left, returns NOASSIGN.

function SEARCHASSIGN (PROG NAME : in STRING;
FILE NAME : in STRING)
return ASSIGN MESSAGE T;

-- Searches the list of assign messages for tie logical
-- unit specified. A match occurs when both the input
-- program name and file name are identical to those of
-- an assign message. Otherwise, the function returns
-- NO ASSIGN.

Figure F-6. Subprograms to Read ASSIGN Messages (Page 1 of 4)

B-31

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
COMMANDINTERPRETER INTERFACE Package

procedure GET LOGICAL UNIT NAMES
- TASSIGN : in ASSIGN MESSAGE T;

PROG NAME : out LOGICAL FILENAME T;
PROGNAME LEN : out INTEGER;
FILE NAME : out LOGICAL FILENAME T;
FILE NAME LEN : out INTEGER);

-- Returns the program name and file name of the logical
-- unit for the specified assign message.

function IS TANDEM FILENAME PRESENT
(ASSIGN : ASSIGN MESSAGE T) return BOOLEAN;

-- Returns TRUE if the file name is present;
-- returns FALSE otherwise.

function ISPRIEXTENTPRESENT (ASSIGN : ASSIGN MESSAGE T)
return BOOLEAN;

-- Returns TRUE if the primary extent is present;
-- returns FALSE otherwise.

function ISSEC EXTENTPRESENT (ASSIGN : ASSIGNMESSAGE T)
return BOOLEAN;

-- Returns TRUE if the secondary extent is present;
-- returns FALSE otherwise.

function IS FILECODE PRESENT (ASSIGN : ASSIGN MESSAGE T)
return BOOLEAN;

-- Returns TRUE if the file code is present;
-- returns FALSE otherwise.

function ISEXCLUSIONPRESENT (ASSIGN : ASSIGN MESSAGET)
return BOOLEAN;

-- Returns TRUE if the exclusion spec is present;
-- returns FALSE otherwise.

function ISACCESSSPECPRESENT
(ASSIGN : ASSIGN MESSAGE T)

return BOOLEAN;
-- Returns TRUE if the access spec is present;
-- returns FALSE otherwise.

Figure F-6. Subprograms to Read ASSIGN Messages (Page 2 of 4)

B-3 2

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
COMMAND INTERPRETER INTERFACE Package

function ISRECORDSIZE PRESENT
(ASSIGN : ASSIGN MESSAGE T)

return BOOLEAN;
-- Returns TRUE if the record size is present;
-- returns FALSE otherwise.

function ISBLOCKSIZEPRESENT
(ASSIGN : ASSIGN MESSAGE T)

return BOOLEAN;
-- Returns TRUE if the block size is present;
-- returns FALSE otherwise.

function GET TANDEMFILENAME (ASSIGN : ASSIGNMESSAGET)
return STRING;

-- Returns the operating system file name for the
-- specified assign message; raises FIELDNOTPRESENT
-- if the field is absent.

function GET PRI EXTENT (ASSIGN : ASSIGN MESSAGET)
return INTEGER;

-- Returns the primary extent for the specified
-- assign message; raises FIELDNOTPRESENT if the
-- field is absent.

function GETSECEXTENT (ASSIGN : ASSIGN MESSAGET)
return INTEGER;

-- Returns the secondary extent for the specified
-- assign message; raises FIELDNOTPRESENT if the
-- field is absent.

function GET FILECODE (ASSIGN : ASSIGN MESSAGET)
return INTEGER;

-- Returns the file code for the specified
-- assign message; raises FIELDNOTPRESENT if the
-- field is absent.

function GET EXCLUSION (ASSIGN : ASSIGN MESSAGET)
return FILE EXCLUSION T;

-- Returns the exclusion specification for the
-- specified assign message; raises FIELDNOTPRESENT
-- if the field is absent.

Figure F-6. Subprograms to Read ASSIGN Messages (Page 3 of 4)

B-33

IMPLEMENT'ATION-DEPENDENT CHARACTERISTICS
COMMAND INTERPRETER INTERFACE Package

function GET ACCESS SPEC (ASSIGN : ASSIGN MESSAGE T)
return FILE ACCESS T;

-- Returns the access specification for the
-- specified assign message; raises FIELDNOTPRESENT
-- if the field is absent.

function GETRECORDSIZE (ASSIGN : ASSIGNMESSAGE T)
return INTEGER;

-- Returns the record size for the specified
-- assign message; raises FIELDNOT_PRESENT if the
-- field is absent.

function GETBLOCKSIZE (ASSIGN : ASSIGNMESSAGET)
return INTEGER;

-- Returns the block size for the specified
-- assign message; raises FIELDNOTPRESENT if the
-- field is absent.

Figure F-6. Subprograms to Read ASSIGN Messages (Page 4 of 4)

procedure PARAM LISTRESET;
-- Resets the painter to the beginning of the param
-- message list.

function GETNEXTPARAM return PARAMMESSAGET;
-- Returns the next message 'rom the param message
-- list; returns NOPARAM if no message is left.

function SEARCH PARAM LIST (NAME : STRING)
return PARAM MESSAGE T;

-- Searches the param message list for a param w1th the
-- specified name and returns the message for that param;
-- returns NOPARAM if it can't find a match.

function GETPARAMNAME (PARAM : PARAMMESSAGET)
return STRING;

-- Returns the param name of the specified param message.

function GETPARAMVALUE (PARAM : PARAMMESSAGET)
return STRING;

-- Returns the value of the specified param message.

Figure F-7. Subprograms to Read the PARAM Messages

B-34

IMPLEMENTATION-DEPENDENT'CHARACTERI ST ICS
SYSTEM-CALLS Package

SYSTEMCALLS Package

The SYSTEM CALLS package contains Ada subprogram specifications
for many GUARDIAN 90 operating system procedures. You can use
SYSTEM CALLS to save the trouble of writing these declarations
yourself if you plan to call these procedures from Ada.

See "Using GUARDIAN 90 Procedures in the SYSTEM CALLS Package" in
Section 8 for a more detailed explanation of thi contents of this
package.

TALTYPES Package

The TAL TYPES package defines types, subtypes, and functions for
use in Ada programs that call TAL subprograms.

See Section 8, "Calling TAL Subprograms," for an explanation of
the contents of TAL TYPES and for examples that demonstrate how
to use TALTYPES to call TAL subprograms from Ada.

Figure F-8 lists the specifications for the TALTYPES package.

B-35

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
TALTYPES Package

package TALTYPES is

type CONDITIONCODE T is (CCG, CCE, CCL);

subtype STRING is SHORT INTEGER;
subtype INT is INTEGER;
subtype INT 32 is LONG INTEGER;
subtype FIXED is LONGEONGINTEGER;

type STRING ADDR is limited private;
type WORD ADDR is limited private;
type EXTENDED ADDR is limited private;

generic
type RESULT TYPE is limited private;

function NOTSPECIFIED return RESULTTYPE;

function CONDITIONCODE return CONDITION CODET;

private

type STRING ADDR is new INTEGER;
type WORD ADDR is new INTEGER;
type EXTENDEDADDR is new LONG-INTEGER;

end TALTYPES;

Figure F-8. The TAL TYPES Package

B-36

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Restrictions on Representation Clauses

RESTRICTIONS ON REPRESENTATION CLAUSES

In addition to the rules for using representation clauses
and representation pragmas described in the ANSI Reference
Manual for the Ada Programming Language, Tandem Ada restricts
size specifications in length clauses, record representation
clauses, address clauses, enumeration representation clauses,
the specification of 'SMALL for fixed-point types, and the
specification of 'STORAGE SIZE. This subsection describes these
restrictions.

Restrictions on Size Specifications in Length Clauses

For records and arrays, the value of the static expression in
a length clause for T'SIZE must be a multiple of 8 and of the
alignment. Also, the value must be at -least as large as the
default size the compiler calculates for T.

Table F-i shows the possible values of N for different data types
in the "for T'SIZE use N" clause. For scalar types, just a few
values are valid. You cannot use the length clause for access
types.

Table F-1. Size Specifications for Different Types

Type Possible Values of T'SIZE

Integer 8, 16, 32, and 64

Enumeration 8 and 16

Fixed point 64

Floating point 32 and 64

Task 32

Composite Multiples of 8 and of the alignment

Access Not supported

B-37

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Restrictions on Record Representation Clauses

If a representation clause increases the size of a type, then
the compiler creates some filler space. For scalar types, which
the compiler always stores right-justified within a container,
the filler space is sign-extended. For composite types, which
the compiler always stores left-justified within a container, the
filler space is zero-filled.

A subtype of a type typically has the same size as the type,
however, a constrained record subtype can be smaller than the
record type. If you specify a length clause for the record type,
the compi-ler uses the length in the clause to allocate space
for the type. But when allocating space for an object of a
constrained subtype, the compiler ignores the length clause for
the type and chooses a size for the subtype.

Restrictions on Record Representation Clauses

The restrictions on component clauses ("at N range L .. R") are:

* The compiler must be able to determine the size of the
component subtype at compile time, as explained in "Sizes the
Compiler Knows at Compile Time," in Appendix C.

* The size of the range you specify (R - L + 1) must equal the
size of the component type.

* The value for L must be a multiple of 8 and the component must
begin on a byte boundary.

" All values supplied for a record component offset must be
nonnegative (N * 8 + L >= 0).

* Components from a variant part must follow components from the
fixed part in the record layout.

The compiler's layout algorithm implies some additional restric-
tions. For a description of the algorithm, see "Complex Records"
under "Record Types," in Appendix C.

The restrictions on alignment clauses ("at mod N") are:

" The value of N must be at least as large as the default
alignment the compiler chose for the record.

" The value of N must be either 1 or 2 bytes.

Tandem Ada does not support record representation clauses for
records that contain generic formals.

B-38

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Restrictions on Address Clauses

Restrictions on Address Clauses

The Tandem Ada compiler does not support address clauses.

Restrictions on Enumeration Representation Clauses

The Tandem Ada compiler does not support enumeration representa-
tion clauses.

Restrictions on Specification of 'SMALL for Fixed-Point Types

The value of the static expression in a length clause for 'SMALL

must be a power of 2 in the following range:

2 ** (-255) to 2 ** 255

The value specified for 'SMALL must be in the range precisely
represented by the positive range of the predefined types FLOAT
and LONG FLOAT. As implied in the ANSI Reference Manual for
the Ada Programming Language, the value must also satisfy the
relation:

max (ceiling (log2 (abs (LB) / small)),
ceiling (log2 (abs (UB) / small))) <= SYSTEM.MAXMANTISSA

In other words, the number of binary digits in the mantissa of
the model numbers for fixed-point types must be less than or
equal to the. maximum number Qf binary digits,
SYSTEM.MAXMANTISSA, which is 31.

Restrictions on Specification of 'STORAGE-SIZE

For tasks, the value you specify for 'STORAGE SIZE must be
greater than 0 but less than 2 ** 27 bytes. The default is 2
** 18 bytes. For a description of how tasks use memory, see
Appendix E, "Memory Usage on NonStop Systems."

Tandem Ada does not support 'STORAGE-SIZE for access types.

B-39

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Tasking

RESTRICTIONS ON UNCHECKED PROGRAMMING

The generic function UNCHECKEDCONVERSION has these restrictions:

" The sizes of the source and target types must be the same.

" The sizes of the source and target types must be known at
compile time. (For information about this, see "Sizes the
Compiler Knows at Compile Time," in Appendix C.)

* The source and target types must not be unconstrained records
or arrays.

Tandem Ada supports the generic procedure UNCHECKED DEALLOCATION,
but it does not actually reclaim memory space, even though it
resets an access value to null. Tandem Ada reclaims space
that it allocates for temporary variables that it creates for
subprogram calls; it does not reclaim space for data that a
program creates directly.

TASKING

For the most part, Tandem Ada executes parallel tasks
sequentially, interleaving the execution of various tasks as
appropriate for the program. Parallel tasks execute in parallel,
however, when a program performs certain input-output operations.

Tasks that perform input-output operations using the TEXT 10
package, the SEQUENTIALIO package, the DIRECT I0 package, or
the SYSTEM CALLS package can execute in parallel with other
tasks during the input-output operations. Except for operations
on EDIT files, which always execute sequentially, input-output
operations from these packages execute in parallel with another
task whenever possible. For example, while one task is waiting
for input from a terminal, which can take a long time, a parallel
task can execute.

An input-output operation appears indivisible to the task that
executes it, even if the operation executes in parallel with
another task, and the task that executes the input-output
operation does not continue until the operation completes. As
a result, programmers generally do not need to consider the
parallelism when they code individual tasks. The only special
consideration imposed by the implementation of parallel input-
output involves calls to the operating system procedures AWAITIO
and AWAITIOX.

B-40

IMPLEMENTATION-DEPENDENT CHARACTERISTICS'
Implementation Limits

Tandem Ada implements parallel processing for input-output opera-
tions by using nowait input-output operations. Calls to the
operating system procedure AWAITIO cr AWAITIOX with a file
parameter of -1 can interfere with outstanding nowait input-
output operations. The specific symptoms of such an interference
are impossible to predict.

Consequently, you should not call AWAITIO or AWAITIOX with a
file parameter of -1 in tasks that can execute in parallel with
tasks that use the TEXT_10 package, the SEQUENTIALIO package,
the DIRECT IO package, or the SYSTEM CALLS package to perform
input-output operations on files other than EDIT files.

If you want more information about nowait input-output
operations, see the GUARDIAN 90 Operating System Programmer's
Guide.

I)4PLEMFNTATION LIMITS

Table F-2 lists some Tandem Ada limits on the use of language
features.

B-41

IMPLEMENTATION-DEPENDENT C-HARACTERISTICS
Implementation Limits

Table F-2. Implementation Limits

Language Feature Maximum Number

Characters in an identifier 200

Characters in a line 200

Discriminants in a constraint 256

Associations in a record aggregate 256

Fields in a record aggregate 256

Formal parameters in a generic unit 256

Nested contexts 250

Bytes for an object -2 ** 27

words of object code for a subprogram 32767

Library units in a program 500

Compilation units and subprograms in a program -15000
(The compiler reserves approximately
1000 entries for run-time routines.)

Units named in a compilation unit's with clauses 255

Dynamic components in a record 256

Array dimensions 7

Control statement nesting level 256

Literals for an enumeration type 32767

Tasks for a program 32767

Entries for a task 32767

Subprogram nesting level in a calling sequence 256
(For example, f(f(f(x))) has three nesting
levels.)

Unique strings and identifiers for a
compilation unit 4096

B-4 2

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGIDI (1..199 => 'A', 200 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID2 (1..199 => 'A', 200 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (1..99 I 101..200 => 'A', 100 => '3')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (1..99 I 101..200 => 'A', 100 :> '4')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG INT LIT (1-.197 => 10', 198..200 => "298")

An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIGREALLIT (1..194 => '01, 195..200 => "69.0Elt")

A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRINGI (I..100 => 'A')

A string literal which when
catenated with BIG STRING2
yields the image of BIGIDI.

$BIG_STRING2 (1..99 => 'A', 100 => '1')

A string literal which when

catenated to the end of
BIG STRING1 yields the image of
BIG-IDI.

$BLANKS (I..180 :> '

A sequence of blanks twenty

characters less than the size

of the maximum line length.

$COUNTLAST 2147483647

A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$FIELDLAST 32767

A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILENAME WITH BAD CHARS X}]!@

An external -file name that

either contains invalid
characters or is too long.

$FILE NAME WITH WILDCARDCHAR XYZ*

An external file name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 100_000.0

A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value

in the range of DURATION.

C-2

TEST PARAMETERS

Name and Meaning Value

$GREATERTHANDURATIONBASELAST 100_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGALEXTERNALFILENAME1 bad-character * ^
An external file name which
contains invalid characters.

$ILLEGALEXTERNALFILE _AME2 muchtoolongname
An external file name which
is too long.

$INTEGERFIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 32768
A universal integer literal

whose value is INTEGER'LAST + 1.

$LESSTHAN DURATION -100_000.0

A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value

in the range of DURATION.

$LESSTHAN DURATIONBASE FIRST -100 000_000.0

A universal real literal that is
less than DURATION'BASE'FIRST.

$MAXDIGITS 16

Maximum digits supported for
floating-point types.

$MAX IN LEN 200
Maximum input line length

permitted by the implementation.

$MAXINT 9223372036854775807
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINTPLUS 1 9223372036854775808
A universal integer literal
whose value is SYSTEM.MAX INT+1.

C-3

TEST PARAMETERS

Name and Meaning Value

$MAXLENINTBASEDLITERAL (1..2 =>"2:", 3..197 =>10T, 198..200 =>"11:")

A universal integer based

literal whose value is 2#11#
with enough leading zeroes in

the mantissa to be MAXINLEN
long.

$MAXLEN REALBASEDLITERAL (1..3 =>"16:", 4..196 =>'O', 197..200 =>"F.E:")

A universal real based literal

whose value is 16:F.E: with

enough leading zeroes in the

mantissa to be MAXINLEN long.

$MAXSTRINGLITERAL (1 => '"', 2..199 => 'A', 200 => "')

A string literal of size

MAXINLEN, including the quote
characters.

$MININT -9223372036854775808
A universal integer literal
whose value is SYSTEM.MININT.

$NAME LONGLONGINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

$NEGBASEDINT 16#FFFFFFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit

position of the representation
for SYSTEM.MAXINT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

• B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

*E28005C: This test requires that "PRAGMA LIST (ON);" not

appear in a listing that has been suspended by a previous
"PRAGMA LIST (OFF);"; the Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

" C34004A: The expression in line 168 yields a value outside
the range of the target type T, but there is no handler for
CONSTRAINTERROR.

" C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

" A35902C: The assignment in line 17 of the nominal upper
bound of a fixed-point type to an object raises
CONSTRAINTERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line
28 wrongly raises CONSTRAINTERROR, because its upper bound
exceeds that of the type.

" C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when its compatibility is checked against
that of various types passed as actual generic parameters,
may, in fact, raise NUMERIC ERROR or CONSTRAINTERROR for
reasons not anticipated by the test.

D-1

WITHDRAWN TESTS

. C35A03E and C35A03R: These tests assume that attribute
'MANTISSA returns 0 when applied to a fixed-point type with a
null range, but the Ada Standard does not support this
assumption.

. C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborated.

'37213J: The aggregate in line 451 incorrectly raises

CONSTRAINTERROR.

C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type CONS.

" C38102C: The fixed-point conversion on line 23 wrongly
raises CONSTRAINTERROR.

" C41402A: The attribute 'STORAGE SIZE is incorrectly applied
to an object of an access type.

" C45332A: The test expects that either an expression in line
52 will raise an exception or else MACHINE OVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with a wider range than the
base type of the operands, and MACHINEOVERFLOWS may still be
TRUE.

C45614C: The function call of IDENTINT in line 15 uses an
argument of the wrong type.

A74106C, C85018B, C87B04B, and CC1311B: A bound specified in
a fixed-point subtype declaration lies outside of that
calculated for the base type, raising CONSTRAINTERROR.
Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

" BC3105A: Lines 159 through 168 expect error messages, but
these lines are correct Ada.

AD1A 1A: The declaration of subtype SINT3 raises
CONSTRAINT ERROR for implementations which select INT'SIZE to
be 16 or greater.

CE2401H: The record aggregates in lines 105 and 117 contain
the wrong values.

CE3208A: This test expects that an attempt to open the
default output file (after it was closed) with mode IN FILE
raises NAME ERROR or USEERROR; by Commentary AI-00048,
MODEERROR should be raised.

D-2

