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Chapter 1

Introduction

In recent years there has been an increased interest in the formulation of finite
deformation, elastoplastic, constitutive equations. Current material models are
unable to represent many of the important multi-dimensional effects of the plastic
deformation of metals to large strain. These effects can become very important
at the level of deformation reached in metal processing operations, shear band
formation, penetration mechanisms, and crack tip processes.

The great advances in computing capability and numerical procedures in the last
decade have led to a tremendous increase in the types and complexity of problems
which may be now analyzed. The computer revolution has far outstripped the
precision of available material models. Previously, a first order prediction from
simple constitutive equations was thought to be sufficient since that coincided with
the accuracy of the available anaylsis techniques. Now the material models greatly
lag our ability to apply them in analysis.

One reason that constitutive development has suffered is the limited experimen-
tal data available to describe large strain behavior. Even more important than the

volume of data available is the type. Pure uniaxial information is not sufficient




when many of the discrepancies of the classical theories derive from their tensorial
generalizations. Chief among these phenomena are the differences between material
behavior in tension/compression and in torsion. When comparing the Mises equiv-
alent stress versus equivalent strain curves for torsion and compression, the results
are seen to differ. The torsion results generally fall below the compression results.

Attempts to model this, and other findings, have led some to consider variations
of the classical kinematic hardening plasticity law. These efforts have illustrated
problems that arise when simple, small strain, constitutive laws are hastily gener-
alized to the finite deformation regime. The most notable of these is the prediction
of an oscillating shear stress response for monotonic loading in simple shear.

Many authors have c'onsidered this problem from an analytical point-of-view over
the past five years. Consequently, many theories or constitutive assumptions have
been postulated. None of these have been properly investigated experimentally. A
consistent and complete experimental data base has not been available for evaluating
the models.

The purpose of this work is to conduct a ccmplete set of experiments, on several
materials, that would allow proper comparisons to be made. This set of experiments
includes, of course, large strain compression and torsion tests. Additionally, it was
realized that a proper model would need to correctly model the back stress or
kinematic hardening as well as the isotropic portion. To aid these determinations,
reverse loading and cyclic experiments were also conducted. These were necessary
to quantify the Bauschinger effect.

The most extensive experimentation and modeling of back stress phenomena is

in the small strain cyclic regime. A proper model of the back stress and its evolution




would need to be consistent with the results seen there. Currently none of the large
strain theories correctly model this regime. Different theories have been used by
researchers working in these different regimes. No constitutive model unifying these
different areas has been available.

It is well known that the back stress builds up quickly in the first few percent
strain. This is where most of the action occurs. Its effects can be important at
both small and large strain. A theory which desires to model the effect of the back
stress at large strain needs to also correctly model its behavior at small strain.

This work has two major parts. The first is the experimental results. These
provide a coherent set of tests, useful for plasticity model construction and verifi-
cation. The second is the modeling ideas which allow unification of the different
srrain regimes. These are brought out in a new constitutive model which is applied
to the experimental results.

This document has two main parts, each giving a slightly different perspec-
tive. It is organized in the following way. The first part examines the Bauschinger
Effect from a material scientist’s viewpoint. Chapter 2 contains a review of the ex-
perimental literature concerning measurement and description of the Bauschinger
Effect. The quantitative models are not discussed but the causes of the effect are
emphasized. In Chapter 3, micromodeling of the Bauschinger Effect in a particle
hardened alloy is presented. A finite element model was used to model the effects of
the particle-matrix interaction. The results demonstrate many of the experimental
observations of nonmonotonic loading.

The second main part of this document takes a continuum mechanics viewpoint.

The modeling of metal plasticity is reviewed in Chapter 4. A new constitutive
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model is presented in Chapter 5. It contains new features motivated by the reviews
of the literature. Chapter 6 contains the experimental program and results. The
comparison of the theory with these experiments is given in Chapter 7. Finally, the

conclusions drawn from this study are presented and discussed in Chapter 8.
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Chapter 2

Review of Bauschinger Effect

2.1 Scope of Chapter

In this chapter the relevant, published work on the anisotropic hardening behav-
ior of metals as exhibited by the Bauschinger Effect is reviewed. This is important
behavior to consider, as will be shown, since the influence of the causes of this behav-
ior have far reaching effects in small strain, cyclic, and large strain metal plasticity.
There exists an extensive literature containing observations of the Bauschinger Ef-
fect. Only a brief review is given here. Major results are listed as well as a review of
some individual investigator’s findings. It is valuable to understand the underlying
focus of the studies presented in the literature. This is important when reinterpret-
ing the results of these previous investigators in light of more recent findings. The
summary of this chapter contains some of these new results and how they impact

previous work.

2.2 Review of the Literature

This section is intended to review the experimental measurement of the Bauschinger

effect in metals. It does not include experimental techniques but rather presents ma-
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jor experimental results in a historical manner leading to the current understanding
of the phenomenon. The Bauschinger effect should not be considered an anomolous
material behavior because it will be shown to be present in a large variety of metals
ranging from pure single crystals to multiphase, polycrystals. The viewpoint of
concern is the phenomenological approach describing macroscopic behavior.

In 1881, Johann Bauschinger [1886] reported that a metal specimen (Bessemer
steel), after receiving an axial extension into the plastic range showed a decrease
in the magnitude of the yield stress upon subsequent compression. This reduction
in yield stress upon reversal of straining is known as the “Bauschinger effect”.
This phenomenon has been noted in both rate independent and rate dependent
regimes of material behavior. This review will concentrate on the rate independent
observations since different classes of experiments are required to determine back
stress existence and magnitude in the viscoplastic response regime.

We will also use the term back stress to denote a modeling concept first put
forth by Prager [1956] to describe a multiaxial generalization of this pheromenon
noted in one dimension by Bauschinger. Many of the modern constitutive theories
for elevated temperature structural applications contain back stress variables. For
a review of these applications and a discussion of the modeling of back stress at
elevated temperature see Swearengen and Holbrook [1985).

Just as manifestations of the Bauschinger effect have been seen in the very
slow strain rate (creep) regime, so has it been observed in the high strain rate
regime. Ogawa {1985] demonstrated that the Bauschinger effect at high strain rate
(5 x 10?sec™?) has similar features to the quasistatic case. We will not consider the

high strain rate environment separately here.
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The microscopic approach of requiring the critical shear stress on a slip plane
within a crystal to depend upon the direction of slipping has also been recently
pursued (Weng [1980]). These shear components can then be averaged over the
available slip systems to yield the macroscopic behavior of the polycrystalline sam-
ple. Models such as these may lead to increased understanding of the mechanisms
underlying the observed Bauschinger effect but are outside of the domain of the
phenomenological approach and will not be considered in detail here.

The alloy systems which generally show the largest Bauschinger effect, or differ-
ences in yield stresses, is the two phase system where hard particles are contained in
a relatively soft matrix. Reasons for this will be discussed later but since this type
of system dramatically shows the effect, proportionately much of the experimental
work has looked at these systems.

In order to clarify some of the terms that have been used rather loosely until now
consider Figure 2.1, Let curve A represent the stress strain behavior of a specimen
loaded monotonically in tension. If the specimen is loaded from zero up to some
stress and then unloaded and compressed along curve B it will yield in compression
at a stress level whose magnitude o, may be much less than o, from which it was
unloaded. To make this even more clear invert the compressive portion of curve B
so that it appears as a reloading curve (curve C).

Another general feature often observed is the high degree of roundedness to the
reverse flow curve after re-yielding. This is reminiscent of the stress strain curve
for an annealed specimen. If a specimen that is loaded in tension to oy is unloaded
to zero stress then reloaded in tension it will nearly retrace its unloading curve

to o, then continue flowing along curve A as if the unloading had never occurred.
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The re-yield point may be sharp and it is sufficient to use o; as the yield point.
For the specimen which is compressed after unloading, the definition of yield is
very important since there is a gradual transition from elastic to fully plastic flow.
Bauschinger used the elastic limit as his definition of yield. This is very nearly the
proportional limit in the absence of anelastic effects.

For the purposes of structural design where small dimensional changes are im-
portant, this proportional limit is the proper yield point of concern since that gives
the design stress limit to avoid plastic flow. On the other hand, when large plastic
flow is anticipated or desired, such as in metal forming or limit load analysis, the
more steady state flow stress may be desired. To model this effect we consider the
observed permanent softening, Ao,, given by the stress difference between curves
A and C after they become nearly parallel. A discussion of how this difference can
be determined if the curves are not parallel is given by Sowerby, Uko and Tomita
[1979]. The permanent softening is a way to measure the effect of the reverse load-
ing on the flow stress rather than just on the yield point. For large uniaxial strain
problems many authors have felt that this is the important effect to quantify.

The region of gradual re-yielding extends over a reverse strain range of from 1-
3% (Orowan [1959]) up to a maximum of 5-10% (Wilson and Bate [1986]). Orowan
felt that the back stress concept could be used to model the permanent softening
much better than this region of nonlinearity (Orowan [1959]).

This same duality of the proportional limit and the large offset strain mea-
surement of yield has also been extensively observed in biaxial experimentation
(Phillips, Tang and Ricciuti [1974]). In his review article Hecker [1976] discusses

the results of many yield surface probing experiments. Here thin walled tubular
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specimens are loaded in various combinations of axial tension, internal pressure and
torsion to achieve stress states throughout the plane stress subspace. By defining
yield as the accumulation of a certain amount of plastic strain, yield surfaces can be
constructed. This has been done for a few materials, most often a relatively pure
system like 1100 aluminum. Yield surfaces both before and after prestraining have
been determined. The results are very dependent on the definition of yield. For a
very small accumulated strain definition the yield surface often shows a translation
in stress space in the direction of the prestrain. This is generally accompanied by
a distortion where the yield surface develops a rounded nose in the prestrain di-
rection. This is in contrast to using a large offset definition of yield which shows
expansion and a small amount of translation of the yield surface but little change
of shape.

These observations are the multiaxial extensions of the behavior we note in the
uniaxial Bauschinger effect experiments; the different amounts of yield surface trans-
lation account for the difference between the proportional limit and the permanent
softening.

In passing we note that although these observations have been made for materials
prestrained relatively small amounts (<10% strain), the same effects are seen in
large strain testing. In a recent study, Stout et al. [1985] strained a tubular specimen
of 1100 aluminum in torsion to an engineering shear strain of 50% and measured
the original and subsequent yield surfaces using both large and small offset yield
definitions. They found that translation and formation of a rounded nose occurred
using a 5x107° strain offset yield definition but that predominately expansion with

a small translation was observed when they used the back extrapolated definition
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of yield. These results are qualitatively similar to the small strain studies cited by
Hecker [1976].

In order to see how the back stress contribution quantitatively affects the total
strain hardening we turn our attention to the detailed unidirectional experiments
reported in the literature.

The early experiments of Bauschinger have already been cited. They primarily
described the phenomenon of the lowering of the elastic limit upon strain reversal
but were not thoroughly discussed by Bauschinger since his greatest interest at that
time was in time dependent, strain aging effects (Bell [1984]).

In 1923 Masing [1923] presented a theory for the Bauschinger effect which pre-
dicts the reverse loading behavior to be identical to the initial forward loading but
with a doubled stress scale and reversed sign. In 1926, Masing and Mauksch [1926]
presented results of tension-compression reverse loading tests on brass with pre-
strains between 0.7% and 17.5%. They did not obtain good agreement with the
theory. Later, Rahlfs and Masing [1950] conducted reverse loading tests in tor-
sion using wire specimens of various polycrystalline metals to test Masing’s theory.
Again good agreement with the theory was not obtained.

Sachs and Shoji [1927] studied the Bauschinger effect using brass single crystals
in tension and compression. This appears to be the first study establishing that the
effect is seen in single crystals and can not be entirely due to mismatch between
deforming grains.

An extensive investigation into the Bauschinger effect in torsion was reported
by Woolley [1953]. He studied Cu, Al, Pb, Ni, and Fe with prestrains ranging from

1% to 120% in shear. Among these results was the observation that the effect is
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independent of the grain size. He also cited the need for more experimental results
on single crystals.

In the late 1950’s E. Orowan first investigated the mechanism of the Bauschinger
effect. The thinking current at that time was that a residual stress is built up in the
polycrystal during deformation due to the anisotropic properties of the individual
grains. Those grains more favorably oriented yield ﬁrst. The result is an internal
residual stress due to the developed mismatch of the grains. Orowan’s students Wu
[1958] and Canal {1960] showed that this was not entirely correct. They reasoned
that if the permanent softening was a result of these residual stresses that a strong
anneal given after the prestrain should remove this stress and the subsequent reverse
loading not exhibit the lowered yield. They did not find this to be the case, in fact,
permanent softening persisted even up to levels of annealing which reduced the
forward flow stress of the copper.

Orowan [1959) interpreted their results differently, inferring that the permanent
softening seemed to disappear after a relatively mild annealing, although he stated
that full softening and recrystallization occurred before the post anneal reverse load-
ing curve came halfway back to the original forward loading curve. This discussion
demonstrates confusion that was present at the time of these results regarding the
way permanent softening would be induced by a back stress.

Referring to Figure 2.2, the permanent softening, Ao,, can be modeled by a back
stress, oy?’, defined by o,?* = %Ao.,. If annealing after the prestrain removes the
back stress but the isotropic hardening is still present then the reverse loading curve
would shift from C to D. Removal of the back stress would also cause the continued

forward loading curve to shift from E to D. Hence if the back stress were removed
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both forward and reverse loading occur along the same stress level and that level
would be halfway between the original forward and reverse loading curves. The
confusion of Orowan, Wu and Canal was in trying to compare the reverse loading
curve after annealing with the forward loading curve without annealing. If the back
stress were completely removed there would still be a stress difference of g,?*. The
reverse curve would shift from C to D due to annealing out the back stress but
the continued forward loading would remain at E. This is just about the difference
noted by Orowan [1959] before full softening and recrystallization occurred.

Deak [1962] conducted reverse loading tests in which he prestrained specimens
in the forward direction and, after annealing, strained some in the forward direction
and some in the reverse direction. Therefore he was able to determine when the
permanent softening had been annealed out (when the forward and reverse curves
come together) and whether the annealing had softened the isotropic component
(by comparing the stress level with the prestress level).

For decarburized steel specimens annealing the prestrained specimens for 1 hour
at less than 400°C had almost no effect. Above 400°C the forward flow curve re-
duced but the reverse flow curve was largely unaffected by the anneal. Finally after
a one hour anneal at 700°C both the forward and reverse flow curves coincide but
at a stress level less than what would be predicted by just removing a back stress.
The results were slightly below that of the unannealed reverse flow curve. Figure
2.3 shows Deak’s results for a decarburized steel that had been annealed at 700° C
for 1 hour. The same result was observed for polycrystalline copper although the
corresponding annealing temperatures were lower, as would be expected from the

lower melting temperature of copper. This result demonstrates that the understand-
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ing of the permanent softening as a measure of the back stress does not agree with
the assumption that the back stress is annealed out.

By noticing that the annealing affects the reloading in the forward direction
but not in the reverse direction we can understand a little about the dislocation
structure in the deformed specimen. Consider that the specimen after uniaxial
loading has a system of dislocations which contain both those which become locked
in to the substructure due to pinning or tangling and those for which motion is
relatively free. These more mobile dislocations are the ones which easily glide during
reverse deformation. If the reverse glide of these dislocations causes annhilation
then the total dislocation density would decrease. Reverse flow occurs at a lower
stress level then the continued forward loading. Of course, this is what is observed
macroscopically. This is consistent with the affect that annealing would have on this
microsystem. The more mobile dislocations would glide due to thermal activation
and annhilate leaving a lower dislocation density. Then the subsequent reverse flow
would be largely unaffected by the annealing because this is the structure that
develops after a small reverse strain without annealing. The proportional limit
during reverse straining should increase as a result of the annealing because the
dislocations that glide easily have been removed by the annealing. This is seen in
the experimental results of Deak [1962].

The effect of the annealing upon subsequent forward loading should be dramatic
if the dislocations have been removed. The flow stress in the forward direction would
be reduced due to the lower dislocation density. In fact, if all of the deformation
induced dislocations are removed then the forward flow curve should match the

reverse flow curve. This is just what was observed by Deak [1962).
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We can now see that the effect of reverse loading is similar to that of annealing.
The more mobile dislocations move away from the obstacles that were blocking
their forward motion and can annhilate reducing the flow stress level for large flow.
A reduction of dislocation density is expected. We will see later that this agrees
with the experimental results of Wilson and Bate [1986] and Hasegawa, Yako and
Karashima [1975].

Orowan [1959] proposed that the Bauschinger effect was due to dislocation pile-
up against a barrier, such as a particle. The elastic stresses that are set up make
reverse glide easier than forward glide. In addition to particle characteristics, the
permanent softening would then be a function of obstacle forming characteristics
such as stacking fault energy.

In the early 1960’s D.V. Wilson conducted reverse torsion testing on a number
of polycrystalline metals including low and high carbon steel, brass Al-3 Mg, and
Al-4 Cu. Wilson and Konnan [1964] noted that the work hardening rate was much
higher in steel containing spheroidal cementite particles then in low carbon steel but
that this additonal work hardening approached a limiting value after 6-8% strain.
Wilson [1965] was led to the idea that permanent softening was due to long range
internal stresses. He employed X-ray diffraction to measure the residual internal
stresses. He found it to be about one half of the softening measured at the reverse
strain that just brings the internal stress to zero. Many people have misunderstood
this result and interpreted it to say that the experimentally measured internal lattice
stress is equal to one half of the permanent softening. This is not what was noted
by Wilson but has been used by many authors as a justification for the approach of

modeling the permanent softening using a back stress. The back stress magnitude
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is commonly assumed to be one half of the measured permanent softening. This
will be discussed in more detail at the end of this section.

In 1966, Abel and Ham [1966] published the results of a Bauschinger effect
study on Al-4 wt% Cu single crystals. They found that when the precipitates were
coherent with the matrix that the result could be explained by the work hardening
of the matrix. When the precipitates were not coherent, the Bauschinger effect was
very large and could be explained by internal stresses continuing to build up at
the particles during forward flow. They used a proportional limit definition for the
effect.

The tension-compression testing of low carbon steel in the Luders strain region
was carried out by Abel and Muir [1972a]. In this region the definition of permanent
softening collapses. The forward strain occurs at a constant stress level but the re-
verse flow exhibits a gradual yield with constantly increasing flow stress magnitude.
The reverse strain does not show the Luders band instability. To describe the non-
linear reverse yield the authors define the Bauschinger strain as the reverse strain
required to reach the same flow stress magnitude as was reached in the forward
loading. This strain based description of the Bauschinger effect has been used by
a number of authors (e.g. Stoltz and Pelloux [1974]; Pederson, Brown and Stobbs
[1981]) and is valuable when the concern is for the actual micro-yield point. Abel
and Muir also considered stress and energy based descriptions of the Bauschinger
effect.

The purpose that Abel and Muir had for these tests was to differentiate be-
tween the effects due to two dislocation based theories. The first theory had the

Bauschinger effect arising from the long range stress built up during deformation.
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Current thinking on Luders band propagation along with the horizontal flow curve
suggested that no large build up of elastic back stress occur in the Luders strain
region. Any Bauschinger effect could then be due predominately to the second
mechanism which suggested that anisotropic resistance to dislocation motion is de-
veloped by prestraining. Upon stress reversal the dislocations glide easier in the
reverse direction until they meet new obstacles. The experimental results suggest
that the Bauschinger strain is, in fact, due to this second reason.

Abel and Muir [1972b] went on to test copper and copper-aluminum alloys to
study the effect of stacking fault energy on the Bauschinger effect. The equilibrium
separation of dislocation partials is determined by the stacking fault energy. For a
large separation, such .3 seen in a low stacking fault energy material, cross slip is
difficult and requires a larger stress to become active. Cross slip is one of the mecha-
nisms that limits dislocation pile-ups and back stress development. Hence, lowering
the stacking fault energy lessens the cross slip and increases the Bauschinger effect.
Without being able to make exact quantitative determinations, the above trend
was observed. The Bauschinger effect increased with increasing aluminum content
of the alloy.

This result is reinforced in a study by Marukawa and Sanpei {1971] who tested
single crystals of 99.999% pure copper. This purity has a very high stacking fault
energy and few obstacles to dislocation motion. The authors observed very little
difference in forward or reverse flow. After the reversal, the deformation proceeded
with approximately the same flow stress and hardening rate as before the load
reversal. Etch pit results showed that the dislocation arrangement was not compat-

ible with directional arrangements such as would be expected if long range internal
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stresses were present.

The conclusions that can be reached from these experimental studies covering
the period up through the early 1970’s are largely qualitative but give a good idea
what mechanisms are important in the Bauschinger effect. The early idea that it
develops primarily from residual stress caused by plastic incompatibility between
deforming grains is not sustained. The evidence for this conclusion is that, the
Bauschinger effect survives strong annealing, it is largely independent of grain size,
and single crystals still exhibit the effect. The role of inclusions and second phase
particles appears to be particularly strong. The Bauschinger effect increases with
increasing numbers of particles. The qualitative modeling of the effect by dislocation
pile-up against inclusions can reasonably describe the Bauschinger strain (easier
initial dislocation glide in the reverse direction).

The studies in this area during the 1970’s turned to attempt better analytical
modeling of the phenomenon. This required studying how the effect develops as a
function of strain.

Kishi and Tanabe [1973] conducted experiments on a large variety of metals
including: copper, brass, aluminum, iron, and various steels. They determined a
back stress from the permanent softening as a function of prestrain by conducting
reverse loading at a variety of forward strain levels. They found that the back stress

could be expressed in a power law relationship:
o?’ = ke™.
Here the constants k and m are material properties different from the corresponding
constants in the power law relationship which describes just the forward flow:
o=k'e™.
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The fact that m # m' implies that the relative magnitude of the back stress
to the total amount of hardening is not constant but varies with the amount of
deformation.

The work hardening rate of some pearlitic steels was measured by Tanaka et
al. [1973]. They determined the permanent softening back stress up to 5% forward
strain. Again the permanent softening was greater for a higher carbon content.
They proposed a simple model for calculating the internal stress due to the ce-
mentite. This matched the back stress results quite well at strains below 0.5% but
drastically overestimates the back stress at larger strains. The authors attributed
this to relaxation of the internal stress due to either cracking or plastic deformation
of the cementite. The back stress tended toward saturation at 5% plastic strain.

Atkinson, Brown and Stobbs [1974] conducted tests on dispersion strengthened
single crystals. They modeled their Bauschinger effect results with the use of a
mean internal stress. This was one element of a detailed model having a number of
components in the total hardening response. These included: friction stress, Orowan
stress, mean stress in the matrix, source-shortening stress, and the contribution due
to forest dislocations.

Mori and Narita {1975] also tested copper-silica single crystals in reverse torsion.
They separated the strain hardening into two components: that due to a back
stress and that due to forest hardening. By measuring the permanent softening as a
function of plastic strain they were able to give separate plots of the total hardening,
forest hardening and permanent softening back stress up to a shear strain of 25%.
In the first 2-3% strain all of the hardening was due to the back stress. At 10% shear

strain the back stress reached a saturation value but the forest hardening continued
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to increase almost linearly with strain. This saturation state indicates a limit in the
dislocations that can pile-up against a given array of obstacles. High stacking fault
materials rarely have significant pile-ups. Additional hardening is then achieved by
tangling of gliding dislocations and formation of subgrain walls.

The authors stated that low temperature annealing removed the back stress
without affecting the forest hardening. They conducted hysteresis loop tests both
before and after annealing and saw that the effect of the anneal was to shift the
hysteresis loop in the reverse loading direction.

Gould, Hirsch and Humphreys [1974] tested single crystals of copper containing
dispersions of Al;O03. They found a large Bauschinger effect which could be removed
by suitable annealing. They estimated that the number of Orowan loops reachs a
limit of about 3 to 5 after a few percent strain. Cross slip then takes over and the
back stress saturates. This is in agreement with observed trends.

Ibrahim and Embury [1975] introduced the idea of a “Bauschinger effect param-
eter” (B.E.P.). They defined it as twice the ratio of the permanent softening back

stress to the total hardening. Referring to Figure 2.1 they defined it as

Ao,
or—o,

B.E.P. =

Since much of the testing had been conducted on two phase systems these au-
thors chcose to characterize two single phase materials: Armco iron and zone refined
niobium. They measured the B.E.P. as a function of plastic strain. They made the
suprising discovery that, in the range they measured (0.5% to 7% strain), the B.E.P.
was a constant (0.10) independent of strain. This was unexpected in the light of the
earlier tests on two phase systems that exhibited a large stress development in the

first few percent of strain followed by saturation. Ibrahim and Embury interpreted
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their results as showing that the back stress and forest hardening contributions are
proportional to each other throughout deformation.

Hasegawa et al. [1974,1975] conducted Bauschinger effect tests on polycrys-
talline aluminum strained to about 10% prestrain. They noted a slight decrease
in the work hardening rate at an early stage of reversed straining compared with
the hardening rate before stress reversal. This effect became more pronounced at
elevated temperature. By observing dislocation structures they observed that cells
were formed during prestraining but that during stress reversal dissolution and
reformation of cell walls occurred. The overall dislocation density decreased by
about 16% during the Bauschinger strain portion of reverse loading and reached a
minimum when the initial flow stress magnitude was reached.

Anand and Gurland {1976] conducted an extensive study of the strain hardening
characteristics of spheroidized, high carbon steels. They were able to explain the
double-n strain hardening behavior in terms of the back stress contribution to the
overall hardening. By calculating the magnitude of the back stress from a continuum
model they showed that it increases almost linearly with plastic strain up to a strain
of about 3.5%, then remains approximately constant. This point where saturation
was observed compares quite well with the transition in exponent for the Holloman
equation. When the log of stress is plotted against the log of strain the result is
two straight lines which intersect at a strain of about 4%. This seems to indicate
a change in hardening mechanism which is accounted for by the saturation of the
back stress contribution.

Results similar to Anand and Gurland [1976] were presented by Chang and Asaro

[1978] for two high carbon steels. They noted a double-n atrain hardening behavior
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with the transition occurring at a plastic strain of 3 to 5% which corresponds to the
saturation of the back stress. The back stress accounted for approximately 20% of
the total strain hardening at these strain levels in these steels. The back stress was
modeled as arising from the residual internal stresses developed around the second
phase particles caused by plastic incompatabilities between the elastic particles and
the elastic-plastic matrix. A continuum model was developed which described this
quite well.

D. J. Lloyd {1977] carried out reverse loading tests on polycrystalline aluminum:
Al-6% Ni and Al-7.6% Ca. He found that the permanent softening increased rapidly
with plastic strain then saturated at 7-8% strain. He also noted that the saturation
permanent softening is sensitive to microstructure and orientation of the particles
and the extruded grains. The Bauschinger effect ratio (B.E.R.) was defined as
the ratio of the permanent softening back stress to the total hardening. This is
just one half of Ibrahim and Embury’s [1975] Bauschinger effect parameter. For
the Al-6% Ni the B.E.R. was about 0.2 to 0.3 and showed a gradual decrease with
plastic strain. For the Al-7.6% Ca the B.E.R. was about 0.7 at 1% plastic strain
but at larger strains was a constant 0.3 . This decrease of the B.E.R. with strain is
expected if the back stress saturates in the strain region being investigated. After
saturation the back stress remains constant but the total amount of hardening can
increase leading to a decrease in the B.E.R.

In 1980, Uko, Sowerby and Embury [1980] reported results of reverse flow studies
on two types of steels: plain carbon steels having from 0.15 to 0.95% carbon and
high strength, low alloy steels. This study shows the importance of the back stress

in engineering materials which have been used extensively by industry. They found
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that initially the permanent softening back stress increased rapidly with plastic
strain but tended toward a saturation behavior at the largest strains they tested
(8%). The back stress also increased with higher carbon content. The Bauschinger
effect parameter decreased with increasing prestrain towards a limit at around 8-
10% strain. All of these results agree well with the description of the Bauschinger
effect which has come out of the previous experimental studies.

The studies that have been cited above primarily were done with reversed uni-
axial loading. Supporting evidence for the conclusions seen in such tests is also
available from biaxial experimentation. The review of these tests by Hecker [1976]
has been cited previously.

In a recent paper, Helling et al. [1986] examined the yield loci of 1100-O alu-
minum, 70:30 brass and 2024-T7 aluminum as a function of prestrains that ranged
up to 32%. The results were, again, sensitive to the definition of yield. They deter-
mined the expansion, translation and distortion of the surfaces of small offset strain
definition of yield. For both 1100-O and 2024-T7 the translation increases rapidly
with prestrain and saturates at a strain of about 8%. For brass the translation had
not yet saturated at a strain of 30% but was approaching saturation. The size of
the translation measures the strength of the Bauschinger effect. Even though these
results were for small offset yield the same trends are seen as for the permanent
softening of the unidirectional studies.

There is a severe shortcoming with most of the results discussed so far. Based
upon a paper by D.V. Wilson [1965] most investigators have estimated the back
stress contribution to strain hardening on the basis of the observed permanent

softening. Referring to Figure 2.1, the permanent softening is defined as the flow
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stress difference between reversed and continued forward flow measured after the

curves have reached parallelity. The assumption is made that:

1
0" = A0,

where 0,?* is a tensile value of back stress determined from the permanent softening.
Most theories employing back stress requires it to be a deviatoric tensor, B, (trB =
0). Here we would have By; = 2oy%.

The result determined by Wilson {1965] and confirmed by Wilson and Bate
[1986] is that the internal lattice stress is not well related in this way. Rather, the
internal stress in the ferrite matrix is better measured from the difference in forward
and reverse flow stress measured at the reverse strain in which the internal lattice
stress goes to zero.

Wilson and Bate [1986] made detailed measurements of internal stress using
X-ray diffraction techniques. They measured the internal stress components in
the ferrite matrix. By diffracting x-ray beams with the material they could infer
the directional components of stress by the displacement of the diffracted beam.
The nondirectional (isotropic) component was inferred by the broadening of the
diffracted beam. They followed the directional internal stress in the matrix as a
function of plastic strain. They found that upon reversing the straining direction
the internal directional stress decreases rapidly, going to zero after a couple of per-
cent reverse strain. It then changes sign and increases to become equal in magnitude
to the value that it had before unloading but with opposite sign. Figure 2.4 shows
their result containing the variation of internal, residual lattic strain with reverse
strain. Notice that the results for two prestrains are given: 5% and 10%. The inter-

nal directional lattice strains (from which the residual stresses are computed) are
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relatively independent of that prestrain magnitude. The magnitude and variation

of that internal lattice directional stress is the quantity that should be physically
modeled by the back stress variable. This is not what most of the researchers have
been using as their back stress. They have been modeling the back stress with the
permanent softening. The results of Wilson and Bate show the proper variation
of the back stress with reverse strain and lend a much better idea of what occurs
during reverse flow.

The variation of the back stress with reverse plastic flow as detemined from yield
surface experiments is presented by Liu and Greenstreet [1976]. They determined
the back stress from the center of the experimentally measured yield surfaces (small
offset definition of yield) and plotted how it varied during reverse flow. Figure 2.5
shows that their results are very similiar to the x-ray results of Wilson and Bate
(Figure 2.4). The back stress rapidly decreases to zero then increases more gradually
to the magnitude it had achieved during prestraining but in the opposite direction.

In addition to modeling the directional internal stress Wilson and Bate [1986]
also made estimates of the nondirectional (or isotropic) component of stress from the
X-ray line broadening. This gives some insight into what happens to the isotropic
component of hardening. Wilson and Bate found that the nondirectional component
of stress decreases during the early portion of reverse flow to a minimum then
begins to increase. The reverse flow causes a recovery of the isotropic component
as dislocations annhilate. They found that the directional component of internal
stress had little effect on the permanent softening, rather, the permanent softening
18 caused by the recovery of the isotropic hardening during the early reverse flow.

The directional component rapidly changes sign and quickly goes to the magnitude
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that it had in forward flow. This experimental result is both new and startling.

These results are supported by Hasegawa, Yako and Karashima [1975] who con-
ducted TEM studies of the dislocation substructure during reverse flow after a 4.5%
forward strain in aluminum. They observed a decrease in total dislocation density
of 16% during the reverse flow. Their results are summarized in Figure 2.6 . Notice
the change in dislocation structure during reverse flow. The dislocation density
decreases during the first percent or so of the reverse flow then increases again.
This agrees very well with the behavior of the nondirectional hardening component
observed by Wilson and Bate [1986]. Marukawa and Sanpei [1971] also noted a
decrease of dislocation density within the cell walls in copper single crystals after
stress reversal.

The results of Deak [1962] (discussed earlier in this section) for the behavior of
specimens which had been annealed after the prestrain support these observations.
Reverse flow has the same effect on the flow stress level as does annealing. They

both lead to a reduction in dislocation density.

2.3 Summary

To summarize these results we note that much experimental work has been con-
ducted on uniaxial, reverse loading tests. Unfortunately, the results are generally
presented in terms of the permanent softening. Most authors attribute the per-
manent softening to an internal back stress and model it as such. Observations of
internal structure and X-ray diffraction demonstrate that this is not the case. The
permanent softening is more closely related to softening of the isotropic component

of hardening. The nondirectional component of stress actually decreases during the
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early stages of reverse flow. The internal stress reverses sign very quickly after the
straining direction is changed. It then achieves the same magnitude it had before
unloading. It reaches this level as the reverse and forward loading curves become
parallel.

These results lead to very important considerations when choosing the proper
method of modeling the back stress. These considerations will be considered in

Chapter 5 as a new constitutive model is constructed.
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Figure 2.1 Schematic representation of reverse loading test (solid
line) and the rotation of the reversing portion into the first quadrant
(lower dashed line). The upper dashed line shows the monotonically
loaded result for comparison.
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Figure 2.2 Schematic representation of experiments of Deak [1962].

Curve A is the forward loading response. Curve C is the reverse load-
ing response. Curve D shows the predicted response for both reverse
and continued forward loading if the back stress were removed.
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Figure 2.3 Results of Deak [1962] for reverse and continued load-
ing of steel after annealing at 700°C for 1 hour. Unannealed forward
and reverse curves are shown for comparison.
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Figure 2.4a X-ray diffraction line results of Wilson and Bate
(1986] for the directional component of residual strain as a function
of plastic strain after reversing. The left ordinate axis shows the
displacements of the 220 and 211 X-ray diffraction lines. These are
converted to residual elastic strain in the matrix on the right ordinate
axis. The internal residual stress is found from above using the elastic
constants. It shows the same trend.
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Figure 2.4b Effects of monotonic straining, and of reverse strain-
ing after prestrains of 0.05 and 0.10 on the width (Ag°), of the 220
diffraction line. Increase in line width indicates an increase in nondi-
rectional residual stress (isotropic component) in matrix. Wilson and

Bate [1986].
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Figure 3.5 Results of Liu and Greenstreet [1976] for the back
stress evolution during (a) forward and (b) reverse loading.
In (h) the change in back stress from the forward loading value is

plotted.
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Figure 2.8 Evolution of dislocation structure during reverse load-
ing in aluminum. Hasegawa, Yakou and Karashima [1975].
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‘Chapter 3

Micromodeling of a
Particle-Hardened Alloy Using the
Finite Element Method

In modeling reverse plasticity the concept of a back stress or snternal stress is widely
used to explain why yield occurs at a lower macroscopic stress in the reverse direc-
tion. It is postulated that straining in the forward direction induces a local residual
stress in the material. This residual stress acts to aid plastic flow in the reverse di-
rection. At least nominally, scientists would like to attribute the back stress variable
used in modeling with an-actual residual stress in the material.

This is a difficult connection to make since the residual stress in the material
must be very local and thus difficult to measure. The material must contain a
residual stress distribution which equilibrates itself over a small size scale since the
manifestation of the back stress is still seen for a zero macroscopic stress. This
differs from the macroscopic reﬁidual stresses associated with, for instance, material
processing where the residual stress fluctuates over the length scale of the part.

The back stress is believed to result from the inhomogeneity of plastic flow on

the microscale. A local system of internal stresses is set up which is manifested as
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the back stress.

In this chapter, the development of a local residual stress field caused by the
interaction of an elastic particle with a surrounding elastic-plastic matrix is studied.
AThe residual stress stress-strain response of the system, particularly the observed
Bauschinger effect, is examined. This study is intended to model the deformation
of a particle hardened alloy.

The particle is modeled as purely elastic with the elastic constants for cementite
given by Laszelo and Nolle [1959]: E = 29.042 x 10°psi,v = 0.361. The matrix
material is modeled as ferrite. It has both elastic and plastic strain hardening
properties. The elastic constants for ferrite were also taken from Laszelo and Nolle
[1959]: E = 30.174 x 10°psi,» = 0.283. The yield and small-strain hardening
modulus were taken from Morrison [{1966]. The modulus at strains greater than
25% was arbitrarily chosen low to give perfect or near perfect plasticity at large
strain. The actual input stress strain curves are shown in the next sections. The
matrix was modeled as hardening by classical isotropic hardening. This was chosen
to examine if the back stress could be developed by the particle-matrix interaction
and not by assuming kinematic hardening of the matrix. This is in accordance with
dislocation based models of the back stress.

Two finite element models were used in this study. The first uses an axisym-
metric unit cell to approximate a three dimensional array of spherical particles.
The second uses a plane strain unit cell modeling an array of cylindrical parti-
cles. The axisymmetric model gives a more realistic comparison with the actual
three-dimensional distribution of particles in a material. The plane strain model

has, however, the utility of allowing nonaxisymmetric loading such as simple shear.
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This will be presented in detail below.

3.1 Axisymmetric Unit Cell Model

This model of the material system follows recent finite element studies of Tvergaard
[1982] and Needleman [1987]. Consider a material containing a periodic array of
elastic particles. This array is formed by stacking planes having particle spacings
shown in Figure 3.1a. The repeating unit in the plane is the hexagonal cell contain-
ing the particle at its center. In considering this boundary value problem we replace
the hexagonal unit cell boundary with a circular one. This is a close approximation.
If we now stack these cells so that the particles are directly above one another we
obtain the cylindrical geometry of Figure 3.1b. This represents an axisymmetric
column of particles. The most basic block that we can consider is one quarter of
the axisymmetric unit cell. This is illustrated in Figure 3.1c.

This region is divided into a finite element mesh which models both the particle
and the matrix. Figure 3.2 shows two meshes of this region. The mesh of Figure
3.2a contains 170 4-node axisymmetric elements (188 nodes). This is the basic
model used for this analysis. The total number of degrees-of-freedom for this model
is 330.

In order to verify whether this mesh is fine enough to capture the desired behav-
ior a second mesh (shown in Figure 3.2b) was used in some comparison calculations.
This second model has 600 elements (631 nodes) and 1180 degrees-of-freedom.

The boundary value problem that was solved with the axisymmetric model con-
sisted of various combinations of uniaxial tension and compression. Referring to

Figure 3.1b, the boundary conditions applied to each face were as follows: (f; rep-
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resents the traction force in the s direction, and u; is the displacement in the ¢

direction)

e On the bottom face (X3 = 0)
us =0
f1=0

e On the left face (X; =0)
u; =0
Js=0

e On the right face (X; = R)
fs=0

u; = constant. Where the constant is determined such that there is zero

radial force on the face, 3 f; dy = 0.
e On the top face (X5 = b)

i=0
us =constant. Where the constant vertical displacement was applied to

the entire face to simulate tensile or compressive loading.

Across the particle-matrix interface the displacements were continuous. The cell
had an equal radius and height, A, = B, in Figure 3.1b. The ratio of the particle
radius to the cell radius was 0.5759 . This gives an approximate particle volume

fraction of 12.7 %.
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All simulations were conducted with the ABAQUS finite element code allowing
finite geometry changes. The code was run on a VAX 11-785 computer.

The total reaction force and displacement of the top face of the model were used
~ to derive the “macroscopic” true stress-true strain behavior of the system. They
were processed the same way that experimental load cell and extensometer signals
would be handled.

The input matrix plastic stress-strain curve is shown in Figure 3.3 . The results
from Morrison [1966] only extended to about 25% strain so the matrix material was
assumed to be perfectly plastic above that.

Figure 3.4 shows the macroscopic stress-strain result for each of the two meshes.
The agreement is so close that the curves lie virtually on top of one another. Because
of this close agreement the more coarse mesh (Figure 3.2a) was determined to be
detailed enough for the present study. All of the following axisymmetric calculations
were conducted with this mesh.

In Figure 3.5 the uniaxial stress-strain curve is shown out to 15% strain. Notice
the gradual yield region and nearly linear hardening. This is compared in Figure 3.6
with the input hardening curve for just the matrix. This plot shows a comparison
of the flow stress of the system with and without the particles. The presence of the
elastic particles provides increased strain hardening as expected. Since the particles
only deform elastically the plastic strain is concentrated in the matrix. For a given
deformation, the matrix has then strain hardened more than it would have if the
particles were not present.

When the unit cell model is subjected to tensile straining followed by compressive

straining a stress-strain response exhibiting the Bauschinger effect is seen. An
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example of this simulation is shown in Figure 3.7. Notice the gradual reyield in
compression.

In order to compactly compare the reversing results for a number of these pre-
- strains the data is plotted in a standard way. For the reversing portions of the
curves only, the compressive region is shown but it is displayed in the first quadrant
by plotting the absolute value of stress against an accumulated strain where the to-
tal accumulated plastic strain is added to the elastic strain. This effectively rotates
the compressive stress-strain data by 180° about the zero stress point. Displaying
the data this way allows easy comparison of how the reverse yield has been lowered
and the extent of rounding during reverse flow. It also is convenient for displaying
the results of many tests.

In Figure 3.8 the simulations of six reversing tests are shown along with the
tensile loading curve. Each of the reversing curves exhibits the gradual reyield at
a lower stress magnitude than had occured during forward loading. The curves all
have a similar shape. The only difference between the features of these numerical
simulations and experiments is the absence of permanent softening. All of the simu-
lations go back to the forward loading flow stress level. It was extensively discussed
in Chapter 2 how real materials exhibit an isotropic softening during reverse flow.
The dislocations annhilate reducing the strength level. It is the isotropic softening
that gives the phenomenological feature of permanent softening. This finite ele-
ment model does not allow for isotropic softening. The matrix isotropic flow stress
is a monotonically increasing function of plastic strain. No mechanism has been
included to allow it to recover. This does not limit the model’s ability to simulate

particle-matrix interaction during loading including back stress development. What
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it does limit is the ability of the finite element model to correctly simulate isotropic
hardening after reverse plastic low. This is not a severe limitation for our goal of
investigating back stress development.

One of the difficult determinations to make from a stress-strain curve like Figure
3.8 is what to use as the magnitude of the reverse yield in separating out the isotropic
and kinematic (back stress) portions of hardening.

The important issue is determining what position along the reverse loading curve
to use as the reverse yield point. This is difficult to resolve from just a stress-strain
curve due to the smooth reyielding behavior during reverse loading. If the reverse
yield point is known then the one dimensional elastic region is known and the shift
of the yield surface during the initial straining is known. The hardening during
forward loading can then be separated into isotropic and kinematic components
(neglecting yield surface distortion).

The back stress determined from the stress strain curve should have a physical
connection with the residual stress left in the material after forward loading. In
order to explore this connection, the stress distribution in the finite element model
after prestraining and unloading to zero macroscopic stress was examined. An
example of the residual stress component in the direction of prestraining is shown
in Figure 3.9a. Here the o;; stress in the matrix is shown for a simulation that
was given a tensile prestrain of 6% in the 2 direction. Only the residual stress for
the matrix is shown here. The calculations were only conducted for the % unit cell
shown in Figure 3.1c but are displayed using symmetry for a whole field of particles
macroscopically strained 14.5%. This corresponds to the stress distribution in a

plane passing through the particles. Notice that the residual stress between the
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particles in the direction of loading is tensile while the residual stress in the rest
is compressive. Equilibrium requires there be both tensile and compressive stress
which balance out over the whole cell.

The distribution of the residual stress lends insight into the mechanism of the
Bauschinger effect. The system can be viewed as columns of one type of material
(the stacking columns of the particles with the matrix separating them) contained
in an annulus of another material (purely matrix). When the system is strained the
annulus develops a greater averaged plastic strain (the particles can contain larger
elastic strains). Once the extenal force is released, the annulus holds the particles
apart creating tensile residual stress between them. The system is analogous to two
springs which have been strained different amounts. One is placed in tension and the
other in compression. This is the type of phenomena that the mechanical sublayer
model was constructed to model. For the particle-matrix unit cell loaded along
the particle row direction we can think of a sublayer model having two elements.
Unlike that model there is extensive interaction betweern the two elements since
neither deforms homogeneously. Here we clearly see that there is an internal stress
field because of the inhomogeneous deformation of the system.

The accumulated equivalent plastic strain distribution is shown in Figure 3.9b.
The macroscopic plastic strain in the direction of straining for the cell was 0.0598.
This distribution shows that the strain is concentrated above the particle but the
gradation is quite gradual except near the particle-matrix interface.

In a physical experiment there can be slight nonuniformity of deformation in
the gauge region due to specimen geometry or loading alignment. This can cause

the proportional limit of the stress-strain curve to differ somewhat from the point
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where plastic flow first occurs throughout the specimen. This is not the case in our
numerical experiment. Plastic flow initiates nonuniformly within the unit cell but
is representative of yield occuring simultaneously in all of the repeating cells.

By taking the proportional limit as the reverse yield for the numerical stress-
strain curves we can determine the back stress as the center of that elastic region.
This back stress value correlates well with the residual stress distribution (at zero
macroscopic load) in the matrix. The tensile back stress determined from the stress-
strain result for the prestraining of 14.5% shown in Figure 3.10 was 21,000 psi. If we
tried to select one number from the residual stress field of Figure 3.9¢ as representing
its average then 21,000 psi would be reasonable.

This demonstrates a correspondance between the back stress determined from
a small strain offset yield definition (in the numerical case an offset of zero) and
the actual residual stress in the material system. It is important to have this
connection. Otherwise the back stress is just a modeling variable not in touch with
reality. A physical correspondance is needed wﬁen examining deformations having
material rotation. We need to properly model the back stress for this region. In
the literature, this has not been carried out.

Using the proportional limit definition of reverse yield, the results of Figure
3.8 were separated into isotropic and back stress components. The summary of
this separation is shown in Figure 3.10 . Notice how the back stress initially rises
quickly but has nearly saturated by 6% plastic strain. The isotropic part continues
to rise nearly linearly with plastic strain throughout this region. These results are
in agreement with experimental observations.

This result shows how the back stress increases with plastic strain for forward
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straining from the virgin condition. We are also interested in how the back stress
evolves during reverse plastic flow. To look at that, the model was prestrained
in tension to about 6%. It was then reversed to a certain strain. Finally, it was
again pulled in tension. This was done for 5 different amounts of reverse strain-
ing. By plotting the position of the center of the elastic region determined from
the reloading branches, the evolution of the back stress during reversing could be
traced. The reversing and reloading branches are all shown together in Figure 3.11
. Each reloading branch represents a separate test. The back stress evolution from
this is shown in Figure 3.12. The tensile back stress value is plotted against the
accumulated strain during the reversing branch. The initial back stress value was
17.3 ksi. During reversing it rapidly decreases to zero and tends toward the value it
had orior to reversing. The back stress rapidly changes sign and becomes negative
during this reverse flow. This is in close agreement with the results of Wilson and
Bate [1986]. Compare Figure 3.12 with Figure 2.4. They also show this same trend
from their x-ray measurements.

This same behavior is seen by Liu and Greenstreet [{1976] who plotted yield
surfaces during reverse flow and took their centers as the back stress. The same
rapid decrease, change of sign and gradual increase in magnitude of the back stress
was also noted in their work.

In Figure 3.11, The final, tensile loading branch crosses the prestress point at a
higher stress value. For small enough hysteresis loops this is not seen experimentally
but rather the reloading undershoots, slightly, the prestress point. This also is a
result of the isotropic softening that takes place in the material but is not modeled

with this calculation.
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The final simulation with the axisymmetric unit cell model involves a fixed
strain amplitude, cyclic test. The cell was cycled through 5 cycles of £2% strain
cycling. The stress-strain results are displayed in Figure 3.13. Even a.ff.er 5 cycles
the response is toward a stable, symmetric, saturated, hysteresis loop. This shape
is typical of experimental results also. The saturation is achieved and the flow
strength is limited because the input flow stress for the matrix material saturates
at 100 ksi.

From this axisymmetric model many of the uniaxial, experimental results can
be qualitatively reproduced. The back stress evolution both in forward and reverse
flow is correctly simulated. The back stress is shown to roughly correspond to the
residual stress in the matrix annulus surrounding the particles. The experimental
feature that is not reproduced by the numerical model is permanent softening.
If the ideas of Chapter 2 are appropriate then this is not a suprise. Permanent
softening results from the reduction of the isotropic component during reversing.
Since classical isotropic hardening was used for the matrix material then this is not

possible with the current model.

3.2 Plane Strain Unit Cell Model

The axisymmetric model is only useful for axisymmetric loading geometries. having
symmetry about the same axis. For the important case of simple shear, the bound-
ary conditions are nonsymmetric. In order to model particle-matrix interaction
with a two dimensional mesh geometry we consider a plane strain analysis.
Considering the mesh shown in Figure 3.14, the particle is modeled as a cylinder

whose axis is perpendicular to the plane of the paper. The matrix surrounds the
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particle as before. Notice that the full unit cell is modeled and not just one quarter
of it as was done with the axisymmetric model. The elastic properties are identical
to those used for the axisymmetric model but the matrix flow stress level is slightly
‘different. The stress-plastic strain curve input for the matrix is identical to Figure
3.3 up to a plastic strain of 25% but then instead of being perfectly plastic above
that it continues to harden at a reduced modulus up to a plastic strain of 500% (see
Figure 3.15). Above this the model is perfectly plastic. The reason for continuing
hardening to larger strains is that the plane strain model was to be used to larger
strains.

The mesh contains approximately the same level of detail as the axisymmetric
model. It has 711 nodes, 720 elements and 1403 degrees-of-freedom. The four outer
surfaces of the mesh are all constrained to remain in straight lines. The ratio of the
diameter of the particle to the cell width is 0.402 . That gives a particle volume
fraction of 12.7% which is the same as for the axisymmetric model although the

particle geometry is different.
3.2.1 Tensile Loading

In order to get baseline results for comparison, the model was first loaded to simulate
tensile loading. The bottom edge of the model was restrained against vertical
motion. The left and right sides were forced to remain straight and vertical with
zero horizontal force. The top edge was displaced vertically to simulate tensile
straining. Referring to Figure 3.14, the boundary conditions applied to each face
were as follows: (f; represents the traction force in the i direction, and u; is the

displacement in the 1 direction)

e On the bottom face (X2 = 0)
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e On the left face (X; = 0)

u1=0
=0

e On the right face (X; = L)

f2=0
u; = constant. Where the constant is determined such that there is zero

horizontal force on the face, F} = 0.
e On the top face (X; = L)

fi=0
uz =constant. Where the constant vertical displacement was applied to

the entire face to simulate tensile loading.

In Figure 3.16 the macroscopic stress-strain result for the model is shown up
to a macroscopic true strain of just over 40%. The deformed mesh at this level
of deformation is also displayed in Figure 3.16a. This represents the upper limit
to which this mesh can be pushed without the need to remesh due to distortion.
Notice the decrease of the hardening modulus. The nearly linear hardening region
observed for the macroscopic result of the axisymmetric model (Figure 3.4) is also
observed here for strains below 10%. Between 10 and 20% strain the macroscopic

result shows a transition to a lower hardening modulus. This corresponds to a large
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portion of the matrix hardening to beyond the knee of the input stress-strain curve
(local strain of 25% in Figure 3.15). The macroscopic result follows the matrix

hardening behavior.
3.2.2 Simple Shear

In order to simulate the simple shear deformation mode, new boundary conditions
are applied to the plane strain model which has been described above. The main
idea is to hold the bottom edge of the model fixed and to horizontally displace the
top face. Referring to Figure 3.14, the boundary conditions applied to each face
were as follows: (f; represents the traction force in the ¢ direction, and u; is the

displacement in the ¢ direction)
e On the bottom face (X; = 0)
u; =0
u; =0

e On the left face (X; = 0)

u; and u, enforced to remain on a line connecting the top left and bottom

left corner nodes.
e On the right face (X; = L)

u; and u; enforced to remain on a line connecting the top right and

bottom right corner nodes.
e On the top face (X; = L)
U = 0
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u; =constant. Where the constant horizonal displacement was applied

to the entire face to simulate simple shear.

During large strain simple shear, not only does a shear force develop but a
normal force is also required to keep the shearing faces held at a constant distance
apart. By measuring the reaction forces on the top row of nodes required to enforce
the above displacements we derive the macroscopic stress response shown in Figure
4.17. In Figure 4.17 we also see the deformed mesh at a shear strain of v = 0.5.
The corresponding stress-strain response is shown in Figure 3.17b. The axial stress
shown in the plot is the o3; component on the top face. As the model deforms it
develops a compressive, vertical, normal stress. This is in qualitative agreement with
the experimental literature [Montheillet, Cohen and Jonas, 1984]. If no particles
were present then the predicted normal stress would be approximately —158 MPa.
This is insignificant when compared with the result of —2148 MPa predicted here
with the particle. The shear stress behavior shown here is in agreement with the
shape of the plane strain tension result of Figure 3.16. Here we see that the finite
element model is able to qualitatively give the correct behavior for large strain
simple shear.

Micromodeling using finite elements shows great promise for understanding the
deformation behavior of particle hardened alloys. The interaction between the dif-
ferent phases can be properly taken into account and give qualitatively correct

results for the macroscopic behavior of Bauschinger effect and large shear tests.
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Figure 3.1 Modeling of a doubly periodic array of spherical, elas-
tic particles in an elastic-plastic matrix. a) Hexagonal cell boundaries
are approximated as circles. b) The cylindrical columns can be mod-
eled using 1 of the unit axisymmetric cell. ¢) The finite element
discretization of the basic region.
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Figure 3.8 The reversing branches of 6 numerical simulations of
tension-compression applied to the unit cell. The compressive results
are rotated into the first quadrant for compactness.

62




Contour Stress

oL W

b ot
— O O 00~

(b)

Contour Plastic

(k=si)
-50
=40
-30
-20
=10
0
+10
+20
+30
+40
+50

C’\f

Strain

0 \\\v///'
.025

.050
.075
.100
.125
.150
175

O~NOWNEWN -
0000000

5"

Figure 3.9 Contours for residual state in cell obtained by uni-
axial loading to é = 6% followed by unloading to zero external load.
a) Contours of residual vertical, normal stress o2a. b) Contours of
accumulated equivalent plastic strain.

63




ﬂ%o 7

Figure 3.9¢ Distribution of residual stress o;; for plane passing
through particles. Prestrain was to 14.5% strain.
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Figure 3.14 Finite element mesh used for unit cell of plane strain

model.
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Chapter 4

Review of Plasticity Modeling

In this chapter the relevant, published work is surveyed to guide constitutive mod-
eling. This work is reviewed with the goal of extracting the important behavior to
be modeled as well as the sufficiency of the current constitutive models to predict
this behavior.

First, the experimental literature is briefly reviewed to identify the important
behavior. The prominent areas of experimental research in metal plasticity investi-
gated are: large strain experiments (primarily unidirectional), and cyclic plasticity
(many stress reversals, both proportional and nonproportional).

In order to develop a model which can unite these classes of behavior the consti-
tutive models particular to each of these classes were also summarized: large strain
and cyclic modeling. From this review we will be able to identify several phenom-
ena which have not been previously modeled but which lend great insight into the

material behavior.
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4.1 Experimental Review

4.1.1 Large Strain

Experimental studies of metals deformed to large strain have been conducted ex-
tensively over the last century. Different testing modes and test techniques have
been developed and used with varying degrees of success. In this section only major
trends and behavior are summarized. A more detailed discussion of large strain,
experimental plasticity is presented in Appendix A.

The following list displays some of the important observed material behavior:

1. Initial yield and strain hardening are generally the same as observed in small

strain experiments.

2. Strain hardening continues to many hundred percent strain. This is unlike

elevated temperature testing which shows a stress saturation.

3. The equivalent stress during plastic flow is deformation mode dependent. For
the same equivalent strain, torsional deformation occurs at a lower equivalent

stress than tensile or compressive deformation.

4. For torsional deformation substantial axial, normal stress is developed at large
strain when the specimen is restrained from axial displacement. If the speci-
men is unrestrained in the axial direction then axial strain accumulates with

plastic deformation (the Swift effect).

This list is quite short because, even though there have been many large strain
experiments, they have generally been restricted to one dimensional, monotonic

loading. A useful model also needs to be able to adequately predict and represent
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multiaxial, nonmonotonic loading conditions. To better understand the material
response in these regimes we examine the cyclic plasticity literature as a guide to

complex material response.

4.1.2 Cyclic Plasticity

Cyclic material response can vary quite markedly from pure monotonic behavior.
Often the cyclic behavior of a metal is represented by a single cyclic stress-strain
curve formed by connecting the tips of saturated hysteresis loops of various widths.
Of course, this information alone does not properly represent all of the possible
cyclic responses. There is a rich variety of phenomena for the many different types
of cyclic loading. The cyclic results in the literature are limited to small strain.

This section will present some of the important behavior from the literature and
draws largely from several review-type papers: Dolan [1965], Drucker and Palgen
[1981], Dafalias [1984b], and Chaboche {1986]. First, behavior from uniaxial, cyclic
tests will be discussed. This will be followed by results of multiaxial, nonpropor-
tional loading tests.

The most fundamental cyclic test in one in which the specimen is uniaxially
cycled between constant strain limits centered on zero strain. The material will
either show progressive hardening with each cycle or progressive softening depending
upon the prior history of the material. Generally, an annealed material will harden
and a cold-worked material will soften. Eventually the material responds with a
saturated hysteresis loop, symmetric about the stress axis, that does not change with
increasing numbers of cycles. For most materials, this steady staie loop depends

much more strongly upon the magnitude of the cyclic strain then it does upon the
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prior strain history [Morrow and Tuler, 1965].

If a specimen is cycled between two strain limits which are not centered on zero
then the first cycle will show a nonzero mean stress (mean of the maximum and
minimum stress in the cycle). As cycling continues, the specimen will relax as the
mean stress tends toward zero and a stable, symmetric hysteresis loop is formed.
Again the cyclic strain range being most important in the size of the stress range.
The cycle shows mean stress relazation.

A specimen that is cycled between stress limits not centered on zero stress will
show cyclic creep. With each cycle a small mean plastic strain will accumulate in the
direction of mean stress. For many cycles this can give a substantial accumulation
of plastic strain.

An example of this cyclic creep was given by Feltner [1963| for near pure alu-
minum. He measured the cyclic creep and compared that with the dislocation cell
structure developed after various numbers of cycles. A very interesting result was
that the dislocation density and cell structure was essentially unchanged from the
first half cycle to more than 3400 cycles when a creep strain of more than 30 % had
accumulated, see Figure 4.1. This is very different from monotonic loading where
the dislocation density monotonically increases with plastic strain. Feltner cited
two possible explanations for this behavior. The first would be that during a cycle
few dislocations are generated but the existing ones move relatively long distances.
The second explanation would be that during a cycle many new dislocations are
created, move a short distance, and are annhilated. For the constancy of disloca-
tion loop density that was observed there would have to be a balance between the

dislocations that are created and those that are annhilated during each cycle.
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Since the dislocation loop density is largely unchanged over many cycles, the dif-
ference between monotonic and cyclic behavior is substantiated on the microscopic
as well as macroscopic scale. Cyclic behavior does not show the dramatic structural
changes seen in monotonic loading.

In a recent paper Trampczynski [1988] conducted back stress evolution studies
on two steels using a partial, successive unloading technique. He used a 0.05%
offset definition for reverse yield. His results reinforce many of the observations

made above:

e The general shape of the back stress path is established during the first loop

of cyclic loading and changes only slightly for further cycles.

e The cyclically stable maximum values of back stress and isotropic component

depend upon plastic strain amplitude.

o After prestrain in one direction, cyclic loading causes the isotropic component

to soften.

The experimental results for nonproportional cyclic straining contain even
more material phenomena which lend insight as well as require modeling. A sum-
mary of the most important differences of nonproportional cycling compared to
proportional is presented below.

In 1978, Lamba and Sidebottom [1978a] conducted multiaxial experiments on
tubular specimens of OFHC copper. They first recognized the main features of
multiaxial, cyclic plasticity. The results for stable, hysteresis loops cycled between
symmetric strain limits showed that there is one cyclic stress-strain curve for pro-

portional loading whether conducted in tension/compression, torsion, or in-phase
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tension/torsion. Plotting the maximum Mises equivalent stress against the max-
imum equivalent plastic strain range gave one curve independent of the loading
direction as long as that direction remained constant throughout the test.

A dramatic result was seen when the combined tension/torsion straining was
changed so that it was no longer proportional but 90° out-of-phase. This type of
loading consists of cycling the axial strain and the shear strain where one lags the
other by 90°. The material showed continued hardening above that for a uniaxial
test. It formed a stable hysteresis loop at a stress level 40 % higher than that at
the same maximum plastic strain range in the proportional (or in-phase) test. This
level was independent of whether the specimen was initially cycled uniaxially or
not. |

This additional hardening due to out-of-phase straining has been noted more re-
cently by other researchers also conducting tests of this type. Kanazawa, Miller and
Brown [1979] have noted it in a 1% Cr-Mo-V steel. Krempl and Lu [1984] observed
it type 304 stainless steel at room temperature. Cailletaud, Kaczmarek and Poli-
cella [1984], and Benallel and Marquis [1987] have studied the additional hardening
in 316 stainless steel. The amount of additional hardening is strongly influenced
by the degree of nonproportionality in the loading. The maximum hardening is
seen for a 90° out-of-phase test where, for instance, a sinusoidal input is given to
the axial and torsional strain controllers with the torsional signal lagging the axial
one by 90°. The stress response for such a test is shown in Figure 4.2. Notice the
hardening to a saturation stress magnitude. The final, multiaxial hysteresis loop is
symmetric about the stress origin.

Additional hardening is seen, not only for out-of-phase cycling but for any change
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in cycling direction. Benallel and Marquis [1987] note increased stress levels when
changing from tension-compression to torsional cycling.

A final observation for multiaxial, cyclic loading concerns the loss of the addi-
tional strength when uniaxial cycling is resumed. A specimen that has saturated
at the higher stress level due to out-of-phase cycling will soften if uniaxial cycling
is added having the same maximum strain range. The additional hardening fades
slowly with the cycling. This was observed by Lamba and Sidebottom [1978a] (they
noticed that the additional hardening could be erased ) and Cailletaud, Kaczmarek
and Policella [1984].

Trampczynski [1988] also observed that additional hardening is caused by the
isotropic component. Resuming uniaxial cycling causes the isotropic component to
soften back to the unique value associated with that strain amplitude.

Lu [1986] presented data for 90° out-of-phase stress cycling of 6061-T6 aluminum
alloy. Unlike with strain controlled cycling here strain is the response to the stress
input. The stress rate is always perpendicular to the stress direction. Lu’s results
showed that the plastic strain rate does not have the same direction as stress for
this loading. It bends toward the loading direction.

Several authors have also presented data for general, nonproportional loading
blocks. It is not clear what specific phenomena can be cited from these tests but they
do provide data to be used for general evaluation of cyclic models. These results are

in {Lamba and Sidebottom, 1978b], [Cailletaud et al., 1984] and [McDowell, 1985].
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4.2 Review of Constitutive Modeling

The previous section contained a description of the important material behavior to
be modeled. This section examines the current constitutive modeling ideas in light
of these phenomena.

A review of plasticity’s early beginnings is not included here since that infor-
mation is readily available elsewhere [Hiil, 1950]. The constitutive model that has
proven most useful for small strain plasticity is commonly referred to as the Prandtl-

Reuss equations.

aT! 3do
r 1]
d¢ = 35 T wr L
3d0.‘.‘
deiy = ——,
¢ K

where ¢ is the equivalent stress (0 = {3T'- T'}é), H is the slope of the equivalent
stress-plastic strain curve, K is the bulk modulus and G is the elastic shear modulus.
This is the plasticity theory most commonly found in computer codes today.

The other most significant small strain theory is due to Prager [1956] with
modification due to Ziegler {1959]. This is referred to as kinematic hardensing. The
yield surface does not expand in stress space but rather translates. The translation

of the yield surface center, B, is given by
dB = C de,
where C is a scalar.
4.2.1 Large Strain Extensions of Previous Theories

The extension of constitutive theories valid for small amounts of deformation to

ones suitable to describe finite deformation is not a straightforward process. Both
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the kinematics of large deformation and the issues of material objectivity need to
be addressed.

Around 1970 Budiansky [1970] proposed an extension of the Prandtl-Reuss equa-
tions in which he used the Cauchy stress measure with the kinematics defined in
terms of the curvilinear coordinates. This theory was used by Needleman [1972]
to study the growth of voids. Hutchinson [1973] modified the theory by replacing
tne Cauchy stress with the Kirchhoff stress. This involved very little change to the
theory for metals where the bulk modulus is much greater than the applied stress
level. The benefit of this replacement is that it makes the finite element implemen-
tation easier since it leads to a symmetric formulation. Hibbitt, Marcal and Rice
(1970) a.ﬁd also McMeeking and Rice {1975] were involved in concurrent extensions
of the small strain Prandtl-Reuss equations.

Analogous to the way that the isotropically hardening theories developed in
the small strain regime the large strain version of kinematic hardening was pro-
posed in 1978 by Tvergaard [1978]. He used this theory to analyze biaxial necking.
Calculations of bifurcation loads and strain levels have always been overestimated
by models based on purely isotropic hardening. Tvergaard found that the softer
transverse response of kinematic hardening better predicted the stress levels of local-
ization but stiil overestimated the strains where localization occurred. Tvergaard's
model generalized the Prager-Ziegler evolutior law for the back stress by replacing

the material time derivative with the Jaumann derivative.
v .
B =B-WB+ BW = u(r — B)

where B is the back stress, W is the spin (= skew part of the velocity gradient ), 7

is the Kirchhoff stress (=T £), T is the Cauchy stress.
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This substitution seemed natural from the mathematical viewpoint of forinalism
required to make the equation objective.

The formulation of a model which combines the features of isotropic and kine-
matic hardening was proposed by Key, Biffle and Krieg {1977] and used to calculate
metal forming processes by Key, Krieg and Bathe [1979]. Since material data is not
generally available in the literature to partition the hardening into realistic percent-
ages of kinematic and isotropic components they chose to model their material as
purely kinematically hardening.

The extension of the notion of kinematic hardening from small strain to large
strain by the substitution of the objective Jaumann stress rate for the material stress
" rate in the equations of Prager-Ziegler was severely challenged in a presentation at
a workshop held at Stanford University in 1981 by Nagtegaal and deJong [1982].
They showed that if this extension is used, then if the material is subjected to simple
shear, such as in the fixed end torsion test, stress oscillations are predicted for both
the shear and normal stresses. This response was unexpected for a monotonic
loading condition.

This result sparked much interest in finite strain constitutive modeling. Simple
shear is unlike many of the loading conditons that had been considered for model
verification. The tensor stretching component is equal in magnitude to the con-
tinuum spin (skew symmetric portion of the velocity gradient). Lee, Mallett and
Wertheimer {1983] explained that use of the Jaumann derivative in the back stress
evolution equation leads to a back stress .ensor that continues to rotate in stress
space even though the deformation is bounded. They proposed using the spin of

a material line element that instantaneously coincides with direction of the eigen-
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vector corresponding to the largest back stress eigenvalue in a corotational stress
rate.

v

B!= B-wW!B + BWE,
where W< is the spin of the material line coincident with the direction of the largest
eigenvalue of the back stress.

This choice of stress rate does remove the oscillations for a sufficiently large
hardening modulus but does not produce a monotonic shear stress response if the
hardening modulus is low or, especially, if the hardening modulus decreases with
strain (Reed and Atluri [1985]).

A number of different choices for the spin to be used in a corotational type rate
have been proposed. Among them are the Green-Naghdi rate proposed by Dienes
[1979,1986] and Johnson and Bamman {1984] and the “ela.st.ic” or “accomodating”
spin of Dafalias [1984c], Loret [1983], and Anand {1985].

The use of tensor representation theorems to construct constitutive relations
for the total velocity gradient, not just the symmetric part, has been pursued by
Dafalias [1984c|, Loret {1983], and Anand [1985]. Lee [1969] had proposed decom-

posing the deformation gradient, F, into elastic and plastic parts,

F = F°F*.
Dafalias, Loret and Anand have taken the approach that F? is defined in an analo-
gous way to one dimensional, small plastic strain. Consider unloading the body that
has been deformed, then orienting the material elements, with respect to a spatial
reference frame, to the identical orientation they had in the original configuration.

The F? is then just that transformation which takes the original configuration to

this specially oriented, relaxed configuration.
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This is not the only way to prescribe the partitioning of the F*F? decomposition.
Fardshisheh and Onat [1974! and Parks et. al. [1985] require that F® be a pure
straining such that F* = F°T, They embed the plastic spin in a skew symmetric ex-
pression which is prescribed without additional constitutive modeling. Loret [1983]
and Dafalias [1984c| presented the general forms for representing a skew symmetric
tensor such as spin by using the representation theorems of C.C. Wang [1970|. By
using the lowest order generator which is derivable from two symmetric tensors they
propose a constitutive law containing one scalar material function. Loret [1983] and
Dafalias [1984a, 1984c, 1985] examine the response of this type of model for simple
shear. They show that for proper choice of the scalar parameter the stress oscil-
lations predicted by the kinematic hardening model can be removed. Also they
showed that the magnitude of the normal stress which develops during large simple
shearing can be controlled by this parameter. Without attempting to match exper-
iments they have demonstrated that including plastic spin in the material model
provides better qualitative predictions.

Dafalias has also applied the inclusion of plastic spin into an illustration of
a transversely isotropic material (Dafalias [1984c]). Here the significant material
directions can be more easily visualized than with kinematic hardening.

Anand (1985] applied a full state variable representation to finite, elastovis-
coplasticity. He shows the construction of a phenomenological theory, the form of
which follows from the use of Wang’s tensor representation theorems. By proper
simplification the traditional plastic stretching flow rule is recovered. This form is
equivalent to that proposed by Dafalias and Loret for rate-independent plasticity.

Paulun and Pecherski [1985,1987] argue for a particular choice of the constitutive
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function for the plastic spin. Their choice is equivalent to the spin of the material
line element initially perpendicular to the shear direction. This selection also gives
monotonic behavior in simple shear.

In reviewing this flurry of stress rate proposals, Reed and Atluri {1985] reexamine
the simple shear results of classical (Jaumann rate) kinematic hardening, that of the
“Green-Mclnnis” rate presented by Dienes [1986], and the rate of Lee et al. {1983].
They point out that none of these stress rates predict normal stresses having the
proper order of magnitude for the limited torsion results from the literature. This
author would like to point out that no material has been shown to harden entirely
by kinematic translation of the yield surface either. Reed and Atluri correctly assert
that the discrepancy in stress rates can be absorbed on the right hand side of the
equations by modifying the constitutive form. They suggest that any objective stress
rate can be used for the evolution of the back stress if an additional “damping” term

is used,
v
B= CD* - F(B - D?)B.

This idea was also proposed by Nagtegaal and deJong [1982] and is discussed in
this document in terms of modeling cyclic plasticity. Haupt and Tsakmakis [1986]
examined several classes of evolution equations having damping terms. They showed
that, for linear hardening, none of their damping forms eliminated nonmonotonic
behavior in simple shear. This suggests that proper choice of an objective stress

rate is necessary to obtain correct material response.
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4.2.2 Theories for Cyclic Plasticity

The theories for large strain plasticity have often ignored the details of material
response upon a change in loading direction. The constitutive models developed
for cyclic plasticity, on the other hand, have paid considerable attention to that
situation. Here the main classes of these theories are reviewed with an eye toward
simplicity yet retaining the essential features of the material behavior.

The accurate modeling of the reverse loading behavior observed in metals has
proven elusive. In 1886 Bauschinger [1886] observed that a metal specimen which
had been plastically deformed in tension showed a decrease in the magnitude of
yield upon subsequent compression. This asymmetry of deformation across the
stress space has been the subject of many experimental studies and much analytical
modeling. This section examines the modeling concepts and analytical formulations
postulated to describe reverse loading behavior.

Recent reviews by Chaboche [1986], Dafalias {1984b] and Drucker and Palgen
[1981] are available so the objective here is to briefly present a list of the observed
phenomena to be reproduced and to describe how the various modeling concepts

apply to them. The models to be considered include:
1. Prager-Ziegler kinematic hardening
2. Mechanical sublayer model
3. Mroz model
4. Two surface model

5. Evanescent hardening
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6. Endocronic theory.

Some experimental phenomena to be modeled in cyclic plasticity have been given
by Drucker and Palgen [1981] and discussed by Dafalias {1984] . A list of items

applicable to modeling for large strain applications should include the following.

1. After deformation in one stress direction an excursion across the yield surface

should show a reduced stress magnitude when yielding occurs again.

2. There should be a smooth transition from elastic to elastic-plastic behavior
when crossing the yield surface in the reverse direction from the previous

loading.

3. The plastic modulus should gradually decrease as plastic flow recommences
and achieves the value it had prior to unloading after 2-10 % subsequent

strain.

4. After reverse flow when the plastic modulus achieves the value it had prior to
unloading there may be a permanent softening where the flow stress magnitude
is less than it would have been in unidirectional loading at the same equivalent

strain.

5. Under symmetric stress or strain cycles, metals and alloys will cyclically

harden or soften to a stable hysteresis loop.

6. Asymmetric stress cycles will cause cyclic creep (or ratchetting) in the direc-

tion of the mean stress.

7. Asymmetric strain cycles will cause progressive relaxation of the mean stress

to zero.
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8. Multiaxial, proportional, cyclic loading behaves similar to uniaxial cycling

when the equivalent stress and equivalent strain are used for comparison.

9. Increased hardening is observed for multiaxial, nonproportional cycling. Higher
saturation stress levels are obtained for cycling to the same maximum strains.

The largest increase in hardening is seen for 90° out-of-phase cycling.

A review of these observations shows that the first four items relate to deforma-
tion having few changes in loading direction while the next three are observed during
cyclic defermation. The last two items relate specifically to multiaxial cycling. It
has not been explicitly stated but it is assumed that a specimen unloaded into

the elastic region then reloaded in the original loading direction will have a sharp

reyield and continue plastically deforming as if the elastic excursion had never taken

place. This is a very good assumption for room temperature deformation of most
structural alloys.

Since the vast majority of the experiments and the modeling have been applied
to uniaxial cycling, it will be considered first, followed by multiaxial applications of
the models.

A common feature of all of the models considered is their use of a “back stress”
to account for the stress space asymmetry. The differences arise from the way the
back stress develops. These models can be characterized by the evolution laws for
the back stress and the models evaluated in terms of how well they can represent
the conditions described above. A brief summary of the models listed above is given
in Appendix B. The highlights of their suitability to model the above mentioned
phenomena is also considered.

When considering these cyclic piasticity modeis concentration is given to the
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back stress evolution, or kinematic portion. In modeling cyclic behavior these
particluar models have been used with certain assumptions about the isotropic
hardening component. The isotropic hardening is the nondirectional component
of hardening that can be thought of as giving the radius of the yield surface. In
some applications no isotropic hardening is used [Mroz, 1967] but for most of these
models a monotonic increase in the yield surface radius is allowed. The evolution

of the isotropic variable s can be written by
8 = hie.

Here h; is the isotropic hardening modulus which can be a constant or often is a
decreasing function of s or €°.

As discussed by Chaboche [1986] in the application to cyclic hardening combined
with, for instance, the evanescent back stress law s must go to a saturation level
s* for the model to predict a stabilized cyclic loop. An example of an evolution

equation that yields such behavior [Brown, 1987 is

where hg,q and s8* are material constants. The difficulty with such a formulation
is that for every cyclic strain range the same saturated value of s(= s*) would be
predicted. Experimentally, this is not seen [Chaboche, 1986]. Cycling at larger
strain ranges should give larger values of stress saturation. Also cycling the same
specimen at two different strain levels shows an effect of the first strain level on
the sacuration achieved at the second. This has been termed the maximum plastic
strain memory effect. Chaboche [1986] has taken this effect into account in an ad

hoc way by making s* a function of the maximum plastic strain amplitude.
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The models which impose the restraint that h; = 0 for a stable cyclic loop are
too restrictive. What is really necessary is just that the change in s over a closed

cycle by equal to zero.

fi=o0

This condition is less restrictive aithough to date no author has seemed to realize
that or employ it. The implications of this will be discussed when the new model
is presented in Chapter 5.

As discussed above, and in Appendix B, each of the models used for cyclic
plasticity has certain strengths and weaknesses. The choice of a model depends in
part upon the phenomena most important for a given application. The Mroz, two
surface, and evanescent 1ncdels give qualitatively similar modeling capabalities. The
two surface model has the advantage of specifying a smooth elastoplastic transition
and a better simulation of random-type loadings and ratchetting effects (Chaboche
[1986]). The evanescent hardening model has the advantage of easier numerical
implementation and connection with internal variable theories.

The modeling of the nonproportional hardening phenomena has not been as
systematically investigated. The comparison with experiment, to date, has largely
been application of the models listed above.

Lamba and Sidebottom [1978b] compared three constitutive models with results

from a highly nonproportional strain path test. The models they compared were:
Prager kinematic hardening with a Mises yield surface.
Ziegler kinematic hardening with a Tresca yield surface.

Mroz type hardening with Tresca yield and limit surfaces.
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These were all purely kinematic hardening theories. There was no isotropic
expansion assumed. They found that all three models gave qualitatively correct
results. The Mroz-Tresca model gave better quantitative results. For this reason
they came out in support of Mroz type models. They did not try to match the
additional hardening observed in [Lamba and Sidebottom, 1978a] with any theory.
None of the above would have been able to do it.

Nouailhas et al. [1985] examine several different models in comparison to their
316 stainless steel out-of-phase data. They saw that Prager hardening produces a
softening during out-of-phase loading compared with the uniaxial cyclic response.
This is a nonphysical prediction when compared with experiment. The evanes-
cent hardening does not give this softening but it does not predict any additional
hardening either.

They also incorporated a new memeory parameter which tracks the maximum
plastic strain range. This was introduced and is discussed by Chaboche et al. [1979].
This model did give an additional hardening of 50 MPa which is far below their
observed magnitude of 300 MPa.

Nouailhas et al. [1985] also considered a model which did not retain the same
yield surface shape during deformation but deformed from a Mises circle into an
ellipse. The yield surface distortion was a function of the back stress developed. This
surface was incorporated with both Prager and evanescent hardening. It allowed
large amounts of additional hardening with its additional free parameter.

Tseng and Lee [1983] proposed a two surface model for cyclic plasticity. Their
model retained much of the same machinery as that of Dafalias and Popov {1976]

with one major exception. The direction of the stress rate influences the translation
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of the inner surface (back stress evolution). The yield surface translates more in
the stress rate direction than a Mroz type evolution law would predict. This was
justified on the basis of translating yield surface experiments of Phillips and Lee
[1979]. This model does not predict additional hardening for out-of-phase strain
cycling but did a good job correlating the nonproportional tests of Lamba and
Sidebottom [1978b)].

McDowell [1987] compared a number of theories, including that due to Tseng
and Lee, with nonproportional test data obtained for type 304 stainless steel at room
temperature [McDowell, 1985]. He found that the Mroz, Tseng-Lee, and evanescent
hardening rules were all superior to Prager-Ziegler type hardening. He also showed
that the Tseng-Lee model was more accurate than the others for correlating his test
data.

Chu [1987] applied a generalized Mroz model to some of the nonproportional
test results in the literature ([Phillips and Lu, 1984], [Lamba and Sidebottom, 1978
a and b}). She reported reasonable results for these experiments. This is expected
from the other results that have been presented.

Megahed [1988] compared a number of the models mentioned above with the
nonproportional experiments of Kaneko, Ogawa and Iwata [1982]. In these tests
a sharp corner was made in the stress loading path for type 304 stainless steel.
The comparisons showed that the Mroz nesting surface mocdel and a memory sur-
face model were capable of predicting the behavior but not the two surface model
[Dafalias and Popov, 1976] or the classical isotropic or kinematic harder. .y mod-
els. The observation was made of the importance of the isotropic component in

successful plasticity theories.
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The large additional hardening observed in out-of-phase cycling has been at-
tributed to an increase in isotropic hardening. More isotropic hardening is consid-
ered to have occurred if the principal strain directions change during deformation.
It is felt that more slip systems become activated. A number of proposals have been
made to increase the amount of isotropic hardening by making it a function of the
nonproportionality.

Benallel and Marquis [1987] make the isotropic radius saturation level a function
of the angle between the back stress and its rate. For 90° out-of-phase cycling the
maximum additional hardening is indeed predicted.

McDowell [1987] defined a variable reperesentative of the averaged noncollinear-
ity of plastic strain. He made the isotropic saturation state a function of this
history dependent parameter. Other measures of nonproportionality are also being
considered based upon angles between various stress or strains and/or their rates.

All of these approaches start with the uniaxial isotropic hardening as the baseline
material behavior. They then add something based upon the degree of nonpropor-
tionality.

In summarizing the application of cyclic plasticity models to multiaxial, nonpro-
portional loading we note several things. First, for experiments with sharp changes
in loading paths the Mroz, two surface, and evanescent hardening theories all cap-
ture the correct qualitative behavior. The Prager-Ziegler back stress evolution does
not capture the behavior as well. Second, the isotropic hardening needs to be reex-
amined. In light of the inadequacy of the models to predict additior.al hardening for
the out-of-phase tests, new ideas for modeling isotropic hardening are needed. The

effect this would have on the previously drawn conclusions about the back stress
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evolution laws is unknown but could be significant.
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Chapter 5

Constitutive Equations for
Rate-Independent, Elastic-Plastic
Solids

5.1 Overview

This chapter develops a procedure for expressing the finite deformation of elastic-
plastic, rate-independent solids. The general framework is developed, including
kinematics, then is simplified to focus on the observed behavior of metals. Finally,
some constitutive forms are proposed and experiments suggested to evaluate the

material parameters.

5.2 Finite Deformation

The kinematical framework for finite deformation metal plasticity has been vig-
orously debated in recent years [Fardshisheh and Onat, 1974, [Lee, Mallett and
Wertheimer, 1983|, [Dafalias, 1987], [Boyce et al., 1988]. Central to the discussion
is the factorization of the deformation gradient, F, into an “elastic” part, F*, and

a “plastic” part, F? [Lee, 1969].
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F = F°FP,

By using this decomposition and the other usual approximations of metal plasticity
such as small elastic stretches Anand [1985] reduced a general constitutive frame-
work to one applicable to viscoplasticity. Here, we take as our starting point that

framework except as it is applied to rate independent plasticity.
L=D+W,
D = D+ D?,
W = W°+ WP,

where L is the velocity gradient, D the stretching which has elastic (D¢) and plastic
(D?) parts. W is the spin. It has accomodating (W*) and plastic (WP) parts.

The objective rate ()V* is defined by
O¥=() - W () + ()W~

The constitutive equations can be written in the current, loaded configuration.
1. The stress equation becomes

TV = L[D - DP). (5.1)
2. The yield condition

3 L] .
f = 5'1" T - s < 0. (5.2)
Here T'* = T' - B.

98




3. The fiow rule

e
D = V¥ l(n-TV‘) n where n = T , (5.3)
H \/gs
1 _ e
WP = ¥ l(n-Tv‘\ 0f where 01 = E’?—,—ZE (5.4)
H ’ 30b8

The parameter ¥ provides the switching condition for plastic flow
if f=0 and n-L[D]>0 then ¥ =1,
if f<O0orn-L{D]<0 then ¥ =0.
4. The evolution equations
B" = C,D* - ;,¢B, (5.5)
8 = Hi, €. (5.6)

Next we will turn our attention to functional forms to use for the scalar consti-
tutive functions C,,C;, H, H;,, and 7. First, we can take advantage of the consis-
tency condition to relate C, Cs, H;,,, and H. The yield condition must be satisfied

throughout active plastic flow. We can write that by
f =3(T'-B) (T -B") - 233 = 0. (5.7)

If we substitute from the constitutive equations above (eqs. 6.35 to 6.38) and

simplify then we obtain the relation
2 2
H = § Hio + Cy — \/; C: B -n. (5.8)
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In physical terms, this merely states that the total hardening is the sum of that
due to the isotropic expansion and that due to the kinematic translation. There are
differing views in the literature as to which of the material functions should be the
dependent one. If the emphasis of a model is on determining the evolution equations
then H is the dependent function and is determined from the evolution equation
functions via Equation 6.40 . Dafalias {1984b] discusses these issues and stresses the
importance for correctly determining the plastic modulus H. In the present work
we view correctly choosing functions that can be experimentally verified as of prime
importance. Since, as we shall see, H can be directly determined from a uniaxial
experiment we will consider it an independent function and use the consistency

condition to infer one of the evolution equation functions.

5.3 Function Dependence

The general model presented in the previous section (Equations 6.33 to 6.38) is sim-
ilar to ones presented in the literature. It contains five constitutive scalar functions

(four of which are independent).
H: the plastic hardening modulus,
H;,,: the isotropic hardening modulus,
C1: the back stress hardening modulus,
C,: the back stress recovery modulus,
7n: the plastic spin factor.

Various models in the literature can be fit into the above framework.
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e Classical Isotropic Hardening
H = 2H,,
Hi,, = ffm(?’)
Ci=C;=9n=0

¢ Prager Kinematic Hardening
H=C
Hi,, =0
Cy = Cy(#)
C:=0
n=0

¢ Krieg Combined Hardening

H = H(e)
Hi,, = 38H
C,=(1-8)H
Cy=n=0

o Loret Model
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= constant
e Dafalias Model
H=C,
Hi,, =0
C) = constant
Ca=0
n = constant
e Chaboche Model
H=1%H,,+C-CB:n
Hipo = Hiuo(s)
C,; = constant
Cy = Cy(&)
n=0
¢ Mroz [1983] Model
H=2%H, +C-C;B:n

Ht’ao = ﬂino(Baa Bmaz)

Cl = él(B)
C; = Cy(B)
n=0

with f?, B,, and B,,,. defined below.
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This summary presents the simplified forms that various authors have used to
apply their models (often just for illustration). Here we need to consider the actual
material behavior and describe how proper dependence of these material functions
can model that behavior.

In continuing the state variable approach to modeling, we require that the scalar
material functions must be functions of the scalar list derivable from the state
variables T,B and s. Notice from above that many models require the various
moduli to depend upon the accumulated plastic strain. Since € is not a state
variable, we do not use it.

A general scalar list of invariants for constructing tensor representation functions
is given by Wang [1970] and applied to anisotropic hardening by Loret [1983]. The

reduced list we want to consider here is drawn from that work with one addition.
z = {6’ B,S, Bmaz},

where

G is the effective equivalent stress & = {3(T' - B) - (T' - B)}é,

. . 1
B is the effective back stress, B = {%B -B}?,
s is the isotropic variable,

Buae is the maximum value that B has achieved over the history of deforma-

tion and is given by B,z = sup[é].

The introduction of the variable Bn,. is motivated by the observation that
during stress reversal the hardening transient is limited to the time that it takes

for the back stress to reverse and achieve the same magnitude that it had prior to
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unloading [Wilson and Bate, 1986]. The material remembers its previous extreme
state. This variable was first used by Mroz [1983]. He also allowed the possibility
for a material to cyclically soften by postulating an asymptotically limiting value
of the isotropic variable s. This limiting value was a function of B,,. as well as a
certain accumulated back stress measure B,.

This scalar variable list can be reduced for rate-independent plasticity. In this
case, whenever we are in a plastic loading situation contact with the yield surface

is required (6 = s). We reduce the list to
= {s,B,Bmaz}.
Note that for viscoplasticity this reduction is not required or, in general, possible.

5.4 Fuxnctional Dependence

We can now synthesize the experimental observations from the literature that were
discussed in detail in Chapters 2 and 4 with the model framework established this

far in this chapter.
5.4.1 Back Stress Evolution

The back stress should increase monotonically under uniaxial, monotonic loading
until it reaches its saturation value. This can be achieved by having C, and C,
be constants. The problem with that is the reversing behavior is generally not
matched well. In this model C; sets the time constant for transition as the back
stress increases monotonically as well as the rate of transition during reverse flow.
Gcnerally, the reverse transient occurs much more quickly than the imtial build up.

Chaboche and Rousselier [1983] added several back stress variables having different
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Ca’s to account for this (see Section 2.2.3). Mroz [1983] proposed using a different
C, for reverse loading than had been used for the monotonic build up.

The approach taken here is to take advantage of the fact that the variable Bn,.
can be thought of as defining a surface in back stress space. This is similar in form

to the yield surface in stress space. The surface can be defined by
2 i
fs={3B "B} = Bnas =0.

Similar to isotropic hardening plasticity, the surface just expands without trans-
lation or distortion. By,: is not a state variable for which there is a separate
evolution equation postulated. It merely tracks the maximum of B obtained during
deformation. By introducing this surface we have an easy way of delimiting when
the material is experiencing a reversing event (B inside of fg) and when the re-
versing transient is over (B returns to fg). Use of a surface provides for multiaxial
appiication. This concept is illustrated in Figure 5.1 .

The moduli during the reversing event should depend upon the position of B
within fg. In some ways this can be reminiscent of the two surface plasticity
models where the moduli depend upon the relative positions of the two surfaces.
In those models elaborate updating procedures are required for determining the
current and initial distance measurements upon which the moduli depend. Here a
simple measure is used. It is the fractional distance that the back stress has moved
across the maximal back stress surface. In Figure 5.1 this fraction is illustrated as
g9 (9 = ;33,0 < g <1). At the beginning of reverse flow g = 0 and as the reversing
transient ends B goes to the surface fg and g goes to 1.

A reverse loading event begins when ¢, = Byh,: and B - D? < 0. It continues

while 0y < Bpma: and concludes when oy = Bugs.
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Not all loading paths will be direct, straight line traverses of the maximal back
stress surface. For that reason g is defined as an instantaneous measure where the
assumed direction of traverse is given by D”. In the general case, g is determined by
taking the current back stress point and passing a line through it which is collinear
with D?. The fraction g is found from intersecting this line with fg. Then g is given
by the fraction of the distance that B is on this line going in the direction of D*.
This definition satisfactorily describes how to handle changes in loading direction
during reverse loading.

In general g can be given by g = ;%;, where a is found by solving the quadratic,

a* - 2aB-n — (%B,,.‘,,2 - B-B) = 0.

Here n = T%:T' The value of b is given by
b =a-2B:n.

The value for g can change instantaneously with an instantaneous change in
straining direction. That implies that the moduli can instantaneously change too.
It is only the back stress B itself that must be continuous.

It is expected that the isotropic hardening will have some influence upon the
back stress evolution. If we consider the hardening to come from a dislocation field,
some of the dislocations will be polarized due to the previous plastic flow. They
may be pinned by a concentration of particles or immobile dislocations. When the
flow is reversed some of these dislocations will glide in the reverse direction until
they again reach a sufficient obstacle field. During the reverse flow, interaction
with the uniform dispersion of dislocations should be expected. There needs to be

allowance in a mode] for the back stress evolution moduli to be influenced by the
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nondirectional level of hardening of s. As s increases, the resistance to back stress
reversing should also increase.

The dependence on B is absorbed by the introduction of the variable g through
the maximal back stress surface fg. Further, the assumption is made that C is a

constant.
Cl = Cl(sa g, Bmoz),
C,; = constant.

To be consistent with the results from the literature we observe that C, should
decrease as g increases. C; should be large for ¢ = 0 and then gradually decrease
as ¢ increases during crossing the maximal back stress surface. A smooth elastic-
plastic transition during reversing can be accomodated by allowing C to be infinite

at g=20.
5.4.2 Isotropic Hardening

The classical notions of isotropic hardening need to be reevaluated in light of the
observations from Chapter 2 that the isotropic variable can decrease during reverse
flow. As shown by Wilson and Bate {1986] , the isotropic variable shows a rapid
decrease during the initial reverse plastic flow. The rate of isotropic hardening
returns to its original value after a reverse strain roughly corresponding to that
required for the back stress to fully reverse. The isotropic variable is softened by
this reversing transient. Clearly classical isotropic hardening can not predict this
behavior. It has H;,, as a constant or decreasing (but positive) function of plastic
strain. Thus it predicts that s monotonically increases with plastic strain regardless

of the loading history.
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The way to model] the observed behavior is to let H;,, incorporate both hardening

and softening. This can be done by writing
Hiao = hl - hz,

where h; is the hardening function and h, is the softening function. What is in-
tended here is not softening due to thermally assisted static recovery such as found
in viscoplastic models but rather dynamic recovery during reverse flow. The re-
verse flow erases some of the previous hardening. This can be envisioned from a
mechanism such as dislocation annhilation.

This softening is a new concept but it follows very logically from the experimental
results of Wilson and Bate [1986], Hasegawa et al. [1975|, Marukawa and Sanpei
{1971}, and Feltner [1963]. Lowe and Miller [1983,1984] also made the observation
that during a large strain (£15% strain) hysteresis loop the isotropic component
softens slightly. They introduce a new scalar and a new tensor internal variable to
model this softening.

By separating H,,, additively we present a competition between two mechanisms,
one for hardening and one for softening. Some of the implications of this will be
discussed later.

The softening function is only operative during a reversing event. It is zero
for monotonic loading histories. Thus h; can be determined from simple tensile
or compressive experiments. Here we let A; be a function only of s, the isotropic

variable.

This is sensible if we envision the isotropic resistance arising mainly from dislocation

interaction. The creation and tangling (or forest hardening) of dislocations provides

108




the main nondirectional increase in resistance to flow. The function If, should
decrease as s increases to give the normal stress-strain law behavior.

The softening function is operative during reverse flow. The softening modulus
should depend upon the reversing event. This can be accomodated in the general
multiaxial situation using the back stress positional variable g. This variable was
introduced to be a monotonic measure of the reversing event. The complicated
model of Lowe and Miller [1984] is only applied in one dimension and it does not
restrict the softening to only operative during the reversing of the back stress.

The amount of softening should also depend upon s and Bp,.. More softening
can occur if more dislocations have been introduced. The softening may depend
upon Bp,; since there should be some coupling between the back stress reversal

and isotropic softening if both involve dislocation rearrangement.
ha = ’{2(3a g, Bmaz)
The variable dependence of the evolution equations can be summarized by:

B¢ = C,(s,9, Bmaz)D? — C;¢ B, (5.9)

WY 2P

5 = hy(8)€ — Ka(s, g, Bmaz)e - (5.10)

These evolution equations contain three scalar material functions: C"h lfl, I{z, and
one constant C;. The plastic spin is also implicitly included in BV¢. Although for
general loading there is a coupling between these functions, each can be related to a
specific phenomenon of a simple experiment. The experimental program described

in Chapter 6 is designed to isolate and measure these functions.
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Figure 5.1 Maximal back stress surface fp. Illustration of the
definitionof g. ¢ = %;.
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Chapter 6

Experimental Program

6.1 Types of Experiments

In order to evaluate the multiaxial response of any material a variety of experiments
is needed. This is to assure that the results are not testing mode dependent. For
example, the uniaxial behavior of certain high strength steels depends upon whether
the testing is done in tension or compression (strength differential effect). If a model
is intended to apply to both of those loading environments then adequate data must
be available about both modes to allow construction of the model.

In this current program the following tests were conducted: tensile testing, large
strain compression testing, reverse strain testing, cyclic testing, and large strain
torsion testing. These tests were chosen to display as much of the phenomena of
rate-independent plasticity as possible. We can associate the observed phenomena
with approximate strain regimes. Evaluation of yield point and initial hardening
modulus are restricted to the first percent or two of strain and can be evaluated
from the uniaxial tensile test. The generation of back stress and development of
permanent softening upon strain reversal are associated with the first 10 to 15

percent strain. This regime can be studied by reverse strain and cyclic testing.
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The decrease of the hardening modulus with plastic strain is evaluated from the
large strain compression test. Finally, more complex interactions of finite strains
and rotations causing nonproportional loading can be investigated using the torsion

test. Each of these testing types will be discussed in more detail below.

6.2 Materials Tested

Two metals were chosen for evaluation: 1100-O aluminum and 316 stainless steel.
Complete data, generated from the types of tests outlined above, are not available in
the literature for any material. These two were chosen since they would be expected
to span a variety of behaviors in other metals.

The 1100-O aluminum is a relatively simple, high stacking fault, face centered
cubic metal which is known to harden primarily by cell formation. It is not expected
to generate a large back stress since it has many slip systems to distribute the
deformation. The material was received from ALCOA in 1} inch diameter rods in
the “F” condition. It was then annealed at 500°C for 1 hour and allowed to air
cool. The 1100 aluminum that was tested came from two separate batchs although
both were annealed. The compression and torsion specimens came from one batch
(batch A). The reverse loading specimens came from another batch (batch B). The
final grain structure is shown in Figure 6.1. The grains were equiaxed with an
approximate diameter of 70 microns.

The AISI 316 stainless steel belongs to the class of austenitic stainless steels so
it also has an FCC crystal structure but with a relatively low stacking fault energy
(78M7) (Peckner and Bernstein [1977]). The low stacking fault energy inhibits cross

slip and can be expected to generate a larger back stress. The material was received
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in 1% inch diameter rods. It was annealed in air at 1075°C for 1 hour then air cooled.

The final grain structure is shown in Figure 6.2.

6.3 Experimental Apparatus

All of the experiments were conducted at ambient conditions. The equivalent strain
rate was nominally € = 1 x 10 3sec™! for all of the tests. These materials are
reasonably rate insensitive at room temperature and slow strain rate.

The experiments were conducted primarily using two servohydraulic test ma-
chines manufactured by Instron Corp. The uniaxial tests (tension, compression,
reverse straining, cyclic) were run on a 1331 testing machine controlled by an 8000
series computer based controller. The machine capacity was 100 KN (22,500 Ibf).
Two load cells were used depending upon the experiment. A 10 KN cell was used
for the tensile and reversed loading tests of the 1100-O aluminum and a 100 KN
cell for all of the other tests.

The torsion experiments were conducted on an Instron 1323 biaxial test machine
located at the U.S. Army Materials Technology Laboratory in Watertown, Mass.
This machine has a capacity (and load cell) of 50,000 Ibf thrust and 25,000 in-1bf
torque. The machine was controlled using its analog function generator.

The data collection for both machines was via IBM personal computer based
systems using Metrabyte conversion boards. The collection for the torsion machine
used Keithley software while the system for the uniaxial machine used the Un-
kelscope program developed by Prof. W. Unkel at M.I.T. Approximately 500-1000
data points were collected for the uniaxial tests and 1000-2000 data points for the

torsion tests. All data were transferred to a Data General MV 10,000 supermini-
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computer for reduction and comparison with theory.

6.4 Compression Testing

The use of compression tests to obtain large strain flow stress results has been
well documented [ASTM Standard E209-65; Chait and Papirno, 1983|. This test-
ing mode offers resistance to the necking geometric instability of the tension test
although it has special considerations of its own.

A circular cylindrical specimen is compressed between parallel flat platens.
Proper lubrication between platen and specimen is necessary to prevent barrelling
of the specimen. Homogeneous deformation can be achieved by proper selection
of the lubricant and the specimen geometry. In this study sheets of 0.003 inch
thick teflon were used to provide lubrication between polished steel platens and the
specimen. The specimen was simply a right, solid circular cylinder having smooth
ends. With certain lubricants, some investigators have grooved the ends of their
specimens to capture the lubricant [Brown 1987]. Grooving was used here during
some preliminary testing when Molydisulfide was being considered as the lubricant
but better results were obtained with smooth-end specimens and two layers of the
teflon sheets as the lubricant.

The aluminum compression tests were all conducted at a true strain rate of
¢ = 1x1073sec™!. This was achieved using an analog function generator designed by
M. Haghi [Haghi, 1987|. The actuator was controlled to move with an exponentially
decaying velocity to keep the logarithmic strain rate constant (:) The 316 stainless
steel compression tests were conducted both controlling the logarithmic strain rate

and controlling engineering strain rate (;';) No differences were observed in the

114




material response to the two controlling methods.

Another experimental difficulty with the compression test is the tendency for
the specimen to shear. When the gauge length is too long or the platens are not in
good alignment the specimen will not deform uniformly but will shear. This mode
is reminescent of simple shear between the platens with evidence of some rollover
at diagonally opposite corners of the specimen. This unfavorable condition was
avoided by using specimens with an aspect ratio (original length divided by original

diameter) of 1.5 or less. For the tests run here the specimen dimensions were:

Table 6.1 Compression Specimen Dimensions

Material Diameter (mm) | Length (mm)
1100-O aluminum 113 17.6
316 stainless steel 6.4 9.0

The loads were directly measured from the load cell. The strains were deter-
mined from the displacement of the actuator with proper account taken for system
compliance. For the 1100 aluminum results the actuator displacement was taken
from the LVDT output of the actuator position. A nonlinear load train compliance
was measured by loading up the system without having a specimen in place. The
strains determined from this procedure matched well with results where a specimen
was strain gauged and tested. The strain gauge popped off after a small amount of
strain ( 5%) but provided an independent check that the strain measurements from
the actuator position were reasonable.

For the 316 stainless steel tests, instead of using the actuator LVDT output a
20% extensometer was placed across portions of the platens. This gave a stiffer
system for displacement measurement. Some platen compliance still had to be

subtracted off but it could be considered to have constant stiffness at the load levels

115




of the test.
The compression tests were successfully run to large strain with the above pre-
cautions. A strain of almost 95% was reached for the aluminum and 65% for the

stainless steel.

6.5 Reverse Straining Testing

In order to model the Bauschinger effect and general cyclic behavior of the materials
a certain number of reverse loading tests is required. These tests have typically been
done either by twisting a cylindrical specimen in one direction then reversing the
direction of twist or by loading in tension followed by compression. In this study,
tension/compression loading was used.

The proper measurement of reverse loading phenomena requires care in system
alignment. When a specimen is taken from tension to compression or vice-versa,
systemn backlash and misalignment can cause spurious results.

The testing system used was one designed for reverse loading and low cycle fa-
tigue. An Instron 1331 servohydraulic test machine was mounted with a Wood’s
metal grip for system alignment. The specimen was a threaded, cylindrical sample
having a short gauge length, see Figure 6.3. The reduced gauge section was neces-
sary to prevent plastic buckling during compression. The specimen was threaded
into the top grip which was attached to the load cell. The specimen was firmly
locked in place using a differential nut assembly which preloaded the specimen
threads. With the specimen secure in the top assembly the alignment with the
actuator axis was checked using a dial gauge. The bottom of the specimen was

threaded into the Wood’s metal grip assembly which was locked onto the actuator.
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The grip allows for good alignment because it has two parts. One firmly attaches
to the actuator. The other attaches to the specimen, preloading the threads using
a differential nut. When installing the specimen the two components are free to
rotate and move relative to each other. Once the specimen is threaded into the grip
a low melting point liquid metal is allowed to cool and solidify locking the com-
ponents together without introducing bending moments to the load train. Thus
the specimen is securely fixed between the load cell and actuator, without bending
moments, and in line with the actuator axis.

The specimens deformed maintaining good alignment overall. Some of the 1100
aluminum specimens showed a shear across the gauge section at later parts of the
compressive loading. The data for this continued deformation after alignment was
lost has not been used.

The deformation was measured by attaching a 20% axial extensometer across the
gauge section. The loads were measured directly from the load cell and the results
converted to true stress and true strain based upon the extensometer output.

The reverse loading tests were limited in strain range to +20% and -5% so
separate tensile tests were run to expand this strain range. The tensile tests were
run with the same setup as was used for reverse loading. The only difference was
that the specimens were modified to have longer gauge lengths. The gauge length for
the stainless steel specimen was 29.2 mm (1.15 in) and for the aluminum specimen

was 38 mm (1.5 in).
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6.6 Finite Element Analysis of Reverse Straining
Specimen

The choice of specimen design for the reverse straining tests was based upon ex-
perience in the literature with specimens that could be used both for tensile and
compressive loading. In the course of analyzing the reverse straining results it was
noticed that the uniaxial loading flow stress level was higher for each of the reverse
tests than for the tension test having a longer gauge section. In order to investigate
the uniformity of stress and strain in the reverse loading specimen a finite element
analysis was conducted of the stainless steel specimen. The specimen dimensions
are shown in Figure 6.3.

Only one quadrant of the axisymmetric specimen was examined due to symme-
try. The region was divided up into 260 elements (4 node, bilinear, quadrilaterals),
Figure 6.4. The bottom row of nodes was fixed. The centerline row of nodes (on
the left in Figure 6.4) was restrained against radial displacement and the nodes at
the top were displaced vertically to simulate loading. The model had 594 degrees of
freedom. The material was treated as elastic-plastic with a Young’s Modulus of 30
x 10° psi, Poisson’s ratio v = 0.3, yield stress of 41,000 psi and a constant plastic
hardening modulus of 2.63 x 10° psi. The classical, isotropic hardening plasticity
relations were used. The analysis was conducted with the ABAQUS finite element
code using the nonlinear geometry option [ABAQUS, 1984].

One intent of the analysis was to compare the stress and strain distribution
inside the specimen gauge region with the homogeneous states assumed in reducing
the test data. In Figure 6.5 is plotted contours of constant vertical normal stress.

This is the stress that is assumed to be constant over the gauge section in the simple
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1-D analysis. Notice the stress gradient along the specimen length in the shoulder
region. There is an area of elevated stress along the specimen axis approximately
one radius below the shoulder/gauge section transition. Across the very center of
the gauge section (the bottom of Figure 6.5) the vertical stress is fairly uniform
here being approximately 60 ksi for this moderate deformation.

The simple experimental analysis would take the total force on the specimen
and divide it by the average cross sectional area of the gauge section to give the
applied stress. Here we can see that the true stress is not constant throughout the
gauge region by varies due to the presence of other stress components. Along the
specimen central cross section the vertical stress is quite uniform so on this plane
the simple analysis would be a reasonable estimation of the vertical normal stress.

In Figure 6.6 the contours of constant accumulated plastic strain are shown.
Notice the continued gradient along the specimen length throughout the gauge sec-
tion. Experimentally an axial extensometer was used to determine the average
strain across the entire gauge section. The nominal gauge length of the exten-
someter was 0.5 inch. For the realistic deformation level shown here that means
averaging over strains that vary from about 3% to 9%. That gives a rough estimate
of the strain level. A better experimental technique would be to use a diametral
extensometer mounted at the center of the gauge section. Acrcss this plane the
strain varies from 7% to less than 10%, a much tighter range than over the en-
tire gauge region although this is still less uniform than would be hoped. This is
an important experimental improvement. A diametral eztensometer provides more
accurate behavior for these short gauge length specimens.

In order to compare the real material behavior with that which would be exper-
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imentally determined from this specimen the finite element results were used. The
displacement of the node corresponding to the extensometer measured displacement
and the reaction forces corresponding to the load cell output were used as though
they were experimental data and the stress-strain behavior was computed.

Figure 6.7 shows the curve of equivalent stress versus equivalent strain. The base
curve is the elastic-plastic behavior input into the finite element model. This is the
material law seen at each point in the specimen. The curves marked Ertensional and
Diametral show the average specimen behavior that would have been determined
experimentally using either an extensional or diametral extensometer, respectively.
The extensional curve lies well above the true material behavior and even the di-
ametral results are high. This is mainly due to the way the strain measurement was
necessarily averaged over the nonuniform gauge region using an extensometer.

In this experimental program the results that were observed are consistent with
this analysis. The flow curve for all of the tests run with this specimen design
having a short gauge length were higher than the results for a tensile test with a
longer, more uniform, gauge length. To compensate for this elevation in apparent
flow stress the reverse loading stresses were reduced to agree with the tensile data.

The procedure used was as follows:

1. The forward flow stress o/ at the point of reversing the straining direction,

¢/, was determined.

2. The flow stress from the tensile test was evaluated at the same strain level

alen.

ton

3. The stress multiplier was defined by SMULT = .
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4. The stresses for the entire data set from that reverse loading experiment were

multiplied by SMULT.

This brings all of the reverse loading curves to a common basis. This procedure
not only accounts for the stress nonuniformity in an approximate way but it also re-
moves any systematic experimental error from the flow stress measurements. Types
of error that this would correct include: load cell calibration variability, specimen
geometry variability, and material differences between specimens.

From the results in Figure 6.7 we can see that a better way to use this type of
specimen design would be with a diametral extensometer. The stress and strain are
more nearly uniform across the central cross section than they are throughout the

whole gauge section. Future testing should be conducted this way.

6.7 Torsion Testing

The torsion test holds a number of advantages for determining material behavior at
large strain. These advantages are discussed elsewhere but some of the main points

are again summarized here:
1. No large changes in the geometry of the specimen.
2. Multiaxial stress states are obtainable with both normal and shear stresses.
3. Constant strain rates can be achieved with simple ramp type control signals.
4. A deformation field having equal stretching and spin components is achieved.

5. There is noncoaxiality between the stress deviator and the back stress.
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Torsion of cylindrical testpieces has been commonplace for a long time. Gen-
erally tests conducted on solid rods have been used. These produce nonuniform
stress and strain fields which vary in the specimen with radial position. The re-
quired torque to produce a certain twist angle is generally the output of this type
of test. Various techniques have been used to convert the torque/twist behavior to
stress-strain curves-{{Dieter 1976, p. 381], [Canova, Shrivastava, Jonas and G’Sell,
1982|, [Shrivastava, Jonas and Canova, 1982]). These assume certain constitutive
restrictions and neglect the production of axial normal stresses and their interac-
tion with the shear deformation fields. At best, the results from solid rod testing
represents an averaged flow stress magnitude.

To circumvent these limitations Lindholm et al. {Lindholm, Nagy, Johnson and
Hoegfeldt, 1980] used a cylindrical specimen having a thin walled, tubular gauge
section. This allows a nearly uniform stress and strain distribution in the gauge
section. As long as the wall thickness is much less than the specimen’s radius
the gauge region can be treated as a plane stress sheet. This design has been
extensively used for small strain, multiaxial testing but suffers plastic buckling when
compressed or twisted to large strain. Lindholm et al. reduced the gauge length of
their specimen and were able to obtain results up to shear strains of 700%. Since
that time this specimen design has received much attention but without extensive
experimental usage.

The feature of this specimen that is most striking is that it has a massive shoulder
very close to the gauge region. This restricts the axial deformation that the specimen
can be used for since an axial strain would also produce a hoop strain which would

be resisted at the shoulder. This would produce a large strain gradient since the
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shoulder has such a small transition region close to the gauge section. This specimen
is best suited for a pure torsion test where the crosshead is fixed so that the axial
strain is zero and the deformation is nearly simple shear. This produces a simple

deformation field.
1 40
F=|010],
0 01

where v is the (engineering) shear strain in the gauge section.

-

7= A9,

where 7 is the mean radius of the gauge section, [ is the gauge length, and A® is the
angle that the crosshead has twisted through. Note that is is important to fix the
crosshead against axial motion to ensure that the gauge section maintains uniform
deformation. Lipkin et al. [Lipkin, Chiesa and Bammann, 1987] have conducted a
finite element analysis of a Lindholm type specimen. For their constitutive model
of 304L stainless steel and particular specimen geometry they found that the shear
stress and shear strain were quite uniform through the wall thickness although
deformation was not constrained to just the gauge section but did extend somewhat
into the shoulder transition region at shear strains above 4 = 2.0. Also they found
that the gauge length did change somewhat even when they fixed the shoulders
against axial motion away from the gauge section.

The torsion tests conducted in this study also utilized Lindholm type specimens.
Figure 6.8 shows the geometries used for both the 1100 aluminum and the 316

stainless steel tests. The specimen dimensions are given in Table 6.2.

Table 6.2 Torsion Specimen Dimensions
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Material Gauge Inside Outside Shoulder
Length (mm) | Diameter (mm) | Diameter (mm) | Diameter (mm)

1100 Alum 7.9 27.76 30.30 38.0

316 SS 5.9 19.05 20.52 38.1

For the aluminum specimen a larger diameter and thicker wall was allowed for
the same total applied torque for both materials. For the stainless steel the ratio
of outside diameter to wall thickness is % = 28. The thin wall approximation is
appropriate for this ratio. The aluminum specimen had 9,2 = 24. This also is quite
good. Values for this ratio common in the literature are around 16 [Lipkin, Chiesa
and Bammann, 1987].

The specimens were gripped in an hydraulic collet pair of grips mounted on the
Instron 1323 biaxial test machine. Into the ends of each specimen were inserted mild
steel plugs that were match machined for tight fit. These plugs were inserted into
the specimen ends and extended approximately % to % of the way down the shoulder
region. Their purpose was to provide an extra support when the hydraulic collets
closed on the outside of the shoulder regions. The desire was to have the clamping
forces of the grips supported as much as possible by radial stress transmitted to the
plug and as little as possible by hoop stresses in the specimen which could more
easily influence the gauge region.

These grips were aligned in the loading frame when installed by dial gauges and
strain gauged solid rod specimens. The grips are very massive as seen in Figure 6.9
and were never used to their rated capacity. No slipping or backlash was observed
at any time with this set-up.

It is extremely important to have a gripping system which can hold good align-
ment throughout the test. For the large angles that the actuator is twisted through

any eccentricity of the specimen is greatly amplified. Also it is important to be able
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to transmit both torque and axial force with no slippage or cross talk. Early in our
testing program we tried a gripping arrangement where the specimens were held
by cross pins. This was abandoned because the position where the pin and holes
contacted would change during loading as the ratio of torque to axial force changed.
This changed the axial position of specimen end and introduced an applied axial
normal strain.

The hydraulic collet grips did not suffer from the above problems and served
well as our method of gripping.

The torsion tests were conducted as follows:

1. The axial position of the actuator was held constant. The axial control channel
of the feedback system was set to maintain a constant axial position of the

actuator as measured by its LVDT.

2. The rotary motion of the actuator was controlled to maintain a constant rate
of twist. That twist rate was selected to give an equivalent strain rate in
the gauge section of ¢ = v/3 4 = 107 3sec™). The standard analog function

generator was used, and it satisfactorily controlled this motion.

3. The rotary position, axial force and torque were digitally recorded.

In reducing the data, this test was assumed to simulate simple shear. The system
was stiff and had massive grips and shoulders so all of the deformation was assumed

to occur in the gauge region. The strain and stresses were then given by:

7= r—l"—‘AQ’
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F

Tzz = W(ng _ r..z)’

where [ is the gauge length, A® the twist angle of the actuator, r;,r, the inside
and outside radii of the gauge section, r,, the mean radius (rm = %(r.' +7,)), M the
measured torque, and F the measured axial force.

Lipkin et al. [Lipkin, Chisea and Bammann, 1987] have questioned this type of
analysis for their specimen. They maintain that the proper strain state in the gauge
section may not be properly represented when the plastic deformation extends into
the transition region. For their tests this begins to be important at shear strains
around 2.0 . In our work the largest shear strains to which we tested were around
1.6 . Post test observation of the specimens did not show any permanent strain in
the transition region so these objections were set aside until after analysis of the

test results.

6.8 Experimental Results

In this section the results of the experimental program outlined above are presented.
These experiments were all completed at M.I.T. with the exception of the torsion
tests, as described above. The results are presented in terms of Cauchy stress and
true (logarithmic) strain.

Figure 6.10 shows the tensile test results for the type 316 stainless steel. The
material shows a rather abrupt yield with nearly linear hardening. Here we see the
substantial hardening rate persists even to the maximum strain of the test (38%).
This alloy has good tensile elongation due to its large ductility and resistance to
necking from its high hardening.

The 1100-O aluminum tensile results are displayed in Figure 6.11. Notice the
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gradual yield and continually decreasing hardening modulus. The test was run to a
strain of 17%. The curve shapes and strength levels for both materials are consistent
with literature values.

The compression results are displayed in Figure 6.12 for the 316 s.s. and in
Figure 6.13 for the 1100 aluminum. The stress and strain magnitudes are plotted.
In compression both the stress and strain are negative in sign. That will be assumed
to be unde: stood.

The stainless steel compression results show the same shape as the tensile test.
The hardening is almost linear in the range of 5% to 35% strain and decreases
slightly thereafter. This test achieved a strain of 64%. The appearance of the
specimen after the test is shown in Figure 6.14. Notice that the specimen was
reduced in height but maintained its cylindrical shape. The end of the specimen
showed a shiny rim around the outer edge. This was attributed to the polishing of
that surface by the platen as the teflon sheets were pinched off. In order to evaluate
whether lubrication was lost as the specimen expanded radially during compression,
a test was run where the deformation was interrupted and new teflon sheets were
inserted. The test was relubricated this way three times during the deformation.
The comparison of the interrupted and continuous tests are shown in Figure 6.15.
The results were very close. This indicates that lubrication was not significantly
lost during deformation.

The aluminum compression results also show the same shape as the tensile test
results. A gradual and continuous reduction of the hardening rate is seen with
strain. The aluminum results present a more rounded curve than the stainless

steel.
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Aluminum is known to show a small amount of rate sensitivity at room temper-
ature. To assess its importance, a compression test was conducted at é = 107 sec™?.

This is two orders of magnitude larger than the standard stain rate used through-
out this test program of é = 10™3sec™!. The comparison of the different strain rate
results is shown in Figure 6.16. The strain rate hardening is measurable but not
beyond what was expected. Using these two curves, the strain rate sensitivity, m,
is 0.012 (¢ = Cé™). This value is small but it is in the expected range for aluminum
[Hasford and Caddell, 1983]. Care was taken to conduct all of the other experiments
at the same equivalent strain rate (10~3sec™?).

The results of the tension and compression tests are plotted together in Figure
6.17. Notice that the compression result lies above the tensile test result. The
difference between the two curves is approximately a constant 60 Mpa. This is a
significant difference. The curves have the same general hardening characteristics
but at different flow stress levels.

At first glance this might appear to be the result of a strength differential effect
where the flow stress depends upon the mean hydrostatic stress. This was inves-
tigated using one of the reverse loading specimens which can be loaded in both
tension and compression. A specimen that was initially loaded in compression was
compared with the ones that were initially loaded in tension. When comparing
these results, there is little difference in material response, see Figure 6.18. This
difference is comparable with the specimen to specimen variation seen in the tensile
results. The yield and hardening behavior were independent of loading direction.

A more plausible explanation for this difference is that it is due to variations in

heat treatment. All of the 316 s.s. was subjected to the same nominal annealing
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schedule but not all of the material was treated simultaneously. Variations in the
furnace, cooling rates, specimen volume, etc. could have contributed to the differ-
ence. Since the hardening behavior is the same but only the flow stress level differs
we can perhaps view this as a difference in initial dislocation density. This would
be primarily seen as a difference in yield stress. All of the tension/reverse load-
ing specimens were annealed together. They give very consistent yield values and
flow curves. The compression material was annealed separately and could, perhaps,
have cooled much faster (they were all air cooled) than the 15 rods for the reversing
specimens. The volume of compression material was much less.

One additional possible explanation should be considered and that is that there
is a specimen geometry effect. The shape and gripping of the two specimens is vastly
different. The tension specimen has a uniform gauge section which transitions to
shoulders having threaded grips. The compression specimen is a squat, cylinder
which is squeezed between platens. If there was a lubrication breakdown, then
the compression results should be artificially high since friction would also need to
be overcome. That trend would be in the direction consistent with our data. The
problem with this explanation is that there was no evidence of improper lubrication.

The reverse loading tests were all conducted by first loading in tension followed
by reversing into compression. The only exception was the stainless steel test pre-
strained to 5%. That test had compression followed by tension.

An example of the full stress-strain response for one of these reversing tests is
shown in Figure 6.19. All of the features commonly seen in reverse testing are
displayed: the linear unloading region, gradual reyield and return to the same

hardening modulus seen prior to unloading. Presenting the data as shown in Figure
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6.19 does not bring out one of the important features of reverse testing though.
Often permanent softening is observed where the final flow stress after reversing
is smaller in magnitude than the continued forward loading would be. In order to
emphasize this, as well as compactly present the results from a number of tests, we
adopt a standard way to present the reversing data. For the reversing portions of the
curves only the compressive region is shown. It is displayed in the first quadrant
by plotting the absolute value of stress against an accumulated strain measure
where the elastic strain is added to the accumulated, effective plastic strain. This
effectively rotates the compressive stress-strain data by 180° about the point during
unloading, of zero stress. Displaying the data this way allows easy comparison of
how the reverse yield has been lowered, the extent of rounding during reverse flow,
and the permanent softening.

There was small specimen to specimen variation in the forward loading flow
curves. this was compensated for by normalizing all of the reverse loading tests to
the tensile test. The procedure for this is discussed in section 3.6.

The reverse loading data are presented in Figure 6.20 for stainless steel and
Figure 6.21 for the 1100 aluminum. The data show the trends that would be
expected. The permanent softening first increases and then is fairly constant with
prestrain. This has been extensively noted in the literature (see Chapter 2). There
also is no abrupt yield during reversing.

One cyclic test was conducted. That involved 5 cycles of +5% strain controlled
cycling. The resulting stress-strain response is shown in Figure 6.22. The material
quickly hardens to a saturation stress amplitude of about 750 MPa.

The final testing mode was in fixed end torsion of thin-wall tubular specimens.
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The specimens were twisted to large strain while the axial position of the grips was
held fixed. The resulting torque and axial force were monitored and converted to
shear and axial normal stresses using the thin-wall approximation as discussed in
section 3.7. the torsion results for the type 316 stainless steel is shown in Figure
6.23. The suprising feature of this test is the magnitude of the axial stress. It is of
the same order of magnitude as the shear stress. The shape of how it develops is
in accord with expectations from the literature but the magnitude is larger than a
second order effect. At a shear strain of 4 = 1.4 the axial stress is about -190 MPa,

The aluminum results are shown in Figure 6.24. Here we see that, relative to
the shear stress response, the axial stress is much smaller than with the stainless
steel. This is more in accord with expectations.

The level of- deformation achieved in these torsion tests is comparable to the
strain reached in the compression tests. Figure 6.25 shows a torsion specimen after
testing. The black line in the gauge section was initially parallel with the specimen
axis but has rotated due to the shear deformation.

These experiments represent the first collection of data over this range of defor-
mation for the same material. This gives a qualified data base to use in constructing

constitutive models and also in verifying their predictions.

6.9 Comparison of Some Existing Theories with
the Experiments

The application of current material models to the experiments of this study pro-
vides a manner for evaluation of their predictive capability. In this section three
simple, kinematic type laws are applied to the experiments performed on the type

316 stainless steel: Prager-Ziegler kinematic hardening, Krieg combined isotropic-
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kinematic hardening, and the Mroz [1967] model. The Prager-Ziegler theory and

Krieg theory [Key, Biffle, and Krieg, 1977] can be written in the following form,

1TV (T

2,2
H s

BY = (1-B)HD?,

D® =

— B) (Tl — B),

3. -
s = —Her,
8 ﬂz €

The back stress evolves with a Prager-type rule. The relative magnitudes of
the isotropic and kinematic parts is given by the constant §. It is assumed to be
constant throughout deformation. For Prager-Ziegler hardening # = 1. In the Krieg
model the permanent softening is a function of the back stress. The value of 3 is
chosen to match the permanent softening.

The material functions are H, the plastic hardening modulus, and 3 the isotropic
hardening ratio. The material flow curve was fit using the following expression for
H,

2 do
3der

g9

2
H = =§ho(1-'a—.)-

This gives H as a function of the equivalent stress . The constants hg,0*,q and the
yield stress o, were fit for both the reverse loading specimens and the large strain

compression experiments. For reverse loading: o, = 262. MPa, o* = 1300. MPa,

ho = 3757.2 MPa, and ¢ = 1.304 . For compression: o, = 340. MPa, ¢* = 1400.
MPa, hy = 2797.1 MPa, and q = 0.7151.

The predictions of the reverse loading stress response for Prager-Ziegler hard-
ening is given in Figure 6.25 . Notice that the theory does not match either the
permanent softening or the elastic-plastic transition region. The theory gives pre-

dictions of quite small reverse flow stress levels.
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In the Krieg theory, the introduction of isotropic hardening allows better match
of the reversing behavior. The isotropic ratio was chosen by predicting one of the
reversing curves and adjusting § to match the permanent softening. A value of
B = 0.88 gave satisfactory agreement as shown in Figure 6.26 . This partitioned
the hardening to 88% isotropic and 12% kinematic. The application of this to the
rest of the reverse curves is shown in Figure 6.27 . The permanent softening is well
matched but the transition is ignored and the gradually changing slope is replaced
with a sharp reverse yield.

The prediction from this model of the cyclic test is shown in Figure 6.28 . A
very “box like” response is predicted which saturates at a stress of 1300 MPa(= o).
This does not agree with experiment.

Finally, the prediction of the torsion test is also examined in Figure 6.29 . The
agreement with experiment is still not close. The shear stress is overpredicted and
the normal stress is underpredicted.

The Krieg model can be made to match the permanent softening of a single
reverse by treating the back stress as a phenomenological fitting parameter. This
provides a reasonably good estimate of the reverse flow stress after several percent
reverse strain. This neglects the physics of the deformation as developed in the
main body of this work. The transition region is not modeled and it predicts that
all symmetric strain controlled cycling will saturate at the same stress level, o°.

The Mroz {1967] model is briefly described in Appendix B. It consists of nested
yield surfaces each of which has a different plastic modulus associated with it. This
model was applied to the type 316 s.s. experiments by segmenting the first 30%

strain from the tension test into 10 linear segments. This 10 surface model was used
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to predict the reverse loading experiments. Figure 6.30 shows these results.

The Mroz model does not match the experiments very well. The permanent
softening is vastly overpredicted. The reverse predictions do not show the gradual
elastic-plastic transition because tensile test stress-strain behavior shows nearly
linear hardening. Since there is not much of a knee region during initial loading
then there can not be much of one during reverse loading using the Mroz model.

Here we have seen that none of these theories does a satisfactory job describing
the basic experiments. The next chapter applies the new modeling ideas developed

in this work to these experiments.
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Figure 6.1 Micrograph of 1100-O aluminum after annealing showing
grain structure.

Figure 6.2 Micrograph of type 316 stainless steel after annealing
showing grain structure.
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Figure 6.3 Reverse loading specimen design for 316 s.s. Dimen-

sions in inches.
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Figure 6.4 Finite element mesh used to model the reverse loading
specimens. It contains 260 4-node elements.
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Figure 8.5 Contours of vertical normal stress during loading of
the reverse loading specimen.
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Figure 6.6 Contours of accumulated equivalent plastic strain dur-
ing the vertical loading of the reverse loading specimen.
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Figure 6.7 Plot of average stress against average strain for the
specimen using different extensometer measures of strain.
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Figure 6.9 Photograph of torsion specimen in hydraulic collet
grips.
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Figure 6.10 Experimental stress-strain result for tensile test of
type 316 stainless steel.
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Figure 6.11 Experimental stress-strain result for tensile test of
1100-O aluminum.
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Figure 6.12 Experimental stress-strain result for compression test
of type 316 stainless steel.
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Figure 6.13 Experimental stress-strain result for compression test
of 1100-O aluminum.
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Figure 6.14 Photograph of deformed compression
1100-O aluminum. Final plastic equals -0.9 .
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Figure 6.15 Comparison of compression results for two tests of
type 316 stainless steel. One test was run continuously using just the
initial teflon lubrication between specimen and platens. The other
test was interrupted two times to relubricate the specimen-platen in-
terface.
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Figure 6.16 Comparison of compression test of type 316 stainless
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Figure 6.17 Comparison of flow stress levels for tensile results

from reverse loading specimen with compression results from com-
pression specimen.
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Figure 6.18 Comparison of flow stress levels for two reverse load-
ing specimens: one initially loaded in tension, the other initially
loaded in compression.
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Figure 6.19 True stress-true strain result for type 316 stainless
steel loaded in tension followed by compression.
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Figure 6.20 Composite figure showing the reversing branches of
the reverse loading tests of type 316 stainless steel. All of the revers-
ing branches have been rotated into the first quadrant. The tensile
curve is also plotted for comparison of flow stress levels.
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Figure 6.21 Composite figure showing the reversing branches of
the reverse loading tests of 1100-O aluminum. All of the reversing
branches have been rotated into the first quadrant. The tensile curve
is also plotted for comparison of flow stress levels.
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Figure 6.22 Stress-strain result for cyclic loading of type 316
stainless steel. Specimen was cycled under strain control for 5 cycles
at +5% strain.
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Figure 6.23 Torsion test result for type 316 stainless steel. Shear
stress and axial normal stress are plotted as a function of engineering
shear strain.
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Figure 6.24 Torison test result for 1100-O aluminum. Shear
stress and axial normal stress are plotted as a function of engineering
shear strain.
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Figure 6.25 Prediction of the reverse loading results for type 316
stainless steel using the Prager-Ziegler theory. Solid curve is experi-
ment, dashed curve is theory.
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Figure 6.26 Match of reverse loading test using the Krieg theory
with 8 = 0.88 . Solid curve is experiment, dashed curve is theory.
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theory. Solid curves are experiments, dashed curves are theory.
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Figure 6.28 Prediction of cyclic test using the Krieg theory.
curve is experiment, dashed curve is theory.
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Figure 6.29 Prediction of torsion test using the Krieg theory.
Solid curve is experiment, dashed curve is theory.
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Chapter 7

Comparison of Theory with
Experiments |

In this chapter the theoretical framework developed in Chapter 5 is applied to the
experiments of Chapter 6. Simple material functions are chosen for the materials
.studied. The correlation that these give with the basic experiments as well as pre-
dictions of the more complicated experiments are presented. The specific functions
presented are not intended to be final, general forms applicable to all materials.
Rather, simple forms are chosen which are consistent with the criterion given in

Section 5.4.

7.1 Specific Material Functions Employed

Referring to the equations 5.1-5.4 and eqs. 5.9 and 5.10, we note the need to
postulate material functions for q,Cl,Cg,hl, and h,;. In Chapter 5 it was shown
that C; and h; could be functions of {s,g, Bms:} Where g and B,,,, were defined
as the fractional distance transversed of the maximal back stress surface and the
size of that surface. C,; will be considered a constant and k; a function only of s.

The plastic spin coefficient, 7, is also considered a constant. These dependencies
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are summarized as:
C1 = C1(3,9, Bmaz),
C; = constant,
hy = ’{1(3),
hy = hy(s,9, Bmas),
n = constant.

The plastic hardening modulus, H, was determined from the consistency condi-
tion (Equation 5.8).

A universal form was employed for A;(s) for all of the materials investigated:
- s .4
hi(8) = hio(1 - s—') . (7.1)

This material function has proven effective in modeling stress-strain results hav-
ing a stress saturation [Brown, 1987} and also those without a measurable saturation
state [Bronkhorst, 1988]. This function has three parameters ki, s*, and ¢. The
value of s* determines the saturation level, ¢ controls how quickly that is reached,
and h,g sets the hardening level. A material that shows no saturation in the strain
range of interest is modeled by choosing s* and ¢ such that the predicted satura-
tion is well outside of the working range. Linear isotropic hardening is achieved by
setting s* to a very large value or by setting ¢ to zero.

In choosing a function for I{g(s, ds Bmaz) it is necessary to satisfy the conditions:
hy — 0 as s — s, (s, is the annealed value of s), k, increases monotonically with
both s and Bomas, and h; + 0 as g — 1 (the back stress has fully reversed in 1-D).

A simple function that satisfies these conditions is
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lfg(s,g,B,M,) = hzo Bmz (s - So) (1 - g). (72)

This function has a linear dependence on each of the variables and one coefficient,
hso, which is used to match the experiments. This particular function, although
quite simple, was used for all of the materials investigated in this study.

The remaining constitutive function is the back stress coefficient (:'1 (8,9, Bmaz)-
For monotonic loading C, should be constant so that standard evanescent hardening
is recovered. During reversing there should be a coupling between C, and k. This
is expected if it is the same mechanism responsible both for the isotropic softening
and the back stress hardening. Also él is expected to increase with Bpm,.. The

simple form chosen for C, is

A 2 -
C1 = CIO + K Bmz(l - g) + §hz. (73)

It was necessary to include the ’;2 term in C:'l to ensure that during uniaxial,
reverse flow the tangent modulus is continuously decreasing. This function contains
one reverse hardening coefficient, K, as well as the back stress constant Cy.

The evolution equations containing the particular constitutive functions used
in this study are presented below. Note that these particular functions are not
presented as the universal functions, rather they are simple expressions consistent

with the constitutive restrictions outlined above.
BV = {Cm + KBmz(l - g) + §h‘:2} D - Czé’B, (74)
. 8 .9z L
8 = hyo(1- s_‘) € — hyoBmaz(s — 8,)(1 — g)eP. (7.5)

The constants needed to completely specify the material are: Cyo, K, C2, h10,$",¢, h2o,

the annealed value of s,(s,), and the spin factor, 1.
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7.2 Simple Example of Model Components

Before applying the evolution equations developed in Section 7.1 (eqs. 7.4 and 7.5)
to the experiments let us first examine the behavior of the model for a single re-
versing event. This proves very illustrative for visualizing the effects of the different
parts of the model.

Figure 7.1 shows the stress-strain response for uniaxial loading in tension fol-
lowed by compression. The stress response is given by the solid line. The stress is

given by the sum of the isotropic and kinematic (back stress) components.
3
Tu = -2-B11 + s.

Here we are only examining one stress component. The plus sign applies during

tensile straining and the negative sign during compressive strain increments. Figure
7.1 also plots these components of the total stress. The back stress initially rises
‘to saturation during forward straining. Upon reversal it quickly changes sign and
saturates in reverse at the same magnitude. The isotropic component starts at its
initial value and increases monotonically during forward loading. Here the harden-
ing is shown as linear, ¢ = 0. Upon reversal the magnitude of s initially decreases.
Once Bj; has fully reversed then s again shows the same rate of growth as before
reversal.

In Figure 7.1 the effects of the different model parameters are shown. The
constants C)o and C, control the back stress growth during monotonic loading. Cjo
gives the initial slope and the ratio %"ﬂ gives the saturation magnitude. During
reversing, it is primarily the value of K that determines how quickly Bj; reverses.

K controls the sharpness of the reversing knee of the back stress evolution curve.
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The isotropic softening variable, hjo, primarily controls the decrease in s imme-
diately after reversing the direction of loading. It influences the permanent softening
but not the stress response immediately after yield due to the presence of the ks
term in él.

The influence that the constants C,o,C3, K, k1o, and hyo have on the stress-
strain response can be seen from Figure 7.1 since the stress response is a sum of
the isotropic and kinematic components. The next section will consider how these

parameters are chosen.

7.3 Procedure for Determining Constants

Whenever a theory is considered for a particular application care must be taken to
prescribe how the theory will be fit to that material and range of strain rate and
temperature. A rational method for determining the material parameters must be
chosen or the theory is of no practical use. The experiments that are required need
to be clearly specified.

In this section a methodology for determining the material parameters is given
and applied to the materials under consideration. The experiments that were re-
quired to completely specify the constants consisted of the uniaxial monotonic (ten-
sion or compression) test, the uniaxial single reverse tests, and the large strain tor-
sion test. The material model was completely specified by these tests. They are
the model construction tests. The cyclic and nonproportional tests are the model
verification tests and are used only to investigate the predictive capability of the
model.

The strategy used to determine the material parameters is as follows. The
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back stress constants Cjp and C; are determined from the reversing experiments by
looking at the reverse yields. Once they are known the back stress evolution under
monotonic loading can be predicted. The tension or compression test is then used
to find the constants in k;. For monotonic radial loading the back stress is known.
Its contribution to the total stress can be subtracted out leaving just the isotropic
variable. For monotonic loading h; = 0 so the function Ry can be fit to the isotropic
variable evolution.

The transient reverse hardening and isotropic softening are both manifested in
the reverse loading tests. The values of K and h;o are chosen to match to the
reversing portions of the tests. The value of K controls the sharpness of the knee
of the reverse loading curve and ko controls the permanent softening.

From these tests the proper effects can be isolated to determine the material
constants. From the strategy outlined above, the following methodology was used

to select the parameters of the model for the materials considered in this study.

1. Determine the back stress evolution from the reverse loading tests.
From the stress-strain results for reverse loading find the reverse yield stress
o,. This is determined using a certain offset definition for the reverse yield.
This offset is in the approximate range of 0.05% to 0.3% strain. The tensile
equivalent back stress is then determined as o, = }(oy + 0,) where oy is the
forward flow stress achieved before reversing. Note that o, can be positive or
negative in sign. Since the back stress tensor B is deviatoric (trB = 0) the

component in the direction of loading of the experiment is

[ -]

(o7 + o). (7.6)

Wi =

By = 30 =
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The constants C,o and C; are chosen from the evolution of B, with plastic

strain €;,”.

Cuo

Bu = Cz

(1 — e~Can”y, (7.7)

The ratio %‘: is chosen to match the saturation value of B;; achieved at large
strain. The value of C; is then chosen to match the time constant or rise time

of the results.

This procedure gives a systematic manner of selecting Cyo and C,. Figure 7.2

shows this fitting for type 316 stainless steel.

. Determine the isotropic hardening constants. From equation 7.7 the
back stress evolution for uniaxial, monotonic loading can be predicted. The
evolution of the isotropic variable s for monotonic loading is found by subtract-
ing the back stress from the total stress. For each point on the stress-strain

curve the value of s is given by

3
s = U—EBII’ (7.8)

where B, is given by equation 7.7. This is illustrated in Figure 7.3 for the
compression of type 316 stainless steel. Once the curve of s versus plastic
strain is known the material constants can be fit. For monotonic loading

hs =0 so:
8= ho(1- :4.)" &, (7.9)

is the functional form to be fit. Integration of equation 7.9 [Brown, 1987

yields
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s = o —[(s* = 2)* + (g 1){huole?) 1T, (7.10)

where s, is the initial value of s and hjq, 8°, and ¢ are the material parameters.

This function has four parameters. Theoretically they could all be determined
using a four parameter least squares fit. In practice, s, and s* correspond to
the initial and saturation values of s so they can be chosen or inferred by
extrapolation from the results of s versus plastic strain. Nonlinear fitting for
hjo and ¢ was performed with an IMSL numerical subroutine ZXSSQ which
provides for minimization of a nonlinear function on the basis of a least squares

residue. For type 316 s.s. in compression this fit is shown in Figure 7.4.

This procedure yields consistent values of the parameters and provides a check
on‘the choice of offset reverse yield definition. We make the assumption that,
for monotonic loading from the annealed state, the value of s should also
increase monotonically. If too small of an offset yield definition ss used this
does not hold. The inferred curve of s versus plastic strain then shows an initial
dip. This is not consistent with the initial annealed state of the materials
tested in this study. We expect that s should show a monotonic increase with
plastic strain. Choice of reverse yield defined by a 0.05% to 0.3% offset strain

satisfies this requirement.

. Determine the Reversing Coefficient K and the Isotropic Softening
Coeflicient hjo. Using the previously determined values of Cyo,C3, ko, 8°, S0,
and ¢ the reverse loading experiments are simulated with different values of K
and hjo. To select the appropriate values, first set Ao = O then simulate one

of the reverse loading tests for various values of K. The test to be matched
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should be one which has the back stress well developed (e, ~ 0.1). The
simulation will have no permanent softening for hyy = 0 but choice of K
should be made to match the initial steeply rising portion of the reversing

curve.

Once the order of magnitude of K is known then isotropic softening is added
by increasing hjo. This will be seen as an increase in permanent softening.
As hyg is changed, K will also need to be changed to provide good agreement
with the rising portion of the reverse curve. There is a coupling of the effect
of hyo and K on the reverse flow curve. In a few trials K and hsg can be

selected to give good agreement.

When K and hyo have been selected from the one reverse test they should
next be used in simulating all of the reverse tests. If good agreement is not
obtained for all of the tests then different functional forms are needed for ’;2
and C"l. These can be modified and new values for the coefficients selected

using the same procedure.

The procedure which has been described in this section uses just two types of
experiments (uniaxial monotonic and single reverse) to select all of the material

parameters of the proposed combined kinematic-isotropic model.

Table 7.1 Material Constants

material Cio C, hio | ¢ S, s | K | hyp
1100 alum (t) 500 25 39,619 | 13.619 | 47. | 200 {600 | 10
1100 alum (c) | 500 | 25 276 | 1.0156 | 53 | 150 | 600 | 10

316 s.s. (t) 1780 17.8 1600 | 0.3139 | 240 | 1100 | 200 | 1.5
316 s.s. (c) 1780 17.8 1752 | 0.3345 | 290 | 1200 { 200 | 1.5

1020 5233.3 | 50 19,256 | 7.7106 | 175 | 1217 | 150 | 1
1045 5600 | 40 8255 | 5.361 | 350 | 1414 | 150 | 3
1095 6934 40 39,825 | 5.249 | 442 | 1000 | 100 | 10

172




The one remaining parameter, the plastic spin factor, is considered by examining
the large strain torsion response. Calculations of the model for different values of n
are directly compared with the experimental shear stress and normal stress response.
The question of the importance of plastic spin can be addressed by this approach.
If it is important, the choice of n from this matching completes the model. If it
does not matter, or it the value of n = 0 provides the best match to the experiment,

then plastic spin is not important for this application.

7.4 Correlation of Theory with Base Experiments

In section 7.3 the procedure for choosing the constants in the theory was discussed.
Appropriate values for the coefficients were chosen from the set of base experiments.
In this section the comparisons of the theory with these tests are presented. These
results do not show the predictive capability of the model but rather how well it
correlates the tests. In section 7.5 the predictive capabilities will be examined.

These experiments used for model construction include tension, large strain
compression, and single reverse tests for the following materials: type 316 stainless
steel, 1100-O aluminum, and three spherodized carbon steels (1020, 1045, 1095).
The carbon steel data are from the studies of Bronkhorst [1988].

The reversing tests were used to determine the back stress evolution during
monotonic loading. The constants Cyp and C; were used to predict this growth.
Figure 7.5 shows the correlation of the model with the experimentally inferred data

points. Notice that the theory predicts a saturating, decaying exponential behavior.
By = S0(1— o) (r.11)
The experimental back stresses were determined using various percent offset def-
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initions for reverse yield, as discussed in section 7.3. The offsets that were used
were: 0.3% for type 316 s.s., 0.05% for 1100-O aluminum , 0.3% for 1020, 1045,
1095 carbon steel. These offsets were chosen to ensure a monotonically increasing
isotropic component during forward loading as discussed above.

After the back stress evolution was chosen, the isotropic component was fit and
the tension and compression curves were simulated. These are shown in Figures 7.6
to 7.12. The simulation of these results is very close as expected.

The reverse loading experiments were also used to select the level of isotropic
softening and additional back stress stiffening. The correlation of these experiments
with the model is shown in Figures 7.13 to 7.17. The proper trends are captured
by the model for each material. The initial high stiffening during reversing is well
matched. The permanent sofiening trends are also well represented. Better corre-
lation could be obtained if different functions for h; and C; were chosen for each
material. The ones that were chosen were intended to be simple, having few param-
eters, yet retaining the proper constitutive restrictions. In that light the correlation
is quite good.

This section has presented the comparisons of the model with the base experi-
ments used to determine the evolution equations. The correlation is quite satisfac-

tory as five materials are modeled with the same simple constitutive forms.

7.5 Evaluation of the Predictive Capability of the
Model

The true test of a constitutive model comes not from its accuracy in modeling the
tests that were used to construct the model. Rather, a model should be evaluated

according to its ability to predict the behavior of different types of experiments. In
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this section, the proposed constitutive model is used to predict the response under
different types of loading than were experienced in Section 7.4.

The tests that were predicted were:
Symmetric, strain-controlled, cyclic tests of 316 s.s. and the carbon steels.
Unsymmetric, strain-controlled, cyclic tests of the carbon steels.
Unsymmetric, stress-controlled, cyclic test of 1045 carbon steel.
90° out-of phase strain-controlled cyclic test of 316 s.s.
Large strain, fixed end, torsion tests of 316 s.s. and 1100-O aluminum.

Using the material parameters determined in the base experiments described in
Section 7.4, the experimental data and model predictions are compared. For each

test it is the stress response that is examined.

7.5.1 Symmetric Strain Cycling

The model has been derived from mainly monotonic type loading. The single reverse
experiments were used but not cyclic tests. A type of experiment that is a good test
for the model is symmetric strain cycling. This test is important because it can be
cycled to achieve a stable, saturation loop. If a model does not do a closely match
the state after one reversal then the errors are accentuated with many cycles. In
Figures 7.18 to 7.21 the experimental results and model predictions are presented
for the symmetric strain cycling of four materials. Notice that the model does a
good job of matching not only the final stress level but also the rate of buildup of

stress. For each of these materials the response was cyclic hardening since they had
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initially been in the annealed condition. For each test the nominal cycling range
was +5% strain.

In predicting this behavior the model behaves differently than most of the mod-
els in the literature. During each half cycle the isotropic component initially softens,
then hardens. In the more classical models the isotropic component is always mono-
tonically increasing with strain. At the cyclically stable state, these models predict
that the isotropic component has its maximum saturation value, the value that it
would achieve at large strain in a compression test. The new model predicts that the
stable cycle is reached when the hardening and softening occuring during each half
cycle just balance each other out. The maximum value of the isotropic component
reached in the stable cycle depends upon the strain limits. For a larger hysteresis
loop, a greater amount of hardening takes place and the isotropic component is
larger. This means that for predicting cyclic plasticity, the isotropic component of
stress depends upon the strain limits. This is just what is observed experimentally.
For monotonic loading the isotropic component can reach a much greater value
than for small to moderate strain cyclic plasticity. Modeling this behavior is an

important feature for a general model for the small to large strain regimes.

7.5.2 Unsymmetric Strain Cycling

The symmetric cyclic tests give cyclic hardening. The results of Bronkhorst [1988]
include unsymmetric strain cycling tests which show cyclic softening and mean stress
relaxation for the three carbon steels. In Figures 7.22 to 7.24 the experiments and
predictions are compared. For all three materials the tests consisted of a forward
prestrain to approximately 9% strain followed by strain controlled cycling between

7% and 9% strain. The tests show cyclic softening as the hysteresis loops get
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continuously smaller with cycling and approach a stable loop. The loops shrink
mainly by a reduction in stress of the positive loading half cycle. The compression
half cycle maintains the same stress.

The model predicts the stress softening (through the softening of the isotropic
component) and the correct, stable hysteresis loop. What the model does not do
as well is follow each cycle as it gradually softens to the stable state in about 5
cycles. The model achieves the final state in 1 or 2 cycles. This is not 2 major
shortcoming. The characteristic features of this test are well predicted. The size of
the stable loop is largely set by the value of s, for cyclic softening conditions. The
back stress merely alternates but s decreases. The factor (s — s,) in h; is necessary
to prevent s from softening below its annealed value. Figures 7.22 to 7.24 show that
physically this is what limits the softening.

For the 316 s.s. an unsymmetric strain cycling test was conducted that consisted
of forward loading to a strain of 19%, reverse straining to 17%, then forward strain-
ing. Figure 7.25 shows the prediction of the theory against the experiment. The
model does an adequate job predicting the response here as with the unsymmetric

strain cycling of the carbon steels.

7.5.3 Unsymmetric Stress Cycling

The experiments of Bronkhorst [1988] include unsymmetric stress cycling results
of the carbon steels. Here we predict the behavior for the case of unsymmetric
cycling of 1045 carbon steel. The specimen was cycled between stress limits of
+490 Mpa in tension and -430 Mpa in compression. The results of both simulation
and experiment are shown in Figure 7.26 .

The model correctly reproduces the hysteresis loop seen in the experiment. The
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correct width and shape are predicted. The model does not do as well predicting
the actual amount of cyclic creep. After 4% cycles the experiment has accumulated
about 4% plastic strain but the model predicts about 5% accumulated plastic
strain. When considering how other models do at predicting cyclic creep this is quite
reasonable. The model does not do better due to the very low tangent modulus
to the stress-strain curve at this level of strain. A small discrepancy is the stress
prediction is magnified by the strain response. Overall, the model captures the

correct behavior.

7.5.4 90° Out-of-Phase Cycling

The predictions of the two types of tests described above very heavily activate the
isotropic softening function ks but do not test the tensorial nature of the constitutive
equations since they involve uniaxial loading. One of the types of experiments that
is not so limited involves cycling in the tension-torsion subspace. This involves
radial loading in either the tension or shear direction to « certain prestrain then
cycling by following a circular trajectory in strain space keeping the equivalent strain
constant. These types of experiments have been cited frequently in the literature as
a basic test of nonproportional, cyclic plasticity [Lamba and Sidebottom, 1978b],
[Cailletaud, et al., 1984]. The experiments of Cailletaud et al. [1984] were for
type 316 stainless steel. Although this material was heat treat«d differently than
the annealed type 316 tested in this study, a simulation was conducted using the
material constants developed here.

Figures 7.27a and b show the experimental results of Cailletaud and a simula-
tion of this test with the current model. Notice that the sa:ne features are observed

for both: a spiraling outward stress trajectory that saturates. The leve! of this
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saturation stress value is higher than the corresponding saturation stress for uni-
axial cycling at the same maximum strain range. The experimental results shown
in Figure 7.27a are for a total imposed strain range of +1.5%. The out-of-phase
stablization stress is 800 MPa. This compares with 550 MPa for the uniaxial sta-
bilization stress for the same maximum strain cycling range. The simulation of
Figure 7.27b predicts a stablization stress of 1105 Mpa. This compares with a
model prediction of the uniaxial stablization stress of 496. Mpa. Notice that the
additional hardening which is seen experimentally is picked up by the model. This
18 a natural consequence of the physics of isotropie recovery limiting the uniarial
stress but not the out-of-phase cyciing. The other models which attempt to model
this well known behavior do so by increasing the isotropic hardening modulus or
ma.kiﬂg the isotropic saturation value depend upon some measure of nonpropor-
tionally [McDowell, 1987], [Benallel and Marquis, 1987], {Lindholm et al., 1985]. In
the model presented here, additional hardening is a natural consequence except it
is a misnomer to call it additional hardening. Really, it is the uniaxial cycling tests
that show reduced hardening.

For uniaxial, symmetric cycling it was observed that the stabilization stress
depended upon the competition between h; and h2. For out-of-phase cycling, the
back stress remains on its maximal surface during all of the deformation except
right after the initial strain corner going from preloading to cycling. Thus s is not
limited by softening and increases to its saturation value of s*. So s* is the important
parameter determining the saturation stress level. There are important differences
between uniaxial and out-of-phase cycling but the new constitutive model is able

to predict them well.
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7.5.5 Fixed End Torsion Tests

The deformation mode with the biggest interest in recent years has been simple
shear. This deformation not only involves nonproportional loading but also material
rotation at large deformation. The fixed end, torsion test of thin-walled tubular
material provides the best experimental measure of simple shear.

Figure 7.28 presents the composite results of the 316 stainless steel torsion test.
Both shear and normal (axial' stresses are shown as a function of engineering shear
strain. The prediétions of the model for simple shear are also displayed. For all of
the torsion test predictions, the material constants reduced from the compression
tests were used. This gave slightly different isotropic hardening parameters than
if the tensile curve was used but more reliable large strain predictions since less
extrapolation was required. The predictions in Figures 7.28 and 7.29 have n = 0,
no plastic spin.

Notice that even without using plastic spin, the predicted stresses do not show
any oscillations or inflections. The predicted normal stresses are also quite small,
much smaller than those that were observed. Both of these result from the evanes-
cent back stress evolution law. The value of C3, the evanescent term, determines
the importance of the evanescent or damping term. When C;, is chosen large enough
to properly model the back stress growth during uniaxial ioading it does not allow
for much buildup of normal stress during simple shear. The axial normal stress
monotonically increases to a saturation value which, for small elastic strain and
Cz >> 1 yields,

Tt = 1T 3G
2 2 u 2C,*
Tlie first term gives the elastic contribution and the second gives the plastic con-
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tribution to the normal stress. For realistic values of C; (15-50) the plastic term is
quite small and for metal plasticity the elastic term is also quite small. Substantial
normal stresses are not predicted using the evanescent evolution law.

The effect of n is unimportant with these material constants. The effect that
n has on the stress response is to decrease the magnitude of the normal stress and
increase the shear stress. That would lead to slightly worse results here. For an
evanescent law with realistic choices of Cy and C; the plastic spin is unimportant.
The new model does not predict an oscillatory sterss response even without acti-
vating the plastic spin.

The comparison of the shear stress result is not much better than the normal
stress. The shear stress does not harden nearly as much in the experiment as the
theory predicts.

These same trends are seen in Figure 7.29 for the torsion test of 1100-O alu-
minum. Here the experimental normal stresses are smaller in relative magnitude
than for the 316 s.s. but are still well underpredicted by the theory. The shear
stress prediction is also higher than the experiment.

Figure 7.30 shows the simple shear prediction of 1100-O aluminum carried out
to very large shear strain (500%). Notice that for the realistic choice of material
constants that no stress oscillation is seen. The shear stress approaches an asymp-
totic value. It is not necessary to include plastic spin to have monotonic stress
response.

The proposed constitutive model works well for the cyclic tests (both propor-
tional and nonproportional) but not as well for the large strain torsion test. The

evanescent nature of the back stress evolution equation captures the cyclic response.
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Even the out-of-phase tension-torsion cycling shape is well represented. In fact, the
C; term in the evolution equation is necessary to center the stress hysteresis spiral
on the stress origin. The often debated question of the smportance of plastic spin

becomes moot for an evanescent back stress law with realistic constaiits.
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Figure 7.1 Schematic diagram of the new constitutive model sim-
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to illustrate their behavior. The reversing coefficient K affects the
sharpness of the knee of the B, response immediately after strain
reversal. The isotropic softening coefficient hgo affects the softening

of the s response curve immediately strain reversal.
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Figure 7.5b Back stress evolution for 1100-O aluminum.
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Figure 7.6 Comparison of tensile test with model fitting for type
316 stainless steel. Solid curve is experiment, dashed curve is model.
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Figure 7.19 Comparison of model prediction and experimental
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curve is experiment, dashed curve is model.
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Figure 7.23 Comparison of model prediction and experimental
results for unsymmetric strain cycling of 1045 carbon steel. Solid
curve is experiment, dashed is model.
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Chapter 8

Conclusions .

The major results of this study include: fundamental data from critical experi-
ments, crucial observations of material behavior extracted from the literature, and

a particular new constitutive model. The main new results are summarized below.

1. Experimental results. The experimental program has produced a variety
of results from different types of tests. Two materials, 1100-O aluminum and
316 stainless steel were tested. The following experiments were performed:
tension tests, large strain compression tests, single reverse tests, and large
strain torsion tests. Additionally the 316 s.s. was tested in 3-5% strain cycling
and in a single unsymmetric hysteresis loop. This is a larger variety of tests
for the same materials than have previously been available for constitutive

modeling.

2. Definition of the back stress variable. The back stress variable, used so
often in phenomenological modeling, can be connected to the residual stress
due to plastic deformation on the microscopic scale. The residual stress is
directly related to the reduced yield stress during load reversal, not to the

observed “permanent softening”. The back stress should be measured from a
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small offset definition of yield (0.05 to 0.3 %) and not from back extrapola-
tion of the linear portion of the reverse curve. Monotonicity of the isotropic

hardening during forward loading limits how small the offset definition can

be.

. Behavior of the back stress variable during reversing. The back stress
builds up quickly during uniaxial loading and approaches a saturation value
at plastic strains on the order of 5% to 10%. The form of this build up can
be approximately modeled by a decaying exponential. The initial build up
actually occurs slightly more quickly than this. Upon reversal in the direction
of the plastic strain rate, the back stress quickly reverses sign and approaches
the same magnitude it had achieved during forward loading. The back stress
reversal occurs more quickly than the initial build up and can not be ad-
equately modeled by a simple evanescent evolution equation with constant

coefficients.

. Behavior of the isotropic component. The isotropic variable increases
monotonically during proportional, monotonic loading. During a strain re-
versal the isotropic component exhibits softening. It decreases during the
beginning of reverse plastic flow, goes through a minimum, then begins to
increase again. This softening feature has not been previously investigated in
plasticity modeling. The permanent softening seen sn single reverse tests 1s a
result of 1sotropic softening and not of the back stress in the material retaining
its original direction as so often assumed. This behavior has been modeled
using an isotropic softening function that is only active during a reversing

event. The implications of this behavior are far reaching, especially for cyclic
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plasticity. The stabilized cyclic loop reached in uniaxial cycling is a result of
competition between the isotropic hardening and softening functions. This
explains the strain amplitude dependence of the stabilized loop as well as the

additional hardening observed in out-of-phase tension-torsion cycling.

. A new constitutive model. The model developed in this thesis follows the
trend of current plasticity modeling (decomposing into isotropic and kinematic
portions, evanescent-type back stress evolution equation) with two important
departures. The first is the introduction of the maximal back stress surface.
This a surface defined by the maximum norm of the back stress that has
occurred over the prior history of the deformation. This implies that the
maximum back stress that has been achieved still affects the material response
after the back stress has decreased. Its affect is erased once the back stress
again increases to that previous value. This maximal back stress surface is
used to define a “reversing event”. During a reversing event the back stress
modulus is variable and the isotropic component softens, as discussed above.
This model captures a large variety of the observed experimental behavior
involving cycling and load reversal. The only behavior that this model does
not predict well is the large strain torsion results. The model overpredicts the
shear stress and underpredicts the normal stress. For simple shear deformation

this model reduces to a simple evanescent ~ule with isotropic hardening.

The new model was applied to the experimental results using simple material

functions. These can be seen in the evolution equations,

BY = {Cio + KBmas(1~¢) + 2"3} D* - C; & B, (8.1)
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§ = hyp(l - 8—“’_)" & — hy e, (8.2)

where hy; = h20Bmaz(s — 80)(1 — g).

In summary, the model accurately reproduces the uniaxial behavior. Both for cyclic
and montonic loading the model captures the material deformation. For out-of-
phase cycling in tension-torsion the model also gives the correct qualitative results.
It is only in large straip torsion that the model fails to well represent the behavior.
This is attributed to the inadequacy of the evanescent term to model this very large
strain behavior. However, with the constitutive model even for W? = 0 the shear
stress does not oscillate at large shear strain.

Areas of fruitful future research can be identified. The first is to investigate the
back stress behavior in large strain torsion. This can be done using reverse loading
tests after various prestrains. These reversing tests are needed at large strain. This
is not possible in tension-compression testing due to the geometry changes and
inherent instability.

The material functions that were used in the correlations and predictions in
this thesis were the simplest possible which retained the correct dependence on the
independent variables. Other functions should be investigated to provide better fit
to the shape of the reversing curves.

The effects of crystallographic texture have been ignored in this work. They
become important at large enough levels of deformation. The limit of theories
based upon isotropic functions should be investigated.

The effect of plastic spin could not be properly evaluated since the back stress

behavior to large shear strain was not known with precision. Once the back stress
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behavior at large shear strain is better known the importance of plastic spin can be

addressed.
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Appendix A
Finite Strain Experimentation

Experimental results for deformation to large strain have been obtained in the
past century for many different metals under a variety of deformation modes. Cer-
tainly a tremendous amount of metal working has been done over the course of
human history. Many significant technological advances have been a direct result
of man’s increasing ability to work metal. The industrial revoltion was only made
possible by iron and steel fabrication.

Metal working has also been used to try to extract material properties and
behavior. Tresca [1864] postulated the yield condition that bears his name by
analyzing a series of metal extrusion experiments. Unfortunately the deformation
histories for most formed parts are highly nonhomogeneous and do not easily lend
themselves to material stress-strain evaluation.

Homogeneous deformation modes are the most preferrable for obtaining the
stress-strain response of the material. Stress is invariably inferred by taking mea-
sured loads on the specimen and dividing by an appropriate area to obtain the
average stress in the specimen. Strain is similarly measured by a displacement over
a certain portion of the specimen which is then normalized to give the average
strain in a region. For these averaged values to be representative of the pointwise
material behavior the stress and strain must be fairly uniform in the region where
the measurements are made.

The most common testing modes which have a homogeneous deformation are:

uniaxial tension, biaxial tension, compression, and torsion of thin-walled tubular
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specimens. In each of these tests the stresses and strains are ‘uniform’ throughout
the gauge region.

The biggest problem to obtaining useful experimental results for large strain
deformation is the significant geometry changes that generally accompany flow. A
discussion of many of the limitations of different testing modes is given in a recent
review by Hecker, Stout and Eash [1982].

A number of inhomogeneous and indirect tests have also been used to infer
large strain results. Two such tests having inhomogeneous deformation are the
solid rod torsion test and the post necking tensile test. Analysis techniques are
available (Bridgman [1943], Nadai [1931]) to obtain the stress-strain results but
certain assumptions are made about the material behavior which are too restrictive.

Indirect tests have been used to obtain results to the very largest strains. An
indirect test is one in which the specimen is deformed in some mode such as wire
drawing or plate rolling to a large prestrain. It is then unloaded and the effect
of the prestrain is determined by testing in a mode where the yield can easily be
determined such as uniaxial tension. The locus of these yield stresses for various
prestrains is plotted as a stress-strain result. This type of analysis makes many
assumptions about the material behavior and is not appropriate for studying the
details of that behavior.

Of the direct, homogeneous testing techniques the two which have seen the most
effective use are the uniaxial compression and thin-walled torsion tests. The tensile
test is by far the most widely used mechanical test to determine yield strengths but
it suffers from the geometric instability of necking. Few metals can be strained in

tension to even 40 or 50% strain before the localization occurs. Most métals can
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not even sustain that much tensile strain. The strain hardening rate of the material
controls this instability point.

Uniaxial compression is used extensively to obtain flow stress values at large
strain (Brown [1987], Chait and Papirno [1983]). Solid, cylindrical specimens are
compressed between smooth, flat platens in a controlled manner to obtain strains
approaching 100%. This strain range can even be increased by remachining the
specimens. Initially a specimen should have a length to diameter ratio of 1.5 to
1.6 . If it is larger than this plastic buckling may occur. During compression it is
important to maintain adequate lubrication between the specimen and platen. This
is necessary to achieve uniform straining and to prevent barrelling. The specimen
undergoes large geometry changes during compression. To achieve a true (logarith-
mic) strain of -100% the specimen must by compressed to 37% of its original height.
Nonetheless a significant amount of compression data is available in the literature
(Hecker, Stout and Eash [1982]; Gil Sevillano, van Houtte and Aernoudt [1982]).

The other testing mode used to generate a significant amount of large strain data
is torsion. The torsion test involves twisting a cylindrical specimen and recording
the torque required as a function of twist angle. For solid specimens, as noted
above, the reduction of the torque/twist to stress-strain results is very restrictive.
For example it is known that when twisting a specimen to large shear strain there is
a coupling between the response in the shear and axial direction. A specimen that
is unrestrained in the axial direction will elongate '(Swift [1947]) and a specimen
prevented from elongating axially will develop either tensile or compressive stresses
[Montheillet, Cohen and Jonas, 1984]. The magnitude of these axial effects are

important material characterizing parameters as will be demonstrated later in this
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report.

If we consider a solid rod twisted plastically but unconstrained against axial
motion the specimen will tend to elongate. The amount of axial strain is a function
of the shear strain that the material point has experienced. But the shear strain
of a solid rod varies from zero at the centerline to a maximum at the surface. The
axial strain should also vary with radial position in a similar manner. That would
violate the symmetry requirements that plane cross section must remain plane. The
only way that this deformation can be accomodated is for the entire cross section
to experience an "average” axial strain accompained by a residual stress state that
varies with radial position and sums to zero force on the cross section. The solid
rod thus has a nonuniform stress in the axial direction and the axial extension
it experiences is not a simple material function of the state of any single material
point in the rod. This example shows how the solid rod torsion test gives ambiguous
results for the free end condition and a similar argument can be made about the
fixed end condition.

The torsion of a thin-walled tubular specimen does not have these limitations.
If a specimen gauge length is made up of a cylindrical tubular section having a
sufficiently large ratio of diameter to wall thickness then the stress and strain across
the wall thickness then the stress and strain across the wall thickness will be quite

uniform. For pure torsion the shear strain varies linearly with radial position, r.

_
Yoz = dl ’

where v, is the engineering shear strain, and %‘* is the twist angle per unit length
in the gauge section. When the wall is sufficiently thin the variation in strain is

small.
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where 7y, is the strain at the mean radiusf = -;—(r.-,...u. +Toutside). Here Ot—D is the ratio
of the outside diameter to wall thickness and is a measure of the appropriateness of
the thin-wall approximation. The values of 9‘2- for tests reported in the literature
are often around 15. A discussion of ways to estimate errors in torsion testing is
given by Kobayashi and Dodd [1987].

Not only does the thin-wall torsion test provide a relatively homogeneous defor-
mation state but when the test is run with a fixed restraint in the axial direction the
specimen’s dimensions do not change. The shear strain is then directly proportional
to the twist angle of the actuator and the shear and normal stresses are proportional
to the torque and axial load, respectively. These tests provide a suitable method of
obtaining large strains although not with uniaxial stress due to the presence on the
normal stresses which are developed.

If a torsion test is run without axial restraint then the specimen will either
elongate or shorten. The diameter of the specimen will also change and the simple
expression used to determine shear strain is no longer valid.

One experimental difficulty in twisting tubular specimens to large strain is their
tendency to buckle. This problem is one of the reasons that much of the torsion
results in the literature are derived from solid specimens. Some researchers have
tried to suppress buckling by inserting lubricated mandrels into the specimen cen-

ters (Helling, Miller and Stout [1986]). To circumvent this problem Bailey, Haas
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and Nawab {1972] and Lindholm et al. [1980] developed a torsion specimen design
having large shoulders and a short gauge section. With this design large strains are
achievable on testing machines having a limited angle of rotation since the twist is
concentrated in the small gauge region. This also inhibits the torsional buckling
modes since the large shoulders are close to one another. The only questionable
aspect of this design would be whether there is a significant stress-strain concen-
tration where the shoulders and gauge region meet. Scribe lines used as markers
on the gauge length show quite uniform shear strain in that region with an abrupt
transition to rigid conditions with no localization at the shoulders. This is also
verified by finite element calculations (Lipkin, Chiesa and Bamman [1987]).

For this short gauge length specimen the deformation is well approximated by
simple shear. By not allowing the specimen to elongate, the volume of the tube
remains constant. The thick shoulders prevent a change in specimen diameter and
allow the normal stresses which are predicted in simple shear to be sustained.

This specimen should not be used as a free end test in which the length is allowed
to change due to the torsion. That requires the specimen diameter to change but
since the large shoulders restrain against that there would be a severe gradient along
the short gauge length. The gauge section would not be seeing uniform strain and
spurious behavior would result. The experimental results could not be analyzed by
a homogeneous theory. Lipkin, Chiesa and Bammann [1987] have run tests of this
type and note that there is little difference between the results for specimens with
the free or with the fixed end conditions. One difficulty with this result is the axial
compliance in their test system. Even for their constrained condition they measure

quite small magnitudes of axial strain in the gauge section which would relieve the
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axial stress. In reality, their ‘fixed’ end condition was very much closer to a free
end condition than it was to being rigid.

The vast majority of large strain experimental results in torison are determined
from tests on solid rods with unspecified end constraint (Dieter [1976]). These
results are of limited value in detailled constitutive modeling but they do give a
qualitiative idea of the flow strength level.

One effect seen consistently in large strain testing is that the equivalent stress
versus equivalent strain curve determined in torsion falls beneath that determined in
compression (Hecker, Stout and Eash [1982]). The equivalent stress is given by 6 =
Gr-1 )% and the equivalent strain by & = [ (3 Dr. D*)%dt. In comparing different
tests in this manner the implicit assumption is being made that the material can
be described by a unsversal curve. This is the assumption of isotropic hardening
plasticity. Much of the thinking in metal plasticity has historically been in terms
of isotropic hardening.

Montheillet, Cohen and Jonas [1984] have applied the theory of crystallographic
texture development to describe how axial stresses are generated in torsion at very
large strains. The experiments that they compared with were conducted on solid
rod specimens twisted to equivalent strains of ¢ = 4 to 10. These strains truly
are large and require accounting for crystaliographic orientation. The axial stress
development at these strains is attributed to a tilting of the yield surfé.ce (Canova,
Kocks, Tome and Jonas [1985]). This tilting can be considered a permanent rotation
of the yield surface with respect to the loading direction, or in rate form, a plastic
spin of the material. The macroscopic shearing causes a small spin or rate of rotation

of the underlying microstructure of the material.
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The effect of a lower flow stress in torsion is seen at strains much less than these
where crystallographic texture is important. This has been a major motivation for
the work presented in this thesis. The traditional ideas of isotropic hardening can
not account for this yet much of the large plastic deformation in manufacturing or
ballistic penetration is done under a shearing action where this discrepancy is seen.

A better model of these experimentally observed results is sought in this work.
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Appendix B
Review of Cyclic Plasticity Modeling

Prager-Ziegler kinematic hardening has the simplest explicit evolution

equation for the back stress.
B =CD".

Here B is the back stress, D? the plastic stretching and C is generally a constant
(linear hardening). This is the most common theory employing a back stress and
has been incorporated into most nonlinear finite element codes.

The significant shortcomings of this model include its failure to give a smooth
elastoplastic transition during reverse loading, and its failure to develop a stable,
symmetric hysteresis loop under cycling. This model has been applied to large
strain deformation, often when combined with some form of isotropic hardening.
For such a model, the permanent softening is a measure of the back stress prior to
unloading. As discussed in section 2.2 recent work by Wilson and Bate [1986] show
that this is not what is occurring physically. The permanent softening is not a good
measure of the back stress in the lattice of the material.

Attempts have been made to generalize this model by letting C be a function
of plastic strain, C = C(¢?) . This leads to inconsistencies since there then exists
a unique relationship between the back stress and plastic strain [Chaboche,1986).
Other possibilities for functional dependence of C have not been generally explored.
This could be a fruitful area of research. What is required is for C to be such that
it gives the proper back stress increase during monotonic loading (which is a fairly

slow increase) and a rapid change in back stress during reversing. Currently this
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does not exist so the Prager kinematic hardening rule is generally not used for
modeling cyclic behavior.

In the mechanical sublayer model a number of independent structural ele-
ments are deformed in parallel. Each element undergoes the same deformation but
by having different flow strength and hardening (isotropic) properties a composite
response is obtained. Models of this type have been proposed by Bessling [1953]
and Bate and Wilson [1986]. This modeling concept does not allow the development
of permanent softening although it does introduce a more gradual transition from
elastic to reverse plastic flow. In order to achieve a good match with experiments
many elements are required which adds many variables to the theory and increases
the complexity.

The Mroz model [Mroz,1967| consists of a series of nested surfaces which can
translate inside of one another. The plastic modulus is given as a function of the
size of the active surface. The active surface is the largest surface which the stress
point contacts. Once the active surface touches the next larger surface it no longer
is active but just translates along with the stress point. The direction that the
active surface translates in is given by the vector connecting the stress point with
the point on the next larger surface having the same outward normal n as the active
surface. This is illustrated in Figure B.1. This leads to a piecewise stress-strain
curve with a large number of surfaces required to obtain a good fit to experiment.

For uniaxial cycling this model captures many of the ‘importa.nt features de-
scribed above (1-6) although it does poorly on the asymmetric cycling (7,8).

An important difference between the Mroz and Prager models is the direction

of yield surface translation. For multiaxial loading they can be quite different. This
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will be brought out in more detail when considering multiaxial, nonproportional
cycling.

The two surface model was first introduced by Krieg [1975] and Dafalias and
Popov {1976]. Conceptually it is similar to the Mroz model since it contains one
surface (the yield surface) nested inside of the other (the bounding surface). In the
Mroz model the plastic modulus equals its constant value associated with the outer
active surface. In the two surface model the plastic modulus is given as a function
of the distance between the yield and bounding surfaces. As illustrated in Figure
B.2, when the loading direction is reversed the distance between the two surfaces is
measured between points on the corresponding surfaces having the same outward
normal n. The magnitude of this distance is given as § where §;, represents this
value when plastic flow is reinitiated. The direction of motion of the yield surface is
given by the same rule as that of the Mroz model. That is, the direction of motion is
given by the vector connecting the corresponding points on the two surfaces having
the same n.

Dafalias and Popov [1976] have chosen to represent the plastic modulus, E,, by

6
bin — 6)

Here E, represents the plastic modulus before unloading from contact with the

E E + h(&m) (

bounding surface. Notice that this function satisfies the requirements for a smooth

elastoplastic transition.
6=6, E,— oo,
6§=0 E,=E,.
This model can be made to satisfy all of the criteria (1-;7) although a small

partial reverse load followed by reloading can cause a significant stress overshoot.
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This is discussed by Dafalias [1984b] and Chaboche {1986]. The updating procedure
chosen by Dafalias and Popov [1976] leads to this overshoot but it is not a necessary
consequence of two surface models.

The evanscent hardening model is a phenomenological theory similar to

Prager-Ziegler hardening except that the back stress evolution law is modified.
B = C,D* - C,&B

Here the direction and magnitude of the motion of the yield surface are modified by
the back stress. This gives a direction similar to the Mroz or two surface models.
The functions C, and C, are taken to be constants or functions of plastic strain
eP. This theory has been used by Armstrong and Frederick [1966], Chaboche [1983]
and Nagtegaal and deJong [1982].

Here the back stress is removed more quickly during reverse flow than it builds
up during monotonic loading. The plastic modulus is larger when plastic flow
commences in the reverse direction than it had been during forward loading but
there is not a smooth elastoplastic transition. Also the theory predicts a saturation
of the back stress during uniaxial loading of B{$¥ = C;/C; and no permanent
softening. This theory then does not satisfy requirements (2) or (4).

This model has been used to model the shape of cyclic curves at one strain range,
but often fails when the strain range is changed. The constant C, determines both
how quickly the back stress builds up during monotonic loading and the degree
of rounding of the stress-strain curve during reversing. A large value of C; is
needed to adequately model the large stiffness during reversing but a small C, is
required for the correct build up of back stress. Chaboche and Rousselier [1983]

accomodated this by introducing several back stress variables, each with its own
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evolution equation.

B=ZX B,‘,
B.’ = Cl.'Dp - Cz.'t:i’B.'.
This improves the uniaxial modeling but greatly increases the complexity and stor-
age requirements.

The work of Chaboche and his coworkers has been extensive in applying evanes-
cent type models [Chaboche, 1986]. They have settled on a particular form where
C, is a constant and C; is an increasing function of plastic strain.

A variation of the evanescent hardening rule has been proposed by Mroz [1981,1983].

In order to account for the history effect of the previous maxiamum stress, a max-
imal back stress surface is introduced. This keeps track of the maximum value of
the equivalent back stress that has occured over the history of the deformation.
For d~formation occuring inside of this surface the isotropic component evolves to
an asymptotic value which could involve hardening or softening. The scalars C,
and C, are functions of the current, scalar equivalent back stress. Mroz claims
that the new parameter (maximal equivalent back stress) is a way of taking into
account the natural dependence of the Mroz model [Mroz, 1967} on the maximal
back stress. In the Mroz [1967] model this dependence is incorporated through the
relative configuration of the nested surfaces.

The endocronic, or internal time, theory of plasticity was first proposed and
used by Valanis in the 1970’s [Valanis, 1980]. The theory uses an internal time
variable as the measure of the history of deformation. It is a measure of material

memory.
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Many engineers have avoided the endocronic theory because it does not resemble
the more classical formulations. Plasticity laws have historically been formulated
in terms of incremental or flow relationships due to the nature of the deformation
process (dislocation glide in metals). The endocronic theory has been constructed
using integrals over the deformation history. It has received recent attention because
of its success in modeling some of the phenomena of cyclic plasticity.

Its success has derived from its flexibility of including many parameters to match
experiments. At the heart of the theory lies the equation for the deviatoric stress
T

P
T = Zu/p(z - z')—g%'-dz',

where z is an internal time variable. The choice of the kernel p(z) provides the
flexibility of the model. Watanabe and Atluri [1986] showed that by proper choice
of p(z) the endocronic theory can be reduced , in its differential form, to any of the
following: Prager-Ziegler kinematic hardening, Mroz model, two surface model, or
evanescent hardening. The endocronic theory can then be seen as an overall frame-
work for use in expressing many theories. In application, a specific kernel function
must be postulated. This reduces the endocronic theory to more recognizable form.

In general then, the endocronic theory can satisfy any of the requirements of
cyclic plasticity that the above models can. It does not make sense to discuss the
model without specifying a particular kernel p(z). Since the obvious kernels to use
reduce to one of the above models it is logical to just analyze the models in the
more recognizable flow formulation.

As discussed above, each of the models used for cyclic plasticity has certain

strengths and weaknesses. The choice of a model depends in part upon the phe-
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nomena most important for a given application. The Mroz, two surface, and evanes-
cent models give qualitatively similar modeling capabalities. The two surface model
has the advantage of specifying a smooth elastoplastic transition and a better sim-
ulation of random-type loadings and ratchetting effects (Chaboche {1986]). The
evanescent hardening model has the advantage of easier numerical implementation

and connection with internal variable theories.
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Figure B.1 Illustration of the Mroz [1967] model showing the
piecewise linear approximation to the stress-strain curve and its mul-
tiaxial representation with nested yield surfaces.




VIELD SURFACE

Figure B.2 Illustration of the two surface plasticity model. Both
the (a) one dimensional and (b) multiaxial representations are shown.
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