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Abstract
Pressure waves, detected by an array of receivers, can be analyzed to
determine the location of the acoustic source, or the location of objects which
the waves encountered along their path. This thesis examines high resolution
methods which use a linear array to locate stationary objects which have scattered

the pressure waves. Several new methods are explored through simulations in air.

A theoretical examination of all of the basic and high resolution acousti-
cal imaging methods is first conducted. These methods include holographic re-
construction, beamforming, a correlation method, autoregressive-moving average
(ARMA) spectral estimators and minimum energy methods. This examination
summarizes the well-known ability of these methods to locate sound sources while

making some new observations on the ability of these methods to located sound

scatterers.

One of the methods which was examined used the concept of a fictitious
source. This concept is developed to yield a new imaging approach called the
pattern-match method which is similar to the temporal signal processing tech-
nique called the matched filter. In addition, a new technique for comparing
signals is used to develop a variation of the pattern-match method called the
mismatch method. A series of simulations is used to examine the ability of both
methods to locate either one or two acoustic sources. Each simulation is also
conducted using the well-known holographic method which thus serves as a point
of reference. One new feature of some of these simulations is the introduction of
a barrier which diffracts and reflects the pressure wave. It is shown that for many

cases pattern matching can offer a superior image while the mismatch method
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offers a mixture of advantages and disadvantages.

While so.ne imaging methods have used multiple frequencies, it was found
that none exploited the fact that an object’s scattering pattern can have a char-
acteristic frequency dependence. This characteristic is used for the first time in
a new method called swept-frequency imaging. A series of simulations is used to
examine the ability of this method to locate a pair of point reflectors and a flat
plate. A comparison to the well-known beamforming method indicates that the

swept-frequency method is superior at moderate distances, and can be useful at

all distances when combined with a range estimator.
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Chapter 1

Introduction

Pressure waves, detected by an array of receivers, can be analyzed to
determine the location of the acoustic \sburce, or the location of objects which
the waves encountered along their path. This thesis studies those methods of
analysis which can provide particularly precise estimates of the locations. Such

methods are typically referred to as “super-directivity,” “super-resolution,” or

“optimum” processors.

Subsequent sections of this introduction will describe the questions which
motivated the study, list the assumptions which will be used in the analysis of
the pressure waves, state the scope of the study, and then conclude with a spec-

ification of some of the symbols and relationships used in subsequent chapters.

1.1 Motivation for the Study

Theory and experience in the processing of the signals obtained from an
array of receivers has accumulated steadily, with one of the earliest investigations
being reported by Oseen! in 1922. Because arrays and pressure waves constitute
a very general phenomenon, related discoveries have been made in many different
disciplines. This has resulted, as pointed out by Miller,? in the same fundamental

principle sometimes being discovered more than once.

As the basic concepts of existing methods were studied, it became clear
that, because of the inter-disciplinary nature of the problem, it was possible that

discoveries in one field might have been overlooked by workers in another. Thus,
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one motivation for this study was to consider combinations of methods, from
perhaps different disciplines, which could be combined in new and productive
ways. In particular, the approach of using a “fictitious source,” discussed in
Chapter 2, is combined with the concept of a matched filter in Chapter 4 to

develop two new imaging algorithms called the pattern-match and mismatch

methods.

Most previous work has concentrated quite naturally on the pragmatic
cases where one wishes to locate a sound source in noise. Some of the more imagi-
native methods are non-linear or iterative and so defy both traditional closed-form
analysis and a straightforward conceptual understanding. The author’s interest
was thus piqued by the following question: which methods are primarily for noise
suppression, and which are utilizing some new insight into the underlying wave
phenomena? In addition, we wished to know if these methods, which were de-
veloped for waves from sound sources, could also be applied to waves from sound
scatterers. The answer to these questions could be useful in matching the various

methods to a given problem.

Finally, several methods touched upon the idea of using a swept-frequency
transmitted signal. Indeed, linear FM sweeps have long been used. However,
many methods were built upon the assumption that the object which was en-
countered by the pressure wave was a point-reflector; such an assumption, it
seemed, may cause potentially useful information to be lost. A final motivation,
then, was to explore a new frequency-swept method which was built upon the

assumption of frequency-dependent scattering from these objects.




1.2 Assumptions About the Propagation Path

The modeling of the complex phenomenon of a realistic environment is
certainly a worthy and demanding pursuit; however, in this study, a far simpler
situation will be modeled in order that the fundamental principles can be better

understood and simulated.

This study will generally assume that the wave phenomenon occurs in an
isotropic, unbounded medium wherein the speed of sound is known and damping

is negligible. Wave propagation will be modeled as spherical or planar compres-

sional waves obeying the linear wave equation.

In most cases, the source of the pressure waves will be an omni-directional
transmitter whose location is known and which can broadcast acoustic energy
of any desired temporal pattern. This pattern will typically be a windowed sine
wave at a given frequency, or a series of such sine waves which step through a
set of frequencies. Amplitudes will be arbitrary but shall be low enough that the
assumption of linear propagation is valid. These assumptions effectively eliminate
any question about the location of the source of the pressure waves; thus, this
study will focus on discovering the precise location of objects which the waves
encountered along their path. However, many methods, which were originally

developed to find the source of acoustic energy, can be recast to find these objects.

The detection of the pressure waves will be simulated as an equidistant
line array of omni-directional, linear receivers. Except for certain non-linear
spectral estimators, the relationship between a one- and two-dimensional array

is straightforward and so this study will be limited to the one-dimensional array.




It will be assumed that the objects which are encountered by the waves
have a velocity of zero. When more than one object is encountered, it will be
assumed that the Born approximation for weak scattering can be applied. Most

objects will be modeled as point scatterers, spheres, or disks.

1.3 Scope of the Thesis

We wish to find methods, given the assumptions described in Section 1.2,
for analyzing samples R; of the amplitude of an pressure wave which yield, with
the highest possible precision, the location of the object or objects encountered
by the pressure wave. The samples will be obtained at locations X; which are
equally spaced along a line. In the pursuit of these methods, all the existing basic
and high resolution methods will be considered; the most promising concepts,
along with some new approaches, will be combined to form several new acoustic

imaging methods which will then be explored through simulations.

1.4 Definition of the Major Terms

The path of the pressure wave begins at the transmitter which is located
at position (XE, ZE) as shown in Figure 1.1. The pattern for a windowed sine

wave of angular frequency w (= 27 f) is given by

sin(wt), if0<t<T;
E(t) = (1.1)

0, otherwise

where the period or duration of the signal is T and the time t is continuous.

The wave next encounters an object at some unknown position (Xs, Z S)
with a scattering function S (¢R|¢E). For a point scatterer, S is a constant

(usually 1). Otherwise, it is a function of two angles which are defined relative to
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the scatterer. Given that the pressure wave is arriving at angle ¢E , the scattering
function then gives the amplitude of the wave which is reflected into the angle
¢%. The scattering function will be simulated in most cases as causing no phase
shift, i.e., it is a real rather than complex function. When we need to consider
more than one scattering object, each object will be at position (X;?,, Z;f,) with

scattering function Sy, (@& #E) for 1 < m < N5 where there are N objects.
m|Pm J

The pressure wave is sampled at the receivers located at positions (X,-R, 0)
for 1 < i < N® where there are N® receivers. The difference between any two
receiver positions (the spatial sampling interval) is AX. The Z coordinate is
always zero since we have chosen to place the line array along the X-axis. The
amplitude of the pressure wave R;(t;) are sampled at times ¢; for 1 <1 < NT
where there are NT time samples. The difference between any two time samples

(the temporal sampling interval) is At.

The signal detected at each receiver can be represented as the linear sum

of the pressure reflected from the one or more objects:

S
Ri(t) = ;V:l 1—)7}5;; Sm (85,68) - E (ti - Tin) 5 (1.2)
r = Dim =\ (X2 - X5)" +(28)* (13)
Drm = V(XT — X5)2 + (2T — 25)% and (1.4)
TE = Dim + Drm (1.5)
5

The time of flight T£, from the transmitter to the ith receiver via a reflection
from the m®* object is calculated using the length of the flight path, composed

of the path from the transmitter to an object (distance Dry,) plus the path from
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the object to a receiver (distance D;y, ), for waves traveling at the speed of sound

c where ¢ = Af.

When the locations of the objects are known, they can be combined with

the location of the transmitter and receivers to compute the scattering angles as

T _yS
#E = arctan (‘;—ST)Z%"T) , and (1.6)
m
S _ xR
o2 = arctan (ﬁn—zsi> . (1.7)
m

A matrix notation will be used in some cases so that some of the above

quantities can be expressed more compactly as

R(t;) = [Ri(ty) Ro(tr) ... Ry()]T and (1.8)
T
xB=(xf xf .. X (1.9)
where T denotes the transpose operation which make these representations col-
umn vectors. When there is only one object, Eq. (1.8) becomes

R(t) = [Dl '1DTS (6R16%) - E (ti— TF)

- 5 pz5 (6716F) B (u - TF)

T
.. EN—I-_D;S (8%165) - E (1 - T,@)] (1.10)

where the implicit subscript on S and the implicit second subscript on TF is 1

since there is only one object.







Chapter 2

Basic Issues in Array Processing

Subsequent chapters will investigate how various processing methods can
increase a receiver array’s resolution. This chapter will lay the groundwork for

those investigations by examining the basic approaches and issues.

The problem being addressed by this study has been approached from
several points of view in various fields which seem, at first glance, to be only
vaguely related. This does not seem reasonable, however, since the underlying
physics is the same in each case. Therefore, we wish to roughly categorize these
approaches, and then seek a unified approach to which all the others are special
cases. We expect the various cases to differ only in the nature of their assumptions

or their requirement of a priori information.

2.1 Holographic Reconstruction

In the traditional study of the propagation of pressure waves, the inter-
action of the waves with an object is categorized as diffraction. The problem we
are addressing in this study is then categorized as inverse diffraction. In particu-
lar, the holographic reconstruction methods use inverse diffraction to recreate or
reconstruct the pressure field in the vicinity of objects which are either scatterers

or are themselves acoustic sources.




10

2.1.1 Holographic Assumptions

In the typical three-dimensional case, the receivers are equally spaced
across a planar grid, and the objects are assumed to be located on a plane which
is parallel to the receiver plane. For this reason, most holographic studies have
concentrated on reconstructing this object plane which is then interpreted as an
“image” of the objects. The image can be formed to represent the amplitude or

phase of the pressure, the vector velocity, the vector intensity, or other quantities.

The interpretation of the image is by no means deterministic - it depends
upon the expected nature of the objects. If point objects are expected, each point
of the image could be interpreted as the amplitude of the object located at that
point where amplitudes which fall below some threshold would indicate that no
object is present. On the other hand, if extended objects are expected, each point
of the image could be interpreted as the amplitude of the pressure scattered or

generated at that location on the object.

The earliest holographic work, such as that by Graham® and Watson,*3
used optical methods to process the information. This background, and the
limited speed of the computers of the time, seems to have motivated the early
users of digital processing to make the Fraunhofer or Fresnel approximation as
it eliminated the evaluation of a square root in the algorithm. With the work
of IBM’s VanRooy,%" digital processing eliminated this approximation and the
approach became, therefore, valid for both the near and far fields. VanRooy was
also one of the first to apply the Fast Fourier Transform (FFT) which significantly
reduced the computer time needed; his basic algorithm continues to be used

over a decade later for holographic reconstructions in studies such as those by
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Stepanishen and Benjamin,® Eschenberg and Hayek,?1%1! and Williams et al..!?
2.1.2 The Holographic Equation

A variety of methods can be used to develop the holographic equation
which expresses the pressure field in the object plane as a function of the measured
field in the receiver or hologram plane. Cohen!3 used the Rayleigh integral,
expressed as a convolution in the space domain and as a multiplication in the
spatial frequency domain, to develop his method of processing. Another approach

based upon a Fourier transform of the wave equation is shown in Appendix A.

One of the earliest, and still most elegant, developments was provided by
Goodman.!* In the two-dimensional system of this study, the Helmholtz wave

equation for harmonic time dependence becomes

_ 0%R(z, z) + 9’R(z, 2)

ViR(z,2) + K R(z,2) = — = S F PR, =0 (21)

The signal R(z,z) can be written in terms of an inverse Fourier transform as

R(z,z) = F7(R(ks, 2))

+00 2.2)
1 R(k i kp ) dk (
= \/’_2—; / R(kg,2) - exp(~j ks x) dkz

-0

where F~! represents the inverse Fourier transform while F and R represents

the forward Fourier transform as given by

1 +o00

F(R(z,2)) = R(ks,2) = wors / R(z,z) exp(j ks ) dz.  (2.3)

The letter j denotes the square root of minus one. These definitions of the forward

and inverse seem to agree with the majority of scientific users of the Fourier
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transform!3 but are reversed from some, including the ones used in some previous
work by the author.!! However, simulations have proven that these definitions
can be reversed with no effect on, at least, the reconstructed pressure amplitude.
Upon substitution of Eq.(2.2) into Eq.(2.1), we note that the integrand of the
first term becomes —k2 R(k;, z). Using the relationship between the components

of the wavenumber,

e Ly (2.4)

we can combine the integrands to yield

+ k% R(ks,2)| exp (=j ke 2) dbz = 0. (2.5)

1 P[0 R(k,, 2)
0z

2r
—0oQ

The integral can only be zero for all values of the independent variable z if its

integrand is zero; thus, we can write
O?R(ks, .
——5(2—;’1) + k2 B(ky,2) =0 (2.6)

which is the transformed version of the wave equation. One solution to this

differential equation is
R(ks,2) = R(kz,0) - exp (j k. 2) (2.7)

where R(k;,0) is often written as R¥ (k;) to emphasize that it is measured in
the receiver or hologram plane. Finally, we can substitute Eq. (2.7) into Eq. (2.2)

so that the field for a plane at any location z can be written as
Lt
— pHeL v . o U A 2 9
R(z,z) = \/2_7r_</ R" (k) -exp(jhzz—jksz) dks. (2.8)

It is sometimes useful to refer to that part of this equation which represents
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the effects of propagation through space as the Green’s function in the spatial

frequency domain:

Gk,) =exp(Gk; 2). (2.9)

2.1.3 Discrete Holography

The conversion of the continuous version of the holography equation,
Eq.(2.8), to its discrete, sampled form has been described previously!'!® but
is repeated here for completeness, using the terminology of this study. Beginning
with the forward Fourier transform of the hologram, Eq. (2.3), we replace the

continuous variables with the discrete variables:

dz — AX,
z =1 AKX,
27
dk; — AK; = T (2.10)
L=NRAX,
ky — q AK,

It is important to note that the receiver aperture size L is not merely the dis-
tance between the receivers at the ends of the array but is AX larger than that
distance. The signal in the receiver aperture, R¥(z), is now sampled at the
discrete receiver locations Xf = ¢ AX and so could be written R¥(i AX) or
just R,H. Likewise, the signal in the spatial frequency domain is sampled and so
RH (k) becomes RT (q AK;) or just Rf Substituting into Eq. (2.3), the forward

transform becomes

pH
Rq

i

ax NE
T S RE .exp(j g AK: i AX). (2.11)
1=1
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With similar substitutions, the holographic reconstruction, Eq. (2.8), becomes

AA, NE

R(z,z) = Z RH cexp(J k; z— 7z qAK,) (2.12)

ﬁ

with

= \/k? — (¢ AK;)

2 (2.13)
= \) (2_’;i> — (g AK,)

Eq. (2.12) is valid for any value of R’s argument, the continuous variables z and

z. However, if this is to be implemented as an FFT, we must also convert z to
its discrete form so that we have

R

AK, Y.,

R - ex k, z — AK, i AX 2.14

N Z p(J jq ). (2.14)

g=1

R(i AX,z) = Ri(z) =

In many studies, the indices used in discrete equations are arranged so
that they, as well as the discrete values of z and k;, are more or less symmetrical
about zero. That is, the indices are transformed so that

1<i<N® o -INR<i<INE_
(2.15)
1<q<N® o _INF<g<INR-
Note that since 0 is included in the shifted domain, we must subtract 1 from
one of the limits so that the total number of points continues to be NB. As is
obvious from Eq. (2.11), these shifts are equivalent to adding a constant value to
the phase of the results; therefore, we can choose whichever domain we prefer as

long as we are consistent.

There are two reasons for shifting the domain of ¢q. First, a symmetrical
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domain reflects the fact that both positive and negative spatial frequencies are

involved. That is, index ¢ refers to positive and negative spatial frequencies as

follows:
1<¢q< %NR +1, positive spatial frequencies;
unshifted: (2.16)
%NR +2 < q < NE| negative spatial frequencies;
and
0<q< %NR, positive spatial frequencies;
shifted: (2.17)
—%NR + 1 < q < -1, negative spatial frequencies.

Second, most computer implementations of the FFT are arranged so that the
spatial frequencies are returned in the order of the shifted domain. That is,
the first element of the returned data array corresponds to q = —%NR. This,
however, requires only that we be careful when combining analytically computed

terms with those computed by an FFT.

There does not seem to be any particular reason for shifting the domain

of x except for perhaps tradition and to mimic the shifting applied to q.

2.1.4 Definition of Phase

The sign of the exponent in Eq.(2.7) implies a choice which should be
noted and maintained, for consistency, in other equations in this study. The

general solution to the wave equation for plane waves is of the form
P = 4IWimIkT 4 g dwttikr (2.18)

where A and B are complex numbers and r is in the direction of propagation. As

noted by Skudrzyk,!® the choice of sign for jwt is arbitrary; however, by using jwt
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instead of —jwt, a similarity with electrical equations is maintained. Though this
representation is for plane waves, the following discussion of phase and direction

will apply to spherical, cylindrical, or any other representation.

Both terms will be needed to express steady-state conditions or situations
involving reflections. However, simple propagation can be simplified by using
only one of the terms. The choice of term can be made by observing that the
first corresponds to wavefronts moving so that r is increasing while the second
corresponds to wavefronts where r is decreasing. In most cases we are interested
in waves which are traveling away from their source, where r is increasing, and
so quite naturally choose to use only the first term. However, where we are
interested in waves traveling back towards a source (such as Eq.(2.7)), we will

need to use the second term.

It is important to note that, because we have chosen the first term of
Eq. (2.18), the phase is given by —kr instead of kr. Pressure waves arriving at
a linear array will take longer to arrive at the distant elements than to arrive at
the near elements. While the absolute valne of the phase will be greater at the
distant elements (because of the r), the actual numerical value will be smaller
(because of the minus sign). Thus, the simulations will model the phase received
at the distant elements as being less than the phase received at the near elements.
Although this definition of phase is common among theoretical studies, it is the
opposite from that derived from a simple experimental system where the greater

time delay experienced by the distant elements of the array would have been

recorded as a greater phase delay.
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2.1.5 Evanescent Waves

As pointed out by Goodman,!* each Fourier component of the image can

be viewed as a plane wave propagating with a direction cosine given by
o= \ky. (2.19)

The z component of the wavenumber is expressed as

VK2~ k2, ky < k;
—ikZ— k2, ks> k. (

When k; > k, the disturbance is propagating as evanescent waves and Eq. (2.8)

ky = 2.20)

becomes

+o0
1 . , -
R(z,2) = = [ Ruths) - exp (—] koo + 2y /K2 — kz) dk,. (2.21)
7~

These waves have an imaginary direction cosine and are exponentially attenuated
as they leave their source. As a result, when they are reconstructed by Eq. (2.21),
they should be exponentially amplified. The square roots in Eq. (2.20) each have
a positive and a negative solution; we have chosen the negative root for the
evanescent waves so that the mathematics properly produce this exponential

amplification.

Cohen!? calls the above algorithm the backward tracer since it traces all
plane waves back to the source. In most experimental systems where the hologram
is recorded several wavelengths or more from the objects, the value of Rp (k)
for evanescent waves will represent only noise, numerical roundoff, and aparture

effects since these waves will have decayed to almost nothing after several wave-
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lengths. The backward tracer will therefore exponentially amplify only noise,

producing either poor or utterly useless images. As an alternative, Cohen used

what he called the backward propagator formed by defining

k \/ kg - k%a kl: S kv
;, = (
W=k, ke > k.

By choosing the positive square root for the k; > k case, the evanescent waves

2.22)

are reconstructed using an exponential with a negative, rather than positive, real
power; that is, the evanescent waves are filtered out. This approach corresponds
to treating each point on the hologram as being itself a source with an amplitude
and phase given by Rj(z); thus, the reconstructed image is due to the propaga-
tion of these artificial sources back to the plane of the actual sources. Since the
propagation is viewed as being away from the artificial sources, the evanescent

waves are exponentially attenuated.

When working in the extreme nearfield, evanescent waves can be recorded
and may be necessary in the reconstruction of the details of the scattering surface
or the source of acoustic energy. Even so, the signal-to-noise ratio for these
components may be quite low and thus some sort of filtering is appropriate. For
a particular experimental holographic system,!! it was noted that evanescent
waves which had decayed by 12dB or more could not be reliably recorded and so
should not be reconstructed. This approach was then used to construct a filtered

version of the Green’s function:
1 — Lexp(—6.666 (1 - kr/kc))), by < ke,

, by = ke, (2.23)
Lexp(—6.666 (ko /kc — 1)), by > ke,

Q
m
—_~
N
~——
=




——
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where the factor of —6.666 was chosen to vield a relatively sharp slope, and the

term k¢ is chosen so that G'r vields at most a 12dL amplification.
2.1.6 Some Limitations to the Holographic Approach

The Helmholtz wave equation, upon which the holographic equation is
built. is valid only for isotropic media without obstructions or sources. If there
were, say, an infinite, perfectly reflecting plane surface in the vicinity of the re-
ceiver, the Green's function, Eq. (2.9), would need an additional term to represent
this reflection. More complicated situations with multiple reflectors would lead
to extremely awkward and complicated Green’s functions. It may become impos-
sible to write the Green’s function in the spatial frequency domain as is required
by Eq.(2.8). As we shall see later, other approaches can provide a inuch more

straightforward method of handling these situations.

In some cases, one may have a priori knowledge of the objects reflecting or
generating the pressure waves. As a general principle, such knowledge should be

used if at all possible to enhance the imaging process. However, there is no direct

way to do this using the holographic approach since it describes only pressure
waves in free space rather than sources. Technically speaking, the holographic
reconstruction can only generate valid images up to, but not including, the plane

of the objects.

One of the great advantages of the holographic approach, as formulated
in Eq.(2.8), is that it consists mostly of Fourier transforms which can be im-
plemented efficiently on a computer using the FFT algorithm. However, this

efficiency is lost and the equations can become awkward when the line (or plane)
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of the receivers and the line (or plane) of the objects are not parallel. Approxi-
mations to non-planar objects can be made by reconstructing a series of closely
spaced lines (or planes) though this still increases the amount of computations.

In some cases, a space-domain convolution, as investigated by Cohen,!® may be

more efficient even though it does not use the FFT at all.

The image also becomes ambiguous when there are several discrete objects
which do not lie in a plane but are instead spread out over two (or three) dimen-
sions. There is no closed-form method known to detect or reliably analyze this
situation although Lang!” had some success by using pulses and a window in time
that accepted only signals from a given distance. Narasimhan et al.!8 proposed
two methods for determining the range for the special case of a plane reflector
illuminated by plane waves. Powers and Mueller!® developed an algorithm that
searched for planes exhibiting peaks in the reconstructed pressure field; planes
with the highest peaks were then considered to contain the “true” objects while
the other planes were considered to be merely out-of-focus versions of the true

objects.

A similar ambiguity occurs even when there is only one object if that
object itself extends through several planes. For example, Lang?® showed the
reconstruction of two planes of a cone whose tip is pointed towards the receiver
array: one plane at the tip, and one plane at the back face of the cone. In general,
it was difficult to distinguish between the phenomena from these two planes —
for example, the circle in the plane of the back face could have either been the

effects of the backface itself, or an out-of-focus image of the tip.

One way to summarize these last few limitations is to note that, since it




21
is basically a single-frequency algorithm, the holographic approach has no range
information and is therefore ill-suited to any situation where range information is
: ‘ £ 0s21,22,23,24 : s .
important. Some studies”*==~>-* have formed images by combining the images
made at different frequencies; none, however, seem to have really overcome the
range-focusing problem within the realm of holography. It seems that other

approaches, such as will be discussed later in this chapter, are needed.

2.2 Beamforming

Perhaps the most traditional method of processing the output of an array
is beamforming. It differs from holography in that only the direction (and perhaps
the range) of the objects are of interest — it is not used to form an image. The
central concept is to choose weights A; and time delays 7; to reinforce pressure

waves arriving from a given direction §:

NR
B(8,t;) = Y Ai- Ri(t; — mi). (2.24)

=1

A great many variations can be built upon this basic formula.

2.2.1 Bartlett Beamformer

One of the most widely used variations i1s the so-called Bartlett beam-
former.?® It assumes that the signals consists solely of plane waves of a given
frequency f, and that differences in time can be adequately represented by phase.
Since differences in time which are greater than one period (1/f seconds) cannot
be unambiguously represented as a phase, this assumes that either the time dif-
ferences are sufficiently small, or that the ambiguity is insignificant. The received

signal R; can then be expressed as a complex number which is often calculated
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by taking the Fourier transform of the received signal’s time history. The time
dependence t; in the beam output is also replaced with a phase representation,
l.e., B becomes complex. Finally, we can express the time delay 7; as the phase

of the now complex weights to write

NR
B0)=Y Al -Ri=A'R (2.25)

1=1

where

A=[A A ... AN]T,

A; = exp (—j kXE sin(())) ,
the asterisk (*) denotes the complex conjugate operation, the T denotes the trans-
pose operation, and the dagger (1) denotes both. This formulation sets the point
of zero phase, which is arbitrary, to be at the origin of the coordinate system.

Often the power in the beam is of interest and is computed from Eq. (2.24) as
B*,t)) = BB*
=(A'R)- (A'RY
=A'RR'A
=A'RA
where R is the spatial cross-correlation matrix. This is a zero time-delay corre-
lation since no delays, beyond the ones naturally occurring due to the time of

flight, are introduced. For example, in its simplest form, R;, = Ri(t1) - R} (t;) for

any two receivers ¢ and h including : = h.




2.2.2 Limitations of the Bartlett Acoustical Model

To review, the temporal spectrum can be thought of as an attempt to
replace the original time series with a sum of sine waves. Thus, this spectrum
has difficulty with time series that are inherently not sine waves. For example, a
step function cannot be represented; even if the spectrum extends to infinity, a

small overshoot, called Gibb’s phenomenon,®® will remain.

In an analogous manner, the Bartlett beamformer attempts to find sine
waves across an equally spaced linear array where each sine corresponds to a plane
wave arriving from a specific direction. Because this beamformer is modeling the
received field as plane waves, it will have difficulty with pressure waves which
are inherently not plane waves, such as spherical waves. This problem is often

referred to as “model mismatch.”

For example, Figure 2.1 shows the B? beam pattern from an array of 10
receivers spaced 0.5 wavelengths apart. These beams were formed using Eq. (2.25)

with the received pressure waves simulated by

(2.28)

with the broadside point source located at (0, Z%) for Z° equal to 1, 10, or 10,000
wavelengths. As the source moves closer to the receiving array, the assumption
that the pressure waves are planar becomes less valid and eventually the beam-

former output becomes meaningless.

Actually, there is nothing wrong with the beamformer — we merely need

to modify the weights of Eq.(2.26) to correspond to the shape of the pressure
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wave which is arriving from direction 0. Furthermore, in some cases (such as the
maximum likelihood processor), it would be desirable to have the beam respond

1o i pressure waves airiving aom direction ¢, regardless of their shape.

An adaptive beamformer could be constructed, for example, which re-
sponds to a spherically spreading pressure wave originating in the direction given
by 6 at some distance r. The key component of such a processor then becomes the
method used to estimate the range r; this will be discussed later in this chapter.
In Chapter 4, the model mismatch problem is again discussed in relation to the

maximum likelihood processor.

It is interesting to note why an analogous problem does not arise with
the holographic approach. As with a beamformer, Eq. (2.8) attempts to find sine
waves across an equally spaced linear array (via the Fourier transform.) Any
mismatch, however, is perfectly “undone” by the inverse Fourier transform which

is performed after the propagation effects have been implemented by the Green’s

function.
2.3 Receiver Correlations

Cross-correlations between the signals recorded at the receivers of an array
can be used to locate objects. The angle at which the object lies, relative to the
array, is estimated using the same plane-wave assumption as a beamformer; the
angle is likewise called bearing. However, the cross-correlation method can in
addition estimate range by using the curvature of the wavefront. Thus, the range
should be great enough that the plane-wave assumption is somewhat correct but

not so great that there is no detectable wavefront curvature.




Typically, this method is used to determine the location of objects which
are the source of the pressure wave; however, the concept can be adapted to find

obiects which onlv scatter the wave and so is relevant to this study.
2.3.1 Basic Correlation Method

This derivation will use the geometry shown in Figure 1.1 except that
there shall be no transmitter, i.e., the object at (X%, Z%) is itself the source of
the pressure wave. To simplify the equations, we shift the linear array so that the
first receiver is at the origin, i.e., X{¥ = 0. Cross correlations between all possible
pairs of receivers are formed, and the time delay d;; corresponding to the highest
peak is chosen from each correlation. The subscripts ¢ and ¢ represent any two
receivers. This relative time delay can be written in terms of the time delay at
each receiver as djq = d; — d;. The resulting linear system of equations is then
solved for the time delays d; under the constraint that dj = 0. Thus, we can
write the distance r between the first receiver and the object, and the distance

r; between the i** receiver and the object, as
9 S 2 S 2
r* = (X ) + (Z ) , (2.29)
2 2
rf=(r+ed)? = (XF-x5) + (25, (2.30)

respectively. We next subtract two instances of the latter equation, for receivers

i and q, after first multiplying each by the receiver coordinate of the other. This

produces

XBr} - xfr? (2.31)

= Xf r+ ‘.ZrX(;Rcd,' + Xchd,2 — X,-R r? — 27‘X,-Rc dg — X,Rczclg
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= XR(XR) - 2XS XX 4 xF (x5)
_ xR (Xf)z + 'ZXSX,-RXf - Xk (Xs)z

¥ (xE - xP) (2°)
or

2r (XBedi — XPedy) + (XEPd? — XPPd2) (2.32)

= XPXR (xP - xB) + (xF - xB) (* - (x5)" - (25)7).

Eq. (2.29) can be used to eliminate the last term in Eq.(2.32) so that we can
solve for r:

XEXE(XE-XE) - (xPd2 - X&)
B 2¢ (XRdi — X{d,)

r

: (2.33)

When there are only three equally spaced receivers with spacing L, we can let

Xf=Land XF =-1L to yield

(2.34)

In order to use all available information, we average the estimate of r from

Eq. (2.33) over all possible pairs to obtain

Yot XEXE (xR ) - @ (xfa - P
r= wy
i=1 q;l lq 2c (X(;{dg - Xﬁdq)

gF1

where normalization is accomplished by letting wi; = 1/(NR (NR — 1))

If we can assume that the received waves are planar, the bearing angle 0

as shown in Figure 1.1 can be computed from each time delay and the results
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averaged to yield
R
N cds

0 = arcsin Z v;F
=1 1

(2.36)
where normalization is accomplished by letting v; = 1/N*.

2.3.2 Optimum Correlation Method

The optimum estimation of range and bearing using correlations was ad-

it . . . .
dressed by Hahn®7 for linear arrays of receivers. The object producing the pres-
sure wave was assumed to emit wide-band, zero-mean Gaussian noise, while ad-

ditional, independent noise was introduced at each receiver.

In Hahn’s results, the weights are chosen to not only provide normalization
but to also minimize the error covariance matrix and thus approach the “opti-
mum” Cramér-Rao bound, the theoretically optimum performance of an array.
Hahn states that the calculation of the weights is trivial in the numerical case
but complicated for most theoretical cases. He provides a formula for the weights
only for the case of arrays arranged symmetrically around the origin where the

noise level is the same at each receiver.
2.3.3 Comments on the Correlation Method

The ambiguity function corresponding to each time delay d; used in the
correlation method is a straight line given by one term of Eq. (2.36). The range
estimate of Eq.(2.35) can therefore be viewed as a calculation of where two of

these lines, as defined by d; and dg, intersect.

From this viewpoint it is easy to see where failure can occur: if the two time

delays used in each term of Eq.(2.35) are incompatible, the resulting two lines
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may cross at a location far removed from the actual object. The incompatibility
can occur because the delays d;4 are calculated by picking the highest peak in the
correlation; this picking process may not be robust when there are several nearly
equal peaks such as would occur when there are several objects or an extended
object emitting pressure waves. That is, even if d; is due to one object while d; is
due to another, the algorithm will continue attempt to determine a single range

and a single bearing in each term of Eq. (2.35).

Hahn notes that, if more than one source exists, the signals must be
preprocessed so as to introduce nulls in the direction of the additional sources.
This is perhaps the greatest weakness of this approach and is a strong motivation
for seeking other methods which use similar correlation techniques but which can

better accommodate niultiple or extended objects.
2.4 Pattern Matching

Even before one begins to consider the concepts of super resolution, it
becomes apparent that the traditional methods of the previous sections have
difficulty accommodating additional features such as a priori information about
the objects, multiple frequencies, or more complex propagation models. It may
be that these added features could not have been seriously considered before the
arrival of the modern digital computer, since they would have been difficult or
impossible to implement with simple sum-and-delay beamformers, or with the

optical reconstruction methods used in the early days of holographic imaging.

One has the sense that the added featurcs, as well as the traditional meth-

ods, should all fit into some general model since they are all based upon the wave
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equation’s ability to describe the propagation of pressure waves through a ho-
mogeneous acoustic medium. In the following sections, such a general model is
constructed around the concept of a fictitious scatterer; then. several special cases
of the general model are considered, two of which correspond to the traditional

holographic and beamforming methods.

2.4.1 Fictitious Scatterers

It is possible that several workers have proposed the approach discussed
in this section; however, the author’s introduction to this approach came from a
particularly clear paper published by Ermert and Karg®® which described their

theoretical and experimental development of what they called multifrequency

acoustical holography.

They begin by noting that the theory for a matched filter is the basis for
their approach. First, they assume that only a single scatterer at some specific
location is present and then calculate what this fictitious scatterer would have
yielded at their receivers. Second, they correlate the complex conjugate of the
signal from this fictitious scatterer with the signals actually received. And third,
the fictitious scatterer is moved through all locations in object space, i.e., all lo-
cations which could possibly contain an actual scatterer. The locations at which
we find peaks in the output of the correlation, then, are interpreted as the loca-
tions of the true object or objects. The correlation ¥, from their Eq. (8), would
be expressed in the notation of this study for continuous time and a continuous

receiving aperture as

+00 +00

j /RH(x,t)- (RF (,1))" da dt (2.37)

—00 =00

U(X%,2%) =
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where R and RF are the actual and fictitious signals, respectively, at receiver
aperture locations X®. The vertical bars (|...|) denote the absolute value op-
eration. The fictitious scattering object is at (X5, Z%). When the aperture and

time are sampled, the infinite integrals are replaced by finite sums to yield

NRNT
v(x%,z5%) =|ax At Y S RE - (RE)|. (2.38)

1=1 =1

Through the concept of a fictitious scatterer, the power and generality of
matched filter theory, originally developed for analyzing time histories, has been
extended to analyze the space-time patterns received at the array. Virtually any
type of transmitted signal can be accommodated (Ermert and Karg used a linear

frequency sweep) as well as any spatial arrangement of receivers.

Furthermore, any sequence of events that affect the propagation of the
pressure wave can be incorporated. The sequence of events can include closed-
form formulas; for example, RF could be calculated for simple free-space prop-
agation using Eq.(1.2). But, more importantly, sequences of events which can,
say, be described only numerically can also be incorporated. Even propagation
effects known only empirically due to, say, preliminary system tests*?3% could
be used to generate the fictitious receiver signals for the desired locations of the

fictitious scatterers.

Some of these variations will be examined in subsequent sections of this

chapter and in Chapter 5.
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2.4.2 Reconstruction as Pattern Matching

When a single frequency sine wave is nscd, the integral over time in

Eq.(2.37) merely multiplies the result by a constant that can be dropped. The

pattern-matching formula thus becomes

U(X%, 2% =

+00
/ R4 (z)- (RF(2))" da (2.39)

The reconstruction represented by Eq. (2.8) can be rewritten as an inverse Fourier

transform or a couvoiution:

+oc0
R(X®%,2%) = \/% / RE(ky)-exp (jk: 25 — j ko z) dka,  (2.40)
= f“(RH (k) - exp (j k. ZS)>, (2.41)
+00
= / RE(z) G (X5 - 2,25) do (2.42)
-0

where f(G’ (:1:, ZS)) = exp (] k., ZS). In this comparison between holography
and pattern matching, it is sufficient to consider only the non-evanescent waves;
for this case, Cohen3! has shown that G for a given Z% (or, in his notation, G%
for a given D), is equal to

Glz,25) = —— (f—) (1 - jk) 3?(7{—’”"—) (2.43)

2r \ r r

2 .
where r? = £2 + (ZS) . When r > A, terms on the order of -rl- are negligible

compared to terms on the order of % Thus,

. AS R
G(z, 25) ~ 1% (Z—> expljkr) (2.44)

2r \ r r
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Upon examining Eq. (2.39) and Eq. (2.42) we see that

G (X5 ~2,2% = (R ()’ (2.45)
Fooy_ Jk Al exp(—jkr)
RF(z) = ~2 (T) =B (2.46)

2 2
where £ — X5 — z so that we now have r? = (XS - :c) + (ZS) . A comparison
of Eq.(2.39) and Eq. (2.42) indicates that the two formula are identical when the
fictitious source is given by Eq.(2.46). Although not explicitly used in Eq. (2.8),

an absolute value operation is typically added when the image is plotted.

The source radiation expressed by Eq. (2.46) consists of spherically spread-

ing waves with a radiation pattern given by

cos(¢) = — (2.47)

where ¢ = 0 points towards the negative Z axis. As explained by Skudrzyk,3?
this pattern is due to the fact that for the development of the Helmholtz-Huygens
integral, the equivalent sources at the hologram needed to have zero radiation in
the backwards direction. This was accomplished by equating each of these sources

te the sum of a point source and a dipole, with the consequence that a cardioid

radiation pattern was generated.

In some applications of holography, such as nearfield studies, the angle ¢
between a source of acoustic energy and a point in the hologram may become
quite large, or even approach 90 degrees. In these cases, the fictitious source
used by the holographic equation, with its cardioid radiation pattern, may do a

poor job of modeling the more omnidirectional radiation from, say, a point on a
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vibrating surface. Thus, the pattern-matching approach could provide a distinct

advantage by allowing us to use an omnidirectional source in the analysis.

The two methods share the ambiguities in the interpretation of their im-
age. Either can be used to estimate the object field at arbitrary points (XS, ZS) ,
although holography can product a more efficient calculation when the object

field is evaluated at the same locations along the X axis as the receivers, i.e., at

X3 = XE.

As shown by Ermert and Karg, their integral over time, combined with a
sufficiently large bandwidth, can reduce the range ambiguity inherent in holog-

raphy. This capability will be examined again in Chapter 5.
2.4.3 Beamforming as Pattern Matching

A comparison of the Bartlett beamformer, as given by Eq. (2.25), and the

pattern matching, as given by Eq. (2.39), shows that the fictitious source used in

beamforming is given by
Rf = exp (—j k X/ sin(0)) (2.48)

which is of course just the pressure which would have been received from a source

radiating plane waves.
2.4.4 Correlation Method as Pattern Matching

The pattern-matching approach can be categorized as a hypothesis tester:
one selects a suitable domain of possible object locations, and then tests each

hypothesis with Eq. (2.38). On the other hand, the correlation method provides
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an immediate estimate of the object location. The advantage in such a direct
estimate is that feWer calculations are needed to reach a conclusion; the disad-
vantage is that it can fail disastrously when there is more than one object, i.e.,
there exists no single answer. In these situations, the pattern-matching approach

would seem to be more robust as it can handle multiple sources.

Because of the fundamental difference in the approach used by the two
methods, as noted in the previous paragraph, forming a direct mathematical com-
parison may be impossible. An initial comparison of the two methods would sug-
gest that the integral of the received and fictitious patterns over time is the main
source of range information, and as such is somewhat analogous to the correlation
method’s calculation of range, Eq.(2.35). The integral over space is somewhat

analogous to the correlation method’s calculation of bearing, Eq. (2.36).

A further comparison of how the time-history information is used can
be formed by first simplifying the algorithm: assume that the bearing § = 0;
and that changes in the amplitude of the received signals across the array are
negligible. This means that we only need to seek the value of the unknown range

r, which 1s equivalent to seeking the value of the time delays since the speed of

sound is a known constant.

When these assumptions are applied to the correlation method, Eq. (2.35),
we find that the information obtained through the inter-element time delays
diq (the location of the peak in the cross-correlation between the signals from
receivers ¢ and ¢) can now be obtained instead through the time delays d;; (the
location of the peak in the cross-correlation between the signals from receivers

¢ and 1). This also eliminates the need to solve the simultaneous system of
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equations since dj; = d; ~d; and d; = 0. We can roughly summarize the resulting

process as follows where the first two steps constitute the cross correlation:

(1) For some time delay 7;, evaluate the match
using Z{g Ry (t) - By (L + m);
(2) Repeat for all time delays where Tmin < Ti < Tmaz-
(3) Let d; = 7 — 71 using the value of 7; that produced the best match;
(4) Repeat for all receivers i where 1 < i < N%; then

(5) Calculate the range by inserting the d; into Eq. (2.35).

Turning now to the pattern-matching method, we can roughly summarize

its algorithm as follows:

(1) For some range riest, calculate the corresponding fictitious r; at
receiver ;

(2) Repeat for all receivers ¢ where 1 < i < N&;

(3) Evaluate the match using Eq. (2.38);

(4) Repeat for all ranges where Tmin < Ttest < Tmaz; then

(5) Let r equal the value of r¢s¢ that produced the best match.

Both methods use two loops: one over receivers, and one over either time

delays (step 2 in the correlation method) or, equivalently, over range (step 4 in

pattern matching). The result is then merely the value that produced the best

match. The main difference between the two methods, therefore, seems to be

that the pattern-matching method has reversed the order of its two loops relative

to the correlation method.
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2.5 Array Geometry

In this study, we have limited our investigations to processing methods
which use a linear array. However, it seems prudent to at least review other
methods, using two- or three-dimensional arrays, to determine if there might
be some techniques or beneficial receiver spacing which could be applied to a

one-dimensional array.

An explicit inversion of the Helmholtz equation was used by Ball et al.33
to develop a method for reconstruction using measurements chosen to lie on the
surface of a sphere. The resulting expressions were in terms of spherical harmonics
and could accommodate both plane wave and spherical wave ultrasonic sources.

Norton and Linzer®*

investigated the exact inverse scattering solution for plane,
cylindrical, and spherical arrays. However, in order to simplify the mathematics,
they only considered backscattering; i.e., each receiver individually operated as
first a transmitter and then a receiver so that a given receiver never encountered
waves arising from the other receiver-transmitter locations. In both of these
studies, the goal was to estimate the velocity and hence the density of the media

within the spherical array. In neither case were any particular requirements for

the spacing or arrangement of the receivers in the array noted.

The reconstruction of a three-dimensional field from a partial sphere of
measurements with a low signal-to-noise ratio was investigated by Bresler and
Macovski.?® Their statistical description of the object of interest and its rela-
tionship to the measurement locations has the potential of offering some sound
guidelines to array configurations; unfortunately, they did not address that issue.

The reconstruction of three-dimensional domains using two-dimensional arrays
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was also considered by Koppelmann and Keating®® for a rectangular array and

by Norton3 for a circular array.

A review of two-dimensional arrays by Nigam®® provides insights which
are, after 15 years, still relevant. The number and size of the elements, the
overall size of the array, and the electronic challenge of connecting large numbers

of transducers were discussed; however, only fully populated arrays with equally

spaced elements were considered.

One of the most comprehensive studies of a linear array was presented by
Carter.%? In particular, he examined the case wherein the array was constrained
to be of a given length L with a given number of receivers M. Ideally, M is
large enough so that there is a receiver every half-wavelength. Carter considered
the question of how to optimally distribute the receivers when less than the ideal
number were available. When the goal was to minimize the variance of the bearing
estimate, the optimum configuration was shown to be one where half the receivers
were at each end of the array. If instead the goal is to minimize the variance of
the range estimate, the optimum arrangement was shown to be one with half
the elements at the center with one-quarter of the elements at each end. To
minimize the area of uncertainty (roughly, the product of the range and bearing
variance), Carter found numerically that the optimum arrangement was one with
one-third of the receivers in the center and one-third at each end. However, at
very short ranges, the minimum area of uncertainty was shown to result using
the arrangement that minimized the bearing variance while for very large ranges
the arrangement that minimized the range variance was recommended. In every

case, the receivers were spaced a half-wavelength apart in each subarray.
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A similar question was addressed by Pillai et al.*® who sought the optimum
placement of receivers in a linear array for use in spatial spectrum estimation (i.e.,
bearing estimation) using one of the methods based upon the eigenstructure of
the covariance matrix (discussed further in the next chapter). It was shown
that the M receivers should be placed at locations equal to a half-wavelength
multiplied by a set of integers known as a Caratheédory sequence. For example,

when M = 4, the receivers should be located at 0, £}, 3}, and $.

Two conclusions seem to be in order. First, the optimum array geometry
and receiver spacing is seldom a universal one; it instead depends upon which
parameter one wishes to optimize and which processing method is to be used
with the resulting array. Second, when using a one-dimensional linear array,
there seems to be no method which claims to improve the results beyond what
can be obtained when the array is fully populated from end to end with elements
spaced every half-wavelength. Since the simulations used in Chapters 4 and 5

always use such an ideal array, the issue of receiver spacing does not arise.

2.6 Time-of-Flight Information

One strong motivation for not using the full time-history of the signal is
that it is difficult to analytically represent processing operations on such a signal.

Nevertheless, it illustrative to consider what is being lost by not using the full

time-history.

The simplest system for determining the location of a scattering object is

a single transmitter and a single receiver. The general expression for R;, given in

Lo e
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Eq. (1.2), becomes
E(t-Tf)

Balw) = Si— =5,

(2.49)

where S; is the reflection coefficient. The time-of-flight (TOF) T and the dis-
tances were defined in Section 1.4. The amplitude of R; is relatively insensitive
to small changes in the distances, and includes the unknown coefficient 51. The

TOF is related to the length of the path traveled by the pressure wave through

Tf =

D; + D (2.50)
o]

Unfortunately, this value is identical for all points on an ellipse which has its foci
at the transmitter and receiver. That is, in an experiment, we do not know D,
and Dr separately — we only know their sum by using the measured TOF and
Eq. (2.50). Thus, knowing the TOF is not the same as knowing the range of the

scatterer since the range or distance is different to each point on the ellipse.

The next logical step is to add either additional transmitters or addi-
tional receivers, where one ellipse of ambiguity is contributed by each transmitter-
receiver pair. If additional transmitters are used, we must be able, at each re-
ceiver, to determine which transmitter was the source in order to calculate the
ellipse of ambiguity from the time delay. This can be done either by encoding

the signals, or by activating the transmitters one at at time.

A less complicated system can be formed by instead using only one trans-
mitter and multiple receivers. In general, all ellipses will add coherently only
at the one location which corresponds to the scatterer. However, there will in
general be many secondary peaks generated where any two ellipses cross. When

there are multiple scattering objects, each contributes its own set of ellipses of




ambiguity to the image.

The previous paragraphs have assumed that th- TOF has been used.

Many imaging methods, however, do not use this time directly; instead, they

assume that the pressure waves consist of a single frequency and then represent,
in effect, the TOF as the phase of the complex signal
exp(j k (D1 + D))

Ry =5, R . (2.51)

While this is fundamentally the same information, a phase ambiguity of 27 has
been introduced. This is equivalent to a time ambiguity of one period or a
distance ambiguity of one wavelength (). Thus, instead of one ellipse for each
transmitter-receiver pair, there are an infinity of concentric ellipses where the

TOF for any two adjacent ellipses differ by one period.

Some methods are built upon a correlation between the signal at each
receiver and the transmitted signal. A full cross-correlation, using a full set of
inner-signal delays, would identify the TOF as the value of the inner-signal delay
at which the best correlation was obtained. However, in most cases, the method
uses only the zero-delay correlation — that is, they only examine how well the
two signals being compared match “as is” by calculating only one correlation
with an inner-signal delay of zero. Thus, ambiguities are again introduced. A
similar ambiguity also results when the correlations are between receivers. And,
as noted in Section 2.3.3, the process of choosing the one peak which yields the

TOF may not be robust.

The conclusion, then, is that any processing method that reduces the

TOF information from the receivers to a single complex number is discarding
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information that could, potentially, be used to improve the resolution. Although
the simulations used in Chapters 4 and 5 do not use this TOF information, a

brief discussion of how to incorporate the TOF into the matching methods will

be given in Chapter 6.
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Chapter 3

High Resolution Methods

The methods for processing signals from an array which are examined in
this chapter will include ones seeking high resolution, or the ability to distinguish
two closely space objects, as well as methods which seek high accuracy, or the
ability to determine the location of a single object with high precision. This
type of accuracy is sometimes also described as the variability of the location or
the variance of the range and bearing estimates. Although, technically speaking,
these are different goals, the methods for achieving them are similar enough that

we can refer to all the methods as high resolution ones.

3.1 Spectral Estimators

In the analysis of the spectrum of a time series — that is, a sequence of
samples of some phenomena versus time — the simplest method for obtaining the
spectrum is to form its Fourier transform. This results in a spectral resolution
of 1/T where T is the length of the sampling period. A high-resolution spectral
estimator attempts to generate a result which has the same effect as an increase

in T with a corresponding increase in the resolution of the spectrum.

This idea can be transferred to line arrays by letting the location along
the array take on the role of time and the vector wavenumber take on the role of
frequency. Then, the enhancements generate a result which has the same effect as
an increase in the array length L with a corresponding increase in the resolution

of the spatial spectrum. Thus, any spectral estimator that can be used to enhance
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the temporal spectrum can be applied to the spatial spectrum. Several of the
methods discussed later in this chapter can be classified as spectral estimators,

and were originally developed for the time domain.

It is important to not confuse this method, which increases the resolution
of the spectrum, with those that instead extend the spectrum to higher spatial
frequencies. The latter effect is the same as taking the samples closer together in
space. Such an effect cannot yield any additional information when the samples

are already half a wavelength or closer together except when evanescent waves

are involved.

It i1s also important to note that most spectral estimators, including the
FFT, produce estimates which are equally spaced in the wavenumber domain but
not in angle. For example, in the two-dimensional space used in this study, we
would have estimates at k; = 0, £Ak,, £2Ak,,... where Ak; = 27/L for an
array of length L. Using the angular spectrum interpretation of Goodman,!# each
of these wavenumbers correspond to a plane wave of frequency f and wavenumber
k arriving at angle 6 so that k; = ksin(0) or § = arcsin(kz/k). Thus, the
estimates are relatively far apart around § = 0 and most closely spaced around

0 = £90°. Unfortunately, we often are seeking the highest accuracy in bearing

around broadside or 8§ = 0.

3.1.1 ARMA Methods

One of the more widely used class of spectral estimators consist of either a
polynomial, the inverse of a polynomial, or the ratio of two polynomials. Equiva-

lent names for the polynomial estimator are all-zero, moving average (MA), and
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feedforward filter while equivalent names for the inverse-polynomial estimator are
all-pole, autoregressive (AR), and feedback filter. An ARMA estimator combines
both and is the ratio of two polynomials. The all-zero and all-pole designations
refer to the Laplace transform of the filter. The coefficients of these polynomials
are first determined using the available data; then, the polynomials can be used
to generate additional synthetic data between existing data points (interpolation)

or beyond the domain of the existing data points (extrapolation).

In addition to the choice to use an AR, MA, or ARMA model, one must
also select the method for determining the order of the polynomial(s), the method
for the calculation of the polynomial coefficients (either directly or through iter-

ation), and the subject of estimation.
3.1.2 Options for the Subject of Estimation

One of the difficulties in assembling this review of ARMA methods has
been the fact that the polynomials can be fitted to, and used to estimate, several
different aspects of the signal. The most useful basis on which to categorize these
variations seems to be whether the estimator operates on time-domain data (i.e.,
the time-history of the signal at each receiver) or on space-domain data. In the
former case, the improvements are equivalent to sampling the signal either more
rapidly or for a longer period of time. Since neither of these directly affect the

processing of data from an array, they shall not be considered further.

Estimators which operate on space-domain data require that the informa-
tion at each receiver first be represented as a complex number — that is, the

time-history of the signal cannot be used directly. Thus, the ambiguities dis-
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cussed in Section 2.6 are inherent in ARMA methods. These estimators can also
operate either directly on the data, or on some function of the data. For exam-

ple, some fit the polynomial ¥(z) to the ratio of the complex signal at adjacent

receivers R; and R;4+) so that

Réﬂ:xy(k) for i=1,2,...,N. | (3.1)
1

Other versions may operate on the Fourier transform of the signals, i.e., in the

wavenumber domain.

The literature which has been reviewed suggests that there are several
goals to be considered when choosing the data or function of the data which is

to be the subject of estimation (SE):

Some technique must exist for the selection of the correct model (MA,

AR, or ARMA) for the SE.

Some technique must exist for the selection of the correct order for the

polynomial(s) to be fitted to the SE.

There must be a closed-form or convergent iterative method for evaluating

the coefficients from existing SE data.

The SE should be resistant to noise and measurement errors.

As an example of this last goal,%! it has been found that the average of the cross-
correlation between receiver pairs is more robust than the cross-correlation of the
average receiver signal since, in the former, the cross-correlation helps remove

noise before the averaging process is applied. The optimum compromise between

-
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these goals is not always obvious.
3.1.3 Choosing the Estimator Parameters

The error in the estimation will be minimized when the model and order
match the underlyving physical process. A study of 11 categories of methods for
the estimation of the power spectral density of discrete time series by Kay and
Marple®? concluded that “if the model is inappropriate ... poor (biased) spectral
estimates will result.” The question of interest is whether, in the absence of any

prior knowledge, the model and order can be derived robustly from the data.

The MA and ARMA methods were used by Abdel-Aal et al.*3 to estimate,
in the space domain, the ratio of the signal from adjacent receivers. The source
of the acoustic waves in their computer simulations was either one or two point
sources. They found that the MA model led to errors so large that it was not
useful when there was more than one source. While the ARMA model yielded
better results, no discussion on the choice of model order is provided. They
seemed to have simply tried different model orders until the predictions matched

what they knew beforehand.

The MA, AR and ARMA models were used by Gutowski et al.4* to predict
the spectrum of three time series which were designed to be purely MA, purely
AR, or ARMA. Their simulations revealed that using a model which is incorrect
for the data can result in predicted spectra which have the wrong shape or peaks

which do not coincide with the true spectral peaks. In conclusion, they state:

One problem which, in our opinion, remains essentially unsolved, is

a practical means to determine a priori whether a real life situation




corresponds to an AR, MA, or ARMA process. Another problem
is how to effectively determine the order of a given process other
than (by) the empirical methods used here. TFor the AR model,
the order of the feedback component can be determined from the
behavior of the partial correlation coefficient. This test, however,

often breaks down when applied to the ARMA model.

More recently, Wax*® noted that two of the methods which have been
proposed for estimating the order of an AR model (called AIC and MDL) are
appropriate only when there are a large number of data samples (because the
estimates are asymptotic) and the data can be modeled as Gaussian. He went
on to describe a method for choosing the order using lattice filters. Li and

Dickinson*® have also proposed a lattice filter approach for the case where the

noise is white.
3.1.4 The Maximum Entropy Method

In a foundational paper on information theory, Shannon®’ described the

entropy H of the random variable z as

I
H=-3 pilogp (3.2)

1=1
where there was a probability p; that the random variable would take on the
value z;. In a paper published in 1957, Jaynes®® proposed that the the under-
lying probability density functions for statistical mechanics should be modeled
as having the maximum randomness, or maximum entropy, as this entailed the
least number of assumptions. This concept became more widely known in the

field of array processing as the maximum entropy method (MEM) due to Burg?®

]




in 1967 when he applied the concept to spectral estimation.

A compact derivation has been given by McDonough®? for the case where

the noise is Gaussian. For a uniformly spaced line array the result is

1

B*(0) = — (3.3)
> Vi exp(j?wk(a:g — xj)cos 9)
t,3=1
1
= ETVE (34)

where the variables V;; are derived using the spatial cross-correlation matrix R

and the requirement

exp(j?nk(z,' — zj)cos 0)
Ri; = / 5
S Viexp (j?wk(:c;C — z7) cos 9)

=

do (3.5)

T*
=/ EE” 1 (3.6)

ET*VE
with the integral extending over all values of 8 from which energy is arriving. The
symbols (T*) denote the conjugate transpose operation and E denotes a simple
plane wave steering vector. As noted by Johnson,?® Eq.(3.3) corresponds to the
linear predictor or autoregressive solution; thus, all results from the previous

discussion of the AR model applies here.
3.1.5 Using the ARMA Methods to Locate Scatterers

We wish to consider whether these methods could be used to predict the
data beyond the ends of a line array. We can think of this situation as being one
where there is a well-defined, but unknown, scattering function which describes

the strength of the energy reflected from the source or sources as a function of
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angle. Our finite-sized line array has recorded a subset of this function, over
a subset of angles. The questions before us is then whether we can use this

recording to predict the scattering function at the other, unmeasured angles.

Such a prediction would seem to be fundamentally unsound in some cases
when we have no knowledge of the underlying scattering function. For example,
the measured scattering patterns from spheres shown by Pierce®! for ka > 1
exhibit a complexity near the nulls that would be hard to predict from a recording
of only a small subset of angles. In the next chapter, Figure 4.1 shows the
diffraction from a barrier; note that, near the shadow boundaries at 0° and 180°,
there are fundamental changes in the pattern. Likewise, the reflected pattern from
plates above a certain size exhibit discontinuities in the nature of the pattern at
certain angles, as is shown in Figure 5.13. No empirical method for determining
the correct model and order for an unknown scatterer is known to this author.

It would also follow that prediction of some function of a scattering pattern may

also be difficult.

A fundamental assumption in MEM is that the object of prediction can be
modeled as having a Gaussian distribution. MEM, in effect, expects the scattering
pattern as a function of angle (or its Fourier transform) to be Gaussian — an

unusual if not impossible case.

Of course, if we are sufficiently far from the source, the acoustical wave
is merely a plane wave and we can easily extrapolate it to larger apertures by
shifting the phase of the plane wave. However, when one processes the data from
the new, simulated receivers, the processing function must also be phase shifted

by the same amount; thus, the result is essentially the same as multiplying the
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original information by some constant and then, upon normalization, dividing by

the same constant.

Such considerations seem to lead to the conclusion that perhaps the ad-
vantages attributed to ARMA by Abdel-Aal et al.%3 are actually due to the fact

that their source happened to match the ARMA model.

Another problem which must be addressed when using ARMA (or most
other high-resolution methods) is their tendency to produce false peaks whenever
they model the source field as an AR or all-pole process. Ialse peaks occurred
when Byrne and Fitzgerald®® used MEM with an array whose receivers were
spaced less than a half-wavelength apart although Kaveh and Lippert® suggested

an energy-taper approach that eliminated much of the problem.

3.2 Minimum Energy Methods

In the 1960’s a large aperture seismic array (LASA) was built in Montana
to measure the vector velocity of propagating seismic waves. The purpose of
LASA was to discriminate distant underground nuclear blast tests from natural
earth tremors. In a paper published in 1969, Capon®* developed a high-resolution
method for estimating the frequency-wavenumber spectrum received by this ar-

ray; he called this a maximum likelihood (ML) wavenumber filter.

3.2.1 Discussion of the ME Method

This method is an extension of earlier time domain work by Capon et al.3®
which had maximized a likelihood function. Johnson?® noted that the method

should more correctly be called 2 minimum energy (ME) filter since it minimizes
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the energy in a beam pattern subject to a constraint but does not maximize a
likelihood function. McDonough®® provided an elegant method for deriving this
filter that is based upon finding a wavenumber filter that has a value of 1 in

the direction of interest 6 but which otherwise yields the minimum energy. His

expression for the ME method is

1

2 — e
B0) = ET*R-1E

(3.7)

where E is a simple plane wave steering vector and R is the spatial cross-

correlation matrix formed from the zero-delay correlation between all possible

receiver pairs.

This beamformer is described by McDonough®® and others as one which
reduces its side lobes the most in those directions from which the greatest amounts
of energy is arriving; which allows its side lobes to grow in those directions from
which lesser amounts of energy are arriving; and which passes without change
plane waves from the direction of interest §. These characteristics have led to the
ME method being described as a wavenumber filter. Also, because it does not

have a fixed response but instead varies with the data, it must also be classified

as a non-linear processor.

Note that the filter itself makes no distinction between signal and noise
— the filter attempts to suppress energy, regardless of its source, if that energy
arrives from angles other than the one of interest. When operated in this manner,
the ME filter is said to be based upon the signal-plus-noise cross-correlation
matrix. However, when it is desirable and possible to estimate R from signal-free

inputs, the ME filter is said to be based upon the noise-only cross-correlation
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matrix. There seems to be no other standard nomenclature for describing these

two versions of the ME filter.
3.2.2 Eigenvector Analysis

A powerful enhancement to the ME method was introduced®®57 when it
was noted that, if the spatial cross-correlation matrix R could be inverted, it
could also be decomposed into a set of orthogonal eigenvectors. Furthermore,
the magnitude of the eigenvalue associated with each vector corresponds to the
energy represented by the vector. When the number of energy sources is limited
to, say, N, then the largest N° eigenvectors correspond to these sources and
can be said to span the signal subspace. When there are N® receivers, there will
then be N® — NS eigenvectors with relatively small eigenvalues which correspond
to noise and can therefore be said to span the noise subspace. Since eigenvectors
are mutually orthogonal, an eigenvector from one subspace is orthogonal to the
other subspace. In particular, when the steering vector E is aimed precisely at
the bearing of an actual source, it will reside in the signal subspace and so it too

will be orthogonal to the noise subspace.

This characteristic can be exploited by modifying Eq. (3.7) so that R is
replaced with R™ which represents the noise subspace and is constructed using
only the eigenvectors and eigenvalues which correspond to noise. Then, as E
approaches a true source, the denominator in the modified Eq. (3.7) will approach

zero and the beamformer output will approach infinity.
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3.2.3 Linear Predictors

The linear predictor method, as discussed by .Jjohnson,?® is based upon

the prediction of a selected, single element of the array by a linear, weighted sum

of the other elements of the array:

mg#g

The true value of Ry is known, and the coefficients an, are found by minimizing
vhe mean-squared error subject to the constraint that a; = 1. Johnson notes that
this is a constrained optimization problem of the same form as that encountered

for the minimum energy method, and also corresponds to an autoregressive model

of the signal. The solution to this problem is then

vl vy,

4 —
PO = (uz+ 1 E)’

(3.9)

where Uy is a column vector with the gth element equal to one and the other
elements equal to zero. The name of this function includes a power of 4 since it,
in this form, is proportional to the square of the power. A modified version is
often used so that it is similar to other beamformers and is given by

1

LP}(8) = ————.
() UT* R-1 E

(3.10)

Typically, the value for the the center receiver or one of the receivers at
the ends of a line array are chosen for prediction. In a comprehensive comparison
between the LP, ME, and Bartlett beamformers, DeGraff and Johnson® found
that the LP method generally yielded the highest resolution although it needed

large amounts of averaging and could also produce false peaks and exhibit in-

|
:
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creased bias in some situations. Furthermore, Johnson-° notes that “a criterion

for the ‘proper’ choice of the predictive element (¢) has not been found to date.”

3.2.4 Using the ME Method in the Absence of Noise

9 . . .
Johnson?® has expressed the inverse of the cross-correlation matrix for the

case of white, uncorrelated noise as

R—I:___];_I 0'3

S R— ) ¥ b 3.11
o5 NR 03 + a% ( )

where I is the identity matrix, F is a plane wave steering vector, and the power
levels of the signal and noise are given by o> and o2, respectively. In this case,
it is clear that letting 02 — 0 would be unacceptable. The eigenvector analy-
sis suggests why this occurs. As the noise goes to zero, the eigenvectors of R
corresponding to noise become identical, their eigenvalues go to zero, and so the

inverse of R no longer exists.

Of course, even a simulation will suffer noise, even if only digital noise
due to numerical roundoff. However, it is not clear what difficulties may be
encountered at extremely low levels of noise; in these cases, some of the techniques

discussed later in this chapter, for accommodating coherent sources, could be

employed.
3.2.5 Using the ME Method to Locate Scatterers

We now wish to explore the strengths and weaknesses of this method from

the point of view of one wishing to use a linear array to locate scatterers.
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3.2.5.1 The ME Wave Model

its model of the energy waves (it expects plane waves) does not correspond to
the actual energy wave. The ME method could fail for a similar reason: it would
interpret a complicated wavefront arriving from a single direction as simple planar
wavefronts arriving from many directions. This problem has been addressed
by Seligson®® and further discussed by McDonough.?® The problem can Lecome
so severe in some cases that the ME resolution could be worse than that of
the Bartlett beamformer or even degenerate to totally useless information. The
general experience has been that the problem is worst when there are a relatively

small number of strong sources with relatively weak background noise.

Seligson®® attempted to construct a variation of the ME method which
used a given shape for the wavefront. He found that the processor produced worse
resolution than the Bartlett beamformer when the received shape differed from
the expected shape, or when the amplitudes of the signals differed more than a
certain amount between receivers. McDonough%? attempted to build a processor

hat was more tolerant of such problems by extending Seligson’s approach to

consider a family of wave shapes consisting of limited perturbations of the given

shape.

The central ideal of the ME design is to make the filter transparent to all
waves from the direction of interest 6, regardless of th=2 shape of the wavefront.
It is theoretically possible to adapt the steering vector E to correspond to a
wavefront of any desired shape; however, even then, two problems remain: first,

some means must be found for knowing what curvature to choose; and second,
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the filter will now not necessarily be the minimum energy filter.

3.2.5.2 Number of Sources

The eigenvector analysis requires that the number of sources N be esti-
mated using the cross-correlation matrix. Although several methods have been
proposed,®! it remains a difficult decision. Johnson and DeGraaf®? found that the
basic ME method yielded N° peaks no matter how many actual sources were re-
ally present; an eigenvector analysis, on the other hand, was much more tolerant.
They provided one example where three peaks were produced, correctly locating
the three actual sources, in spite of having set N° = 6. However, they conclude
that “reasonably accurate methods of determining (the number of sources) from

the eigenvalues of R are not known at this time.”

Zou and Liu®® also reported false peaks using the LP method but found

that improvements could be made by using the average of two LP variations.

The eigenvector analysis can accommodate up to N® — 1 uncorrelated
sources when there are N® receivers. When the sources are correlated, Bresler
and Macovski®® note that this analysis is then limited to %NR. However, they
go on to establish a theoretical maximum which can be much higher, depending
on the signal-to-noise ratio and the angular distribution of sources. Pillai et al.40
showed that NR(NE — 1) sources could be resolved if the receivers were spaced

according to a minimum-redundancy pattern called a Caratheddory sequence.

It would seem that an eigenvector analysis would have difficulty with
an extended scatterer which acts like an extremely large number of scattering

sources. However, the key requirement is that the N3 eigenvectors with the
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largest eigenvalues span the source subspace — the number of actnal or equiva-
lent sources does not itself have to equal N5. Thus, the results depend upon the
relative geometry of the array and the scatterer. A simulation by Duckworth®!
was indeed able to provide reasonable results for a particular extended scatterer,
with much sharper boundaries than a conventional beamformer. The general con-

ditions, however, under which extended scatterers can be accommodated have yet

to be established.
3.2.5.3 Coherent Sources

When two or more of the sources are coherent, we can find neither the
inverse nor the eigenvectors of the cross-correlation matrix ®. This will result in

all cases when the sources are simply scattering energy from the same transmitter.

A method called spatial smoothing was proposed by Shan and Kailath®
wherein the linear array was treated as 1.V R subarrays, each of which shared all
but one receiver with each neighbor. The cross-correlation matrices from each
of these subarrays were then averaged to form a single cross-correlation matrix
in which the coherence between sources has been broken. This method assumes,
however, that the full array be such that it can be subdivided into identical
subarrays. It further depends upon uncorrelated noise existing at the receivers
for the loss of coherence; if there is little noise, the method may work poorly.
Worst of all, the effective size of the array is now half the original size which
works against the high resolution we are attempting to achieve. A variation
which does not cause as great a reduction in the effective array size and is called
the modified spatial smoothing (MSS) method was described by Evans et al.®®

although it has been noted that the method may fail in some special cases.®?
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A similar method called frequency smoothing was proposed by Wang and
Kaveh®® which averages the R obtained at each frequency. In particular, they
combine the information from each frequency in a manner they describe as “coher-
~nt addition” so as to avoid the threshold effect which has kept similar methods
using an incoherent addition from succeeding. However, as noted by Williams et
al.,87 this approach requires either prior knowledge of the general source locations

or a very good estimate.

Duckworth*! found that sources also became decorrelated when the cross-
correlation matrices from several sets of data were averaged if there was a small
amount of motion between the transmitter, source, and receiver between sets of

data.

Several other methods for breaking the correlation have begun to be
investigated® including a method by Bresler et al.”® which combines each group

of coherent sources into one equivalent source.
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Chapter 4

Pattern-Match Iimaging

It was claimed in Chapter 2 that the pattern-matching approach can ac-
commodate events, such as diffraction and reflection, which can occur during
the propagation of the pressure wave. To investigate this claim, two new imag-
ing techniques. called the pattern-match method and the mismatch method, are
developed in this chapter using the concept of a fictitious source introduced in
Section 2.4. A simulation of the diffraction of waves around a barrier is also
implemented and is used to examine the capabilities of the new methods. Each
simulation will also be repeated using the well-known holographic reconstruction
method so that all 3 techniques can be compared. Additional simulations for a
selection of special cases will be included to round out the investigation; these
cases include a free-field environment (i.e., the diffracting barrier is eliminated),
a case where the location of the barrier, used in the reconstruction, is in error;

and a case where there are two sources.

4.1 Simulation of Edge Diffraction

The performance of the pattern-matching method depends upon the de-
gree to which the signals R¥ received from the fictitious source agree with the
true physical phenomena. While this is no challenge in a {ree-space situation,
it may become a limiting factor when attempting to apply the method to r1ses

where the pressure wave has undergone diffraction and reflection.

When the received signal is simulated, as it will be in this chapter, there
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is no problem: whatever formula we use to simulate the received signals is used
to represent the fictitious source. Nevertheless, we should choose a non-trivial
case so that artifacts and limitations of the method, if any, might be observed.
These artifacts may include bias (the source location is in error), resolution (the

precision with which the source has been located), and non-uniqueness (false

sources are reported).
4.1.1 Defining the Wave Disturbance

The scattering of pressure waves by a sphere is an attractive physical phe-
nomenon for research since a entire series of scattering patterns can be generated
merely by adjusting the term ka where k is the wavenumber and a is the radius
of the sphere. Pierce’ writes the scattered component as

Psc = -—Z:_B (%ﬂ"a3) [1 - %cos (0 (1 + Z%))] Ml (4.1)

r

where B is the peak amplitude of the incident plane wave, r is the distance from
the sphere to a point in the scattered field, and 6 is the angle between r and the
direction of the incident wave. Unfortunately, this simple formula holds only for
ka < 1 which translates to a ~ 0.016\ in this study where the wavelength is one.
This radius enters into Eq.(4.1) in the term that calculates the volume of the
sphere and results in the scattered component having an amplitude five to six
orders of magnitude lower than the non-scattered component. It was estimated
that when considering the total field, equal to the sum of these two components,
the scattered component amplitude would be too small an effect to demonstrate

the abilities of pattern matching over holography.

A more pronounced effect would be generated by the edge of a barrier.
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Pierce™ has expressed the diffracted component of the field when the distance of
both the source and field point from the edge is large compzared to a wavelength

as

i exp(j k (T's + 7°f>) exp (]%)
> Ts+7Tf V2

sin(v ) +
. A F' ‘/-[y
4;—\/1—-cos(u7r)-cos(u¢i) D< : (¢ )>

where the summation consists of two terms. The angle comparison #%, discussed

Pd =
(4.2)

further in the next section, is given by

dB + 45 + 37, if x is plus;
X = { (4.3)

¢t — &5, if x is minus.
The source is located a distance r, from the edge of the barrier at angle ¢5 and
transmits waves of amplitude S. The field point where we wish to evaluate the

diffracted field is a distance ry¢ from the edge at angle ¢%. The wedge index v is

%; for a thin barrier. We also have

[= |—2Tfrs (4.4)
A (Tf + rs)
_ cos(vm) — cos(v ¢)
M.(4) = l/\/l — cos(v 7) - cos(v @) (9
= —2cos(}¢) for v=1. (4.6)

For simplicity, we set A = 1. The term Ap is the diffraction integral which can

be written in terms of the Fresnel integrals

Clu) = /0;4 cos ( tz) dt,
S(u) = /0“ sin (§t2> dt,

e ]

(4.7)
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Ap() = L exp (=5 §47) (s16u(u) — (1= ) (C) +55(W))  (48)
where
L, w20
SIGN(p) = { (4.9)
-1, pu<0.

Some routines for the evaluation of the Fresnel integrals use the absolute value
of their argument, thereby failing to include the odd symmetry. In these cases,

we can move the SIGN operation to correct for this so that Eq. (4.8) becomes

Ap(k) = 5L exp (=5 §4°) ston(u) (1= (1 = )(ClIu) +55(wD) ) (4.10)

<~

;

where |...| denotes the absolute value operation.

4.1.2 Angle Definitions

It is convenient to define the angles which describe the location of the
source (¢%) and field point (¢®) in the manner most useful for the situation.
Unfortunately, this has led to three different reference points for these angles and
so a note on these definitions is appropriate. In all cases, the angles increase in a

counter-clockwise direction — these definitions differ only in the location of the

0° point.

On polar plots, the angular origin will be on the positive Z-axis, as is
shown in Figure 4.1, and will be expressed in degrees. In this figure, two angles
are shown as examples: ¢°, the angle of the source; and #%, the angle of a receiver

or field point. Note that both of these are examples of negative angles.

The radial distance of the source on this and subsequent figures is not
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drawn to scale — in fact, on subsequent plots, radial distances will instead rep-

resent the signal level in dB.

The sketch of the barrier is also not drawn to scale; it is included at the

+90° location only as a reminder of the angular location of the barrier.

In Figure 4.1, the edge of the barrier is shown as being located at the
origin of the coordinate system. This convention will be used on all subsequent
polar plots. However, in the simulations, the edge of the barrier is never at the
origin but is instead at some other given location. This requires a coordinate

transformation, which is made automatically in the subroutine which calculates

the diffraction.

The second angular reference point is found in the FORTRAN routines where
it was more convenient to put the angular origin on the positive X-axis so that
the inverse tangent routine could directly use the X and Z coordinates of a point
in the calculation of the angle. The third angular reference point is found in
Pierce™ in his development of the diffraction equations where he sets the angular

origin at the shadow side of the barrier, which would be the negative X axis in

this study.

The angles used on the plots will agree with those used in equations in
this study so that the reader need not consider these other definitions except
when examining the computer code or other texts. The necessary conversion is

embedded in the offset of 37 added to each angle in Eq. (4.3).
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4.1.3 The Total Field

The total field consists of the diffracted component (py), discussed previ-
ously, plus, in some regions, a directly incident component (pi) and a reflected
component (p,). These regions can be uniquely numbered according to the num-

ber of components which are needed since all regions include pg while none include

pr without p;.

Figure 4.1 shows the regions which result for a particular source location.
The line dividing Region 1 from Region 2 is called the incident shadow boundary,

while the line dividing Region 2 from Region 3 is called the reflection shadow

boundary.

Table 4.1 shows the logic which is used in the subroutine to determine the

region number based upon the definition of ¢ used in the plots and equations.

Table 4.1. Rules for determining the region number.

¢° of Region | Components
—ir < <ir —3r < <¢S—m 1 P
—lr < <ir | ¢5-n< < —¢° 2 Pd + i
~ir < <lin ~¢5 < <} 3 pa + pi +pr
—3r < < —ir —3r < < —¢° 3 pd + pi +pr
—-3r < <-ir -5 < <¢S+7 2 pd + pi
—3r < < —in ° +7< <lin 1 Pd
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The incident component, when needed, is given by

exp(j kr
pi= g SXRURT) (4.11)
where r is the direct distance between the source and the field point. The reflected
component, when needed, is given by

exp(j k (ru + rzf>)

pr =S (4.12)

Tzs ' Tzf

where rz; and r; 5 are the distances between the point of reflection and the source
and field point, respectively. Given the source location (X¥, Z5), the field point
location (X¥, ZF), and the barrier’s coordinate Z2 (it has no X coordinate as it
is parallel to the X-axis), the point of reflection (X, ZB) is given by

_XF-IZB—ZSf-f-XS-IZB—ZFI

X VA e (4.13)

The sign of the complex exponents in Eq. (4.11) and (4.12) are positive in
order to agree with Eq. (4.2). However, the complex conjugate, of the sum of all

components, must be taken so that the phase agrees with the definition of phase

used in this study.
4.1.4 Shadow Boundary Approximation

When the receiver is near the shadow boundary, Pierce’ has developed

an approximate solution which would replace Eq. (4.2) with

< exp(j k (r, + "f)) exp (j ir‘)

Ts+Tf V2

pd = Ap(T¢7). (4.14)

This approximation could cut the number of evaluations of the diffraction integral
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Ap in half and so will be considered in the next section.

4.1.5 Testing the Barrier Simulation

The absolute value of the Fresnel integrals were calculated in a FORTRAN
subroutine using a power series. Results for a selection of arguments from 0.0
to 5.0 were compared to the tables in Abramowitz and Stegun.” The values
differed by at most +1 in the last digit; that is, the computed results seemed
to be accurate to +1077. Single-precision arithmetic (i.e., 32 bits were used to
represent a number) caused 2-5 times as many differences between the subroutine
and the tables; therefore, double-precision arithmetic (using 64 bits to represent

a number) is used in the subroutine.

Another FORTRAN subroutine then makes use of the Fresnel integrals to
evaluate the diffraction integral and the pressure at given points. This subroutine
was tested by evaluating the diffracted wave for the case of a source at (X, Z) =
(0,100\) and a barrier beginning at (0,10)) and extending towards X = —oo.
The magnitude and phase of the field, at points located every quarter degree on a
circle of radius 10 around the edge of the barrier, is shown in Figures 4.2 and 4.3,
respectively. The phase shown has been “linearized” by adding or subtracting
integer multiples of 360° to each value so as to minimize the difference between
the value and its neighboring values. These results look reasonable and seem

compatible with a similar case described by Kendig and Hayek.™

The same case using the shadow boundary approximation is shown in Fig-
ure 4.4. Given the assumptions which were used, the results are remarkably good.

Nevertheless, an increase in the relative size of the ripples at negative angles, and
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a discontinuity at 6 = 0°, would make this approximation unacceptable for some
situations. Testing has also indicated that the time saved s not significant for

this study, and so this approximation was not used further.

4.2 Mismatch Imaging

During the investigations of this chapter, it was noted that the pattern-
match method seemed to yield a poorer image in some situations than was ex-
pected. That is, the value of 21 - 23, where * denotes the complex conjugate,

decreasss more slowly than was desired as the complex nuinbers z; and z2 began

to differ.

An approach to improving this situation is suggested by the minimum
energy (ME) method discussed in the previous chapter. In that method, the

“match” is provided by

9 1
BO) = zr%

(4.15)
where E is a vector that steers the reception to angle § and as such somewhat
plays the role of the fictitious source in the pattern-match method. The basic
form of Eq.(4.15) suggests that the denominator is calculating the amount of
mismatch, rather than match, between the fictitious source of plane waves and

the patterns actually received. Thus, when the fictitious source approaches an

actual source, the amount of mismatch approaches zero and the sharp peaks

typical of the ME method resuit.

What we desire, therefore, is a comparison of two complex values which
yields a result proportional to the degree to which they differ. In the complex

plane, every complex value is represented by a point, and so the concept of the




T4

distance between any two points z; and z2 could be defined as

zg = \/(al —a2)* + (b = by)? (4.16)

where z; = (a1 4+ jb;) and z2 = (a2 + jb2). Actually, we desired z7 so that a
squared quantity results as with zj - 23 or the correlation between two arrays
of numbers. This quantity will be used to implement what shall be called the
mismatch method. Any comparison method using z; - 23 shall continue to be
called the pattern-match method. In subsequent tests in this chapter, the results

of both match methods will be compared to that of holography.

In plots, it is conventional for higher values to represent stronger peaks.
We need, therefore, to either use 1/23 or —2z3. The former would exhibit the non-
linear response typical of the ME method and would actually be quite effective
for finding point sources. However, we choose to use the latter because it retains

its linearity and can therefore be more directly compared to the results from the

pattern-match method and holography.

Using the pattern-match method, the lower bound of zero represents the
worst possible match while the upper bound, representing the best match, can
be easily normalized to a peak value of one. e wish to map the new values
from the mismatch method to this same domain. The upper bound of —z3 is
zero, representing the best possible match (or worst possible mismatch), while
the lower bound is some negative number corresponding to the worst match (or
greatest mismatch). While it is clear that these values should be adjusted co that
the best match is always mapped to one, it is not so clear which (negative) value

ought to be mapped to zero. After some experimentation, the most useful results
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were obtained by mapping the average (negative) value to zero, and setting values

less than the average (representing very poor matches) equal to zcro.

This transformation is implemented by first calculating all values of z3,

P

their average =7, and the minimum value corresponding to the best match 55.
Then, the result of the new method ¥ which will be used for plotting and com-
parison 1s given by

22 _ 2.
U(z,z) = MAX (0, f"——:iiLjL:,’—z—)> (4.17)

where the MAX operation chooses the larger of its two operands.

4.3 Normalization

In early tests, the pattern match method failed to produce a maxima in
some cases when the fictitious source passed through the location of the true
source. To investigate, one particular case was examined in depth. In this case,
a barrier beginning at (0,10)) and extending towards X = —oo diffracts the
pressure waves from a point source at (—5.25),15)). An array of G4 receivers
spaced 0.5\ apart is centered on the X-axis. The pattern received at this array,
and the pattern from a fictitious source at (—4.75A,15), are shown in Figure
4.5. When the fictitious source was at the exact location of the source, its pattern

matched exactly the received pattern (the solid line in Figure 4.5).

When the fictitious source was at the true source, the match value was
0.0162. However, when the fictitious source moved to the location shown in
Figure 4.5, the match value increased to 0.0183. This was the phenomenon which

was causing the pattern-match method to fail to produce the expected maxima.

What has happened is that the pattern from the fictitious source, as it
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7
moved towards the edge, increased enough (more energy was getting around the
barrier) to more than compensate for the misalignment of the patterns. This
phenomenon, it turns out, is often observed in signal processing, and can be
elegantly suppressed by normalizing the power of each pattern before comparison:

R;
>R}

R; — (4.18)

Thus, the absolute and relative amplitudes are changed, as shown in Figure 4.6.

The effects of this normalization can be dramatic. The results shown in
Figure 4.29 later in this chapter had originally appeared as shown in Figure 4.7
when the pattern-match method was used without normalization (note that these
figures differ in their rotation by 180°). The rapid rise near Z = 0 in Figure 4.7
is due to the p; component whose 1 term grows to infinity as the fictitious source

approaches the location of a receiver.

The large positive peaks in Figure 4.7 become large negative peaks when
the mismatch method is used. Thus, the results shown in Figure 4.33 later in
this chapter had originally appeared as shown in Figure 4.8 without normaliza-
tion. The elevated area or plateau is due to the large negative peaks causing an

inappropriate shift in the value of 23 used in Eq. (4.17).

4.4 Locating a Source in Free Space

A simulation was prepared of a single harmonic point source whose sig-
nals were recorded at an array of G4 receivers. The point source was localed
at (X,Z) = (0.25),15)). This slightly off-center point was chosen so that the

source would fall upon one of the reconstruction locations; this prevents some of
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tlie minor anomalies which can occur when the source falls between reconstruc-
tion locations. The receivers were located on the .X axis at intervals of 1\ with

the array centered so that its ends were at £13.70A.

In this section, and all subsequent sections in this chapter. the selection
of the Z coordinate of points in the reconstructed field is arbitrary. Thus, we are
free to select values which span the region of interest, i.e., {rom near the receiver
array (Z = 1A) to beyond the source location (typicallv, Z = 15\ or Z = 201).
The reconstructed field was evaluated at intervals of 1 wavelength (i.e.. Z = LA,

Z = 2], ...) so that it was unlikely that any feature would be missed.

The choice of the X coordinate of points in the holographic reconstructions
is, unfortunately, not arbitrary — the reconstructed points must lie at the same
X coordinates as the receivers due to the demands of the FIF'T. Although this
restriction does not apply to the pattern-match or mismatch methods, it was
adhered to in all of the reconstructions produczed in this chapter so that the

results could be more easily compared.

In the parlance of holography, the field points are the locations at which
the pressure field was “reconstructed.” In the parlance of pattern matching, the
fictitious source was placed at these locations. In this study, the word “recon-
structed” will henceforth be used to refer to the estimate of the source location(s)

regardless of the method by which that estimate is made.

The holography method was implemented in a FORTRAN program, while
both pattern-matching methods were implemented in a second FORTRAN program.

Input parameters in these programs selects whether or not the fictitious source




2

(v

is obstructed by a barrier: whether or not the shadow-boundary approximation

15 used: and which match method is used.

sin(zr)

Figure 4.9 exhibits the expected =—

curve when the holography method

reconstructed the field at the source (i.e.. at Z = 13\).

[n Figure 4.10, equal-level or contour lines through the field have been
generated. while in I'igure 4.11, a hidden-line surface plot has been used to present
the results. The contour lines use a linear interpolation between adjacent .X values
and adjacent Z values to improve the quality of the plot. \While this does not
distort the data. it may produce artificially sharp bends in some lines. Also, an
occasional spike in the contour lines may result when the algorithm attempts to
determine a contour through a group of points which have nearly the same value,

such as near (—1A,3A) in Figure 4.10.

The reconstruction using the pattern-match method, shown in Figure 4.12,
is virtually identical with Figure 4.11 — only a small reduction near Z = 0 can
be seen. The reconstruction using the mismatch method was somewhat difficult
to display as it consisted of many vertical spikes. Thus, in Figure 4.13, only a
portion of the information around the source is shown, and the values which fell
below 15% of the maximum have been erased from the plot. In Figure 4.14, this

same portion of the information is shown as a contour plot.

One (of many) interpretations of a reconstruction is that it is estimating,
at each reconstructed location, the “probability” that there is a source at that
location. Ideally, by using better reconstruction methods, we can “push down”

the probability at as many reconstruction locations as is possible; this helps




(\gr'vez Q) re o0Inos jutod e Jo YG[=7, 18 UOIONIISu0ddd ondesfotofy ‘¢ a4ndiy

(sypiudfoses) X

G bl Ga'6 cay mmﬂ.) muu.,mv/ m.\.‘..oT m\t.memv
Hﬂll;lii\/\/\\/\/\//\\ —t— ¥ N o~
t U
T¢e
! g
=
<
Lyog
=
e &
ae
o
3 @ MM
=
o
+ NL
00IN0S T 8
% m
i




‘wnwixew ayy Jjo 406
‘02 ‘%01 1€ 9dr SOUl] INOJU0D {(YG['GZ () 1€ 90Inos jutod e jo uorjoniisuooos oydesdojolp "Ql°y 24n31

(sy1dudtoaes) X

Ca vl Ge'H cab GL'— GL' G- GL 01— GL'Gl~-

b e e e

(syysusroaes) 7

aDINOS




(YG1'¥GZ 0) 1e 90dnos jutod e jo uorjonaysuodds oyderdotol] 11y 2In31y

00’1 CLGI

(syjdusjoaes)

X

(sidudfones) oL
7,

. R R R R R R 02 RS 2 K K RS RIRIRY or—
GRS ITIIGIARNILED ORI O AL ’ 2% ”0‘0 '00@\“\"&\"100"0 RORRILRIL ;
2R \0’0\'4\”0’\» S AL RO RN EIIERRRERERS RRRRERLR IR 00°0
RN A RN ANz gt R R LRI S
Ob"““" O‘\O‘O\\"& X OO\"' R "\ ’l\PO\OOOQOWQO\W SV 00000 e T e R N S ST
R I e R e e e
O N I I e N e s - s
A O e ISTRTRS 00000"0 SRR
'WQ”’ 9 X "\ o " . .0"’,0’\\ SR LA 35S
50 ’ o ///’ BRI
KR \KA J S R SRR .
w@%&ﬁ Y S S F 050
120> O"\WOOOWOO\ﬂOﬂONOOOQOON’NOObOOO -
R R R R RS RRS o)
IR SRR SRR I IR IINRY c) 0
OW\OOOOO R S RIS
N T s
N\ f
% 00'1
2INs891]

201N0S POZI[RULION




“(Ye1'YGZ'0) 1€ 904nos yutod © JO UO1}ONIISUOIDL Yojeul-UId e glb 2Ing1y

(suyfudjoses )
X

0’0’ D et A,

e e

A
WK 0O e
Sl G20

(O

£
(NS TSI
h % OOOOMww»w«MMWMOONOOOOfOoOOO 3925

RS

o S s SO
‘ /> .»\Q.O‘. QKRS X .‘W‘ 3 “0”‘”’0’0“
J25% \" ” \0.\" N ”.‘5"." Y, ""’0“
ISt ate
AP\ QTSN «wyuoxwooww

O
£ 0%
SRR

Y

- GL0

001

yoIRl

HOINOS
pOZIjRULION

(78]




‘£111€]0 J0J parowdl spnjljdure wnuwixeu
oY) JO %Gl MO[0q sonfeA )14 (YGI'YGZ'Q) 18 901nos juiod e jo UONONISUODDL YDYRWSIY gl aIngiy

I~

n

(syyBuoores) AN

7 | 692!
- ergl

9Ll Qe

00°0¢
(sy1suajaaen)

000 X
4 . 08¢

Sl
Sr'o

060
8670

\ 6.0
— 00

QOINOS

yoren
pOZI[CUWLION




‘wnwixew ay) Jo %06
o toyE ‘o)) 1R D4R SOUI] ANOJU0D L(YCI'YCGZ 0) 1@ 90Inos jutod e Jo UOIONIISUCDDL YOVRWSIY  “yI'F 2indy

(smuoroaen) X
Ge 9 ST Ga'e o CL' - GL'6- SLS- CL -

N Ccg 0l
i

=S

1 cgel

cgel

I eyl

ADINOS 4

° CaGl

(syjysuaioses) 7

7]




89
climinate these locations from consideration. leaving (hopefully) only ore location

where the source could possibly be located.

These figures, and many others not shown here, lcad to the observation
that the envelope of the mismatch spikes is quite similar to the results provided
by the holography and pattern-match methods. Thus, the mismatch method,
at the location of its spikes, is making the same estimate as the other methods
— no better, no worse. On the other hand. at the nulls between the spikes.
the mismatch method has pushed down the probability, thus eliminating these
regions from consideration. In particular. measurements of Figure 4.14 indicate
that the peaks around the true source location form partial rings scparate by
about one wavelength. This seems rcasonable since the transinitter is producing

sinusoids which exactly repeat every wavelength.
4.5 Locating a Source Near a Reflector

A barrier is now introduced which extends from (X,Z) = (0,101) to
(—o0,10A). Otherwise, the simulation is identical with that of the previous sec-
tion. The barrier’s height, in the Y direction, is irrelevant since the simulation is
being conducted in only two dimensions. The field generated by a source in this

location is shown in Figure 4.15.

The holographic reconstruction, shown in Figure 4.16, exhibits a false

source, as would be expected, due to the reflection of the true source by the

barrier.

The pattern-match reconstruction, shown in Figure 4.17, does not exhibit

a false source but does show some additional peaks. These additional peaks can
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be scen more clearly in Figure 4.18 where only the information near the true

source has been retained.

The mismatch method reconstruction. shown in Figure 4.19, has had val-
ues below 10% of the maximum removed for clarity. A contour plot of this
reconstruction, shown in Figure 4.20, exhibits partial rings of peaks around the
true source, separated by about one wavelength, similar to that shown in Figure

4.14 for the free-space case.

In addition, the mismatch method exhibits some low-level matches along
lines behind the barrier with the lines separated by about a wavelength. There
may be several reasons for these matches behind the barrier. First, in this region,
one of the basic assumptions of the diffraction equation has been partially violated
since some of the points are not many wavelengths from the edge. Second, as
shown by Figure 4.6, the signal at the receiving array from points behind the
barrier look very much like a sine wave and so may produce a low level match
with almost anything. Such a phenomenon would somewhat repeat for every
additional waveiength that the fictitious source is moved away from the edge of

the barrier.

In many imaging situations, the sources are identified as being at those
locations where the image level is above some threshold. If a threshold were set
at, say, 350% of the maximum, the mismatch method would provide the most
precise location of the source. At a lower threshold, all methods exhibit some
problems: both matching methods show additional peaks; and the holography

method shows a false source due to reflection.
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4.6 Locating a Source Behind a Barrier

The situation investigated in the previous section is now repeated except
that the source is moved behind the barrier so that the transmitted energy is, to
various degrees, blocked by the barrier. The source will located at one of three X
locations along the line at Z = 15\ X = 0.25\; X = —2.25\; and X' = =5.25A.
The field for the first and last of these three locations is shown in [igures 4.21

and 4.22, respectively.

The reconstructions provided by the holography method are shown in
Figures 4.23-4.25. A comparison with the free space holographic reconstruction
shows that, as the source becomes hidden behind the barrier, the reconstructed
peak moves closer to the edge of the barrier. When the source is almost com-
pletely hidden (Figure 4.25), the peak at the barrier’s edge scems to be the only

disturbance — there is little to even suggest that there is a source behind the

barrier.

The pattern-match reconstruction for a source at (0.25\, 151 is shown in
Figure 4.26 and seems to be a little poorer than the corresponding holographic
reconstruction (Figure 4.23) because the main peak seems to have becone slightly
spread. In addition, Figure 4.27 shows that there is a slightly higher match
in the “hidden region” which falls between the barrier and what will be called
the boundary line. This boundary line begins at the edge of the barrier and
runs through the true source location onto infinity. As the source is moved to
locations further behind the barrier, the main change in the reconstruction, shown

in Figures 4.28 and 4.29, is that the match in the hidden region rises.
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The mismatch reconstruction for a source at (0.25\,151), shown in Figure

4.30. exhibits peaks which. as in earlier cases, have an envelope similar to the
pattern-match reconstruction and a spacing roughly equal to a wavelength. As
seen in Figure 4.31, the peak at the location of the true source is the largest',
but only by a small amount. Likewise, as the source is moved {urther behind
the barricr, Figures 4.32 and 4.33 exhibit peaks falling within the envelope of the

corresponding pattern-match results.

These cases suggest that some general rules might be stated which roughly
describe how each imaging method responds as the source becomes hidden fur-
ther behind the barrier: (1) holographic imaging moves it’s reconstructed peak
towards the edge of the barrier; (2) pattern-match imaging indicates only that
the source is someswhere in the hidden region, with a decreasing likelihood that
the source is near the boundary line as the true source moves further behind the
barrier; and (3) mismatch imaging produces peaks within the envelope of the
pattern-match results, arranged in groups which are multiples of a wavelength

from the barrier edge.
4.7 Environmental Errors

The two pattern-matching reconstruction methods use knowledge of the
Larrier in their analysis of the received signals. It would not be unusual for there
to be small errors in this knowledge; therefore, the case of a source behind the
edge of a barrier was repeated with an error deliberately introduced. The results
for the pattern-match and mismatch methods are shown in Figures 4.34 and 4.35,
respectively. In these simulations, the received signals were calculated using the

true location of the barrier, at Z = 10A, while the reconstruction used a false
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ocation. at Z = 1A, A comparison with the corresponding results with no
error. Iigures 4.26 and 4.30, indicate that the error did not significantly affect
thie reconstructions (note that only 3 contour levels were used in Figure 4.30 while

9 levels were used in Figure 4.33).
4.8 Locating Two Sources

When more than one source is present, a linear superposition of the signals
from the sources is recorded at each receiver. However, since it is difficult to
classifv the pattern-match and mismatch methods as either linear or non-linear,

it 1s not clear whether multiple sources could be reconstructed.

To explore this question, a simulation was run with two equal-strength
and in-phase sources located at (0.25A,15A) and (10.25),15)). The result using
the pattern-match method is shown in Figure 4.36. The field near the left source,
at (0.23),157), is nearly identical to the corresponding area, in Figure 4.26, when
only the left source was used. However, as can be clearly seen in Figure 4.37, the

two sources are not located with the same resolution due to the influence of the

barrier.

The result using the mismatch method is shown in Figure 4.38. Again, the
field near the left source is nearly identical to tlie corresponding area, in Figure
4.30, when only the left source was used (note that only 3 contour levels were
used in Figure 4.30 while 9 levels were used in Figure 4.38). Figure 4.39 shows

that while both sources have been located with nearly the same resolution, their

apparent strengths are not equal.
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4.9 Execution Times

The time needed to complete the reconstruction was measured using the
computer system'’s internal clock, which is claimed to be accurate to within 0.01
seconds. Note that the measurements are made so that input, output, plotting,
and overall normalization operations are excluded. However, the time needed to
perform the normalization of the fictitious source signals for the pattern-match
method is included. The reconstructions were performed at a varying number
of points, depending upon the situation; therefore, the total time for each re-
construction has been divided by the number of points so that the times can
be directly compared. The results are shown in Table 4.2 and can be used to

evaluate the relative speed of the various methods.

The speed of the holography method is the same when the source is par-
tially or fully hidden, or when it is yields a reflection, since it does not vary
its calculations as the environment varies. The pattern-matching methods are,
as expected, significantly slower than holography since they cannot take advan-
tage of the efficiencies of the FFT. However, there is no obvious reason why the
mismatch method was generally faster than the pattern-match method — the
mismatch algorithm is slightly more complicated and so it was expected that it

would be slightly slower.

These times are for execution on the Microvax II processor and floating
point accelerator manufactured by the Digital Equipment Corporation (DEC).
If a modern super computer or array processor had been used instead, the time
to reconstruct an image could probably be reduced by at least two orders of

magnitude.

]
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Table 4.2. Time to reconstruct the images.

Environment Source Method Total Time | Time/Point
free (0.25A,15)) holography 0.2m 2.5ms
free (0.25A,15A) pattern match 3.1m 37.7ms
free (0.25A, 13)) mismatch 3.1m 37.2ms

reflections (—5.25\,7.5)) holography 0.2m 2.5ms
reflections (=5.25A,7.5)) | pattern match 24.1m 396.8ms
reflections (—=5.25),7.5) mismatch 24.1m 395.9ms
hidden (0.251,15)) holography 0.2m 2.5ms
hidden (0.25A,15A) pattern match 32.0m 390.2ms
hidden (0.25X,15)) mismatch 31.4m 382.5ms
hidden (—2.25),15)) holography 0.2m 2.5ms
hidden (—2.25),15)) | pattern match 31.7m 386.0ms
hidden (—2.25),15)) mismatch 31.4m 382.9ms
hidden (—5.25),15)) holography 0.2m 2.5ms
hidden (=5.251,15A) | pattern match 31.4m 382.2ms
hidden (—5.25,15) mismatch 31.5m 382.9ms

A - wavelengths

m - minutes

ms - milliseconds
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Chapter 5

Swept-Frequency Imaging

One of the purposes of this study was the development of a new method
of imaging which is based upon a sweep of the transmitted signal through a

series of frequencies. This chapter develops the method and conducts a variety

of simulations in order to explore its capabilities.
5.1 Motivation for Sweeping the Frequency

A number of the methods examined by this study make use of multiple
frequencies. When there are several sources differing in their spectral content, the
eigenvector approach uses this fact to help separate the information belonging
to the sources and thereby increase its resolving capabilities. The correlation
method uses pairs of receivers to estimate the relative time delay and bearing,
and so more precisely locates the peak in the correlation as the bandwidth is
increased. Other methods, such as beamforming and holography, can process
only one frequency at a time, and so can only combine the results for multiple

frequencies at the end.?3:24

One thing which all these approaches have in common is that they con-
centrate on the signal processing viewpoint, treating the information at each
frequency as being unrelated to the information at other frequencies. However,
if we look at the underlying physics, it is obvious that such a situation would be
unusual, if not impossible, for scatterers of acoustic waves since their scattering

must depend upon the frequency in some deterministic if unknown manner.




Such a frequency dependence was exploited by Chan et «l.”® to emulate
motion by the receivers along “equivalent scan vectors” so that the effective size
of the receiving array was increased. A modest body of work was produced by this
group,”®7"™ along with observations by other parties that some of the reported
results were unacceptable’ or exhibited ambiguities.?? Although a lack of further
publications seems to indicate that this work has not been pursued, it seems clear

that in some situations the effective size of the array in one of the dimensions can

be increased by a factor proportional to the bandwidth of the frequency sweep.

One of the weaknesses of Chan’s approach is that the calculation of the
equivalent scan vectors requires that the center of the scattering object be known.
Figures 5.1 and 5.2 depict the coordinate system and scan vectors for a rectan-
gular scatterer with its center on the Z axis. It is obvious that the scan vectors

cannot be calculated if the center of the scatterer is not known.

A solution to this limitation presents itself when we consider the abilities of
the pattern-match method discussed in Chapters 2 and 3, in place of the concept

of scan vectors.

In the pattern-matching method, rather than assume that we know the
center of the scatterer, we move the fictitious scatterer through all locations in
object space, i.e., all locations which could possibly contain an actual scatterer.
At each of these locations, the received signals are compared to what would have

been received from the fictitious scatterer, at the given frequency.

However, to the extent that the frequency-dependence of the scatterer is

predictable, another type of match could be performed. Using the received pat-
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tern across the array at, say, the lowest frequency, we can predict how the pattern
will shift and scale as the frequency is swept up to higher frequencies, given the
location of the fictitious scatterer and the known location of the transmitter and
receivers. The degree to which the actual and predicted signals match, summed
over the entire frequency sweep, then constitute the total match at that location
in object space. As before, we then interpret the best match or matches in object

space as the location of the source or sources.

5.2 Scattering Models

The purpose of the scattering model used in this chapter of the study is to
provide the {requency-swept imaging simulations with “received” signals which
should mimic features of real, physical phenomena with reasonable accuracy when
these features may have an effect on the imaging method. Thus, the frequency
dependence of the scattering should be faithfully simulated. On the other hand,

the absolute levels of the simulated signals is probably irrelevant.

It seems that two categories of frequency-dependent scattering would suf-
fice. First, a pair of closely spaced point scatterers will be used to represent
specular reflections. While an individual point scatterer has no frequency de-
pendence, a system of two or more will exhibit frequency-dependent interference
patterns. Second, a rigid plate reflector will be used to represent an extended

scatterer.
5.2.1 Specular Scatterers

The expression for point scatterers is very nearly identical to the general

case given as part of the definition of terms in Eq.(1.2). For the following sim-




126

ulations, we simplify the formula by setting the scattering strength to unity so
that S, = 1. The transmitted signal is chosen to be a continuous sine wave of
unity amplitude so that the time-shifted signal, E (t1 - T,-fn), can be replaced
by a phase-shifted signal, exp(—j 2r f (t, - T,I,';,)) with T given by Eq. (1.5).
Finally, since the time at which we sample the complex received signal is irrele-
vant while using continuous sine waves (as long as all the receivers are sampled

at the same time), we can set t; = 0 so that the expression for the received signal

becomes

~j k (Dim + Drm))
Dim - Drm .

S
R; (XiR) = ]ZV_: eXp(

m=1

(5.1)

The distance D;, is that between the mth reflector and the :th receiver located
at (X,-R, Z,-R) where we have chosen to locate our linear receiver array along the
Z-axis so that ZiR = 0. The distance Dr,, is that between the mth reflector
and the point source at (XT, ZT). These coordinates and distances are shown

in Figure 1.1, and the distances are given by Eq. (1.3) and Eq. (1.4).

Eq.(5.1) was implemented in the FORTRAN subroutine and then used to
generate Figures 5.3 and 5.4 for the case of two reflectors separated by 12”. In
these figures, the reflectors were centered around the origin along the X-axis,
and the reflected field was evaluated at a radius of 100" from the origin. Several
other source locations were also examined but not shown here; in all of these
other cases, the magnitude and phase peaks moved as expected from 0° to the

negative of the source angle.
5.2.2 Extended Scatterers

The classical theories of Huygens shall be used to construct a simulation

of the scattering of an acoustic wave by a finite rigid plate. The incident wave is
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modeled as a harmonic, spherically spreading one originating at a point source.
\We are interested in the field reflected back towards our linear receiver array
which is in the general vicinity of the source; that is, the model does not need
to consider diffraction around the plate. Thus, we can apply Huvgen’s principle
wherein each point on the plate is considered to be a point-source of radiation

with a phase and amplitude equal to that of the incident wave.

To be rigorous, the signal at each receiver should not only include waves
reflected from the plate but also waves arriving directly from the transmitter.
We shall delete this direct path in this simulation. In an experiment, the signals
arriving along the direct path could be subtracted out since the exact location of
the transmitter and receivers, and the speed of sound, is known. Or, windowed
sine waves could be used instead of a continuous wave so that the two signals can

be distinguished by a time window at the receivers.

After a presentation of the integral and discrete expressions for the scat-
tered waves, subsequent sections will exercise the simulation. An extra amount
of effort was put into testing the algorithm as part of an attempt to explain an
unexpected scattering pattern which occurs when the plate’s width becomes large

relative to a wavelength.
5.2.2.1 Scattering from a Rigid Plate

The Huygens-Rayleigh integral for scattering from a plate can be expressed

in terms of the incident pressure®! as

. 4\’771.(11 Ymaz .
‘R o 7k Pi(z,y) exp(—=j k D;)
Ri ()‘iRv YiRa ZiR) = ?,; / D: l
X !

dy dz. (5.2)

Y
min “man
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where the integrals are over the surface of the plate. In this study, we are con-
sidering only the two dimensional X-Z plane and so the dependence and integral
over Y will be dropped. Also, we have chosen to locate our linear receiver array
along the Z-axis and so Z/ = 0. The incident pressure Py is given by

exp (—j k Dr)

Pi(z)=F Dy

. (5.3)

The distances D; and Dt are given by Eq. (1.3) and Eq. (1.4), respectively, except
that X3, the location of the sources, is now z, the variable of integration — i.e.,
the location of Huygen's equivalent sources on the plate. With these assumptions

and definitions, Eq. (5.2) becomes

() = 140 ek (Dt D)

D Dy dz. (5.4)

2r

“min

There does not seem to be an exact closed-form solution to this integral.
Approximations to the square root in the D; and D7 can allow the.integral to
be evaluated in the Fraunhofer zone, or when the receiver is near the axis of the
plate®?. Unfortunately, the resulting expressions would be invalid for some of
the arrangements we wish to consider for the frequency-swept imaging simula-
tions. Thus, we shall evaluate the integral numerically with a simple but robust

summation. If we wish to break the integral into N¥ divisions, we let

dr — AX,

_ Xmaz — Xmin (55)

AX P
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Then, Eq. (5.4) becomes

Py AX N2 exp(—jk (Dim + Drm
- a8 o)

m=1

where
X3 = Xpmin + AX - (m = 0.5) (5.7)

This summation is arranged so the the integral over each division is approximated

by the value of the integral at the center of the division.

5.2.2.2 Plate Scattering Results

The simulation of plate scattering was first exercised for the case of a 12"
plate located at the origin. In Figures 5.5 and 5.6, the magnitude and phase,
respectively, of the reflected pressure are shown due to a source 100" from the
origin at 0°. Figure 5.7 shows a similar case except that the source is at —45°. In
all of these, the field was evaluated at locations which were 100" from the origin,

at angular increments of 0.25° — that is, each plot consists of 721 points.
5.2.2.3 Comparison to Closed-Form Expressions

It would be encouraging to be able to compare the figures of the previous
section to the closed-form expressions obtained by making the Fraunhofer approx-
imation. This approximation is made in the distances D; and Dt in Eq.(5.4).
A small error in the distances will cause only a small error where they are used
in the denom:nator of Eq.(5.4). On the other hand, the complex exponential is

very sensitive to such errors; and, the problem is made worse by the multiplicative

factor k.
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If we wish to limit the error in the phase of this exponential to, say, 10°,

we must limit the error in the distances to

wradians 1
10° - ———- = =0.028" (5.8)
where we have set A = 1" so that k¥ = 2x. We are interested in simulations
of a 12" plate; thus, the greatest error will occur when computing the distance
between the edge of the plate and a field point at some distance Z at some angle 6.

This distance can be computed without and with the Fraunhofer approximation

as

De:z:act = \/(Z COS(O) - 6).’ + Zg, (59)

Drraunhofer = Z — 6 sin(0). (5.10)

These two distances were compared for various values of Z as 6 was increased
to discover the maximum angle for which the Fraunhofer approximation met the
error limit. The results, shown in Table 5.1, indicate that around and below
Z = 600", the Fraunhofer approximation fails the criteria at all angles. Since
we are interested in using this simulation for distances of around Z = 100",

comparison to closed-form expressions using the approximation cannot be used.
5.2.2.4 Numerical Suitability of the Summation

One of the common causes of a loss of numerical accuracy is that large
and small numbers are added together in an inappropriate order, so that the
contributions from the small numbers are lost. In order to explore this possibility,
the scattering shown in Figure 5.5 was recalculated with the accumulated complex

value of the summation shown in Figure 5.8, and the individual complex terms
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Table 5.1. Maximum angle at which the Fraunhofer approximation is valid.

Z 0
<600.0 inches none
700.0 inches 0.1350 degrees
1,000.0 inches 0.2521 degrees
10,000.0 inches 0.1310 degrees
100,000.0 inches 0.0378 degrees
1,000,000.0 inches 0.0184 degrees

of the summation plotted in Figures 5.9. Note that the width of the plate was

increased, from that used in earlier figures to 24", so as to better illustrate the

process.

The summation shown in Figure 5.8 begins at zero; therefore, the first
point on the curve (at the end with the heavy line) is the same as the first term.
The last point on this curve is the final value of the summation. In Figure 5.9,
only half the terms seem to be present. Actually, they are all present: because of
symmetry, the terms for one half of the plate are exactly equal to the terms for

the other half, and so pairs of points plot exactly on top of one another.

These figures indicate that the evaluation of Eq. (5.6) should be a numer-
ically accurate process since the summation terms have nearly the same magni-

tude, and are within approximately one order of magnitude of the final result.
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5.2.2.5 Number of Terms

The accuracy by which the summation of Eq.(5.6) approximates the in-
tegral of Eq.(5.4) is governed by the number of terms N¥; therefore, it seems
prudent to examine the convergence of the sum as N is increased. As illustrated
in Figures 5.8 and 5.9, the summation is essentially one of vector addition in the
complex plane where the length of the vectors are nearly equal. However, the

direction of these vectors will vary more rapidly as the frequency or distances are

increased.

A series of tests were run where a 12”-wide plate scattered waves from a
13,045.2 Hz source located on the axis of the plate at a distance of 100”. The
normalized field at a point 100" away at an angle of 45° is reported in Table
5.2. The results obtained using 10,000 terms was used as the reference value for
normalization, which was done separately for the real and imaginary parts. Given

that the wavelength is 1", the results for using only a small number of divisions

are remarkably good.

Table 5.2. Normalized complex signal at 13,045.2 Hz and 45°.

N? Width of Term Real Part Imaginary Part
30 terms 0.4000 inches 1.1410 1.1271
60 terms 0.2000 inches 1.0327 1.0301
100 terms 0.1200 inches 1.0116 1.0100
1,000 terms 0.0120 inches 1.0002 1.0000
10,000 terms 0.0012 inches 1.0000 1.0000
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A similar series of test were then run where the field point was moved to
0° and the frequency was increased to 30,000 Hz so that the wavelength is now
0.435". The results, shown in Table 5.3, also show good convergence. Because of
these tests, it was decided to set NP = 200 for the simulation of plate reflection

in this study although higher numbers might be used at very high frequencies.

Table 5.3. Normalized complex signal at 30,000 Hz and 0°.

| NP Width of Term Real Part Imaginary Part
10 terms 1.2000 inches 0.9926 0.9255
50 terms 0.2400 inches 0.9995 0.9974
100 terms 0.1200 inches 0.9999 0.9993
1,000 terms 0.0120 inches 1.0000 1.0000
10,000 terms 0.0012 inches 1.0000 1.0000

5.2.2.6 Results Using Higher Precision

The simulation of reflections from a plate was implemented in “double-
precision” arithmetic which means that the computer’s internal memory repre-
sents each number, or each part of a complex number, with an accuracy equal
to approximately 16 decimal digits. Maintenance of this accuracy, of course,
depends upon the numerical methods employed in an algorithm. However, the

support routines, such as for the evaluation of the sine and cosine functions, are

designed to deliver this accuracy.

The computer being used can also support “quadruple-precision” arith-
g PP 1 P
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metic where each number and the support routines yield approximately 33 deci-
mal digits of accuracy. A special version of the simulation was prepared and the
values shown in Table 5.3 were recalculated using this higher precision. A com-
parison between the normalized quadruple- and double-precision results revealed
no differences within the first 5 digits. Because of these tests, it was decided that

the faster double-precision arithmetic was adequate.
5.2.2.7 Scattering at Large Width-Wavelength Ratios

In preparation for the imaging simulations, the plate simulation was ex-
ercised by varying the plate width, location, and the frequency of the source.
At higher frequencies, an anomaly occurred. We expected the scattering pattern
shown in Figure 5.5 to be essentially reproduced at higher frequencies except
that the pattern would be compressed towards the angle of incidence, which was
0° in these exercises. However, Figure 5.10 shows that we instead obtained a
pattern with a dip where we expected the central peak. To explore this further,
the pattern across an array of receivers was generated for a sweep of frequencies.
The results, shown in Figure 5.11, indicate that while the sidelobes do indeed
compress as expected as the frequency is increased, the anomalous region not

only continues but increases in size.

Other tests had revealed that the width of the plate was also a factor in
these unexpected results. In Figure 5.12, we have reproduced the simulation used
in Figure 5.5 except that the width of the plate has been increased from 12" to
48". In order to observe the progressive effect of plate width, the width was swept
from 12" to 4S8”, in steps of 0.5", and the normalized results displayed in Figure

5.13. Note that as the width of the plate is varied, the width of the anomalous




“(Y¥1°0) ,.90°0 UIPIA jO SULI3) (0 Pasn uoljewuins
ayy, "oyeld ,.21 © £q palajjeds ‘o() Je 90Inos ZH (0G'0g ' wolj oinssasd oy jo apnijtufey -Q1°G aindly

10109]Ja1
.06 + 000°09—
il 000°0S—
+000°0V— =
5]
1=}
=3
100006
i =
[¢°]
=
1 000°02- &
+000'01-
Lﬁ 000°0

92.IN0S

142




143

o)
<
(]
ja—
0
g
o~

57625.02

20875.01

10000.00

.

T

>
<
=
<
=
=
%
—-—
=
=5
2
<
>
=
=
9
Fon
L
2
—
ja]
<
w0
=
20
=
o
Q
=
——
———
<
Q
Q
e
3
Q
2]
o}
=
—
e
S

&~
&=
S
o
-~
i
S
ok
=
S
S
Smat
wn
2
L]
©
-
=
———
Qo
=
L
O
-
c:s
b
v
=
3
o
<
o

Ye)
[
o
N
vo)
!
o
o
<
o
o
[ae
S
i
<D
5o
co)
[ap] o
y S N
S 9
I 2

5}
-
=
n
»n
)
Pl
O

Figure 5.11. Magnitude of the pressure f
The summation used 200 terms of width




144

(\¥2°0) ..¥2'0 YIPIM JO SULID) (g pasn uoljewwins
ayy orerd , gy e £q palayeds ‘G0 1e d0INnos ZH g'Gr0'El © Wwol] oinssasd a1y jJo spnytudep ‘ZI°C aindiy

107091}l
06— ii—— 06 000°09-
4 000°0G—
1000°0V— =
[sV)
o
B,
+00008- £
o,
[¢]
-~ =
T +000°02- &
omvl om.u..*N
— +000°01—
é H 000°0
20
N
—_ O _
/ i AN
23Inos




145

, scattered by a plate

(0.06)).

ji\“%ﬁﬁwﬂ

sos

GO
JSOS)
'))%’X

S0
‘('«?5%«»/ S

o

from a 13,045.2 Hz source al the origin

ed 200 terms of width 0.06"

pressure

Figure 5.13. Magnitude of the
ay. The summation us

100" aw




146

region varies proportionally.

We can gain a better understanding of these simulations by applying Babi-
net’s principle;®? that is, we replace the rigid plate in its plane with an infinite
baffle in the same plane which contains an aperture where the plate had formerly
been located. In addition, we replace the point-source transmitter with its mirror
image, located on the opposite side of the plane. In this alternative arrangement,
the phase and amplitude at each location in the new aperture is identical with
that which had formerly existed at the same locations on the surface of the plate.

Thus, Eq. (5.4) continues to describe the signal at the receivers.

The effects seen in Figure 5.13 can now be interpreted as the field of a point
source after passing through, and experiencing diffraction at, an aperture. For
the special case of the point source location being on the axis of the aperture (i.e.,
opposite its center), Skudrzyk®* noted that the field consists of the interference
between the incident wave and a contribution that originates at the boundary
of the aperture. The special case applies here since the transmitter has been
located on the Z-axis about which the plate has also been centered. Given the
speed of sound ¢ = 13045.2 inches/second, we find that the edge of the first or
central Huygens zone to be 10.01, 6.543, or 4.214 inches from the origin when
the frequency is 13045.2, 30,500, or 73,500 cycles/second, in that order. This
corresponds to zones with a diameter (or width, in our two-dimensional case) of

20.02, 13.086, or 8.428 inches, in that order.

It therefore seems reasonable that the earlier examples, such as Figure
5.5, did not exhibit the interference between the incident and boundary waves

because the plate was not large enough to encompass even the first Huygens zone.
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The small dip where the central peak had been expected in Figure 5.10 is not an
anomaly but is instead due to the plate between just wide enough, relative to a

wavelength, for this interference to be observed.

5.3 Interpolation

The central idea in the swept-frequency method developed in the next
secticn is the comparison of the pattern recorded across the receiving array at
one frequency to that recorded at another frequency. The approach (discussed
later) shall be to use the higher of the two frequencies directly. Thus, we shall
need to compress the pattern at the lower frequency to estimate how it would look
at the higher frequency. That is, the signal R; recorded at the lower frequency
at location X in the linear array is moved to a new location X,R representing

the compression caused by the increase in frequency.

In general, the new locations X% will not happen to be equal to the original
receiver locations at which the higher frequency is known. We will therefore need
to interpolate on the compressed pattern to find its value at the original receiver
locations. While this is in some ways a minor point in the development, it is
central to the analysis not only in terms of the accuracy of the results but also

in terms of the speed of execution.

A piecewise-cubic Hermite interpolation algorithm was adapted from an
algorithm given by Conte and de Boor® and implemented as a FORTRAN subroutine.
This algorithm requires the slope of the function at  :h point. Since the slope

of the scattering pattern across the array cannot be ctly measured, the slope
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y: 1s estimated as

! Yit+1 — Yi—1
Yy = —————— 5.11
b oTip — T (5:11)

where the y; are the function’s values at locations z;.

It was felt that it would be better for this operation to return no value
than to blindly estimate answers which were not robustly supported by the given
data; therefore, the interpolation subroutine signals that it has set the result to
zero if the requested point of interpolation is outside certain limits. The limits
have been chosen so that there is always at least two points between the point of
interpolation and the beginning or end of the table of given data. These limits
were selected because the algorithm needs one point on either side of the point

of interpolation for the calculation of slope.

Since the pattern across the array often looks like a sine wave, a test was
run using 9 samples of a sine wave every 45°. Interpolated values, shown in
Figure 5.14, were requested every 1°. As expected, zeroes were returned beyond
the interpolation limits. The maximum error, occurring near the peaks, are

acceptable for this study.
5.4 Development of the Analysis Method

In Section 5.2, the scattering patterns from point and extended scatterers
were examined for correctness; now, we examine them again to determine their
frequency dependence which will then be used to develop the new swept-frequency

imaging method.
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5.4.1 Frequency Dependence

We wish to develop a model of the frequency dependence of a scattering
pattern. The approach shall be to develop the model for the rather simple case

of two point reflectors, but then test the model for both pairs of point reflectors

as well as plates.

The basic geometry for determining the signal scattered by a point reflec-
tor is given in Figure 1.1. The signal at a particular receiver located at (X2, Z%)
due to one reflector is given by Egs.(1.2) to (1.5) with N¥ = 2. For a single-
frequency source, the time delays can be written as phase delays. Then, we

merely sum the contributions from the two reflectors so that we have

exp(~j k (D11 + Dp1)) N exp(—j k (D12 + Dp2))

R(XE zBy =
( ) Dry-Dp Dra - Dpay

(5.12)

where the DT, are the distances between the transmitter and scatterer s and the
Dp, are the distances between scatterer s and the receiver. When the distance
d between the scatterers is small relative to the distance to the source and to
the receiver, we can make an approximation where we treat the pressure waves
as being planar instead of spherical. This lets us write the previous distances in
terms of the distances to the point midway between the reflectors. If Dr is the

distance to this point from the transmitter, and Dp is the distance to this point
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from the receiver, we can write
T
Dry —» Dy — 1dsm o),

Dry — D7 + dsm (d)T ,

(5.13)
Dpy — Dp — 1dsin o

(¢")
Dpz — Dg + 1dsin (q’)R)
where ¢ and ¢ are the angles to the transmitter and receiver, respectively,
relative to the normal to the line connecting the reflectors. Implicit in these
equations is the fact that the line connecting the point reflectors is parallel to the
X-axis, and that reflector 2 lies at an X-coordinate greater than that of reflector
1. We are mainly interested in the scattering pattern’s angular rather than ampli-

tude dependence upon frequency; futhermore, the amplitude terms change very

slowing with frequency. Therefore, we can drop the amplitude factors, leaving

R(X® z%®)
A exp (—j k (DT +Dp~ 3d (sin (¢7) +sin (¢R))>>
+ exp (—j k (DT + Dr + 1d (sin (¢T) + sin (¢R)>)),

=2 exp(—j k (Dt + DR)> . cos(%k d (sin (¢T) + sin (qu)))

(5.14)

The term cos(...) in Eq. (5.14) describes the directivity of the scattering pattern
at a given frequency f where k = —’;L We wish to determine how the directivity
will change when we shift to a new frequency f. That is, if some particular
feature in the pattern (a peak, a null, or any feature inbetween) is at angle PR

at frequency f, to what new angle ¢ does the feature move at new frequency
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f? Tt is convenient to answer this question by examining the nth maximum since
the entire pattern must exhibit the same {requency dependence. The maximum

points in the pattern will occur at

%kd(sin(éT)+sin(¢R)>=n7r for n=1,23,..., (5.15)

where we have excluded the central maximum at n = 0. The parameters n and
d do not change with frequency. Therefore, we solve for these parameters for

frequencies f and ]‘ and equate the results so that we have

-

f ( . T . R ) f ( T . (%R )

=. == .16

. sm<¢ )+sm(q§ ) sm(cp )+sm(¢ ) (5.16)
or

3% = arcsin <— sin (¢7) + § ~ (sin (47) +sin (¢R))>. (5.17)
If the scattering center (the point midway between the two reflectors) is, or is
assumed to be, located at (X¥, ZF), then we can convert the angular frequency

dependence, given by Eq. (5.17), into a linear frequency dependence, for locations

(X,»R, 0) in the linear receiver array. This relationship is
XE=XxF +2zF . tan (g;ﬁ,R) (5.18)

where ¢,~R and ¢,R are the angular locations of the ith receiver relative to the

scattering center.

The ability of Eq. (5.18) to represent the frequency dependence of a scat-
tering pattern was explored by first calculating the pattern, due to two point
reflectors, at a linear, equally spaced receiver array for a set of frequencies. The

results are shown in Figure 5.15 with the lower 90% of the data removed so that
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the location of the peaks can be more easily seen. Then, Eq. (5.18) was applied
to shift all frequencies, except 30,000 Hz, to f = 30,000 Hz. The shifted results
in Figure 5.16 exhibit two phenomena. First, the patterns at all frequencies are
now aligned. indicating that Eq.(5.18) has done a good job of predicting the
{requency dependence. Second, there are regions of the shifted pattern which
cannot be determined (i.e., the interpolation returned a zero); these correspond
to regions which had been off the end of the array before the shift. The undeter-
mined region is greatest where the shifting is greatest, at the lower frequencies.
This phenomenon means that even if we can predict the frequency-induced shift
of a pattern, the results may be less than useful if the value of Af (i.e., the

difference between f and f) is too great.

The same information shown in Figure 5.16 is shown again in Figure 5.17
as a series of superimposed curves. A repeating cycle of solid, long-dash, and
short-dash lines were used to plot the curves, beginning at the highest frequency.
Note that only the highest frequency, a solid line, extends all the way to the right-
hand side of the plot — as the frequency decreases, the undetermined region of
the shifted pattern increases and so the curve ends (goes to 0) at some decreasing
location in X. This figure exhibits an excellent frequency compensation for the
lateral location of the pattern. Unfortunately, the lack of any frequency compen-
sation for the amplitude of the pattern in Eq. (5.18) can be seen in the different

levels at the peaks and nulls.

The information shown in Figure 5.17 has been regenerated for Figure
5.18 except that the pair of point reflectors has now been replaced with a plate

12" wide. The frequency compensation for the lateral location of the pattern
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is remarkably good. especially in light of the fact that Eq.(5.18) was derived
for two point reflectors. This success is probably due to the fact that the two
edges of a reflective plate are the major contributors to its scattering pattern.
The frequency dependence of the amplitude of the plate’s pattern, however, has
resulted in relatively large differences at the peaks in the pattern. The only way

in which this difference could be minimized is to minimize A f.
5.4.2 Forming a Swept-Frequency Image

We wish that the input to this new imaging method be a set of data
like that shown in Figure 5.15: a received signal, versus receiver location, versus
frequency. We also wish that this new imaging method produce an output as in,
say, Figure 4.11, where the numerical value at each point in the reconstructed

field represents the degree to which there seems to be a scatterer at that point.

The obvious approach seems to be to somewhat repeat the concept of the
pattern-match method. That is, we first assume that there is a single fictitious
scatterer (actually, a scattering center) at some specific location whose scattering
pattern exhibits the frequency dependence given by Eq. (5.18). Second, we test
this hypothesis by using Eq.(53.18) to shift the information actually received,
from one frequency to another. If the hypothesis is correct, the shifted patterns
should line up as seen in Figure 5.17; if not, they should not line up. And third,
the fictitious scatterer is moved through all locations in ok ject space, i.e., all
locations which could possibly contain an actual scatterer. The location at which
the shifted patterns became aligned the best are then interpreted as the location

of the true scatterer.
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The most important issue which remains can be expressed as a question:

what metric should be used to quantify how well the shifted patterns “line up?”
Before this question can be answered, we mus. first answer a related one: do we

use the complex received signal, or its magnitude (as was used in Figures 5.15 to

5.18)7

There are at least two arguments in favor of avoiding the complex signal.
First, for non-reverberant scatterers, the phase of the received signals is deter-
mined by the wavelength and the path length. That is, though the phase varies
with the angle 6% to a receiver, the variation is due only to the change in the
path length to the receiver — there is no additional variation due to some scat-
tering phenomenon. Second, after the received pattern at one frequency has been
shifted to another frequency, we would need to add some additional compensa-
tion to the phase since each point in the shifted pattern is now at a new location
in the receiver array and therefore at a new distance from the scatterer. It is not
clear at this time if such an additional compensation could be determined. For

these reasons, only the magnitude of the received pattern shall be used.

We now return to the original question on determining how well the shifted
patterns line up. This question is quite similar to the one addressed by the
mismatch method developed in Section 4.2 if we instead ask the question: how
well do the shifted patterns not line up? To measure this, we redefine the metric

z3, originally developed for comparing complex numbers, to be

2

(iz.- (f@) - ~i(}()) (5.19)

&lo

i [\12

1N
=_T4.2

where N€ is the number of frequency pairs which are being compared. The
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two frequencies f(q) and }(q) are any two frequencies at which data has been
recorded (the appropriate selection of these frequencies will be investigated in
the next section). The values R; (f(q)) represent the pattern at array locations
X% which have been shifted from frequency f(q) to frequency }"(q) The values
R; (}(q)) also represent the pattern at array locations Xf; however, these are
values which have not been shifted in frequency but which have instead remained
at their original {frequency ](q) Thus, if the patterns at each pair of frequencies

. 2 . 2
line up, we have z; = 0; otherwise, zj can grow to be a very large number.

The normalization factor 71417 in Eq. (5.19) is equal to the number of terms

4
compared and is ideally given by NM = NC . N& where N® is the number of
receivers. However, as was seen in Figure 5.16, the number of terms compared will

be decreased when there are one or more undetermined points after a frequency

shift.

Each term of Eq. (5.19) compares two values: R; (f(q)) and R; (f(q)) The
former requires no calculation as it is one of the values directly measured at the ith
receiver. The latter, however, must be estimated as follows. First, we calculate
the shifted pattern locations using Eq. (5.18) with f — f(¢) and f — f(q). That
is, the data values R; which were originally recorded at receiver locations X,R are
now considered to be data values at the shifted receiver locations X. Second, we
must use interpolation to evaluated the shifted pattern at the original receiver

locations since we only know the values R; (}(q)) at those locations. We can

write this as

Ri(f(p) = INTERPOLATE(X,-R, R(XE, f(q)) for m = 1,2,,..,NR> (5.20)
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where the INTERPOLATE operation uses the set of values in its second operand to

estimate the function at its first operand.

Once all values of z3 have been : inputed, a final transformation is per-
formed as given in Eq.(4.17). That is  © cases where the frequency-shifted

patterns line up the best (i.e., there is a1 mum of mismatch) are mapped to

1 while the average case 1s mapped to 0.

5.4.3 Choosing the Frequencies

One of the input parameters to the program which generates the swept-
frequency image is a table describing the pairs of frequencies which are to be

compared:

f(¢) and f(q) for ¢=1,2,...,NC, (5.21)

Although such a table can accommodate any possible combination of frequencies,
several pragmatic considerations limit the combinations. First, in order to help
simplify the specification of the table, we always assign the higher frequency to
the second member of the pair so that f(g) > f(q). Second, we always shift
the lower frequency to the higher frequency since there will be more sinusoid-like

cycles across the array at the higher frequencies and thus a greater sensitivity to

mismatch.

To better understand how the choice of frequencies affected the new imag-
ing method, a simulation was prepared and run for a variety of frequencies. All

of the results reported in the remainder of this section use this same simulation.

The simulation consists of a source at (20”,0) with a pair of point reflectors

centered at (—20",100") and separated by 12" so that the line connecting the
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reflectors is parallel to the X-axis. An array of 64 receivers, spaced 0.5" apart,
1s centered on the X-axis. Only a one-dimensional reconstruction along a line at

Z = 100" was generated in these tests since we were mainly interested in lateral

resolution.

The first three tests, shown in Figures 5.19, 5.20, and 5.21, use a single pair
of frequencies arranged so that Af = 2.5kHz, Af = 5kHz, and Af = 10kHz, in
that order. These figures reveal several phenomena. First, a rough measurement
of the distance between the peaks reveal that they are separated by a distance
proportional to the wavelength of the difference in frequencies, ¢/Af, rather
than the wavelength of either of the two frequencies actually used. Second, as
the separation of the peaks becomes less, there are more false peaks. Third, the
peaks become more narrow as the difference in frequencies Af increases, even

thought the higher frequency (30 kHz) was the same in all cases.

A fourth phenomenon, which we shall call a “missed comparison,” arises
at either end of the curve for the largest Af, in Figure 5.21. This phenomenon
was first noted in Section 5.4.1 and is due to the fact that the frequency-shifted
pattern has moved completely off the array, making it impossible to compare
it to the unshifted pattern. So that we can distinguish this phenomenon from
that of zero mismatch, the imaging program assigns a value of 0.01 or 1% of the
maximum to the image when this problem occurs. These values thus appear as
low-level plateaus. These missed comparisons are more likely to occur whenever

(1) the value of Af is large, and (2) the fictitious scatter is at a large angle

relative to the Z-axis.

What we would like 1s to have the high precision which occurs when Af is
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large with the lesser number of false peaks which occurs when Af is small. One
approach to this ideal would be to use a smaller Af, but repeated. In Figure
3.22. 3 pairs of frequencies are used where A f = 5kHz for each pair. The results
are essentially the same as when a single pair of frequencies was used (Figure

5.20); thus. nothing has been gained.

One additional question which arose was whether the frequencies used
could be lowered without sacrificing image resolution. The case shown in Figure
5.20 has been repeated for Figure 5.23, where Af was kept at 5kHz but the
frequencies have been lowered from 25kHz and 30kHz to 10kHz and 15kHz.
While the width of the peaks are essentially the same, the number of missed
comparisons has grown considerably due to the fact that Af, as a percentage of

the frequencies, has increased.

The combinations of frequencies examined so far indicate that the false
peaks can be reduced if a set of values for Af are chosen where each is an
irrational multiple of the others. One convenient method for the construction of
such a set is to select frequencies with a logarithmic distribution, where each is

compared to the highest. Such frequencies are given by

. 9 . )
fi = fmin + (fmaz — fmin) - logyg (1 +(l - 1)—]\_/F———T> for 1= 1,2,...,NF

(5.22)
where the minimum frequency fmin, maximum frequency fmqz, and the number
of frequencies N¥ have been given. Such a set would then be used to make N¥ —1

comparisons since we cannot compare fmaz to itself.

A set of 20 frequencies, from 10kHz to 30 kHz, was constructed and is
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shown in Table 5.4. A reconstruction using this set, shown in Figure 5.24, exhibits
most of the characteristics we desire. Though the main peak is no longer as sharp
as for the Af = 10kHz case, the false peaks have been essentially eliminated.
When the number of frequencies was increased or decreased, the results (not
shown here) showed that the main peak was unchanged while the small false peaks
decreased or increased, respectively, by a small amount. Therefore, all of the

remaining swept-frequency simulations in this chapter use the set of frequencies

shown in Table 5.4.
5.5 Locating Specular Scatterers

The ability of the swept-frequency method to locate specular scatterers
has been explored through a series of simulations. In every case, a pair of point
reflectors are used which are separated by 12" along a line parallel to the X-axis.
Also, each simulation uses an array of 64 receivers separated by 0.5 which is

centered on the X-axis, and the 20 frequencies listed in Table 5.4.

The following subsections examine the results when the scattering center
(the point midway between the two point reflectors) is at different ranges; when
it is at different lateral locations; when tlie scattering center and source have no

offsets (i.e., they lic on the Z-axis); and when there are two sets of scatter-rs.

All contour plots will include lines at 10%, 20%, ..., 90% of the maximum,
and will include a sketch of the receiver array (a line with a tic mark at each
receiver) and source when possible. All hidden-surface plots will have data values
below 0.005 (bad matches) erased, and values of 0.01 (missed comparisons) shown

as plateaus.
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Table 5.4. Logarithmic set of frequency comparisons.

Low Frequency (Hz) ' High Frequency (Iz)

Difference (Hz)

10.000.00 30.,000.00 20,000.00
13,368.09 30,000.00 16,631.91
15,788.96 30,000.00 14,211.04
17,680.08 30,000.00 12,319.92
19,232.18 30,000.00 10,767.82
20,548.53 30,000.00 9,451.47
21,691.39 30,000.00 8,308.61
22.701.21 30,000.00 7,298.79
23.605.76 30,000.00 6,394.24
24,424.93 30,000.00 3,575.07
25,173.46 30,000.00 4,8206.54
25,862.57 30,000.00 4,137.43
26,501.00 30,000.00 3,499.00
27,095.71 30,000.00 2,904.29
27,652.29 30,000.00 2,347.71
28,175.34 30,000.00 1,824.66
28,688.68 30,000.00 1,311.32
29,135.50 30,000.00 864.50
29,578.50 30,000.00 421.50
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-

5.5.1 Specular Results at Different Ranges

The simulations described in this section were selected to explore how the
swept-frequency image of a pair of point reflectors varies with the range of the
reflectors. In all of the simulations discussed in this section, the lateral location

of the scattering center is X = —20".

The reconstruction of a pair of reflectors whose scattering center is at
(—20".25") is shown in Figure 5.25. An expanded view of the results near the
scattering center, shown in Figure 5.26, indicates that there is a small error in
the location of the peak. Such an error might have been expected since, at such
a small range, the farfield assumptions built into Eq. (5.18) would no longer be
valid. Another view of this reconstruction, shown in Figure 5.27, exhibits the
plateaus which were discussed earlier and which are areas of missed comparisons,
i.e., where the frequency shift of the patterns from f(q) to f(q) moved the patterns

entirely off the end of the receiver array.

Figure 5.27 also shows several sharp spikes which will be called “sparse

3

comparisons.” Whereas a missed comparison occurs when the number of com-
parisons, N has gone to zero, a sparse comparison occurs when N¢ has gone to
some small but non-zero value. Thus, even though the patterns may not line up
at all, there are so few comparisons made that the amount of mismatch is very
small, i.e., the amount of apparent match is very large. This phenomenon could
be eliminated by treating cases where N is below some threshold as if they were

cases of missed comparisons; however, this has not been done in the figures in

this chapter so that the phenomenon can be observed.
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In Figure 3.23. we have doubled the range so that the scattering center
is now at (—207,50"). While the error in the location of the peak has been
reduced. the spread of the peak has increased — that is, the resolution has been

decreased. This is even more apparent in Figure 3.29, where we also see that the

range resolution has become much poorer.

When the range is again doubled to Z = 100", the range resolution dis-
appears. Figure 5.30 shows that the lateral resolution has also become poorer.
However, if the lateral resolution were to remain the same as the range went
to infinity (as might be suggested by Figure 5.30), we would have a remarkable
imaging method. However, as is shown in Figure 5.31 for a range of Z = 400",
this is not the case — the lateral resolution also decreases with range, as for most
other imaging methods. That is, while the lateral resolution remains the same

as the range of the fictitious source increases, it gets poorer as the range of the

true source increases.
5.5.2 Specular Results at Different Bearings

The simulations described in this section were selected to explore how the
swept-frequency image of a pair of point reflectors varies with the lateral location
of the reflectors. In all of the simulations discussed in this section, the range of

the scattering center is Z = 50".

We begin by reviewing Figures 5.28 and 5.29 from the previous section,
where the lateral location of the scattering center was X = —20" and a certain
amount of range resolution was exhibited. Next, we move the scattering center

to X' = 0. The results, shown in Figure 5.32, reveal that all range resolution has
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Leen lost. and that the region where a good match was found makes a strange
curve where Z < 39", Figure 5.33 shows that the missed and sparse coraparisons
are also still present. and that the match has a very minor maximum at the true

scattering center.

When the scattering ¢ nter is again moved laterally, to X' = 20", igures
5.34 and 5.35 sh~wn that the results are quite similar to the complementary case

where the scattering center was al X = —20" (see Figures 5.28 and 3.29).
5.5.3 Specular Results with No Offsets

A single simulation is used in this section to examine how the the swept-
frequency method reacts to the case where there are no offsets in the location
of the source and scattering center — that is, they all lie on the normal to the
receiving array. The results of this simulation, shown in Figures 5.36 and 5.37,
indicatc that the swept-frequency mcthod has great difficulty in determining the

range of the scattering center in this situation.

The result shown in Figures 5.36 and 5.37 might have been expected since
the frequency-dependent shift of the patterns can be shown to be about the
same, as the range of the fictitious source changes. What was not expected was
the equally poor result, scen in the previous section in Figures 5.32 and 5.33,

when the source was to the side, at Z = 20".
5.5.4 Results Using Two Sets of Specular Scatterers

A single simulation is used in this section to examine how the swept-

frequency method reacts to the case where there are two pairs of reflectors. The
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results shown in Figure 5.33 indicate where the reflectors have been located. In

this figure. we have shown only that portion of the reconstructed field near the
Rd

reflectors and have, in addition, renormalized the data to the maximum within

this portion.

The entire reconstructed field is shown in Figure 5.39. Here, the size of the
sparse-comparison spikes is so much greater than that of the peaks around the

scattering centers that the latter have been made quite small by normalization.

A hidden-surface plot of that portion of the reconstructed field near the
reflectors is shown in Figure 5.40, with the data again renormalized to the max-
imum within the portion shown. This figure indicates that the 4 reflectors have
formed multiple scattering centers, among the various pairs of reflectors, with the
peak near X = —10" perhaps representing the sum of 2 scattering centers where

one is due to the inner pair of reflectors and one is due to the outer pair.

5.6 Locating Extended Scatterers

The simulations performed in Section 5.5 are now exactly repeated except
that the two point reflectors are replaced with a plate reflector which is 12~
wide and which is simulated using a summation of 200 terms. The logarithmic

distribution of frequencies given in Table 5.4 is used in each case.

5.6.1 Plate Results at Different Ranges

The simulations described in this section were selected to explore how the
swept-frequency image of a plate reflector varies with the range of the reflector.

In all of the simulations discussed in this section, the lateral location of the center
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of the plate is X = —20".

The reconstruction of a plate whose center is at (—207,25") is shown in
Figure 3.41 and exhibits the same small error in the location of the peak as was
seen in the case of the point reflectors. It is interesting to also note that the range
ambiguity extends along a line which is parallel to the Z-axis, rather than along a
line running radially from the center of the receiver array. A hidden-surface plot
of this same information, Figure 5.42, has a region showing a good match along
the lineat Z = 1", between X = 0 and X = 17". It is not clear whether these are
merely a large number of closely spaced sparse-comparison spikes or some other
phenomencn. For example, it is shown in the next section that such regions can
occur when the array is within the actual source’s central lobe — an equivalent

phenomenon may be occurring with the fictitious source in Figure 5.42 .

In Figures 5.43 and 5.44, the range has been doubled to Z = 50”; as
expected, the range resolution has become poorer while the small error in the
main peak has been eliminated. When the range is again doubled, to Z = 100",

all range resolution is lost as is seen in Figure 5.45.
5.6.2 Plate Results at Different Bearings

The simulations described in this section were selected to explore how the
swept-frequency image of a plate varies with the lateral location of the plate. In

all of the simulations discussed in this section, the range of the plate is Z = 50".

We can consider the series discussed in this section as beginning with
Figures 5.43 and 5.44, of the previous section, as they are for a plate centered at

(—=20",50"). When the plate is then moved laterally, to X = 0, Figures 5.46 and
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5.47 show that in addition to a loss of all range resolution (as was experienced for
the point reflectors), a major loss of lateral resolution is also experienced. When
the center of the plate is moved still further to the right, to X' = 20", Figures
5.48 and 3.49 show that we do not see a recovery of range or lateral resolution as

was seen for the point reflectors — the results continue to be extremely poor.

We can gain some insight as to the cause of these poor results for this last
case. where the center of the plate was at (20”,50"), by examining the pattern
recorded at the receiving array for two frequencies. These patterns, shown in
Figure 5.50, reveal that we are receiving that portion of the plate’s scattering
pattern near the central lobe, where the amplitude varies rapidly. Therefore,
when Eq.(5.18) is applied to shift the lower frequency to the higher frequency,
a poor match results even when the fictitious scatterer is at the location of the
true scatterer. The results when the center of the plate was further away from
the source, as shown in Figures 5.43 and 5.44, were much better since we were
then receiving that portion of the the plate’s scattering pattern which was far

away from the central lobe, where the amplitude was not changing as drastically.

5.6.3 Plate Results with No Offsets

As might have been expected after the previous section, when the plate
and source are both on the Z-axis, as is shown in Figures 5.51 and 5.52, the image
exhibits very poor resolution. In fact, Figure 5.52 indicates that the match for
a fictitious scatterer at the location of the true scatterer is actually a bit worse

(the trough) than for locations on either side.
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5.6.4 Results Using Two Plate Scatterers

The results of a simulation with two 12" plates, centered at (—20",50")
and (0,50"), are shown in Figures 5.53 and 5.54. While earlier simulations might
have suggested that we would not be able to resolve the plate on the Z-axis, it is
not clear why the offset plate cannot be located. It is possible that the off-axis
contributions of the offset plate were essentially lost since they were so much

lower than the central lobe of the on-axis plate.
5.7 Comparison to Beam Forming

In addition to the simulations of the previous sections, the swept-frequency
method can be evaluated by comparing it to the results obtained using a well-
known method such as beamforming. The swept-frequency result for two point
reflectors, 12" apart and centered at (—20",1000"), is shown as the solid curve
in Figure 5.55. The source is at (20”,0). When the signals from the same two
reflectors were analyzed by a beamformer, the curve in Figure 5.55 with the
short dashes resulted. While this curve has a slightly sharper peak than the

swept-frequency method, it is also in error by several inches.

Part of the reason for the error in the beamformer result is probably due
to the fact that it assumes that it is receiving plane waves. The assumption
would be slightly more valid if one, instead of two, reflectors were used. When
this case was simulated, the curve in Figure 5.55 with the long dashes resulted,
and exhibited a peak which was at the correct location and slightly sharper than
the curve from the swept-frequency method. A swept-frequency curve using only

one reflector, for comparison, would be useless because a single reflector exhibits
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no frequency dependence whatsoever.

The range of the reflectors used for the previous figure was made relatively
large so as to approach the plane-wave requirement of the beamformer. \When
the range is reduced to 100", the results, shown in Figure 5.56, show that while
the peak from the swept-frequency method has become much more precise, the

beamformer results have become useless.
5.8 Results With Range Resolution

In most imaging systems which use multiple frequencies, the received sig-
nal 1s correlated with the transmitted one to determine the time-of-flight and
therefore the range of the scatterer. Ermert and Karg®® showed that the ambi-
guity function for differences in range Az near a scatterer at range z was given

by

sin(Ak-Az-
Ak-Az-

! I
SN’

x(Az) = (5.23)

where R is the distance between the center of the receiving array and the scatterer.

It would be interesting to roughly simulate how such a correlation could
improve a swept-frequency image, using the same frequencies which are already
being used in the frequency sweep. This can be done rather trivially by simply
multiplying any of the normalized reconstructions shown previously in this chap-
ter by the values provided by Eq. (5.23). In particular, the reconstruction shown
in Figure 5.30 for a pair of reflectors centered at (—20",100") would be a good

candidate as it exhibits good lateral resolution but no range resolution.

Before proceeding, the definition of “bandwidth” nceds to be addressed.
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-

In Ermert and Karg, a continuous sweep of frequencies were used where the
bandwidth A f was defined as the difference between the maximum and minimum
frequencies, with Ak = 27 Af/c. However, in Figure 5.30, a continuous sweep
is not used. and the difference between the frequencies being compared can vary
from a low of 421.5 Hz to a high of 20,000 Hz. Therefore, each of these frequency
differences were used for Af and the results for the low and high differences

shown in Figures 5.57 and 5.38, respectively.
5.9 Swept-Frequency Execution Times

Most of the swept-frequency processing in this chapter evaluated the re-
construction field at 101 points along the X-axis and at 100 points along the

Z-axis, for a total of 10,100 points. In all cases, 20 frequencies and 19 frequency

comparisons were used.

The Microvax II processor required about 11,200 seconds to evaluate these
images when two point reflectors were used; and about 11,400 seconds when the
plate reflector was used. It is not clear why the time to process the signals from
the plate required slightly more time since the time to simulate the scattering is

not included in the elapsed time.

These times indicate that it took approximately 1.109 or 1.129 seconds to
reconstruct each field point when the point reflectors or plate reflector was used,
respectively. These times are on the order of 3 times longer that that needed by
the pattern-match or mismatch method to form an image point with a barrier

present.
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Chapter 6

Summary and Conclusions

A study of the major approaches to the generation of acoustical images
has led to the development of several new methods, and some new observations
concerning the localization of acoustic scatterers. The following sections will

summarize these results and suggest further lines of investigation.

6.1 Basic Issues

Three basic imaging methods have been studied: holography, beamform-
ing, and receiver correlations. Of these, the holography method seems to have
the greatest general usefulness since a beamformer will fail when the wavefronts
are not planar and the correlation method will fail when there is more than one
source or scatterer. Another, lesser known imaging method, built upon the con-
cept of a fictitious scatterer, was investigated and shown to have several powerful

capabilities and the ability to incorporate, as special cases, the three previously

studied methods.

It was found that the proper distribution of receiver elements in sparse
arrays can definitely improve the array’s performance. However, there does not
seem to be any further improvements to be had when the array is already fully

populated, with receivers every half-wavelength.

A study of the use of complex signals to represent the information at the
receivers revealed that significant range information is lost with such a represen-

tation, but could be recovered by recasting an imaging method to instead use the
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time-of-flight.
6.2 High Resolution Methods

Two categories of high resolution array processing methods were exam-
ined: the autoregressive-moving average (ARMA) methods; and the minimum
energy (ME) method and its variations including linear predictors (LP) and eigen-
vector analysis. While each holds some promise of enhancing the resolution, each
also has some major obstacles which need to be investigated further before the

method can be applied to the location of scatterers.

It does not seem possible to enhance either category of high resolution
imaging to incorporate a priori information about the scatterers or their relative
location. Nor does it seem possible to use the full time-history of the received
signals so as to avoid the phase ambiguity described in Section 2.6. On the
other hand, the two imaging methods investigated with simulations in this study
(pattern-match and swept-frequency) could be modified to use such information.
It would be interesting to investigate whether such a modification would yield a

higher resolution than ARMA or ME methods.

6.2.1 ARMA Methods

The major question in applying this method is whether any extrapolation
can predict a scattering function at angles beyond those subtended by the re-
ceiving array. While this is probably possible for simple scatterers, further work
needs to be done to determine if robust extrapolation is possible for the general
case. In the absence of prior knowledge about the scatterer, it seems that these

methods should be used with great caution. A review of the literature suggests
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that this sort of problem has not been considered since most workers have been

seeking only the location of simple plane-wave sources.

In those cases where an ARMA spectral estimator can properly extrapo
late data beyond the receiving array, the estimator would provide an enhanced

resolution even in the absence of noise,
6.2.2 ME Methods

The major obstacle in applying minimum energy methods is their inability
to work with any wavefront shape other than ones that are planar. Thus, while
intuition would predict that an imaging method should yield better results as
the object being imaged moved closer, these methods instead progress towards
uselessness as the object moves closer. While both methods can be modified
to accommodate any specific wavefront, no adaptive method is known for the
determination of what this wavefront should be — it must be chosen by some
other means. While this problem does not, technically speaking, rule out these
methods, it means that they can be used only to locate scatterers which are in
the farfield. No scatterer, no matter how simple its scattering function, can be

handled if it is too close.

A great deal of progress has been made in accommodating coherent sources
during the last few years and so this may no longer be an obstacle in applying the
ME method to scatterers. The observation by Duckworth?! that small, naturally
occurring motions can provide the needed decorrelation is, on the one hand, a
promising solution although it has yet to be established whether, on the other

hand, such motion will smear the resulting image to the extent that the high
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resolution method’s enhancements are lost.
6.3 Pattern-Match and Mismatch Imaging

Two new imaging methods, called the pattern-match method and the mis-
match method, were developed from the concept of a fictitious scatterer. The
mismatch method is similar to the pattern-match method but uses a new ap-
proach to the comparison of two complex signals. The following sections review
the work which has been done in this study, and then suggests several questions

and variations which may make these new methods yet more useful.

6.3.1 Review of the Simulations

It has been shown that, to the extent that the simulation of the diffrac-
tion phenomena is valid, the new methods are powerful tools for the analysis of
pressure waves which have encountered a known disturbance. These methods
can provide a superior reconstruction to the holography method in many cases
when free-space conditions do not exist. The application to experimental data is
limited only by the accuracy of the simulation, of the experimental diffraction or

other propagation phenomena, which is used in the estimate of the signal from

the fictitious source.

To test the new methbds, a computer simulation of diffraction by a barrier
was implemented. This simulation automatically analyzed the relative locations
of the source, barrier, and receiver, and correctly determined in which of the
3 possible regions the receiver was located. Though developed for sources and
receivers far from the barrier, the simulation was sufficiently accurate for the

holography method to form the image of a reflection when the source was in




front of the barrier.

The simulations revealed that, when the acoustic source is partially hidden
from the receiving array by a barrier, the pattern-match method reports that the
source is at some location behind the barrier, without reporting an exact location;

on the other hand, the holography method falsely reports that the source is at

the edge of the barrier.

The mismatch method excludes more locations, from being possible source
positions. than the pattern-match or holography methods. However, it is not
clear that the resulting spike-like response would always be more desirable —
without the pattern-match image as a guide, these spikes could be interpreted as

additional sources.

It was shown that the new methods are not significantly affected by small

errors in their knowledge of the environment, such as an error in the range of a

barrier.

Although it is not clear whether the new methods can be considered to
be linear processors, simulations using two sources indicate that they at least

approximate the linear response of the holography method.

The new methods are generally slower than the holography method; how-
ever, it seems that this should not be considered to be an obstacle at this stage

as ever-faster computer system may make this issue irrelevant.
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6.3.2 Future Work: Composite Sources

In this study, only the pattern from a single fictitious source has been
used in the search for the true source, even in cases when there was in fact two
sources. However, when a priori information can establish the number of sources
and their relative orientation, we could treat this set of sources as one composite
fictitious source, and estimate the pattern which would have been received at the
array due to each possible location of the composite fictitious source. This might
be extremely effective when the object being sought can be characterized by a

set of specular reflections whose relative separation and strength is known.

This same approach could be taken further to include the case of an ex-
tended source or scatterer. We would continue to need an algorithm which can
estimate the pattern at the receiving array for each possible location of the ex-
tended fictitious object. This algorithm could either be purely theoretical, or

could perform the appropriate interpolation upon a sufficiently extensive set of

empirical measurements.
6.3.3 Future Work: Noise and Interference

Although this study has laid the groundwork for the use of the pattern-
match and mismatch methods, actual applications, such as the guidance of a
mobile robot, will doubtlessly encounter a variety of sources of noise and inter-

ference.

An investigation of these problems should begin by introducing isotropic
noise into the simulations; if this reveals a problem, correlations between elements

might be used in place of the simple phase calculations. In addition, directional




221

noise (representing, say, a fan in the robot’s vicinity) should also be investigated.

Other environmental problems which might be considered could include
additional barriers, errors in the knowledge of the receiver array elements, and

the occurrence of motion during signal acquisition.
6.3.4 Future Work: Mismatch Variations

There would seem to be an almost unlimited number of variations of the

mismatch method.

In this study, the mismatch was equated to the “distance” between two
complex numbers; this mismatch metric thus, more or less, gives the same weight
to differences in phase as it does to differences in amplitude. These weights
could, for example, be varied by calculating the phase and amplitude differences
separately and then weighing them in some other manner. In some cases, it may

be useful to allow the sign of the differences to have an effect.

In any of these variations, the resulting match could also be raised to

some higher power, or inverted, so as to give a greater emphasis to the large

mismatches.

In addition, any of these variations could be normalized to the amplitude
of one of the complex numbers so that, for example, mismatches between small

numbers are weighed more heavily than equal-sized mismatches between large

numbers.

In would quite useful to investigate how the mismatch method achieves

its improvements, in those regions where it offers improvements over the pattern-
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match method or holography, with the goal of extending its improvements to all
cases. In particular. it may be that a diversity of frequencies could eliminate

the false peaks, such as does a diversity of values for A f in the swept-frequency

method.
6.3.5 Future Work: Time-of-Flight

In this study, both match methods represent thc time delay seen at each
receiver as a complex number. As discussed in Section 2.6, when the transmitted
signal is broadband, considerably more information is present than can be rep-
resented by a single complex number. In these cases, it is possible to adapt the
pattern-match methods to retain and use the full time-of-flight (TOI") informa-

tion content of the received signal.

To review, in the method used in Chapter 4, the complex signal from
the single-frequency fictitious source was estimated at each receiver location.
However, it would be just as easy to express this as a complex amplitude plus a
TOF. The path length and hence the TOF is already present in the terms like
exp(j k ...) in the expressions for py, pi, and p,. This allows us to calculate the
time-history to be expected at each receiver location from the fictitious source. A
comparison of the actual signal’s time-history with that of the fictitious source,
summed across the receiver array, would then vield the match for that location
of the fictitious source. An investigation of such an imaging method would also
need to consider techniques for estimating the transmitter’s waveform and time

of transmission when those quantities are not known.
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6.4 Swept-Frequency Imaging

A new imaging method which uses multiple frequencies was developed and
tested using simulated reflections from point reflectors and a plate. The following
sections review the new method, the results of the sinulations, and a variety of

developments which may make the new method vet more useful.
6.4.1 Review of Swept-Frequency Imaging

A new imaging technique has been developed which for the first time ex-
ploits the fact that an object’s scattering pattern has a deterministic dependence
upon the frequency of the acoustic wave which it is scattering. This development
also borrowed the central concept of the mismatch method to form a metric which

indicates whether a given scattering pattern exhibits the expected frequency de-

pendence.

To test the new method, computer simulations of two categories of scat-
terers were implemented and tested: specular scatterers, represented by point
reflectors: and extended scatterers, represented by a reflective plate. The latter,
though implemented as a rather simple summation, proved to be highly accurate,
vielding an unexpected but entirely appropriate representation of the scattering

pattern at high frequencies and large plate dimensions.

The simulations reveal that the swept-frequency method can provide good
range and lateral resolution in many circumstances, but can loose resolution when
the scatterer is moved to the normal to the array of receivers, or to larger ranges.
The reconstruction of a plate can also deteriorate when it is moved so that the

array of receivers is within that portion of the plate’s scattering pattern where
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the amplitude varies rapidly.

When multiple scatterers were present, the simulations showed that the
swept-frequency method can vield poor rcsutts. Multiple reflectors caused the
image to have a peak at the scattering center forined by every possible pair of
reflectors. Multiple plates yvielded a rathcr useless image, though the results may

have been partially due to the rapidly varying amplitude noted previousiy.

[t was shown that a simple range calculation, as is often done with broad-
band pulses, could be combined with the swept-frequency method to provide an

enhanced range resolution.

A comparison with a beamformer was performed which indicates that,
while the beamformer may provide a higher resolution at very large ranges (so

that it sees only plane waves), the swept-frequency method provided comparable

or superior resolution at all ranges.

6.4.2 Future Work: Amplitude Dependence

The poor results experienced when attempting to image tie plate at cer-
tain locations was shown to be due to the plate’s scattering pattern changing
amplitude, as well as angle, as the frequency was varied. A similar problem could

occur with other extended scatterers.

It may be possible to avoid this problem if we replaced the pattern across
the array at each frequency with an artificial pattern designed so that its peaks
and nulls are at the same location as the original. In other words, all patterns

would be modified to be similar to those obtained from point reflectors. It may
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even be possible to skip tlie actual generation of the artificial pattern and use

only a table of peak and null locations since the interpolation, which must be

done anyway, will be implicitly fitting such a pattern to its input table of values.

One of the challenges of such a development would be the creation of an
algorithm which could find the desired locations in the scattering pattern of a

plate near its central lobe — that is, the phenomena we are looking for are merely

local peaks and nulls.
6.4.3 Future Work: Phase Dependence

[t is sometimes possible to treat the location of the scatterer as the source
of a new spherical wave. Then, since we know the wavelength at each frequency,
the location of the receivers, the location of the transmitter, and the location of
the fictitious scatterer, it would be possible to determine the relative phase which
we would expect to see at each receiver. A more sensitive measure of mismatch
could thus be constructea by also comparing the expected and actual phases at
each receiver and frequency. Such an algorithm would, in effect, be looking for
spherical waves in the received information which correspond to the location of

the fictitious scatterer.

An investigation into this enhancement would need, however, to first con-
sider whether the phase of the scattered wavefront acts like that of a spherical
wave centered at the scatterer — that is, does the scattering process result in a

scattering phase pattern as well as a scattering amplitude pattern?

A yet more ambitious variation of this approach could also be investigated
) P g

where the estimate of the phase was replaced with an estimate of the time-of-

]
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flight. This would secem to also require that the simple comparison of phases be

replaced with some manner of correlation.
6.4.4 Future Work: Noise and Interference

In Section 6.3.3, it was noted how various environmental events could
cause a corruption of the pattern-match and mismatch methods. These same
considerations apply to the swept-frequency method in some applications, such

as for the guidance of a mobile robot.
6.4.5 Future Work: Use of Frequencies

There are several questions concerning the use of frequencies which might
be investigated. It would be useful to determine an analytical or other approach
to the selection of frequencies which yielded the maximum resolution while also
eliminating false peaks. These goals may also be better met by weighing the
results of the frequency comparisons unequally, instead of always weighing them

equally as was done in this study.

In an experiment, considerable time can be saved by transmitting a broad-
band pulse instead of individual frequencies. It would thus be useful to investigate
whether this would yield the same results as a stepped-frequency sweep for specu-
lar scattering. Iowever, for extended scatterers, the interference between widely
separated points on the scatterer may not occur at a given frequency (or, at
least, may not occur in quite the same way) if the wave does not remain at that

frequency for at least a certain length of time.
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6.4.6 Future Work: Scatterer Locations

In this study, we have sought only to find the scattering center rather than
the location of the individual point reflectors or the boundaries of an extended
scatterer. It would be useful to investigate how knowledge of the scattering
center would be used in an actual application. For example, could a mobile robot
avoid obstacles knowing only the location of their scattering center? If not, some
algerithm could perhaps be developed which could estimate the boundaries of
an extended object once its identity, scattering center, and orientation had been

determined.
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Appendix

Fourier Derivation of the Holography Equation

A method for the derivation of the holography reconstruction equation
using a Fourier transform of the wave equation was suggested by Eschenberg and
Hayek!! and is shown in greater detail here. Asin Chapter 2, the two-dimensional
Helmholtz wave equation when the pressure has a liarmonic time dependence is
given by

VeR(z,2) + E*R(z,z) =0 (A.1)

with the Laplacian defined here as

After multiplying all terms by (1/v/27) exp(—Jjkz2) and then integrating over all
values of X we have

O*R(z,z) O*R(z, ) ) |
F (T) +F (—-—a—z—> + F (K R(z,2)) =0 (A.3)

where # and R represent the forward Fourier transform. We wish to modily each
term of Eq. (A.3) so that it is expressed only in terms of the Fourier transform of
R. This is a trivial matter for the last term since &, is independent of the variable
of integration . The order in which the integration and derivative are performed
in the second term can also be interchanged in a trivial manner since the Fourier
transform has no dependence on z. However, the first term of Eq. (A.3) is more

complicated since the Fourier transform has a dependence on z.

A series of expansions can provide the needed substitution. We begin
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by noting that the second derivative of the Fourier transform with respect to z
cquals zero because there is no dependence on z left after the Fourier transform

(it has been replaced with a dependence on k;). This quantity can be expanded

as
DPF(R(x. =)
(e "
L o )? ik x
= 52 /_)o 5‘;3 [R(SL‘,Z) € 1kz dx
rod 1OR(x.z) _. 1 .
- f)_ J{‘ [Q%Z‘_le-ﬂ“ — jhy R(a,z)e I He } da
Vit J-x U X
= \/1)_/)o [()-I;(Ji’:)e—jkzz —J.z}\‘z: aR,(a:.:")e_jkEI
27 J—o0 x- 4
—k7 R(z,z) eI % I] dx
B O*R(z, 2) 5. OR(z.z) 2B .
—f(T)—]_sz a.‘l: —I»IR(kr,~)
=0
or
D*R(x, = R(z, = 9z
F 0—(——)) = ok (B2 e R ), (A.5)
da? dx
A similar expansion of the first derivative of the Fourier transform yields
OF (R(x,z) OR(z, = L
—(—av——l =F (_gz——)—> —Jhy R(kpyz) =0 (A.0)
or
JR(x, = Lz
F <_((;I__)> = kg R(ks, 2). (A7)




Substituting Eq. (A.7) into Eq. (A.5) we find

OZR(CL‘,Z) _ R Y N
f(-a;——>_—%£RM%~y (A.8)

Finally, we substitute this result into Eq. (A.3) and use k* = k7 + k7 to arrive at

O R(ky, = -
-—%3—2+@Rwuﬂ=0 (A.9)

which is the same as Eq. (2.6).
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