
USAISEC I q
US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5000

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

00 COMMUNICATIONS, AND COMPUTER SCIENCESU)

(N

I

Protocol Interoperability Between

DDN and ISO Protocols

(ASQBG-C-89-021)

August 1988

DTIC
S2ELECTEh

7MAR 1989 0
E

AHIMICS
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

. m-.ANW bss

UNCLASSIFIED

REPORT DOCUMENTATION PAGE No 0-n
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAILABILITY OF REPORT

N/A
2b. DECLASSIFICATION / DOUWNORADING SCHEDULE UNLIMITED

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A ASQBG-C-89-021
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONI (if applicable)7.NAEOMOTONGRANAIN

University of Arizona AIRMICS
6c. ADDRESS (City. State. and ZIP Code) 7b. ADDRESS (City, State, and Zip Code)

Computer Engineering Research Laboratory 115 O'Keefe Bldg.,
Electrical and Computer Engineering Depart. Georgia Institute of Technology
University of Arizona. Tucson. A a 4 7 Atlanta GA VIII4-ARflO

Sa. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTfATION NUMBER
ORGANIZATION (if applicable)

AIRMICS ASQBG - C
8c. ADDRESS (City, State, and ZIP Code) ID_ nIJc, oP w-rnjn ,nruu Ut

115 O'Keefe Bldg., PROGRAM PROJECT TASK WORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.

Atlanta, GA 30332-0800 62783A DY10 00-08
It. TITLE (Include Security Classification)

Protocol Interoperability Between DDN and ISO Protocols (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)

JianYi Tao and Ralph Martinez

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year. Month, Day) IS PAGE COUNT

FROM _ TO 1988, August 276

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse it necessary and identify by block number)

FIELD GROUP SUB-GROUP DDN Protocols, ISO Protocols, CCITT Recommendations, Trans-
port Gateways, DDN Internet Architecture, ISO/DDN Inter-
operability

19. ABSTRACT (Continue on reverse if necessary and identity by block number)

- This study focuses on the following four problem areas: 1) the general issues involved in protocol conver-
sion, 2) protocol conversion in the DDN to ISO environment, 3) a detailed understanding of both proto-
col suites, and 4) approaches to achieve interoperability between TCP/IP and TP-4. The study concludes
with recommendations for future research in protocol interoperability. .

3 J,) , /,

20. DISTRIBUTION / AVAIABIJTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED / UNMITED [SAME AS RPT. DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 2b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Allan R. Osborn (404) 894-3136 ASQBG - C
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete UNCLASSIFIED

FINAL REPORT

Contract No. B-10-695-SI

US Army Institute for Research in
Management Information, Communications

and
Computer Science Department

Georgia Institute of Technology
Atlanta, GA 30332

PROTOCOL INTEROPERABILITY

BETWEEN DDN AND ISO PROTOCOLS

-- A Study and Specification Report --

By

JianYi Tao
Research Associate

Ralph Martinez, Ph.D.
Director

Computer Engineering Research Laboratory
Electrical and Computer Engineering Department

THE UNIVERSITY OF ARIZONA
Tucson, Arizona 85721 A@@.ssin o

August 1988 ITIS GRA&I
DTIC TAB
Unaznoused 0
Justiftat ion

Distribution/
Availabil ity Code

t s

|

ThABL F CONTENTS

I. INTRODUCTION 1
1.1 Background 1
1.2 Motivations 2
1.3 Objectives 3
1.4 Structure of Report 3

PART I. INTEROPERABLE PROTOCOLS IN DDN ENVIRONMENT 5

2. MAJOR ISSUES IN THE PROTOCOL CONVERSION 5

3. PROTOCOL INTEROPERABILITY REQUIREMENTS IN DDN 6
3.1 Interconnecting DDN and ISO Networks 6
3.2 Interconnecting TCP and ISO Users in the Same Network 6
3.3 Interconnecting TP-0 Users with the Rest 8

4. PROTOCOL CONVERSION TASKS 8
4.1 General Gateway Functions 8
4.2 Gateway Functions between DDN and ISO/0SI 10

4.2.1 Differences between Network and Transport Layer Gateways
4.2.2 Three Cases of Transport Layer Gateways in DDN 12
4.2.3 Proposed Transport Gateway with Multiple Functions 14

4.3 Gatewaying Concerned in this Study 16

5. UNCTIONAL ELEMENTS CONCERNED IN THE TRANSPORT GATEWAYS 17
5.1 Connection Management 17
5.2 Data Transfer 18
5.3 Flow Control 18
5.4 Sequencing 18
5.5 Multiplexing and Demultiplexing 19
5.6 Splitting and Recombining 19
5.7 Segmenting, Blocking, and Concatenation 19
5.8 Routing 19
5.9 Error Handling 20
5.10 Reset 20
5.11 Management 20

PART II. TPRO DD COL SUITE 21

6. DDN INTERNET ARCHITECTURE 21

* 7. INTERNET PROTOCOL (IP) 23
7.1 Operational Model Descriptions 23
7.2 Protocol Specification 25
7.3 Interface Description 27

8. INTERNET CONTROL MESSAGE PROTOCOL (ICMP) 29

1

TABLEg ON]TENTS (Continuedi

9. USER DATAGRAM PROTOCOL (UDP) 29

10. TRANSMISSION CONTROL PROTOCOL (TCP) 29
10.1 Operational Model Descriptions 31
10.2 Protocol Specifications 34
10.3 The Interface Descriptions 37

10.3.1 The User/TCP Interface 37
10.3.2 The TCP/IP interface 39

PART III. = ISOQLSI PROTOCOL ARCHITECTURE 40

11. THE ISO AND THE OSI REFERENCE MODEL 40
11.1 The ISO and the ISO Standards Documenting 40
11.2 The OSI Basic Reference Model 42
11.3 ISO STANDARDS 42
11.4 Concerns of Connection- and Connectionless-Modes 46

12. THE NETWORK LAYER 47
12.1 Network Service Definition (DIS 8348) 47

12.1.1 The Network Service 47
12.1.2 Network Service Primitives 49

12.2 Network Protocol Specification (IS 8473) 49
12.2.1 Underlying Service and Functions 49
12.2.2 PDU Structure Specification 49

13. THE TRANSPORT LAYER 53
13.1 Transport Service Definition (IS 8072) 53

13.1.1 Transport Service (TS) 54
13.1.2 Transport Service Primitives 54

13.2 Transport Protocol Specification (IS 8073) 55
13.2.1 Transport Layer Functions 55
13.2.2 Transport Protocol Classes 57
13.2.3 TPDU Structure Specification 58
13.2.4 TC State Transition 62

14. THE SESSION LAYER 62
14.1 Session Layer Services 62
14.2 Session Service Definition 63
14.3 ISO Standards for the Session Layer 65

PART IV. P C f= = TO ISO-TP 66

15. INCOMPATITILITY CONCERNS 66
15.1 Different Aspects of the Incompatibilities 66
15.2 Service Comparison 67
15.3 Conversion Tasks in Consideration 67

15.3.1 TC Establish Phase 69
15.3.2 Data Transfer Phase 70

2-

TABLE QF CONTENTS (Continued)

15.3.3 TC Release Phase 70

16. CONVERSION METHODOLOGY 71
16.1 Conversion tasks in General 71
16.2 Direct Conversions 72
16.3 Restriction-upon-user Approach 72
16.4 Rule-based Method 73
16.5 Modular System Design 73

17. FUNCTIONAL MODULES 74
17.1 The Models of the Protocol Conversion 74

17.1.1 The Message Translation Model 74
17.1.2 The State Conversion Model 76

17.2 System Structure 76
17.2.1 The Layer Design 76
17.2.2 The System Design 77

17.3 Protocol Conversion in the Network Layer 79
17.3.1 Protocol Conversion Tasks 79
17.3.2 Protocol-Dependent Submodule 81
17.3.3 Interface Submodule 81
17.3.4 Common Linker Module 81

17.4 Protocol Conversion in the Transport Layer 82
17.4.1 Protocol Conversion Tasks 82

17.4.2 Protocol-Dependent Submodule 83
17.4.3 Interface Submodule 84
17.4.4 Common Linker Module 84

17.5 Design Tools 84

18. SYSTEM ARCHITECTURE AND COMMON DATA STRUCTURE 85
18.1 System Architecture of Transport Gateway Specification 86
18.2 Common Data Structures 87
18.3 Transport Gateway Specification 88

19. NETWORK LAYER DESIGN 88
19.1 Some Related Problems 88

19.1.1 Handling of Segmentation 88
19.1.2 Handling of Routing 88
19.1.3 Handling of QoS Parameters 89

19.2 NETWORKLAYER Module Specification 90

20. TRANSPORT LAYER DESIGN 90
20.1 Some Related Problems 90

20.1.1 Classes of Service Allowed through Gateway 90
20.1.2 Internal FSM Modifications 90

20.2 TRANSPORTLAYER Module Specification 97

21. CONCLUSION 97

3

TABLE gONTNT (Continuedl

APPENDIX A. TRANSPORT GATEWAY SPECIFICATION 99
A.1 Global Definitions and the Root Module 99
A.2 NETWORKLAYER Module Specification 112

A.2.1 ISO IP Submodule 117
A.2.2 DDN IP Submodule 129

A.3 TRANSPORT LAYER Module Specification 144
A.3.1 ISO TP4 Submodule 150
A.3.2 DDNTCP Submodule 221

REFERENCES 262

4

TABLE QZ FIGURES

Figure 3.1 Interconnecting TCP-based and ISO-based Network 7
Figure 3.2 Interconnecting TCP/ISO Users In the Same Network 7
Figure 3.3 Interconnecting TP-0/TCP users with the Rest 7

Figure 4.1 The iP Gateway Model 11
Figure 4.2 The Model of Transport/Above Gateway in Concern 11
Figure 4.3 Gateway with Upper Layer Protocols Implemented 13
Figure 4.4 Transport Layer Gateway without Upper Layers 13
Figure 4.5 Transport Layer Gateway with TP-0 on Top of TCP 15
Figure 4.6 Multiple-function Transport Gateway 15

Figure 6.1 DDN Internetwork Architecture 22

Figure 7.1 IP Header Format 26
Figure 7.2 Type of Service in IP 26
Figure 7.3 Flags in IP 26
Figure 7.4 The Classes of Internet Addresses 28
Figure 7.5 Options of the IP 28

Figure 8.1 ICMP Message Format 30

Figure 9.1 User Datagram Protocol Header Format 30

Figure 10.1 TCP Connection State Diagram 33
Figure 10.2 The TCP Header Format 35
Figure 10.3 The Bit Patten of Control Bits 35

Figure 11.1 ISO Organization Chart 41
Figure 11.2 OSI Basic Reference Model 41

Figure 12.1 DIS 8473: PDU Structure 51
Figure 12.2 DIS 8473: Control Flags 51

Figure 13.1 State Transition with Possible Allowed TS Primitives 5
Figure 13.2 TPDU Structure 59
Figure 13.3 The Structure of TPDU Variable Part 59
Figure 13.4 The Structure of CR and CC TPDUs 59
Figure 13.5 The Structure of DR and DC TPDUs 59
Figure 13.6 The Structure of Data (DT) TPDU 59

" Figure 13.7 The Structure of Acknowledgement (AK) TPDU 61
Figure 13.8 The Structure of ED and EA TPDUs 61
Figure 13.9 The Structure of Reject (RJ) and Error (ER) TPDU 61

- Figure 17.1 The Model of Message Translation in Gateway 75
Figure 17.2 The Model of State Conversion in Gateway 75
Figure 17.3 Moduled Design of the Gateway Layer 78
Figure 17.4 Moduled Design of the Gateway System 78

Figure 18.1 Transport Gateway System Architecture 86

5

TABLE QE CONTENTS (Continued)

Figure 20.1 State Transition: ISO-TP4 Connection Establishment 92
Figure 20.2 State Transition: DDN-TCP Connection Establishment 92
Figure 20.3 TP-Gateway Connection Establishment Initiated by TP4 93
Figure 20.4 TP-Gateway Connection Establishment Initiated by TCP 93-
Figure 20.5 State Transition: ISO-TP4 Connection Release 94
Figure 20.6 State Transition: DDN-TCP Connection Release 94
Figure 20.7 TP-Gateway Connection Release Initiated by ISO-TP4 95
Figure 20.8 TP-Gateway Connection Release Initiated by DDN-TCP 95
Figure 20.9 State Transition: TP-Gateway Connection Establishment 9b
Figure 20.10 State Transition: TP-Gateway Connection Release 96

6

TABLE OF TABLES

Table 7.1 Examples of Upper Layer Protocols Using IP 27

Table 8.1 Some Examples of ICMP Message Type 30

Table 10.1 Examples of TCP Ports 36

Table 11.1 OSI Layers and Services 43
Table 11.2 ISO / OSI Documents 44

Table 12.1 IS 8348: Connection-mode Net-crk Service Primitives 49
Table 12.2 DIS 8473: Connectionless-mode Network Service Primitives 4(
Table 12.3 DIS 8473: Connectionless-mode Network Service Functions 51
Table 12.4 Examples of the Options in DIS 8473 53

Table 13.1 IS 8072: Transport Service Primitives 55

Table 14.1 Session Service Primitives 64

Table 15.1 Service Comparison between TCP and ISO-TP 68

7

1. INTRODUCTION

This clepter gives a brief summary on the background of data
commu.. .cation protocols in the Defense Data Network (DDN)
environment and the International Organization for
Standardization (ISO) community. It also describes the
motivations which stimulated this study task. The objectives of
the study task and the structure of the report are also described
in this chapter.

1.1 BACKGROUND

In December of 1978, the internetwork protocol suite, The
Internet Protocol (IP) and the Transmission Control Protocol
(TCP), was recognized and adopted by the Department of Defense
(DoD). Since then, it has been well developed in Defense Data
Network (DDN) environment and many other academic data networks.
The protocol set is well recognized by DDN community as it
satisfactorily meets the U.S. military requirements with respect
to security, survivability, and reliability. It is also well
recognized by the rest of the data communication community as it
successfully provides network and transport services to end-
users, and the vision of the original architects in the mid-70s
is remarkably well-matched to today's data conuunication need.

On the other hand, the International Organization for
Standardization (ISO), especially the Technical Committee 97 in
ISO, along with some other standards organizations such as the
International Telephone and Telegraph Consultative Committee
(CCITT), have been developing high-quality standards for
networking services, protocols, and interfaces for Open System
Interconnection (OSI) in years. It is felt even more urgent in
the past few years, with the rapid evolution of communication
technologies and the system architectures, Lo the construction of
distributed application environment with more advanced data
communication standards, by a very large community of computer
system builders. Some resulting standards have already been
recognized as international standards. The ISO IS 8473 as a
Network Layer protocol and ISO IS 8072/8073 as a Transport Layer
protocol are two examples. In the United States, these protocols
and some other layer's protocols have been adopted with minor
modifications by the National Bureau of Standards (NBS) for some
governmental organizations, and implemented by several vendors on
a few systems. The ISO protocols are more favorable in the
European countries, such as in the NATO member countries.

1

Under these circumstances, the critical problem of
interoperability has arisen in interconnecting those independent
DoD communities with other federal, intelligent, security, and
commercial agencies in U.S., with other international
organizations, and with the rest of NATO. This research is
addressed to study the interoperability issues between the DDN
protocols (TCP/IP) and the OSI protocols (TP-4).

1.2 MOTIVATIONS

In 1985, under the request by the DoD and NBS, the Committee on
Computer-Computer Communication Protocol in the National Research
Council did a transport protocol study of the DoD TCP/IP and the
ISO Transport Protocol Class 4 (TP-4) [NRC 85]. The result
shows that both protocols are functionally equivalent, both
provide essentially similar services, and both are sufficiently
equivalent in security-related properties. This study recommended
with three alternative approaches for the DoD to solve the
interoperability problem:

1) Immediately specify the TP-4 as a costandard -- for newly
added systems to reduce the transition cost later.

2) Announce the intention to have TP-4 as a costandard -- to
wait for the satisfactory demonstration of the protocol and
implementation suitability; and to wait to use commercial
products with low developing cost.

3) Continue to use the TCP, delay the adoption of the TP-4
to avoid faulty system behavior and unnecessary delay.

When more than one protocol is concerned in the data
communication community, there must be the compatibility problem
to be faced before and after the new protocol is adopted, until
all the protocols are truly unified with unique standard protocol
set. This is one of the reasons which stimulated this study.

Meanwhile, it is NATO's intention to introduce ISO protocols as
far as possible in all NATO's new systems, some valuable research
efforts were performed in the SHAPE Technical Center, as a joint
effort with U.S. DoD, in the area of conversion between TCP and
ISO transport protocols (GROEN 86]. The direct conversion
method was studied as a method of achieving interoperability
between the NATO and DDN data communications systems. However,
the approach imposes quite a few restrictions on the transport
service users to resolve the mismatches. So the second reason
for this study is to find some alternative approaches to relax
the restrictions on the transport service users.

2

Started in 1986, the Network Working Group in ARPANET proposed in
RFC 1006 to implement ISO Transport Protocol Class 0 (TP-0)
services on top of the TCP. The basic idea is that the TCP/IP
protocols provide the error-free virtual circuit connections
between transport service users so that only TP-0 of the ISO
transport service is needed to interconnect DDN with the ISO
protocol world. This approach could help the transition from the
TCP/IP protocol suite to the ISO protocol suite. But there are
some other issues which need to be further discussed. This is
the third reason for the study task.

The pace of implementing ISO TP-4 is relatively slow, while the
interests in TCP/IP increased dramatically recently. IBM and
some research institutes in European countries jumped to TCP/IP
in last six months. A study result released in December, 1987
shown that 56 percent of those surveyed are still willing to stay
on TCP/IP with no plan to migrate to ISO. The implication of
this survey means that it is going to be possible to have TCP/IP
networks that have ISO protocols running simultaneously with
TCP/IP protocols.

The ISO protocols have long been recognized as the trend of the
protocol development. While the TCP/IP protocols have already
occupied a large market, it will be inevitably required to have
the well-developed protocol conversions between the DDN TCP/IP
and the ISO TP. This is another reason that the protocol
conversion could be quite important in the near future.

1.3 OBJECTIVES

This study -s focused on the following problems:

i) The general issues involved in the protocol conversion;

2) The protocol conversion in the DDN to ISO environment;

3) More detailed understanding of both protocol suites;

4) Approaches to achieve the interoperability between TCP/IP
and TP-4;

5) Proposal to the future studies in the area.

1.4 STRUCTURE OF REPORT

The report is divided into four major sections. Part I contains

3

discussions about the interoperable protocols environment in DDNin the future. Part II and III are devoted to the DDN and ISO
protocol suites. Part IV is for the protocol conversion between
the TCP/IP and the TP-4.

4

PART I. INTEROPERABLE PROTOCOLS IN DDN ENVIRONMENT

In this section, the major issues in the protocol conversion are
presented. The protocol interoperability requirements in the DDN
environment are discussed. The protocol conversion tasks are
defined to meet the requirements.

2. MAJOR ISSUES IN THE PROTOCOL CONVERSION

During 1987 there was a lot of controversy in the development
gatewaying strategies. Since it is inevitable to have
heterogeneous networks coexisting in the data communication
community, the protocol conversions will be a permanent fact of
life. For example, tcday we are concerned about the gatewaying
between DDN TCP/IP community and the ISO/OSI protocol communities
in the same digital data communication world. Soon we will find
ourselves concerned with the gatewaying between the global
telephone network with integrated services (ISDN) and the global
Wide Area Network with digital data communication (GWAN). Some
experts are arguing that the ISO/OSI protocol architecture should
be considered as a worldwide standard architecture toward which
all existing architectures should converge in the long term.
Other experts argue that only an intermediate protocol for the
protocol conversions in the near term should be considered.

The significance of the gateway design for protocol conversion is
based on the principle that ALL the protocol layers above the
gatewaying layer must be compatible. This rule should be
strictly reserved in the gateway design. The gateways
implemented at the network layer (DDN IP and ISO IP) are of
limited general use in the long term. Some of the arguments
indicate that gatewaying should occur at or above the transport
layer. And some arguments also suggest that the best approach is
to perform gatewaying exactly at the transport layer to minimize
the gatewaying effort.

Gateways can be implemented at the transport protocol peer or at
the transport service access point. When this approach is used,
how should the end-to-end reliable service property at the
transport layer be maintained? How should its significance be
evaluated in the military environment where the survivability is
critical important? When the service primitive is not provided
by one of the converted protocols, should it become the
restriction imposed on the service users? Should it be resolved
by the protocol conversion mechanism in the gateway as much as
possible? Should more intelligence in the conversion be

5

considered to handle the mismatches? Should direct packet-to-
packet conversions be preferred for higher throughput with more
restrictions on the user side? The last question is how the low
throughput and performance should be improved for heavy duty
gateways? These are questions which must be addressed in this
research.

3. P INTEROPERABILITY REOUIREMENTS In DDN

It is a well-recognized trend in the data communication protocol
development to converge to the ISO standardized protocols. As
suggested by the report from the transport protocol study group
in the National Research Council, the DDN community should be
ready to have the protocol convergence in certain future time
period (NRC 85]. On the other hand, the delayed availability
of the ISO TP-4 implementations is causing more user groups
jumping over to the TCP/IP internetworking protocols. The effect
of the current situation will definitely put more importance onto
the protocol conversion task when the conversion is actually
needed.

3.1 Interconnecting DDN and ISO Networks

This is the basic problem of interconnection between two network
systems, such as the TCP/IP-based DDN in the U.S. and the ISO
based network in the rest of NATO. Figure 3.1 shows this
internetworking scenario. Only one set of protocol suite is
implemented in each network in this case. The gateway is
required to interconnect the two networks.

This kind of interoperability is always required before any
protocol transition or convergence plan is made.

3.2 Interconnecting TCP and ISO Users in the Same Network

This is the problem that both the TCP/IP and the ISO protocols
coexist in the same network as costandards. The network here
could be a set of interconnected subnetworks. Two protocol
suites can coexist in any subnetworks. The users using different
protocol suites are communicated through the intermediate
gateways, as shown in Figure 3.2. The DDN Internet is an example
of the case.

6

T(:P-based (; based

f1

Figure 3.1 Interconnecting the TCP-based Network
with the ISO-based Network

Figure 3.2 Interconnecting TCP/ISO Users In the Same Network

-Figure 3.3 Interconnecting TP-O/TCP users with the Rest

7

3.3 Interconnecting TP-0 Users with the Rest

This is the case where ISO TP-0 services are implemented on some
nodes above the TCP/IP protocols, as proposed in [ROSE 87]. As
higher level services and protocols above the transport layer are
usually implemented as user-callable utilities on the host
computers, it is desirable to offer them directly in the DDN
Internet now without disrupting existing facilities. This will
permit DDN users to develop expertise with ISO applications while
there is still a lot of work being done to get good
implementations of ISO transport/network layers. It will also
permit more graceful convergence and transition strategy from
TCP/IP networks to the ISO-based networks in the medium and long
term. The interconnection model is shown in Figure 3.3. This
migration strategy is based on the notion of gatewaying between
the TCP/IP and ISO protocol suites at the transport layer.

4. PROTOCOL CONVERSION TASKS

The problem of protocol conversion will be discussed from three
aspects: general gateway functions, gateway functions required
in the DDN environment, and gateway functions attended in this
study task.

4.1 GENERAL GATEWAY FUNCTIONS

Internet gateways, regardless of their application
environment, must perform a variety of functions in order to make
data communications between different networks compatible (MART
87b]. The functions of generalized internet gateways are
discussed here:

1. Medium Transformation - A gateway must translate messages
between different transmission media,such as LAN RF
broadband or baseband digital signals, and the serial 1822
or X.25 interfaces of the DDN packet switching nodes.
Signaling schemes to each network must be present in the
gateway.

2. Media Access Translation - The media access schemes on the
LAN side of the gateway must be present in the gateway.
Media access schemes on LANs, such as CSMA/CD or token
passing 802.4, must be present in the gateway. Access
schemes to the DDN must also be present.

3. Address Translation - Network addressing schemes are

8

different on each network, so that the gateway must perform
address translation. For example, the IEEE 802.3 LAN uses a
48 bit flat addressing scheme and the DDN uses a 32 bit two-
level addressing scheme. The gateway must recognize internet
addressing schemes when interconnecting multiple networks.

4. Protocol Transformation - The network protocols of each
network must be transformed through decapsulation and
encapsulation steps in L part of the gateway. For the DDN,
the Internet Protocol (IP) and the Transmission Control
Protocol (TCP) must encapsulate to a LAN message. The LAN
protocol headers must be stripped before hand-off to the
TCP,"IP protocols. In the case of internet environment, a
gateway-to-gateway protocol must be implemented.

5. Message Buffering and Flow Control - The gateway must be
able to buffer messages from each network and flow control
the network interfaces when the buffers are full. The flow
control mechanisms buffer sizes are critical to the
performance of the gateway.

6. Reliable Connection Management - The gateway must provide an
error free link between two end-users on the networks by
adhering to the error control and re-transmission mechanisms
in the network protocols. The status of the connection must
be made available to the user when error conditions arise.

7. Fault Detection and Reporting - The gateway must be able to
detect connection status when establishing and maintaining a
connection between two end-users. The gateway then reports
to the users the condition of the links, gateways, and
networks in the connection path, if a problem should occur.

8. Performance Monitoring and Statistics - The gateway must be
able to monitor its performance relative to packet
throughput and network routing statistics. These parameters
can be read locally or remotely from the gateway and used
for internet management.

9. Security Control Mechanisms - The gateway must adhere to
internet security control and management procedures. This
might include generation and routing of encryption keys and
cryptograhic algorithms.

10. Real-Time Response - The gateways must process packet
traffic from the networks in real-time so that user response
times are not compromised. The gateway must accommodate the
differences in network response times. Real-time response is
also important during interactive user sessions. The gateway
must sustain the communication rates of each network.

11. Parallel Processing Architecture - The gateway must contain
parallel processing architecture to sustain the network
transmission speeds. Dedicated protocols and communication
modules must exist to achieve the performance throughput

9

required by connection to multiple networks.

12. ISDN Interfaces - Gateways must eventually interface to
integrated services digital networks (ISDNs) for data,
voice, and video communications. The gateway must
interconnect to ISDNs and their predecessors.

13. Multiple Network Interconnection - Gateways in distributed
C3 systems must have the interfaces and link parts to access
multiple communications systems and networks.

14. Multi-Level Security and Key Distribution - Communications
between end-users in the distributed C3 system will require
multi-level security for sensitive information and the
gateway must preserve the data security characteristics of
several networks.

15. Dynamic Network Topology Reconfiguration - Since the
gateways are interconnected to multiple networks it is
feasible to use the gateway to keep network status and give
this information to the network management function for
reconfiguration when nodes and networks fail or are
destroyed.

16. Network Reachability - The gateway must determine the
reachability and availability of neighboring networks.
Network status must be exchanged between gateways so that
alternate network hops be taken when a path is down.

17. Internet Management and Control - Te gateway interacts with
an Internet Management and Control Center to assist in the
daily operation and reliability of the networks. The gateway
performance monitoring function collect performance data and
presents it to the Control Center.

4.2 GATEWAY FUNCTIONS BETWEEN DDN AND ISO/OSI

4.2.1 Differences between Network and Transport Layer Gateways

Figure 4.1 and 4.2 show the major difference between the network
layer gateways (IP gateway) developed in the previous research
work and the transport/network layer gateways in the current
researches (MART 87a]. In the IP gateway case, it is
concentrated on the connectability up to the network layer. The
medium transformation, the media access translation, and the
subnetwork protocol translation are performed in the IP gateway,
while the same Internet Protocol and the same upper layer
protocols are used. Gateways at the Network Layer are called

10

T I ? " I

-. -< - <t: ,, 1 --'" ..

PII PL I I

.ub Net w ork I SuDNOI wor k 2

Figure 4.1 The IP Gateway Model

Host llost 2

AL, AI Al, L 7 7

Ph 1. < P1L, P1L <- Pt 2

S.,l "3- , : 512 P2< ' ;I
!

SK -TL, *--. TI, IL2 - IL,

.IF', ~ - j IP, IFI'2 *-< > ,I'2

DSLN *.- - DDLi: DDLz DD I2

-- Pit PLi PL2 -- PL2

SubNetwork I SuhNetwork 2

Figure 4.2 The Model of Transport/Above Gateway in Concern

11

Routers [MART 87b].

In the second case, more complicated functions are performed in
gateway than those in the router case. As a result, it increases
the complexity of the gateway design. While the gatewaying at
the higher layers (Session, Presentation, and Application layers)
are optional, depending on the case concerned. These situation
will be described in the following sections.

4.4.2 Three Cases of Transport Layer Gateways in DDN

The cases discussed in following section can be applied to both
situations explained in Section 3.1 and 3.2: interconnecting DDN
and the ISO based networks, and interconnecting TCP/IP users and
ISO protocol users within the same network. This is based on the
fact that the differences at the lower layers up to the
network layer are not important issues here.

Case one implements not only the Transport/Network layers, but
also other upper layers, as shown in Figure 4.3. The gateway
itself actually becomes a node in both networks, performing
store-and-forward functions between application layer protocols.
This kind of gateway will be able to connect the TCP/IP based DDN
world with the ISO protocol based networks without changing
anything in the DDN.

The advantages of this approach are:

1) the least effort is needed by the user nodes in the DDN
side;

2) the gateway implementation could be simple using a host
computer to be connected to both networks, running both sets
of protocol separately in multi-tasking environment,
performing message translation at the user level; or
performing the application protocol conversion at the
application layer [MART 87a,b].

The disadvantages of this approach are:

1) lower throughput in the gateway,

2) longer node delays,

3) low performance when used for the interactive message
transferring,

4) that the gateway becomes the single point of failure in the

12

SMT),FTri,, AL
TELNET.

...... 1NU1L
-.-

. o...

.e % %'% % *'%*.<

S.

Figure 4.3rnpr e Gateway with ou Upper LayersPooosImlmne
(Case TO)

13asut aeu

DON environment where the survivability is critical.

Case two implements the protocol conversion at the network and
the transport layers, as shown in Figure 4.4. This approach
requires the ISO upper layer protocols being implemented on those
DDN nodes whose users want to communicate with the users in the
ISO based networks.

The advantages of the approach are:

I) If the protocol conversion is implemented at the protocol
peer entity at the transport layer, the end-to-end property
of the connection between the end users can be sustained.
This is very important in the DDN environment for
survivability;

2) This is more reasonable approach for protocol convergence in
the future.

The disadvantages of this approach are:

i) The implementation of the gateway is more complicated due to
the complexity of the protocol at the transport layer;

2) Only those users with ISO upper layer protocols implemented
in the node can communicate with other nodes.

* Figure 4.5 shows the model of Case Three. The TP-0 protocol at
the top of the TCP is considered in this approach, but it is not
necessary the only choice. Actually, it is considered as a
general study. The different classes of ISO Transport services
are not compatible by the nature. Gatewaying is needed to get
the users with different classes of transport services
communicated and could be quite easily extended
to the actual situation in real need. One example could be the
connections to long haul networks implementing LAN protocols. As
discussed in some papers, this approach is considered to reduce
the overhead of overly complicated protocols.

4.2.3 Proposed Transport Gateway with Multiple Functions

Putting the three models from previous discussion together, a
multiple-function gateway is discussed in this section. The
multiple function transport gateway structure is shown in Figure
4.6.

14

1'r oAnrjor t Ga~t e wnij

Vx v < N' v _e

Figure 4.5 Transport Layer Gateway with TP-O on Top of TCP
(Case Three)

A L -G(a teway

S NIT P, T.- Ga Lew ay' AL1

T 11.NIE T. LG~ 0 ii

TL-T-Gc

TCP .. Cp. -

Figure 4.6 Multiple-function Transport Gateway

15

Following notations are used in the Figure 4.6:

IP: DON Internet Protocol
TCP: DON Transmission Control Protocol
SMP,FTP,TELNET: DON Application Layer Protocol

ISO IP: Equivalent Internet Protocol in ISO (CLNS, 8473)
TP-4: ISO Transport Layer Protocol, Service Class 4
SL: ISO Session Layer Protocols
PL: ISO Presentation Layer Protocols
AL: ISO Application Layer Protocols

AL-Gateway: DDN-ISO Gateway at/above Application Layer

TL-Gateway': Transport Gateway, link submodule
TL-G TCP : Transport Gateway, interface submodule to TCP
TCP': Transport Gateway, TCP submodule
TL-G TP-4 : Transport Gateway, interface submodule to TP-4
TP-4': Transport Gateway, TP-4 submodule
TL-G TP-0 Transport Gateway, interface submodule to TP-0
TP-O': Transport Gateway, TP-0 submodule

The AL-Gateway module in the figure performs the gatewaying
at/above the application layer, in order to interconnect the
upper layer protocols between DDN and ISO world. The protocol
conversion in this model is discussed as Case Three in the
previous section.

The Transport gateway module is made of several submodules. To
interconnect different transport layer protocols, a general link
submodule is used to perform gatewaying tasks independent of
particular transport protocols. The protocol-dependent tasks,
such as checksum production, reproduction, and error detection,
are performed in the protocol-specific submodules. The gaps
between the protocol-specific
submodules and the general link submodule is matched up by the
interfacing submodules. The mismatches between the
interconnected protocols will be notified to both sides. Some of
the conflicts are handled in each interfacing submodules, and
some others are handled in the general link submodule. Some
decision-makings are required in the link submodule. Another
phdse of research determined the functions which are candidates
for protocol negotiation in the gateways.

4.3 GATEWAYING CONCERNED IN THIS STUDY

This study examines the issues and design approaches related to
transport layer gateways. The gateway functions are performed by

16

the TL-G submodules in Figure 4.6 (surrounded by the dash lines).
The protocol conversion tasks and the conversion algorithms will
be specified in the last part of the report.

5. FUNCTIONAL ELEMENTS CONCERNED IN THE TRANSPORT GATEWAYS

This chapter presents some explanations and definitions to those
terminologies related to the functional elements in transport and
network layers, based on the OSI model. Special issues are also
discussed for those functional elements which requires special
processing in the transport gateways.

5.1 CONNECTION MANAGEMENT

Connection at N-layer is an association established between the
N-layer peer entities to be used by the users above the N-layer.
The peer entities in the connection are identified by their
addresses, or service access points. Usually, the N-layer
protocol user initiates the N-layer connection establishment.
The complexity of the connection establishment operation at
different layers is dependent on the specific layer. The
connection establishment at the N layer requires that the (N-i)
layer connection is available and both N-layer peer entities are
in the state in which they can execute the connection
establishment protocol exchange. Otherwise, some manipulation
should take place to handle the exception. There are different
options in the connection establishment. In some protocols,
three-way handshaking are used. Some protocols allow data
transferring by the connection establishment protocol exchange.

The release of the N-connection is normally initiated by one of
user above the N-layer. It may also be initiated by one of the
peer entities at the N-layer as a result of an exception occurred
at the N-layer or the layer below. The user data may be lost
upon this condition. The orderly release of the N connection
requires protocol exchanges between the N-layer peer entities.
One example is the common reference to time in the connection
release.

The connection establishment at the transport layer is more
complicated functional element, and quite versatile between
different transport protocols. Special cares are required in the
transport gateways. For example, when the connection
establishment is initiated by the TCP user through the gateway to
the TP-4 user at the other side, the transport gateway needs to
act as the TCP peer entity and the TCP user in order to get the

17

connection established and to get complete information from the
initiating TCP peer entity. It also needs to act as the TP-4
user and TP-4 peer entity in order to establish the connection to
the destination TP-4 user. Since the transparency should be
available during the operation, more intelligence is required in
the transport gateway. Another example is to resolve the
difference in the addressing. The solution to this problem can
be very complicated, depending on the addressing schemes
involved.

5.2 DATA TRANSFER

User data and control information are transferred between peer
entities using protocol-data-units (PDUs). Several functions are
required in the gateway for the operation.

An expedited PDU is a service PDU which is transferred and
processed with higher priority over that of normal PDUs. It is
used to transfer small amount of data infrequently, such as for
signaling and interrupt purposes. An expedited PDU is
transferred independently from flow control over the normal data,
and is guaranteed to be delivered before any subsequent normal
PDU or expedited PDU can be sent on the connection.

Special care is needed in the gateway design for the data

transfers. For example, TP-4 allows to piggybacking user data on
a connection establishment, while TCP does not support this
option. TP-4 supports the expedited data transfers, while TCP
supports the PUSH option in the normal data transfers.

5.3 FLOW CONTROL

Flow control is the function which controls the amount of data
flowing within a layer or between adjacent layers. The flow
control which regulates the data rate between peer entities at
the same layer is called peer flow control. The flow control
which regulates the data rate between N-entity and (N-l) entity
is called layer interface flow control. There exist several
flow control mechanisms, and the "sliding window" is one such
technique.

5.4 SEQUENCING

Sequencing is the function which preserves the order of PDUs

18

being transferred between peer entities. It is required when the
received data may not be guaranteed to be in the same order as
they are delivered. Sequencing usually requires additional
protocol control information.

5.5 MULTIPLEXING AND DEMULTIPLEXING

Multiplexing at the N-layer is the function by which more than
one N-connections are supported by a single (N-i) connection. As
protocol data are multiplexed by the sender, demultiplexing
should be performed by the receiver to get the protocol data
recovered for different connections.

5.6 SPLITTING AND RECOMBINING

Contrary to the multiplexing, splitting at the N-layer is the
function that one N-connection is supported by more than one (N-
I) connections. As protocol data are splitted at the sender,
recombining should be performed at the receiver to recover the
protocol data.

5.7 SEGMENTING, BLOCKING, AND CONCATENATION

Segmenting is the function at the sender which maps one data unit
into multiple data units, or packets. Reassembling is the
reverse function of segmenting on the receiver side. Blocking is
a function which maps multiple data units into one data unit at
the same layer. Deblocking is performed at the other side as the
reverse function. Concatenation is a function which maps
multiple N data units into one N-I data unit. Separation is
required at the other side as the reverse function.

5.8 ROUTING

Routing is the function which enables communication to be
relayed by a chain of entities. The routed communication may be
transparent to both higher and lower protocol layers. Most of
routing function is performed at the network layer. The routing
function is a special important issue in the network layer
gateway design for internetworking environments. Routing
algorithms must account for differences in internet addresses.

19

5.9 ERROR HANDLING

Error handling function may be performed in several ways in the
OSI layers. An acknowledgment mechanism may be used to obtain a
higher probability of detecting data unit loss. The data-unit is
made uniquely identifiable, so that the receiver can inform the
receipt or nonreceipt of the data unit. The sender may take
remedial action accordingly. Usually, the acknowledgment
mechanism may require additional protocol control information.
Other error detection and notification functions can also be used
for the similar purpose, such as "checksum" and "frame check
sequence" operations to detect the errors in the received data-
units.

5.10 RESET

Reset is a function which sets the corresponding peer entities to
a predefined state after some uncorrectable error conditions
occur, such as the loss of synchronization. It may cause a
possible loss or duplication of data, however, all protocol
states are eventually reset.

5.11 MANAGEMENT

There exist three aspects of management in the OSI model. The
Application-management, in the application layer, is related to
the management of OSI application processes. The system-
management relates to the management of OSI resources and their
status across all layers of the OSI architecture. The layer-
management relates to the management of specific layers, partly
performed in the layer such as activation and error control and
partly performed as a subset of system-management.

The following sections describes related protocols in the DDN
environment and ISO/OSI architecture, based on the definitions
described in this chapter.

20

PART Il. THE DDN PROTOCOL SUITE

This and the following chapters explain the DDN internetwork
protocol suite in detail, with the emphasis on the TCP and IP
protocols. Readers who are knowledgeable in the DoD protocol
suite can skip the sections on the internal protocol mechanisms.
For readers, not versed in this area, the following sections
offer a background required to understand the DDN and ISO
protocols.

6. DDN INTERNET ARCHITECTURE

Besides the common requirements for data communication networks,
the DoD has its own special requirements for the DDN internet
architecture:

1) The security concern with data security and communication
security;

2) The survivability concern with minimization of critical
control nodes;

3) The reliability concern with adaptive, robust data
distribution.

Accordingly, the DoD adopted the internetworking policy to
implement the Transmission Control Protocol (TCP) on each host in
the internet for the end-to-end reliable transport protocol. The
Internet Protocol (IP), the Gateway to Gateway Protocol (GGP),
and the Exterior Gateway Protocol (EGP) were defined for the
intra- and inter-network communication protocols. The DDN
Internet architecture and its protocol suite are shown in Figure
6.1. Following sections describes the IP and TCP protocols in
detail. The GGP and EGP will not be discussed in the case that
they are not closely related to this conversion task.

21

94. 9

U VO a

za. a la I.

m 0 -

0%.

U

0-

-s >

4.a 4..

a cc

4)~ 0 .
CH -- -

M
i.

0. 1.

r- 2 o

a 40 C 3
D. (i tza..

0. £
LA 41 U

o ~ '~ z 6

Figur 6.go ner wr rcietr

22.

7. INTERNET POCL (jP

The Internet Protocol (IP) provides the basic service for
transmitting datagrams between source and destination hosts. It
was located at the "Gateway" level in original DDN Internet
architecture, and now it is located in the "Internetwork"
sublayer as shown in Figure 6.1. The IP service is provided
based on the various local network services underneath in the
"Network" sublayer.

1) Datagram Transfers. The datagrams are blocks of data, or
protocol data units (PDUs) in OSI Reference Model. In the
DoD internetwork environment, a datagram is an independent
data entity unrelated to each other. There are no
connections or virtual circuits established. The PDUs are
sent to the lower layers and no indication is received of
their reaching the destination. The services for
reliability in the data transmission are provides by higher
layer protocol (e.g., TCP) above the Internet Protocol.

2) Addressing. The IP module resides in each network host and
each gateway interconnecting networks. The source and
destination addresses of the hosts are identified by a fixed
length address field in the header of datagram (32 bits).
The IP modules along the path transmit the datagrams from
the source host through the intermediate hosts and gateways
to the destination while making routing decisions to select
the transmission path.

3) Fragmentation and reassembly. The IP module modifies the
size of the datagrams by breaking the datagrams to small
lengths and putting them back together later at the
destination. Ip does this when it is necessary to transmit
long datagrams through "smaller packet" networks.

4) Types and qualities of service. It is a generalized set of
parameters characterizing different service choices, to be
used by gateways to select the actual transmission
parameters for a particular network.

7.1 OPERATIONAL MODEL DESCRIPTIONS

The IP provides datagram service to upper layer protocols such as

23

TCP. It calls for services from Network layer and lower layers,
depending on the networks connected. Detected errors at the IP
layer are reported via the Internet Control Message Protocol
(ICMP) which is required to be implemented with IP.

The data from the upper layer protocol module is passed to the
local IP module with the destination address and other parameters
as the arguments. The IP module prepares a datagram header with
those arguments and attaches the data to it. It also determines,
according to the destination address, the local network address
for the immediate receiver (network node or gateway) . The
datagram is passed to the local network interface module. The
local network interface module, in turn, creates its own packet,
attaches the datagram to it, and sends it over to next immediate
receiver. As the packet is received, the local network packet
header will be stripped off, the datagram will be handed over to
the IP module. That IP module will determine whether the
datagram reaches the destination node. If not, it will decide
how the datagram is to be forwarded to next receiver by the
destination address. The operations will be repeated until the
datagram reaches its destination. If the datagram reaches its
destination, the IP header will be stripped off, and the data
will be passed over to the upper layer protocol module.

The upper layer protocols may use logical names to indicate the
destination host address. And mapping are performed as:

Protocol level Mapping task

----------------- --------------------------------------
Upper levels logical name Internet address
IP level Internet address -- local net address
Lower level local net address -- routes

It should be noticed that one host can have several physical
interfaces (multi-homing) to local network, or a single physical
host can use several distinct internet addresses, acting as if it
were several distinct hosts.

The fragmentation takes place more than once along the path as
necessary. When it happens, the data of the long datagram is
divided into portions on a eight-byte boundary, and the datagram
header will be duplicated for each new, shorter datagram. The
total length field in the headers is adjusted to current actual
length. The more-fragment flag of all but last datagram is set
to one, and is copied from long datagram over to the last shorter
datagram; the fragment offset field of all shorter datagrams is
set to the sum of the original value of long datagram and the
offset value among shorter datagrams, to ensure the correctness
for multiple fragmentation. To assemble the fragments
correctly, the data from datagrams with same identification,
source and destination addresses, and protocol field values will

24

be arranged and combined according to the fragment offset field
of each datagram.

7.2 PROTOCOL SPECIFICATION

The datagram header format of the IP is described in Figure 7.1.

Version (4 bits): The IP version is 4.

Internet Header Length (IHL, 4 bits): The length of
datagram header in 4-byte words. The minimum IHL is 5
without any options. The maximal internet header is 60
bytes.

Type of Service (8 bits): These are parameters for the
service choice, to specify the treatment of the datagram
during its transmission through the system, as explained in
Figure 7.2. It is actually a three way tradeoff between
low-delay, high-reliability, and high-throughput. A 3-bit
precedence field is included.

Total Length (16 bits): The length of the datagram in
bytes. All hosts must be prepared to accept datagrams of up
to 576 bytes.

Identification (16 bits): The identifying value assigned by
the sender to help in assembling the fragments of a datagram.

Flags (3 bits): The control flag for fragmentation, as
described in Figure 7.3.

Fragment Offset (13 bits): The offset location of this
fragment in the assembled datagram, indicated in 8-byte
words. The fragment offset for the first fragment is zero.

- Time to Live (8 bits): The maximum time limit in seconds
the datagram is allowed to remain in the internet system. It
is set up by the sender, decreased by every IP module along
the path, and the datagram is self-destructed when it
becomes zero.

Protocol (8 bits): This field indicates the next level

protocol used in the data portion of the internet datagram.

25

3 4 7 8 15 t6 31
0 Vers.] IHL IType of Serv Total Length

4 Identlfication Flags I Fragment Olset

Time to live Protocol Header Checksum

1 2 Source Address

1 6 Destination Address

20 Options Padding

Figure 7.1 IP Header Format

0 2 3 4 5 6 7
Precedence T I R 10 1 0

L High Relibility
e r o High Throughput

Low DelayIII - Network Control
11I0 - Internetwork Control
10 1 - CRITIC/ECP
1O00- Flash Override
0l I-Flash

010 - Immediate
001 - Priority
000 - Routine

Figure 7.2 Type of Service in IP

0 I 2F

Bon't F.a.gnent
More Fragmente-.

Figure 7.3 Flags in IP

26

Some of the examples are listed in Table 7.1.

Header Checksum (16 bits): It is one verification of
correctness in the transmission. The checksum is on the
header only, calculated as the 16-bit one's complement of
the one's complement sum of all 16-bit words in the header.
The value for this field is zero for the calculation. It is
recalculated and verified at each point that the internet
header is processed.

Source Address (32 bits)

Destination Address (32 bits)

There are three classes of internet addresses, as
illustrated in Figure 7.4. There classes handle the
different cases underlying subnetwork types.

Options (in variable length): It is another field that the
IP users can use to specify the special treatment for the
datagram, useful in some special situations, including
timestamps, security, and special routing. Some examples
are displayed in Figure 7.5.

7.3 INTERFACE DESCRIPTION

IP provides two kinds of service calls for upper layer protocols.
But the actual implementation is more or less system dependent.

SEND (src, dst, prot, TOS, TTL, BufPtr, len, id, DF, opt) ==> result

Upon unsuccessful service calls, such as bad arguments,
unaccepted datagram by local network, a reasonable report
must be returned, such as the cause of the failure, to the
IP user. The details of the report are up to the
implementation.

RECV (BufPtr, prot) ==> (result, src, dst, TOS, len, opt)

When the IP module receives an incoming datagram from local
network module, it will pass the information to the user, if
the addressed user had a pending RECV call, by a pseudo
interrupt or similar mechanism; or it will notify the
addressed user. If the user does not exists, an ICMP error
message will be returned to the sender, and the datagram is
discarded.

27

Table 7.1 Examples of Upper Layer Protocols Using IP

Decimal Keyword Protocol
------------ ------- -------------------------

1 ICMP Internet Control Message
2 IGMP Internet Group Management
3 GGP Gateway-to-Gateway
6 TCP Transmission Control
8 EGP Exterior Gateway Protocol

9 IGP private interior gateway

11 NVP-II Network Voice Protocol
17 UDP User Datagram
18 MUX Multiplexing
20 HMP Host Monitoring
21 PRM Packet Radio Measurement

27 RDP Reliable Data Protocol

28 IRTP Internet Reliable Transaction

29 ISO-TP4 ISO Transport Protocol Class 4

30 NETBLT Bulk Data Transfer Protocol

31 MFE-NSP MFE Network Services Protocol

32 MERIT-INP MERIT Internodal Protocol

33 SEP Sequential Exchange Protocol

63 any local network

0 I 7 8 3 .

Class A 10 Network Local Address

Class 5 110 Network Local Address

o 23 23 24 31

Class C I 1 01 Network Local Add r

Figure 7.4 The Classes of Internet Addresses

PC3ambumer
o~ I

Copied Class Number Length Description
0 -------------------- Control
0 0 -- End of option list
0 - No operatiou
0 2 I1 Security
0 3 var Loose source routioU
0 7 var Record route
O 8 4 Stream ID
0 9 var Strick source routing
2 ------------------- Debujiging & measurement

Figure 7.5 Options of the IP

28

8. INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

The Internet Control Message Protocol (ICMP) is actually realized
in many implementations as an integral part of the IP module.
ICMP provides the destination hosts or gateways with the error
reporting facilities about problems in communication environment.
The ICMP messages are treated by the IP module as the data
portion of the datagram, when the "protocol" field of the IP
header equals "I". The format for most ICMP messages are
described in Figure 8.1. And the types of the ICMP messages with
different code are listed in Table 8.1.

9. USER DATAGRAM PROTOCOL (UDP)

The User Datagram Protocol (UDP) provides a transaction oriented
procedure for application programs to send messages with minimum
protocol overhead. It assumes the IP as underlying protocol,
when protocol field value equals 17. In UDP, delivery and
duplicate protection are not guaranteed. It is quite similar to
the ISO TP-0 which assumes that the underlying Network Layer can
provide reliable datagram services. It is more suitable to
applications which requires the least protocol overhead, and it
is not so critical to lose a small part of the data. The UDP
header format is shown in Figure 9.1. The major uses of UDP is
the Internet Name Server, and the Trivial File Transfer.

10. TRANSMISSION CONTROL PROTOCOL (TCP

The Transmission Control Protocol (TCP) is a connection-oriented,
highly reliable end-to-end protocol between hosts in the
interconnected packet-switching computer networks. By
connection-oriented, it means that the TCP establishes, and
maintains the virtual circuit, or connection, between two
communicating processes on the source and destination hosts. It
is assumed that only unreliable datagram services are provided as
the underlying Network Layer protocol, and the TCP must recover
from data segments that are damaged, lost, duplicated, or
delivered out of order. The TCP is located at the Host Level in
the DDN internetworking architecture as described in Figure 6.2,
and at the Transport and part of Session Layers in the ISO - OSI
reference model. Following functions are provided by the TCP.

29

Type jCode Checksum

Unused

Internet [leader * 64 bits of original datag

Figure 8.1 ICMP Message Format

Table 8.1 Some Examples of ICMP Message Type

Type Code Description

0 0 Echo Reply
3 Destination Unreachable
3 0 net unreachable
3 1 host unreachable
3 2 protocol unreachable
3 3 port unreachable
3 4 fragmentation needed and DF set
3 5 source route failed
4 Source Quench
5 Redirect
5 0 redirect for network
5 1 redirect for host
5 2 redirect for type of service & network
5 3 redirect for type of service & host
8 0 Echo

11 Time Exceeded
11 0 time to live exceeded in transit
11 1 fragment reassembly time exceeded
12 0 Parameter Problem
13 0 Timestamp
14 0 Timestamp Reply
15 0 Information Request
16 0 Information Reply

0IS 16 31

Sou'ce-Po't Desti -Port

Length Checksum

Data ...

Figure 9.1 User Datagram Protocol Header Format

30

a. Basic Data Transfer. The TCP module accepts user data as a
continuous stream of bytes, packages them appropriately into
data segments with the TCP header, and calls the lower
Network Layer module (e.g. the IP) to transfer the data.
The user can also "push" the TCP module to deliver the
accumulated data to the receiver immediately.

b. Reliability. Each byte in the data stream conceptually has a
sequence number. The sequence number of the first byte in
the data segment is indicated in the TCP header. If the
sender does not receive positive acknowledgment in a certain
timeout period from the receiver, the data segment is
as,.umed damaged or lost, and retransmitted. A checksum is
also added to each data segment for receiver to detect and
discard the damaged data. The sequence number is also useful
for receiver to detect and discard the duplicated data, and
to relocate the data segments which are delivered out of
order.

c. Flow control. The TCP provides the receiver with the
"window" facility to indicate the allowed number of bytes
that the sender may transmit before receiving further
permission. Flow control operations proceed from this field.

d. Multiplexing. Different applications on hosts are assigned
with different "port" addresses, so that many processes in a
single host can use the same TCP communication facilities
simultaneously. The internet and the port addresses make a
socket which uniquely identifies one side of a connection.

e. Connection. The TCP initializes and maintains certain
status information for each data stream for reliable data
communications. It is called a connection, including
sockets, sequence numbers, and window sizes.

f. precedence and security. The TCP makes use of the "type of
service" field and the security option for the service.

10.1 OPERATIONAL MODEL DESCRIPTIONS

The TCP module is usually implemented as a device ir the file
system of an operating system. After establishing a connection
(similar to OPEN device), the application processes in computer
hosts transmit data by calling on the TCP module through device
driver and passing buffers of data as arguments. The TCP packages
the data from these buffers into segments with the control

31

information to ensure the reliable transmission, and and calls on
the IP module to transmit each segments to the destination TCP.
The IP module will route the datagrams through local networks and
intermediate gateways, fragment and reassemble them if necessary,
as described in previous sections. The receiving TCP module will
place the data from a segment into receiving user's buffer and
notifies the user. The state transition of a connection in TCP
over which data are transferred can be described by a finite
state machine, as shown in Figure 10.1.

The CLOSED state represents no connection. If the local TCP
receives a passive OPEN call from TCP user, it will create a
transmission control block (TCB), fill the TCB with control
parameters from the OPEN call, and change its state to LISTEN to
incoming OPEN calls. On an active OPEN call, the TCB will be
created, and the TCP will start the procedure to establish the
connection at once.

TCP uses three-way handshake for the connection establishment.
It is necessary because the initial sequence numbers are selected
using local clock in a 4.55 hour period, not a global clock. The
LISTEN TCP has no way of knowing whether it is an old delayed
OPEN or not, and it must ask OPEN initiator to verify it.

The data transfer proceeds in the ESTAB state.

When the local TCP receives a CLOSE call from user, it will send
a FIN packet to remote TCP, and change to FIN WAIT-i state. The -

remote TCP will send back an ACK, notify its user through the
return parameters of any user call, and stay in CLOSE WAIT. Data
transfer can still be performed at this moment. When the remote -

TCP receives a CLOSE from its user, it will send a FIN packet,
wait for acknowledgment, and change to CLOSED state. The local
TCP will send an ACK packet to remote TCP, wait for 2 MSec TIME-
WAIT, and change to CLOSED state.

The state of the connection, along with other control parameters,
are stored in the transmission control block (TCB). Those
parameters include send sequence variables (initial send sequence
number, segment sequence number for last window update and send
window, send unacknowledged, next send sequence number, etc.);
receive sequence variables (similar to send sequence variables);
and current segment variables (segment sequence number,
acknowledgment number, length, window, urgent pointer, and
precedence value). TCP module maintains the connection status
upon incoming user calls or incoming packets.

32

CLOSED[.ZZ7
passve OENI LOSEact OPENpa sv OP NCL S create TCB

create TCB T~ tdel TCB CLOSE sad STN

L ISTEN deITCB

sad SNACKsad SCN

rcv S

SeTN CV sad AC LS

- I sad FIN

IFIN WAIT- 2c CLING COS AIT

Figurea 101 C ConectOSaEDiga

x sad 33

10.2 PROTOCOL SPECIFICATIONS

The TCP header, described in Figure 10.2, is sent along with user
data as the data portion of the internet datagram, immediately
following the IP header.

Source Port (16 bits)

Destination Port (16 bits)

Ports are used in the TCP to name the ends of connections
for the communication. For the purpose of providing
services to unknown callers, some service contact ports,
also called "well-known ports", are pre-defined, and some
examples are listed below in Table 10.1.

Sequence Number (32 bits): The sequence number of the first
byte in the data segment. If the packet is SYN for OPEN
request, this field contains the Initial Sequence Number
(ISN).

Acknowledgment Number (32 bits): The sequence number of the
data byte the receiver is expecting to receive, when the ACK
control bit is set.

Data Offset (4 bits): The length of the TCP header in 32
bits word.

Control Bits (6 bits): The Bit pattern is shown in Figure
10.3, and the meaning is explained below:

URG: Urgent Pointer field significant
ACK: Acknowledgment field significant
PSH: Push function
RST: Reset the connection
SYN: Synchronize sequence numbers
FIN: Finish, no more data from sender

Window (16 bits): The number of bytes the receiver is will
to accept. It is started from the byte indicated in the
acknowledgment field.

Checksum (16 bits): The checksum for all 16-bit words in
the header text, and a 96-bit pseudo header. It is
calculated as the one's complement of the one's complement

34

sum of all 16-bit words.

Urgent Pointer (16 bits): The offset of the end of urgent
data from the sequence number, when the URG control bit is
set.

Options (variable length): TCP module must implement all

options.

Kind Length Meaning

0 - end of option list
1 - no-op
2 4 maximum segment size, indicated in 16-bit field

10.3 THE INTERFACE DESCRIPTIONS

There exist two kinds of interfaces: the User/TCP interface, and
the TCP/IP interface. The upper protocol layers use the user/TCP
interface to communicate with TCP.

10.3.1 The User/TCP Interface

The User/TCP interface is realized by the calls by the TCP users
to the TCP module.

OPEN (localport, foreignsocket, active/passive, (,timeout]
(,precedence] (,security/compartment] (,options])

==> local conn name

This call is used by TCP user to establish a connection with
the destination host with the address indicated by the
foreign socket.

If the active/passive flag is set to passive, it is a call
to LISTEN for incoming connection, for any call if the
foreign socket is unspecified, or for a particular call if
the foreign_socket is fully specified.

The timeout gives a time limit on delivering the user data.
If the user data is not successfully delivered within the
time limit, the connection is aborted. The default value for
timeout is 5 minutes.

The TCP module accept incoming requests only if the

37

security/compartment information is exactly the same, and
the precedence is equal or higher than that in the OPEN
call.

SEND (localconnname, buf addr, bytes, PUSH, URGENT, [,timeout])

This call is used by the TCP user to send data over the TCP
connection.

In handling the data transfer, the TCP module will send the
data in the buffer immediately to the receiver if the PUSH
flag is set; otherwise, the data may be combined with data
from subsequent SENDs for the efficiency.

When the URGENT flag and the urgent pointer is set, the
receiving TCP will signal the TCP user if the data
preceding the urgent pointer has not been consumed yet. It
is used to stimulate the receiver to process the urgent
data.

RECEIVE (localconnname, buffer, bytes) ==> bytes, URGENT, PUSH

This call is used by the TCP user to allocate a receiving
buffer associated with the connection. The buffer will be
filled with as much incoming data as it can hold if there is
no PUSH flag set in incoming packet. Otherwise, the buffer
will be returned with partially filled data.

CLOSE (localconnname)

This call is used to close the specified connection, after
gracefully transmitting outstanding SENDS. In this case,
the CLOSE from TCP user means only "no more data to SEND",
but not means "no data will be received".

ABORT (localconnname)

This call is used to cause all pending SENDs and RECEIVEs to
be aborted, the TCB to be removed, and special RESET message
to be sent to the TCP module on the other side.

STATUS (localconnname) ==> stabus data

The status data returned includes: local and foreign
sockets, local connection name, receive and send window,
connection state, number of buffers awaiting acknowledgment
and pending receipt, urgent state, precedence,
security/compartment, and transmission timeout.

38

0 3 to 15 t 1 23 24 31

Source Port 7 Destination Port

Sequence Number

Acknowledge Number

treserve Flags Window

DData

kRG - Urgent

- ACK - Acknowledge
PSH - Push
RST -Reset

- SYN -Synchronize

FIN -OFinish

Figure 10.3 The Bit Pattern of Control Bits

35

Table 10.1 Examples of TCP Ports

Decimal Keyword Description

5 RJE Remote Job Entry
7 ECHO Echo
9 DISCARD Discard
11 USERS Active Users
13 DAYTIME Daytime
19 CHARGEN Character Generator
20 FTP-DATA File Transfer [Data]
21 FTP File Transfer [Control]
23 TELNET Telnet
25 SMTP Simple Mail Transfer
37 TIME Time
39 RLP Resource Location Protocol
41 GRAPHICS Graphics
42 NAMESERVER Host Name Server
43 NICNAME Who Is
49 LOGIN Login Host Protocol
51 LA-MAINT IMP Logical Address Maintenance
53 DOMAIN Domain Name Server
63 VIA-FTP VIA Systems - FTP
65 TACACS-DS TACACS-Database Service
67 BOOTPS Bootstrap Protocol Server
68 BOOTPC Bootstrap Protocol Client
69 TFTP Trivial File Transfer
71 NETRJS-1 Remote Job Service
72 NETRJS-2 Remote Job Service
73 NETRJS-3 Remote Job Service
74 NETRJS-4 Remote Job Service
93 DCP Device Control Protocol
95 SUPDUP SUPDUP
97 SWIFT-RVF Swift Remote Vitural File Protocol
101 HOSTNAME NIC Host Name Server
102 ISO-TSAP ISO-TSAP
103 X400 X400
104 X400-SND X400-SND
105 CSNET-NS Mailbox Name Nameserver
107 RTELNET Remote Telnet Service
109 POP-2 Post Office Protocol
113 AUTH Authentication Service
115 SFTP Simple File Transfer Protocol
117 UUCP-PATH UUCP Path Service
119 NNTP Network News Transfer Protocol
123 NTP Network Time Protocol
125 LOCUS-MAP Locus PC-Interface Net Map Server
127 LOCUS-CON Locus PC-Interface Conn Server
129 PWDGEN Password Generator Protocol
133 STATSRV Statistics Service
136 PROFILE PROFILE Naming System
137 NETBIOS-NS NETBIOS Name Service
138 NETBIOS-DGM NETBIOS Datagram Service
139 NETBIOS-SSN NETBIOS Session Service
243 SUR-MEAS Survey Measurement

36

10.3.2 The TCP/IP interface

The TCP module calls IP module to Send and Receive data over
networks. The interface to IP is described in Section 7.3. The
default values for the type of service in IP are listed below:

Precedence: routine
Delay: normal
Throughput: normal
reliability: normal
Time to Live: 1 minute

39

RIT I THE ISOJOSI PROTOCOL ARCHITECTURE

In this and following chapters, the OSI basic reference model and
the ISO Session, Transport, and Network Layer protocols are
reviewed. This section of ISO protocol studies and previous
section of TCP/IP protocol studies should prepare the reader for
the transport layer gateway discussion in the next section.

11. THE ISO AND THE OSI REFERENCE MODEL

To avoid the confusion with the ISO standard's documentation, the
ISO organization and the standards documentation procedures are
explained in this chapter. It also describes the OSI basic
reference model, and gives the global view of the ISO protocols.

11.1 THE ISO AND THE ISO STANDARDS DOCUMENTING

The International Standards Organization, or ISO, is a world-wide
organization for producing the international standards in all
areas. It is divided into Technical Committees (TC),
SubCommittees (SC), and Working Groups (WG) to deal with problems
in specific branches of different areas. The technical committee
97 (TC97) is specialized in the information processing systems.
There are three subcommittees in TC97 related to the Open System
Interconnection (OSI), as described in Figure 11.1. Other
working groups not in the figure include Computer Graphics,
Conceptual Schema, Database Languages, Data Descriptive File, and
Text and Office Systems.

All international standards are processed through the ISO in a
similar way. Each working group works on the Working Drafts for
the required standards, labeled as

ISO/TC#/SC#/ (WG#/] N#

After step-by-step approval, it becomes Draft Proposals (DP),
Draft International Standards (DIS). After the approval on a DIS
ballot, the DIS becomes an international standard (IS). DP, DIS,
and IS are labeled by

ISO DP #, or
ISO DIS #, or
IS #

40

Technical Committee 97 - Information Processing Systems

TC97/SC6 WGI - Data Link Layer
Telecommunications and WG2 - Network Layer

Information Exchange WG3 - Physical Layer
Between Systems WG4 - Transport Layer

WG5 - Architecture of Layer 1-4

TC97/SCI3 WG I - Process Interfaces

Interconnection of WG2 - Interface Standards Administration

Equipment WG3 - Lower-Level Interfaces

TC97/SC21 WG I - osA Architecture

Information Retrieval. Transle WG4 - OSI Management

and Management for Open WG5 - AepplcaLion /Prsentaon Layers

Systems Interconnection WG6 - Session Layer

Figure 11.1 ISO Organization Chart

LaMir PeULJ P-r protocoI lnetrrelation

Application -- - - .

PresentaUon ---

Session

Transport .. -- .

Network -.-

Data Link -

Physical -- -. - .-

phylicJ media for interconnectign

Figure 11.2 OSI Basic Reference Model

41

where the number # is kept the same. The amendment to the
international standards is produced in the same way, except
labeled as Working Draft, Draft Proposed Addendum (DPAD #), Draft
Addendum (DAD #), and Addendum (AD#). The ISO standards are
reviewed periodically, usually on a five-year cycle.

11.2 THE OSI BASIC REFERENCE MODEL

The Open System Interconnection (OSI) basic reference model was
developed to provide a common basis for the coordination of
standards development while allowing existing standards to be
placed into perspective within the model. The model provides a
conceptual and functional framework for the definition of
services and protocols within the boundaries It includes
sufficient flexibility to accommodate advances in technology and
expansion in user demands, so as to allow teams to work
productively and independently in standards development. It is
intended to ease the tasks to identify areas for developing or
improving standards, and to provide a common reference for
maintaining consistency of all related standards.

In ISO standard 7498 [ISO 7498], the definitions and environment
of Open system Interconnection, and the modeling of the OSI
environment is introduced. It describes the concept of a layered
architecture as a basic structuring technique. Open systems in
the OSI reference model are decomposed into seven layers, as
shown in Figure 11.2. Similar functions in OSI are grouped into
the same layer so as to localize changes, to minimize and
standardize interfaces, and to facilitate creating sublayers for
optional, specific functions. This standard also describes, by
layers, the definition, the services provided to upper layer, and
the functions within the layer for each of the seven layers in
the OSI reference model. Table 11.1 summarizes the OSI layers
and services.

11.3 ISO STANDARDS

The ISO standards documents currently available cover a large
range of different areas, and many of them are still the draft
proposals (DP). Table 11.2 contains a list of ISO documents
related to the OSI.

42

Table 11.1 OSI Layers and Services

Layer Services

7 Application Oprovides end-users with comprehensive interlace into all kinds
Layer of distributed information services (document distribution.

electronic mail. distributed transaction processing)

6 Presentation Oidentifies, negotiates communications transfer syntax
Laver formats data (binary, ASCII. EBCDIC. graphics, numerics)

*provides special transformation (compression, encryption)

5 Session 'provides session -connection establishment, and release
Layer *supports application process dialog

*exchanges normal and expedited data

4 Transport *provides for establishment, data transfer, and terminaUon of
Layer logical connections between session entities

*provides end-to-end information interchange and control

'provides error detection and recovery

3 Network *provides network routing and connection services
Layer *segments and blocks network messages

*provides expedited data transfer

*provides error detection, recovery, and notification

2 Data Link 'initializes and disconnect data link between adjacent nodes
Layer 'transfers data over link

'provides error detection and correction

I Physical 'provides physical interface through electrical, mechanical.
Layer procedural, and functional means

43

Table 11.2 ISO / OSI Documents

ISO/OSI Doc Description
---- -------- --

General:

IS 7498 OSI Basic Reference Model
TR 8509 Service Conventions
DP 8807 LOTOS - Description of the Temporal Ordering

Specification Language
DP 9074 ESTELLE - A Formal Description Based on an

Extended State Transition Model

Application Layer:

DIS 8571 File Transfer, Access and Management
DIS 8649 Definition of Common Application Service Elements
DIS 8650 Specification of Protocol for Common Application

Service Elements
DIS 9040 Basic Class Virtual Terminal Service
DIS 9041 Basic Class Virtual Terminal Protocol

Presentation Lae:

DIS 8822 Connection Oriented Presentation Service
Definition

DIS 8823 Connection Oriented Presentation Protocol
Definition

DIS 8824 Specification of Abstract Syntax Notation One
(ASN. 1)

DIS 8825 Basic Encoding Rules for Abstract Syntax Notation
One (ASN.l)

Session Laye:

DIS 8326 Basic Connection-Oriented Session Service
Definition

DIS 8327 Basic Connection-Oriented Session protocol
Specification

Transpgxt Layer

IS 8072 Transport Service Definition
IS 8073 Transport Protocol Specification

DIS 8602 Protocol for Providing the Connectionless-mode
Transport Service

44

Network Layer:

DIS 8208 X.25 Packet Level Protocol for Data Terminal
Equipment

DIS 8348 Network Service Definition
IS 8473 Protocol for Providing the Connectionless-mode

Network Service
DIS 8648 Internal Organization of the Network Layer
DIS 8878 Use of X.25 to Provide the OSI Connection-mode

Network Service
DIS 8881 Use of the X.25 Packet Level Protocol in Local

Area Networks
DIS 8882 X.25--DTE Conformance Testing

Data Link Layer:

IS 4335 HDLC Procedures - Consolidation of Elements of
Procedures

DIS 7478 Multilink Procedures
IS 7776 HDLC Procedures - X.25 LAPB-Compatible DTE Data

Link Procedures
IS 7809 HDLC Procedures - Consolidation of Classes of

Procedures
IS 8471 HDLC Balanced Classes of Procedures - Data Link

Layer Address Resolution/Negotiation in Switched
Environments

DIS 8802 Local Area Networks
DIS 8885 HDLC Procedures - General Purpose XID Frame

Information Field Content and Format
DIS 8886 Data Link Service Definition for OSI

Physical L :

SC6/N3631 Physical Service Definition
DIS 2110 25-pin DTE/DCE Interface Connector and Pin

Assignments
DIS 4902 37-pin DTE/DCE Interface Connector and Pin

Assignments
DIS 4903 15-pin DTE/DCE Interface Connector and Pin

Assignments
DIS 8480 DTE/DCE Interface Back-up Control Operation Using

the 25 Pin Connector
IS 8481 DTE to DTE Physical Connection Using X.24

Interchange Circuits with DTE Provided Timing
DIS 8482 Twisted Pair Multipoint Interconnections
DIS 8877 Interface Connector and Contact Assignments for

ISDN Basic Access Interface Located at Reference
Points S and T

DIS 9067 Automatic Fault Isolation Procedures Using Test
Loops

45

11.4 CONCEPTS OF CONNECTION- AND CONNECTIONLESS-MODE

Another important concept related to this protocol conversion
task is the concepts of Connection-mode and Connectionless-mode
transmission. In the ISO documents, these modes are called
connection-oriented and connectionless services, respectively.

A connection, in the formal terminology of the OSI Reference
Model, is an association between two or more peer-entities
established for data transfer. In addition to three distinct
phases of Connection Establishment, Data Transfer, and Connection
Release operations, and distinguishable lifetime of those phases,
it has following fundamental characteristics:

1) It involves establishing and maintaining of two or more
party agreement concerning data transfer between the peer-
entities and the layer providing the service;

2) It allows the negotiation among all the parties concerned of
the parameters and options that will govern the data
transfer;

3) It provides connection id in which the overhead associated
with address resolution and transmission can be avoided
during the data transfer phase;

4) It provides a context in which successive data units
transferred between the peer-entities are logically related,
and therefore with the preservation of sequence and
provision of flow control.

These connection oriented characteristics are attractive in a
wide range of applications which call for relatively long lived,
stream-oriented interactions between entities in stable
configurations.

In contrast, the connectionless-mode transmission, or so called
"message-mode", "datagram", "transaction mode", and "connection
free", has always played an important role. It is basically the
transmission of a single data unit from a source service-access-
point to one or more service-access-points without establishing a
connection, by performing a single service access. It has
following fundamental characteristics:

1) It requires only a pre-existing association between the
peer-entities involved, without any peer-to-peer agreement
in using the service;

2) All the information required to deliver a data unit

46

(addresses, quality of service, options, etc.), together
with data transmitted, is presented to the layer providing
the connectionless-mode service in any single service
access. As a result, it may also true that

3) Each data unit transmitted is entirely self-contained and
can be routed independently;

4) Copies of a data unit may be transmitted to a number of
destination addresses.

The characteristics of the connectionless-mode transmission are
attractive in applications which involve short-term
request/response interactions, exhibit a high level redundancy,
must be flexibly reconfigurable, or derive no benefit from
guaranteed in-sequence data delivery.

Protocols in some layers are described separately in the
transmission modes. DIS 8473 defines the standard for providing
connectionless-mode network service (CLNS), very similar to that
of DDN Internet Protocol (IP). Both DDN TCP and ISO-TP feature
connection-mode transport service. The next two sections
describe the ISO Network and Transport layer services and
protocols.

12. THE NETWORK LAYER

The Network Layer provides the means to establish, maintain and
terminate network-connections, and the functional and procedural
means to exchange network-service-data-units between transport-
entities, with the independence from routing and relay
considerations.

12.1 NETWORK SERVICE DEFINITION (DIS 8348)

This standard defines the Network Service in OST Reference Model,
and Network Service primitives, mainly for connection-mode type.

12.1.1 The Network Service

The Network Service provides for the transparent data transfer
between its users.

47

1) End-to-end data transfer:

All routing and relaying functions are performed by the
Network Service provider.

Independent of underlying transmission media. It
relieves the users from all concerns regarding how data
are transferred over various heterogeneous subnetworks.

Data transparency. Data transferred are not restricted
for the content, format, coding, structure, or meaning.

2) User addressing. It utilizes a system of addressing (NSAP
addressing) to allow users to refer unambiguously to one
another.

3) Quality of Service Selection. It provides the users with
a means to request and to agree the quality of service,
such as

throughput;
transit delay;
transfer failure probability; and
residual error rate which is defined as

N(lost) + N(error) - N(extra)
RER = -----------------------

N(total)

where N is the number of packets.

More services are included in the connection-mode network

service:

1) Network-connection establishment and release;

2) Reset to predefined state;

3) Flow control;

4) Expedited data transfer;

5) More quality of service selection:

Network-connection establishment delay;
Network-connection establishment failure probability;
Network-connection resilience;
Network-connection release delay;
Network-connection release failure probability;
Network-connection protection;
Network-connection priority;
Maximum acceptable cost.

48

12.1.2 Network Service Primitives

Table 12.1 gives a summary of connection-mode Network Service
primitives.

12.2 NETWORK PROTOCOL SPECIFICATION (IS 8473: CONNECTIONLESS-MODE)

The protocol specified in this standard provides the
connectionless-mode Network Service, very similar to the
internetwork datagram service provided in the DDN Internet
Protocol (IP).

12.2.1 Underlying Service and Functions

Table 12.2 shows the Connectionless-mode Network Service
primitives provided by this protocol. The underlying
connectionless-mode service, very similar to the service
primitive in Table 12.2, may be obtained either directly from a
connectionless-mode real subnetwork in the way specified in this
standard, or indirectly through the Subnetwork Dependent
Convergence Function (SNDCF) or Protocol (SNDCP) over a
connection-mode real subnetwork, as described in DIS 8648,
Internal Organization of the Network Layer.

The types of functions provided by this protocol are summarized
in Table 12.3. Type 1 functions are required for all
implementation. Type 2 and 3 functions are optional. If Type 2
function is selected in a PDU but not implemented locally, then
the PDU is discarded, and an Error Report PDU is generated and
forwarded to the originating network-entity. If Type 3 function
is selected but not locally implemented, it is processed just
like not selected.

12.2.2 PDU Structure Specification

The Protocol Data Unit (PDU) structure specified in this standard
is shown in Figure 12.1. It is divided into four parts: the
fixed part, the address part, the segmentation part, and the
options part. The data portion follows the options part.

49

Table 12.1 IS 8348: Connection-mode Network Service Primitives

Phase Service Primitive

NC NC N-CONNECT request
Establishment Establishment N-CONNECT indication

N-CONNECT response
N-CONNECT confirm

Data Transfer Data Transfer N-DATA request
N-DATA indication

Receipt- N-DATA-ACKNOWLEDGE request
Confirmation* N-DATA-ACKNOWLEDGE indication

Expedited data N-EXPEDITED-DATA request
transfer * N-EXPEDITED-DATA indication

Reset N-RESET request
N-RESET indication
N-RESET response
N-RESET confirm

--- -------- -------------- -----------------------------------
NC Release NC Release N-DISCONNECT request

N-DISCONNECT indication

* Optional

Table 12.2 DIS 8473: Connectionless-mode Network Service Primitives

Primitive Parameters

N-UNITDATA.request NS-source-address, NS-desti-address,
N-UNITDATA.indication NS-quality-of-service, NS-userdata

50

Table 12.3 DIS 8473: Connectionless-mode Network Service Functions

TY2e-1:
PDU composition and decomposition;
Header format analysis and PDU header error detection;
PDU lifetime control;
Route and forward PDU;
Segmentation and reassembly;
Discard PDU;
Error reporting

Security;
Complete source routing;
Complete route recording

Partial record routing;

Partial route recording;
Priority;
QoS maintenance;
Congestion notification;
Padding

Proto-ID Length Version Lifetime

CtII-Flags J Fixed Part

Segment Lengti Checksum I

DtAdr Lo D.Adr_ . D-Adr_- Address Part
S..Adr Len S-Adr_. ... _Adr_-

Data Unit 10 Segment Of set • Segmentation Part,

Total Length optional

OpCode OpLen OpValI 1 Op-Valn
Op-Code I Op.Len Op..VaL-I - Op..VaL.n Options Part, optional
Op_.Code Op_.Len Op_.VaL. 1 pVaI

Data Data Part

Figure 12.1 DIS 8473% PDU Structure

0 I 3 4

Segmentation SPMIRI yeCd
Permitted -

More Segment
Error Report
Type Code*

Ex. !I100-DTPDU
00001 - ER PDU

Figure 12.2 DIS 8473: Control Flags

51

Network Layer Protocol Identifier (1 Octet):

1000 0001: Network Layer protocol as ISO 8473
0000 0000: Inactive Network Layer protocol subset

Length Indicator (I Octet): The length in octets of the
header. The maximum is 254.

Version (1 octet): Value 0000 0001 is for this version of
the standard.

PDU Lifetime (1 Octet): The remaining lifetime of the PDU,
in units of 500 ms.

Flags (1 Octet): The flag bits are defined in Figure 12.2.

PDU Segment Length (2 Octets): The entire length of the PDU
in octets.

Checksum (2 Octet): It is computed on the entire header.

Destination-Address Length (1 Octet)
Source-Address Length (1 Octet): The length of following
address field in octets. These values may vary according to
the application.

Destination/Source Address: These are the addresses defined
in ISO 8348/AD2. The lengths of the field are variable, as
indicated in the "Address Length" fields.

Data Unit Identifier (2 Octets): Identifies the Initial PDU
(un-segmented) and all the Derived PDU contain the same value.

Segment Offset (2 Octets): For each Derived PDU, it
specifies the relative position of the data segment with
respect to the start of data part of Initial PDU.

Total Length (2 Octets): Specifies the total length of the
Initial PDU in octets, including both the header and data.

For each option, it includes option-code, option-length, and
option-value three fields.

52

Option Code (1 Octet): It specifies different options.
Some example are shown in Table 12.4.

Table 12.4 Examples of the Options in DIS 8473

Option-Code Length Value Delcription

1100 1100 var any padding
1100 0011 1 * quality of service
1100 0101 var * security
1100 1000 var * source routing
1100 1011 var * record route
1100 1100 1 0-OF priority

Option Length (I Octet): Specifies the length of option
value in octets.

Option Value: Contains the value of the option with the
length as indicated in the option-length field.

Besides, the provision of the underlying service from the
subnetwork is also described in this standard.

13. THE TRASPO LAYER

The Transport Layer in OSI Reference Model provides transparent
data transfer between its users, and relieves them from any
concerns with the details for the reliable and cost effective
data transfer. It optimizes the use of the available network
service to provide required performance at minimum cost. The
protocol defined at this layer have end-to-end significance,
between correspondent transport-entities. Therefore the
transport layer in OSI is end system oriented, and the transport
protocols operate only between OSI end systems.

13.1 TRANSPORT SERVICE DEFINITION (IS 8072)

This standard defines the Transport Services in the OSI Reference
Model, and the Transport Service primitives with associated state
transition.

53

13.1.1 Transport Service (TS)

The transport service provides for the transparent, reliable data
transfer between session entities. Transport services are:

1N Transport-Connection (TC) establishment and release in a
synchronized manner:

The Transport Service utilizes an addressing system
(TSAP) to allow users to refer unambiguously to one
another.

It has end-to-end significance.

User can, at the TC establishment time, request,
negotiate and agree on a certain quality of service
(QOS).

Reset the TC to predefined state.

2) End-to-end reliable data transfer:

Data transparency. Data transferred are not restricted
for the content, format, coding, structure, or meaning.

Flow control.

Expedited data transfer.

3) Quality of Service Selection:

TC establishment delay;
TC establishment failure probability;
throughput;
transit delay;
transfer failure probability; and
residual error rate which is defined as

N(lost) + N(error) - N(extra)
RER =----------------------------------

N(total)

TC resilience;
TC release delay;
TC release failure probability;
TC protection;
TC priority.

13.1.2 Transport Service Primitives

54

Table 13.1 gives a list of Transport Service (TS) primitives in
different phases. The allowed sequence of TS primitives with the
state transition is shown in Figure 13.1.

13.2 TRANSPORT PROTOCOL SPECIFICATION (IS 8073)

This standard specifies the protocol for the connection oriented
transport services.

13.2.1 Transport Layer Functions

Generally speaking, the transport layer should provide the TS
users with following functions:

1) Assignment of the transport connections to network
connections, either existing one or newly created one, with
respect to:

Resynchronization
Reassignment after failure
Splitting and recombining
Multiplexing and demultiplexing

2) Connection establishment, with the respect to:

Connection refusal

3) Transport Protocol Data Unit (TPDU) transfer, with respect
to:

Data TPDU numbering
Resequencing
Retention until acknowledgement of TPDUs
Retransmission on time-out
Expedited data transfer
Segmenting and reassembling
Concatenation and separation
Association of received TPDUs with TC
Treatment of protocol errors
Explicit flow control
Checksum

4) Normal release of TC, with the respec%. to:

Frozen references

55

Table 13.1 IS 8072: Transport Service Primitives

Phase Service Primitive
-------------------- -------------- -----------------------------------
TC TC T-CONNECT request
Establishment Establishment T-CONNECT indication

T-CONNECT response
T-CONNECT confirm

-------------------- -------------- -----------------------------------
Data Transfer Data Transfer T-DATA request

T-DATA indication

Expedited data T-EXPEDITED-DATA request
transfer * T-EXPEDITED-DATA indication

-------------------- -------------- -----------------------------------
TC Release TC Release T-DISCONNECT request

-+ T-DISCONNECT indication
-------------------- -------------- -----------------------------------

*Optional

T-DISCONN ILtE r-0fsCofNN
request request

indication idcto

request indication

UgoingT-DISCUNN
connection request nonn
conectonT-DISCUNN connection

pending indication pni

T-COtNNTCNconf irm response

Figure 13.1 State Transition with Possible Allowed TS Primitives

56

5) Error release, with the respect to:

Inactivity control

13.2.2 Transport Protocol Classes

The IS 8073 standard defines five classes of transport
connections with different level of functionalities. It is
assumed to use three underlying choices of network connections:

Type A: with acceptable residual error rate and
acceptable rate of signaled errors;

Type B: with acceptable residual error rate but
unacceptable rate of signaled errors;

Type C: with unacceptable residual error rate.

Five classes of transport connections are specified based on
on three classes of network connections:

Class 0: simple class
- the simplest type transport connection,
- compatible with CCITT T.70 for teletex
terminal,

- use type A network connections;

Class 1: basic error recovery class
- basic transport connection with recovery

from network disconnect or reset,
- use type B network connections;

Class 2: multiplexing class
- multiplexing several transport connections
onto a single network connection, with/out
explicit flow control,

- use type A network connections;

Class 3: error recovery and multiplexing class
- characteristics of class 2, plus recovery

from network disconnect or reset,
- use type B network connections;

Class 4: error detection and recovery class
- characteristics of class 3, plus detection
and recovery from errors of low grade
service,

- use type C network connections.

57

The use of classes, as well as options for those functions within
classes, is negotiated during connection establishment.

13.2.3 TPDU Structure Specification

13.2.3.1 TPDU General Structure

The structure of the Transport Protocol Data Units (TPDUs) can be
divided into four parts, as shown in Figure 13.2.

Length Indicate (LI, 1 Octet): The length of the header in
octets.

Fixed Part: Contains frequently occurring parameters, such
TPDU code, etc. The format and the structure of this part
is different for different TPDU.

Variable Part: Contains less frequently used information.
It has the structure as described in Figure 13.3.

Following section will explain some of the TPDU structures and
field definitions as examples.

13.2.3.2 Connection Request (CR) and Connection Confirm (CC)

The structures of the Connection Request (CR) and the Connection
Confirm (CC) TPDUs are shown in Figure 13.4.

CDT -- Initial credit allocation, 0000 for Class 0,1

DST-REF -- Reference for the Destination transport entity,
zero for CR TPDU

SRC-REF -- Reference for Source (initiating) transport
entity

CLASS -- Bit 8-5 (left) defines the preferred class;
Bit 2 indicates the "Extended Format";
Bit 1 indicates no use of explicit flow control

in class 2

58

I 2 3 4 ... n I p ... t d

F 7TI t Fixed pOant Vatialoi pall DatalikJ
- - -- - - - - - - header

Figure 13.2 TPDU Structure

Oils 8 7 6 5 4 3 2 1

Paranter code

P a a m e e f le n g~ th in dt k a io n I fO r c ,a m liu n lI

Parainu tet value

Figure 13.3 The Structure of TPDU Variable Part

I 2 3 4 6 6 7 8 0 p+ I and

Ll CR COT OST-flEF RE~F CLASS Vuriable Use(

1110 0000 00 0 0000 0000 7 OPTION pare data

2 4 5 6 7 8 p ICI CO I Varabl Lj:
ICC CDT OST.IREF SRC-REF Carl data1i1 OPTION p~iri daijl

Figure 13.4 Structure of Connection Request(CR)/Confirm(CC)
TPDUs

1 2 3 4 5 6 7 8 p It + I e,,d

7 1 6 I STEF nc.nEF .ISASoN Vat inble ,Ur

100 DI-E - -F1 S0J Part data

1 2 35 6 7 p

DC
U 1100 000 OST-REF SRC-REF Viijlal partI1 I, _ I I TV t

Figure 13.5 Structure of Disconnection Request(DR)/Confirm(DC) TPDUs

1 2 3 4 S 0 p p+ 1 . ,J

OT fphDu.Nn VelinbeUerdt
LOfl 00 ST-RnEF end Eor pnr

l 2 3 4 . 6, 7. 9 9 p p + I ... end

11111 0000 OST-REF TPOUNR Vinb e Use dole
t

t. m11 nd EOrl'.,

Figure 13.6 The Structure of Data (DT) TPDU

59

13.2.3.3 Disconnection Request (DR) and Disconnection Confirm (DC)

The structures of the Disconnection Request (DR) and
Disconnection Confirm (DC) are shown in Figure 13.5.

REASON -- It defines the reason for disconnecting the
transport connection

13.2.3.4 Data (DT)

The structure of Data (DT) TPDUs are shown in Figure 13.6.

TPDU-NR -- TPDU Sequence number

EOT -- The end of TPDU

The second structure shown in the figure has an extended format
in YR-TU-NR.

13.2.3.5 Acknowledge (AK)

The structure of Acknowledge (AK) TPDU is shown in Figure 13.7.

YR-TU-NR -- The sequence number of next expected DT TPDU.

13.2.3.6 Expedited Data (ED) and Expedited Acknowledge (EA)

The structures of Expedited Data (ED) and Expedited Acknowledge
(EA) are shown in Figure 13.8. ED and EA have very similar
structure compared to the one of DT and AK.

60

! 2 3 4 5 6 p

LI AK 0 0COT OST-REl: YR.TU.NR j Variatos poit-

Figure 13.7 The Structure of Acknowledgement (AK) TPDU

1 2 3 4 5 6 p + ! ... e,,d

ED0 OST.EF (0 TPOU-N Va.lns dl0001 0000 end EOr part

I 2 3 4 5 6 p

ADST-REF YR-TU-Nn V ',alt, port0010 000 I aia

Figure 13.8 Structure of Expedited Data(ED)/Acknowledgement(EA) TPDUs_

2 / 3 4 5. . 7. 8 9. 10

UL 0101 0000 ST-IqEF YR.TU.Nn cot

I 2 3 4 5 6 p

I-E I R E '(CT vavo part0111 0O0W OSTREF CAUSE

Figure 13.9 The Structure of Reject (RJ) and Error (ER) TPDU

61

13.2.3.7 Reject (RJ) and Error (ER)

The structures of Reject (RJ) and Error (ER) TPDUs are shown in
Figure 13.9. The structure for Reject is straight forward. The
"Reject Cause" in the Error TPDU gives an explanation of the
reason for the error condition.

13.2.4 TC State Transition

Since the transport protocol defined in this standard is
connection oriented, the state transition specified here also
includes the part that deals with the network connections. The
complete state transition is so complicated that it has to be
explained in a state table, not in a graphic format. On the
other hand, in our case, the connectionless-mode network services
are used instead of connection-mode, and the state transition
for the transport protocol is simpler. This will be described in
next section.

14. T SESSIQN LAYER

The reason for the Session Layer to be briefly described in this
section is the incompatibility between the DDN TCP and ISO TP
protocols. In the OSI Reference Model, the Session Layer
provides necessary services for their users to organize their
dialogue and to manage their data exchange. It takes full care
of the session-connection establishment and release in a
synchronized manner. So the Transport Layer does not repeat the
function for the synchronized release of transport connection.
On the other hand, in the DDN Internet architecture, there is no
explicit session layer, TCP is taking the full charge for the
transport connection establishment and release in the
synchronized manner. If the TCP user at one side issues the
CLOSE command to disconnect the TCP connection, the TCP user at
the remote side is notified, the data exchange may be continued
until the remote TCP user issues a CLOSE command. Both side of
TCP connection are well-synchronized in this method. To match
the services and functions between DDN TCP and ISO TP, the normal
connection release function from the Session Layer are examined
here.

14.1 SESSION LAYER SERVICES

62

The Session Layer provides the services necessary for co-
operating presentation-entities to organize and synchronize their
dialogue and to manage their data exchange.

1) establishment and release of session-connection mapped onto

the transport-connection;

2) session-connection synchronization;

3) normal data exchange;

4) expedited data exchange which is free from token and flow
control constraints;

5) quarantine service by which an integral number of session-
service-data-units sent on a session-connection are not
available to the receiving presentation-entity until
explicitly released by the sending presentation-entity;

6) interaction management, to allow

a) two-way-simultaneous (TWS);
b) two-way-alternate (TWA); and
c) one-way interaction.

7) exception reporting.

To support the services, following functions are performed within

the Session Layer:

1) session-connection to transport-connection mapping;

2) session-connection flow control;

3) expedited data transfer;

4) session-connection recovery;

5) session-connection release; and

6) Session Layer management.

14.2 SESSION SERVICE PRIMITIVES

Table 14.1 gives a list of Session Service primitives.

The Session Service primitives for the Session connection release
will be further discussed in the transport gateway design.

63

Table 14.1 Session Service Primitives

Service Primitive

Session Connection Establishment Phase:

Session-connection S-CONNECT request/indication/response/confirm

Data Transfer Phase:

Normal data xfer S-DATA request/indication
Expedited data xfer S-EXPEDITED-DATA request/indication
Typed data xfer S-TYPED-DATA request/indication
Capability data S-CAPABILITY-DATA req/indi/response/confirm
Give tokens S-TOKEN-GIVE request /indication
Please token S-TOKEN-PLEASE request/indication
Give control S-CONTROL-GIVE request/indication
Minor sync-point S-SYNC-MINOR req/indi/response/Confirm
Major sync-point S-SYNC-MAJOR req/indi/response/confirm
Resynchronize S-RESYNCHRONIZE req/indi/response/confirm
P-exception report S-P-EXCEPTION-REPORT indication
U-exception report S-U-EXCEPTION-REPORT request/indication
Activity start S-ACTIVITY-START request/indication
Activity resume S-ACTIVITY-RESUME request/indication
Activity interrupt S-ACTIVITY-INTERRUPT req/indi/response/confirm
Activity discard S-ACTIVITY-DISCARD req/indi/response/confirm
Activity end S-ACTIVITY-END req/indi/response/confirm

Session Conn %_i hReleasePase

Orderly release S-RELEASE req/indi/response/confirm
U-abort S-U-ABORT request/indication
P-abort S-P-ABORT indication

64

14.3 ISO STANDARDS FOR THE SESSION LAYER

The ISO 8326 standard is for the basic connection oriented
session service definition.

The session services defined in this standard are performed by
ISO 8327 standard: the Basic Connection Oriented Session
Protocol. The session protocol is specified with respect to:

1) use of the transport service;

2) procedure elements related to Session Protocol Data
Units (SPDU);

3) structure and encoding of SPDUs.

65

PART IV.. TQL CONVERSION M = T ISO-TP

Based on the summary over the DDN TCP/IP protocols and the
ISO/OSI protocols given in previous two chapters, this section
will give further discussion over the matter of matches and
mismatches between the two protocol suites. The functionalities
are studied for the protocol conversion tasks between TCP and
ISO-TP. The methodology approaches with the protocol conversion
are discussed. The rule-based general protocol conversion at the
transport/network layer is concluded from the discussion.

For the gateway system design, the protocol conversion tasks are
divided into subtasks, implemented by modules. The gateway
specification is carefully developed with regards to easiness of
understanding, and avoiding over-spA:ification with unnecessary
details. The specification is developed using a formal
specification language, called ESTELLE.

15. INCOMPATIBILITY CONCERNS

The discussions in this chapter are concentrated on the different
aspects of the incompatibilities, the comparison of the service
provided, and the study of each incompatible items between TCP
and ISO-TP. The incompatibilities between the IP and the ISO-IP
are not studied here. The handling of the incompatibilities
between IP and ISO-IP can be described as one to one static PDU
translations, which will be discussed in the design.

15.1 DIFFERENT ASPECTS OF THE INCOMPATIBILITIES

From the view point of the functionalities, comparing the
functions of TCP described in the beginning of the section 10 and

* the functions of ISO-TP described in Section 13.2.1, both of them
provide very similar services. This condition is important
because it implies that hard mismatches which could render
gateway system inoperable to not exist.

From the view point of the Protocol Data Unit (PDU) structure,
they are similar with suitable differences. Translation of PDUs
is needed in the gateway. But this translation can be viewed
mainly as a protocol-dependent part of the gateway task. It

66

implies that those fields in the PDU related only to one
particular protocol should be handled by the protocol-dependent
submodule. One example is that the checksum field for different
protocols can be processed separately. On the other hand, those
fields in the PDU which have the common meaning for both gateway
protocols but with different format should be translated
cooperatively by the protocol-dependent and protocol-independent
submodules. Examples of the operation codes and the control
flags should be interpreted in this way.

From the view point of the interfaces between protocol layer and
the service user, it has no significance here because the service
user is not considered here. One example to explain this point
is that the transport gateway considers only the interoperability
between transport protocols, not the interface to the transport
service user. The same kind of upper layer protocol is assumed
in the case. The interface design in this gateway will be aimed
on the interfaces between the submodules.

From the view point of the internal state transition and the peer
entity interaction, conversion is a more complicated matter. One
example is that ISO-TP allows the Connection Request TPDU to
carry user's data, while DDN TCP does not support this option.
There is no one-to-one translation to resolve the difference.
There is no method to attack this problem. It can be simply
handled by restricting ISO-TP user to use the option to emphasize
the usage of common-subset functions, as proposed in (GROEN 86].
The problem can also be solved in a more complicated way to have
the gateway to take more responsibilities. More studies are
needed in attacking this kind of problem.

15.2 SERVICE COMPARISON

To be prepared for the methodology discussion for the protocol
conversion, the comparison between the TCP and the ISO-TP is
summarized in the Table 15.1. Further technical detail about
those difference will be studied in following sections.

15.3 CONVERSION TASKS IN CONSIDERATION

In this section, the conversion tasks and the methods used for
the protocol conversion will be discussed item by item. Each
item represents an entry of incompatibility between TCP and ISO-
TP as listed in Table 15.1.

67

Table 15.1 Service Comparison between TCP and ISO-TP

Function/Event ISO-TP TCP

Establish Phase%

Connect Two TC established One TC established for

collision (one way) given pair of socket

Addressing Any possible structure Static length

Expedited data Yes, negotiable by user No, has URGENT signal

QoS Loosely defined, well-defined subset of ISO
multifunctional

User data Limited length No

Data Transfer Phase:

User data Octet stream Octet stream, may be divided
into TSDUs using PUSH

Urgent Signal No Yes

Expedited data Precedence over normal No
data

Flow control Explicit or implicit Explicit

jReloas Phase:

Orderly release No Yes

Abrupt release Yes Yes

68

15.3.1 TC Establish Phase

Connection Collision. In TCP, if the TC initiator, after sending
the Connection Request (CR) to a destination host, receives a CR
from the destination host, only one connection is going to be
established, and both hosts share the connection in the
communication. On the other hand, ISO-TP will try to establish
two one-way connections.

In matching the difference, some researchers suggests that the
ISO-TP addresses should be grouped, such as into even and odd
addresses, for the outgoing and incoming calls. As far as we are
concerned, it is not good idea to impose this kind of restriction
on the addressing scheme. First, by examining the TCP/IP
addressing scheme and the predefined TCP port addresses, it is
obvious that most of the ports are defined as passive servers for
various applications. It means that it is not likely to have a
high probability for the connection collision. This should be
true for the ISO-TP case. Secondly, if the ISO-TP host is the
first CR initiator while the TCP host initiates the colliding CR,
it can be absorbed by the gateway submodule at the TCP side
without notifying the ISO-TP side. If the ISO-TP host initiates
the colliding CR, the ISO-TP host must explicitly provide the
calling address within ISO-TP addressing allowance. with this
method, the connection collision can be solved by special
functions in the gateway submodules.

Addressing. TCP allows only static length, fixed format port
addresses, while ISO-TP allows any possible structures to be used
in the addressing scheme. To resolve the incompatibility,
restrictions have to be imposed on the ISO-TP users that only
TCP-compatible addressing formats are allowed while calling TCP
users. This requirement should be reasonable because whether the
ISO-TP user is calling TCP host or calling through TCP node, the
TCP address has to be used, either by calling (TP) user or
translated by the gateway.

Expedited Data. ISO-TP provides services for transferring
expedited data, negotiated at the beginning of connection
establishment between users by selecting different Transport
Service classes. TCP does not support the expedited data
transferring, but it has URGENT signal used for transferring
URGENT data. This difference will be discussed as one of the
points in the data transfer phase.

Quality of Service. Quality of Service (QoS) is loosely defined
by multifunctional control parameters in ISO-TP. In TCP, it is
a well-defined subset of ISO QoS. For the same reason,

69

restrictions will be imposed on the ISO-TP users to use only
those QoS compatible with the TCP QoS.

User Data. In the ISO-TP, user data can be contained in the
Connection Request TPDU with limited length. But it is not
allowed in the TCP in Connection Request. This incompatibility
will cause problems if the TPDU-to-TPDU translation technique is
used in the gateways. In the other case, if TPDU-to-TPDU
translations not used, a gateway submodule can separate the user
data from the CR TPDU, store the data temporally, and compose
special data TPDUs to transfer them after the connection is
established.

15.3.2 Data Transfer Phase

User Data. Basically, both TCP and ISO-TP transfer user data as
octet streams. In TCP, user data may be divided into segments by
using PUSH signal. It is very similar to the concatenation
function of the ISO Transport Layer.

Expedited data. ISO-TP provides the user the service to transfer
expedited data, with precedence over normal data. TCP does not
provide service, but it allows a user to use the URGENT signal to
send urgent data. Basically, they are different because URGENT
data in TCP allows the transfer of control information along with
the user data, with or without higher priority, depending on the
interpretation of the higher layers. The expedited data in ISO-
TP is a measure to assure the correctness of the data transfer.
It is possible to use the URGENT data of TCP network for the
Expedited Data service from the ISO-TP network in the following
manner. When the gateway submodule receives the Expedited Data
from the ISO-TP host, it will add a predefined special segment of
URGENT data to the TCP TPDU to be transferred to the destination
TCP host. A Special interface at the destination host will pick
up the message in the URGENT data part of the TPDU, and convey it
to be the Expedited Data before sending it to the higher layer
ISO software. It can be considered in the same way if the DDN
application package runs in the ISO network.

Flow control. In TCP, the flow control is explicit. While in
the ISO-TP, the flow control could be explicit or implicit.
There are two ways to solve the problem: restrict the ISO-TP
users to use explicit flow control only; or absorb the implicit
flow control at the gateway submodule.

15.3.3 TC Release Phase

70

Orderly release. TCP provides the service for the orderly
release of the connection. If the user at one end sends a CLOSE
to close the connection, the TCP at the other end will notify the
user, continue with data transfer if necessary, wait for the user
to issue the CLOSE, and then close the connection. In ISO
standard, the orderly release is considered a task for the
session layer protocol. So the ISO-TP does not support the
orderly release function. One of the approaches to solve the
problem is to add a sublayer above the ISO-TP to include the
orderly release the connection. Another approach is to resolve
the incompatibility in the gateway submodule. If the TCP host
issues the CLOSE request, the gateway will produce a Disconnect
Request to the ISO-TP host, and continue the orderly release with
the TCP host as if the orderly release has been done with the
ISO-TP host. The ISO upper layers using the TCP service should
be clear about this difference, and the Orderly Release is still
required at the Session Layer in order to call the ISO host. The
Orderly Release at the Transport Layer will be performed after
the Session Layer has performed the Orderly Release and called
the Transport Layer for the CLOSE.

16. CONVERSION METHODOLOGY

This section describes approaches for protocol conversion between
TCP and ISO-TP. Each method has its merits and disadvantages,
related to cost and performance.

16.1 CONVERSION TASKS IN GENERAL

For the purpose of protocol definition and specification,
protocols are usually defined in terms of functional
descriptions, procedural descriptions (operational model),
structural descriptions (PDU structure), and interface
descriptions.

For the purpose of protocol conversion analysis, the protocol
machine can be divided into three functioning modules: interface,
peer, and control protocols. The interface protocol takes care
of interaction between the layer protocol with service users and
underlying layer protocol support. The peer protocol is in
charge of interaction between the local and remote peer entities
at the same layer. The control protocol manages the internal
state transition of the protocol machine. Accordingly, the
protocol conversion tasks are studied with respect to these three
aspects. The interface to the service user is of no importance
here because the assumption that the upper layer protocols above
this converted layer are the same. There should be no change

71

made in the interface to the underlying supporting protocol.

The peer protocol conversion includes the protocol data unit
translation. For those data fields which is only related to one
side protocol in the conversion, they should be processed locally
to that protocol. Other data fields also need to be translated
in certain strategies. The control protocol conversion is of
much more complicated matter which will be discussed in more
details later.

16.2 DIRECT CONVERSIONS

In the first serious attack of the protocol conversion problem at
the transport layer between DDN TCP and ISO-TP was reported by
Groenbraek in [GROEN 86]. In this treatise, the direct conversion
method is used. Based on the study of the protocol differences,
a state-to-state, PDU-to-PDU conversion method is used. The
advantage of this approach is that the conversion procedure looks
straight forward. It contains the direct conversion of all states
from one protocol to another. However, this approach imposes
disadvantages on the implementation.

1) Unnecessary repetition of similar details;

2) No consideration to the extension of this work to other
protocols;

3) Imposes heavy restrictions upon users which results in a
critical drawback to performance. This point will be
further discussed below.

16.3 RESTRICTION-UPON-USER APPROACH

This approach has been discussed in several papers in [GREEN 86],
[GROEN 86], etc. It was recognized in these papers that the
first step in the protocol conversion is to find common set of
the services, and then convert the functions related to these
services. The principle behind this approach is obvious. The
conversion is performed between the services of the users.

This approach imposes two serious disadvantages. One of them is
the restriction upon users. By the conversion only over the
common set of the services, it restricts the users from using
those services which are not in the common set of services.
Since it is impractical to modify the communication software at
upper layers on all the hosts, it puts the burden on those users
using the service through gateways. Another disadvantage is that

72

this approach does not consider those mismatches which need more
intelligence to be solved. Some examples will be given in
following section, and further discussion will be given in next
chapter.

16.4 RULE-BASED METHOD

In this approach, those services with minor incompatibility
problems will be solved with a little more intelligence in the
gateway system. For example, TCP does not allow the Connection
Request (CR) TPDU to carry any user data. In case that user data
are contained in the Connection Request TPDU from ISO-TP, instead
of not allowing user to do that, the gateway can divide CR into
Connection Request TPDU and the Data TPDU for the TCP network.
The reasonability for this approach is on the TCP side and the
ISO-TP side must keep their own Sequence Number. In this way,
extra data TPDU will not disturb the normal operation. The
acknowledgement for the extra data TPDU will be consumed at the
gateway because it does not need to be sent to the ISO-TP
network. The gateway needs to keep record of the extra TPDUs it
creates.

Another example is the PUSH function in TCP. The PUSH function
in TCP means that when a user indicates the PUSH flag in the SEND
data call, the TCP module should not wait for further user data
to be concatenated for efficiency, but rather send the user data
right away. This function requests only immediate delivery of
the user data. It can be handled by either ignoring the PUSH
flag and sacrificing a little performance, or by using other
control functions such as Expedited Data in the ISO-TP network.
The rule-bdsed method can be approached so that the knowledge
about the characteristics of the service and the knowledge about
the way to make up the difference and to solve the
incompatibility are used in handling different service functions.

16.5 MODULAR SYSTEM DESIGN

With the consideration discussed in the last section, the gateway
system design should take the modular system design approach.
The major point is to divide the gateway system into three parts:
the protocol-dependent modules, the general purpose linker
module, and the interface modules to connect them together. The
superset of the service provided by different transport
protocols, instead of subset of common service, should be
considered. The results then are used tor designing the data
and control structures in the general purpose linker module. The
rule-based tasks will Li handled in the interface module to
resolve the difference between the general purpose linker modulo

73

and the protocol-dependent modules. The details of the design
will be explained in the following sections. A similar approach
was followed in the testing of functional specifications of a
generic gateway [MART 88].

17. FNTONALMOUE

In this chapter, the modular structure of the gateway system to
interconnect the TCP/IP and the ISO/TP is discussed. The
functions of each module are described based on the system
design.

17.1 THE MODELS OF THE PROTOCOL CONVERSION

This section contains the models for protocol conversion. The
two models used include the Message Translation Model and the
State Translation Model.

17.1.1 The Message Translation Model

The Message Translation Model is shown in Figure 17.1. This
model deals with the message translation, which corresponds to
the handling of the PDU subprotocol and the interface
subprotocol. The handling of the PDU subprotocol is obvious in
this case. All the PDUs from the local network, say P', are
temporary stored in the packet buffer, and processed in the
local-network interface module to check the validity. The local-
protocol dependent parts of P' are stripped off and the original
PDU P' are translated into P, depending on the design. Examples
are the correctness of the checksum, the validity of the address,
the sequence numbers and window parameters, and the legitimacy of
the packet control commands with regard to the FSM state in the
protocol module. A record of the connection control information
of local-protocol dependent parts will be kept in the local
interface module. The data and the control information with
common interests will be passed over to the linker module, where
the control information is kept for reference for follow-on
communications. The data and the necessary control information,
in the format of P, will be then relayed to the remote interface
module. In the remote interface module, similar work in the
local module will be reversed to make up the PDU" from P, by
adding in the protocol dependent control information. The PDU P"
will then be sent through the service provided by the underlying
layer to the remote network. Whether the packet will be kept in
the buffer or not until acknowledgment is received is completely

74

Local Network Linker Remote Network
Interface Module Module Interface Module

--- fb uf

--'bur Uf

connection connection
control info om Illl ll ll ll _i T fT IllIll lllllFI

Figure 17.1 The Model of Message Translation in Gateway

Local Network Linker Remote Network
Interface Module Module Interface Module

Figure 17.2 The Model of State Conversion in Gateway

75

dependent on the gateway strategy.

The handling of the interface subprotocol is done in the process
of the communication. The interface subprotocol keeps the
interface compatibility between this layer and the underlying
layer. The interfaces between the local module and the linker
and remote modules are implementation dependent. Though, the
integrity of the service interface between this layer and the
upper layer should still kept in consideration.

17.1.2 The State Conversion Model

Another model of the gateway task is shown in Figure 17.2. This
model deals with the state conversion, which corresponds to the
handling of the internal state transitions and the peer entity
interaction.

The local and remote protocol-dependent modules in this model
plays two major functions. One function is to maintain the
internal state transitions as defined by its own protocol. The
other function is to convert the state defined in the local
protocol into the common state handled by the linker module, and
vice versa. The set of common states is the super set of all
states in the protocols. The linker module in this model is
merely an interface, it defines the super set of the common
state. It records the state of each communication channel during
its operation using this super set of state. Since each set of
states of individual protocol is the subset of the common state
set, the difference between individual subset and the common set
is made up of protocol-dependent modules. If there exists a one-
to-one relationship between the pair of local protocol states and
the common states, only the name translation is needed. If there
is no such one-to-one relationship between the pair of states,
the protocol-dependent module will be in charge of the
translation between the subset states and the common set states.
All these state processing should be confirmed with the peer
entity interaction specification of the local protocol with
respect to the local network.

17.2 SYSTEM STRUCTURE

In this section, the gateway layer and the system designs are
discussed based on the basic models described above.

17.2.1 The Layer Design

76

In the gateway architecture designed here, the structure of each
layer in the gateway is composed of both models discussed in last
section. The common linker module and the protocol-dependent
modules are in charge of both the message translation and the
state conversion at the same time.

As shown in Figure 17.3, the linker module defines and uses the
set of common states and the common data structure for the
communication session control and for the data packets transfer
to communicate with the protocol-dependent modules. The state of
the communication session and other control information are kept
in record in the linker module. The data packets are relayed
between the protocol-dependent modules. The protocol-dependent
modules can be further divided into two submodules. One of them
is the local protocol-dependent submodule which takes care of the
packet validity and state legitimacy checking and the
communication session status maintenance according to local
protocols. The other is the interface submodule which takes care
of the translation of the packet structure and the state
transition between local protocol and common definition of the
linker module.

The local protocol-dependent submodule takes the full
responsibility of the interface subprotocol with the underlying
layer, the PDU correctness checking, and the peer entity
interaction with the communicating nodes in the local network.
For example, it automatically establishes the lower layer
connection when the connection is requested at this layer. The
lower layer provides connection-oriented service. It also
encapsulates and decapsulates the packets with the protocol
control information of the layer, such as sequence number, window
control, etc. It will send back reasonable responses and change
its own state when service is requested by the other nodes in the
network.

The interface submodule translates the packet data structures
into the common data structure, along with the translation of the
control command, options. The protocol-dependent parts of
packets will be discarded in the translation. It is necessary to
reduce the amount of the information to be converted to reduce
the delay. On the other hand, when the data packets and the
control information passed over from the linker module which are
not supported by the local protocol, it is also the interface
submodules responsibility to resolve the incompatibility.

17.2.2 The System Design

77

common
interface linker interfac e

protocol A protocol B
dependent dependent

Figure 17.3 Moduled Design of the Gateway Layer

transport
gatewayISO-TP4 linker DDN -TCPinterface interface

ISO-TP4 DDN-TCP
dependentl dependent

networkISO-IP* gateway DDN--IP"
linker

Figure 17.4 Moduled Design of the Gateway System

78

The Transport Gateway designed in this project is concerned with
both the Network Layer and the Transport Layer, as shown in
Figure 17.4. As a case study, the TCP and the ISO-TP4 with the
connection-oriented reliable virtual circuit service will be
considered in the transport layer, and the IP and the ISO-IP with
connectionless datagram service will be considered in the Network
Layer. It is possible to use only one linker module for both the
Transport and Network Layers, but it is against the concept of
layered architecture and modular design. So, separate linker
modules are used for each layer in the case. Each linker module
takes care the communication in its own layer.

Not much control information are recorded in the Network Layer
linker module, because both DoD IP and ISO-IP provide the
datagram service in which datagrams are not logically related to
each other. On the contrary, there is more common control
information in the Transport Layer linker module, such as
addresses, state of the connection, etc. The data structures and
algorithms are designed to reduce the amount of information to be
transferred between modules.

Better modularity is achieved by allocating the queue of the
incoming and outgoing packets inside the interface submodule, and -

having the linker module in charge of transferring packets
between the interface submodules of individual local protocols.
There will be one queue associated with each direction of data
flow in the interface submodule. The interface submodule reads
packets in the incoming buffer queue from the linker module, and
deposits packets into the outgoing buffer queue to the linker
module, and modifies the pointers accordingly. The linker module
treats the buffer queues of all interface submodules equally. It
reads packets from the outgoing buffer of one interface submodule
and deposits packets into the incoming buffer of another
interface submodule. Using this strategy, the gateway is capable
of converting more than three sets of protocols without critical
modification of the system design. More technical issues in the
design will be discussed in following sections.

17.3 PROTOCOL CONVERSION IN THE NETWORK LAYER

The Network Layer of the gateway in design translates the
DoD Internet Protocol (IP), referring to Chapter 7, to dnd from
the ISO-IP protocol, referring to DIS 8473 in Section 12.2. Both
protocols provide the connectionless datagram service.

17.3.1 Protocol Conversion Tasks

79

In the DoD IP and the ISO-IP, the following data fields and
related functions are protocol-dependent. They are handled inside
the protocol-dependent submodules, not translated during the
communication:

DoD IP ISO-IP
IP Version IP Version
Protocol
Header Checksum Header Checksum

network Layer Protocol ID

All the other data fields listed below need to be translated and
transferred to the other side in the communication:

DoD IP ISO-IP
Internet Header Length Length Indicator
Type of Service Type Code
Total Length PDU Segment Length
Identification Data Unit Id
Flags Flags
Fragment Offset Segment Offset
Time to Live PDU lifetime

Source Address Length
Source Address Source Address

Destination Address Length
Destination Address Destination Address
Options Options

Among the parameters, the Internet Header Length in DoD-IP and
the Length Indicator in ISO-IP are the length of the headers in
32-bit word and byte respectively. The original parameters have
no significance to the other protocol sets because the header
formats are different. It should be modified to indicate the
length of the option. Translation is needed between the Type of
Service, the Flags, and the Options in DoD-IP and the Type Code,
the Flags, and the Options in ISO-IP.

The Total Length in DoD-IP and the PDU Segment Length in ISO-IP
should be adjusted according to the justification of the header
length. Minor modifications are needed for the Identification,
and the Fragment Offset in DoD-IP and the Data Unit Id, and the
Segment Offset in ISO-IP, such as the modification on the size of
the field. The time unit for the Time to Live in DoD-IP should
be changed from seconds into half-seconds used in the PDU
Lifetime in ISO-IP.

For the address fields, the ISO-IP is restricted to use the
address formats which can be converted into the CLASS A, B, and C
address formats of the DoD-IP. Translation is needed between the
address format.

80

17.3.2 Protocol-Dependent Submodule

The protocol-dependent submodule is the front-end interface which
receives and delivers packets to and from the sub-network layer
of the local network. It checks the validity of the packets,
records the status into the statistics, and strips off the fields
with only local network significance. It should confirm with the
local protocol definitions about the interface subprotocol with
the lower layer and the peer entity interface subprotocol with
the communicating entities in the DoD-IP and ISO-IP.

The statistics keeping should be emphasized here due to the fact
that the Internet Control Message Protocol (ICMP, referring to
Chapter 8) is actually implemented along with DoD-IP. ISO-IP
includes some error control functions inside. The conversion of
the difference is handled by the combination of the protocol-
dependent and the interface submodules.

17.3.3 Interface Submodule

The translation of the data structure of packets is one of the
major functions of the interface submodule. As discussed in
previous sections, all the fields with data significance but in
incompatible format, needed to be translated. This submodule
also manages the buffer queues to be accessed by the common
linker module. After the buffer queues are allocated, it should
notify the common linker module about the location and the
control information of the queues. The packets translated from
DoD-IP to the common data structure are deposited in the outgoing
queue. The packets picked up from the incoming buffer queue are
translated back to the DoD-IP.

Another major function of this submodule is the translation of
the DoD-ICMP packet to the ISO-IP Error Packet. This task should
be carefully coordinated with the protocol-dependent submodule.

17.3.4 Common Linker Module

The tasks performed in the common linker module are rather
simple. It defines the common data structures used in the
communication between the network-dependent interface submodules.
After initialization, it collects the control information about
the Network Layer protocols. This includes the locations and the
pointers of the buffer queues. The remaining tasks are checking

81

the buffer queues of each interface submodule when interrupts
happened, relaying the packets in the buffer if the buffers are
not empty.

17.4 PROTOCOL CONVERSION IN THE TRANSPORT LAYER

The Transport Layer of the gateway is designed to translate
between the DoD Transmission Control Protocol (TCP) and the ISO-
TP Class 4. Both protocols provide connection-oriented reliable
virtual circuit service. It is clearly defined that TCP uses the
services provided by DoD-IP for the underlying Network Service.
The ISO Transport Protocol Specification defined in IS 8073 is
based on the connection-oriented Network Services. Adjustment is
needed in this case to refer to the DIS 8602, Protocol to Provide
the Conncetionless-mode Transport Layer Service. The case of
protocol conversion between the DoD User Datagram Protocol (UDP)
and the ISO-TP Class 1 could be a much simpler case of the TCP to
TP4 conversion.

17.4.1 Protocol Conversion Tasks

The protocol conversion tasks for this layer includes the
Transport Protocol Data Unit translation and the FSM state
processing.

The following fields and related functions are protocol-dependent

between TCP and TP-4 which do not need translation.

DOD TP ISO T

Checksum Checksum
Sequence Number Sequence Number (TPDU-NR)
Acknowledge Number Acknowledge Number (YU-TU-NR)

Subsequence Number
Window Flow Control Confirmation

Checksum will be added for the TPDU just before sending it to the
Network Layer, and it will be checked first after receiving the
TPDU from the Network Layer. Different protocols have different
interpretation of the sequence numbering. The sequence number in
the TCP counts the bytes of user data transferred by TCP, and the

- sequence number in ISO-TP stands for the numbering of TPDUs. It
is more reasonable to have the protocol-dependent submodules to
handle the sequence and acknowledge numbers and/or window control
independently.

82

The other parameters have their own definitions and formats for
different protocol suites, and they need to be translated between
the transport entities:

DOD TCP ISO TP-4
Source Port Calling TSAP Identifier
Destination Port Called TSAP Identifier
Data Offset Length Indicator (LI)
Flags TPDU Code
Urgent Pointer
Options Options

Source Reference (SRC-REF)
Destination Reference (DST-REF)
Disconnect Reason (REASON)
Reject Cause (REJECT CAUSE)
TPDU size
Version number
Protection
Alternative Class
Acknowledge time
Throughput
Residual Error
Priority
Transit Delay
Reassignment Time

Among the parameters, the Source and Destination References in
the ISO-TP should be so restricted that it can be represented by
the Source and Destination Ports in TCP with the length of 16
bits. The Data Offset in TCP should reflect the length of the
options. The Length Indicator in ISO-TP should reflect the length
of the variable part of the TPDU. Translation is needed between
the Flags and the options in TCP and the TPDU Code, and the
Options in ISO-TP. The other optional control parameters
provided by ISO-TP do not have the counterparts in the TCP. They
should be handled under reasonable policies.

17.4.2 Protocol-Dependent Submodule

The protocol-dependent submodules interface to the Network Layer
to send TPDUs to and to receive TPDUs from the local networks.
It checks the validity of the TPDUs by checking the checksum and
the legitimacy of the TPDU Code, records the status into the
statistics, and strips off the fields with only local protocol
significance. It maintains the state transition of the FSM of
the transport entities. It should meet the local protocol
definitions about the interface subprotocol with the Network
Layer, and the peer entity interface subprotocol with the
communicating entities in the other TCP and ISO-TP nodes.

83

17.4.3 Interface Submodule

The translation of the data structure of TPDUs and the Transport
FSM state are the major functions of this submodule. As
discussed in previous sections, all the fields with data
significance but in incompatible format needed to be translated.
The submodule also allocates and manages the TPDU buffer queues
to be accessed by the common linker module.

17.4.4 Common Linker Module

The procedures executed in this module are rather direct. It
collects the control information about the locations and the
pointers of the TPDU buffer queues after they are initialized.
The control information is used for accessing and controlling the
TPDU relay. The control information about each communication
session should also be maintained in the common linker module so
that the supervision of the virtual circuits can be implemented.

17.5 DESIGN TOOLS

The most important thing in the communication system design is to
handle the concurrence in an unambiguous way. In order to select
the right tool for specifying the gateway system, the current
protocol description techniques will be reviewed first.

In recent years, a lot of efforts have been put in the research
of the Formal Description Techniques (FDTs). Generally speaking,
they are the methods to define the system behavior without using
a natural language so that the system can be analyzed and
interpreted unambiguously. They are important tools for the
design, analysis and specification of information processing
systems so that the system descriptions can be produced in a
self-contained, complete, consistent, precise, concise and
unambiguous way. Two FDTs defined by ISO are ESTELLE and LOTOS.

ESTELLE is a second generation FDT based upon the extended Finite
State Machine (FSM) model which is considered to be closer to
human understanding of protocol. A specification in ESTELLE is
comprised of a set of modules which communicate with each other.
Modules are specified as extended FSMs. ESTELLE is a procedural
technique. Facilities in ESTELLE consist of a set of extensions
to PASCAL, specifying transitions in PASCAL, introducing

84

algorithm details, thereby often over-specifying and diminishing
the applicability of FDT. The communication in ESTELLE is done
by asynchronous message passing FIFO queue buffering.

LOTOS (Language Of Temporal Ordering Specification), on the other
hand, describes the system by defining the temporal relation
between events in the externally observable behavior. One of the
two components deals with the description of process behaviors
and interactions, based on the non-procedural predicate calculus
and modified Calculus of Communicating System (CCS). The other
component deals with the description of data structures and value
expressions, based on the Abstract Data Type (ADT) language ACT
ONE.

LOTOS can express the concurrence and the functional abstraction
unambiguously. But unlike the protocol specification with the
emphasis on the description of the externally observable
behaviors, the gateway design are more emphasized with clear
description and easy understanding of the design. Since the
procedural description with state transition in FSM, like the one
in ESTELLE, are closer to the human understanding, it is
preferred with moduled design to the non-procedural predicate
logic in LOTOS. On the other hand, the functional abstraction
using rule based design will be considered as necessary to avoid
over-specification. For the data abstraction, the modified ADT
with less algebraic specifications but more state transition
descriptions will be used so that the mechanism can be easily
understood and constructed.

18. SYSTEM ARCHITECTURE AND COMMON DATA STRUCTURE

To get a better view and understanding of system and better
understanding of the gateway design, we start the design from the
system structure, the common data structures, and the TP-4
dependent submodule. We approach the problem in this way in order
to give detailed understanding of how the transport services are
provided through the internal mechanism. Then, the transport
linker module, the interface submodules for both TP-4 and TCP,
and the TCP dependent submodule will be designed. The modules in
the network layer will be designed in the last section.

In this section, the transport gateway system structure will be
described first. The data structures and module descriptions
will then be designed in correct ESTELLE order. The transport
gateway specification in ESTELLE is included in Appendix A.

85

18.1 SYSTEM ARCHITECTURE OF TRANSPORT GATEWAY SPECIFICATION

The Transport Gateway system is composed of two layers with
several modules in each layer, as indicated in Figure 18.1 below.

The ISO-IP and DoD-IP dependent submodules directly communicate
with local networks. All the other modules communicate with each
other by exchanging messages.

One difficult problem in the approach is how to convey the
network control information (Network PDU header) between the
network module which receives incoming PDUs and the network
module which sends outgoing PDUs. There is no such kind problem
in an ordinary node because the upper layer (Transport Layer)
user specifies the network control parameters for sending data
when requesting the network services. The network control
information in the received PDU header is decapsulated before
transferring the data part to the Transport Layer. In the case of
Transport Gateway, the network control information are lost when
the PDUs decapsulated. Certain scheme must be worked out to
overcome this problem. It is not good idea to attach the network
control information with the transport layer data because it is
against the layered concept. It is possible to have the network

------------------------- TRANSPORT-LAYER -------------------------
----------------- + +----------------- +-----------------

TP-4 Transport TCP
Interface +--------+ Linker +--------+ Interface
Submodule Module Submodule

A----
-------------------------- ---------------------- +---------------------

TP-4 TCP
Dependent . Dependent
Submodule Submodule

------------------- + +------------- --

+---+

+- -------------------------- NETWORK-LAYER --------------------------
1-------+------------- ------------------- +---------------------

ISO-IP Network DoD-IP
I S IPI !I

Interface +---------+ Linker +---------+ Interface
Submodule Module Submodule

------------------- +------------------ +---------------------
, ISO-P DoD-IP

Dependent Dependent
Submodule Submotule

'--------+------------- ------ +-------------A-

--.

Figure 18 1 Transport Gateway System Architecture

86

modules to communicate directly with each other for the control
information, but a one-to-one relationship has to be kept between
the transport layer data and the network control information.

One approach to solve the problem is to have the TPDU carry a
token so that the network module on the other side can use the
token to retrieve the network control information. The token is
composed of two elements: the Network Module Id to identify the
initiating network and protocol type, and the Message Id to
locate the particular PDU. The Network Module Id is used to
identify the buffer pool for the retrieval operation. The
procedure of the communication works as follow:

a) The network module receiving the incoming PDUs will send
the network control information separately to the network
module on the other side, along with the local Network
Module Id, and Message Id;

b) The Network Module Id and the Message Id will also be kept
in the TPDUs in two special fields;

c) When the TPDU reaches the network module at ;--he other side,
the related network control information will be picked up by
matching the Network Module Id and the Message Id.

This scheme will be reflected in the common data structure
definition in next section.

18.2 COMMON DATA STRUCTURES

This section of the system design specifies the global control
variables and the common data structures used in the message
exchanging. The data structures defined here are for those
messages exchanged between different modules at the system level.
For example, the ISO-IP PDUs are exchanged between the ISO-IP
module and the external world which is considered at the system
level, while the interpretation of the PDUs is done inside the
module. The data structure of the PDU is defined at the system
level, while the interpretation of the values of the data fields
is done inside the module.

The way the data structures and the interfaces are defined here
is quite different from the formal protocol specifications. For
the formal protocol specification, the important thing is to
define the interface so clearly and unambiguously that it can be
easily understood. But it cannot be done in the exactly same way
in the gateway specification because it could make the design and
implementation more difficult. So in some places, the data

87

structures and the interfaces are defined in a way of message
format oriented and implementation uriented. When the underlying
Network Layer service is connectionless, only one kind of data
format is needed for the communication with Network Layer.

18.3 TRANSPORT GATEWAY SPECIFICATION

The commented specification for the transport gateway is enclosed
in Appendix A.

19. NETWORK LAYER DESIGN

In the NETWORKLAYER module, the common linker module discussed
previously is included as a part of the NETWORK LAYER module
definition with common data structures defined and submodule
interaction handled. The submodules describe the functionalities
and the interfaces for ISO-IP and DDN-IP respectively.

19.1 SOME RELATED PROBLEMS

19.1.1 Handling of Segmentation

One point which is worth to mention here is that the
segmentation information in the PDU header are not necessary
transferred over the gateway. The segmentation information
includes the flags, the Unit Id and Total Length, the Segment
Offset, and the Segment Length. The segmentation is done on the
TPDU basis for those TPDU with over large size. segments are
reassembled back to original TPDU before sending it back to the
receiving Transport entity. It is absolutely necessary because
the protocol conversion is at the Transport Layer which needs the
complete TPDU, not some segments of it. After the TPDU goes
through the gateway, the TPDU will be segmented by the sending
network entity if necessary, but it is under the complete control
of that network entity. Original segmenting information has no
significance here.

19.1.2 Handling of Routing

88

One of the important issues in the Network_Layer Gateway here is
the handling of routing. In the case of ordinary Network layer
gateway, the routing information can be achieved by packet-to-
packet translation. In our case of the TransportLayer gateway,
we have the special situation that the gateway can "make up" some
packets in responding to some packets just received. More
complicated mechanism are needed to solve the problem:

1) The Common Linker will translate the routing information,
but both ISO IP and DDNIP submodules need to keep records
of the routing information;

2) It is necessary to encourage the usage of both source
routing and record routing, so that returning routing
information can be found and converted to;

3) In order to find the routing information for those "made up"
packets, the IP submodules will always keep the routing
information updated by referring to current received packet.
The "made up" packets from Transport Layer will have IP
address only, but the routing information will be assembled
by the IP submodules.

4) Certain measures are required to keep the amount of
recorded information down.

Following strategies are used in our design:

1) The normal one-to-one translated messages will be assigned
with a non-zero "messageid" by the receiving IP submodule
before sending to the Transport Layer and sending over
through Network Layer Gateway. Using "message id" will ease
the task to assemble the data portion translated by the
Transport Layer Gateway with the network routing information
and some other control information.

2) When the IP submodule receives a PDU with zero "messageid",
it knows that it is the "made up" PDU from the Transport
Layer. The IP module will find the communicating pair by
matching up the source and destination IP addresses, and
pick up the newest routing information for that pair to be
assembled into the "made up" PDU.

19.1.3 Handling of QoS Parameters

By the standard protocol specifications such as ISO-TP (ISO
8073), the Quality of Service (QoS) parameters are passed from
the Transport Layer to Network Layer for service request, and
from the Network Layer to the Transport Layer for service
indication. But here in the case of the Transport Layer Gateway,
there is no such user of the Transport Layer to specify the QoS

89

requirements or to accept the QoS parameters from peer entity.
So, there is no need to pass those control parameters between the
Transport and Network Layers, but to translate and to pass
through the Common Linker at the Network Layer. This concept is
reflected in the message format design and handling.

19.2 NETWORKLAYER MODULE SPECIFICATION

The commented specification for the NETWORKLAYER module inside
the transport gateway is enclosed in Appendix A.2.

20. TRANSPORT IAYER DESIGN

In this chapter, some special problems related to the protocol
conversion at the Transport Layer are discussed, followed by the
specification of the Transport_Layer module of the Transport
Gateway.

20.1 SOME RELATED PROBLEMS

20.1.1 Classes of Service Allowed through Gateway

Considering the fact that the DDN TCP provides the reliable end-
to-end virtual circuit service which is equivalent to the CLASS-4
service of the ISO TP, it is reasonable to restrict the
communication through the gateway to the same type of service,
i.e. TP-4. By imposing this consideration, it means that when
the gateway tries to establish the connection initiated by the
TCP node. It will request the CLASS-4 service at the ISO network
side. On the other hand, the gateway will accept only the
connection requests from the ISO network which requests CLASS-4
services. ISO TP conformance requires that when CLASS-4 is
implemented, it shall also implement the CLASS-2. The CLASS-2 is
not treated here.

20.1.2 Internal FSM Modifications

As the special characteristics of the transport gateway
implementation, there is no Transport Layer user and the

90

interface. The state transition model is no longer kept the same
as the transport protocol implementation. Only the TPDUs and the
peer entity interactions are kept the same as defined in the
original protocols respectively. Examples of the state
transitions for connection establishment and connection release
for the ISO TP-4, TCP, and for the transport gateway are shown in
Figures 20.1 to 20.8.

Both ISO TP-4 and DDN TCP use three-way handshaking in the
connection establishment, as shown in Figure 20.1 and 20.2.
Three TPDUs are equivalent between two protocols: connection
request, connection confirm, and the acknowledge. The difference
is that the TP-4 user of the receiving node in ISO network will
receive a TCONind after the Transport Protocol Machine (TPM)
receives the Connection Request, and needs to issue a TCONresp to
confirm; while the TCP user of receiving node in DDN needs to
issue a passive OPEN in advance to ready for incoming call. In
the case of the Transport Gateway, the state transitions, shown
in Figure 20.3 and 20.4, are neither the same as the one in ISO
TP-4, nor the one in TCP. It always uses three state transition
steps, and the transient states are different between the TP-4
initiated call and the TCP initiated call. It is critical to
maintain the same message exchanging and peer entity interaction
between the two end nodes in ISO network and DDN.

In the case of Connection Release, as shown in Figure 20.5 and
20.6, the TPM of the TCP in the DDN plays orderly release. This
means that the connection is released upon the agreement between
two TPM users at both side, while the TPM in the ISO network
releases the connection upon the user request from one-side only.
As discussed earlier, there could be several strategies to
resolve the difference. If the DDN applications are supposed to
run in both ISO and DDN, the TP-4 in the ISO network should
include the orderly release function in the sublayer. If the ISO
applications are supposed to run in two networks, the orderly
release in the TCP can be simplified because the ISO Session
Layer includes the orderly release function. The second case is
considered in the design here. As shown in Figure 20.7 and 20.8,
the simplification is done inside the Transport gateway to
resolve the difference, while the message exchanging and the peer
entity interaction between two end nodes are still kept confirmed
with original protocols.

The state transition for the Connection Establish and the
Connection Release inside the Transport Gateway are shown in
Figure 20.9 and 20.10.

91

I SO-TP4 ISO-TP4
Mode A Node B

CLOSED CLOSED
TCONreq CR

CR TCONind
WFCC WFTRESP

cc TCONresp
AK cc

OPEN AKWAIT

AK

OPEN C

Figure 20.1 State Transition: ISO-TP4 Connection Establishment

DDN -TCP DDN -TCPNode A Node B

CLOSED CLOSED

active OPEN Eassie-PEN
SYN

SYN-SENT LISTEN

SYN.ACK SYN
ACK YAC

ESTAB SYN-RCVD

ACK

ESTAB

Figure 20.2 State Transition: DDN-TCP Connection Establishment

92

ISO-TP4 TPGW DDN -TCP
Mod* A. Nod. B

CLOSED CLOSED CLOSED

TCONreq CR CROpsiePE
CR RpsveOE

WFCC WFCCddn LISTEN

cc cc, SYN,ACK SYN
AK cccc* SYNACK

OPEN AKWAITiso SYN..RCVD

AK AwACK

AV ACK-

OPEN ESTAB

Figure 20.3 TP-Gateway Connection Establishment Initiated by ISO-TP4

DNdeCA TP...GW ISO-TP4
Node ANode 5

CLOSED CLOSED CLOSED

active OPEN SYN CRO CR
SYN CR4 CR TCONind

SYN-SENT WFCCiso WFTRESP

SYNACK CCO cc TCONresp
ACK SYN.ACK CC1- cc

ESTAB AKWAITddn AKWAIT

ACK AV AK
AKO AK

OPEN OPEN

Figure 20.4 TP-Gateway Connection Establishment Initiated by DDN-TCP

93

ISO-TP4 ISO-TP4

Node A Node 3

OPEN OPEN

TDISreq DR

DR TD ISind
DC

CLOSING REFWAIT

DC Ref -timer

REFWAIT CLOSED

Ref -timer

CLOSED

Figure 20.5 State Transition: ISO-TP4 Connection Release

DDN -TCP DDN-TCP

Node A Node 5

COE ESTAB FNESTAB
CLOSE ,.FIN

FIN FIN.ACK

FIN-WAITCLOSE-WAIT

FIN _F,_ACK CLOSE
sFIN

COIGFIN-.WAIT 2 LAST-ACK

CCLOSED

Figure 20.6 State Transition: DDN-TCP Connection Release

94

ISO-TPi TP-0W DDN -TCPNode A Node B

OPEN OPEN ESTAB
TDISreq DR DR" FIN

DR DR* FIN FINACK

CLOSING CLOSINGdd),-FIN ,ACT.< CLOSE-.WAIT

DC DCO FIN CLOSE
DC DCw FINFINACK

REFWAIT REFWAIT)~FINACK LAST-ACK

t Ref -timer Ref -.timer FNC

CLOSEDCLSDCOE

Figure 20.7 TP-Gateway Connection Release Initiated by ISO-TP4

DDN -TCP TP-GW ISO-TP4Node A
Node 5

COEESTAB FNOPEN Q*OPEN D
CLOSES DR DRFIN DRNC -R TDISinc.FACK D R

DC
FIN-WAIT, F CLOSING iso REFWAIT

FINACK DCRef -t!ne

FIN-.WAIT2 FI.IKRFATCLOSED

FIN
FIN,ACK Ref -timer-

TIME-.WAIT

wait 2ms

CLOSED

Figure 20.8 TP-Gateway Connection Release Initiated by DDN-TCP-

95

_CR CLSE SYN

SYYN ACR C

Figure 20.9 State Transition: TP-Gateway Connection Establishment
SYINNACK FN C

DC.FIN ACK FI

AKWAI~isREAWAT
-n

AK OPEN ACK

Figure 20.10 State Transitions TP-Gateway Connection Release

96

20.2 TRANSPORTLAYER MODULE SPECIFICATION

Functionaliy speaking, this module can be further divided into
two sub-modules: the TP4-dependent submodule, and the TP4-
interface submodule. But due to the restrictions of the ESTELLE-
like specification language, and the special situation inside the
module, the relationship between the TP4-dependent and the TP4-
interface submodules are specified as a parent-process and the
child-processes. The TP-machines are dynamically created and
terminated as the transport connection established and released.
The parent process in ESTELLE can create the instance of the
child process, the instances of the TP4-interface submodule are
created by the TP4-dependent module upon receiving the Connection
Request (CR) from ISO-IP module or from the other side of the
gateway.

The commented specification for the TRANSPORTLAYER module inside
the transport gateway is enclosed in Appendix A.3.

21. CONCLUSION

Starting from the in depth discussion of internetworking
requirements, this project studies :he protocol interoperability
issues in the DDN internet environment in detail, with emphasis
on the interoperability with ISO standard protocols. Both the
DDN and the ISO protocol suites are studied in terms of the basic
functionalities of the layered services, service access point
interfaces, and protocol peer entity mechanisms. The protocol
conversions between the DDN TCP/IP and the ISO IP/TP4 is designed
using ESTELLE, with the concerns of the methodology in dealing
with the interoperability problem.

With such a larger volume of research efforts involved in the
transport gateway design than the conventional Network Layer
gateway design, it raises some very interesting questions for
future studies.

1) Selection of better tools. LOTUS is very good in formal
specification of protocols, and ESTELLE is a more
implementation-oriented design tool. Still, some better
tools are needed to overcome their shortcomings.

2) Verification of such large implementation-oriented system.
With such a large system, it is very difficult to verify the
design by simulation or testing. It is also painful to

97

convert the design to some other tools for the verification.
New deveoping environment should have both the abilities for
specification and verification.

3) Performance studies. For those uncertain parameters or
untested strategies in such a complex system, more
performance studies are needed to verify the design
strategies and to improve the throughput, response time.

4) Prototype demonstrations. Because of the complexity of
implementing conversion between DDN TCP/IP and ISO TP/IP
networks, a prototype demonstration should be undertaken.
Initially, the demonstration can be performed using a
gateway between two TCP/IP and ISO TP4/IP local area
networks.

It is in the interest of the USAISC to continue to research the
interoperability problems between the DDN and ISO protocols.
Experience gained in these efforts can yield information,
specification, and prototypes which help the USAISC and support
activities understanding the major issues and problems.

98

APPENDIX A. TRANSPORT GATEWAY SPECIFICATION

APPENDIX A.1 GLOBAL DEFINITIONS AND THE ROOT MODULE

specification TRANSPORTGATEWAY;

constant

IP LINKER = 0; (* IP Common Linker Module Id *)
ISO_IPMODULE = 1; (* ISO-IP Module Id *)
DoD IP MODULE = 2; (* DoD-IP Module Id *)
TP LINKER = 8; (* TP Common Linker Module Id *)
ISO TP4_MODULE = 9; (* ISO-TP4 Module Id *)
DoDTCPMODULE = 10; (* DoD-TCP Module Id *)

MAXQUEUE = ... , (* queue length limit *)

type

octet = 0..255; (* one byte *)
short word = ... ; (* two bytes *)
word type = ... ; (* four bytes *)
data-type ... ; (* uniterpreted string of bytes with

variable length, has semantics of
string pointer *)

SNi addrtype = ... ; (* ISO SubNetwork Address *)
SNiQoStype = ... ; (* ISO SubNetwork QoS *)

SNdaddr_t,-pe = ... ; (* DDN SubNetwork Address *)
SNd_QoStyp3 ... ; (DDN SubNetwork QoS *)

direction type = (in,out); (* data flow direction *)

initiator type = (local, remote);

queuetype = record
buf : array [1..MAX_QUEUE] of datatype;
last: integer;
end;

99

Data Structure Definitions for ISO-IP PDU*

I_IPaddrtype = record (* ISO-IP address format *)
length : 1..255; (* length, positive *)
addr : datatype; (* variable length *)
end;

IIP option type = record (* ISO-IP option format *)
code : octet; (* parameter code *)
length : 1.255; (* length, positive *)
value : data_type; (* data, variable length *)
end;

I_IPPDU type = record (* ISO-IP PDU format *)
netprotocolid : octet; (* networklayerprotocol id *)
length : octet; (* header length indicator *)
version: octet; (* IS8473 version, 0000 0001 *)
lifetime: octet; (* PDU lifetime, half-sec *)
flags: octet; (* segment & errot flags *)
seglength: shortword; (* PDU length *)
checksum: short word; (* PDU header checksum *)
destin addr: I IP_addr type;
source addr: IIPaddr type;

(* optional *)
data unit id: short-word; (* initial PDU id *)
segoffset: short word; (* data in initial PDU data *)
totallength: shortword; (* length of initial PDU *)

(* end of optional part *)
option: I IP_optiontype;
data: datatype;
end;

(* The PDU structures: IIPPDU type here and DIPPDUtype
below, are defined because the message exchanging between the
ISO-IP module, the DDN IP module and the external world are at
the system level. The values of the data fields are defined
inside the ISO-IP and the DDN IP modules respectively. *)

100

Data Structure Definitions for DDN-IP PDU *

DIP PDU type = record
I-length octet; (* IP version(4) & header length *)
service octet; (* type of service *)
totlength: shortword; (* PDU total length *)
id: short word; (* PDU identification *)
flags: octet; (* segmentation flags *)
offset: short word; (* fragment offset *)
lifetime: octet; (* PDU time to live, in sec *)
protocol : octet; (* next level protocol *)
checksum: shortword; (* header checksum *)
source addr: word_type;
destin addr: word_type;
option: data type;
data: data_type;
end;

Data Structure Definitions for IP-TP
Message Exchanging

IPTPmessagetype = record
module : octet; (* Module Id, left 4 bits

for desti. module *)
message : octet; (* Message Id *)
s IP addr : wordtype; (* source IP address *)
dIP-addr : wordtype; (* destin IP address *)
data-: datatype; (* TPDU *)
end;

(* The message format defined above are used for the
communications between the Network Layer and the Transport Layer,
that is, between the ISO-IP and ISO-TP submodules, and between
the DoD-IP and TCP submodules. The IP addr fields is always
required to distinguish the particular connection over one pair
of sockets which is made of the IP address and the Transport
TSAP address. The interpretation of the data part, that is, the
TPDU, is done inside the ISO-TP and DoD-TCP submodules *)

101

Module Interaction Points

(ISO Network Interaction Point (to the sub-network) *

channel IIP-subnet primitives (user, provider);

by user:
IIPPDUreq

(SNi d addr: SNi -addr type;
SNi s addr: SNi addr type;
SNiQoS: SNi_QoS_type;
packet : IIP_PDU_type);

by provider:
I_IP PDUind

TSNi d addr: SNi addr type;
SNi s addr: SNi addr type;
SNiQoS: SNi_QoS_type;
packet : IIP_PDU_type);

(DDN Network Interaction Point (to the sub-network) *

channel DIP-subnet primitives (user, provider);

by user:
D_IP_PDUreq

(SNd d addr: SNd -addr type;
SNd s addr: SNd addr type;
SNdQoS: SNd_QoS_type;
packet : D IP_PDU-type);

by provider:
D_IP_PDUind

(SNd -d addr: SNd -addr_type;
SNd s addr: SNd-addr_type;
SNdQoS: SNdQoS type;
packet : D IP_PDU_type);

102

(* Network Service Interaction Point (to Transport Layer) *)

channel NCEPprimitives (user, provider);

by user:
IPTPMESreq (message : IPTPmessagetype);

by provider:
IPTPMESind (message : IPTPmessagetype);

Module Definitions ***)

module NETWORKLAYERentity type process
(SNSi: I_IP_subnetprimitives (user);
(SNSd: D IPsubnetprimitives (user);
NSi: NCEPprimitives (provider);
NSd: NCEPprimitives (provider);

module TRANSPORTLAYER-entitytype process
(NSi: NCEP primitives (user);
NSd: NCEPprimitives (user);

body NETWORKLAYER entitybody for NETWORKLAYERentitytype;
external;

body TRANSPORTLAYERentity_body for TRANSPORTLAYER_entitytype;
external;

103

Common Procedures

function d-length (mes: data_type) : integer; primitive;

(* calculate the length of the string *)

procedure dappend (var mes: datatype;
mes2: datatype); primitive;

(* append string mes2 to mes *)

function dcreate (1: integer) : data-type; primitive;

(* allocate data string space, initialize to zeros *)

function dget (pdu: datatype; offset: integer) : octet;

(* get one byte from the string *)

begin
d get := pdu(offset];
end;

function dgets (pdu: datatype;

offset,l: integer) : datatype;

(* get a sub-string of length 1 from a string at offset *)

var
mes: datatype;
i: integer;

begin
mes := d_create(l);
for i := ' to 1 do

mes(i] := dget(pdu, offset+i-1);
d gets :- mes;
end;

104

function getsword (mes: datatype; l:integer) : shortword;

(* get a shortword of length 1 from the string *)

var
sw: short word;
i: integer;

begin
sw := 0;
for i := 1 to i do

sw := sw*256 + mesfi];
get_sword := sw;
end;

function get-word (mes: data type; l:integer) : wordtype;

(* get a word of length 1 from the string *)

var
w: word_type;
i: integer;

begin
w := 0;
for i :=1 to 1 do

w : w*256 + mes[i];
getword := w;
end;

procedure d-put (var pdu: data_type;

offset: integer; byte: octet);

(* put one byte into the string *)

begin
pdu[offset] := byte;
end;

105

procedure d puts (var pdu: data_type;

offset: integer; segment: datatype);

(* put s sub-string into string at offset *)

var
l,i: integer;

begin
1 := d length(segment);
for i := 1 to 1 do

pdu(offset+i-1] := segment(i];
end;

procedure d bitset (var byte: octet;
bit: integer;
flag: boolean) octet;

(* set the bit, as arranged to 8..1 *)

var
b: octet;

begin
b := 1;
for bit := bit-i to 1 do

b : b*2; (* shift left *)
if (flag) then

byte : byte or b; (* set *)
else

byte := byte and (not b); (* reset *)
end;

106

function dencode (n: integer) : octet;

(* convert integer to octet (datatype) *)

var
byte: octet;
i: integer;

begin
byte 0;
for i := 1 to 8 do

begin
if (n mod 2<>0) then

d bitset (byte,i,true);
n := n div 2;
end;

d encode := byte;
end;

function dencode2 (n: integer) : datatype;

(* encode integer to 2-byte string *)

var
mes: datatype;

begin
mes := dcreate(2);
d_put(mes,l, n div 256);
d_put(mes,2, n mod 256);
d encode2 := mes;
end;

function dencode4 (n: integer); datatype;

(* encode integer to 4-byte string *)

varmes: datatype;

begin
mes := dcreate(4);
d_puts(mes,l, dencode2(n div 65536));
d_puts(mes,3, dencode2(n mod 65536));
d encode4 := mes;
end;

107

procedure clqueue (var Q: queue_type);

(* clear queue Q *)

begin
Q.last := 0;
end;

procedure enqueue (var Q: queuetype;

elem: datatype);

(* put elem in queue Q at the tail *)

begin
if (Q.last < MAX_QUEUE) then
with Q do

begin
last := last+l;
Q(last] := elem;
end;

end;

function dequeue (var Q: queuetype) : datatype;

(* get head of FIFO queue *)

var i: integer;

begin
if (Q.last > 0) then
with Q do

begin
dequeue := buf(l];
for i := 1 to last-l do

buf(iJ := buf(i+l];
last := last-l;
end;

else
dequeue := dnull;

end;

108

function exqueue (var Q: queue type;

i: integer) : data type;

(* get ith element of queue *)

var j: integer;

begin
if (Q.last >= i) then
with Q do

begin
exqueue := buf[i];
for j := i to last-i do

buftj] := buf[j+l];
last := last-i;
end;

else
exqueue := dnull;

end;

procedure requeue (var Q: queuetype;
i: integer);

(* renew the elem in queue Q by putting it at the tail *)

var j: integer;
elem: datatype;

begin

if (Q.last >= i) then
with Q do

begin
elem :Qi];
for j := i to last-i do

buf(j] := buf(j+l];
Q(last] := elem;
end;

end;

109

function chkchecksum (pdu: datatype;
leng: integer) : boolean;

(* check the PDUheader checksum *)

var
C0,C1,i : integer;

begin
CO : 0;
C1 : 0;
for i := 1 to leng do

begin
CO : (CO + dget(pdu,i)) mod MODULUS;
CI := (CI + CO) mod MODULUS;
end;

if ((C0=0) and (CI=O)) then
checksum := true

else
checksum := false;

end;a

procedure setchecksum (var pdu: data type;
length, CS: integer);

(* calculate the PDU checksum,
length is the length of pdu header,
CS is the position of CheckSum *)

var
X,Y : octet;
CO,C1,i : integer;

begin
CO : 0;
Cl : 0;
for i := 1 to length do

begin
CO : (CO + d get(pdu,i)) mod MODULUS;
C1 : (Cl + CO) mod MODULUS;
end;

length := length - CS;
X : (-Cl + length*CO) mod MODULUS;
Y : (Cl-(length+l)*CO) mod MODULUS;
d put(pdu, CS, X);
d put(pdu, CS+1, Y);
end;

110

initialization

initialize

init NETWORK LAYER with NETWORK LAYER entitybody();
connect SNSi to NETWORKLAYER.SNSi (user);
connect SNSd to NETWORK LAYER.SNSd (user);
connect NSi to NETWORK_LAYER.NSi (provider);
connect NSd to NETWORKLAYER.NSd (provider);

init TRANSPORTLAYER with TRANSPORTLAYER-entitybody();
connect NSi to TRANSPORT LAYER.NSi (user);
connect NSd to TRANSPORTLAYER.NSd (user);

end;

(* The end of the specification. It is a container with common
data types, common procedures and functions, module
declarations, and the initialization. The rest modules are
defined externally. *)

3.11

APPENDIX A.2 NETWORK LAYER MODULE SPECIFICATION

NETWORKLAYER Module Specification

body NETWORKLAYERentitybody for NETWORKLAYER entitytype;

constant

SOURCE ROUTING = 1100 1000; (* opt. code for source routing *)
RECORDROUTING = 1100 1011; (* record route *)
ERROR REASON = 1100 0001; error reason *)
SECURITY = 1100 0101; (* security *)
QOS = 1100 0011; (* QoS *)
PRIORITY = 1100 1101; Priority *)
2ADDING = 1100 1100; (* padding *)

GWTRANSDELAY-...; (* estimated GW transit delay *)

type

(* Types of Reasons for Error-report PDUs *)

error-type = (NO ERROR,
NOTSPECIFIED,
PROCOTOL PROCERROR,
INCORRECTCHECKSUM,
CONGESTION,
HEADERSYNTAXERROR,
DATA TOO LONG,
D ADDRUNREACHABLE,
D-ADDRUNKNOWN,
S_ROUTING UNSPECIFIED,
SROUTING SYNTAX ERROR,
S-ROUTING UNKNOWN ADDR,
PATHNOT ACCEPTABLE,
LIFETIMEEXPIREDINTRANSIT,
LIFETIMEEXPIREDINREASSEMBLY);

(* Addressfield format, as the components of route option *)

addr fieldtype = record
length: octet; (* length of addr field *)
addr: data type; (* addr field *)
end;

112

(* Routing Option format *)

routingoptiontype = record
code: octet; (* source/record routing *)
length: octet; (* length of the option *)
flag: octet; (* s routing: I=complete;

O=partial;
r route: O=in progress;

1111 llll=terminated *)
ptr: octet; (* ptr to addr fields, from 3 *)
fields: addr-field_type;
end;

Data Structure Definitions for the Message ***)
Exchanging between IP Dependent Submodules ***)

and Common Linker Module

IP messagetype = record (* IP message format *)
module : octet; (* Module Id *)
message : octet; (* message Id *)
source addr: wordtype; (* limited to 4 bytes *)
destin addr: wordtype; (* limited to 4 bytes *)
lifetime : octet; (* PDU lifetime, half-sec *)
option : I IPoption type;
in time : octet; (* time arriving in GW *)
end;

(* The message format defined above is used to carry information
between the IP modules with *the common linker module". It is
necessary to overcome the problem that the TPDU data does not
always carry the network addresses and some other network control
information such as lifetime of PDU which are necessary for
network layer control. The information will be picked up at the
other side of gateway to assemble the network PDU header before
sending the PDU to the remote network. *)

Data Structure Definitions
for Storing Control Information of

a IP message *

IPmessagehandlertype = record
message : octet; (* message Id *)
lifetime : octet; (* PDU lifetime, half-sec *)
option : I IPoptiontype;
in time : octet; (* keep transit time *)
end;

113

Data Structure Definitions
for Storing Control Information of

(*** a Pair IP Nodes

IP segmenttype = record (* segment & time-marker *)
pdu: datatype; (* PDU segment *)
time: octet; (* time marker *)
end;

IPpair type = record
module: octet; (* module id *)
s IP addr: wordtype; (* source IP address *)
dIPaddr: word_type; (* destin IP address *)
s-routing: routingoptiontype;

(* source routing to destin *)
r_routing: routing optiontype;

(* record routing to source *)
unitid: shortword; (* unit id for sending *)
mes id: octet; (* mesTd for sending *)
rcvmesque: queue type of IPmessagehandlertype;

(* receive message id queue *)
sendmesque: queue type of IPmessagehandler_type;

(* send message id queue *)
segmentque: queuetype of IP_segmenttype;

(* segmentation queue *)
timestamp: wordtype; (* timestamp of action *)
end;

Module Interaction Points

(* IP Network Gateway Interaction Point (to linker module) *)

channel IPlinkerprimitives (user, provider);

by user:
IPMESreq (message : IPmessage messagetype);

by provider:
IPMESind (message : IPmessage messagetype);

114

Submodule Definitions

module ISOIPentitytype process
(NETINi: IIP subnet_primitives (user);
NETGWi: IP linkerprimitives (provider);
NETOUTi: NCEPprimitives (provider);

export
i module id: integer; (* ISO IP module id *)
isnrcved: integer; (* packets received from ISO SN *)
isnsent: integer; (* packets sent to ISO SN *)
int sent: integer; (* packets sent to ISO TP *)
int_rcved: integer; (* packets received from ISO TP *)
isnerror: integer; (* errors in packets with ISO SN *)
mnt_error: integer; (* errors in packets with ISO TP *)
end;

module DDNIPentitytype process
(NET_INd: DIP subnet_primitives (user);
NET GWd: IP linkerprimitives (provider);
NETOUTd: NCEPprimitives (provider);

export
d module id: integer; (* DDN IP module id *)
dsn rcved: integer; (* packets received from DDN SN *)
dsn sent: integer; (* packets sent to DDN SN *)
dntsent: integer; (* packets sent to DDN TCP *)
dnt rcved: integer; (* packets received from DDN TCP *)
dsn error: integer; (* errors in packets with DDN SN *)
dnt error: integer; (* errors in packets with DDN TCP *)
end;

body ISO_IP_entitybody for ISOIP_entity type; external;

body DDN_IP_entity body for DDNIPentity type; external;

11

115

initialization

initialize

init ISO IP with ISO IP_entitybody();
connect SNSi to ISO _P.NETINi; (* with ISO SubNet *)
connect NSi to ISOIP.NETOUTi; (* with ISO TP-4 *)
connect NET GWi to ISO IP.NETGW;
ISO IP.i module id := 1;
ISO-IP.isn rcved := 0;
ISO IP.isn sent : 0;
ISO-IP.int-sent : 0;
ISO-IP.int-rcved : 0;
ISO IP.isn error : 0;
ISOIP.int error := 0;

init DDN IP with DON IPentity body);
connect SNSd to DDN IP.NET INd; (* with DON SubNet *)
connect NSd to DON_IP.NET_OUTd; (* with DON TCP *)
connect NET GWd to DON IP.NETGW;
DON IP.d module id := 2;
DON-IP.dsn rcved 0;
DONIP.dsn-sent 0;
DDN-IP.dnt-sent 0;
DONIP.dnt-rcved := 0;
DONIP.dsn-error := 0;
DONIP.dnt-error := 0;
end;

State Transition

trans
when NETGWi.IPMESind (* from ISOIP to Common Linker *)

begin
output NETGWd.IPMESreq(packet); (* send to DDNIP *)
end;

trans
when NETGWd.IPMESind (* from DDN_IP to Common Linker *)

begin
output NETGWi.IPMESreq(packet); (* send to ISOIP *)
end;

end; (* The End of NETWORK LAYER module (Common Linker) *)

116

APPENDIX A.2.1 ISOIP SUBMODULE

(***ISOIP Submodule Specification

body ISO_IP_entitybody for ISOIP entitytype;

constant

I IP MAX SEGMENT LENGTH =
I_NETDELAY = ... (* ISO Subnet transmit delay *)
I_REASSEMBLYDELAY = (* Reassembly delay uplimit *)
I_LIFETIME := ...; (* Lifetime for PDUs *)
I_IPADDRESS := .; (* local IP address *)

I_SNLOCALADDR := ... ; (* local SubNet address *)
I_SNQOS := ...; (* local SubNet QoS *)

I_NETPROTOCOLID = 129; (* 1000 0001 in binary *)
I_IPVERSION =1l; (* 0000 0001 *)

SEGMENT PERMIT = 128; (* 1000 0000 *)
MORE SEGMENT = 64; (* 0100 0000 *)
ERRORREPORT = 32; (* 0010 0000 *)

DATA PDU = 28; (* 0001 1100 *)
ERROR PDU = 1; (* 0000 0001 *)

FLAG-type = (OK, EXPIRED, INCOMPLETE);

var
IIP pair: queuetype of IPpairtype;
mod id: octet;
mes id: integer;
cur IIPpdu,err pdu: I IPPDU type;
cur_IP_TP mes: IPTP message-type;
curIP_mes: IP messagetype;
curIPhandler: IP message handlertype;
opt ptr: IIPoption type;
s_ip_addr,dipaddr: word_type;
s route,rroute: routingoptiontype;
ISNaddr: SNiaddr_type;

pair_index: integer;
err flag: errortype;
transit time: octet;
pdu error: integer;

117

Common Procedures

function getdataunitid : short_word;

(* get unique DataUnitId *)

begin
with I IPpair[pair.index] do

begin
unitid := unitid+l;
get_dataunit id := unitid;
end;

end;

function get optionlength(pdu: IIPPDUtype) : integer;

(* get the length of options *)

begin
getoptionlength := pdu.length - pdu.destin addr.length

- 11 - pdu.source-addr.length;
if (pdu.flags and SEGMENTPERMIT) then

getoptionlength := getoption_length - 6;
end;

function convrouting(optptr: IIPoption type)

routingoption type;

(* convert the routing direction *)

var
i,j,l,k,m: integer;
opl: ^routingoptiontype;

begin
m := optptr.value(2]-l; (* use the ptr as length *)
opl := d create(m+2);
opl.code := SOURCE ROUTING;
opl.length := m;
opl.flag :1 1; (* type 1 as complete routing *)
opl.ptr : 3; (* ptr to beginning *)

i : 3; (* copied from beginning *)
j := m-i; (* copied to from end:3-1 *)
while (i<m) do (* reverse the order *)

begin
1 :- optptr.value(i]; (* length of field *)

118

j j - 1 - 1
opl.fields(j] 1;
for k := 1 to 1 do

opl.fields(j+k] optptr.value[i+k];
end;

cony routing := opi;
end;

procedure one segment(pdu: I_IP_PDU type);

(output one IPPDU *

var
i,j,k,leng: integer;
s: data type;

begin
with pdu do

begin
net_protocol id := I NETPROTOCOLID;
version := I IPVERSYON;-
seg length :length + d-length(data);

leng :=get_option length(pdu);
optptr ^= option;
s route :=d_null; (*looking for SOURCEROUTING *
while ((s route=d null) and (leng>O)) then

if (optptr.code=SOURCEROUTING) then
s -route: =d gets (opt ptr,l1,optptr. length+2);

else
begin
leng := leng - optptr.length;
optptr := -optptr.value~optptr. length+1);
end;

if (s_route=d-null) then
s-route :=
cony -routing(IIP-pair.buf[pair_index] .rrouting);

k s~ sroute.ptr - 2; (*pointer to field *
j s~ sroute.fields~k]; (*the length *)
s :dgets(sroute.fields, k+1, j); (* get field *
ISN-addr := transSN_addr(s); (* translate to SN-addr *
optptr.value(2] :- opt ptr.value[2] + j + 1

(* modify the pointer *
checksum, := 0;
set checksum, (pdu, length, 7);
end;-

output NET INi.IIPPDUreq (ISN addr,
I -SN -LOCALADDR,
I SN QOS,
pdu);f

end;

119

procedure errorpdu (err: error_type;
ptr,leng: integer;
pdu: IIPPDU type);

(* send an Error-Report pdu *)

var
optptr: I_IPoption_type;

begin
optptr := d create(4);
optptr.code := ERRORREASON;
optptr.length := 2;
optptr.value[l] := err;
optptr.value(2] := ptr;
d_append(optptr,I_IPpair.buf[pair_index].rrouting);

with errpdu do (* Make ERROR PDU *)
begin
lifetime := I LIFETIME;
flags := (pdu.flags and SEGMENTPERMIT) or ERRORPDU;
destin addr.length := pdu.source addr.length;
destin-addr.addr := pdu.source addr.addr;
source addr.length := 4;
source addr.addr := I IPADDRESS;
option : optptr;
length := 11 + destin addr.length + source addr.length

+ d-length(option);
data := d gets(pdu, 1, leng);
if (flags and SEGMENTPEMIT) then

begin
length := length + 6;
data-unit id := getdataunitid();
seg offset := 0;
totallength := length + d_length(data);
end;

onesegment(errpdu);
end;

end;

function pairmatch : integer;

(* match the IIPpair with s/dipaddr,
set and return the index *)

var
i,j,k,leng: integer;
t: wordtype;

begin
j := 0;

120

for i: 1 to IIPpair.last do (*look for the pair with

with I IP-pair.buf~i] do sm Padesif

if ((S_IP_addr = s -ip addr) and
(d_IP_addr = d-ipaddr)) then
j:

if ((j<>O) and (mod id=O)) then (*matched *
mod -id := I lIP pair.buf[j].module'16;

else if ((j<>O) and (mod id<>O) and (*matched *
(I_IP_pair.buf(j].module/16=O)) then

IIPpair.bufj].module := mod id*16 + i module_id;
else if (j=O) then (*need fill in new IPpair entry *

begin
if (lIP pair.last<MAXQUEUE) then

begin
IIP pair.last :=IIP pair.last+1;
j := IIP pair.last;
end;

else (*no empty slot *
begin
t := cur_time();
for i 1= to I_IP_pair-last do

if (lIP pair.buf[i] .timestamp<t) then
begin
j := i;
t :=IIP pair.buf[i].timestamp;
end;

pair index := j;
for k := 1 to segment que.last do

(* clean reassembly queue by Error/Report *
with segment que.buf(k] do

errorpdu(CONGESTION, 0, pdu. length, pdu);
(send Error/Report *

end;

with IIPpair.buf[j] do (*fill in *
begin (*use empty/oldest slot *
module = mod-id * 16 + i-module_id;
s_-IP -addr s= sipaddr;
d_-IP -addr :d-ipaddr;
s -routing =dnull;
d -routing =dnull;

rcv mesque.last :=0;
send -mesque.last :=0;
segment que-last :=0;
timestamp = cur time();
end; (* with: fill in *

end; (*if j=0 *

pair~index j;
pair -match J;
end;

121

initialization

initialize

pdu_error 0; 0;
IlIP pair.last :=0;

end;

State Transition

trans
when NETINit_-IPPDUind (*from [SO subnetwork *

var
i,ii,j,k,leng,total: integer;
t: word-type;
pdul: IIPPDU-type;
flag: FLAG type;

begin
transit -time :=cur-timeo;
curIIPpdu :=packet;
if (cur_IIPpdu.source -addr.length>4) then

pdu_error := pdu -error-1; (* PDU dropped *
else if (curIIP~pdu.destin-addr.length>4) then

pdu-error := pdu~error~l; (PDU dropped *
else
begin
s -ip_addr :=cur lIIP pdu.source-addr.addr;
d ip_addr :=curll-Ppdu.destin addr .addr;
mod id := 0;
j := pair match();
err_flag :=NOERROR;
s -route :=d_null;
r-route d d null;
with cur_-IIPpdu do

with I IPpair.buf(j] do
begin
if(chk-checksum(curllPpdu,length)=false) then

err-flag :- INCORRECTCHECKSUM;
else

begin-

122

lifetime := lifetime - ILIFETIME;
leng := get option lengthi(cur_I_IPpdu);
optptr := ^option;
while (leng>O) then

if (opt ptr.code=SOURCEROUTING) then
begin
s route:=d_gets(optptr,1,optptr.length+2);
s -routing :=s route;
end;

elei (otptr.code=RECORDROUTING) then

r -route := cony -routing(optptr);
r -routing :=r route;
end;

else
begin
leng :=leng - opt ptr.length;
opt ptr := -opt_ptr.value[optptr.length4-1;
end;

end;
if((err_flag=NO_ERROR) and (lifetime<=O)) then

err flag := LIFETIMEEXPIREDINTRANSIT;
else if((err_flag=NOERROR) and (sroute=d null)) then

err-flag := SROUTINGUNSPECIFIED;

if (err_flag<>NOERROR) then (*send Error/Report *
begin
error pdu(err flag, 1, length, curIIP-pdu);
pdu_error := pdu-error+1; (*PDU dropped *
end;

else
begin (*handle segment *
flag OK;
ii :=0
if (flags and SEGMENTPERMIT=0) then

begin
pdul :=curI_IPpdu; (*no segmentation *
total :=seq length;
k := total;

else ed

begin
total :=total-length;
i :=1
while ((i<segmentque.last) and (data-unit id

<segment que.buf~i] .pdu.data unit_id)) do
- i +1

11 2= i;
k := 0;
while ((flag=OK)and (i=<segmentque.last) and

(k<total) and (data unit id
=segmentque.buf(i] .pdu.data-unit id)) do

with segment que.buf[i] do
begin
if (segoffset=k) then (* of cur_I_IPpdu *

123

begin
if (k0O) then

pdul := cur l-IP pdu;
else

dappend(pdul.data, data);
k := k+seg length-length;

(* Length of data *
end;

if (pdu.lifetime<=curtime()- time) then-
flag := EXPIRED;

else if (pdu.segoffset>k) then
flag := INCOMPLETE;

else
begin
if (k0O) then

pdul := segment que.buf[i];
else

dappend (pdul dt, pdu data;
k :=k+pdu.seglength-pdu.length;
end;
if (flag=OK) then

i :i+l;
else (*stop *

i :segment que.last+l;
end; (*while *

i :ii;
end; (* else SP *

if (((flag=OK) and (k<total)) or (*miss last seg.*)
(flag=INCOMPLETE) then
begin (*PDU is not complete yet, queueed *
for k :=i to segment que.last do

segment_que-buf~is1] := segment que.buf[i];-
segment que.buf~i] .pdu cur_-I_-IP_pdu;
segment que.buf(i].time :=cur-time();
segment que. last : = segment que. last+l;
end;

else if (i>O) then (* need to extract segments
expired/reassemblied *)

while ((i<segmentque.last) and (data_unit id=
segment que-buf[i].pdu.data-unit-id)) do

begin
exqueue(segmentque, i);
i := i+l;
end;

if (flag=EXPIRED) then
error pdu(LIFETIMEEXPIREDINREASSEMBLY,

1, length, cur_lIP pdu);
else if(k=total) then

begin
with cur_-IPTP-mes do

begin
module :=I_IP_pair.buf[j].module;
mes-id :=mes-id + 1;
if (mesid=O) then-

124

mes-id 1;
message :=mes id;
sIP addr :=s IP addr;
dIP addr d IP addr;
data :=pdul.data;
end;

output NETOUTi.IIPPDUind (cur_IPTP-mes);

with cur IP mes do
begin -(* make GW packet *
module I~ -IP pair.module;
message mes id;
source-addr sIP-addr;
destin-addr dIP-addr;
lifetime :=pdul.lifetime

- (cur-time()-transit_time);
option := pdul.option;
end;

output NETGWi.IPMESind (curIP-mes);

with cur IP handler do
begin - (* make IP -message handler *
message := mes id;
lifetime := pdu.lifetime;
option :=pdu.option;
end;

enqueue (rcv-mes-que, curIP-handler);

end; (* if flag *
end; (*else err_flag *

timestamp :=cur time;
end; (* with-with *

end; (*else *
end;

125

trans
when NETGWi.IPMESreq (*from GW common linker *

var
j,leng: integer;

begin
curIP mes :=packet;
with cur IP-mes do

begin
mod -id :=module/16 + (module mod 16)*16;
d -ip_addr source_addr;
s-ip_addr destin_addr;
J : pair match();

with I IP-pair.bufjlj] do
begin
s route s= s routing;
r-route :=r-routing;
if ((s_route=d_null) or (r_route=d nul I)) then

begin
opt ptr := option;
leng := d_length(option);
while (leng>O) then

if ((r -route=d_null) and
(optptr.code=SOURCEROUTING)) then

begin
r -route:= cony -routing(optptr);
r-routing :=r route;
end;

else if ((sroute=d -null) and
(opt ptr.code=RECORDROUTING)) then

begin
s -route := dgets(optptr,1,optptr.length+2U.
s-routing :=s route;
end;

elebegin

leng := leng - opt ptr.length;
opt ptr := 'optptr.value(optptr. length+1];
end;

end; (* if *)
with curIP-handler do

begin (* make IP -message_handler *
message :=mes -id;
lifetime :=pdu.lifetime;
option :pdu.option;
in time :=cur time();
end;

enqueue (send -mes_que, curIP-handler);
tiniestamp, := cur-time;
end; (* with I_IP_pair.buf(j] *

end; (*with curIP-mes *
end;

126-

trans
when NETOUTi.I-IP PDUreq (*from TP-4 *

var
i,j,k,n: integer;
handler: ip -message handler type;
ip-data: data type;

begin
cur TlPTP mes := packet;
with cur lIPTP mes do

begin
mod-id :=module/16 + (module mod 16)*16;
mes -id :=message;
s -ip_addr :d d-lIP acidr;
d-ip_addr =s-lIP-acidr;

j :=0;
for i := 1 to IIP-pair.last do
with IIPpair.buf(i] do

if ((s_ip_addr~s_-IP -addr) and
(dipaddr~d-lIP addr)) then

if (j=O) then
pdu error :=pdu-error+1;

(It is supposed to have a match here
because even if the lIP-module at the
gateway side initiated the session, the
lIP message has been transferred over
fas'ter to establish an entry earlier. *

else
with I lIP pair.buf~j) do

begin
pair index := J; (*global *
k := 0;
if (mes_id<>O) then

for i := 1 to send-mes_que.last do
if (send -mes que.buf(i] .message=mesid) then

k :=1;
it (k=0) then

k :=1; (*if no match, use 1st one *
handler :=exqueue(send-mes-que, k);
with cur_I_IPpdu do

begin
destin -addr-length := 4;
destin addr.addr := sipaddr;
source-addr.length := 4;
source-addr.addr := d-ipaddr;
flags :=ERROR_-REPORT or DATAPDU;
option :=handler-option;
lifetime :=handler.lifetine

-(cur~time() - handler.in-time);
length := d_length(option) + 19;

127

data :=curIPTP -mes-data;
(* segmentation & output *

n :=d-length(data);
if (n > IIPMAXSEGMENTLENGTH) then

begin
length :=length+6;
flags :~flags or SEGMENT_-PERMIT;
data -unit id := get data-unit id;
seg_offseE := 0;
total_length := length + n
ip-data := data;

while (n>j*IIPMAXSEGMENTLENGTH) do
begin
flags :=flags or MORE_-SEGMENT;-
seg_offset :=seg_offset +

IIPMAXSEGMENTLENGTH;
data :=d gets(ip_data,

(i-l)*I-IPMAXSEGMENTLENGTH+I,
IIPMAXSEGMENTLENGTH);

one segment(curllPpdu);
i : i+1;
n :=d_length(ip_data);
end;

flags :- flags and (not MORESEGMENT);-
data:=d gets(ip_data,

(i-l)*IIPMAXSEGMENTLENGTH+1,
d-length (ipdata)

-IIPMAXSEGMENTLENGTH);-
end; (if n >

one_segmento;
end; (*with cur_I_IPpdu *

timestamp :=cur -time;
end; (* with II P-pair.buf(jI)

end; (* with curIPTP-mes *
end; (*trans *)

end; (*of ISO IP entity body *

128-

APPENDIX A.2.2 DDNIP SUBMODULE

DDNIP Submodule Specification

body DDN IPentity body for DDNIP entity_type;

constant

DIP MAX SEGMENT LENGTH =
D NET DELAY = (* DDN Subnet transmit delay *)
D REASSEMBLYDELAY = ... ; (* Reassembly delay uplimit *)
D LIFETIME := ...; (* Lifetime for PDUs *)
DIP HOST ADDRESS := ... ; (* local IP host address *)
D-IP-NETADDRESS .; (* local IP net address *)

D SNLOCALADDR := ... ; (* local SubNet address *)
D_SN_QOS := ...; (* local SubNet QoS *)

HOST A MASK = 2**24-1; (* mask for CLASS A host addr *)
HOST B MASK = 2**16-1; (* mask for CLASS B host addr *)

_ HOSTCMASK = 2**8-1; (* mask for CLASS C host addr *)

NET A MASK = 2**31-1; (* mask for CLASS A net addr *)
NETBMASK = 2**30-1; (* mask for CLASS B net addr *)
NET-C-MASK = 2**29-1; (* mask for CLASS C net addr *)

NET A SHIFT = 2**24; (* r-shift for CLASS A net addr *)
NET-BSHIFT = 2**16; (* r-shift for CLASS B net addr *)
NETCSHIFT = 2**8; (* r-shift for CLASS C net addr *)

CLASS A FLAG = 2**31; (* CLASS A host addr limit *)
CLASS-BFLAG = 2**31+2**30; (* CLASS B host addr limit *)
CLASSCFLAG = 2**31+2**30+2**29; (* CLASS C host addr limit *)

DIPVERSION = 4;

DONT FRAGMENT = 64;
MOREFRAGMENT = 32;

ICMPPROTO = 1; (* protocol field *)

OPTION COPIED MASK = 128; (* copied flag in opt-code *)
* OPTIONCLASS_MASK = 96; (* option class in optcode *)

OPTION-NUMBER MASK = 31; (* option number optcode *)

OPTIONCLASSSHIFT = 32;

CLASS CONTROL = 0; (* option class *)
CLASS-MEASURE = 2;

129

OPT-END = 0; (*option number *
NO OP = 1;
SECURITY = 2;
LSOURCEROUTING =3;
TIMEsTAm~P = 4;
RECORDROUTING = 7;
STREAMID = 8;
SOURCEROUTING =9;-

ICMPECHOREPLY = 0; (*ICMP type *
ICMP DESTINUNREACHABLE =3;

ICMP SOURCE_ QUENCH = 4;
ICMP REDIRECT = 5;
ICMP-ECHO = 8;
ICMPTIME EXCEEDED = 11;
ICMPPARAM PROBLEM = 12;
ICMP TIMESTAMP = 13;
ICMP-TIMESTAMPREPLY =14;
ICMP INFOREQUEST = 15;
ICMPINFOREPLY = 16;

ICMPNETUNREACHABLE =0; (*ICMP code *
ICMP HOSTUNREACHABLE =1; -

ICMP-PROTO UNREACHABLE =2;

ICMPPORT UNREACHABLE =3;

ICMP FRAGMENT FAILED =4;

ICMPSOURCEROUTEFAILED =5

ICMP LIFETIME EXCEEDED = 0;
ICMPREASSEMBLYEXCEEDED = 1;

FLAG-type = (OK, EXPIRED, INCOMPLETE, COMPLETE);

type

ICMP_type = record
typ: octet;
code: octet;
checksum: short-word;
data: data type;
end;

130

var
D_IP_pair: queuetype of IPpairtype;
mod id: octet;
mes id: integer;
cur_DIPpdu,errpdu: DIP PDU_type;
curIPTPmes: IP TP messagetype;
cur IP mes: IPmessagetype;
curIP handler: IPmessagehandlertype;
opt ptr: DIP_optiontype;
s_host addr,d_hostaddr: wordtype;
s net_addr,d net addr: wordtype;
sip-addr,dip_addr: wordtype;
hostmask,netmask: wordtype;
netshift: word type;
s_route,rroute: optiontype;
D SN addr: SNi addr type;
ICMP-ptr: ^ICMP type;

pair-index: integer;
err_flag,errcode: octet;
transit-time: octet;

pdu error: integer;
icmpunreachable: integer;
icmpquench: integer;
icmpexceeded: integer;
icmpparameter: integer;

131

Common Procedures

function trans d ip_addr(addr: wordtype) : word-type; primitive;

(* translate DDN IP address to GWIP address *)

function trans_g_ipaddr(addr: word_type) : word-type; primitive;

(* translate GWIP address to DDNIP address *)

function trans_d_lifetime(lifetime: octet) : octet; primitive;

(* translate DDNIP lifetime to GWIP lifetime *)

function trans_g-lifetime(lifetime: octet) : octet; primitive;

(* translate GWIP lifetime to DDNIP lifetime *)

function trans_d_option(var optlength: integer;
option: datatype;
pdu: DIPPDU_type) : data_type; primitive;

(* translate DDN IP options to GW_IP options *)

function trans_g_option(var optlength: integer;
option: datatype;
pdu: DIPPDU_type) : datatype; primitive;

(* translate GWIP options to DDNIP options *)

(* NOTICE the differences of the options:
PRECEDENCE, DELAY, THROUGHPUT, and RELIABILITY of DDN-IP
are in the IP header, while ISO-IP keeps them in options *)

function oneoptionlength(code: octet) : integer; primitive;

(* get the length of one DDN-IP option *)

132

function convrouting(optptr: D_IP optiontype) :
routingoptiontype; primitive;

(* convert the routing direction
between the SOURCEROUTING and RECORDEDROUTING *)

procedure copyoptions(pdu: D_IP_PDUtype); primitive;

(* copy options according to COPIED flag in options
for those PDUs with offset>0 *)

procedure sendICMP (errtype, err code: octet; pdu: DIPPDU type);
primitive;

(* send an ICMP for echo *)

133

function get_dataunitid : shortword;

(* get unique DataUnit_Id *)

begin
with DIPpair[pair.index] do

begin
unitid := unitid+1;
getdata unit id := unitid;
end;

end;

function getoptionlength(pdu: DIPPDU_type) integer;

(* get the length of options *)

begin
getoption length := (pdu.I_length - 5) * 4;
end;

function optnum(code: octet) : integer;

(* get the option number from the option code *)

begin
opt_num := code and OPTION NUMBERMASK;
end;

procedure one-segment(pdu: D_IPPDUtype);

(* output one IPPDU *)

var
i,j,klenglength: integer;
s: wordtype;

begin
with pdu do

begin
length := (Ilength and 15) * 4;
I length := (Ilength and 15) + D_IPVERSION*16;
tot_length := length + d_length(data);

leng := get optionlength(pdu);
optptr := ^option;

134

s route := d null; (*looking for SOURCEROUTING *
while ((s_route=d -null) and (leng>O)) then

if (opt num(opt ptr.code)=SOURCE_-ROUTING) then
s -route:=d_gets(opt ptr, 1,optptr.length);

else
begin
k :- one 'option_length(opt_ptr.code);
leng := leng - k
optyptr := ^optptr + k;
end;

if (s_route=d_null) then
s route :
cony -routing(D_IPypair.buf [pair -index] .r_routing);

k s sroute.value(l] (* get pointer to field *
s: get-word(^sroute.value~k-2], 4);

(* get the IP adress *
D_-SN -addr :=transSN_addr(s); (* translate to SN-addr *
optptr.value~l] :=optptr.value~l] + 4;

(* modify the pointer *
checksum :=0;
set-checksum (pdu, length, 11);
end;

output NET INi.DIPPDUreq (D_SN_addr,
D SN LOCALADDR,
D SNQOSI
pdu);

end;

function pair-match i nteger;

(match the D_IPpair with s/dipaddr,
- set and return the index *

var
i,j,k,leng: integer;
t: word type;

begin
j := 0;
for i := 1 to DIPpair.last do (*look for the pair with

with DIPpair.buf(i] do
sm Padesif

if T((5IPaddr = s -ipaddr) and
(dIPaddr = d-ipaddr)) then

j : = i

if ((J<>0) and (mod id=0)) then (*matched *
mod-id := D-IP pair-buf~j].module/16;

else if ((J<>0) and (mod id<>0) and (*matched *
(DIPpair.buf(j] .module/16=0)) then

135

D _IPpair.buffjj.module := mod id*16 +i -module-id;
else if (J=O) then (*need fill in new IPpair entry *

begin
if (D_IP_pair.last<MAXQUEUE) then

begin
DIPpair.last := OIPpair.last+l;
j := DIPpair-last;*

else end no empty slot *
beg in
t := cur -time();
for i := 1 to D_IP~pair.last do-

if (DIPpair.buffi] .timestamp<t) then
begin

t D D IPjpair.buf[iJ.timestamp;
end;

pair index :=j
for k:= 1 to segment que.last do

withsegent (* clean reassembly queue *
withsegentque-buf(k] do
sendICMP(ICMP SOURCEQUENCH, 0, pdu);

(* send ICMP to report pdu lost *
end;

with D_-IPpair.bufj] do (*fill in *
begin (*use empty/oldest slot *
module = mod-id *16 + i-module-id;
sIP addr :=s_ip_addr;
d7IP-addr =dip_addr;

s -routing :=d_null;
d-routing :=d-null;
rcv mesque.last :0;

send -mes_que.last :=0;
segment que.last :=0;
timestamp = cur Itimer;
end; (* with: fill in *

end; (*if j=0 *

pair index j;
pair -match J;
end;

136

initialization

initialize

pdu-error :=0;
icmp unreachable :=0;
icmp quench := 0;
icmp_exceeded :=0;
icmp parameter 0;

DIPpair.last 0;
end;

State Transition

trans
when NETINi.DIPPDUind (*from DDN subnetwork *

var
i,ii,j,k,leng,length,total: integer;
t: word type;
pdul: DIPPDU-type;
flag: FLAG-type;

begin
transit -time :=cur timer;
curDIPpdu :=packet;

sipaddr :=curDIP-pdu.source_addr;
dipaddr :=curDIP-pdu.destin addr;
mod id := 0;
j := pair-matcho;
err -flag :NOERROR;
s route :=d null;
r-route :d null;
with curDIP -pdu do

with D ITpair.buf(j] do
begin
length := (I length and 15) *4;

if(chkchecksum(cur-DIP-pdu,length)=false) then
begin
err-flag := ICMPPARAMPROBLEM;

137

err-num 11
end;

else
begin
lifetime :=lifetime - DILIFETIME;-
leng := get_option length(cur_DIPpdu);
opt ptr := -option;
while (leng>O) then

if (opt num(opt ptr.code) =SOURCE ROUTING) then
begin
s -route:=d -gets(opt ptr, 1,opt_ptr.length);
s-routing := s-route;
end;

else if (opt ptr.code=RECORDROUTING) then
begin
r -route :=cony -routing(optptr);
r-routing := r-route;

else end
begin
k :=one option 1ength(opt ptr.code);
lerig := leng - ;
opt ptr := optptr + k;
end;

if((err flag=t40_ERROR) and (lifetime<=O)) then
begin
err flag :=ICMP TIMEEXCEEDED;
err-num :=ICMPLIFETIfMEEXCEEDED;
end;

else if((err flag=NO ERROR) and (s route=d null)) ther
begin
err flag :ICMPDESTINUNREACHABLE;-
err-num :=ICMPSOURCE_ROUTING_FAILED;
end;

end;

if (err flag<>NO_ERROR) then (*send Error/Report *
begin
sendICMP(err flag, err Icode, cur DIP_pdu);
pdu error := pdu_error+1; (* DIJ dropped *
end;

else
begin (*handle segment *
flag := OK;
ii := 0;
if ((flags and MORE_-FPAGMENT=O) and

(of fset=0))then
begin
pdul := cur_D_IPypdu; (*no segmentation *
k := tot length - (I length and 15) * 4;
flag :=COMPLETE;
end;

else
begin
j 1

138

- while ((i<segmentque.last) and
(id<segmentque-buf[i].pdu-id)) do

ii + 1
i i : =i;
k :=0;
if (offset=O) then (*of cur-DIPpdu *

begin
pdul :=curDIPpdu;
k := tot_length - (Ilength and 15) * 4;
end;

while ((flag=OK) and
(i=<segmentque. last) and
(id=segmentque.buf~i].pdu.id)) do

begin
with segment que.buf[ij do

begin
if (pdu.lifetiine<=cur -time()- time) then

flag := EXPIRED;
else if (k < pdu.offset*8) then

eleflag := INCOMPLETE;

begin
if (k=O) then

pdul := pdu;
else

d_append(pdul.datajpdu.data);
length := (pdu.I length and 15)*4;
k := k + pdu.tot-length - length;

en;end;

if (k=8*offset) then (*of cur-DIPpdu *
begin
d_append(pdul.data, data);
length :=(I length and 15)*4;
k := k + tot-length - length;
end;

if (flag=OK) then
i := i+1;

else (*stop *
i :segment que.last+1;

end; (*while *
end; (*else *)

if (((flag=OK) and (i=segment_que.last)) or
(* miss last seg.*)

(flag=INCOt4PLETE)) then
* (* PDU is not complete yet *

- begin (* queue cur_DIPpdu *
for k := segment_que.last to ii do

segment que.buf~k+l] := segment que.buf[kj;
- segxentque.buf~ii].pdu :curDIPpdu;

segment que.buf[ii].time =curitimer;
segment que. last :=segment que. last+l;
end;

else if (ii>0) then (*need to extract segments
expired/reassemblied *

139

while ((ii<segmentque.last) and
(id=segmentque.buf~ii].pdu.id)) do

begin
exqueue(segnlentque, ii);
ii := ii+l;
end;

if (flag=EXPIRED) then
send_ICMP(ICMPTIMEEXCEEDED,

ICMP REASSEMBLYEXCEEDED,
cur -_IP_pdu);

else if(flag=COMPLETE) then
begin
with curIP_-TP -mes do

begin
module D_[P_pair.buf[j].module;
mes id mes id + 1;
if (mesid=O) then

mes id :=1;
message := mes id;
SIP addr sipaddr;
dIP addr d ipaddr;
data :=pdul-data;
end;

output NETOUTi.DIPPDUind (curIPTP-mes);

with curIP -mes do
begin (* make GW packet *
module D= DIP_pair.module;
message :=res -id;
source -addr :=trans_d ip addr(s ip_addr);
dostin -addr trans_d ipaddr(d ip_addr); -

lifetime := trans-d-lifetime(pdul.lifetime)
- (cur_time()-transit-time);

option := transdoption(pdul .option);-
end;

output NETGWi.IPMESind (cur_IP-mes);

with cur_-IP-handler do
begin (* make IP-message_handler *
message := mes id;
lifetime := pdu.lifetime;
option := pdu.option;
end;

enqueue (rcv-mesque, curIP-handler);

end; (*if flag *
end; (*else err-flag *

timestamp :=cur time;
end; (*with-with *

end;

140

trans
when NETGWi.IPMESreq (*from GW common linker *

var
j ,leng, length: integer;

begin
curIP mes := packet;
withi curIP-mes do

begin
mod id :=module/16 + (module mod 16)*16;
d ip addr :=transgipaddr(source_addr);
sip-addr: transgipaddr(destin addr);
3 := pair match();
with DIP pair-buflij] do

begin
s route :s routing;
r route r rrouting;
if ((s route=d null) or (rroute=d-null)) then

begin
opt ptr := ^option;
leng := dlength(option);
while (leng>Q) then

if ((r_route=d -null) and
(opt_num(optptr.code)=SOURCEROUTING)) then

begin
r route:= cony -routing(optptr);
r routing := r route;
end;

else if ((s route=d_null) and
(opt_ptr.code=RECORDROUTING)) then

begin
s route := d -gets(opt ptr,l1,opt ptr. length);
s routing := s route;
end;

else
begin
k := one option length(optptr.code);
leng := leng - k
opt ptr := -optptr + k
end;

end; (* if *)
-with curIP-handler do

begin (* make IP-message_handler *
message :mes_id;
lifetime :=trans-glifetime(curP-mes.lifetime);
option :=trans_g -option(curIP-mesoption);
in-time :cur-time();
end;

enqueue (send mes que, curIP-handler);
timestamp := cur_time;
end; (* with D_-IP_pair.buf~j) *

end; (*with curIP-mes *
end;

141

trans
when NETOUTi.DIPPDUreq (* from TCP *)

var
i,j,k,n: integer;
handler: IPmessagehandlertype;
ip_data: data_type;

begin
cur IP TP mes := packet;
with cur_1PTP mes do

begin
mod id := module/16 + (module mod 16)*16;
mes id := message;
s_ipaddr := d IPaddr;
d_ipaddr := sIPaddr;

j := 0;
for i := 1 to DIP_pair.last do
with DIPpair.buf[i] do

if ((sipaddr=s_IP addr) and
(dipaddr=dIP addr)) then

j := i;

if (j=0) then
pdu error := pdu_error+l;

(* It is supposed to have a match here
because even if the IP module at the
gateway side initiated the session, the
IP message has been transferred over
faster to establish an entry earlier. *)

else
with D_IP_pair.buf[j] do

begin
pairindex := j; (* global *)
k := 0;
if (mesid<>0) then

for i := i to sendmesque.last do
if (send mesque.buf[i].message=mesid) then
k := i;

if (k=0) then
k := 1; (* if no match, use 1st one *)

handler := exqueue(sendmes_que, k);
with curID_IP_pdu do

begin
service : 0;
destin addr := sipaddr;
source addr := dipaddr;
id := getdatayunitid;
flags : 0;
offset : 0;
protocol := TCP PROTOCOL;
lifetime := handler.lifetime

- (cur-time() - handler.intime);

142

option := handler.aption;
I -length := d length(option)/4 + 5;
data := curIPTP-mes.data;

(* segmentation & output *
n := d length(data);
if (n > DIP_-MAXSEGMENTLENGTH) then

begin
ipdata := data;

i =1;
while (n>i*D_IPMAXSEGMENTLENGTH) do

begin
flags :=flags or MOREFRAGMENT;
offset := offset +

DIPMAXSEGMENTLENGTH/8;
data :=dgets(ip data,

(i-l)*DIP MAX SEGMENTLENGTH+1,
DIPMAXS'EGMENTLENGTH);

if(i=2) then-
copy opt ions (;

one_segment(curDIPpdU);
i i+l;

n d d length(ipdata);
end;

flags :=flags and (not MOREFRAGMENT);
data:=d gets (ipdata,

(i-l)*DIP_-MAXSEGMENTLENGTH+1,
d_length(ip data)

-DIPMAXSEGMENTLENGTH);
end; (*if n >

one_segment();
end; (*with cur_-D_IPpdu *

timestamp :cur-time;
end; (* with D_-IP_pair.buf[jJ *

end; (* with curIPTP-mes *
end; (* trans *)

end; (*of DDNIP-entity body *

143

APPENDIX A.3 TRANSPORTLAYER MODULE SPECIFICATION

TRANSPORTLAYER Module Specification

- body TRANSPORTLAYERentitybody for TRANSPORTLAYERentitytype;

constant

MAX-CONN= ... ; (* Max Transport Connections *)

(* position of varriable part *)
CRVAR = 7; (* for CR, CC, DR *)
DCVAR = 6; (*for DC*)
DT VAR = 5; (* for DT, ED, AK, EA, ER *)
DTeVAR = 8; (* for DTe, EDe, AKe, EAe *)

EDCODE = 1; (* TPDU code *)
EACODE = 2;
RJCODE = 5;
AKCODE = 6;
ERCODE = 7;
DRCODE = 8;
DCCODE = 12;
CCCODE = 13;
CRCODE = 14;
DTCODE = 15;

CLASS_0 = 0; (* Class of Transport Service *)
CLASS 1 = 1;
CLASS 2 = 2;
CLASS 3 = 3;
CLASS-4 = 4;

CALINGCODE = 193; (* Calling TSAP ID *)
CALLEDCODE = 194; (* Called TSAP ID *)
PDUSIZCODE = 192; (* max TPDU size, 7..13 = 128..8,192 *)
VERSNOCODE = 196; (* version No., value=1 *)
SECURICODE = 197; (* user-def protection parameter *)
CHKSUMCODE = 195; (* checksum, in CLASS_4 only *)
ADDLOPCODE = 198; (* additional options,

2:no checksum, 1:use ED *)
ALTCLSCODE = 199; (* alternative Class *)

- AKTIMECODE = 133; (* short word of max ack time, in ms *)
THRUPTCODE = 137; (* throughput *)
RESERRCODE = 134; (* residual error *)
PRIORTCODE = 135; (* priority *)
TRNDELCODE = 136; (* Transit delay *)
REASSGCODE = 139; (* reassignment time *)

144

SUBSEQCODE = 138; (* sub-sequence number *)
FLOCONCODE = 140; (* flow control confirmation *)

R_not specified = 0; (* reasons *)
R TSAP_congestion = 1;
R-address unknown = 3;
R-usernormal = 128;
Rpeer congestion = 129;
R_negotiation failed = 130;
R_duplicate src ref 131;
R ref mismatched = 132;
R~protocolerror = 133;
R not used = 134;
R-ref-overflow = 135;
R CR refused = 136;
R not used = 137;
R-invalid hdrparamlength = 138;

type

retrans_type = record
timer : integer; (* time left before retrans *)
count : integer; (* count of retrans *)
data : datatype; (* PDU *)
end;

reordertype = record
seq : integer; (* sequence number for re-order *)
data : data type; (* PDU *)
end;

TPparam type = (CALINGCODE, CALLEDCODE, PDUSIZCODE, VERSNOCODE,
SECURICODE, CHKSUMCODE, ADDLOPCODE, ALTCLSCODE,
AKTIMECODE, THRUPTCODE, RESERRCODE, PRIORTCODE,
TRNDELCODE, REASSGCODE);

TP var _parttype = record
paramcode : TP_paramtype; (* parameter code *)
length : octet; (* length indicator *)
value : datatype; (* parameter value *)
end;

(* the data structure defined here is for the
variable part of the TPDU. Some kinds of TPDUs
can have multiple parameters whose total length
can be decided indirectly by the length of the
TPDU header. *)

145

throughputtype = record
(* maximum *)

maxAB : integer; (* max. calling - called *)
min _AB : integer; (* min. *)
maxBA : integer; (* max. called - calling *)
minBA : integer; (* min. *)

(* average *)
aveAB : integer;
a mmn AB: integer;
ave BA : integer;
a mm _BA: integer;
end;-

residualerror_type = record
target integer;
min acc integer;
TSDU size : integer;
end;-

transitdelaytype = record
targetAB : integer;
max AB : integer;
target_BA : integer;
maxBA : integer;
end;

TPDUcodetype = (EDCODE, EACODE, RkJ<DE, AKCODE, ERCODE,
DRCODE, DCCODE, CCCODE, CRCODE, DTCODE);

TPclasstype = (CLASS_0, CLASS_1, CLASS_2, CLASS_3,
CLASS_4);

TPreasontype = (Rnot specified, R_TSAPcongestion,
R address unknown, Ruser normal,
R~peer congestion, R~negotiation failed,
R_duplicatesrcref, R ref mismatched,
R protocol error, Rnotused,
R-ref overflow,R _CR refused,
R-not-used, Rinvalid-hdrparamlength);

146

TPDUmessagetype = record
module : octet; (* Module Id *)
message : octet; (* Message Id *)
s IP addr : word type; (* source IP address *)
d-IP-addr word-type; (* destin IP address *)
tpducode : TPDUcodetype; (* TPDU code *)
dstref : short_word; (* GW destirefrence *)
src ref : short_word; (* GW source refrence *)
class : TPclass_type; (* Class option *)
reason : TPreason_type; (* reason/rejectcause *)
v_length : octet; (* varpart length *)
varpart : TPvarpart_type; (* variable part *)
d_length : integer; (* data length *)
data : data-type; (* user data *)
end;

(* The data structure defined above is used for the communication
between the Transport Layer protocol-dependent submodules and the
common linker module.

One point to notice is that the format is close to the IS0 TPDU
structure. It is chosen because the ISO TP data structures have
more capacity than those of DoD TCP, except for the Urgent Data.
So it is quite reasonable to use the format closer to the
standard one. The Urgent Data problem will be solved in some
strategic way such as using the Expedited Data to transfer the
Urgent Data.
Another point to notice is that both the sequence number and the

credit are removed from the data structure. The reason behind is

that these two control parameters are local significant only.
Each side of the gateway will have independent control over them.

147

Module Interaction Points

(* TP Transport Gateway Interaction Point (to linker) *)

channel TPlinkerprimitives (user, provider);

by user:
TP MESreq (message : TPDUmessagetype);

by provider:
TPMESind (message : TPDUmessagetype);

Submodule Definitions

module ISOTP4_entitytype process
(NSi: NCEPprimitives (user,provider);
TGi: TPlinker primitives (user,provider);

export
tp4_module id: integer; (* ISO TP module id *)
inet sent:-integer; (* packets sent to ISO IP *)
inet rcved: integer; (* packets received from ISO IP *)
inet-error: integer; (* errors in packets with ISO IP *)
end;

module DDNTCP entitytype process
(NSd: NCEPprimitives (user,provider);
TGd: TPlinker primitives (user,provider);

export
tcp_module id: integer; (* DDN TCP module id *)
dnet sent: integer; (* packets sent to DDN IP *)
dnet-rcved: integer; (* packets received from DDN IP *)
dnet-error: integer; (* errors in packets with DDN IP *)
end;

body ISO TP4_entity body for ISOTP4_entity type; external;
body DDNTCPentitybody for DDN_TCPentity type; external;

148

initialization

initialize

mnit ISOTP4 with ISOTP4_entity bodyo;
attach NSJ. to ISOTP4.NSi; (*with ISO IP *
connect TGJ. to ISO_-TP4.TGi;
ISO TP4.tp4_module id := 9;
ISOTP4.inetZ rcved := 0;-
ISO TP4.inet sent :0;

ISOTP4.inet-error :=0;

mnit DDNTCP with DDNTCP entity bodyo;
attach N d to DDNTCP.NSd; (*with DDN IP ~
connect TGd to DDN_-TCP.TGd;
DDN TCP.tcp_module-id := 10;
DDN TCP-dnet rcved :=0;
DDNTCP.dnet-error :=0;
DON_-TCP.dnet-error 0;-
end;

State Transition

trans
when TGi.TP MESind (*from ISOTP4 to Common Linker *

begin
output TGd.TPI4ESreq(packet); (*send to DONTCP *
end;

trans
when TGd.TPMESind (*from DONTCP to Common Linker *

beg in
output TGi.TPMESreq(packet); (*send to ISOTP4 *
end; -

end; (*The End of TRANSPORT-LAYER module (Common Linker) *

'49

APPENDIX A.3.1 ISOTP4 SUBMODULE

ISOTP4 Submodule Specification

body ISO_TP4_entitybody for ISOTP4_entitytype;

TP4 Interface Interaction Point

(* TP-4 State Machine Interaction Point *)

channel TP4 machine primitives (user, provider);

by privider:
TP4MMESind (message : IPTPmessagetype);

(* send TPDUs to TP4_machine *)

by user:
TP4MMESreq (message : IP TP messagetype);

(* TP4_machine sends TPDUs out *)

(* TP Transport Gateway Interaction Point (to linker module) *)

channel TP4_interfaceprimitives (user, provider);

by provider:
TP4I_MESind (message : IPTPmessagetype);

by user:
TP4I_MESreq (message : IPTPmessagetype);

150

TP4 State Machine SubModule Specification

module TP4_machinetype process
(TP4MI: TP4_machine_primitives (user);
TP4M_0: TP4 machineprimitives (provider);
TP41_I: TP4_interface primitives (user);
TP4I_O: TP4_interfaceprimitives (provider);

export
state : TP4 state-type; (* connection state *)
1_module : octet; (* local module id *)
g_module : octet; (* GW module id *)
d_ipaddr : wordtype; (* destination IP address *)
s_ipaddr : wordtype; (* source IP address *)
I ref : shortword; (* local reference *)
r-ref : shortword; (* remote reference *)
g_ref : shortword; (* gateway cross reference *)
exflag : boolean; (* extended format *)
ch flag : boolean; (* checksum flag *)
ed flag : boolean; (* expedited data service *)
class : octet; (* class and flags *)
end;

body TP4_machine body for TP4_machine type; external;

151

variables of the ISOTP4_body

var

total conn : integer; (* total active transport conn *)
connflag : array (1..MAX CONN] of boolean;

(* slot available flag *)
TP4M : array [0..MAXCONNI of TP4_machinetype;

(* instance of TP4_machine *)

cur conn: integer; (* cur connection reference *)
direction : directiontype; (* cur mes flow direction *)
curmod id : octet; (* module Id *)
curmesid octet; (* message Id *)
curmes : IPTP messagetype; (* cur IPTP message *)
curtpdu TPDUtype; (* TPDU, used as pointer *)
cur_s_IP wordtype; (* source IP address *)
cur d_12 : wordtype; (* destin IP address *)
cur tpdu code : TPDU code_type; (* current TPDU code *)
flagextended: boolean; (* flag for extended format *)
calling_tsap,called tsap: short-word;

total mes : integer; (* total messages going through *)
err mes : integer; (* messages with error conditions *)
fatalerr : integer; (* fatal errors *)

152

(*** Common Procedures of ISOTP4_body

function connalloc : integer;

(* allocate a free slot of connection *)

var
i,j : integer;

begin
j := 0;
if (totalconn < MAX-CONN) then

for i := MAXCONN to 1 do
if (conn_flag[i] = false) then

j := i;
if (j > 0) then

begin
total conn := totalconn+1;
connflag[j] := true;
end;

connalloc := j;
end;

(* In the case of (total conn=MAX CONN), (connalloc=0) will be
returned. There exists a TP4M[O] to be used in this case to
respond to abnormal TPDUs. *)

procedure connfree (j : integer); (* free the connection slot *)

begin
if ((j>0) and (j<=MAXCONN)) then

if (conn_flag[j] = true) then
begin
connflag(j] : flase;
total_conn := totalconn-1;
end;

end;

function TP4_code (TPDU: TPDU_type): TPDUcode type;

(* check the TPDUcode of the TPDU *)

begin
TP4_code := TPDU(2] / 16; (* 4 bits at left *)
end;

153

function curTP4_code (mes: IPTP message) : TPDU codetype;

(* check the TPDUcode of the 1st IPTP message in queue *)

begin
cur mes mes; (* access NQ message *)
curtpdu cur mes.data; (* point to TPDU *)
cur conn curtpdu.dstref; (* TCP reference index *)
cur tpducode := TP4_code(cur_tpdu); (* get the TPDU code *)
if (curtpdu_code<>CRCODE) then

flag extended := TP4M[cur conn].exflag; (* ext.ed format *)
cur TP4_code := curtpdu_code;
end;

function tpdu_fixed : integer;

(* get the pointer to the variable part in cur_tpdu *)

var
i,l: integer;

begin
1 := curtpdul]; (* get Length Indicator *)
case cur tpdu code of

CRCODE,CCCODE,DRCODE:
i : CRVAR; (* point to variable part *)

DCCODE:
i DC VAR;

DTCODE,AKCODE,EDCODE,EACODE,ERCODE:
begin
i := DTVAR;
if (flagextended) then

i : i+3;
end;

end;
tpdufixed :
end;

154

function tpdu acceptable (mes: IPTP-message_type) boolean;

(check the TPDU to see if it is acceptable *

var
ok,checksum: boolean;
i,j,k,l: integer;

begin
checksum :=false;
ok := true;
curTP4_code(mes); (*get cur_conn, curTP code, etc. *

if (cur -conn<>O) then
begin
if (con flag~cur connl=false) then

ok :=false;
else
begin
if (TP4M(cur_conn].g_ module=0) then

TP4M[cur_conn].g module = cur-mes.module/16;
else

if(TP4M[curconn] .g -module<>cur-mes.nodule/l6) then
ok :=flase;

it (TVP4m~cur_connl.d_ip_addr=U) then
TP4M~cur_connj .d ipaddr:=cur mes.dIP-addr;

else
if(TP4M(cur-connl.d_ip_addr<>cur-mesA_-IP-addr)

then
ok := flase;

if (TP4Mjjcur_conn].s ip_addr=0) then
TP4M~cur_conni .s ip-addr: =cur mes .s_ [P-addr;

else
if(TP4M(curconn) .s ipaddr<>cur mes.sIP-addr)

then
ok := flase;

if(TP4M[cur -connj.r_ref =0) then
TP4M~cur -conn].r ref := cur tpdu.src_ref;

else if (cur tpdu.src -ref<>TP4M~cur_conn].r_ref) then

en; ok := false; (*check the SRC_REF *

end;

if ((ok) and (cur tpdu-code <> RJCODE)) then
begin
i :=tpdu -fixed(); (*length of fixed part *
1I cur-tpdu(1]-i+l; (*No of bytes left,

LI exclude itself *
i.: i+1; (*point to variable part *
while (1>0) do

begin (*check valid var. part *

155

if(curtpdu[i]=CfIKSUMCODE) then
checksum := true; (* there exists checksum *)

j curtpdu[i+l]; (* get the length of field *)
1 : -j-2;
i i+j+2;
end;

if ((ok) and (1<0)) then (* error in variable part *)
ok := false;

if ((ok) and (checksum)) then
ok := chk checksum(curtpdu, cur_tpdu.length);

(* check the checksum *)
end;

tpdu acceptable := ok;
end;

function dupCR (mes: IPTPmessagetype) : boolean;

(* check the CR TPDU to see if it is duplicate *)

var
dup: boolean;
CR_tpdu: TPDUCR type;
i: integer;

begin
CR_tpdu mes.data;
cur conn 0;
dup false;
i := ;
while ((i<=MAXCONN) and (dup=false)) do

begin
if ((conn_flag(i]=true) and

(mes.sIP addr=TP4M(i].sipaddr) and
(mes.dIP addr=TP4M[i].d_ipaddr) and
(CRtpdu.srcref=TP4M[i].rref)) then

begin
cur conn := i;
dup-: true;
end;

end;
dupCR := dup;
end;

156

function dupCRg (mes: TPDU-message type) :boolean;

(check the CR TPDtJ from TPGW to see if it is duplicate *

var
dup: boolean;
i: integer;

begin
cur-ccnn := 0;
dup false;
i :=1
while((i<=MAXCQNN) and (dup=false)) do

begin
if ((conn_flag~ij=true) and

(mes.dIP addr=TP4M~iI.sipaddr) and
(mes.sIP addr=TP4M[i.dipaddr) and
(mes.src -ref=TP4M~i].gref)) then

begin
cur conn
dup true;
end;

i :=i+1;
end;

dupCRg dup;
end;

157

Initialization of ISOTP4_body

initialize

totalmes := 0; (* total messages *)
err mes := 0; (* error messages *)
fatal err := 0; (* fatal errors *)

totalconn := 0; (* total transport connections *)
for i := 1 to MAXCONN do

conn flag := false; (* the connection slot is free *)

init TP4M[0] with TP4_machine interface body(;
(* virtual State machine for

responding to error CR's *)
TP4M[0].l ref := 0;
connect TP4MI to TP4M[0].TP4MI;
connect TP4I_I to TP4M[0].TP4II;
attach TP4M_0 to TP4M[0].TP4M_0;
attach TP4I0 to TP4M[0].TP4I_O;

end;

158

State Transitions

trans
when NSi.IPTPMESind priority 0 (* receive from ISO-IP *)

begin
total mes total mes+l;
direction in;

if (tpdu_acceptable(message)=false) then
err mes := err mes+l; (* TPDU not acceptable *)

else if (curtpdu code=CRCODE) then (* and curconn=0 *)
begin (* Connection Request *)
if (dupCR(message)=false) then

begin
curconn := conn alloc();
if (cur conn>0) then

begin (* initialize TP4 protocol
machine *)

init TP4M[cur_conn] with
TP4_machineinterfacebody();

with TP4M[curconn] do
begin
1_ref := cur conn;
flagkillme := conn in progress;
end;

connect TP4M I to TP4M[cur_conn].TP4M I;
connect TP4I I to TP4M[cur_conn].TP4I I;
attach TP4M_0 to TP4M[cur conn].TP4MO;
attach TP4I_0 to TP4M(cur-conn].TP4I_O;
end; (* if conn *)

end; (* if dupCR *)
output TP4M(curconn].TP4M I(message);

(* pass TPDU for further check or response *)
end; (* if CR *)

else
output TP4M[curconn].TP4MI(message);

end; (* trans *)

(* For duplicated CR, the state machine TP4M[curconn] will
response to it with CC, as required by ISO 8073.

In case there is no local connection slot available,
curconn is reset to 0 by dupCR(), or by connalloc(), the
CR will be passed to TP4M[0] which will in turn send a DR to
refuse the connection request. *)

159

trans
when TGS.TPMESreq priority 0 (*receive from TCP, begore

feeding into TP4-machine *

begin
total-mes total-mes+l;
direction :=out;
cur-mes :=message;

cur-tDdu cur-mes.data; (*point to TPDU *

cur -conn cur_tpdu.src_ref; (*TCP reference index *
flag_extended :=TP4M[cur conn].class and 2; (* extended format *
cur-tpdu code TP4_code(curtpdu); (*get the TPDJ code *
case cur -tpdu_code of
CCCODE, ORCODE, DCCODE, DTCODE,
AKCODE, EDGODE, EACODE, ERCODE,
RJCODE:

output TP4M~cur-conn].TP4II(message);

CRCODE:
begin
if (dupCRg(Inessage)zfalse) then

begin
cur-conn := conn_alloc();
if (cur_conn>0) then

begin (* initialize a new TP4_machine *
mnit TP4M(cur conn] with

TfP4_machine interface-body();
with TP4M[cur-conn] do

begin
1_ref :=cur conn;
flag kill me :=conn-in progress;
end;

connect TP4MI to TP4M[cur_conn].TP4MI;
connect TP41_I to TP4M~curconn].TP4I_I;
attach TP4M_0 to TP4M[cur conn].TP4M_0;
attach TP41I_0 to TP4M[curconnl.TP4I_0;
end; (*if conn *

end; (* if *
output TP4M[cur-conni .TP4II(message);

(pass TPDU for further checking *
end; (*case CR *

end; (* case *
end; (*trans *

160

trans
any TP4M[i]: TP4 machine interface_type do

provided (TP4M~i].flag killme = now) priority 1

begin
disconnect TP4M[i].TP4M I; (* disconnect port relations *)
disconnect TP4M[i].TP4I-I;
disattach TP4M(i].TP4M 0;
disattach TP4M[i].TP4IO;
release TP4M['i]; (* terminate TP4 machine *)conn_free(i); (* free the slot for future use *)
end;

end; (* of ISOTP4 body *)

161

TP4_machine interface_body Specification

body TP4_machine interfacebody for TP4_machine interfacetype;

constant

VERSION = 1; (* TP-4 version, IS 8073 *)

type

(* TPDU formats *)

TPDUtype: data-type; (* general form *)

TPDUCRtype = record (* for CR, CC *)
length : octet; (* length indicator *)
tpdu code : TPDU codetype; (* TPOU code and CDT *)
dst ref : short word; (* destin refrence *)
src-ref : short-word; (* source-refrence *)
class : TP class type; (* Class option *)
var part : TP varpart type; (* variable part *)
data : data_type; (* user data *)
end;

TPDUDRtype = record (* for DR *)
length : octet; (* length indicator *)
tpducode : TPDU code_type; (* TPDU code *)
dst ref : shortword; (* destin refrence *)
src ref : shortword; (* source-refrence *)
reason : TP reasontype; (* reason *)
var part : TP varpart type; (* variable part *)
data : data_type; (* user data *)
end;

TPDUDCtype = record (* for DC *)
length : octet; (* length indicator *)
tpducode : TPDUcode type; (* TPDU code *)
dst ref : short word; (* destin refrence *)
src-ref : short-word; (* source-refrence *)
va rpart TPvar_part_type; (* variable part *)
end;

162

TPDUDT_type = record (* for DT, ED *)
length : octet; (* length indicator *)
tpdu_code : TPDU code_type; (* TPDU code *)
dstref : short word; (* destin refrence *)
seqno : octet; (* sequence no and EOT *)
varpart : TPvarpart type; (* variable part *)
data : data type; (* user data *)
end;

TPDUDTetype = record (* for extended DT, ED *)
length : octet; (* length indicator *)
tpdu_code : TPDU code_type; (* TPDU code *)
dstref : short word; (* destin refrence *)
seqno : word-type; (* sequence no and EOT *)
varpart : TP varparttype; (* variable part *)
data : data-type; (* user data *)
end;

TPDU_AK type = record (* for AK, EA *)
length : octet; (* length indicator *)
tpducode : TPDUcodetype; (* TPDU code and CDT *)
dstref : shortword; (* destin refrence *)
seqno : octet; (* sequence no and EOT *)
varpart : TP var_parttype; (* variable part *)
end;

TPDUAKetype = record (* for extended AK *)
length : octet; (* length indicator *)
tpdu_code : TPDU code_type; (* TPDU code *)
dstref : short_word; (* destinrefrence *)
seq no : word type; (* sequence no *)
cdt : short word; (* credit *)
varpart : TP varparttype; (* variable part *)
end;

TPDUEAe type = record (* for extended EA *)
length : octet; (* length indicator *)
tpdu_code : TPDU code_type; (* TPDU code *)
dstref : short word; (* destinrefrence *)
seqno : word-type; (* sequence no *)
varpart : TP-varparttype; (* variable part *)
end;

TPDURJ_type = record (* for RJ *)
length : octet; (* length indicator *)
tpdu_code : TPDUcode_type; (* TPDU code and CDT *)
dstref : short_word; (* destinrefrence k)
seqno : octet; (* sequence no and EOT *)
end;

163

TPDURJe_type = record (* for extended RJ *)
length : octet; (* length indicator *)
tpdu code TPDU codetype; (* TPDU code *)
dstref : short-word; (* destin refrence *)
seq no word_type; (* sequence no *)
cdt : shortword; (* credit *)
end;

TPDU ERtype = record (* for ER *)
length : octet; (* length indicator *)
tpdu code : TPDU codetype; (* TPDU code and CDT *)
dstref : shortword; (* destin refrence *)
cause : TP cause type; (* Reject cause *)
var part : TP-var_part_type; (* variable part *)
end;

mesCR type = record (* for CR, CC *)
module octet; (* Module Id *)
message octet; (* Message Id *)
s IP addr : word_type; (* source IP address *)
d-IP-addr : wordtype; (* destin IP address *)
tpdu : TPDUCR type; (* CR TPDU *)
end;

mesDR type = record (* for DR *)
module octet; (* Module Id *)
message octet; (* Message Id *)
s IP addr : word_type; (* source IP address *)
dIP addr : wordtype; (* destin IP address *)
tpdu : TPDUDR type; (* DR TPDU *)
end;

mesDCtype = record (* for DC *)
module : octet; (* Module Id *)
message octet; (* Message Id *)
s IP addr : word_type; (* source IP address *)
dIP addr : wordtype; (* destin IP address *)
tpdu : TPDUDC type; (* DC TPDU *)
end;

mesDT type = record (* for DT, ED *)
module : octet; (* Module Id *)
message : octet; (* Message Id *)
s IP addr : wordtype; (* source IP address *)
dIP addr : word_type; (* destin IP address *)
tpdu : TPDUDT-type; (* DT TPDU *)
end;

164

mesDTetype = record (* for extended DT, ED *)
module : octet; (* Module id *)
message octet; (* Message Id *)
s IP addr : word_type; (* source IP address *)
dIP addr : wordtype; (* destin IP address *)
tpdu : TPDU_DTe_type; (* DTe TPDU *)
end;

mesAK_type = record (* for AK, EA *)
module : octet; (* Module Id *)
message octet; (* Message Id *)
s IP addr : wordtype; (* source IP address *)
d IP addr : wordtype; (* destin IP address *)
tpdu : TPDUAKtype; (* AK TPDU *)
end;

mesAKetype = record (* for extended AK *)
module octet; (* Module Id *)
message : octet; (* Message Id *)
s IP addr : wordtype; (* source IP address *)
dIP addr : word_type; (* destin IP address *)
tpdu : TPDUAKe_type; (* AKe TPDU *)
end;

mesEAetype = record (* for extended EA *)
module octet; (* Module Id *)
message : octet; (* Message Id *)
s IP addr : wordtype; (* source IP address *)
dIP addr : wordtype; (* destin IP address *)
tpdu : TPDU_EAe_type; (* EAe TPDU *)
end;

mesRJ_type = record (* for RJ *)
module : octet; (* Module Id *)
message : octet; (* Message Id *)
s IP addr : wordtype; (* source IP address *)
dIP addr : word type; (* destin IP address *)
tpdu : TPDU_RJ_type; (* RJ TPDU *)
end;

mesRJetype = record (* for extended RJ *)
module octet; (* Module Id *)
message : octet; (* Message Id *)
s IP addr : word type; (* source IP address *)
dIP addr : wordtype; (* destin IP address *)
tpdu : TPDU_RJe_type; (* RJe TPDU *)
end;

165

mes_ER type =record (*for ER *
module octet; (*Module Id *
message octet; (*Message Id *
s IP addr :word_type; (*source IP address *
dIP addr :word_type; (*destin IP address *
tpdu :TPDUER type; (*ER TPDU *
end;

TP4_state-type =(CLOSED, OPEN, WFCCiso, WFCCout, AKWAITiso,
AKWAITout, CLOSINGiso, CLOSINGout, REFWAIT);

166

(*** Variables of TP4_machineinterface _body ***)

var
proto err : integer; (* fatal errors *)
I TSAP : short word; (* local TSAP id *)
r TSAP : shortword; (* remote TSAP id *)
initiator : initiator-type; (* who initiate the conn *)
size : octet; (* max TPDU size *)
vers : octet; (* TP version *)
prot : datatype; (* user-def protection *)
ack time : short-word; (* max ack time in msec *)
throuput : throughput_type; (* throuput *)
res error : reserror type; (* residual error *)
priority : short_word; (* priority *)
transdelay: transdelaytype; (* transit delay *)
g_class : octet; (* GW class and flags *)
g_size : octet; (* GW max TPDU size *)
g_vers : octet; (* GW TP version *)
g_prot : data type; (* GW user-def protection *)
g_acktime: shortword; (* GW max ack time in msec *)
g_throuput: throughput_type; (* GW throuput *)
g reserror: reserror_type; (* GW residual error *)
g_priority: shortword; (* GW priority *)
g_trans_delay: transdelaytype; (* GW transit delay *)
send seq : word_type; (* sending sequence no *)
send cdt : shortword; (* sending credit *)
s_subseq : shortword; (* sub-seq no for AK *)
s_ack seq : wordtype; (* ack_ed sequence no *)
rcv seq : wordtype; (* receiving sequence no *)
rcv cdt ; short word; (* receiving credit *)
r_subseq : shortword; (* sub-seq no for AK *)
r_ackseq : wordtype; (* ack_ed sequence no *)

expflag : boolean; (* flag for ED blocking *)
expseq : integer; (* ED sequence number *)
expque : queuetype of data type; (* blocked DTs *)

reason : TPreason type; (* reason *)
cause : TP cause type; (* Reject cause *)
re trans : queue type of retrans_type; (* retransmission *)
re order : queue type of reorder_type; (* re-order *)

cur mes : IP TP message type; (* cur IPTP message *)
cur tpdu : TPDU type; (* TPDU, used as pointer *)
cur tpdu_code : TPDUJ code_type; (* current TPDU code *)
varptr: ^TPvarparttype; (* ptr to variable part *)
sub state : boolean; (* associated flag *)
seq : wordtype;
cdt : shortword;

167

lilI " I*I l '* (* " I ' t I y I)$I; A I A r

lilt1I F-, I T llt I- I ., I A , I I1, :I IT;: - Y* 1c1 ;

!1€ A,1 :- i 1 -a..: I I y FI ;

t I'7 : l + l' I)''C I
lil .1t ; 'l'I l lt, lit 1 A V - '.

11 ! I I l ' 'II'!'3 1 I " 1';

iI I I P 111 l I' 1 . I

lilt A I : lit I ';:..' I I I I" t

II : 'I'I I 11 cj I y I, I

lilt* I .It Itc 'I I 1.1 4 t 1 y I oc ,,;

I~t ~ t~, : 'FI I T Itl, y I "

I I T'I I T I)I I 11(l I Il" ;

T I' I, ' it T I I II y' ',1 I l¢;

c I T 11 t I 4 I ? I 1 ;I I

Common Procedures

procedure settimer (FSM: TP4_machine type;
time: integer;
kind: timer_type); primitive;

(* set timer *)

procedure setretranstimer;

(* set re-trans timer *)

begin
set timer (TP4M[lrefl, RETRANSTIME, retrans);
end;

procedure setreftimer;

(* set ref timer *)

begin
set timer (TP4M[I ref], REFTIME, ref);
end;

procedure setwindowtimer;

(* set window timer *)

begin
set timer (TP4M[1 ref], WINDOWTIME, window);
end;

procedure setinacttimer;

(* set inact timer *)

begin
set timer (TP4M(l_ref], INACTTIME, inact);
end;

169

procedure stoptimer (FSM: TP4 machinetype;
kind: timertype); primitive;

(* stop timer *)

procedure stopretranstimer;

(* stop retrans timer *)

begin
stop_timer (TP4M(l_ref], retrans);
end;

procedure stopwindowtimer;

(* stop window timer *)

begin
stoptimer (TP4M[l_ref], window);
end;

procedure stopinacttimer;

(* stop inact timer *)

begin
stoptimer (TP4M[l_ref], inact);
end;

function timer (kind: timer type): logical; primitive;

(* called at the timer interrupt *)

function setcredit: integer; primitive;

(* set credit for local TP4M for receiving. It is used to
get the window width for the flow control. The
function can be implemented by estimating the available
storage space in memory, dividing them between the
modules in the system, and between the active sessions
in the module. *)

170

function acceptableparam: logical; primitive;

(* check to see if the connection parameters
are acceptable *)

function TP4_code (mes: IPTPmessagetype) : TPDU code type;

(* check the TPDU code of message from IP *)

begin
cur mes mes;
cur tpdu := curmes.data;
cur tpducode := curtpduC21 / 16; (* 4 bits at left *)
TP4 code := curtpdu code;
end;

function TP code (mes: TPDU message type) : TPDU code type;

(* check the TPDUcode of message from TP-GW *)

begin
tp_mes := mes;
cur tpducode := tpmes.tpdu code; (* 4 bits at right *)
TP code t= cur tpducode;
end;

function tpdu fixed : integer;

(* get the pointer to the variable part in curtpdu *)

var
i,l: integer;

begin
I := curtpdu(l]; (* get Length Indicator *)
case curtpducode of

CRCODE,CCCODE,DRCODE:
i CRVAR; (* point to variable part *)

DCCODE:
i :DC VAR;

DTCODE,AKCODE,EDCODE,EACODE,ERCODE:
begin
i := DT VAR;
if (ex_flag) then

i : i+3;
end;

end; (* case *)
tpdu fixed := i;
end;

171

procedure tpduchecksum (var mes: IP TPmessage type);

* complete the TPDU with checksum, etc. *)

var
i,j,k,l: integer;

begin
i: tpdufixed(); (* length of fixed part *)
i curtpdu(l]-i+l; (* No. of bytes left, LI

exclude itself *)
j : 0;
i i+(* point to variable part *)
while ((i>0) and (j=0)) do

begin
if (cur tpdu[i]=CHKSUMCODE) then

j := i+2; (* get pointer to checksum *)
else

begin
k curtpdu[i+l]; (* get the length of field *)
1 :l-k-2;
i i+k+2;
end;

end;

if (j>0) then
mes.data set checksum(curtpdu, curtpdu.length, j);

end;

172

procedure acceptTPDU (mes: IPTPmessagetype);

(* accept the control info in the TPDU from ISO-TP4 *)

begin
cur mes mes;
cur tpdu := curmes.data;
curtpducode := curtpdu[2] / 16; (* 4 bits at left *)

substate := true; (* true for OK *)
if (r_ref=O) then

r ref := curtpdu.src ref; (* fill in remote ref *)
else if (rref<>cur tpdu.src_ref) then

sub-state := false;

if (sip_addr=O) then
s_ip addr := curtpdu.s IP_addr; (* fill in source IP *)

else if (sip_addr<>curtpdu.sIP_addr) then
sub-state := false;

if (dip_addr=O) then
dip addr := curtpdu.d_ IP addr; (* fill in destin IP *)

else if (dipaddr<>cur_tpdu.dIPaddr) then
sub-state := false;

case curtpdu code of (* pick up special fields *)
CRCODE,CCCODE:

begin
ptrCR ^cur_tpdu;
class := ptrCR.class / 16; (* left 4 bit for class *)
if (ptrCR.class and 2) then

exflag : true;
else

ex flag false;
if (cur tpdu code=CRCODE) then

g_module := curmes.module/16;
end;

DRCODE
begin
ptrDR := ^cur tpdu;
reason := ptrDR.reason;
end;

DTCODE,EDCODE
if (exflag=flase) then (* normal *)

begin
ptrDT := ^curtpdu;
seq := get-word (ptrDT.seqnol);
end;

else (* extended *)
begin
ptrDTe := ^cur_tpdu;
seq := ptrDTe.seqno;
end;

AKCODE,EACODE

173

if (exflag=flase) then (* normal *)
begin
ptrAK := ^cur tpdu;
seq := get-word (ptrAK.seq_no,l);
end;

else (* extended *)
begin
ptrAKe := -cur_tpdu;
seq := ptrAKe.seqno;
end;

RJCODE :
if (exflag=flase) then (* normal *)

begin
ptrRJ := ^cur-tpdu;
seq := get-word (ptr_RJ.seqno, 1);
end;

else (* extended *)
begin
ptrRJe := ^curtpdu;
seq := ptrRJe.seqno;
end;

ERCODE :
begin
ptrER =curtpdu;
cause := ptrER.cause;
end;

default (* DC *)
null;

end;

case cur_tpducode of (* pick up credit *)
CRCODE,CCCODE :

cdt := ptrCR.tpducode mod 16;
AKCODE

if (exflag=flase) then (* normal *)
cdt : ptrAK.tpdu code mod 16;

else (* extended *)
cdt : ptrAKe.cdt;

RJCODE :
if (ex_flag=flase) then (* normal *)

cdt ptrRJ.tpducode mod 16;
else (* extended *)

cdt : ptrRJe.cdt;
default

null;
end; (* case *)

end;

174

procedure acceptTP4_param;

(accept the control parameters in the TPDU from ISO-TP4 *

var
n: word -type;
Sn: short-word;
i,j,k,l: Integer;
varptr: -TP-var part type;

begin
i := tpdu_fixed(); (*ptr to variable parts *
var-ptr := ^curtpdu[i+l];
I :=cur tpdu[1]-i+l; (*length of variable part *
while (1>0) do

begin
k := varptr.length;

case var ptr.param-code of
CALINGCODE : (* 1100 0001: calling TSAP-ID *

if (k>2) then
sub state :=false;

else if (cur tpdu_code=CRCODE) then
r_-TSAP := get_sword (varptr.value, k);

else if (cur tpdu_code<>CCCODE) then
sub state := false;

else if (r_TSAP=0) then
r_-TSAP:=getsword(varptr.value,k);

*else if (r_TSAP<>get -sword(var_ptr.value,k))) then
sub-state :=false;

* CALLEDCQDE : (*1100 0010: called TSAP-ID *
if (k>2) then

sub state :=false;
else if (cur tpdu code=CRCODE) then

I_-TSAP := get_sword (varptr.value, k);
else if (cur tpdu_code<>CCCODE) then

sub state := false;
else if (1_TSAP=0) then

1 -TSAP:=get sword(varptr.value,k);
else if (1_TSAP<>get -sword(varptr.value,k))) then -

sub-state :=false;

PDUSIZCODE : *1100 0000: TPDU size *
if (cur_tpdu -code=CRCODE) then

size := get-sword (varptr.value, k);
else if (cur tpdu_code<>CCCODE) then

sub state := false;
else

begin
sn := get-sword(varptr.value,k);
if ((size0O) or (size>sn)) then

size := sn;
end;

175

VERSNOCODE (*1100 0100: version number=1 *
vers := get_sword(varptr.value,k);

SECURICODE :(* 1100 0101: protection *
prot := d-gets(varptr.value,1,k);

ADDLOPCODE (*1100 0110: additional options *
begin
sn :=get_sword(varptr.value, k);
if (Sn and 2=0) then

ch-flag :true;

else
ch-flag :=false;

if (sn and 1) then
ed -flag :true;

else
ed-flag :=false;

end;

ALTCLSCODE : *1100 0111: alternative class *
begin
if (class<>4) then

for i := 1 to k do
if (varptr.value[i]=4) then

class := 4;
if (class<>4) then

en;sub-state :=false;

AKTIMECODE : (*1000 0101: acknowledge time *
ack-time := dgets(varytr.value,1,k);

THRUPTCQDE : (*1000 1001: throughput *
throuput.max_-AB :=get word(var ptr.valuet 11,3);
throuput.rnin_-AB :=get word(varptr.value[4]1,3);
throuput.max_-BA :=get word(var ptr.value(7] ,3);
throuput.min -BA :=get word(var ptr.value[10],3);
if (k=24) then

begin
throuput.aveAB := get -word(var ptr.value(131,3);
throuput.a -min AB := get-word(varptr.value[16],3);
throuput.aveBA := get word(var ptr.value[191 ,3);
throuput.a-mm _BA := get-word(varptr.value[22J,3);
end;

RESERRCODE : *1000 0110: residual error rate *
res-error.target :=get-word(var ptr.value(11,1);
res -error.min acc :=get word(var~ytr.value(2j,l);
res-error.TSDU-size := get word(varptr.value[3] ,1);

PRIORTCODE : (* 1000 0111: priority *)
priority := get-word (varptr.value,k);

TRNDELCODE : (*1000 1000: transit delay *

176

transdelay.target_-AB :=get_word(var ptr.value[11,2);
transdelay-max_-AB := get worc(varptr.value(3],2);
transdelay.target_BA := get_word(varptr.value[5j,2);
transdelay-maxBA :~get word(var ptr.value[7J ,2);

default (*CHKSUMCODE,REASSIGN,etc *
null;

end; (*case *

varptr ^var-ptr.value(k+l];
1 := l-k-2;
end; (* while *

end;

procedure accept_TP-mes(mes: TPDU-message type);

(accept the control info in the TPDU from TCP *

var
n: word_type;
sn: short-word;
i,j,k,1: integer;
varptr: -TP va rpart type;

beg in
tp_mes := mes;

*cur tpdu -code := tpmpes.tpdu-code; (*4 bits at right *
if (gref=O) then

g_ref :=tp_mes.sr,7ref; (*fill in remote ref *
sub-state :=true; (*true for OK *)

case cur tpdu code of (*pick up special fields *
CRCODE,CCCODE

begin
class := tp_mes.class;
if (cur tpdu_code=CRCODE) then

begin
gmodule :=tpmpes.module mod 16;
dipaddr :=tpmes.d_-IP -addr;
sipaddr :=tpmes.sIP-addr;
end;

end;
DRCODE

reason tptpmes.reason;
ERCODE:

cause :=tp_mes.reason;
default (*DC *

null;
end;

var-ptr := ^tp mes.var part;
I := vilength; (*length ot var. part *

177

while (1>0) do
begin
k :=varptr.length;
case varptr.param_code of

CALINGCODE :(* 1100 0001: calling TSAP-ID *
if (cur tpdu_code=CRCODE) then

1_-TSAP := get~sword (varptr.value, k);
else if (cur tpdu code<>CCCQDE) then

sub-state := false;
else if (1_TSAP=0) then

1_-TSAP:=get_sword(var_ptr.value,k);
else if (lTSAP<>get_sword(varptr.value,k))) then

sub-state :~false;

CALLEDGODE (*1100 0010: called TSAP-ID *
if (cur tpdu_code=CRCODE) then

r_-TSAP := get_sword (varptr.value, kj;
else if (cur tpdu code<>CCCODE) then

sub-state := false;
else if (r_TSAP=O) then

r_-TSAP:=get_sword(var_ptr.value,k);
else if (rTSAP<>get_sword(varptr.value,k))) then

sub-state :=false;

PDUSIZCODE : (*1100 0000: TPDU size *
if (cur-tpdu-code=CRCODE) then

gsize := get~sword (varptr.value, k);
else if (cur tpdu code<>CCCODE) then

sub-state := false;
else

begin
sn := get_sword(varptr.value,k);
if ((gsize=0) or (gsize>sn)) then

gsize := sn;
end;

VERSNOCQDE : *1100 0100: version nuxnber=1 *
gvers :=get sword(var ptr.value,k);

SECURICODE : *1100 0101: protection *
gprot =dgets(var_ptr.value,1,k);

ALTCLSCODE : *1100 0111: alternative class *
begin
if (gclass<>4) then

for i := 1 to k do
if (varptr.value(i]=4) then

gclass := varptr.valuefi];
if (gclass<>4) then

sub-state :=false;
end;

AKTIMECODE : *1000 0101: acknowledge time *
gacktine := d gets(var ptr.value, 1,k);

178

THRUPTCODE . ~ 1000 1001: throughput *
begin
gthrouput.max -AB :=get word(var_ptr.value[1],3);
gthrouput.min -AB get word(var_ptr.value[41,3); -

g~throuput.max -BA :=get word(var_ptr.valueI7],3);
g_throuput.min -BA :=get word(var_ptr.value[10],3);
if (k=24) then

begin
gthrouput.aveIAB := get word(var ptr.value[j13] ,3);
gthrouput.a -mm _AB := get word(var ptr.value(j16],3);
gthrouput.aveIBA := get_word(varptr.value[19],3);-
gthrouput.a-mm _BA := get word(varptr.value[22] 13
end;

end;

RESERRCODE : *1000 0110: residual error rate *
begin
gres-error.target : get-word(var ptr.value[1], 1);
g_res-error.min-acc :=get word(var ptr.valuefl2],1);
gres error. TSDU s ize := get_word(varptr.value[3],1);-
end;

PRIORTCODE (*1000 0111: priority *
gpriority := get word (varptr.value,k);

TRNDELCODE : *1000 1000: transit delay *
begin
gtransdelay.target_-AB := get word(var_ptr.value[11,2)
gtransdelay.max_-AB := get-word(varptr.value[3],2);
gtransdelay.target_BA := get word(var_ptr.value[5] ,2);
gtransdelay.maxBA := get_word(varptr.value[71,2);-
end;

default:
null;

end;

varptr :=^varptr.value[k+1];
1 := 1-k-2;
end;

end;

179

function acceptableCR :boolean;

(* check to see if CR/CC from ISO-TP4 is acceptable *

var
ok: boolean;

begin
ok :=sub-state; (*set by acceptTPDU *

if((ok) and (class<>CLASS_4)) then
ok := false;

if (ok=true) then
ok := acceptable param(); (*check if parameters

are acceptable *

acceptableCR :=ok;
end;

function encode-chksum :TP-var_part type;

(make checksum entry *

var
varptr: TP-var part type;

begin
varptr :=d create(4);
var ptr.param code := CHKSUMCODE;
varptr.lenqth :2;
varptr.value :0;

encode-chksum :=varptr;
end;

function encode-subseq : TP_var_part type;

(make sub-sequence entry *

var
varptr: TP_var part type;

begin
var-ptr :=d create(4);
var ptr.param _code := SUBSFEQCODE;
var-ptr.length :2;

varptr.value =r-sub-seq;

encode -subseq :=varptr;
end;

180

procedure buildDR (reason: reason_type;
mes: IPTP-message type);

(build DR for ISO-TP4, In cases of:
CLOSED * CC;
WFCC * CC -not_acceptable;
WBCL * CC;
AKWAIT * ER;
OPEN * ER;
CLOSING *CR, CC, EA;
REFWAIT *CC

begin
mesDR.module :(mes.module mod 16) *16;

(*shift 1 module to d module, -

leave 1_module blank *
mesDR.message :~0;
mes DR.sIP addr :=mes.dIP addr;
mesDR.dIP-addr :mes.sIP-addr;

ptr_CR := -mes-data;
mesDR.tpdu.length := CR_VAR-i; (*length of DR TPDU *
mesDR.tpdu-tpdu -code := DRCODE*16;
mes DR.tpdu.dst ref :=ptr-CR.srcref;
mesDR.tpdu.src ref :=ptr-CR.dst_ref;

mesDR.tpdu.reason :=reason;
if (ch_flag) then

begin
mesDR.tpdu.length := mes_-DR.tpdu.length+4;
d -append(mesDR. tpdu, encode-chksum);
set -checksum(mesDR.tpdu, mes_DR.tpdu.length, CR_VAR+3); -

end;
end;

procedure buiiLdDC (mes: IPTP-message type);

(build DC for ISO-TP4 in response to:
CLOSED, WFCCout, AKWAIT, OPEN, REFWAIT *DR *

begin
mesDC.module := (mes.module mod 16) * 16

+ mes.module div 16;
(* exchange 1_module & d-module *

mesDC.message := 0;
mesDC.sIP addr :=mes-dIP addr;
mesDC.dIP-addr :=mes.sIP-addr;

ptrDR := 'mes.data;

181

mesDC.tpdu. length := DC_-VAR-i; (*length of DC TPDU *
resDC.tpdu.tpdu -code :=DCCODE*16;
mesDC.tpdu.dst_ref ptrDR.src_ref;
mesDC.tpdu.src_ref ptrDR.dst_ref;
if (ch flag) then

begin
mesDC.tpdu.length := resDC.tpdu.length+4;
d-append(mes_DC.tpdu, encoide-chksuuc);
set -checksum(mes_DC.tpdu, mesDC.tpdu.length, DCVAR+3);

en;end;

procedure buildCC (rues: IPTP-,message type);

(build CC for ISO-TP4 in response to: AKWAIT *CR *

begin
mesCC.module := (mes.module mod 16) * 16

+ mes.module div 16;

mes C~mssae : 0; (* exchange 1_module & d-module *

resCC-s_ [P addr :=mes.dIP addr;
resCC.dIP-addr :=mes.sIP-addr;

res_CC.tpdu.length := CCVAR-i; (*length of CC TPDU *
rcv -cdt := get cdt;
mesCC.tpdu.tpdu-code := CCCODE*16 + rcv cdt;
resCC.tpdu.dst ref r= r ref;
mesCC-tpdu.src ref 1_ ref;
mesCC.tpdu.class := class;
if (ch flag) then

begin
ruesCC.tpdu.length := res_-CC.tpdu. length+4;
d-append(mes_CC.tpdu, encode-chksumofl;
set -checksum(mes_CC.tpdu, resCC.tpdu.length, CR_VAR+3);
end;

end;

procedure makeDR (reason: reason type);

(make up DR for ISO-TP4, in cases of:
WFCC, WBCL, AKWAIT, OPEN * retrans-tinier *count~max;

OPEN * inact-timer *

begin
mesDR.module :=1_module * 16; (* shift I-module to d-module,

mes- D~mesag 0;leave 1_module blank *

resDR.s_12_addr := dipaddr;

182

nesDR.dIP-addr := sipaddr;

mesDR.tpdu.length := CR_-VAR-i; (*length of DR TPDU *
mesDR.tpdu.tpdu -code := DRCODE*l6;
mesDR.tpdu.dst -ref :=r_ref;
mesDR.tpdu.src -ref :=1_ref;
mes-DR.tpdu.reason :=reason;
if (ch flag) then

begin
mes-DR.tpdu.length := mes_DR.tpdu.length+4;
d_append(mes_DR.tpdu, encode -chksum);
set -checksuxn(mes_DR.tpdu, mesDR.tpdu.iength, CR_VAR+3); -

end;
end;

procedure append_flow; primitive;

(* append flow-control info onto the AK *

procedure makeAK;

(make up AK for ISO-TP4, in cases of:
OPEN *CC,
OPEN *DT, ED,
OPEN *timers *

begin

update window(); (*update window control info *

if (exflag=false) then
begin
iesAK.module := I-module * 16; (* shift 1-mod to d-mod,-

leave I-mod blank *
mes_-AK.message := 0;
mesAX.s_-IP -addr =dip_addr;
mesAK.dIP-addr :sip-addr;

mes AK.tpdu.length :=DTVAR-i; (*length of AK TPDU *
mes AK.tpdu.tpdu -code := AKCODE*16 + rcv-cdt;
mes-AK.tpdu.dst-ref := r ref;
if (rackseq<rcv~seq) then

begin
r-ackseq :rcv-seq;
r sub_seq :0;

meisAK.tpdu.seqno ~r-ack-seq;
end;

else
begin
mesAK.tpdu.seq~no zr-ack-seq;

183

r -sub-seq := r_sub_seq+1;
mesAK.tpdu.length := mes-AK.tpdu.length+4;
dappend(mes-AK.tpdu, encode-subseq);
end;

if (ch flag) then
begin
mesAK.tpdu.length := mesAK.tpdu. length+4;
dappend(mes -AK.tpdu, encode-chksun);
set-checksum(mes_AK.tpdu, mes_AK.tpdu.iength, DT_VAR+3)
end;-

end;
else (* ex-flag=true *

begin
mes-AKe-module 1_module * 16; (* shift I-mod to d-mod,

leave I-mod blank *
mesAKe.message 0;
mes_-AKe.s_- IP -addr dip_addr;
mesAKe.dIP-addr sip_addr;

mesA~e.tpdu.length :=DTeVAR-i; (*length of AKe TPDU
mes-AKe.tpdu.tpdu_code :=AKeCODE*16;
mes_-AKe.tpdu.cdt :=rcv cdt;
mesAKe.tpdu.dst-ref :=r-ref;
if (ch flag) then

begin
mes_-AKe.tpdu.length := mesAKe.tpdu.length+4;
d-append(mes AKe.tpdu, encode-chksum);
set-checksum~zmesAKe.tpdu, mesAKe.tpdu.length,

DTeVAR+3);
end;

if (r_ack_seq<rcvseq) then
begin
r -ack -seq :=rcv_seq;
r-sub-seq 0;
mes_-AKe.tpdu.seqno r-ack seq;
end;

else
begin
mes_-AKe.tpdu.seqno r ack-seq;
r-sub-seq :=r_sub_seq+1;
mesAKe.tpdu.length :=mes-AKe.tpdu.length+4;
dappend(mes-AKe.tpdu, encode-subseq);

en;end;
end;

184

procedure make_EA;

(make up EA for ISO-TP4, in cases of:
OPEN *CC,
OPEN *DT, ED,
OPEN *timers *

begin

update_window(); (*update window control info *

if (exflag=false) then
begin
mesEA.module :=1_module * 16; (* shift I-mod to d_mod, -

leave 1_mod blank *
mesEA-message :0;

mesEA.s_-IP -addr :=d_ip_addr;
mes EA.dIP-addr :=s ip_addr;

mes_EA.tpdu.length :=DT_-VAR-i; (*length of EA TPDU *
mes_EA.tpdu.tpdu code := EACODE*16 + rcv-cdt;
mesEA.tpdu.dst -ref := r ref;
if (r_ack_seq<rcvseq) then

begin
r -ack_seq :=rcv_seq;
r -sub_seq :0;

mes_-EA.tpdu.seqno =r-ack-seq;

end;
else

* begin
mes_-EA.tpdu.seqno =r-ack seq;
r-sub_seq :=r-sub-seq+l;
nesEA.tpdu.length := mesEA.tpdu.length+4;
dappend(mes_EA.tpdu, encode_subseg);
end;

if (ch flag) then
begin
mesEA. tpdu. length :=mes EA.tpdu. length'-4;
dappend(mes_EA.tpdu, encode -chksum);
set-checksum(mesEA. tpdu, mesEA. tpdu. length, DT_VAR+3)-;
end;,

end;
else (* ex flag=true *

begin
mesEAe.module := 1_module * 16; (*shift 1_mod to d -mod,

leave 1_mod blank *
mesEAe.message := 0;
mesEAe.s_-IP -addr =dipaddr;

mesEAe.d_12_addr =sipaddr;

mes_EAe.tpdu.length :- DTeVAR-i; (*length of EAe TPDtJ
mes_EAe.tpdu.tpdu Tcode := EAeCODE*i6;
mesEAe.tpdu.cdt := rcv-cdt;
mesEAe.tpdu.dst-ref := r_ref;

185

if (ch flag) then
begin
mesEAe.tpdu.length := mesEAe.tpdu.length-4;
dappend(mes_EAe.tpdu, encode -chksum);
set-checksum(mesEAe.tpdu, mesEAe.tpdu.length,

DTeVARt3);
end;

if (rackseq<rcvseq) then
begin
r-ac kseq rcvseq;
r -sub seq :0;

mes_-EAe.tpdu.seqno :=r-ack-seq;
end;

else
begin
xesEAe.tpdu.seqno :=r-ack-seq;
r -sub-seq :=rsub-seq+l;
mesEAe.tpdu.length := mesEAe.tpdu.length+4;
dappend(nes_EAe.tpdu, encode_subseq);
end;

end;
end;

procedure trans_CR;

(translate CR of ZSO-TP4 to GW format, in case of
CLOSED * CR *

begin
tpnies.module mes -CR.module;
tprnes.message :=mesCR.message;
tpmes.s_12_ -addr :=mes_-CR-s 12P addr;
tpmes.d_12_addr :=mesCR.dIP-addr;

tp__mes.tpdu_code :=mes_CR.tpdu.tpdu-code/16;

tpmes.dst -ref z= gref;
tpmes.src -ref := 1Iref;
tpmes.class :=mes CR.tpdu.class;
tpmTes.v length :=mes -CR.tpdu.length - tpdufixed() +1;
tpmes.varpart d-create(tp-mes.v-length);
dputs (tpmes.var_part, 1, mes_CR.tpdu.var part);
tp_mes .dlength := d -length(mesCR.tpdu.data);
tp_mes.data := d -create(tpmes.d-length);
dputs (tpmes-data, 1, mes-CR.tpdu.data);
end;

186

procedure trans_CC;

(translate CC of ISO-TP4 to GW format, in case of
WFCCiso * CC *

begin
tprnes.module mes_-CC-module;
tp__mes-message :=mes_-CC.rnessage;
tpnies.s_IP -addr :=mes -CC.s_-IP -addr;
tpmes.d_IP-addr mes CC.dIP-addr;

tpmes .tpdu -code mes CC. tpdu .tpducode/16;
tpmes.dst-ref :=g_ref;
tp_mes.src_ref 1_ref;
tp -mes.class := es_CC.tpdu.class;
tpmes.v-length mesCC.tpdu.lengtn - tpdu-fixed()+1
tp_,mes.var_part :=d-create(tpmes.v_length);
d -puts (tp -mes .var -part, 1, mes -CC .tpdu.var_part);
tpnies.d -length := d_length(mesCC.tpdu.data);
tpmes .data :=d -create(tp mes .dlength);
d -puts (tp-mes.data, 1, mesCC.tpdu.data);
end;

procedure trans_DR;

(translate DR of ISO-TP4 to GW format, in case of
WFCCout, AKWAIT, OPEN * DR *

A begin
tpmes.module :=mes_-DR.module;
tpmes.message :=mes_-DR.message;
tp_mes.s_IP-addr mes DR.sIP-addr;
tp_mes.dIP-addr :=mes DR.dIP-addr;

tp_.mes tpdu -code :=mes-DR.tpdu.tpducode/16;
tpmpes.dst -ref =gref;

tp_mes.src-ref :=1_ref;
tpmes.reason :=mes_DR.tpdu.reason;
tpmes.v_length :=mes_-DR.tpdu.length - tpdu_fixed() +1;
tpmes.varpart d= d create(tp_Mes.v_length);
d -puts (tp -mes .var part, 1, mes DR. tpdu .varpart);
tp-mes.d-length := d-length(iesDR.tpdu.data);
tpmes.data := d -create(tp_mes.d_length);
d -puts (tp-mes.data, 1, mes_DR.tpdu.data);
end;

187

procedure trans_DT;

(translate DT of ISO-TP4 to GW format, in case of
AKWAITjso, OPEN * DT *

begin
tpmes.dst -ref gref;
tpmes.src ref 1 ref;
if (ex_flag=false) then

begin
tpmes.module :=mes_-DT.module;

tpmes.message mes -DT.message;
tpmes.s_IP -addr :mesDT.sIP adlr;
tpmes.d_IP -addr mesDT.dIP addr;
tpmes.tpdu -code mesDT.tpdu.tpducode/16;
tp_mes.class := mes_DT.tpdu.class;
tpmyes.v_length :=mes -DT.tpdu.length - tpdu_fixed() +1;
tpmes .var part d-create(tp mes .vlength);
d -puts (tp mes.var part, 1, mesDT.tpdu.var part);
tp_mes.d_length :=d -length(mes_DT.tpdu.data);
tpmes.data := d -create (tp-mes.d-length);
d-puts (tp-mes.data, 1, mes_DT.tpdu.data);
end;

else
begin
tpmes.module := mesDTe-module;
tp_mes.message :=mes DTe.message;
tpjmes.s_IP -addr ies_-DTe.sU'_Paddr;
tp_mes.d_IP -addr :=mes_-DTe.d_12_addr;
tp.mes.tpdu -code mesDTe.tpdu.tpdu_code/16;
tp-mes.class := mes_DTe.tpdu.class;
tpmes.v_length :=mes_-DTe.tpdu.length - tpdufixed() +1;
tpmres .var part :=d-create(tpmes .vlength);
dputs (tp-mes.var-part, 1, mesDTe.tpdu.var part);
tpmes.d_length :=d length(mes_DTe.tpdu.data);
tp._mes.data := d -create(tpmes-d_length);
d puts (tp-mes.data, 1, mes_DTe.tpdu.data);

end;

procedure. trans_ED;

(translate ED of ISO-TP4 to GW format, in case of
AKWAITiso, OPEN * ED *

beg inr
tpmes.dst -ref ~gref;
tp__nes.src-ref :1_ref;
if (exflag=false) then

begin
tp_mes.module := mes-ED-module;

188

tpmes.message := mes_-ED.message;
tpmes.s_-IP addr :=mes_-ED.s_-IP -addr;
tpmes.d_-IP addr :mesED.dIP-addr;
tp-mes.tpdu code :=mesED.tpdu.tpdu_code/16;
tpmes.class :=mes_ED.tpdu.class;
tpmes.v_length :~mes -ED.tpdu.length - tpdu_fixed() +1;
tp_rnes.var_part d -create(tp_ mes.v length);
dputs (tp_mes.var part, 1, mes_ED.tpdu.var part);
tp_mes.d_length := d -length(mes_ED.tpdu.data);
tp__mes.data :=d -create(tpmes.d_length);
dputs (tp_mes.data, 1, mes_ED.tpdu.data);
end;

else
begin
tp__mes.module :=mes_-EDe-rnodule;
tpmes.message :=mesEDe.message;
tpmes.s_-IP -addr :=mes_-EDe.s_-IP -addr;
tpmes.d_-IP -addr :=mesEDe.dIP-addr;
tp__mes.tpdu -code :=mesEDe..tpdu.tpducode/16;
tpmes.class :=mes_EDe.tpdu.class;
tp_,mes.v_length :=mes -EDe.tpdu.length - tpdu_fixed() +1;
tp__mes .var part d -create(tp mes .vlength);
dputs (tp_rnes.var part, 1, mes_EDe.tpdu.var part);
tpmes.d_length :=d-length(mes_EDe.tpdu.data);
tpmes.data :=d create(tpmes.d_length);
dputs (tp_mes.data, 1, mesEDe.tpdu.data);
end;

end;

procedure makeDRg (reason);

(makeup DRg in GW format, in case of
WFCCiso * CC not acceptable,
WFCCiso, AKWAIT, OPEN * ER,
retrans-timer & countmax,
inact-timer *

begin
tp_mes.module ~gmodule * 16;
tp_mes.message :0;

tp_. mes.s -IP -addr :=s -ip addr;
tpmes.dIP-addr d-ipaddr;

tp_mes.tpdu code DRCODE;
tp res.dst ref gref;
tpmes.src ref 1= I ref;
tp mes.reason reason;
tp-mes.v-length 0;
tp-mes.d-length :~0;
end;

189

procedure transCRg;

(translate CR of GW format to ISO-TP4 format, in case of
CLOSED * CRg *

begin
mes_-CR-module tp_.mes.rnodule;
mes_-CR.message tp_mes-message;
mes_-CR.s_-IP -addr :tp_mes-s_-IP -addr;
mesCR-dIP-addr tp_mes.dIP-addr;

mes -CR.tpdu.tpdu_code :=tp_,mes.tpdu_code *16;

mes_-CR.tpdu.dst_ref r ref;
mes_-CR.tpdu.src_ref I ref;
mesCR.tpdu.class := tp-mes-class;
tpmWes.var part :=d-create(tpmes.v-length);
dputs (mes_CR.tpdu.var part, 1, tp_mes.var part);
mes -CR.tpdu.data : d-create(tp-mes.d-length);
d-puts (mPsCP.tPdII.datA, 1, tp-Mes.data);
end;

- procedure trans_CCg;

(translate CC of GW format to ISO-TP4 format, in case of
WFCCout * CCg *

begin
mes_-CC-module :=tpmes.module;
mes_-CC.message tpmes.message;
mes_-CC-s_-IP -addr tp_mes-s_-IP -addr;
iesCC.d-lIP-addr tp_mTes.d-lIP-addr;

mes CC-tpdu.tpdu -code := tp_mes-tpdu_code * 16;
mesCC.tpdu-dst ref r= rref;
mes CC.tpdu.src ref 1_ref;
mes-CC.tpdu.class :=tp-rnes.class;
tp-mes.var part := d -create(tp_mes.v length);
dputs (mes_CC.tpdu.var part, 1, tp~mes.var part);
mes CC. tpdu .data =d-create(tp-mes .d-length);
dputs (mes_CC.tpdu.data, 1, tp-mes.data);
end;

190

procedure trans-DRg;

(translate DR of GW format to ISO-TP4 format, in case of
WFCCiso, WFCCout, AKWAITiso, OPEN * DRg *

begin
mesDR.niodule tpmes.module;
mesDR.message := tp mes.message;
mres DR.s_-IP -addr tpmes.s_-IP -addr;
meaDR.dIP-addr :=tpmes.dIP-addr;

mesDR.tpdu.tpdu_code := tp_mnes.tpdu code * 16;
mesDR.tpdu.dst ref r ref;
mesDR.tpdu.src ref :=1_ref;
mesDR.tpdu.reason tpmes.reason;
tpmes.var part :=d create(tp mes.v length);
dputs (mes_DR.tpdu.var part, 1, tpmes.var part);
mesDR.tpdu.data := d-create(tp__mes.d_length);
dputs (mesDR.tpdu.data, 1, tpmes.data);
end;

procedure trans-DTg;

(translate DT of GW format to ISO-TP4 format, in case of
AKWAITout, OPEN * DTg *

begin
if (ex_flag=false) then

begin
mesDT.module :=tpmes.module;
mesDT.message := tpmes.message;
mesDT.s_-IP -addr := tp mes.s_-IP_addr;
mesDT.dIP-addr :=tp-mes.dIP_addr;

mesDT.tpdu.tpdu -code := tpmes.tpdu_code *16;

mes DT.tpdu.dst ref r= ref;
mes DT.tpdu.src ref 1 1ref;
tres DT.tpdu.class := tp-mes.class;
tp -mes.var part := d create(tpmes.v lenigth);
kl_puLS (utes_DT.Lpdu.7vrpaL, 1, LpIIte.vd:P*LL);
mes-DT.tpdu.data := d create(tp-mes.d-length);
d_puts (res_DT.tpdu.data, 1, tp-mes.data);
end;

else (* ex_flag=true *
begin
res_-DTe.module :=tp_mes.module;

mesDTe.message :=to mes.message;
resDTe.s_-IP -addr := tp-mes-s -IP addr;
resDTe.dIP-addr := tp-mes.dIPaddr;

mesDTe.tpdu.tpdu-code := tpmes-tpdu_code *16;

191

mesDTe.tpdu.dst-ref r-ref;
mesDTe.tpdu.src-ref I-ref;
mres DTe.tpdu.class :=tp_mes.class;
tpmes.var_part :=d create(tp_mes.v_length);
d_puts (mes_DTe.tpdu.'rar part, 1, tp-mes.v~ar part);
mesDTe.tpdu.data :=d create(tp mes.dlength);
d_puts (res_DTe.tpdu.data, 1, tprnes.data);

en;end;

procedure transEDg;

(translate ED of GW format to ISO-TP4 format, in case of
AKWAITout, OPEN * EDg *

begin
if (ex_flag=false) then

begin
rues ED-module tp-mes.module;
resED.message tp_mes.message;
resED-sIP-addr tpmes.s_IP_addr;
mesED.d_ [P-addr tpmes.d_IP_addr;

resED.tpdu.tpdu code :=tpmes.tpdu code *16;

mes -ED.tpdu.dst-ref r_ref;
mes_-ED.tpdu.src-ref I_ref;
resED.tpdu.class :-tpmes.class;
tp-mes.var -part :=d-create(tp_rues.v_length);
dputs (rues ED.tpdu.var_part, 1, tprues.var part);
mesED..tpdu.data :=d create(tp mes.d length);
dputs (ruesED.tpdu.data, 1, tpmes.data);
end;

else (* ex_flag=true *
begin
resEDe.module :=tp_mes.module;
res_EDe.message tprnes.message;
res_-EDe.s_-IP -addr tp-mes-s_[P -addr;
rues EDe.dIP-addr tpmes.dIP-addr;

res_EDe.tpdu.tpdu_code := tpmes.tpdu-code *16;

resEDe.tpdu.cizt-ref :=r-ref;

res_EDe.tpdu.src -ref I= I re f;
mes_EDe.tpdu.class := tp_mes.class;
tprues.var_part := d -create(tp_mes.v_length);
dputs (res_EDe.tpduvar part, 1, tp-mes.var part);
rues EDe.tpdu.data :=dcreate(tp_.mes.d length);
dputs (res_EDe.tpdu.data, 1, tpnies.data);
end;

end;

192

procedure checkqueue; primitive;

(* Check all the TPDUs in the re-trans queue for re-
transmission if necessary.

As specified in TS 8073, it is implementation-dependent
to have timer control over the 1st TPDU only and re-
transmit all TPDUs in the queue on time-out; or to have
timer control over all the single TPDUs in the re-trans
queue. *)

193

Initialization

initialize

state CLOSED;
protoerr 0;

expflag false;
expseq 0;
expque.last := 0;

Transitions of TP4_machine

(*** GROUP-I: TPDU from ISO-TP4

(*** State-transition from CLOSED ***)

trans
when TP4MI.TP4MMESind (* CR from TP4 *)

provided ((TP4_code(message)=CRCODE)) and (lref=O))
from CLOSED to same

begin (* no conn available *)
build DR (R peercongestion, message);
output TP4MO.TP4MMESreq(mes_DR);
end;

194

trans
when TP4M I.TP4M MESind (* CR from TP4 *)

provided ((TP4-code(message)=CRCODE)) and (1_ref<>O))
from CLOSED

begin
acceptTPDU (message); (* take in the TPDU *)
accept_TP4_param();
if (acceptableCR=false) then

begin
build DR (R_CRrefused, message);
output TP4MO.TP4MMESreq (mes_DR);
nextstate := same;
end;

else
begin
send-seq 0;
send cdt cdt;
s_sub seq 0;
sackseq 0;

(* increasecount;
(* set retrans timer; *)

(* These two actions are specified in the original IS
8073. But there might be some mistakes in it, because
there is no specification in the CLASS-4 state table
for the following state (WFTRESP) with the event of
retrans timer, and for the case of count exceeding the
limit. It is assumed here that the CRreceiving side
will passively wait for the TCONind from TP-4 user, or
CRg from the TP-GW. If either the TCONind or CRg never
comes, the calling TP-4 will finally timeout on the CR,
and will send DR to terminate the connection
establiihment process. *)

rcv seq 0;
rcv cdt set-credit;
r sub-seq 0;
r ackseq : 0;
trans CR;
output TP4I_O.TP4IMESreq(tpmes); (* send translated

message to linker *)
next state := WFCCout;
end;

end;

195

trans
when TP4MI.TP4MMESind

provided (TP4_code(message) = CCCODE)
from CLOSED to SAME

begin
build -DR (R_ref mismatched, message);
output TP4MO.TfP4MMESreq(mes_DR);
end;

trans
when TP4MI.TP4M t4ESind

provided (TP4-code(message) = DRCODE)
from CLOSED to SAME

begin
ptr_DR := 'ressage.data;
if(ptr -DR.src ref<>O) then

build_DC~message);
output TP4MO.TP4MMESreq(mesDC);

end;

trans
when TP4MI.TP4MMESind

provided ((TP4-code(message) = DTCODE) or
(TP4_code(message) =AKCODE) or
(TP4_code(message) = EDCODE) or
(TP4_code(message) = EACODE) or
(TP4-code(message) = DCCODE) or
(TP4_code(message) = ERCODE)

from CLOSED to SAME

begin
proto_err proto-err+l;
end;

196

(*** State-transition from WFCCiso **

trans
when TP4MI.TP4MMESind

provided (TP4_code(message) = CCCODE)
from WFCCiso

var
retrans-ptr := retrans_type;

begin
stop_retrans -timer; (*for CR *
accept_TPDU (message); (*take in the TPDU *
acceptTP4_param();
if (acceptable_CR()) then

begin
send_seq 0;
send-cdt cdt;
s -sub-seq 0;
s-ack-seq :0;

re-trans.total := re-trans.total-l; (*remove CR from-
retrans queue *

set window -timer;
set -inact -timer;
trans CC;
output TP41_O.TP4IKESreq(tpmes); (* send translated

next state := AKWAITout;mesgtolnr
end;

else (*CC not acceptable *
begin
buildDR(R negotiation failed, message);
output TP4M_-O.TP4MMESreq(mesDR);
retransptr := retrans.buf(lI; (* replace CR with DR *
retranspt~aa: mes DR;
retransptr.count :=1;
retransptr.timer :=RETRANSTIME;
set -retrans-timer;
makeDRg;
output TP41IO.TP4IMESreq(tpmes); (*send TDISind *
next-state :=CLOSING;
end;

end;

197

trans
when TP4MI.TP4MMESind

provided (TP4_-code(message) = DRCODE)
from WFCCiso to REFWAIT

begin
accept_TPDU (message); (*take in the TPDU *
accept_TP4_param(); (*but DC is not needed *
set-ref-timer;
transDR;
output TP41_O.TP4I_MESreq(tpmes); (*send TDISind to linker *
end;

trans
when TP4MI.TP4MMESind

provided (TP4_code(message) =ERCODE)

from WFCCiso to REFWAIT

begin
acceptTPDU (message); (*take in the TPDU *
accept ITP4_param();
set -ref -timer;
makeDRg;
output TP41_O.TP4I_MESreq(tp__mes); (*send TDISind to linker *
end;

198

(*** State-transition from WBCL **

trans
when TP4MI.TP4MMESind

provided (TP4_code(message) = CCCODE)
from WBCL to CLOSING

var
retransptr :retrans type;

begin
stop retrans timer;
acceptTPDU (message); (*take in the TPDU *
acceptTP4_param();
build DR(R negotiation failed, message);
output TP4M_-O.TP4M-l4ESreq(mesDR);
retrans-ptr :=re Ttrans.buf[l];
retransptr.data mes_-DR; (*replace CR *
retransptr.count :=1;
retransptr.timer :=RETRANSTIME;
set -retrans-timer;
end;

trans
when TP4MI.TP4MMESind

providedi ((TP4-code(message) = DRCODE) or
(TP4_code(message) = ERCODE)

from WBCL to REFWAIT

begin
set -ref-timer;
end;

199

(*** State transition from WFCCout **

trans
when TP4MI.TP4MMESind

provided (TP4_' code(message) =CRCODE)

from WFCCout to SAME

begin
null; (*waiting for TCONresp *
end;

trans
when TP4M_ I.TP4MMESind

provided (TP4_cEode(message) =DRCODE)

from WFCCout to CLOSED

begin
acceptTPDU (message); (*take in the TPDU *
acceptTP4_param();
build DC (message) ;
outputE TP4M_-O.TP4MMESreq(mes_DC);
transDR;
output TP4IQ .TP4I_-MESreq(tpmes); (*send TDISind to linker *
flag_kill me :now; (*terminate the TPM *
end;

200

(*** State-transition from AKWAIT **

trans
when TP4MI.TP4MMESind

provided (TP4_c odelmessage) = CRCODE)
from AKWAIT to SAME

var
retransptr: retrans type;

begin
stop retrans Ttimer;
retransptr :=re -trans.buffl];
output TP4M_-O.TP4MMESreq(retransptr.data); (*retrans CC *
retrans-ptr.count :=1;
retransptr.timer := RETRANSTIME;
set -retrans-timer;
end;

trans
when TP4MI.TP4MMESind

provided (TP4 c ode(message) = ERCODE)
from AKWAIT to CLOSING

var
retransptr: retrans type;

begin
stop retrans -timer;
acceptTPDU (message); (*take in the TPDU *
acceptTP4_param();
retransptr := re -trans.buf~l];
build DR(R protocol error, message);
outputE TP4M_-O.TP4M_=MESreq(mesDR);
retransptr 'data mes_DR; (*replace CC with DR *
retransptr.count :=1;
retransptr.timer :=RETRANSTIME;
set -retrans timer;
make -DRg;
output TP41_O.TP4IMESreq(tpmes); (*send TDTSind *
end;

201

trans
when TP4MI.TP4MMESind

providedI (TP4 code(message) = DRCODE)
from AKWAIT to REFWAIT

begin
acceptTPDUJ (message); (*take in the TPDU *
accept -TP4_param();
buildDC(message);
output TP4M_-O.TP4MMESreq(mesDC);
set ref timer;
transDR;
output TP41_O.TP4IMESreq(tpmes); (*send TDISind *
end;

202

(*** Statetransition from AKWAITiso ***)

trans
when TP4MI.TP4M4MESind

provided (TP4_code(message) = DTCODE)
from AKWAITiso to OPEN

var
outflag: logical;

begin
stopretranstimer; (* no more re-trans CC *)
re trans.last := 0; (* clear re-trans queue *)

acceptTPDU (message); (* take in the TPDU *)
acceptTP4_param();
outflag := false;
if ((TP4_code(message)=DTCODE) and (acceptableDT=true)) then

begin
trans_DT;
out_flag := true;
end;

else if((TP4_code(message)=EDCODE) and (acceptableED=true))
then

begin
transED;
outflag := true;
end;

else if((TP4_code(message)=AKCODE) and (acceptableAK=true))
then

begin
transAK;
out_flag := true;
end;

if (outflag=true) then
output TP41_O.TP4IMESreq(tpmes);

set inact timer;
set-inact-ack timer; (* for sending AK at suitable

interval in absence of
DT or ED *)

end;

203

(*** State-transition from OPEN **

trans
when TP4MI.TP4MNESind

proviaed (TP4_code(message) CRCODE)
from OPEN to SAME

begin
stop_inact -timer;
set-inact-timer;
end;

trans
when TP4MI.TP4MMESind

provided (TP4_code(message) =CCCODE)

from OPEN to SAME

begin (*duplicated CC *
stop_inact-timer;
make AK;
output TP4MO.TP4M_-MESreq (mesAK); (*repeat AK *
set -inact-tiLmer;
end;

trans
when TP4MI.TP4MMESind

providedl (TP4_code(xnessage) = ERCODE)
from OPEN to CLOSING

var
retransptr: retrans type;

begin
stop_window-timer;
stop inact -timer;
stop retrans timer;
acceptTPDU (message); (*take in the TPDU *
acceptTP4_param();
build DR(R protocol error, message);
output TP4MO.TP4MMESreq(mesDR);
retrans-ptr := re t rans.buf[1];
retrans -ptr.data :mes_DR;
retransptr.count :1;

retrans ptr-timer :RETRANSTIME;
set-retrans-timer;
makeDRg;
output TP41_O.TP4IMESreq(tpmes); (*send TDISind to linker *
end;

204

trans
when TP4MI.TP4MMESind

provided (TP4_code(message) = DRCODE)
from OPEN to REFWAIT

var
retransptr: retrans type;

begin
stop retrans-timer;
acceptTPDJ (message); (*take in the TPDU *
acceptTP4_param();
build -DC (message);
output TP4M_-O.TP4M_-MESreq(mes_DC);
retransptr := re t rans.buf[l];
retransptr.data mes_DC;
retransptr.count :=1;
retransptr.timer RETRANSTIME;
set -retrans-timer;
transDR;
output TP41_O.TP4IMESreq(tpmes); (*send TDISind to linker*)
set -ref_timer;
end;

trans
when TP4MI.TP4MMESind

provided (TP4_code(message) =DTCODE)

from OPEN to SAME

begin
stop_inact-timer;
acceptTPDU (message); (*take in the TPDU *
acceptTP4_param();

if (seq = rcv_seq) then (*DT in sequence *
begin
trans DT;
output TP41_O.TP4I_MESreq(tpmes);
set-data-acki-timer; (*set timer to ack

during Al_1
rcv_seq := rcv-seq + 1;
while ((re -order.last>O) and (*check re-seq queue *

(rcvseq=re-order.buf[1] .seq)) do
begin
message := re-order.buf(l].data;
trans_DT;
output TP41IO.TP4I-MESreq(tpmpes);
rcv-seq := rcv seq + 1;

205

for i:=2 to re order.last do
re -order.bSufjli-1] :=re-order.bufl;

en;re-order.last :=re-order.last
-1;

else if(((seq<rcv_seq) and (seq~rcv seq-MAX_CDT)) or
((seq>rcv_seq~rcv_cdt) and
(seqzrcvseq+rcv cdt+M.AX_CDT))) then

(*out of window, but wiithin ljrnij.L:
AKed with flow ctrl info *

begin
make AK;
append-flow;
output TP4MO.TP4MMESreq(mesAY);
end;

else
begin (*not-in-seq handling *

j 0;
for i 1 to re order.last do

if ((seq>re -order.buf~ji].Seq) and (j=0)) then
j =I

for i:=j to re-order.last do
re -order.bufti+lI : re-order.buf(i];

re -order-buf[i].seq :=seq;
re order.bufiidata :=message; (*queued *
end;

set inact-timer;
end;

trans
when TP4MI.TP4MMESind

provided (TP4_code(message) =AKCODE)
from OPEN to SAME

begin
stop inact -timer;
stop retrans-timer;
accept -TPDU (message); (*takp in the TPDU *
accept TP4_paramo;

if ((seq > sack_seq) or (*AK in sequence *
((seq=sack_seq) and (sub_seq>s_sub_sGq))) then
begin
s -ack_seq :sseq;
s-sub seq :=sub-seq;
while ((re_trans.last>O) and (*check re-seq queue *

(sackseq>retrafl5.buf(lI.seq)) do
begin
for i:=2 to re trans.last do

re -trans.buf(i-1] := retrans.buf(i];
re-trans.last := re-trans.last -1;

end;

206

if re~ran~lst>) ten(* else, automatic drop the AK *

set retrans timer;
set-inact -timer;-
end;

trans
when TP4M IETP4MMESind

provided (TP4_- code(message) =EDGODE)

from OPEN to SAME

var
out-flag: logical;

begin
stop inact timer;
acceptTPDU (message); (*take in the TPDU *
accept TP4_param();
trans_ED;
output TP41_O.TP4IMESreq(tpnles);
buildEA;
output TP4M_-O.TP4M _r4ESreq(mes_EA);
re trans-last := re trans.last + 1;
retEransptr := re trans.buffre-trans.lastj;
retransptr.data mes_EA;
retransptr.count :=0;
retransptr.timer :=RETRANSTIME;
set --retrans-timer;
set-inact-timer;
end;

trans
when TP4M I.TP4MMESind

provided (TP4_code(message) E ACODE)
from OPEN to SAME

begin
stop inact-timer;
stop -retrans timer;
accept-TPDU (message); (*take in the TPDU *
acceptTP4_param();

if (seq >= expseq) then (*EA in sequence *
begin
expseq :=0;
exp flag :=false; (*OK for DT to go now *

207

while (expque.last>O) do (*check queued DT due to
ED blocking *

begin
message :=expque-buf[l];
transDTg;
output TP4M_ -O.TP4M_-MESreq(mes_DT);
re-trans.last :=re-trans.last + 1;
retransptr := re -trans.buf[retrans.lastl;
retransptr.data mesEA;
retransptr.count :=0;
retransptr.timer RETRANS_-TIME;
for i:=2 to exp que.last do

expque.bufI~i-1] : expque.buff~i];
expque.last :=exp_que.last -1;

end;
if (expque.last>0) then

set retrans timer;
set -inact-timer;-
end;

208

(*** State-transition from CLOSING **

trans
when TP4MI.TP4MMESind

provided ((TP4_code(message) = CRCODE) or
(TP4_code(message) = CCCODE) or
(TP4_code(message) = DTCODE) or
(TP4_code(message) = AKCODE) or
(TP4_code(message) = EDGODE) or
(TP4_code(message) = EACODE)

from CLOSING to SAME

var
reason: reason-type;

begin
acceptTPDUJ (message); (*take in the TPDU *
acceptTP4_param();
if (TP4_code (message) =CRCODE) then

reason := RCR-refused;
else if (TP4_code(message) = CCCODE) then

reason =Rnegotiation-failed;

else
reason Rprotocol_error;

buildDR(reason, message);
output TP4MO.TP4MMESreq(mes_DR);
end;

trans
when TP4MI.TP4MMESind

provided ((TP4_code(message) = DRCODE) or
(TP4_code(message) = DCCODE) or
(TP4_code(message) = ERCODE)

from CLOSING to REFWAIT

begin
set -ref-timer;
end;

209

(*** State-transition from REFWAIT **

trans
when TP4M_ E.TP4M MESind

provided (TP4_code(message) = CCCODE)
from REFWAIT to SAME

begin
acceptTPDU (message); (*take in the TPDU *
acceptTP4_param();
build -DR (Rprotocol-error, message);
output TP4MO.TP4MMESreq(mesDR);
end;

trans
when TP4M_ I.TP4MMESind

provided (TP4_code(message) =DRCODE)

from REFWAIT to SAME

begin
acceptTPDU (message); (*take in the TPDU *
acceptTP4_param();
if (r_ref<>O) then

build_DC(message);

en;output TP4MO.TP4M_MESreq(mes_DC);

trans
when TP4MI.TP4MMESind

provided ((TP4_code(message) = DTCQDE) or
(TP4_code(message) = AKCQDE) or
(TP4_code(message) = EDGODE) or
(TP4_code(message) = EACODE) or
(TP4_code(message) = DCCODE) or
(TP4_code(message) = ERCODE)

from REFWAIT to SAME

begin
null; (*waiting for ref-timer to expire *
end;

210

(*** GROUP-2: tinmer-related **

trans
from WFCCiso
provided (timer(retrans))

var
retransptr: ^retrans type;

begin (* only CR in retrans queue *
retransptr := re -trans.buf~l];
if (retransptr.count < RETRANSMAX) then

begin
output TP4MO.TP4MMESreq(mesCR); (* re-trans CR
retransptr. count =retrans ptr count+l;
retransptr.timer :=RETRANSTIME;
set retrans timier;
nextE state -=SAME;
end;

else begin (*count = max *

stop window -timier;
stop inact -timer;
if (local-choice=false) then

begin
makeDR(Rretrans timer); (*unspecified !*
output TP4M_-O.TP4MMESreq(mes_DR);
retransptr.data :=mes_DR;
retransptr.count 1;
retransptr.timer :=RETRANSTIME;
set -retrans-timer;
makeDRg(Rretrans-timer);
output TP41IO.TP4IMESreq(tpmes); (* send TDISind *
next -state := CLOSING;
end;

else (*local choice *
begin
make_-DRg(Rretrans-timer);
output TP41IO.TP4IMESreq(tpmes); (*send TDISind *
set ref timer;
nexti state :=REFWAIT;
end;

en;end; (* else count=max *

211

trans
provided (timer(retrans))

from WBCL

var
retrans_ptr: retrans_type;

begin
retrans-ptr :=re-trans-buf~l]; (*only CR in queue *

if (retranSptr.count < RETRANSMAX) then
begin
output TP4MTO.TP4MTMESreq(mesCR); (*re-trans *
retrans_ptr.count retransptr.count+l;
retrans_ptr.timer RETRANSTIME;
set-retrans-titer;
next-state :=SAME;
end;

else (*count =max *

begin
stop window 'timer;
stop inact -timer;
if (local choice=false) then

begin
makeDR(Rretrans-timer);
output TP4M_-O.TP4MMESreq(mesDR);
retransptr.data :=mes -DR; (*replace CR *
retransptr.cOunt 1= ;
retransptr.timer :=RETRANSTIME;
set-retrans-timer;
next -state := CLOSING;
end;

else begi not local choice *

set ref timer;
next -state :=REFWAIT;
end;

end; (*count =max *
end;

212

trans
provided (timer(retrans))

from AKWAIT

var
retransptr: retrans type;

begin
retransptr :=re -trans.buf[I];
if(retransptr.count < RETRANSMAX) then

begin
output TP4MO.TP4MMESreq(mesCC); (*retrans CC *
retransptr count =retrans ptr count+ 1;
retrans_ptr.timer :=RETRANSTIME;
set retrans timer;
next -state := SAME;
end;

else (*count max *
begin
stop window timer;
stop inact -t"imer;
mfake DR(R_retrans timer);
output TP4M_-O.TP4MMESreq(mes_DR);
retrans_ptr.data mes_-DR; (*replace CC with DR *
retrans_ptr.count :=1;
retrans_ptr.timer RETRANSTIME;
set -retrans timer;
make -DRg(R_retrans timer);
output TP41IO.TP4I -MESreq(tpmes); (*send TDISind *
next -state := CLOSING;
end;

end;

trans
from OPEN
provided (timer(retrans))

var
retransptr: retrans_type;

begin
retransptr := re -trans-buf(1j;
if (retrans-ptr.count < RETRANSMAX) then

begin
output TP4MO.TP4M-MESreq(retrans_ptr.data);
retrans-ptr. count :=retrans ptr count+ I;
retrans -ptr-timer :=RETRANSTIME;
set-retrans -timer;
check queue; (*check for re-trans *
next -state := SAME;
end;

213

else begin (*count=MAX *
stop window timer;
stop inact -t'imer;
re-trans.total := 1; (*remove all retrans *
retransptr := re -trans.buf(l];
makeDR(R retrans timer);
output TP4MO.TP4M_-MESreg(mnesDR);
retransptr.data :=mes_-DR;

retransptr.count 1;
retransptr.timer :=RETRANSTIME;
set retrans timer;
make -DRg(R-retrans_timer);
output TP41IO.TP4IMESreq(tpmes); (*send TDISind *
next-state :=CLOSING;

end;

trans
provided (timer(retrans))

from CLOSING

var
retransptr: retrans_type;

begin
retransptr := re -trans.buf~l];
if (retransptr.count < RETRANSMAX) then

begin
output TP4MTO.TP4MTMESreq(mes_DR);
retransptr.count :=retrans_ptr.count+l;
retransptr.timer RETRANSTIME;
set retrans-timer;
next -state :=SAME;
end;

else (*count =MAX *
begin
set ref timer;
next-state :=REFWAIT;
end;

end;

214

trans
provided (timer(window))

from OPEN to SAME (*need to update window info *

var
retrans-ptr: retrans_type;

begin
rcv -cdt := set-credit; (*get new credit *
makeAK;
appen~d flow; (*append flow-.ctrl parameters *
output TP4M_-O.TP4M_-MESreq(mes AK);
re trans.last :=re trans.last + 1;
retEransptr :=re Ttrans.buf~re trans. last];
retransptr.data :=mes_A.K;

retransptr.count 0;
retransptr.timer :=RETRANSTIME;
set retrans timer;
set-window~timer;
end;

trans
provided (timer(data_ack))

from OPEN to SAME (*timer for acknowledge of
receiving data *

begin
r -ack_seq :=rcv_seq;
makeAK;
output TP4MO.TP4MMESreq(mes AK);
end;

trans
provided (timer(inact_ack))

from OPEN to SAME (*no DT/ED sent in the interval;
sending AK to keep active *

begin
make_AK;
output TP4M_-O.TP4M_-MESreq(mes AK);
set inact-ack-timer;
end.-

215

trans
provided (timer(inact))

from OPEN to CLOSING

var
retransptr: retrans type;

begin
stop_window-timer;
stop_retrans -timer;
makeDR(R inact timer); (*not specified !*
output TP4M_-O.TT4M_MESreq(mesDR);
re trans.total 1; 1; remove all retrans *
retransptr :=re Ttrans.buf[l];
retransptr.data :=mes_-DR;

retransptr.count 1;
retrans -ptr-timer RETRANSTIME;
set-retrans_timer;
makeDRg(R_inact_timer);
output TP41_O.TP4IMESreq(tpmes); (*send TDISind to linker *
end;

- trans
provided (timer(ref))

from REFWAIT to CLOSED

begin
flag-kill-me :=now
end;

216

(*** GROUP-3: TPDU from TRANSPORT GATEWAY **

trans
when TP41_I.TP4IMES.ind (*CR from gateway *

provided (TPcode(message) = CRCODE)
from CLOSED to WFCCiso

var
retrans-ptr: retrans type;

begin
accept TP-mes (message); (*take in the TP-mes *
rcv -cdt :=set-credit;
trans_-CRg;
output TP4M_-O.TP4M_-MESreq(mesCR);
re trans-total 1= ;
retrans_ptr :=re -trans.buf~l];
retrans_ptr.data mesCR;
retrans_ptr.count :1;
retrans_ptr.timer :=RETRANSTIME;
set -retrans-timer;
end;

trans
when TP41_I.TP4IMESind

provided (TPcode(message) = DRCODE)
from WFCCiso

var
retransyptr: retrans type;

begin
accept -TP mes (message); (*take in the TP-mes *
if (local choice) then

next-state :=WBCL;
else begi not local choice *

stop retrans-timer;
acceptTP -mes (message); (*take in the TP-mes *
trans -DRg;
output TP4MO.TP4MMESreq(mesDR);
re trans.total := 1;
retransptr := re trans.buf(l];
retransptr.data 7= mesDR;
retransptr.count := 1;
retransptr.timer := RETRANSTIME;
set -retrans timer;
end;

end;

217

trans
when TP41I.TP4IMESind

provided (TP_code(message) = CCCODE)
from WFCCout to AKWAITiso

var
retransptr: retrans type;

begin
acceptTP -mes (message); (*take in the TP-mes *
rcv -cdt := set-credit;
trans_-CCg;
output TP4M_-O.TP4MMESreq(mesCC);
re trans.total := 1;
retErans ptr :=re-trans.buf[1];
retrans ptr.data inesCC;
retrans ptr.count :=1;
retransptr.timer RETRANSTIME;
set retrans-timer;
end;

trans
when TP41_I.TP4INESind
provided (TPcode(message) =DRCODE)

from WFCCout to CLOSED

begin
acceptTP -mes (message); (*take in the TP-mes *
transDRg;
output TP4M_-O.TP4M_-MESreq(mesDR);
flag kill me := now;
end;

trans
when TP41_I.TP4IMESind

provided (TPcode(message) = DRCODE)
from AKWAITiso to CLOSING

var
retransptr: retrans type;

begin
stop retrans-timer;
acceptTP_mes (message); (*take in the TP-mes *
LLdtts DRy;
outpuZ TP4MO.TP4MMESreq(mesDR);

218

retransptr :=re Ttrans.buf(lJ;
retrans-ptr.data :=mes_DR;

retrans-ptr count =retrans ptr count+ 1;
retransptr.timer RETRANS_TIME;
set-retrans-timer;
end;

trans
when TP41_I.TP4I MESind

provided (TP_code(message) =DTCODE)

from AKWAIT to OPEN

begin
stop inact_ack-timer;
accept_TP -mes (message); (*take in the TP-mes *
trans_DTg;
output TP4M_-O.TP4M_MESreq(mesDT); (*send DT to TP4 Net *
retransptr := re T rans.buf[l];
retransptr.data :=mes_DT;
retrans-ptr count :=retrans ptr count+1;
retransptr.timer :=RETRANS_TIME;
set retrans timer;
set window timer;
set inact Timer;
set-imact-ack_timer;
end;

trans
when TP41_I.TP4I MESind

provided (TP_code(message) =EDGODE)

from A1(WAIT to OPEN

begin
stop inact_ack -timer;
exp flag := true; (*to block future DTs *
accept_TP_mes (message); (*take in the TP-mes *
trans_EDg;
output TP4MO.TP4MMESreq(mes_ED); (*send ED to TP4 Net *
retransptr := re trans.buf[l];
retransyptr.data :=mes_ED;
retransptr.count :=retrans_ptr.count-l;
retransptr.tiner : RETRANS_TIME;
set retrans timer;
set window timer;
set-inact 'Eimer;
set-inact-ack timer;
end;-

219

trans
when TP41E_I.TP4I_MESind

provided (TP_code(message) = DRCODE)
from OPEN to CLOSING

var
retransptr: retrans type;

begin
stop window timer;
stop inact -timer;
stop retrans timer;
acceptTP -mes (message); (*take in the TP-mes *
trans DRg;
output TP4M_-O.TP4M_-MESreq(mesDR);
retrans-ptr :=re -trans.buff 1];
retransptr.data mesDR;
retransptr.count retErans_ptr.count+1;
retransptr.timer :=RETRANSTIME;
set -retrans timer;
end;

trans
when TP41 I.TP4IMESind

provided (TP_code(message) =DTCODE)

from OPEN to SAME

begin
stop window-timer;
stop inact timer;
if (expflag=flase) then

begin
acceptTP -mes (message); (*take in the TP-mes *
trans_DTg;
output TP4MO.TP4M_MESreq(mesDT);
retransptr := re trans.buf~re-trans-last];
retranspt~aa: mes DT;
retransptr count :retransptr count+I;
retransptr.timer :=RETRANS_-TIME;
re 'trans.last := re trans.last + 1;
set retrans-timer;
end;

else (*blocked due to ED *
begin
expque.last := expque.last + 1;
expque buf (exp que. last] :-= message;
end;

set window timer;
set-inact-timer;
end;,

220

trans
when TP41_I.TP4IMESind

provided (TP_code(message) =EDGODE)
from OPEN to SAME

begin
stop window timer;
stop inact_timer;
exp_flag :=true; (*to block future DTs *
acceptTP_mes (message); (*take in the TP-mes *
transEDg;
output TP4M_-O.TP4MMESreq(mesED);
retransptr :=re t rans.buf[retrans.last];
retransptr.data :=mes_ED;
retransptr.count :=retrans ptr.count+l;
retransptr.timer :=RETRANS_ -TIME;
re trans.last := re trans.last + 1;
set retrans timer;
set window timer;
set-inact tEimer;
end;

221

APPENDIX A.3.2 DON TCP SUBMODULE

DDN TCP Submodule Specification

body DDNTCPentity body for DDNTCP entitytype;

type

TCPHDRtype = record
src-port : short word; (* source port *)
dstport : short word; (* destin port *)
seq_num : word-type; (* sequence num *)
ack num : wordtype; (* ack num *)
offset : octet; (* header length *)
flags : octet; (* TCP code *)
window : short word; (* window size *)
checksum : shortword;
urgptr : short-word; (* urgent pointer *)
options : datatype;
data : data type; (* user data *)
end;

retrans type = record
timer : integer; (* time left before retrans *)
count : integer; (* count of retrans *)
data : datatype; (* PDU *)
end;

reorder_type = record
seq : integer; (* sequence number for re-order *)
data : datatype; (* PDU *)
end;

222

TCP Interface Interaction Point

(* TP-4 State Machine Interaction Point *)

channel TCPmachineprimitives (user, provider);

by privider:
TCPMMESind (message : IP_TP_messagetype);

(* send TPDUs to TCP_machine *)

by user:
TCPMMESreq (message : IPTPmessagetype);

(* TCPmachine sends TPDUs out *)

(* TP Transport Gateway Interaction Point (to linker module) *)

channel TCP interfaceprimitives (user, provider);

by provider:
TCPIMESind (message : IPTPmessagetype);

by user:
TCPI_MESreq (message : IPTPmessagetype);

TCP State Machine SubModule Specification

module TCP machine type process
(TCPMI: TCPmachine_primitives (user);
TCPM_0: TCP machine_primitives (provider);
TCPI I: TCP interfaceprimitives (user);
TCPI-0: TCP-interfaceprimitives (provider);

export
state : TCPstatetype; (* connection state *)
1module : octet; (* local module id *)
gmodule : octet; (* GW module id *)
d_ipaddr : wordtype; (* destination IP address *)
s_ipaddr : wordtype; (* source IP address *)
1_ref : shortword; (* local reference *)
r ref : short-word; (* remote reference *)
g_ref : shortword; (* gateway cross reference *)
end;

body TCPmachinebody for TCP machinetype; external;

223

variables of the DDNTCP body

var

total conn : integer; (* total active transport conn *)
conn flag : array [I..MAXCONN] of boolean;

(* slot available flag *)
TCPM : array (0..MAXCONN] of TCPmachinetype;

(* instance of TCPmachine *)

cur conn: integer; (* cur connection reference *)
direction direction_type; (* cur mes flow direction *)
cur mod id octet; (* module Id *)
cur mes id : octet; (* message Id *)
cur-mes : IPTP messagetype; (* cur IPTP message *)
curtpdu : TPDU_messagetype; (* TPDU, used as pointer *)
curtcp : TCP HDRtype; (* TCP hdr, used as pointer *)
cur sIP : word_type; (* source IP address *)
cur-dlIP : word-type; (* destin IP address *)
cur_tp_code : TPDU code type; (* current TPDU code *)
srcport,dst port: shortword;

total mes : integer; (* total messages going through *)
err mes : integer; (* messages with error conditions *)
fatalerr : integer; (* fatal errors *)

224

(*** Common Procedures of DDN_TCP_body

function connalloc : integer;

(* allocate a free slot of connection *)

var
i,j : integer;

begin
j := 0;
if (total conn < MAX CONN) then

for i := MAXCONN to I do
if (conn_flag(i] = false) then

j := i;
if (j > 0) then

begin
total conn := total conn+l;
conn flag(j] := true;
end;

conn alloc := j;
end;

(* In the case of (total conn=MAX CONN), (conn alloc=0) will be
returned. There exists a TCPM(] to be used in this case to
respond to abnormal TPDUs. *)

procedure connfree (j : integer); (* free the connection slot *)

begin
if ((j>0) and (j<=MAXCONN)) then

if (conn_flag[j] = true) then
begin
connflag[j] := flase;
totalconn := total conn-1;
end;

end;

function TPcode (TPDU: TPDUtype): TPDUcodetype;

(* check the TPDU_code of the TPDU *)

begin
TP code := TPDU[2]; (* 4 bits at left *)
end;

225

function curTP_code (mes: IPTP-message) : TPDU-code-type;

(* check the TPDU-code of the 1st IPTP message in queue *

begin
cur mes :=mes; (*access NQ message *
cur_tpdu :=cur -mes.data; (*point to TPDU *
cur-conn :cur-tpdu.dst_ref; (*TCP reference index *
cur_tpcode :=TP -code(cur_tpdu); (*get the TPDU code *
curTP-code :=cur_tp_code;
end;

- function TCP-code (byte: octet): TPDtJ-code_type;

(check the TPDU-code of the TCP hdr *

begin
case byte of

0: TCP code :DTCODE;(*)
1: TCP code :O RCODE; (*FIN *
2: TCP code :CRCODE; (*SYN *
4: TCP code :=RJCQDE; (*RST
8: TCP code :~DTCODE; (*PSH and data *
16: TCP9 code :=AKCODE; (*ACK *)
18: TCP code CCCODE; (*SYN,AC(*
32: TCP code :=DTCODE; (*UGR and data *
40: TCP code DTCODE; (*URG,PSH, and data *
56: TCP-code :AKCODE; (*URG,PSH,ACK *
end;

end;

function curTCP-code (mes: IPTP-message) :TPDU-code-type;

(check the TCP code of the 1st IPTP message in queue *

begin
cur -mes :=mes;
curtcp =mnes.data; (*point to TCP hdr *
cur_tpcode := TCP code(curtcp.flags); (*get the TPDU code *
if ((cur_tp_.code=AKCODE) and d-length(curtcp.data)>O)) then

cur -tpcode = DTCODE;
curTCP-code := cur tpcode;
end;

226

function tcp acceptable (mes: IP-TP-message type) :boolean;

(check the TCP header to see if it is acceptable *

var
ok: boolean;
i,j,k,l: integer;

begin
ok := chk checksum(mes.data, mes.data.offset*4);
if (ok) then

begin
curTCP-code(mes); (*get cur_tpcode, etc. *

cur-conn := 0;
i =0;

while ((i<total-conn) and (cur~conn=O)) do
begin
if((con flag~i]=true) and

(TCPM(il.d ipaddr=mes .d_12I_addr) and
(TCPM(i] .sipaddr=mes.s_12_ -addr) and
(TCPM(i].lport=mes .data.dst port) and
(TCPMji] .rport=mes.data.src port)) then
cur-conn :i

else
i:i + 1

end;

if(cur-Conn>O) then
begin
if (TCPM(cur conn].gjmodule=0) then

TCPI(curFconn].g module =cur mes.module/l6;
else
if(TCPM~cur -connj .g module<>cur-mes.module/16) then-

ok := flase;
if(TCPM~cur -conn].r_ref=0) then

TCPM~cur_conn].r-ref :=cur tpdu.src-ref;-
else
if (cur tpdu.src-ref c>TCPM(cur_connl.rref) then

ok := false; (*check the SRC_REF *
end;

end;

tcp acceptable := ok;
end;

227

function dupCR (mes: IPTP-message type) :boolean;

(* check the CR TPDU to see if it is duplicate *

vrdup: boolean;
begin
cur-conn := 0;
dup :false;
i :=1
while ((i<=MAX-CONN) and (dup=false)) do

begin
if ((connflag~i)=true) and

(cur -mes-s_-IP addr=TCPM(i] .sipaddr) and
(cur mes.dIP addr=TCPM[i].d_ip_addr) and
(TCPM(i] .l-port=cur-mes.data.dst_port) and
(TCPM[i] .rport=cur mes.data.src_port)) then

begin
cur conn :i
dup := true;
end;

i := i+l;
end;

dupCR :=dup;
end;

function dupCRg (mes: TPDU-message type) :boolean;

(check the CR TPDTJ from TPGW to see if it is duplicate *

var
dup: boolean;
i: integer;

begin
cur conn := 0;
dup :false;

while((i<=I4AXCONN) and (dupfalse)) do
begin
if ((connflag(i]=true) and

(mes.d_-IP -addr=TCPM[i].sipaddr) and
(mes.sIP addr=TCPM(i].dipaddr) and
(TC PM(IJ . ort=ies data. dst port) and
(TCPM~i] .rport=mes.data.src_port) and
(mes.src ref=TCPM(i].g_ref)) then

begin
cur conn:
dup :=true;
end;

i := i+l;
end;

dupCRg := dup;
end;

228

Initialization of DDN_TCP_body

initialize

totalmes := 0; (* total messages *)
err mes := 0; (* error messages *)
fatal-err := 0; (* fatal errors *)

total conn := 0; (* total transport connections *)
for i := 1 to MAX CONN do

connflag := false; (* the connection slot is free *)

init TCPM[O) with TCPmachine interfacebody();
(* virtual Statemachine for

responding to error CR's *)
TCPM[0].1 ref := 0;
connect TCPM I to TCPM(0].TCPM I;
connect TCPI I to TCPM[0].TCPI I;
attach TCPMO to TCPM(0].TCPM_0;
attach TCPIO to TCPM[0].TCPI_0;

end;

229

State Transitions

trans
when NSi.IPTPMESind priority 0 (* receive from DDN-IP *)

begin
total mes total mes+l;
direction in;

if (tcpacceptable(message)=false) then
err mes := err mes+l; (* TPDU not acceptable *)

else if (cur_tp_code=CRCODE) then (* and curconn=Q *)
begin (* Connection Request *)
if (dupCR(message)=false) then

begin
cur conn := conn alloc();
if (curconn>0) then

begin (* initialize TCP protocol
machine *)

init TCPMIcurconn] with
TCP machine interface_body();

with TCPM[cur conni do
begin
i ref := cur conn;
flag kill-me-: = conninprogress;
end;

connect TCPM I to TCPM[curconn].TCPM_I;
connect TCPI I to TCPM[cur conn>.TCPII;
attach TCPM _ to TCPM[curconn].TCPM_0;
attach TCPI_0 to TCPM[curconn].TCPI_0;
end; (* if conn *)

end; (* if dupCR *)
output TCPM(cur conn].TCPMI(message);

(* pass TPDU for further check or response *)
end; (* if CR *)

else
output TCPM(cur conn].TCPMI(message);

end; (* trans *)

(* For duplicated CR, the state machine TCPM[curconn] will
response to it with CC.

In case there is no local connection slot available,
cur conn is reset to 0 by dupCR(), or by conn_alloc(), the
CR will be passed to TCPM(0] which will in turn send a DR to
refuse the connection request. *)

230

trans
when TGS.TPMESreq priority 0 (*receive from TCP, begore

feeding into TCP-machine *

begin
total mes :=total mes+1;
direction :=out;
cur -mes message;
cur tpdu :=cur -mes.data; (*point to TPDU *
cur -conn :=cur tpdu.src_ref; (*TCP reference index *
cur-tp code :=TP_code(cur_tpdu); (*get the TPDU code *
case cuir_tpcode of

CCC ODE, DRCODE, DCCODE ,DTC ODE,
AXCODE, ERCODE, RJCODE:

output TCPM~cur connj .TCPII (message);

CRCODE:
begin
if (dup_CRg(message)=false) then

begin
cur-conn :=conn-alloc();
if (cur-conn>0) then

begin (* initialize a new TCP-machine *
mnit TCPM(cur_conn] with

TCP -machine -interface body();
with TCPM(cur_conn] do

begin
1 ref := cur_conn;
flag_kill-me := conn_in progress;
end;

connect TCPM I to TCPM(cur -conn].TCPM_I;
connect TCPI I to TCPI4cur-conn].TCPII;
attach TCPM_0 to TCPM~cur conn].TCPM_-0;
attach TCPI_-0 to TCPM(cur-conn].TCPI_0;
end; (*if conn *

end; (* if *
output TCPM(cur conn] .TCPII (message);

(pass TPDU for further checking *
end; (*case CR *

end; (* case *
end; (*trans *

231

trans
any TCPM[i]: TCP machine interface type do
provided (TCPM[i].flag killme = now) priority I

begin
disconnect TCPM(i].TCPMI; (* disconnect port relations *)
disconnect TCPM[i].TCPI I;
disattach TCPM(i].TCPMO;
disattach TCPM(i].TCPIO;
release TCPM(i]; (* terminate TCPmachine *)
conn free(i); (* free the slot for future use *)
end;

end; (* of DDN_TCP body *)

232

TCPmachineinterface body Specification

body TCP machine interfacebody for TCP machine interface type;

type

TCP state type = (CLOSED, ESTAB, SYN SENTddn,
SYNSENTout, SYNRCVDddn, SYN RCVDout,
FINWAITddn, FINWAITout, TIMEWAIT);

OPTION END = 0;
OPTIONNO = 1;
OPTIONSIZE = 2;

var
proto err : integer; (* fatal errors *)
1_port : short word; (* local port id *)
r_port : short word; (* remote port id *)
initiator : initiatortype; (* who initiate the conn *
size : octet; (* max TPDU size *)
g_size : octet; (* GW max TPDU size *)
snd nxt : word type; (* sending sequence no *)
snd wnd : shortword; (* sending credit *)
sndack : wordtype; (* ack_ed sequence no *)
rcv nxt : wordtype; (* receiving sequence no *)
rcv-wnd : short-word; (* receiving credit *)
rcv ack : wordtype; (* acked sequence no *)

retrans : queue_type of retranstype; (* retransmission *)
reorder : queue_type of reordertype; (* re-order *)

cur mes : IPTPmessagetype; (* cur IPTP message *)
cur tpdu : TPDU_type; (* TPDU, used as pointer *)
cur tcp: TCPHDRtype; (* TCP hdr *)
cur tp_code : TPDUcodetype; (* current TPDU code *)
var ptr: ^TPvarparttype; (* ptr to variable part *)
substate : boolean; (* associated flag *)
seq,ack : wordtype;
wnd : short-word;

tp-mes : TPDUmessagetype;

233

Common Procedures

procedure settimer (FSM: TCP machinetype;
time: integer;
kind: timer-type); primitive;

(* set timer *)

procedure set retrans timer;

(* set re-trans timer *)

begin
set-timer (TCPM[1_ref], RETRANSTIME, retrans);
end;

procedure set reftimer;

(* set ref timer *)

begin
set-timer (TCPM[l ref], REF TIME, ref);
end;

procedure set window timer;

(* set window timer *)

begin
set-timer (TCPM[1_ref], WINDOWTIME, window);
end;

procedure set inact timer;

(* set inact timer *)

begin
set-timer (TCPM(_ref], INACTTIME, inact);
end;

234

procedure stoptimer (FSM: TCPmachinetype;
kind: timer_type); primitive;

(* stop timer *)

procedure stopretranstimer;

(* stop retrans timer *)

begin
stoptimer (TCPM(l_ref], retrans);
end;

procedure stopwindowtimer;

(* stop window timer *)

begin
stoptimer (TCPM[lref], window);
end;

procedure stopinacttimer;

(* stop inact timer *)

begin
stoptimer (TCPM[lref], inact);
end;

function timer (kind: timertype): logical; primitive;

(* dst at the timer interrupt *)

function setwindow: integer; primitive;

(* set window size for local TCPM receiving. It is used to
get the window width for the flow control. The
function can be implemented by estimating the available
storage space in memory, dividing them between the
modules in the system, and between the active sessions
in the module. *)

235

function trans_dport(addr: shortword) : shortword; primitive;

(* translate DDN_TCP port address to GW_TP address *)

function trans g_port(addr: shortword) : shortword; primitive;

(* translate GWTP address to DDNTCP port address *)

function curTCPcode (mes: IPTPmessagetype) TPDU_code_type;

(* check the TPDUcode of message from IP *)

begin
cur mes mes;
cur~tcp cur mes.data;
cur_tpcode :=TCP code(cur tcp.flags); (* 4 bits at left *)
cur TCP code := curtpcode;
end;

function TPcode (mes: TPDUmessagetype) : TPDUcodetype;

(* check the TPDUcode of message from TP-GW *)

begin
tpmes := mes;
cur_tp code := tpmes.tpducode; (* 4 bits at right *)
TP code := curtp_code;
end;

procedure tcpchecksum (var mes: IPTP messagetype);

(* complete the TPDU with checksum, etc. *)

begin
me.data := setchecksum(curtcp, curtcp.offset*4, 17);
end;

236

procedure acceptTPDU (mes: IPTP messagetype);

(* accept the control info in the TPDU from DDN-TCP *)

var
sn: word-type;

begin
cur mes mes;
cur tpdu := cur mes.data;
curtp-code := curtpdu[2] / 16; (* 4 bits at left *)

sub-state := true; (* true for OK *)
if (sipaddr=0) then

s ipaddr := cur mes.sIP addr; (* fill in source IP *)
else if (sipaddr<>curmes.sIP addr) then

sub-state := false;

if (dipaddr=0) then
d_ipaddr := curmes.dIP addr; (* fill in destin IP *)

else if (dip_addr<>cur mes.dIPaddr) then
substate := false;

if (lport=0) then
1 port := cur tpdu.dstport;

else if (lport<>cur_tpdu.dstport) then
substate := false;

if (rport=0) then
r port := curtpdu.srcport;

else if (rport<>curtpdu.srcport) then
sub-state := false;

seq := curtpdu.seq;
ack := curtpdu.ack;
wnd := curtpdu.wnd;

sn := 0;
i := 1;
varptr := cur tpdu.options;
1 := curtpdu.offset*4-20; (* length of options *)
while (1>0) do

begin
case varptr[l] of
OPTIONEND : (* 0000 0000: No more *)

1 := 0;
OPTIONSIZE: (* 0000 0002: Max PDU size *)

begin
sn := get word (varptr, 3);
1 := 1-3;
i := i+3;
end;

end;
default : (* CHKSUMCODE,REASSIGN,etc *)

237

null;
end; (*case *

var -ptr 'varptr[2];
1 := 1-1;
end; (* while *

end;

procedure accept_TP_mes(mes: TPDU-message type);

(accept the control info in the TPDU from TCP *

var
n: word-type;
sn: short_word;
i,j,k,l: integer;
varptr: 'TP-var-part type;

begin
tp__mes :=mes;
cur-tp-code := tp_mes.tpdu code; (*4 bits at right *
if (gref=0) then

gref := tp mes.src-ref; (*fill in remote ref *
sub-state :~true; (*true for OK *

if (curtp_code=CRCODE) then
begin
gmodule tpmes-module mod 16;
dipaddr := t.pmes.d_-IP -addr;
sipaddr tp mes.sIP_addr;
end;

varptr := ^tp_.mes.var_part;
1 := v -length; (*length of var. part *
while (1>0) do

begin
k := varptr.length;
case var ptr.param_code of

CALINGCODE : (* 1100 0001: src port-ID *
if (cur tpcode=CRCODE) then

1 -port := get sword (varptr.value, k);
* else if (cur tpcode<>CCCODE) then

sub state := false;
else if (lport=0) then

1l-port:get_sword(var_ptr.value,k);
else if (lport<>getsword(varptr.value,k))) then

sub-state false;

CALLEDCODE : (*1100 0010: dst port-ID *
if (cur tpcode=CRCODE) then

r-port := get_sword (varptr.value, k);

238

else if (cur_tp__COde'Z>CCCODE) then
sub state := false;

else if (rport=O) then
rport: =getsword(varptr.value,k);

else if (rport<>get -sword(var_ptr.value,k))) then
sub-state :=false;

PDUSIZCODE (1100 0000: TPDU size *
if (curtp-code=CRCODE) then

g-size :=get_sword (varptr.value, k);
else if (cur tpcode<>CCCODE) then

sub state :=false;
else

begin
sn :=get -sword(var_ptr.value,kj;
if ((gsize=0) or (gsize>sn)) then

gsize :=sn;
end;

var_ptr := ^varptr.value(k+lj;
1 := l-k-2;
end;

end;

239

procedure buildTCP;

(* filling in the parts of TCP header, and GW message header *)

begin
cur_tcp.src port 1_port;
cur_tcp.dst port r_port;

* cur_tcp.seq numt sndnxt;
cur_tcp.ack numt rcv nxt;
cur_tcp.window := rcvwnd;

* tcpchecksum(cur_tcp);

cur mes.module := Imodule;
cur-mes.s IP addr d_ipaddr;
cur mes.d IPaddr := sipaddr;
cur mes.data := curtcp;
end;

procedure buildER;

(* build ER for DDN-TCP, in cases of any protocol error *)

begin
curtcp.flags : RST;
curtcp.offset 5;
build TCP;
end;

procedure buildDC;

(* build DC for DDN-TCP in response to:
FIN-WAIT * FIN *)

begin
cur tcp.flags : FIN+ACK;
cur_tcp.offset := 5;
build TCP;
end;

240

procedure buildCC;

(build CC for DDN-TCP *

begin
cur_tcp.f lags SYN-+ACK;
cur_tcp.offset :5;

build_TCP;-
end;

procedure build AK;

(make up AK for DDN-TCP, in cases of:
ESTAB *DT,
ESTAB *timers *

begin
update~window(); (*update window control info *
cur_tcp.flags :~cur tcp-flags + ACK;
cur_tcp.offset :=5;
build_TCP;
end;

function opt calling(port: short_word): data type;

(make up calling TASP option *

var
ptr: data type;

begin
ptr := d -create(4);
ptr(l] :=CALINGCODE;

ptr(2] :2;
d -puts(ptr,3,d_encode2(port));
opt calling := ptr;
end;

241

function opt called(port: short_word): data type;

(* make up cailed TASP option *

var
ptr: data_type;

begin
ptr :=dcreate(4);
ptr(1j CALLEDCODE;
ptr[2] :2;

dputs(ptr,3,d -encode2(port));
opt_called := ptr;
end;

procedure trans_TCP;

(common operation to translate TCP TPDUs into TP GW format *

begin
tpmes.nodule := cur -mes.module;
tpmes.message :=cur -mes.message;
tpmes.s_12_-addr :~cur -mes-s 12P addr;
tpmes.d_12_-addr :=cur-mes.dIP-addr;

tpmes.dst -ref gref;
tp_mes.src -ref I_ref;
tpmjes.class :=4;

tpmpes.v_length d= d length(tpjmes.var part);
tpmes.d_length : d-length(cur-tcp.data);
tpmes.data := d -create(tpmes.d_length);
d_puts (tpmjes.data, 1, cur tcp.data);
end;

procedure trans_CR;

(translate CR of DDN-TCP to GW format, in case of
CLOSED *CR *

begin
tpmnes.code :=CRCODE;

tp_mes .varpart :=opt calling(transdport(1 port));
tpmnes.var~part :=d append(opt called(transdport(r port)));
transTCP;
end;

242

procedure trans_CC;

(translate CC of DDN-TCP to GW format, in case of
SYNSENTddn * CC ~

begin
tp-mes-code :=CCCODE;
tpmes .var part :opt calling(trans dport(1 port));
tpmes .var part dappend(opt_calied(transdport(r port)));
transTCP;
end;

procedure trans_DR;

(translate DR of DDN-TCP to GW format, in case of
ESTAB * FIN *

begin
tpmes.code := DRCODE;
tpmes .var part opt calling(trans dport(1 port));
tpmes .var part =d append(opt_calleid(transdport(r port)));
transTCP;
end;

-procedure transDT;

(translate DT of DDN-TCP to GW format, in case of
SYNRCVDddn, ESTAB * DT *

begin
tpmes.code := DTCODE;
tp_mes .varpart :=opt calling(transdport(I port));
tp_mes .var part d append(opt called(transdport(r port)));
transTCP;
end;

procedure transCRg;

(translate CR of GW format to DDN-TCP format, in case of
CLOSED * CRg *

begin
update -window(); (*update window control info *
cur tcp.f lags :SYN;

cur tcp.offset :=5;-
build_-TCP;
end;

243

procedure trans_CCg;

(* translate CC of GW format to DDN-TCP format, in case of
SYNSENTout * CCg *)

begin
update window(); (* update window control info *)
curtcp.flags SYN + ACK;
curtcp.offset 5;
buildTCP;
end;

procedure transDRg;

(* translate DR of GW format to DDN-TCP format, in case of
SYNSENTddn, SYN_SENTout, SYNRCVDddn, ESTAB * DRg *)

begin
curtcp.flags FIN
curtcp.offset := 5;
build TCP;
end;

procedure transDTg;

(* translate DT of GW format to DDN-TCP format, in case of
ESTAB * DTg *)

begin
curtcp.flags := 0;
cur tcp.offset := 5;
build TCP;
end;

procedure checkqueue; primitive;

(* Check all the TPDUs in the re-trans queue for re-
transmission if necessary. *)

244

Initialization

initialize

state :=CLOSED;
proto err := 0;

Transitions of TCP-machine

(*** GROUP-i: TPDU from DDN-TCP **

(*** State transition from CLOSED **

trans
when TCPMI.TCPMMESind (*CR from TCP *
provided ((curTCP code(message)=CRCODE)) and (lref=0))

from CLOSED to same

begin (*no conn available *
buildER;
output TCPMO.TCPMMESreq(cur-mes);
end;-

trans
when TCPMI.TCPMMESind (*CR from TCP *

provided ((cur_-TCP-code(message)=CRCODE)) and (lref<>O))
from CLOSED

begin
accept_TPDU (message); (*take in the TPDU *
snd -nxt :=time-of-day();
snd wnd :=0;
snd-ack :0;

rcv nxt :seq;
rcv wnd :wnd;

rcv ack 0;
transCR;
output TCPIO.TCPIMESreq(tpmes); (*send translated

message to linker *
next-state := SYN SENTout;
end;

245

trans
when TCPMI.TCPMMESind

provided (cur_TCP_code(message) CCCODE)
from CLOSED to SAME

begin
buildER;
output TCPI4_O.TCPMMESreq(cur-mes);
end;

trans
when TCPMI.TCPMMESind

provided ((cur TCP code(message) = DTCODE) or
(cur -TCP code(message) = AKCODE))

from CLOSED to SAME

begin
proto_err := proto-err+1;
build ER;
output TCPMO.TCPMMESreq(cur-mes);
end;

(*** State-transition from SYNSENTddn ~

trans
when TCPMI.TCPMMESind

provided (curTCP_code(message) = CCCODE)
from SYNS-ENTddn

var
retransptr := ^retranstype;

begin
stop_retrans timer; (*for CR *
acceptTPDU (message); (*take in the TPDU *
rcv-nxt seq;
rcv -wnd :=wnd;
rcy-ack :=0;

re-trans.total := re trans.total-1; (*remove CR from
retrans_queue *

set window timer;
set inact-timer;
transCC;
output TCPIO.TCPIMESreq(tp__mes); (*send translated

message to linker *

next -state :=SYNRCVDout;
end;

246

trans
when TCPM I.TCPM MESind

provided (cur_TCPcode(message) DRCODE)
from SYNSENTddn to TIMEWAIT

begin
accept_TPDU (message); (* take in the TPDU *)
set ref timer;
transDR;
output TCPIO.TCPIMESreq(tpmes); (* send TDISind to linker *)-
end;

trans
when TCPMI.TCPMMESind
provided (cur_TCPcode(message) = ERCODE)

from SYNSENTddn to TIMEWAIT

begin
acceptTPDU (message); (* take in the TPDU *)
set reftimer;
buildDRg;
output TCPI_O.TCPIMESreq(tpmes); (* send TDISind to linker *)
end;

(*** Statetransition from SYNSENTout ***)

trans
when TCPM I.TCPM MESind
provided (cur_TCP code(message) = DRCODE)
from SYNSENTout to CLOSED

begin
acceptTPDU (message); (* take in the TPDU *)
build DC;
output TCPMO.TCPMMESreq(cur mes);
trans DR;
output TCPIO.TCPIMESreq(tpmes); (* send TDISind to linker *)
flag_killme := now; (* terminate the TPM *)
end;

247

(*** State-transition from SYNRCVD **

trans
when TCPMI.TCPMMESind

provided (cur_TCPcode(message) =CRCODE)

from SYNRCVD to SAME

var
retransptr: retrans type;

begin
stop retrans timer;
retransptr := re trans.buf[I];
output TCPMO.0TCPMMESreq(retransptr.data); (*retrans CC *
retransptr.count :=1;
retransptr.timer := RETRM'IM;
set -retrans-timer;
end;

trans
when TCPM_ I.TCPMMESind

provided (curTfCPcode(message) =ERCODE)

from SYNRCVD to FINWAIT

var
retransptr: retrans type;

begin
stop retrans -timer;
acceptTPDU (message); (*take in the TPDU *
retransptr :=re-trans.buf(1];
build -DR;
output TCPMO.TrCPMMESreq(cur-mes);
retransptr.data :=cur -mes; (*replace CC with DR *
retransptr.count 1;
retransptr.timer :=RETRANSTIME;
set-retrans-timer;
build DRg;
outputE TCPIQ.TCPIMESreq(tpmes); (*send TDISind *
end;

248

trans
when TCPM I.TCPM MESind

provided (cur_TCP_code(message) = DRCODE)
from SYNRCVD to TIMEWAIT

begin
acceptTPDU (message); (* take in the TPDU *)
build DC;
output TCPMO.TCPMMESreq(curmes);
set reftimer;
transDR;
output TCPIO.TCPIMESreq(tp.mes); (* send TDISind *)
end;

(*** Statetransition from SYNRCVDddn ***)

trans
when TCPMI.TCPMMESind

provided (curTCP code(message) = DTCODE)
from SYNRCVDddn to ESTAB

begin
stopretranstimer; (* no more re-trans CC *)
re trans.last := 0; (* clear re-trans queue *)

acceptTPDU (message); (* take in the TPDU *)
transDT;
output TCPIO.TCPIMESreq(tpmes);
set inact_timer;
set-inact ack timer; (* for sending AK at suitable

interval in absence of DT *)
end;

(*** Statetransition from ESTAB ***)

trans
when TCPMI.TCPMMESind

provided (curTCP code(message) = CRCODE)
from ESTAB to SAME

begin
stopinact timer;
set inact_timer;
end;

249

trans
when TCPMI.TCPMMESind
provided (curTCP_code(message) = CCCODE)

from ESTAB to SAME

begin (*duplicated CC *
stop inact-timer;
buildAK;
output TCPMO.TCPMMESreq (cur mes); (*repeat AK *
set-inact-timer;
end;

trans
when TCPMI.TCPMMESind

provided (curTCP_code(message) =ERCODE)

from ESTAB to SAME

var
retransptr: retrans type;

begin
stop_ window -timer;
stop inact -timer;
stop retrans -timer;
acceptTPDU (message); (*take in the TPDU *
buildCR;
output TCPM_O.TCPM_MESreq(cur_mes); (*Re-synchronize *
end;

trans
when TCPM_I.TCPM_MESind

provided (curTCP_code(message) =DRCODE)

from ESTAB to TIMEWAIT

var
retransptr: retrans type;

begin
stop retrans-timer;
acceptTPDU (message); (*take in the TPDU *
buildDC;
outpuT TCPMO.TCPM-l4ESreq(cur-mes);
buildDR; (* TCP has order-release! *
output TCPMO.TCPMMESreq(cur-mes);
set -ref_timer;
end;

250

trans
when TCPMI.TCPMMESind

provided (cur -TCP -code(message) =DTCODE)

from ESTAB to SAME

begin
stop -inact timer;
acceptTPDU (message); (*take in the TPDU *

if (seq = rcvnxt) then (*DT in sequence *
begin
transDT;
output TCPIO.0TCPIMESreq(tpmes);
set-data-ack-timer; (*set timer to ack

during A_I *
rcv nxt := rcv nxt + d-length(curtcp.data);
while ((re -order~last>O) and (* check re-seq queue *

(rcv Inxt=re-order-buf[1] .seq)) do

message := re-order-buf(1].data;
trans DT;
output TCPI_-O.TCPI_-MESreq(tpmes);
rcv -nxt :=rcv -nxt + d_length(re_order.buf[1].data); -

for i:=2 to re order.last do
re -order-buf(i-1] :=re order-buf~i];

re-order.last := re-order.last -1;
end;

else if((seq'~rcv-nxt) or (seq>rcv_nxtsrcv-wnd)) then

begi out of window *

buildER;
outputE TCPMO.TCPMMESreq(cur_mes);
end;

else
begin (*not-in-seq handling *
j := 0;
for i: 1 to re order-last do

if ((seq>reorder.buf~i].seq) and (j=0)) then
j := i

for i:=j to re order.last do
re -order.buf[i+1] :=re order.buf(i];

re -order.buf(i].seq :=seq;
re order.bufri].data :=message; (*queued *
end;

set inact timer;
end;

251

trans
when TCPM I.TCPMMESind

provided (curTCP_code(message) =AKCODE)

from ESTAB to SAME

begin
stop inact -timer;
stop_retrans timer;
accept_TPDU (message); (*take in the TPDU *

if (seq > snd_ack) then (*AK in sequence *
begin
snd ack := seq;
whife ((re -trans-last>O) and (*check re-seq queue *

(snd-ack>=re-trans.buf[1].seq)) do
begin
for i:=2 to re trans.last do

re -trans.bufti-l] := re trans.buf[i];
re-trans.last :=re-trans.last -1;

end;
(else, automatic drop the AK *

if (re-trans.last>O) then
set retrans timer;

set -inact timer;
end;

(*** State-transition from FINWAIT **

trans
when TCPMI.TCPMMESind

provided ((curTCP -code(message) = CRCODE) or
(curTCP -code(message) = CCCODE) or
(curTCP-code(message) = DTCODE) or
(curTCP -code(message) = AKCODE))

from FINWAIT to SAME

var
reason: reason-type;

begin
accept_TPDU (message); (*take in the TPDU *
build ER;
output TCPMO.TCPMMESreq(curmes);
end;,

252

trans
when TCPM I.TCPM MESind

provided ((curTCP code(message) = DRCODE) or
(curTCPcode(message) = DCCODE) or
(curTCPcode(message) = ERCODE)

from FINWAIT to TIMEWAIT

begin
set ref timer;
end;

(*** Statetransition from TIMEWAIT ***)

trans
when TCPM I.TCPM MESind

provided (curTCPcode(message) = CCCODE)
from TIMEWAIT to SAME

begin
accept_TPDU (message); (* take in the TPDU *)
build ER;
output TCPMO.TCPMMESreq(cur mes);
end;

trans
whenTCPM I.TCPM MESind

provided (curTCPcode(message) = DRCODE)
from TIMEWAIT to SAME

begin
accept_TPDU (message); (* take in the TPDU *)
build DC;
output TCPMO.TCPMMESreq(cur_mes);
end;

253

(*** GROUP-2: timer-related **

trans
from SYNSENTddn
provided (timer(retrans))

var
retransptr: ^retrans_type;

begin (* only CR in retrans queue *
retrans-ptr :=re -trans.buf[1];
if (retransptr.count < RETRANS_MAX) then

begin
output TCPM_-O.TCPM_MESreq(cur_mes); (* re-trans CR *
retransptr.count :=retransptr.count+1;
retrans -ptr.timer :=RETRANSTIME;
set retrans timer;
next state :=SAME;
end;

else begin (*count =max *
stop window timer;
stop inact -Timer;
build DR;
output TCPMO.TCPM_MESreq(curmes);
retransptr.data :=cur -mes;
retransptr.count :=1;
retrans_ptr.timer :=RETRA'STIME;
set retrans timer;
buifd -DRg;
output TCPI_-O.TCPI_MESreq(tpmes); (*send TDISind *
next-state :=FIN-WAIT;
end;

end;

254

trans
provided (timer(retrans))

from SYNRCVD

var
retrans-ptr: retrans_type;

begin
retransptr :=re -trans.buf(1];
if(retransptr.count < RETRANSMAX) then

begin
output TCPMO.TCPMMESreq(cur-mes); (*retrans CC ~
retrans -ptr.count :retransptr.count+1;
retrans-ptr.timer :=RETRANSTIME;
set retrans timer;
next state :=SAME;
end;

else (*count =max *
begin
stop window 'timer;
stop inact -timer;
build DR;
output TCPMO.TCPMMESreq(cur-mes);
retrans ptr.data cur-mes; (*replace CC with DR *
retrans ptr.count :=1;
retrans ptr.timer :=RETRANSTIME;
set-retrans timer;
build DRg;
output TCPIO.TCPIMESreq(tp_ mes); (*send TDISind *
next -state := FINWAIT;
end;

end;

trans
from ESTAB
provided (timer(retrans))

var
retransyptr: retrans_type;

begin
retrans-ptr := re -trans.buf(1I;
if (retrans-ptr.count < RETRANSMAX) then

begin
output TCPMO.TCPMMESreq(retrans_ptr.data);
retrans ptr.count :=retransptr.count+I;
retrans ptr.timer :=RETRANSTIME;
set-retrans-timer;
check queue; (*check for re-trans *
next-state := SAME;

255

end;
else begin (*count=MAX *

sto~widowtimer;
stop_inact~timer;
re trans.total := (; remove all retrans *
retransptr := re-trans.buf[1];
build DR;
output TCPM_-O.TCPM-MESreq(curjrites);
retransptr.data :cur -mes;
retransptr.count 1;
retransjptr.timer RETRANSTIME;
set-retrans-timer;

& build_DRg;
output TCPI_-O.TCPIMESreq(tpmes); (*send TDISind *
next-state := FINWPAIT;

end;

trans
provided (timer(retrans))

from FINWAIT

var
retransptr: retrans type;

begin
retrans-ptr :=re-trans-buf[1];
if (retransptr.count < RETRANSMAX) then

begin
output TCPM_-O.TCPM_-MESreq(cur_mes);
retrans_ptr.count :=retrans-ptr.count+1;

retransptr.timer RETRANSTIME;
set-retrans-timer;
next state := SAME;
end;

else (*count =MAX *
begin
set-ref-timer;
next state := TIME'WAIT;
end;

end;

256

trans
provided (timer(window))

from ESTAB to SAME (* need to update window info *)

var
retransptr: retrans_type;

begin
rcvwnd := setwindow; (* get new credit *)
build AK;
appendflow; (* append flow-ctrl parameters *)
output TCPMO.TCPM MESreq(cur mes);
retrans.last := retrans.last + 1;
retrans-ptr := re trans.buf[retrans.last];
retrans ptr.data := curmes;
retransptr.count : 0;
retransptr.timer := RETRANS TIME;
set retrans timer;
set-window timer;
end;

trans
provided (timer(data_ack))

from ESTAB to SAME (* timer for acknowledge of
receiving data *)

begin
rcv ack := rcvnxt;
build AK;
output TCPMO.TCPMMESreq(cur_mes);
end;

trans
provided (timer(inact_ack))

from ESTAB to SAME no DT/ED sent in the interval;
sending AK to keep active *)

begin
build AK;
output TCPMO.TCPMMESreq(curmes);
set inactacktimer;
end;

257

trans
provided (timer(inact))

from ESTAB to FINWAIT

var
retransptr: retrans type;

begin
stop window-timer;
stop retrans-timer;
buildDR;
output TCPMO.TCPMMESreq(cur-mes);
re trans.totEal 1=; (*remove all retrans *

retrans -ptr :=re-trans.buffjl];
retransptr.data cur -mes;
retrans-ptr.count 1;
retrans -ptr.timer RETRANS TIME;
set retrans timer;
build DRg;
output TCPIO.TCPIMESreq(tpmes); (*send TDISind to linker *
end;

- trans
provided (timer(ref))

from TIME-WAIT to CLOSED

begin
flag kill me :=now
end;

258

(*** GROUP-3: TPDU from TRANSPORT GATEWAY **

trans
when TCPII.TCPI-MES.jnd (*CR from gateway *

provided (TP_code(message) = CRCODE)
from CLOSED to SYNSENTddn

var
retransptr: retrans type;

begin
accept_TP-mes (message); (*take in the TPines *
rcv-wnd :=set-window;
trans_CRg;
output TCPMO.TCPMMESreq(cur-mes);
re trans.total := 1;
retransptr :=re -trans.buf(1];
retransptr.dAta cur -mes;
retrans_ptr.count :=1;
retrans_ptr.timer :=RETRANSTIME;
set -retrans-timer;
end;

trans
when TCPII.TCPIMESind

provided (TPcode(message) = DRCODE)
from SYNSENTcldn

var
retransptr: retrans type;-

begin
accept_TP -mes (message); (*take in the TP-mes *
stop retrans_timer;
acceptTP-mes (message); (*take in the TP-mes *
trans_DRg;
output TCPMO.?CPMMESreq(cur-mes);
re trans.total := 1;
retransptr := re -trans.buf(11;
retransptr.data 7=cur -mes;
retrans-ptr.count :=1;
retrans_ptr.tiier :=RETRANS TIME;
set -retrans-timer;
end;-

259-

trans
w'hen TCPII.TCPIMESind

provided (TP_code(message) CCCODE)
from SYNSENTout to SYNRCVDddn

var
retrans-ptr: retrans_type;

begin
accept_TP_mes (message); (*take in the TP-mes *
rcv wnd :=set window;
transCCg;
output TCPMO.TCPMMESreq(cur-mes);
re trans.total :=1;
reTransptr :=re Ttrans.buf[1];
retransptr.data :=cur-mes;
retransptr.count :=1;
retransptr.timer :=RETRANSTIME;
set -retrans-timer;
end;

trans
when TCPII.TCPIMESind

provided (TPcode(message) = DRCODE)
from SYNSENTout to CLOSED

begin
acceptTP-mes (message); (*take in the TP-mes *
trans_-DRg;
output TCPMQ.TCPMMESreq(cur-mes);
flag kill-me :=now;
end;

trans
when TCPII.TCPIMESind

provided (TPcode(message) = DRCODE)
from SYNRCVDddn to FINWAIT

var
retrans_ptr: retrans_type;

begin
stop retrans-timer;
acceptTP_mes (message); (*take in the TP-mes *
trans_'DRg;
output TCPMO.0TCPM MESreq(cur-mes);
retransyptr := re trans.buf(1];
retransptr.data :=cur mes;

260

retransptr count :=retransptr count+ I;
retrans -ptr.timer :=RETRANSTIME;
set retrans timer;
end;

trans
when TCPII.TCPIMESind

provided (TPcode(message) =DTCODE)

from SYNRC-VD to ESTAB

begin
stop inact -ack timer;
accept_TP -mes (message); (*take in the TP-mes *
trans DTg;
outputE TCPMO.0TCPMTMESreq(curmes); (* send DT to TCP Net *

retrans -ptr.data cur-mes;
retrans-ptr.count :=retrans_ptr.count+1;
retransptr.timer :=RETRANSTIME;
set -retrans timer;
set window timer;
set-inact timer;
set -inact-ack timer;
end;

trans
when TCPII.TCPIMESifld

provided (TP_code(message) =DRCODE)

from ESTAB to FINWAIT

var
retransptr: retrans type;

begin
stop window -timer;
stop inact -timer;
stop retrans -timer;
accept -TP-mes (message); (*take in the TP-mes *
trans DRg;
output TCPMO.TCPMMESreq(cur_mes);
retransptr := re -trans.buf(1];
retransptr.data :=cur-mes;
retransptr.count :=retrans_ptr.count+1;
retranptr.timer :=RETRANSTIME;

set retrans-timer;
end;-

261

trans
when TCPI I.TCPI MESind

provided (TPcode(message) DTCODE)
from ESTAB to SAME

begin
stop-window timer;
stop inact -timer;
acceptTP_mes (message); (*take in the TP-ines *

transD Tg;
output TCPM_-O.TCPM_'MESreq(cur-mes);
retransptr :=re t rans.buf~re-tranS.iaStI;
retrans_ptr.data :=cur mes;
retranS ptr.count :=retrans-ptr.couflt+l;

retrans-ptr.timer :=RETRANS_TIME;
re-trans.last :=re trans.last + 1;

set retrans timer;
set-window 'timer;
set-inact timer;
end;

262

REFERENCES

[BENHA 83] Benhamou, E., and J. Estrin, "Multilevel
Internetworking Gateways: Architecture and Applications",
IEEE Computer Magazine, Vol.16, pp.27-34, Sept. 1983

[BERKO 87] Berkowitz, Howard C., "OSI: Whom Do You Trust?",
MILCON '87: Proc. of the IEEE Military Communications
Conference, pp.361-369, Washington D.C., October 1987

[BERTS 87] Bertskas D., and R. Gallager, Data Networks,
Prentice-hall, New Jersey, 1987

[BOND 87] Bond, John, "Parallel-Processing Concepts Finally Come
together in Real Systems", Computer Design, pp. 51-74, June
1987

[BRADEN 87] Braden, R., and J. Postel, "Requirements for Internet
Gateways", RFC 1009, June 1987

[BRUSIL 87] Brusil, Oaul J., and Lee LaBarre, "Integrated
Management of DoD and ISO Networks", MILCON '87: Proc. of
the IEEE Military Communications Conference, pp.34-38,
Washington D.C., October 1987

[BURG 84] Burg, F.M., C.T. Chen, and H.C.Folts, "Of Local
Networks, Protocols, and the OSI Reference Model", Data
Communication, pp.1 2 9-150, Nov. 1984

[CERF 83] Cerf, V., and E. Cain, "The DOD Internet Architecture
Model", Computer Networks, October 1983

[CCITT X.200] CCITT, "Reference Model for Open Systems
Interconnection for CCITT Applications", CCITT
Recommendation X.200, 1984

[CHAP 83] Chapin, A.L., "Connections and Connectionless Data
Transmission", Proceedings of IEEE, Vol.71, pp.1365-13 7 1,
Dec. 1983

263

[CHONG 86) Chong, H.Y., "Software Development and Implementation
of NBS Class-4 Transport Protocol", Computer Networks and
ISDN Systems, Vol.11, pp.353-365, May 1986

[COLE 86] Cole, Robert, and Peter Lloyd, "OSI Transport Protocol
-- User Experience", OPEN SYSTEM '86, pp.33-43

[COMER 88] Comer, D., Internetworking with TCP/IP: PrinciplesL
Protocols, and Architecture, Prentice-Hall, New Jersey, 1988

[COURT 86] Courtiat, J.P., A. Pedroza, and J.M. Ayache, "A
Simulation Environment for Protocol Specification in
Estelle", Proceedings of the IFIP WG 6.1 Fifth Int'l
Workshop on Protocol Specification, Testing and
Verification, June 1985

[COURT 87] Courtiat, J.P., "How Could ESTELLE Become a Better
FDT", Proceedings of the IFIP WG 6.1 Seventh Int'l
Conference on Protocol Specification, Testing and
Verification, May 1987

[DALTON 87] Dalton, Thomas R., June Downey, and Thomas L. Hahler,
"Testing and Evaluation of The Defense Data network", MILCON
'87: Proc. of the IEEE Military Communications Conference,
pp.398-403, Washington D.C., October 1987

[DAY 83] Day, John D., and Hubert Zimmerman, "The OSI Reference
Model", Proceedings of the IEEE, Vol.71, No.12, December
1983

[DEMJ 87] Demjanenko, Victor, and Michael L. Craner, "Simulation
of a Distributed Communications Network Using a Multi-
tasking Uniprocessor", MILCON '87: Proc. of the IEEE
MiliLdLy Cu11u1Uu1iUdLiUzi5 CUIL 1.ftLIL~, pp.355-359, WdSlhiiiyLUl
D.C., October 1987

(FRAN 86] Frankel, Michael S., Charles J. Graff, Larry U.
Dworkin, Theodore J. Klein, and Richard L. desJardins,
"An Overview of the Army /DARPA Distributed Communications
and Processing Experiment", IEEE Journal on Selected Areas
in Communications, Vol.SAC-4, No.2, pp.207-215, March
1986

(GREEN 86] Green, Paul E. Jr., "Protocol Conversion", IEEE
Transaction on Communications, Vol.COM-34, No.3, pp.257-

264

268, March 1986

(GROEN 86] Groenbraek, Inge, "Conversion between the TCP and ISO
Transport Protocols as a Method of Achieving
Interoperability between Data Communications Systems", IEEE
Journal on Selected Areas in Communications, Vol.SAC-4,
No.2, pp.288-296, March 1986

[HINDEN Hinden, Robert, Jack Haverty, and Alan Sheltzer, "The
DARPA Internet: Interconnecting Heterogeneous Computer
Networks with Gateways", IEEE Computer, Vol.16, No.9, pp.38-
48, September 1983

[ISO 7498] ISO/TC97, "Information Processing Systems - Open
Systems Interconnection - Basic Reference Model", IS 8072,
1984

[ISO 8072] ISO/TC97, "Information Processing Systems - Open
Systems Interconnection - Transport Service Definition", IS
8072, June 1986

[ISO 8073] ISO/TC97, "Information Processing Systems - Open
Systems Interconnection - Connection Oriented Transport
Protocol Specification", IS 8073, July 1986

[ISO 8073/DAD2] ISO/TC97, "Information Processing Systems - Open
Systems Interconnection - Connection Oriented Transport
Protocol Specification - Addendum 2: Class Four Operation
over Connectionless Network Service", ISO 8073/DAD2, July
1987

[ISO 8208] ISO/TC97/SC6, "Information Processing Systems - X.25
Packet Level Protocol for Data Terminal Equipment", DIS
8208, July 1985

[ISO 8326] ISO/TC97, "Information Processing Systems - Open
Systems Interconnection - Basic Connection-Oriented
Session Service Definition", IS 8326, 1984

[ISO 8327] ISO/TC97, "Information Processing Systems - Open
Systems Interconnection - Basic Connection-Oriented
Session Protocol Specification", IS 8327, 1984

[ISO 8348] ISO/TC97, "Information Processing Systems - Open
Systems Interconnection - Network Service Definition",

265

IS 8348, April 1987

(ISO 8473] ISO/TC97, "Information Processing Systems - Open
Systems Interconnection - Protocol for Providing the
Connectionless-mode Network Service", DIS 8473, May 1987

[ISO 8648] ISO/TC97/SC6, "Information Processing Systems - Open
Systems Interconnection - Internal Organization of the
Network Layer",DIS 8648, May 1987

[SO 8878] ISO/TC97, "Information Processing Systems - Data
Communications - Use of X.25 to Provide the OSI Connection-
mode Network Service", IS 8878, Sept. 1987

[ISO 8880] ISO/TC97, "Information Processing Systems - - Protocol
Combinations to Provide and Support the OSI Network
Service", DIS 8880, June 1987

[ISO 8881] ISO/TC97, "Information Processing Systems - Open
Systems Interconnection - Use of the X.25 Packet Level
Protocol in Local Area Networks", IS 8881, ???

[ISO 9068] ISO/TC97/SC6, "Information Processing Systems -

Provision of the Connectionless Network Service Using ISO8208", DP 9068, April 1986

[ISO 9074] ISO/TC97, "Information Processing Systems - Open
System Interconnection - Estelle (Formal Description
Technique Based on an Extended State Transition Model", DIS
9074, August 1987

[ISO/TR 8509] ISO/TC97, "Information Processing Systems - Open
Systems Interconnection - Service Conventions", ISO/TR
8509, November 1985

[ISRAEL 87] Israel, Jay E., and Alan J. Weissberger,
"Communicating between Heterogeneous Networks", Data
Communications, pp.215-235, March 1987

(LAM 87] Lam, Simon S., "Protocol Conversion --Correctness
Problems", Computer Communications Review, Vol.16, No.3,
pp.19-29, August 1987

[LAND 86] Landweber, L.H., D.M. Jennings, and I. Fuchs,

266

"Research Computer Networks and Their Interconnection", IEEE
Communication Magazine, Vol.24, pp.5-17, June 1986

[LEINER 85] Leiner, Barry M., Robert Cole, Jon Postel, and David
Mills, "The DARPA Internet Protocol Suite", IEEE
Communications Magazine, Vol.23, No.3, pp.29-34, March 1985

[LINN 85] Linn, R.Jr., "The Features and Facilities of ESTELLE",
Proceedings of the IFIP WG 6.1 Fifth Int'l Workshop on
Protocol Specification, Testing and VerificaLion, June 1985

[MART 87a] Martinez, Ralph A., ChangWon Son, and JianYi Tao,
"Interconnection of SYTEK LocalNet 20 Networks through the
Defense Data Network Using Internet Protocol Gateways",
Proc. of the IEEE Phoenix Conference on Computers and
Communications, Phoenix, AZ, February 1987

[MART 87b] Martinez, Ralph A., "A Look at Internet Gateway
Functional Requirement for Tactical Distributed C3 Systems",
MILCON '87: Proc. of the IEEE Military Communications
Conference, pp.361-369, Washington n.C., October 1987

[MART 88] Martinez, Ralph A., and Changwon Son, "Functional
Description and Formal Specification of a Generic Gateway",
CERL Technical Report, Computer Engineering Research
Laboratory, Electrical and Computer Engineering Department,
the University of Arizona, August 1988

[McCOY 87a] McCoy, Wayne, "Military Supplement to the ISO
Transport Protocol", RFC 1007, June 1987

[McCOY 87b] McCoy, Wayne, "Implementation Guide for the ISO
Transport Protocol", RFC 1008, June 1987

.ML ll-u 1777] Military Standard 1777, "Internet Protocol",
MIL-STD-1777, RFC 79, September 1981

- [MILSTD 1778] Military Standard, "Transmission Control
Protocol", MIL-STD-1778, RFC 793, September 1981

[NRC 85] National Research Council, "Transport Protocols for
Department of Defense Data Networks", RFC 942, February 1995

[OHARA 87] Ohara, Y., S. Yoshitake, and T. Kawaoka, "Protocol

267

Conversion Method for Heterogeneous Systems Interconnection
in Multi-Profile Environment", Proceedings of the IFIP WG
6.1 Seventh Int'l Conference on Protocol Specification,
Testing and Verification, May 1987

[OKUM 86] Okumura, Kaoru, "A Formal Protocol Conversion Method",
ACM SIGCOMM '86: Symposium on Communication Architectures
and Protocols, August 1986

[PARDUE 871 Pardue, Mark D., "Fine-Tuning the OSI Model: Layer
Functions and Services", MILCON '87: Proc. of the IEEE
Military Communications Conference, pp.199-203, October 1987

[PIATK 86] Piatkoski, Thomas F., "The State of the Art in
Protocol Engineering", ACM SIGCOMM '86: Symposium on
Communications Architectures and Protocols, August 1986

[POST 80a] Postel, J., "Internetwork Protocol Approaches", IEEE
Transaction on Communications, COM-28, pp.604-611, April
1980

[POST 80b] Postel, J., "User Datagram Protocol", RFC 768, August
1980

(POST 81] Postel, J., "Internet Control Message Protocol", RFC
792, September 1981

[ROSE 87] Rose, Marshall T., Dwight E. Cass, "ISO Transport
Services on Top of the TCP", RFC 1006, May 1987

[RUDIN 85] Rudin, Harry, "An Informal Overview of Formal Protocol
Specification", IEEE Communication Magazine, Vol.23, No.3,
pp.46-52, March 1985

[SIRBU 85] Sirbu, Marvin A., and Laurence E. Zwimpfer, "Standards
Setting for Computer Communication: the Case of X.25", IEEE
Communications Magazine, Vol.23, No.3, pp.35-45, March 1985

[STALL 88] Stallings, W., Data and Computer Communications,
2nd Edition, Macmillan, New York, 1988

[TANEN 88] Tanenbaum, A.. Computer Networks, 2nd Edition,
Prentice Hall, New Jersey, 1988

268

[TSUCH 87] Tsuchiya, Paul F., "Team-of-Gateways: Design and
Implementation", MILCON '87: Proc. of the IEEE Military
Communications Conference, pp.39-42, Washington D.C.,
October 1987

(VENK 85] Venkatraman, R.C., and T.F. Piatkowski, "A Formal
* Comparison of Formal Protocol Specification Techniques",

Proceedings of the IFIP WG 6.1 Fifth Int'l Workshop on
Protocol Specification, Testing and Verification, June
1985

[WEISS 87] Weissberger, Alan J., and Jay E. Israel, "What the New
Internetworking Standards Provide", Data Communications,
pp.141-156, February 1987

269

