
Tec~calReor I Q8S
rfThe Dynamic

Structure of
Everyday Life
DTIC

S -LECTE
MAR 2 7 1989D

"Philip E. Agre

MIT Artificial Intelligence Laboratory

..... . A Reproduced From

J D:I: 1 ,d •. uBest Available Copy

r 8 9 3 24 047

The Dynamic Structure of Everyday Life

by

Philip E. Agre

Submitted to
the Department of Electrical Engineering and Computer Science

on October 12, 1988
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract
J
Computational theories of action have generally understood the organized nature

of human activity in terms of the construction and execution of computer-program-like
structures called plans. By consigning the phenomena of contingency and improvisation
to peripheral roles, this view of activity has led to grossly impractical technical proposals.
I would like to propose an alternative view of human activity. According to this view,
contingency is a central feature of the world of everyday activity and improvisation is the
principal means by which people get along in the world. Starting from these premises, I
offer a computational model of certain aspects of everyday routine activity. This model
is based on two ideas, a way of organizing improvised activity called running arguments
and an account of representation for situated agents called deictic representation. :

A running argument means continually redeciding what to do. Continually iede-
ciding what to do is more flexible than executing a plan because it is more responsive
to opportunities and contingencies. It is possible to approximate the ideal of continual
redecision because life is almost wholly routine. The routine portion of the reasoning
leading to each moment's action can be implemented very efficiently by recording the
reasons behind any novel bits of reasoning, a method known as dependency maintenance.
A complýterprogram called the running argument system illustrates this point.

Deictic representation means individuating things in the world not objectively (in-
dependently of the agent's location or heading or projects or attitudes) but rather
indexically (in terms of their relation to the agent) and functionally (in terms of the
role they play in the agent's ongoing projects). Deictic representation does not involve
a notion of objective identity, but then objective identity is rarely a help, usually a
hindrance, and always much too great an epistemic problem to make into a central rep-
resentational category. A computer program called Pengi illustrates the use of deictic
representation.-Ejt.g• .

Thesis Supervisor: J. Michael Brady
Professor of Information Engineering, University of Oxford

V ... 1

David Chapman spent a million hours listening to all the groping intermediate forms
of my ideas. Over several years of intellect'ual coevolution, we never grew too close
together or too far apart. And when I was despairing at my overly ambitious attempts
to implement my second round of ideas, he saved my life by writing Pengi.

Mike Brady supervised my thesis work. Mike has an extraordinary understanding
of the connection between a long-term vision and the day-to-day of getting things done.
His firm sense of what is important and what isn't helped make a long and harrowing
process intelligible.

An awful lot of people provided helpful comments, suggestions, and arguments.
Discussions with John Batali, Jeff Shrager, and Randy Trigg were particularly important
in the developmvnt of my thinking. Lucy Suchman introduced me to the intellectual
cultures within which I first believed what I heard myself saying.

Aside from the aforementioned, Jonathan Amsterdam, Rod Brooks, Mike Dixon,
Carl Feynman, and Eric Saund wrote helpful comments on drafts. Rod Brooks was
also the stateside representative of my thesis committee. Patrick Winston shared his
experience and served as my third reader.

The Fannie and John Hertz Foundation paid for the first five and a half years of my

graduate work.

Accesior- Fcr

DThc Tr•[-
*

&-

197t A' [i. .or

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory's artificial intelli-
gence research is provided in part by the Advanced Research Projects Agency of the
Department of Defenso under Office of Naval Research contract number N00014-85-K-
0124

2

Contents

A Studying everyday life 7

AlContext and summary 9
A la Activity . 9
Alb W hat I did 12
Alc Everyday life 13
Ald Technical and narrative language 16

A2Machinery and dynamics 17
A2a Context and summary 17
A2b Mentalism and interactionism 19
A2c Machinery and dynamics 22
A2d Why be concerned with dynamics? 28
A2e Architecture and personality 30
A2f Complexity and efficiency 31
A2g Interactionism abroad 34

A3Walking to the subway 39
A3a Context and summary 39
A3b The route 42
A3c Edinboro St 44
A3d Crossing Essex St 46
A3e L'Avenue de Lafayette and the parking lot 47
A3f Chauncy St and the subway entrance 49
A3g About stories 50

B Running arguments 53

BI Context and summary 55

B2 Depender.ny maintenance 59
B2a Context and summary 59
B2b Main ideas of dependency maintenance 60

3

112c Dependency networks 69
132d Dependencies as a simple account of many things 71

132e About routines 777

B2f Objections 81

B3The initial implementation 84

B3a Context and summary 84

B3b Organization 85

B3c Example .. .87

B3d Rule language semantics 88

W3e How it works 93

B3f How it works (details) 99

B3g Incremental updating 100

B3h Advanced rule-writing 102

B4Running arguments 105

B4a Context and summary 105
B4b Planning vs knowing what you're doing 106

B4c Hierarchy as datastructure vs dynamic 114
B4d Argument and centralization 125

B4e Running arguments 132

B5Experiments with running arguments 136

B5a Introduction 136
B5b Architecture 137

B35c Demonstration 140

B3d Patterns of transfer 147
B5e Transfer and goal structure 154

135f Conclusion 164

C Deictic representation 169

C* Context and summary 171

C2 On connectionism 175

C2a Context and summary 175

C2b Connectionism reminds us of what's important 176
C2r Bvyond 'control' 179

C2d Beyond datastructures 182
C2e Beyond variables and constants 186

4*

5

C3Pengi 189
C3a Context and summary 189
C3b Deictic representation 190
C3c Pengo and Pengi 195
C3d Entities and aspects in Pengi 198
C3e How Pengi decides what to do 199
C3f Seriality and focus 203
C3g Objections 205

C4How Pengi works 212
C4a Context and summary 212
C4b Architecture 212
C4c Visual system 217
C4d Central system 224
C4e Example 227

C5Related work 234
C5a Context and summary 234
C5b The classical Planning literature 235
C5c Extended Planning schemes 237
C5d Production systems, ACT*, and Soar 240
C5e Situated automata theory 244
C5f The MIT mobile robot group 247

C6Thinking about the background 250
C6a Context and summary 250
C6b Three stories about the background 251
C6c First story: The Oxford robotics lab 252
C6d Second story: The electric kettle in my Oxford office 255
C6e Third story: Moving into my Oxford office 259
C6f The background: Phenomenology and dynamics 264

6

Part A

Studying everyday life

• • •I I iII I I II I I7

Chapter Al

Context and summary

Ala Activity

Everyday life is almost wholly routine, an intricate dance between someone who is trying
to get something done and a fundamentally benign world that is continually shaped
by the bustle of human activity. I have been exploring the connections between the
organization of everyday routine activity and the organization of the human cognitive
architecture.

The project of relating a theory of activity to a theory of machinery offers great
promise and raises great difficulties. The promise is that a serious theory of everyday
activity as a whole can provide a firm basis for the engineering analyses required by seri-
ous computational research, whether this research is intended to produce an explanatory
theory of human beings or a justified design for an autonomous robot.

The difficulty is that our existing technical vocabulary is not well suited for design-
ing and analyzing devices that continually interact with their environments. While this
conventional vocabulary has been helpful in getting computer technology off the ground,
its presuppositions and shortcomings now confuse and disrupt efforts to build systems
that can interact flexibly with real environments. The beginnings of a principied al-
ternative lie in careful attention to the nature of routine interactions between sensible
agents and benign worlds.

The job of a theory of activity is to describe and explain the ordinary everyday
activities of ordinary people. Investigations of activity begin with the idea that human
activity has an internal logic of its own. While the organization of human activity is
deeply affected by its history, it also has an inherent orderliness, coherence, and laws of
change. In short, human activity is the way it is for a good reason.

A great deal is known about the nature of human activity. Perhaps the principal
contribution of twentieth century sociology has been to convincingly relate broad ques-
tions of social order to the finest details of everyday activity. Among the foundational
works in this tradition were careful descriptions of the structure of everyday experi-
ence: Heidegger's account of everyday routine activities (1927) and Schutz's account of

9

10 Chapter Al. Context and .ainimary'

everyday social interactions (1932). More recently, profound insights into the social or-
ganization of routine activities have arisen from investigations of everyday cognition (see
for example Bourdieu 1977, Garfinkel 1967, Lave 1988, Rogoff and Lave 1984, Scribner
198-1, Wertsch 1985). Much of this work is marvelous for its observational acuity and
its theoretical rigor.

The theme of connecting large-scale phenomena to the detailed organization of ev-
eryday activity is also central to my own work. For clarity, let us distinguish a particular
'action' from 'activity' in the large. A theory of action explains how individuals come to
do particular things in particular situations. The notion of activity, by contrast, relates
to the broader organization of human doings; a theory of activity should describe how
individuals' actions are knitted into larger structurei of relationships and societies.

My own interest in theories of activity began with my dissatisfaction with the ideas
about action I was taught in classes on artificial intelligence. These ideas center on
the notion of 'planning'. Perhaps the most influential early statement of the idea of
'planning' occurs in a book called Plans and the Structure of Behavior, published in
1960 by Miller, Galanter, and Pribram. These authors rejected the extreme behaviorist
view that the organized nature of activity results from isolated responses to isolated
stimuli. Instead, they adopted the opposite extreme view that the organization of
human activity results entirely from the execution of Plans.

What is a Plan? "A Plan is any hierarchical process in the organism that can control
the order in which a sequence of operations is to be performed" (page 16). They state,
as a "scientific hypothesis" about which they are "reasonably confident," that a Plan is
"essentially the same as a program for a computer," a connotation the term has carried
to the present day. Shortly thereafter, though, they state that "we shall also use the
term 'Plan' to designate a rough sketch of some course of action, just the major topic
headings in the outline, as well as the completely detailed specification of every detailed
operation" (page 17). Thus a new Plan's hierarchical structure need not initially reach
down to the most primitive actions, though the hierarchy must be filled out by the time
any given step of it is executed. This view of P'-tns and their role in organizing activity
has been so long unquestioned within AI that, as one author pointedly observed in
summarizing a recent workshop discussion, "the alternatives are not yet clear" (Linden
1988, page 121).

(Unlike subsequent authors, Miller, Galanter, and Pribram were careful to capitalize
their version of 'Plan' to avoid confusion with vernacular usage. For them, capitalizing
the word emphasized the hierarchical nature of Plans. I will capitalize the word for
clarity as well, but in order to emphasize the resemblance between Plans and computer
programs.)

Miller, Galanter, and Pribram worked from a distinction and a policy that have
remained almost axiomatic in artificial intelligence research down to the present day.
They distinguished two activities, 'Planning' and 'execution'. (I will capitalize 'Plan-
ning' as well for consistency even though they did not. They imagined that most Plans
are retrieved from a collection of stored Plans and had little to say about the actual

Ala. Activity 11

process of formulating new Plans.) Beginning with a 'goal', one chooses an appropriate
'Plan' and then one 'executes' it. They define execution by saying that "a creature
is executing a particular Plan when in fact that Plan is controlling the sequence of
operations he is carrying out" (page 17).

T'heir policy was to apply the term 'Plan' as broadly as they possibly could. Chapter
by chapter, they marched through the various aspects of everyday life, focusing on
elements of intentionality, regularity, and goal-directedness and applying the term 'Plan'
to each one. One of the many frustrations inherent in trying to argue against Planning
is that absolutely any phenomenon in human life can, if looked at right, be viewed as
an instance of it. In order to view actions as instances of Planning, though, important
aspects of activity must be consigned to peripheral vision. And anybody can concoct
convenient toy 'problems' that sourd like bits of human activity. But principled research
into computational models of action must make explicit its views about the nature of
activity as a whole.

The notions of 'Plans' and 'Planning' that descend from Miller, Galanter, and Pri-
brain carry with them a definite view of everyday activity. Subsequent researchers have
proposed a variety of technical specifications for 'Planning', 'execution', et al. But all of
them, whether explicitly or through their continued use of the terms, have shared this
view.

If an agent's activity has a certain organization, that is solely because the
agent constructs and deploys a symbolic representation of that activity,
namely a plan.

Everyday activity is fundamentally planned; contingency is a marginal phe-
nomenon. An agent conducts its everyday activity entirely by constructing
and deploying plans.

The world is fundamentally hostile. Life is a series of problems to be solved.

Let us call this the 'planning' view of everyday activity. Since I have defined it indepen-
dently of the computer-program connotations of the Al notion of 'Plans', it is actually
more general than the view handed down from Miller, Galanter, and Pribram. I wish to
dispute this view of everyday activity and to substitute my own, the 'situated activity'
view.

Everyday life has an orderliness, coherence, and laws of change that are
not the product of any representation of them. Everyday activity is almost
entirely routine, even when something novel is happening.

Evei' day activity is fundamentally improvised; contingency is the central
phenomenon. An agent conducts its everyday activity by continually rede-
ciding what to do.

The world is fundamentally benign. Life is a fabric of familiar activities.

12 Chapter A4. Context and sumnimarv

People certainly use plans. But real plans are nothing like Plans. Rational, goal-directed
activity need not be organized by a plan. And plans never serve as direct specifications
of action. Instead, a plan is merely one resource among many that an agent might use
in deciding what to do (cf. Suchman 1986, 1987). Before and beneath any plan-use is
a continual process of moment-to-moment improvisation. Improvisation might involve
ideas about the future and it might employ plans, but it is fundamentally a matter of
deciding what to do now. Indeed, plan-use is a relatively peripheral phenomenon and
not a principal focus of this work. (See Agre and Chapman 1988 for a different theory
of plans. See also Chapman and Agre 1986.)

Alb What I did

Computational research into activity seeks technical ideas about action and representa-
tion that are well suited to the special requirements of situated, embodied agents living
in the real world. The 'agents' could be robots we would like to build or creatures-
insects, cats, or people-we would like to understand. To say that an agent is -situated'
is to emphasize that it is always in some particular situation in the physical and social
world. It is always provided with particular concrete materials and involved with par-
ticular other agents. To say that an agent is 'embodied' is simply to say that it has
a body. It is physically localized and has limited experience and finite abilities. It is
always in the world and among the world's materials and other agents.

This report has three parts. This part, Part A, carefully defines the project and
its method and vocabulary. Chapter A2 introduces a way of talking about organized
activity based on the idea of dynamics-that is, regularities in the interactions between
certain kinds of agents and certain kinds of worlds. I will argue that the principal task
of artificial intelligence research is not the proliferation of complex forms of machinery
but rather the elucidation of the dynamic structure of complex forms of activity. Having
developed an understanding of dynamics, one should seek the simplest machinery that
is consistent with the forms of activity one wishes to produce or explain. Chapter A3
uses a narration of the walk from my apartment to the subway to sketch some of the
important dynamic concepts I have found useful in using analyses of human activity to
motivate computational models. In particular, it introduces the notion of a routine and
briefly describes some of the dynamics of routines and their evolution.

Parts B and C each describe an idea and a computer program that illustrates it. I
will sketch these ideas and programs very briefly here. For more detailed summaries
of the individual chapters in Parts B and C, see Chapters B1 and C1 respectively.
In general, this report is organized to appeal to people with relatively little technical
background. Those who wish to start with formal technical discussions should head for
Chapter B5 and then proceed to Chapters C3 and C4.

Part B's idea is a way of organizing improvisatory action called running arguments.
Whereas a Plan is executed by a dumb executive with little idea of the reasoning behind
its actions, an agent engaging in a running argument can be far more flexible because

Alc. Everyday life 13

it continually rederives, to the greatest extent possible, the reasoning behind each mo-
ment's actions. This reasoning is non-monotonic and takes the form of an argument
among conflicting options and considerations. Because the reasons behind consecutive
moments' actions will usually be very similar, it suffices to continually incrementally
update the arguments leading to action. To facilitate this incremental updating process,
the agent maintains dependencies on its reasoning. Part B describes a computer pro-
gram, the running arguments system, that illustrates these ideas. Driven by a rule set
written in a fairly conventional rule language, the system interacts with a simple simu-
lated world. The system accelerates its own operation by keeping dependencies on its
reasoning. Chapter B5 demonstrates the running arguments system in action, carefully
analyzing its performance and drawing some negative conclusions about conventional
computational views of representation.

Part C's idea is a novel theory of representation for situated agelitb called deictic
representation. Whereas a conventional objective representation scheme such as first-
order logic individuates things in the world objectively (independently of the agent's
location or heading or projects or attitudes) a deictic representation scheme individuates
things indexically (in terms of their relationship to the agent) and functionally (in terms
of the roles they play in the agent's ongoing activities). Thus deictic representation
does not involve any kind of objective identity. While an agent might also use other
forms of representation, such as natural language with its complex, socially organized
notions of identity, I will argue that objective identity should not be a central concept
in a representation scheme for situated agents. It is almost always a hindrance and
hardly ever a help. This is a difficult idea. Part C illustrates it with a system called
Pengi that plays a video game. The game requires its player to participate in organized,
goal-directed improvisatory activity. Deictic representation permits Pengi to continually
rederive its best course of action without complex machinery or elaborate computations.
Part C concludes with some long, detailed stories about some of the ways in which a
workspace helps organize everyday routine activities.

Alc Everyday life

In developing these ideas, my method was to move back and forth between observing
real activities (involving both myself and others) and building computational models.
My goal in watching people was not a shallow replication of human ways. I don't believe
such a thing is even possible. Instead, I sought to understand the nature of activity in
general. Exploring computational models-seeing what can and cannot be gotten to
work-helps isolate which aspects of human activity are essential and which are not. If,
as I believe, human activity is the way it is for a good reason, then that reason ought
to be just as binding on robots as it is on people.

Everyday life is just the whole of our ordinary activity: making breakfast, gardening,
hanging out, walking into town, cleaning up messes, shopping in supermarkets, working
in offices, participating in everyday rituals. I propose investigating the everyday activ-

141 Chapter Al. Context and suninmary

ities of human beings and relating the organization of human activities to hypotheses
about the workings of human bodies and brains. While the logic of my proposal might
be clear enough, it is difficult to properly appreciate the idea that everyday life is some-
thing that needs to be studied. Who is an authority on the nature of everyday life?
It is a deep and consequential fact that simply living everyday life does not, in itself,
qualify one to theorize about it. Second-hand intuitions and made-up stories need not,
and usually do not, bear any relationship to the reality of everyday activity. One must
go looking.

The hardest part of everyday life to see is its routine nature. Our simplest activ-
ities have a great deal of detailed organization: flexibly improvised adaptations and
rearrangements, fluent synchronization, contingencies accommodated, and false starts
rebegun, all taking place against a background of continual fine adjustments. Since the
vast majority of this organization doesn't raise any obtrusive difficulties, it goes almost
entirely unremarked. We don't we have many words for talking about it. We take it so
thoroughly for granted that it is invisible even when it's staring us in the face. Even on
a slowed-down videotape, it is remarkably difficult to see it without much patient effort.

When we talk about everyday life, what stands out to be talked about are problems.
We complain about our problems; we focus on them and name them and discuss them
and work out plans for dealing with them; we buy books and take classes and go to
professionals to help us resolve them; and we create institutions whose job it is to
alleviate them. Given this natural imbalance in attention, it is equally natural that,
lacking detailed investigation, our ideas about the nature of activity should center on
problems and their solution. Pretheoretical intuitions such as these suggest studying
the mentation through which we plan our way out of problems. But such a view of
everyday life has, to put it mildly, a warped sense of proportion. Its misplaced focus
doesn't simply falsify the nature of everyday activity in the large, it also falsifies the
nature of the particular phenomena it advises us to study. Problems aren't like that.

When I say that everyday life is almost wholly routine, I mean that it is always
almost wholly routine. Even when we face problems, even when we're doing something
new, even when we make mistakes, even when we're trying to pay attention and be
careful, just about everything we do is something we can do routinely because we've
been doing it so regularly for so long. In particular, to say that everyday life is almost
wholly routine is not to say that our lives consist of stretches of mechanical execution
punctuated by episodes of pure novelty. Everyday life has to be almost wholly routine
or else it would be impossibly complicated. Even the activity called "solving problems"
takes place against a background of routine activities: looking around, poking at your
materials, trying things, drawing diagrams, asking help, keeping your balance, keeping
your limbs under control, and so forth. Articulating the unproblematically beneficial
structure of the routine background of our activities ought to change the way we look
at all our activities.

Using more sophisticated ideas about activity to guide computational model-building

is not simply a matter of knowing a correct, finished theory. Such things don't exist.

AIc. Everyday life 15

Instead, one must forever work at being aware of and articulating one's own experience
of everyday life. This isn't a magical ability that some people are born with. And it
certainly isn't a white-coated technology of introspection. It is a capacity that lies latent
in everyone and awakens now and - ain by degrees with no particular correlation with
age or class or abstract intelligence or moral exhortation or literature classes. Its basis
is not theoretical abstraction but rather a spontaneous openness to the mind-blowing
intricacy of humble phenomena. An awareness lost in projects and goals continually
passes over these phenomena. To catch sight of them, one must, deep down, find one's
own everyday life interesting.

So severe is the disjunction between prevalent computational methods and the actual
nature of everyday life that it is hard to make any connection between them at all. I
know people who, at home, can be perfectly articulate about the creative use they make
of recipes but who, at work, insist that plans are like computer programs and treat any
demurral as a heresy against reason. In trying to connect technical talk and everyday
experience, it does not suffice to keep stretching quasi-technical words like 'planning'
and 'knowledge' and 'hierarchy' to fit any next example that comes along. One must be
willing to use technical difficulties-computational intractability, excessive complication,
the seemingly incorrigible necessity for artificially constrained task environments, and
generally the whole range of engineer's headaches-as opportunities to articulate the
view of activity behind received technical ideas, to ask whether everyday activity is
really like that, and to go looking.

Looking at everyday life can take many forms. It can involve watching people do
things. It can involve watching videotapes a frame at a time. It can involve talking
the phenomena over with people (preferably not technical people) who are especially
articulate about their everyday lives. It can involve consulting the writings of people
who have already looked carefully at everyday activity and then trying to see for oneself
what they saw. While I have done all these things, for me looking at everyday life has
largely taken the form of spontaneously noticing events in my own everyday life that
seem reles,4at, often in obscure and even disturbing ways, to the technical questions
I am studying. I will recite several stories about these events in the course of my
presentation. You don't have to believe the stories if you don't want to. They are there
to help connect abstract analysis to real experience. I hope they will provoke you to
notice such things on your own. It is not that any list of stories can compel one to
adopt one technical proposal rather than another. Instead, the stories serve a heuristic
role, deepening the intuitions one brings to one's technical practice. The final test of
engineering proposals is, as always, whether they work. Whereas the planning view of
everyday life suggests machinery that doesn't work, the situated activity view, I believe,
suggests different machinery that does.

16 Chapter Al. Context and summary

Ald Technical and narrative language

Part of any conceptual reorientation such as the one I suggest is a redoubled effort to
be clear about words and what they mean. The images called up by a vocabulary have
cnormous influence over our intuitions, and the coherent network of images called up by
an unreflectively customary way of speaking can encode and convey an entire worldview,
long before the first axiom is set to paper. This is equally true for the language of
everyday life and for the languages of philosophy and psychology and computer science.
In order to dig up the unarticulated assumptions behind our technical practice, we have
to look at our words.

Many words will appear in scare quotes in this report. I should explain this practice.
Words in double quotes are simple quotations. Words in single quotes, though, are words
I would like to call into question. In doing so, my intention is never to ridicule those
words or the people who use them. Instead, I want to call attention to the metaphors
and stresses implicit in those words. These matters of image and connotation might
be evident when words are used in poetry or story-telling, but they tend to hide when
they're used in technical discourse. Recovering the history and associations of a quasi-
technical word like 'structure' or 'control' can help us reconnect the intuitions behind
the technology to the everyday experiences we also associate with those words. One
can never make a knock-down argument out of such connections, of course, but they
are regularly have heuristic value nonetheless.

I am particularly concerned to draw clear distinctions between the technical and
vernacular-or, as I like to say, narrative-meanings of words. Plenty of Al's words
have both technical and narrative meanings. It takes great care to avoid shuffling back
and forth between the two meanings, blurring the vocabulary with which we tell stories
into the vocabulary with which we program computers. One word that often suffers
such treatment is 'plan'; Chapter A2 will discuss many more. In order to help avoid
such confusions, I will capitalize the technical versions of a few especially important
words-Plan, Problem, and Complexity-to mark the critical differences between their
technical and narrative meanings.

Chapter A2

Machinery and dynamics

"... the Western conception of the person as a bounded, unique, more or less
integrated motivational and cognitive universe, a dynamic center of aware-
ness, emotion, judgement, and action organized into a distinctive whole and
set contrastively both against other such wholes and against a social and nat-
ural background is, however incorrigible it may seem to us, a rather peculiar
idea within the context of the world's cultures."

Clifford Geertz, On the nature of anthropological understanding, American
Scientist 63(1), 1975, page 48.

A2a Context and summary

Implicit in every community's way of speaking is some view of its world. This chapter
has four purposes: to clearly distinguish between two broad views of human existence,
mentalism and interactionism; to enumerate some of the ways of speaking that have
made mentalism invisibly prevalent in AI and the greater Cognitive Science community;
to explain why interactionism is the preferable view; and to describe how interactionism
has informed my methods and strategy in performing the work reported here.

Section A2b defines and contrasts mentalism and interactionism. Each of these two
-isms is organized by a certain taste in metaphors. Mentalism prefers metaphors of
inside and outside. It begins with an entity called 'the mind'. Inside this 'mind' are
mental structures and processes. These mental contents can be defined purely formally
without any reference to the outside world. Inside/outside metaphors have governed
AI research, almost without exception, since its beginning. Interactionism, by contrast,
prefers such metaphors of interaction as servocontrol, participation, metabolism, and
routine. A principled choice between mentalism and interactionism must begin with an
awareness of the ways of speaking that tend to presume them.

Section A2c presents some of the methods of interactionism. Interactionist research
begins with an investigation, both theoretical and empirical, of the dynamics of the
interactions that arise between various kinds of creatures and various kinds of worlds.

17

18 Chapter A2. Machinery and dynamics

An understanding of the dynamics of a given form of activity can help in inferring the
machinery of a creature that engages in that activity-or in designing the machinery
for such a creature. My own work has followed the principle of machinery parsimony:
postulate the simplest machinery that is consistent with the dynamic phenomena you
understand. The deeper your understanding of dynamics, the simpler the machinery
becomes. My initial work has concentrated on some of the more fundamental dynamic
phenomena, those involved in the everyday routine solitary activity of human beings.
Future work must deal with learning, social interaction, and all the rest.

Section A2d explains why Al research needs dynamic theory. Any time you design
a device, you have to explain why it ought to work. Such explanations often take the
form of a demonstration that the device solves the general case of some formally defined
Problem. I have nothing against formality. Solving the general case, though, almost
invariably leads to a no-win trade-off between unrealistically simple formalizations and
intractable computational Complexity. Heuristic methods are no help unless they come
with some good reason to believe that the device will work. The only way out is
through a sufficient understanding of the inherent orderliness of interactions between
sensible agents and benign worlds.

Section A2e presents some distinctions that help in developing theories of the dy-
namics of human activity. The human machinery changes through learning, so it is best
to distinguish between the innate, unvarying architecture and the personality that forms
within it. The dynamics of your interactions with the world change, obviously, as your

personality evolves.
Section A2f investigates the tangled question of the computational Complexity of

conventional Planning as a study in the narrowness of mentalist theory. I would like
to argue that conventional Planning makes a poor theory of activity for any existing
or possible creature. Ammunition for such an argument would seem readily available
in the form of extremely negative Complexity results. But Complexity theory itself,
frustratingly, is an inappropriate means of evaluating theories of activity. Mentalist
metaphors are responsible for the trouble in each case. Chapter B4 will analyze the
question of Planning in a more sophisticated way.

Section A2g discusses about a dozen authors in other fields whose ideas about human
activity have been organized around metaphors of interaction. They make a 4isparate
group, but all of them offer useful suggestions about how one might proceed with the
project of relating dynamic theories to computational principles.

A dynamic theory, like any other, is a large abstraction carrying no warranties
against woolly thinking. This is the role of computer programs and observation of ev-
eryday life. Part A concerns only the form of the argument, not its substance Programs
and evidence will appear beginning in Part B.

A2b. Mentalism and interactionism 19

A2b Mentalism and interactionism

In its technical practice, Al has a lot of vocabulary for talking about structures and
processes inside of computers. If you start looking at the original vernacular meanings
of these words, a remarkable pattern emerges. Actually two closely related patterns:

(1) A word that once referred to something in the world now refers to a structure
in the computer. Common examples include 'situation', 'pattern', 'context', 'object',
'list', 'map', 'structure', and 'problem'. Individual programmers have defined hundreds
of others.

(2) A word that once referred to an activity conducted by agents in the world
now refers to a process occurring entirely in the computer. Examples include 'search',
all verbs for operations on datastructures ('construct, manipulate, inspect, point at,
traverse, collect, recycle'), and many predicates on technical entities. 'Efficiency', for
example, was once a quality-i.e., not something to be measured-ascribed to a person.

This terminological practice has always been considered perfectly harmless. All those
datastructures and processes are well-defined; they exist inside the computer; they need
names; they bear a certain resemblance to those objects and activities; words' meanings
are extended through metaphorical resemblance all the time; so why not? And, indeed,
this is a perfectly valid argument. One has every right to define those abstractions and
give them those names.

The problems start when these words become part of a theory of an agent's activity
in the world. Many words have both vernacular and technical (or quasi-technical)
meanings, and most of these meaning-pairs differ in just this way. I can't use the words
'search' or 'list' or 'stack' in an Al context without being taken to be talking about the
insides of computers or heads. Things are even worse when someone writes a 'planner'
one of whose arguments is a datastructure called a 'situation'; or an 'interpreter' one
of whose arguments is a datastructure called a 'context' or an 'environment'. Students
are exposed to this sort of talk without anyone systematically making the distinctions
clear for them. This is bound to be confusing. What is the problem?

The villain of our story is mentalism. Mentalism, as I will use the term, is not
precisely a scientific or philosophical position. Instead, mentalism refers to any psy-
chology or philosophy organized around metaphors of Inside and Outside. According
to mentalism, 'the mind' has 'contents' which are radically different from things in the
'outside world'. Mentalism is informed by a strong sense of boundary that marks off
the mental as a separate realm. Above all, mentalism leads one to make theories that
posit objects and processes residing entirely within the head. In particular, mentalism
encourages us to define the topic of our research as a mental process called cognition.
(For a clear statement of the form of mentalism most common in cognitive science, see
the introduction to Fodor's Representations (1981). For an especially extreme statement
that brings out much of mentalism's perverse inner logic see Fodor's "Methodological
solipsism" paper, Chapter 9 of the Representations volume.)

We should pay attention to the place of metaphors in computational theorizing.

20 Chapter A2. Machinery and dynamics

Metaphors suggest problems, judge solutions, define prototypes, and distinguish cen-
tral from marginal phenomena. Above all, the metaphors behind our technical terms
encode a view of the nature of activity. They also tend to perpetuate that view by
making it seem transparently obvious. The metaphors of 'inside' and 'outside' are a
shadowy backstage presence in Al. They can be seen in words like 'in' (the head or the
mind), 'cognition' (a separate realn of inward activity), 'perception' (arriving inside),
'behavior' (emerging outside), 'correspondence' (between representations inside and the
world outside) and many more words for mental events and things. The metaphors
don't make you hold any particular technical and scientific position. The difficulties
that arise can always be blamed on a specific position. The metaphors hover in the
background, acting as arbiters of plausibility without ever taking any blame.

In disagreeing with mentalism, I am not denying a theory or a philosophy, though
I disagree with plenty of mentalist theories and philosophies. I am not saying that
people don't have minds (what an awful thought!) or denying the existence of cognition.
Certainly we have machinery in our heads and certainly people often sit and think. The
question is, as theorists, how do we proceed from there? I don't believe it is very useful
to posit very abstract entities in the head, and certainly not things like search trees
and sentences of logic. Most especially, I am not denying any phenomena. I am only
criticizing a way of talking about them.

Mentalism provides a simple formula that provides plausible answers for all ques-
tions: put it in the head. If agents need to think about the world, put analogs of the
world in the head. If agents need to act in situations, put datastructures called 'situa-
tions' in the head. If agents need to figure out what might happen, put simulations of
the world in the head. If there are many possibilities, put a process of 'search' in the
head. The tacit policy of mentalism, in short, is to reproduce the entire world inside
the head: a 'world model'. Consider the slogan of 'mental models', according to which
'reasoning' about the world depends on having access to as complete a simulacrum as
possible. Or the slogan of vision as 'inverse optics'. The development of computational
methods over the last thirty years has been shaped by the steady pressure of this habit.
The sophisticated structures and processes we've learned how to define are not geared
to living in the world, they are geared to replacing it.

In place of mentalism, I prefer a view I call interactionism. Interactionist words-
'interaction', 'conversation', 'involvement', 'participation', 'servocontrol', 'metabolism',
'regulation', 'cooperation', 'improvisation', 'turn-taking', 'symbiosis', 'routine', 'man-
agement', and so forth-shift our attention from 'cognition' to 'activity'. They lead
us to posit structures and processes that cross the boundaries of agents' heads. Sure,
perhaps some of these structures and processes are entirely inside of agents' heads, but
that's just an unusual special case with no particular privilege. Future chapters will
describe many interactionist theoretical ideas. Many more are needed.

Mentalism and interactionism are incompatible. No doubt many mentalist ideas
have interactionist analogs and vice versa, but each of them offers its own distinctive
way of approaching every phenomenon of human existence.

A2b. Mentalism and interactionism 21

It is difficult to argue against mentalism. Not being a technical position, it doesn't
admit of formal disproof. If interactionist technical proposals achieve stunning technical
successes, that's certainly good evidence. Unfortunately, such successes in themselves
are unlikely to form a basis for comparison between mentalism and interactionism. By
making different aspects of human existence prototypical, mentalism and interaction-
ism suggest starting in very different places. Until the far-off day when we finish a
computational psychology, one can always ask 'how does your theory explain X?' This
report is mostly about something that has rarely even been considered a problem: the
organization of ordinary, routine activity. Its greatest weaknesses are in areas that have
generally been considered central. In these areas I lack access to the easy answers of
mentalism.

Fortunately, stronger arguments are available. These arguments concern the meta-
phors themselves. Let us return to the words Al uses for the insides of computers-
'search', 'list', 'pattern', 'context', etc. Dozens of times I've given up on one of these
ideas, only to discover that the idea I really wanted was very much closer to the original,
vernacular meaning of the word. Gradually I realized that the vernacular words, unlike
their Al namesakes, suggest interactionist ideas.

"* An actual search is an interaction between an actual agent and an actual space
(like the messy workbench where the tin-snips might be buried).

"* You might accumulate an actual list (of, say, things to get at the store) on an actual
piece of paper (like the back of the bank statement that has been cluttering your
coat pocket).

"* Many activities are organized in part by actual, physical patterns, for example
sewing, filling out forms, and writing from an outline.

"* It's hard to make a hard-and-fast rule about whether to cross the street since the
wisest decision can depend on so many aspects of the context.

Later chapters will present many specific arguments about the metaphors behind men-
talist ideas. In general we should ask, what troubles should befall mentalist research
if the right way to talk about human activity is actually interactionist? Interactionism
constantly directs our attention to the connections between inside and outside; it con-
stantly reminds us that inside and outside are inextricably bound up with one another.
If mentalist research always starts by drawing a sharp distinction and firm boundary
between mind and world, we should expect inside and outside to try to reunite in some
more covert way. But this is exactly what happens when mentalism tacitly pretends
that the world is inside the head. The price of mentalism's artificial partition between
inside and outside is the seductive but spurious plausibility that derives from constantly
obfuscating the difference between inside and outside.

If I insist on restoring Al's current words to their vernacular meanings, what words
is psychology supposed to use? Switching to neologisms would miss the point. There
is nothing wrong with recruiting existing English words to name theoretical ideas. I'm

922 Chapter A2. Machinery and dynamics

only disagreeing with the practice of indiscriminately populating heads or computers
with analogs of the materials and equipment of the outside world.

In his famous discussion of the ant on the beach, Simon clearly anticipated the view
that organized activity arises from the interaction between relatively simple creatures
with complex but benign worlds (1970, pp. 24-25). But one page later, Simon abandons
his insight, asserting that he is only interested in cognition and not in embodied agents,
and moves on to discuss his studies of human performance on cryptarithmetic puzzles.
The computational models of Newell and Simon's school have affirmed their wholly
cognitive view of such puzzle-solving by locating the state of the process within the
individual's short-term memory. (See Section C5d.) I do not know whether Simon
meant to draw an equivalence between interacting with one's short-term memory and
interacting with the outside world, but I regard these two concerns as polar opposites.
To be fair, though, Simon has more recently participated in interesting research on
"external memory" practices such as the use of scratch paper (Larkin and Simon 1987).
(For other work on this subject see Intons-Peterson and Fournier 1986.)

All our thinking and acting and learning takes place against the enormous back-
ground of everyday routine activity. For this report, it will be enough to describe the
network of patterns of interaction that make up this activity. Let us now begin devel-
oping a vocabulary for ideas about interaction.

A2c Machinery and dynamics

The central idea of this report is the distinction between machinery and dynamics. This
section defines both terms, describes the notion of dynamics in detail, describes the
close interconnections between machinery and dynamics, and explains the consequences
of these ideas for interactionist research methodology.

A machine, as usual, is a physically realized, formally specified device. It is an object
in the physical world that participates in the laws of physics. It will presumably have
some internal state of its own, including perhaps the potential for changing its internal
configuration. It's analog or digital or both. The mass term 'machinery' is intended to
suggest particular metaphors for thinking about the machinery's physical realization:
its operation depends on a configuration which is more or less fixed.

The notion of dynamics is less familiar. It concerns the interactions between an
individual (robot, ant, cat, or person) and the world. The word is used in a number
of forms. In making dynamic explanations one often isolates a particular 'dynamic',
which is a common, lawlike regularity in the way that some sort of individual interacts
with some sort of world. As an adjective, there are 'dynamic explanations', 'dynamic
theories', and the like. One might speak of the 'dynamics' of Simon's ant on its beach
and the 'dynamic structure' of the ant's life on the beach. Both simply mean "everything
there is to say about the way the ant and beach interact." Both the version of dynamics
that Newton and Euler would use to describe our physical interactions with the world
and the version of dynamics associated that Freud would use to describe our emotional

A2c. Machinery and dynamics 23

interactions with the world are instances of my general notion, but neither of these
extreme cases figures much in this report.

Here are some simple examples.

"* In your kitchen cupboard you probably have a set of bowls stored in a stack. If
you use one of them, you are likely to return it to the top of the stack. Over time,
the bowls you never use (or no longer use, or have not begun using) tend to sink
to the bottom. If you use some of the bowls and not others then the bowls you use
and the bowls you don't use become segregated. These sinking and segregation
effects are dynamics.

"• The elevators in MIT building NE43 are not very smart. If someone is waiting,
say, to go down from the fifth floor, then all elevators that happen to be passing
that way will stop. It is common for three of the four elevators to stop. and I
have seen all four. As a result, if you are in an elevator and it stops somewhere
on its way to your destination, it is quite likely that nobody will get on. Having
learned this, and having often waited too long for elevators that were off stopping
uselessly at other floors, many residents of the building have formed the habit
of punching the DOOR CLOSE button after only the most cursory search for
approaching people. As a result, many visitors have noticed and commented upon
the seeming rudeness of the building's residents. This has gone on for the whole of
the nearly ten years I have worked in this building, despite its continual turnover
of personnel. This interaction between the elevators and the building residents is
a dynamic.

"* I can't work without music playing, so I have a record player and a shelf of records
in my office. Since I play upwards of two dozen records a day when I'm working,
I've developed a definite routine for getting a record down off the shelf, removing it
from its sleeve, picking a side to play, putting it down on the turntable, cleaning it
and setting it going, removing it from the turntable when it's done, returning it to
its sleeve, and returning it to its place in alphabetical order on the shelf. Though
this routine happens very quickly (about fourteen seconds to put the record on
and about twelve seconds to put it back), it is enormously complex, involving
several changes of grip and orientation. One evening I went through this routine
about thirty times and wrote down every detail of it. In doing so, I was able to
satisfy myself of the accuracy of the following hunch about it: if I always play
side 1 (say) of a given record, then side 1 will always be facing up at the point in
my routine where, having just removed the record from its sleeve, I check whether
the side I wish to play is facing upward or downward. This is unfortunate; since
I happen to be holding the record from underneath just then, it would be much
less clumsy to turn it over in the course of putting it down on the turntable. This
invariant in my interactions with my office is a dynamic.

"* This story covers four days one winter. One morning when arriving in my office,
I decided I was sick of my coat cluttering my office, so I decided to leave the
coat lying on top of the file cabinet just outside my office door. Shifting my

2-1 Chapter A2. Machinery and dynamics

concern to the day's work, I walked into my office and tossed the door shut behind
me as always-except that today it didn't slam behind me as always. Huh?
Investigating, I found an edge of the coat caught in the door jamb and preventing
the door from closing. I herded the coat out of the way, closed the door, and
went back to work. The next day I left the coat on top of the file cabinet, headed
into my office, and tossed the door shut as always-and it didn't slam behind me
again. Shoot. This time, though, I immediately knew what the problem was. The
next day I left the coat on top of the file cabinet as before, but as soon as I turned
to head into my office I realized that the coat was liable to get caught, so I herded
the coat out of the way again. The fourth day, I was aware of the problem as I
was placing the coat down on the file cabinet, so I made a point of placing it as far
as was readily practicable from the door jamb. On each day, a bit of the previous
day's insight had drifted back toward the beginning of the routine. This backward
transfer effect is a dynamic, one of the principal dynamics through which routine
patterns of activity evolve.

These examples illustrate a number of points.

1. Dynamics are only descriptions, not causal agencies. The bowls do not sink and
segregats because the dynamics force them to; they do so because on a series of
occasions you returned the objects you've used to the top of the stack. Everyday
activity is, as the ethnomethodologists say, 'locally organized' (Heritage 1984).
Nonetheless, just as a figure of speech, it is often useful to say that something
happens 'because' of some dynamic.

2. A dynamic is most emphatically not a structure in any agent's head. A dynamic

is a theorist's description, not a datastructure or a plan or a mental object of
any kind. Having identified a recurring form of interaction between an agent
and its world, one can set about determining what kinds of machinery might be
compatible with it. The agent's machinery participates in the dynamic but is not
solely responsible for it.

3. The dynamic depends on certain facts about both the individual and the world.
It depends on the world in that stacks require gravity, objects are often made to
stack, stacks tend to stay orderly unless disturbed, organic garbage decomposes,
customs propagate, my records are at eye level where my turntable is at waist
level, doors close flush to their jambs, and so on. These particular dynamics
only depend on some rather vaguely described aspects of the individual (puts the
stacked objects back reliably, participates in customs, checks record labels). Many
others depend on more specific aspects of the individual's machinery, either how it
works or how it's configured. It is an interesting question, one which I cannot now

answer, whether the backward transfer dynamic would occur with any agent whose
learning machinery works in any sensible way. A dynamic description is not simply
a description of an agent's outward behavior. A dynamic describes a recurring

A2c. Machinery and dynamics 25

causal chain in which components of the individual's machinery participate on an
equal basis with objects in the world.

4. A dynamic only continues occurring ceteris paribus; many different events might
interrupt it. You might use all the bowls in a stack for a party one evening so that
the next morning the newly reconstituted stack will be scrambled. The kitchen
might be closed. Someone might play my records in my absence. My file cabinet
might get moved. In studying an activity one concentrates on its more stable
dynamics. But any dynamic description that would aspire to the status of natural
law is limited by the possibility that any of a thousand additional factors might
arise to change the outcome next time.

5. Most likely these dynamic effects are unintended; usually they are unnoticed as
well. If they were intended or noticed, of course, they would still be dynamics.
It is common to notice and describe to yourself an existing dynamic effect. The
dynamic picture might then become more complicated if you begin deliberately
doing things differently or if you go out of your way to encourage or retard the
effect. Having noticed your stack of bowls segregating, you might deliberately put
a rarely-used bowl back in its place to make the commonly-used ones easier to
remove. Building residents might notice the prevalent pattern of rudeness and
resolve to be more polite. Noticing the backward transfer dynamic in action
definitely accelerates it, though I don't understand why. What's mort, once you
articulate a dynamic effect, the effect will often spread to new situations, even
without your specifically intending it to.

6. Activity in workspaces (kitchens, shops, desks, bathrooms, cars) tends to have a
great deal of dynamic structure. These places are also where our most complex
solitary activities take place. They are thus important laboratories of dynamic
theory. (For some wonderful stories about the dynamics of the use of appliances
and tools in workspaces and how the implications of these dynamics for design see
Norman 1988.) One central question is, how is it that we take so much advantage
of the dynamic structure of workspaces without representing most of it?

7. A dynamic description does not completely specify any particular workspace or
any particular episode of bowl-using or elevator-riding or record-playing or coat-
stashing. No matter how carefully you write out a description of an instance of
human action, I and many others have found through long experience, you will
always find yourself with more to write. Indeed, the very action of writing out a
round of description is generally enough to make you see a whole new dimension
to the action that you had previously overlooked. I don't know why this happens,
but it does. Fortunately, there is no need for completely specifications. We only
need enough dynamic theory to sufficiently constrain a theory of machinery.

How can ideas about dynamics help us find ideas about machinery? Accounts of
the dynamics of everyday life play two roles, one general and one specific. The general

26 Chapter A2. Machinery and dynamics

role is to impress us with the inherent orderliness of everyday life and thus make us
more confident in relatively simple accounts of machinery. The more specific role of
dyna mic descriptions is to help constrain particular aspects of the machinery. Any
machinery issue (such as timing, state, speed, digital vs. analog, or noise tolerance)
makes predictions about dynamics. Once you have a dynamic question in mind, you
can consult the reality of everyday life. Indeed, observations of everyday life should
be an everyday part of computational research into any aspect of activity. If you are
preoccupied with some technical question, often you will simply spontaneously notice
what you need to know as you're making breakfast or taking out the trash. Or you
might watch somebody else's activity or look at a videotape.

In working backwards from observations about dynamics to hypotheses about ma-
chinery. it helps to imagine that someone explicitly designed the machinery for everyday
routine activity. What was the designer's reasoning? What dynamics do various sorts
of machinery get themselves into, how do these compare to the dynamics we observe,
and what design principles do these comparisons suggest? The answers to these ques-
tions will raise new questions which occasion further observation. Repeat this cycle of
theory and observation a hundred times and you'll be ready for rigorous experimental
tests. I've been through it on two large occasions and several small ones. The first large
occasion produced the idea of running arguments (see Part B), the second the idea of
deictic representation (see Part C).

An account of the dynamics of everyday life explains what the machinery is re-
sponsible for. The machinery, in turn, determines what accounts of dynamics can be
explained. Machinery and dynamics constrain one another so strongly that accounts of
machinery and dynamics should be developed in parallel. Otherwise, one will inevitably
be misled into positing useless machinery and unimplementable dynamics. A contrary
view insists that "you can't design the machinery unless you know what it's going to
compute." Such a slogan tends to emphasize the virtues of generality and explicitness
and discount the constraints of physical realization. This is a mistake. One might
formulate the what's-computed in many ways, and today's neglect of implementation
issues brings tomorrow's baroqueness and intractability.

The most important principle of interactionist methodology is machinery parsimony.
Postulate the simplest machinery that is consistent with the dynamic phenomena you
understand. When you feel the need for extra machinery coming on, go look at the
phenomena and ask what people really do. Do this even if your goal is engineering
and not psychology: if people don't do something, they probably have a good reason
not to. Rigorously applying this principle, we will discover repeatedly that the deeper
your understanding of dynamics, the simpler the machinery becomes. This is much
preferable to the more common approach of automatically ascribing any regularity in
human activity to explicit representations and general algorithms residing in the head,
leaving 'efficiency' for someday.

Why does an understanding of an agent's interactions with its world lead to simpler
hypotheses about its machinery? Real agents lean on the world. The world is its own

A2c. Machinery and dynamics 27

best representation and its own, best simulation. It isn't an obstacle or a problem, it's
a helpful place. Your interactions with the worki, both past and present, provide many
ways to alleviate computational burdens. Why conduct elaborate deductions about
your surroundings when you can look and see? In particular, why maintain elaborate
control structures when you can look and see what needs to be done? Why make highly
detailed Plans when you can improvise? Why require instant expertise when you can
improve by just keeping on doing it? Why try figuring it out yourself when you can
collaborate with others who have been there? Why insist on figuring out every situation
afresh when you can trust your accumulated experience? All these dynamic phenomena
can work together to suggest imaginative ways to simplify machinery or even eliminate
parts of it altogether. Put someone in solitary confinement and they fall apart: people
rely on the organizing presence of the world.

I am suggesting an inversion of values, not only in artificial intelligence but in all
forms of computational and psychological inquiry. Faced with an empirical phenomenon
to explain, our first explanatory recourse should be to dynamics, not to machinery.
Faced with a technical problem to solve, our engineering should begin with dynamics,
not with machinery. Heretofore, people have gotten prizes for inventing new machinery.
But we've got far too much machinery. I would like to suggest that people get prizes
for getting rid of machinery. One should aspire to invent novel dynamic effects and
experience regret when forced to invent novel devices. In Parts B and C of this thesis
I am going to state, dead seriously, that plain, ordinary combinational logic suffices to
support some important dynamic phenomena. But combinational logic is obviously not
the critical contribution of my work. If I were inventing simple machinery for its own
sake, I would be wandering in mechanism space. And if I were mindlessly applying
my ideas about machinery to every next problem, I would be missing the point. My
contributions are my description, admittedly sketchy and provisional, of some of the
dynamics of everyday routine activity and my suggestions about how a particular type
of simple machinery is capable of participating in these dynamics.

Where should we start? Psychology must account for a wide range of phenomena,
but research must find some principled way to focus its attention. Focusing on a par-
ticular domain, in itself, usually doesn't isolate a research problem, since most dynamic
phenomena operate in most domains. In other words, any given activity is just as com-
plicated as activity as a whole. One might also try focusing on one module of machinery
at a time. This works fine for peripheral faculties like vision but there are good reasons
to believe that the central system isn't and couldn't be modular (see Fodor 1983).

My own approach is to focus on particular dynamic phenomena. In this report I will
consider some of the dynamics of everyday routine activity. Everyday routine activity
is a promising place to start because it is the most pervasive and representative sort
of human activity. Every activity is built on a base of unproblematic routine. By
studying routine activity, I start studying everything. Everyday routine activity is also
the sort of activity our cognitive machinery was designed for. Studying everyday activity
encourages a realistic picture of everyday life as benign and orderly. It no longer seems

28 Chapter A2. Machinery and dynamics

necessary to invoke general-purpose methods at every turn.
I will further restrict my attention in three ways. First, I will only consider solitary

activities. (See Chapman (forthcoming) for a start on cooperative activities.) Second, I
will consider only adulthood and not development. Third, I will only attempt to explain
the steady state of routine activity. In other words, I will concentrate on the dynamics
that don't involve learning. Even with these restrictions, we can make some good
guesses about architectures. I will offer several initial suggestions about the dynamics
of learning, but I will present no actual learning scheme. Lacking detailed theories of
the dynamics of personality development, I will play programmer throughout, building
whatever structures seem to work within principled limits.

A2d Why be concerned with dynamics?

There are several reasons to be concerned with dynamics.
The dynamics of everyday life describe what our cognitive machinery does: its op-

eration is a critical part of our purposeful activity in the world. Simple as this claim
sounds, though, its actual substance compared to existing Al practice is subtle. Method-
conscious AI people already claim to work from a specification of what their devices
are to do. At the level of the theorist's design of an agent's machinery, the machinery
is typically broken into modules, each of which solves (even if heuristically) the general
case of some formal Problem. At the level of the agent's concrete actions in the world,
these actions are typically specified in terms of a Plan, that is, an explicit representation
of primitive actions to be performed and their expected consequences.

(I've capitalized 'Problem' because, as with 'Plan', it's important to avoid confusing
them with the ordinary word. The capital-P notion of 'Problem' is the theory-of-
computation notion of a function from discrete inputs to discrete outputs, not the
notion that comes with the slogan of 'problem solving'. I also disagree with problem
solving as a view of action, but that's a different matter. See Section C5d.)

Both Problems and Planning suggest misleading metaphors of activity. Each of them
concentrates on the boundaries of a module. A problem or goal arrives, thinking takes
place, and a solution or Plan emerges, eventuating in a stretch of action. Improvisation,
contingency, feedback, or midstream changes have no place in this picture. Nothing
happens that the agent doesn't make happen, and nothing consequential is true that
the agent doesn't represent. Focusing on the action within a self-sufficient module
makes it easy to forget the outside world altogether. To put the world back in the
picture, we have to understand what really goes on in the world. The aspects of the
world that matter are the dynamic ones: that things tend to stay put, that habits have
cumulative consequences, that you are more likely to notice things that are out in the
open, that one automatically remembers how to ride a bike but doesn't automatically
remember people's names, that if you keep on consuming a resource it runs out, and
so on. Dynamic matters have their own laws; these laws would be hard to express by
talking only about machinery.

A2d. Why be concerned with dynamics? 29

Disregard of dynamic matters leads to two forms of confusion that may seem to
cancel but in fact are tenaciously cooperative. Without any sense of what an agent in
the world does and doesn't have to do, one must assume the worst and design algorithms
that can solve the general case. But that same ignorance also allows oversimplifying
metaphors to seduce one into trivialized formalizations of the issue at hand. The more
intractable one's formalizations become, the less motivation there is to adopt more
realistic ones. One example of this destructive symbiosis is general-purpose Planning.
A theorist designing a general-purpose Planner has no way of knowing what cases are
actually important to get right because the criteria are infinitely variable and can only
be known when the time comes. As it turns out, general-purpose Planning is intractable
or even undecidable for any but the most watered-down formalizations. (Section A2f
will discuss these results.) Planning as it is generally formalized cannot model the
full complexity of real human activity, but only the simplest possible formalizations
seem technically practical. (Section C5c will discuss some particular proposals in more
detail.) In short, general-purpose Planning is a conceptual black hole attracting anyone
who neglects to work out the dynamics of activity the world of their interest.

Similar comments apply to attempts to study individual 'domains'. Restricting
oneself to a single domain, like chess or medical diagnosis or stacking blocks, is no
help because all nontrivial human activities appear to exhibit most of the important
dynamic phenomena. As a result, it is a rare Al project that doesn't make a mockery of
its domain, isolating a real computational issue only by boiling the domain down to a
formal puzzle. To salvage any methodological respectability one must solve this puzzle
in the general case, the same black hole.

The origin of these black holes is the very attempt to view situations in everyday
activity as 'cases' of a 'Problem'. One must always ask, which dynamics are actually
needed, and which actually occur? When you are faced with a real live problem (in the
ordinary sense of the word), you have many advantages over a Planner or other general
algorithm. You have a past which has provided you with relevant experience. You have
a future which goes on whether you succeed or fail, provided you don't get yourself
killed. You have all the resources of the situation to help inspire you to solutions. Most
importantly, you know why you care about this problem. You can judge what's good
enough, you can decide to take a different tack, or you can decide to give up and move
on. A general-purpose algorithm can't make judgements like these because there is no
a priori limit on what might be relevant to them. The usual result is a simplifying
assumption that no such judgements are to be made, or only a very narrow, restricted
class of them. The resulting general problem is almost invariably intractable; thus the
black hole.

Getting out of these black holes requires an account of the dynamics of everyday
routine activity as a whole. To understand the problem, it helps to think of all technical
difficulties in Al as falling into two classes, OR problems and NOT problems. OR prob-
lems come from the need to anticipate all contingencies through search. When either X
or Y might happen, one must search through both and risk a combinatorial explosion.

30 Chapter A2. Machinery and dynamics

NOT problems come from the all-too-familiar gap between knowing something to be true
and merely having failed to prove it false. Attempts to build general-purpose Planners
encounter both OR problems and NOT problems, as will any general-purpose algorithm.
Somehow an agent acting in a concrete situation must have a sufficient grasp of the
totality of what-might-be-going-on that general search is unnecessary and a policy of
acting on any idea that isn't obviously wrong won't be fatal.

A2e Architecture and personality

The machinery is made of an innate architecture and an acquired personality. After
defining these terms I will discriss how they relate to issues of dynamics.

The word architecturc used to concern buildings; here it comes from computer design.
Architecture is the machinery you are born with. A theory of architecture should
explain what sorts of things are in the machinery, what they do, how they interact,
whiA happens in serial and what in parallel, and roughly how fast things happen. Many
standard computational design issues arise: whether there are latches, whether there is
a clock, whether there is persistence and delay in the circuitry, how new connections
get made, and whether everything can really be connected to everything else.

Most existing computer architectures are specified in terms of their instruction sets;

the machine interprets instructions and has a many-layered memory hierarchy. The
kind of architecture envisioned here is quite different. It has two regions, the (modular)
periphery, which concerns low-level perceptual and motor operations, and the (nonmod-
ular) center, which concerns everything else. I'll assume the picture of the periphery
outlined by Marr (1982) and Fodor (1983). In particular, the boundary between pe-

riphery and center is clearly defined. Our main topic is the center, for which modular
methods are entirely inappropriate.

The possibility of distinguishing the center from the periphery does not imply that
we can study it in isolation. The dynamics of an agent's involvements in the world

implicate the periphery and c3nter equally. Since concrete activities place the periphery
and center in constant interaction, the design of each of them strongly influences the
other. Part C will pursue this theme.

Personality, as I'll use it, is not the vernacular word but rather a computationalized
version of the psychoanalytic term. Your personality is the structure that gets built

within the central system of your architecture in the course of your life's activities. The
presumptions of this definition (that stuff gets 'built' in your head, that it is usefully
spoken of as 'machinery' and as having a 'structure') are part of the burden of my
argument. Your personality, according to this argument, is a large network that is
accumulated by a dependency-recording mechanism (see Part B). The word network
is ambiguous: this is a network in sense of a physical device, not in the sense of a

datastructure (as in the phrase 'semantic network'). The theorist inquires into the
structure of the network. Of course, the network can vary among individuals and be
a mess in all of them. But in the light of dynamic theory there is much to say about

A2f. Complexity and efficiency 31

personality structure, on both large and small scales.
Architecture and personality both interact strongly with dynamic issues. By working

out enough of these interactions we can hope to arrive at a finished theory of architec-
ture. The simpler the architecture the more hope there is for an early victory. So far
I've been able to do a great deal with only simple assumptions about architecture, but
obviously many issues remain.

Details of architecture design have dynamic consequences. Much of the present
argument about architecture proceeds directly from claims about dynamics, though it
soon becomes necessary to take aspects of personality structure into account. Given
any new phenomenon to explain, it is always tempting to postulate a new special-
purpose architectural feature. But machinery parsimony requires an honest hunt for
possible dynamic explanations that involve little or no modification to the aspects of
architecture you already believe in. For example, often one can explain the phenomenon
by making some assumption about personality structure. In this case you must search
for dynamics that might give rise to such structures.

Once the outlines of architecture have been settled, matters of personality have
their own intricate dynamic consequences. How you live your life depends on your
personality and on the world, and your personality depends on how you have lived
your life in the past. This dialectic is exceptionally important for infants and small
children because they are laying down the most basic aspects of their personalities.
The dialectic is probably simpler in adulthood. We might idealize it as follows. Most
of the time your life is in equilibrium. Nothing new is happening and there is an
established, routine way of dealing with every situation. Then something new happens:
a novel opportunity, discovery, contingency, or responsibility. In dealing with it you
do something new, augmenting your personality with the new skill and thus modifying
the dynamics of your life. Your new action will generally bring about another novel
opportunity, discovery, contingency, or responsibility. This cycle continues until your
life achieves a new equilibrium.

For example, someone gives you a package of loose tea. To use it, you have to acquire
the right equipment. Then you have to learn how to use it through a series of firsts: first
time opening the package, timing the brew, washing the equipment, putting it away,
finding it again, discovering its quirks. Your routines for using it evolve. Eventually you
get it down. The value of dynamic descriptions is evident here: as a result of a single
event, your machinery is modified in dozens of separate ways whose interconnection is
only comprehensible in terms of the dynamics of tea-making.

A2f Complexity and efficiency

It would be nice to have some principled method for evaluating computational theories
of action. The most widely used technical vocabulary for comparing the efficiency
of different computational methods is the computation-theoretic notion of asymptotic
Complexity (Tarjan 1987). Complexity theory can seem perverse to the uninitiated. A

32 Chapter A2. Machinery and dynamics

br.ef review will help remind us why the uninitiated are right. In particular, we will see
how poorly suited Complexity theory is for discussing the appropriateness of an agent's
machinery for its ongoing life in its world. Computational Complexity is defined with
reference to a mathematical entity called a Problem, which is a class of formal input-
output pairs. It envisions a machine engaged in a stylized dialog with an interlocutor.
The interlocutor presents the machine with an input and waits until the machine replies
with a corresponding output. Typically the interlocutor requires that the output be the
exact output specified for that input by the Problem. In this case we say the machine
'solves' the Problem.

The sequence of queries is arbitrary. The machine cannot maintain any internal
state between queries. Typically, the machine will provide the same output every time
a given input appears. If not, such as when the machine employs some randomizing
device, there is no significance to which particular output the machine returns on a
given occasion.

(Incidentally, I capitalize Complexity because, notoriously, it bears little relationship
to any vernacular notion of complexity. Indeed, the simplest method is ofter, the most
Complex and the least Complex method is often very complex.)

Complexity theory is concerned with some properties of this dialog. The best-known
theorems concern 'asymptotic worst-case time Complexity'. This is a measure of how
long the machine takes to return an output as a function of the 'size' of the input. (What
aspect of the inputs should be accounted as their 'size' is often a topic of dispute.) The
theorems concern the behavior of this function as 'size' grows infinitely. To make sense
of this concern, one imagines the machine to have an infinite supply of 'memory' or
'tape' or, in the case of parallel machine models, 'processors'. Given a Problem, one
defines the Complexity of a Problem as the best Complexity function one can obtain
across all machines in some class that solve that Problem. It is typically accounted a
positive result if this function is bounded by some polynomial in the input size, and a
negative result if this function is exponential in the input size. For example, a Problem
would be exponential if, by adding one new element to the input, one could always
double the amount of time required to produce the required output. A polynomial
Problem is said to be tractable and an exponential Problem is said to be intractable.

The view of activity envisioned by the metaphors of Complexity theory is mentalistic.
A definite boundary separates the machine from its interlocutor. Only the occasional
input or output crosses this boundary. One discusses processes that occur entirely within
the machine. Beyond the constraints on single isolated input-output exchanges, one
cannot discuss any significant property of the dialog between machine and interlocutor.
The machine has no internal state and thus no continuing identity. The machine cannot
refer back to its interlocutor, much less to some 'world outside', in the course of its
deliberations. If it cannot produce the required output given only the required input
then it simply fails. Thus the input must encapsulate all the information that might
be relevant to the machine's reasoning. Indeed, in Al a Problem's input often includes
something called a 'situation', as if a situation were something one could 'pass in' to a

A2f. Complexity and efficiency 33

machine. Considerations of the Complexity of an AI algorithm become a function of
the 'size' of a situation, whatever that means. These properties of Complexity theory
bear little relation to the job of being an agent in a world.

In 1985, Chapman proved a series of Complexity-theoretic results about conventional
nonlinear Planning. A Planner takes a (description of a) situation and a (description
of a) goal as inputs and produces a Plan as output. The Planning Problem specifies
a mapping between inputs and acceptable outputs, that is, correct Plans. Input size
is reckoned in terms of the sizes of the situation and goal description. The Planner is
organized as a nondeterministic search through the space of partially specified Plans.
As soon as this search finds an acceptable fully specified Plan it returns. The algo-
rithm's inner loop is the subroutine that checks the partially specified Plans. Chapman
asked about both the Complexity of the checking subroutine and the Complexity of the
nondeterministic search as a whole. These Complexities depend on exactly how one for-
malizes situations, goals, and Plans. There appears to be no way to guarantee that the
search itself will succeed, even when a correct Plan exists. This has not been a problem
in the simple cases that have been tried. More striking is the number of assumptions
required to make the Plan-checking inner loop itself tractable.

"* Atomic actions.
"* Atomic domain propositions.
"* No loops or branches in the plan.
"* No derived side-effects.
"* Effects may not depend on the situation of action.
"* No resource constraints.
"* Goals are conjunctions of atomic propositions to be achieved.
"* No autonomous processes.

Each of these assumptions, once interpreted in terms of ordinary activities, is violated
all the time in everyday life. But eliminating any one of them makes Plan-checking
hiLractable. (Most of these results are described in Chapman 1987, which explains the
jargon. The rest are personal communications from Chapman and easy to rederive given
the already published proofs.) Few interesting tractable relaxations of them are known.

These are, by conventional standards, extremely negative results, about as negative
as one could imagine proving. At first Chapman and I were both very pleased with
these theorems. We knew there was something wrong with Planning and we hoped to
parlay his results into a general argument against it. It soon became clear, though,
that they are of little value because asymptotic worst-case time Complexity has almost
nothing to do with AL.

* Nobody is expected to plan themselves out of a worst case. One would like to
speak of 'average case' Complexity, if only one could find a defensible way to define
the 'average case' of Planning. We would want to weight the different Planning
situations by the frequency of their occurrence, or their importance, or something
like that.

34 Chapter A2. Machinery and dynamics

" Heuristic methods and the attendant occasional screw-ups might be permissible if
they bring tractability, if only one could find a defensible way to define 'occasional'.
It seems likely that assessing the seriousness of a screw-up might require a great
deal of knowledge about the situation and about what other considerations might
be active.

" Approximately correct Plans might also be permissible if they bring tractabil-
ity. Again, one needs a defensible way to define this 'approximate correctness'.
It seems likely that assessing degrees of correctness also require a great deal of
knowledge about the situation and about what other considerations might be ac-
tive.

Upper-case Planning and upper-case Complexity have a conspiracy going. Upper-
case Planning is an upper-case Problem. One rates Problems according to their Com-
plexity. But negative Complexity results don't seem capable of definitively refuting
Planning as a way of understanding the organized nature of human activity. This isn't
fair. What's going on?

The original problem, common to Problems, Planning, and Complexity alike, is the
inappropriate metaphor-system of inside and outside, boundary and contents. Activity
in the world is just not like that. In the context of Complexity-theoretic analyses of
Planning, the artificiality of mentalistic metaphors manifests itself in the need to 'pass
in' the entire situation to any process of making or evaluating Plans. As so often, an
artificial effort to reconstruct the world within the agent's head must compensate for
mentalism's artificially rigid boundary between inside and outside. In practice, this
tactic entails domain representations that cut a situation's description to a minimum.
Ordinary activity is not amenable to such rigid a priori circumscriptions of relevance.

A2g Interactionism abroad

Systematic application of themes of interaction, participation, and activity is a novelty
in the technologically oriented human sciences, but not elsewhere. I have learned a
great deal by reading interactionist literatures in other fields. All of this work is grossly
incommensurable with existing computational vocabulary. Nor do these projects rep-
resent any kind of unified movement; indeed they regularly disagree with or ignore
one another. Moreover, most of their central figures would be wary about the use to
which I am putting them here. Nonetheless, their shared themes offer a powerful al-
ternative to the mentalist metaphors that burden artificial intelligence and cognitive
science. Authors working within or inspired by cognitive science have made other, con-
flicting interpretations of some of them, but as you might expect, I regard most of these
cog-tivist appropriations as superficial or mistaken.

These writers are strikingly original thinkers and do not fall into helpful categories, so
let us consider them alphabetically. I will try to summarize their work briefly though this
is an impossible task, comparable to briefly summarizing literary criticism or chemistry

A2g. Interactionism abroad 35

or Buddhism. All of them were active in this century or are still active today. The list
is incomplete and omits many important figures.

Eric Berne was an American psychoanalyst who founded a school called transac-
tional analysis. Although he saw his work as a development of Freud's formulations of
psychoanalysis, he stated most of his important ideas in plain English in his best-selling
books Games People Play (1964) and What Do You Do After You Say Hello? (1972).
Insofar as Berne's books effectively founded the genre of popular self-help psychology,
he is often not taken seriously. This is unjust. Berne mapped the recurring patterns
of interpersonal entanglement he called games, describing what made each participant
willing to participate in them. Berne developed his ideas into a markedly democratic
form of group therapy based on using observations of individuals' unconsciously habit-
ual games as ways of identifying and facing their underlying conflicts. Though some of
Berne's particular formulations have dated with the growth of feminism and of object-
relations psychoanalysis, his methods have had a wide influence.

Mark Bickhard is a psychological theorist who has developed a distinctive approach
to psychology he calls interactivism. Although my attention was drawn to Bickhard's
work only in the last year, some of his interests bear a striking resemblance to my
own. For Bickhard, representation is interactive and functional and knowledge cannot
be thought of as having the sort of structure we associate with symbolic programming
(Bickhard and Richie 1983, Campbell and Bickhard 1986). Bickhard does not connect
his work to computational themes, but this would be a interesting project.

Wilfred Bion was a British psychoanalyst who moved back and forth between the
British object-relations school of psychodynamic theory and his own distinctive theo-
ries of group dynamics (1970). Expanding on the psychoanalytic principle that one's
personality is organized through one's formative interactions with other people, Bion
stressed the analogies between unconscious experience and the processes that arise in
groups, be they families, circles of friends or colleagues, or therapy groups. He stressed
the success or failure of a group in 'containing' the potentially disintegrative stresses
experienced by the individual and he connected this theme to the individual's forma-
tive experiences of containment. The only accessible introduction to Bion's ideas I've
encountered is (Hinshelwood 1987).

Harold Garfinkel is an American sociologist who founded a school called ethnomethod-
ology (1967). While passionately concerned with the classical sociological problem of the
nature of social order, ethnomethodology starts from a radical critique of the nature
of sociological theorizing-and, by extension, of all theorizing about human activity.
People predicate their actions on the existence of companies or parking spaces or rules
or plans. We can study those actions but to endow those companies or parking spaces or
rules or plans with any objective existence would miss the whole point. All those things
are collective fictions kept alive from moment to moment by the cooperative actions of
individuals. For Garfinkel, this phenomenon recommends a severe methodological par-
ticularism that is both constraining and liberating in ways that are difficult to express.
Garfinkel's writing is difficult, and for good reasons, but (Heritage 1984) is an accurate,

36 Chapter A2. Machinery and dynamics

clear introduction. Suchman (1987) has been productively practicing ethnomethodology
in the analysis of computer-based office automation systems that use AI concepts.

James J. Gibson was an American perceptual psychologist who reacted against the
prevailing notion of visual perception as the extraction of information from single, iso-
lated retinal images (1985). Instead, he proposed a theory of direct perception according
to which the visual system evolved to pick up invariants of the physical world over time
(1979). He also described objects in the world as bearing certain affordances which
onter into their characteristic patterns of sensorimotor interactions with human beings
(for example, handles afford grabbing and pulling). Gibson's theories have been heavily
criticized within computational vision research for their lack of a clear computational
foundation (Ullman 1980), but computational theorists have paid less attention to his
useful insistence that vision research start with environmental invariants and recurring
forms of interactions between agents and their surroundings. For a brief account of
Gibson's ideas see (Hagen 1985).

Martin Heidegger was a German philosopher who based his profound revision of
Western philosophy on a careful description, in his 1927 book Being and Time, of the
experience of engaging in everyday routine activity. He attempted, with substantial but
incomplete success, to systematically reject the opposition between a perceiving subject
and an independent external object and the attendant problems of epistemology and
ontology. Instead, he described our experience of things as fundamentally bound up
with their role in our ongoing projects. He also emphasized that our experience in the

world merges indistinguishably with that of our neighbors and that our practices for
getting along in the world merge indistinguishably with the traditions handed down
through our culture. Heidegger's philosophy was the principal basis of Dreyfus' analy-
sis of AI in his unfortunately titled book What Computers Can't Do (1979). Dreyfus
views Al, correctly I believe, as having developed within a tradition largely unaffected
by Heidegger's thought and the rest of Europe's twentieth-century innovations in phi-
losophy. For a careful and sensible analysis of Dreyfus' arguments see (Preston 1988).
Heidegger's writing (at least in Division I of Being and Time, which is the relevant text
for our concerns here) has a crystalline precision that is hard to comprehend unless you
already have some idea what he's trying to do. (Dreyfus forthcoming) is an excellent
guide to the text.

Kenneth Kaye is an American developmental psychologist whose book The Men-
tal and Social Life of Babies carefully describes the evolving dynamics of interactions
between infants and their parents, starting from the very simple interactions involved
in feeding and into the critical ability, seemingly specific to human beings, to take
turns in play and conversation. Once these turn-taking dynamics are in place, they
form a stable foundation on which much more complex patterns of interaction can be
built. Kaye emphasizes that the evolution of these dynamics depends critically on the
parent regarding the child as more intelligent, rational, knowledgeable, goal-directed,
comprehending, cooperative, etc. than the child really is. Unfortunately, his theorizing

is limited by the primitive theories of action and communication he has available to

A2g. Interactionism abroad 37

describe the phenomena he has observed. (His theory of action, for example, is taken
from Miller, Galanter, and Pribram.) I expect that more sophisticated ways of talking
about activity can help turn Kaye's observations into a useful proposal about how an
infant's learning machinery can exploit the interactional regularities Kaye observes.

Jean Lave is an American anthropologist whose studies of everyday cognition have
been heavily influenced by Soviet activity theory and exhibit a theoretical depth and
rigor that is rare in this country. Her book Cognition in Practice (1988) explores the
peculiar fact that 'just plain folks' who score poorly on school arithmetic tests and
consider themselves bad at math perform very well on the complex calculations required
to shop in the supermarket. She rejects the view of cognition as something that takes
place in the head. Instead, she view cognition as a concrete activity that takes place in
the individual's interactions with the physical and social world. Her more recent work
has elaborated these themes in the context of a study of apprenticeship among West
African tailors.

Richard Rorty is an American philosopher who, after a long and distinguished ca-
reer as an analytic philosopher, embraced the Continental philosophies of Derrida and
Heidegger and began to question the claim of philosophy to a foundational role and,
more particularly, the central claims of the traditional Anglo-American philosophies of
mind and language. His book Philosophy and the Mirror of Nature (1979) deliberately
subverts these projects from within with arguments on their own terms. He also de-
scribes in clear terms (in Chapters 1 and 3) the history of mentalism, thus allowing
it to be seen as the contingent result of particular choices rather than as an invisibly
monolithic fact.

Harvey Sacks was an American sociologist who had an uncannily precise eye for the
methods by which people maintain the often-invisible rules of social conduct. Along with
Emanuel Schegloff and Gail Jefferson, he founded a discipline of conversation analysis,
which investigates the properties of ordinary, naturally occurring conversations through
extraordinarily detailed studies of tape recordings and videotapes. For example, one
of the first important papers of the field, (Sacks, Schegloff, and Jefferson 1978), is a
close analysis of the dynamics of turn-taking in conversation. Sacks, unfortunately,
died before writing very much. The vast majority of his ideas are only available in
transcripts of his lectures. These lectures are currently being edited for publication.

Harry Stack Sullivan was an American psychiatrist whose interpersonal theory of
psychiatry centered on the interactions ('dynamisms') between people rather than on
structures and processes in their heads (1953). His psychology traces the patterns of
interaction characteristic of various points in the human life cycle and traces the ways
they can go wrong through unfortunately formative influences. Sullivan's work can be
refreshing insofar as he was the last important clinical psychologist not to be heavily
influenced by Freud. His writing is also perfectly clear.

Lev Vygotsky was a Russian social psychologist who emphasized the role of the so-
cial environment in individual development. His principal work was his book Thought
and Language (1934). (For an anthology of his articles see Vygotsky 1978.) One of

38 Chapter A2. Machinery and dynamics

\°ygotsky's important ideas is that cognition arises through the internalization of col-

laborative acti% ity. This idea has inspired a productive school of Soviet activity theory
that investigates human psychology in its social context. Much of this work has not
been translated into English, but an introduction to it is available in (WVertsch 1985).

Donald Winnicott was a British psychoanalyst who brought his long experience as a
pediatrician to the task of psychoanalytically reconstructing the earliest experiences of
his adult patients. It must be said that psychoanalysis has come a very long way since
Ihe crude, sexist, mechanistic ideas that originated with Freud. The credit for these sub-
sequent developments must be split many ways, but Winnicott was an important figure
in the early development of the object relations school, which focused on the structure
of individual's formative interactions with other people, particularly their mothers, and
the consequences of these interactions for one's experience of human interactions later
in life. Winnicott emphasized the basic trust in the world that is necessary for healthy
living. In particular, he described the conditions that permit the infant to feel able to
embrace the reality of a world independent of its own desires. Through investigation of
the consequences of an untrustworthy early environment, Winnicott described the kind
of early basic emotional contact and practical support he referred to as holding. Winni-
cott's views strongly influenced the theme of dynamic holism that Chapter A3 begins to
develop. Winnicott's writing is a model of clarity. Start with his anthology Playing and
Rcality (1971) or with his posthumously edited manuscript On Human Nature (1988).

Chapter A3

Walking to the subway

Joshu asked Nansen: "What is the path?"
Nansen said: "Everyday life is the path."
Joshu asked: "Can it be studied?"
Nansen said: "If you try to study, you will be far away from it."
Joshu asked: "If I do not study, how can I know it is the path?"
Nansen said: "The path does not belong to the perception world, neither

does it belong to the nonperception world. Cognition is a delusion and
noncognition is senseless. If you want to reach the true path beyond doubt,
place yourself in the same freedom as the sky. You name it neither good nor
not-good."

At these words Joshu was enlightened.

Mumon's comment: Nansen could melt Joshu's frozen doubts at once
when Joshu asked his questions. I doubt though if Joshu reached the point
that Nansen did. He needed thirty more years of study.

In spring, hundreds of flower's; in autumn, a harvest moon;
In summer, a refreshing breeze; in winter, snow will accompany you.
If useless things do not hang in your mind,
Any season is a good season for you.

Ekai, The Gateless Gate, 1228. In Paul Reps, ed, Zen Flesh, Zen Bones,
Anchor Press, no date.

A3a Context and summary

I live in Boston, in a loft on the top floor of an old factory building at the relatively safe
end of Edinboro St, a dirty, noisy side street in Chinatown. On about 400 mornings over
three years I have walked from my home to the Washington St subway station, a distance
of about three blocks, starting down Edinboro St and crossing Essex St to the Avenue

39

40 Chapter A3. Walking to the subway

'LL
CH A a 4e Ai

Il FOX F

Figure 1. Boston's Chinatown circa 1986. I have often walked from my apartment or
Edinboro St to the Washington St subway station entrance on Chauncy St.

de Lafayette (no kidding), which I cross to cut diagonally across a parking lot and
continue down Chauncy St to the subway entrance. Each morning's navigation of these
three blocks is informed by a great deal of history. I propose to narrate my morning's
walk to the subway, pausing along the way to point out and summarize some important
dynamic themes. (The route evolves continually, both because I discover new aspects
of the landscape and because the landscape changes. I wrote the narration in early
1986 and the dynamic analysis in early 1987.) These themes have been omnipresent in
my investigations of routine activity. Together with the dynamics of routine activity in
workspaces, they are the principal motivation for my theories of machinery.

I should make clear that this narrative is not a 'complete theory' or a 'worked-
out example'. One should not expect this to be possible-at least without massive
simplification-since most of the important dynamic phenomena occur in any non-
trivial activity. To exhaust this example would be to present a complete theory of
human activity. (Indeed, this is regularly true of narratives covering half a second.)
Interesting dynamic issues are involved in keeping my balance, sighting the spot where
I'll put my foot when stepping onto a curb, fishing a subway token out of my pocket,
and so on, but I don't understand them very well.

As a summary, here are the important dynamic issues that will alise here.

1. The nature of plans. No plan could ever be so exhaustive tha.ý you could me-
chanically 'execute' it. Carrying out a plan requires continual improvisation, in-

A3a. Context and summary 41

terpretation, and fine judgement-especially about whether to revise or abandon
the plan in mid-course. This is just as well, given that you're probably not doing
anything else with your brain while you're out there following the plan. Real plans
can be concise compared to Plans because they can rely on many aspects of how,
where, and by whom they'll be used. See (Agre and Chapman 1988) for a longer

discussion of plans.

2. Routines and their evolution. Everyday life is, for the most part, routine. Our
everyday interactions with familiar people, places, and things tend to fall into
recurring patterns called routines. This chapter, for example, describes my routine
for walking from my apartment to the subway. A routine, like any other dynamic
entity, is just a theorist's construct. A routines, in particular, is not a plan.
Someone engages in a routine because, for whatever reason, their interactions
with a certain environment regularly work out a certain way. Routines are not
plotted out from scratch. Rather they evolve as the relevant agents pursue their
ordinary activities. New routines can evolve fairly quickly, but the vast majority
of everyday routines evolve slowly if at all. Section B2e describes routines and
their properties in more detail.

3. The accumulation of responses. When you do something repeatedly, you accumu-
late a repertoire of methods for dealing with the opportunities and contingencies
it tends to present. Individually these methods are useful for saving the trouble of
figuring them out again. Collectively they're an efficient substitute for paranoia:
after a while you can be confident you've seen it all. You can carry on assuming
that you needn't have any worries except the ones that come to mind on their
own. Section B2e will discuss further the dynamics of accumulated responses.

4. Visual routines. The dynamics of vision in real activities suggests a resolution
of the conflict between the 'bottom-up' and 'top-down' views. The periphery
continually performs calculations uniformly over the present pair of images; the
center continually applies a massive collection of possible lines of reasoning to the
problem of what to do now. At the boundary between them, the center poses a
serial stream of queries to the periphery. This view derives from Ullman's notion
of visual routines. Chapters C3 and C4 wilt describe visual routines in detail and
discuss an implementation of them.

5. Improvisation. Everyday activity, however routine, is not a matter of mechanically
following a plan. You might or might not have plans and signs and shopping lists
to help you carry on your daily activities, but in any event you must continually
redecide what to do. Everyday activity is, in this sense, fundamentally impro-
visatory. Our activity takes account of multitudinous details of our surroundings,
conforming to their particular arrangements and continually either recommitting
to a course of action or else choosing a new one. The dynamics of improvisation

42 Chapter A3. Walking to the subway

will take different forms in different sorts of activities. Chapter C4 will discuss
the notion of improvisation in more detail.

Later we will see how some of these dynamics arise through interactions between par-
ticular sorts of machinery and particular sorts of worlds.

A3b The route

Walking in the city is not an abstract exercise. There is a city in front of you at all
times, making your task both easy and hard in ways that maps omit. City streets are
complicated places, crammed with people and things that have different significances
for different people at different times. Boston's navigational peculiarities are notorious.
We talk about the specificity of a place, but for 95% of the mundane business of walking
around, all cities are identical. To start with, sidewalks are paths.

Following a path is an extreme of unplanned activity. Paths tend to dissolve time
by presenting themselves as a heap of disconnected events. The landmarks along even
a very familiar path can be hard to recall in order unless some logic connects each one
to the next. This would matter if towns exchanged places in the night. Paths tell you
where to go. They don't need maps.

My route to the subway isn't an unambiguous path, but it still doesn't require much
of a plan. I don't remember if I first did it from directions or if I was shown. In any
event if I were to direct you to the subway, you wouldn't need any more plan than "left
out the door, cross straight over Essex then left up the hill, take the first right and it'll
be on your left," which is nothing next to the actual complexity of the trip. Consider
how much these directions leave out. "The door" is presumably the front door of the
building. There's no need to tell you to walk down Edinboro St in the direction that
"left out the door" will leave you headed; when you're on a path you don't need a plan.
No mention, either, of the fact that Essex St is not marked as such at its intersection
with Edinboro St, nor of the fact that it will be still entirely clear which street was
meant once you get there. (Experimental subjects given these directions were actually
bothered by a lack of a marking, though they got to the subway without incident.) "Left
up the hill" will manage to refer to the Avenue rather than to Essex St because it's the
only hill you can see when you're standing at that intersection looking that way. (If you
turn around and look hard, you can see another hill near the expressway interchange
about half a mile away.) Getting to the Avenue will require a brief rightward detour to
get around a fence. No need to mention either this detour or the necessity of crossing
the Avenue. The directions leave out the parking lot altogether; presumably you will
have the sense to see the first right coming and cut the corner; and it doesn't matter
if you don't. You'll also need the sense not to interpret a driveway or the parking lot
itself as that first right. Everyone relies heavily on these sorts of things when giving
directions. Some people are better at it than others. For example, experienced urban
direction-givers know that alleys often confuse people who've been directed to count
lefts or rights.

A3b. The route 43

When you're fllowing a plan, your surroundings ate available as a resource for
interpreting it. The existence of this resource in turn influences the phrasing of the
plan.

I was ill and consulting with a doctor. He wanted me to get an X-ray, so he
gave me some forms and told me to walk over to the hospital, several blocks
away. After determining that I knew where the hospital was, he said "Go to
the X-ray department. I'd explain where it is but it's too complicated. Ask
around, you'll find it." (I figured he must have been through this before.)
In the event, the only complicated part was locating a suitable entrance
door, the sign for which managed to escape me because of the architectural
chaos in the section of the hospital grounds I had walked into. There were
many doors but all had unpromising labels. At length the door labeled
"Neurosciences Outpatient Reception" sounded promising; as I approached
it I finally saw the signs labeling it as the entrance door I was seeking. (It was
obviously an entrance door once I managed to focus on it.) After walking
in, I scanned the opposite wall and immediately spotted a map with a You
ARE HERE. After scanning the map for about five seconds I found X-RAY,

found the YOU ARE HERE again, concluded I should turn right, and doing
so, immediately picked up a trail of X-RAY signs with arrows.

Likewise, a plan that refers to "the hill" counts (roughly speaking) on there only being
one hill apparent to someone who has gotten that far in the plan. A plan that instructs
you to "take the first right" counts on it being clear which street is indicated. 'Counts'
and 'clear' are defined reflexively, almost circularly, as that which a given person will
be able to figure out in a given situation. In particular, they leave it implicit that one
counts streets, not alleys and passageways and subway entrances. There's probably not
a rule for determining what to count, but it doesn't matter if it'll be clear when you get
there.

The plan also relies on your experience and skill. The instruction to "walk down
Edinboro St" assumes you have the sense to disobey it when the street is full of slush
or garbage or worrisome people, as it often is. The plan omits things you already know,
like how to cross a street, how to use street signs, how to notice another street coming
up, and where it's safe and legal to walk. It also omits things you can be trusted to
figure out for yourself, like how to recognize the subway station, how to wind your way
past the trash strewn outside Ming's grocery, and how to get some new directions if
you get lost. In short, plans are abbreviated in each of the many ways that you and
I share an understanding of the world (cf. Suchman 1987). (Future work will explore
the extremely complicated dynamics of these abbreviations. They have been extensively
documented by Garfinkel and others.) This is the only reason plans can be written down
at all. Plans are not algorithms; algorithms only work inside computers. Programming
texts that compare algorithms to recipes severely confuse this critical issue. (For more
about the nature of recipes, see Scher 1984. For a typical statement of the view that

44 Chapter A3. Walking to the subway

recipes ar- at best defective computer programs see Knuth 1984 page 6. See also Waite

1975.)

A3c Edinboro St

"One only knows a spot once one has experienced it in as many dimensions
as possible. You have to have approached a place from all four cardinal
points if you want to take it in, and what's more, you also have to have
left it from all these points. Otherwise it will quite unexpectedly cross your

path three or four times before you are prepared to discover it. One stage
further, and you seek it out, you orient yourself by it. The same thing with
houses. It is only after having crept along a series of them in search of a very
specific one that you come to learn what they contain. From the arches of
gates, on the frames of house doors, in letters of varying sizes, black, blue,

yellow, red, in the shape of arrows or in the image of boots or freshly-ironed
laundry or a worn stoop or a stairway's solid landing, the life leaps out at

you, combative, determined, mute. You have to have traveled the streets by
streetcar to realize how this running battle continues up along the various

stories and finally reaches its decisive pitch on the roofs. Only the strongest,
most venerable slogans or commercial signboards manage to survive at this
height and it is only from the air that one can survey the industrial elite of
the town ... beneath one's eyes."

Walter Benjamin, Moscow Diary, 1926, p. 25.

A path may tell you everything you need to know, but my path to the subway tells
me more than it used to. Anticipating a little, let us consider a certain tree along the
Avenue de Lafayette. Once "just a tree," this tree became "the tree that hangs too low
over the sidewalk," so I started walking around it. This transmutation didn't occasion
any fanfare; I'm sure a hundred more like it have escaped my theoretical curiosity
and go unremarked to this day. The tree presumably owes its significance to some

event from my past that somehow changed me. Perhips the tree has been assigned a
name which figures in full-blown representations relating it to axioms of eye-poking and

circumnavigation. But that seems like overkill. The psychic residue of my experience
with the tree has exactly one job: to notice the tree approaching and remind me of its

low clearance. Except for the very moment I'm rounding the corner onto the Avenue,
that bit of mental stuff is best to hide in some dormant lobe. In fact that's what it
does; I only managed to exhume it for you because my interest in navigation routines
made me notice my aversion to this tree one morning.

To avoid trivializing my case, I should distinguish two kinds of results of the history
of this walk. First there are the 'associations' and 'things I'm reminded of'. There are
hundreds of bits of text on doors and windows that my eyes happen past; they're all
familiar each time but I can only recall a few of them. The sincerely strident graffiti

A3c. Edinboro St 45

on various walls reminds me of its author, a remarkable individual late a neighbor of
ours. The incongruously unfaded yellow lines on the Avenue de Lafayette reminds me
that this historic-sounding boulevard was actually built in 1985 as an access road to a
shopping mall. Being reminded of these things no longer provokes any new trains of
thought, much less any memory of having been reminded of them. Their only distinction
lies in being so phenomenologically peripheral.

Reliable as they are, these effects make for less compelling arguments than experi-
ences that have influenced where and how I walk. The tree example is not particularly
consequential because my response to my tree is unvarying and might seem somehow
programmed. The calculations I make while walking down Edinboro St are more com-
plex. Though almost always perfectly routine, these calculations vary from moment
to moment and day to day as patterns of life evolve and experience accumulates. I
have never been assaulted or otherwise damaged on Edinboro St. On the other hand, I
have been obstructed by delivery trucks and garbage piles, bumped into by handtrucks,
intimidated by suspicious people, buzzed by cars of revellers driving on the sidewalk,
and felled by wintertime ice patches. I've also had occasion to step in pothole puddles,
ankle-deep slush, and the fishy slime that Ming washes from his loading dock. These
things don't happen very often, nor have they left any deep marks on me. Nonetheless,
they enter into every morning's walk in a routine, unspectacular way. Every moment's
step forward has a collection of precedents that apply themselves with no discernable
effort. I now anticipate the sections of curb where puddles collect, the handtrucks
emerging from behind the delivery trucks, the icky sheen on Ming's sidewalk, and so
on. Long before the activity behind Ming's hold me up I've checked if the sidewalk is
passable and crossed if it's not. I'm sure I couldn't write a program to assess the vary-
ing configurations of people, delivery trucks, garbage piles, discarded cleaning water,
stacked vegetable crates, and large angry fish being transferred between tanks. Such a
judgement becomes routine asymptotically as some space of combinations plays itself
out. Of course there's no reason to have any sense of this space, much less to imagine
what's left of it. On any given morning I deal with what's there. One morning I found
a large fish lashing about in my face.

If I never changed, I'd fall for the pothole puddles every morning. Obviously my
experiences have changed me. As Part B explains, I would like to explain these changes
in terms of dependency maintenance. The accumulation of responses corresponds to an
accumulation of circuitry; some combination of existing circuitry operates each morn-
ing.

My accumulated responses are useful both individually and as a group. Individually,
they save me the trouble of figuring out how to get around the trash, jump the puddle
in the gutter, wait for the store workers to go by with their loads, and so on. The first
time I had to take these actions, I had to stop, look around, figure out what was going
on, consider some options, choose one of them, look for any obvious pitfills, and go.
This took some thought, some looking around, and some time. Now I only perform the
minimum necessary thinking and acting, and doing so doesn't interrupt anything else.

46 Chapter A3. Walking to the subway

Considered as a group, one's accumulated responses offer a solution to the frame
problem. If you're considering taking some action, there is no way to prove that nothing
bad will come of it. Our thought underdetermines the world in endless ways. There
is simply not enough information. The frame problem renders any fixed algorithm
incompetent to decide what to do next. For example, one cannot address this difficulty
by inquiring into the properties of a single unified substance called 'uncertainty'. Calling
some mathematical idea by this name only confuses the issue. There are no proofs.
Existing planners can only prove the correctness of their plans because their domains
are artificially simple and their domain models are artificially tractable. Moreover, a
planner must prove the correctness of its plans. Otherwise there is no reason to believe
the plans will work.

The frame problem requires a holistic solution: not holistic machinery but a partic-
ular sort of dynamic holism. As you become experienced at something, you accumulate
ways of anticipating difficulties. Each pitfall in your catalog asserts itself whenever it
becomes applicable. Any action you consider gets performed unless a candidate problem
asserts itself. You're optimistic by default; you count on your accumulated responses to
qualify your optimism. This strategy sounds dangerous, but cultures are set up to make
it work by compensating for its systematic lapses and offering practices that amplify
its effect. One of these practices is the trick of looking around before taking a novel
action, just in case you spot something that signals a warning. Every morning, I walk
down Edinboro St like nothing's wrong. If I spot a delivery person with a handtruck, I
routinely figure I should cross the street to get out of the way. But if no warnings occur
to me, I walk straight on.

A3d Crossing Essex St

Using experience requires subtlety; one shouldn't give generalizations too much priority
over the actual circumstances of this morning's walk. It's all right to keep avoiding the
low spots even when it's dry, but specificity matters when you're crossing a busy street.
Not having grown up near a city I experience crossing a city street as a skill. What is
this skill made of? Most of the skill seems to apply to new streets, but at the same time
crossing Essex St seems a skill of its own. Essex St constricts to one narrow lane in front
of the Chinese markets as people load groceries into double-parked cars. Drivers who
see daylight at the end of this channel have long lost any sympathy for pedestrians. The
eye is good at extrapolating accelerating objects in rational situations-thus, trucks ac-
celerate slowly and so leave gaps in traffic-but not here. This particular generalization
has probably saved my life.

Once a hole opens in traffic and I start across Essex St, the scale of the landscape
suddenly increases as a big hunk of territory opens up. For the first time I actually see
the far sidewalk of Essex St, the rise along the Avenue de Lafayette, and the large open
space to which it leads. What's most remarkable about this space is the invisibility
of the buildings that bound it. Straight ahead is a featureless cube of beige brick I

A3e. L'Avenue de Lafayette and the parking lot 47

associate vaguely with the MBTA (the public transit authority). To the far left is the
back of a tall dark grey shopping mall-hotel-parking garage (after which the Avenue
de Lafayette is named, you see) which only registers as a preconscious absence of sky.
To the sides are two 1900-era buildings whose functions, aside from a few street-level
shops, are a mystery to me. In the middle is a parking lot marking time until a building
appears on it. (Actually, since I wrote this the building has appeared.) The parking lot
is invisible too at first because it is about three feet lower than the top of the Avenue
de Lafeyette (the only change in elevation, aside from expressway ramps, for several
blocks). In Chinatown your body acts as a whole picking its way through traffic, but in
these planned urban spaces the eye is in charge, plotting straight lines over each next
patch of terrain.

And so even though I'm still in the middle of Essex St my eye is plotting a straight
line up to the Avenue de Lafeyette sidewalk. But the joke is on my eye because on the
far side of Essex St there is generally a parked car centered precisely on that line. When
this happens, I often find myself suspended between two perfectly symmetrical ways of
circumventing around the car, left and right, since nothing recommends either direction
over the other. The ensuing deadlock reminds me that I am here, now, crossing a busy
street by the transient grace of the traffic. This deadlock could be resolved by appeal
to astrology for all I care, but because nothing sensible can discriminate I have to focus
my thinking for a moment and formulate an arbitrary way of deciding. Everyone who
has spent fifteen minutes staring indecisively at a menu knows what I mean.

A3e L'Avenue de Lafayette and the parking lot

Walking in the city requires a continual negotiation between imaginary straight lines
and genuine automobiles. If you need to cross a street that's perpendicular to your
path, you have to wait for a hole in traffic but then you can keep going on the same
course. If you're walking along a street and need to cross eventually, you get to choose
the right moment. On quiet streets you can wait for a comfortable gap between the
parked cars, something your eye can pick out at a distance. On busier streets you
can cross the parked cars first and then walk along in the street waiting for a safe

-. gap among the moving ones. The angle at which you cross a street balances forward
progress and safety according to some calculation that resides in the body rather than
the mind. The mind is now in charge of crossing the Avenue de Lafayette, however,
because the wisdom of the body hands me over to the low-hanging tree I mentioned
earlier. One day as I approached the tree I decided to head straight for the near corner
of the parking lot rather than crossing the street at a more conventionally acute angle.
The Avenue conducts very little traffic for all its landscaping, but even so this little
innovation appears to run afoul of the tendency of early training in our culture to treat
potential moving cars as actual. So potential cars faintly materialize as a matter of
routine and the stray actual car delivers a routine echo of a told-you-so.

Now I'm at the top of the low hill, approaching the near corner of the parking lot.

48 Chapter A3. Walking to the subway

The lot is at the prevailing elevation, the hill about three feet above. Accordingly,
there is an asphalted slope between me and the lot. Once I clear the last tree I can
see the whole lot. The ensuing diagonal crossing of the parking lot is the hardest case
of the negotiation of straight lines and parked cars. My first job is to pick a direction
to walk in. Let us dwell a moment on the images falling on my eyes. They depict
stationary and moving cars, pavement in a few different textures, concrete sidewalks,
the lot clerk's shed, trees, people, buildings, signs, lamp posts, trash cans, and assorted
rubbish. I want to leave on Chauncy St from the opposite corner of the parking lot. To
pick out the spot I'm headed for, I should just look straight ahead and find the occluding
contour of the building in the center of the image. Unobstructed paths among the cars
show up as black strips headed in that general direction. Most likely there will be a
large black strip heading for the ioi,'s entrance, somewhat off to the right of my desired
direction. Usually there are others.

Your kitchen looks entirely different according to whether you intend to make break-
fast or find the cat. Likewise, this same parking lot scene would look entirely different if
I was looking for my car. Instead of inspecting the buildings and the black patches and
interpreting everything else as obstacles, I'd be picking out blue patches and checking
to see if any of them is my car. I pick out my car from among the other ten thousand
blue Japanese cars in Boston by looking at its dents, its lack of bumper stickers, the
flying carp windsock hanging in its rear right window, and the duct tape over its rust
holes-whichever is visible. Thus, the goal I'm pursuing powerfully constrains what I'd
like to know next about my visual field. I'd like to pick out a depth discontinuity, or a
black strip, or a blue patch, wherever in a large region it might lie.

We might caricature Al vision research as a dispute between two opposed tendencies.
The older one emphasized 'top-down' goal-directed querying of the image and paid
little regard to the physics underlying the image (cf Winston 1975). A more recent
movement has emphasized 'bottom-up' processing of the image by a collection of pre-
wired modules (Marr 1982). You can make either tendency plausible a priori if you
pick your prototypical examples right. If you inspect a retinal image out of all context,
all that seems plausible is to 'recognize' or 'classify' everything in sight and make a
complete model of the whole scene. The right way to adjudicate this dispute is to ask
what real people care to know about visual images in the course of real activities.

Part C will argue for the view that the parking lot example hints at. The machinery
consists of a periphery and a center. The periphery is precisely the sort of bottom-up
device envisioned by Marr. The center, by contrast, is constructed during one's develop-
ment. There is a very clear boundary between the two, almost exactly as described by
Ullnan (1984). There is a strong sense of focus; a small number of image features can
be marked. The center poses the periphery tasks like "pick out a blue thing," "pick out
a line," and "follow the marked contour." The exact 'instruction set' of these queries is
unknown, to be determined both by psychophysics and dynamic analysis. Chapter C4
works out an example.

Let us continue into the parking lot. Sometimes my eye will pick out a convenient

A3f. Chauncy St and the subway entrance 49

channel through the cars-the eye is very good at this. But usually it doesn't, and my
body will complain at the prospect of tacking a Manhattan-style approximation to the
theoretical Line from Here to There. The eye, knowing only the Theory of Straight
Lines, responds by reassigning There to some new spot on the edge of the lot, generally
following the main path to the entrance on the right. Then often a moment later I'll
change course again as a more direct channel appears. An agent that understands its
activities will modify its subgoals when they become inconvenient. In this parking lot,
the management of subgoals is a matter of sighting new courses. In other domains the
sense of perspective and proportion required to maintain subgoals is more abstract, but
here the eyes are in charge because all the relevant considerations lie in visible geometry.

Some version of this drama of subgoals takes place every morning. There is so much
variation in the pattern of parked cars in this lot that I have no fixed policy about
how to cross it, but there's a routine nonetheless. The routine lies in the negotiation of
subgoals between eyes and body. Nowadays when my body complains my eyes just set
about finding a more navigable channel, without breaking my stride or distracting me
from my distractions. This routine would no doubt simplify itself if there were never
a roughly diagonal channel among the cars, or if there were always one. The routine
has tuned itself to the actual variation of the parking lot. This tuning is different from
compulsive optimization; it is simply the accumulated consequence of my having walked
to work on a set of mornings.

A3f Chauncy St and the subway entrance

"The buried paths of the Boston subway could not be related to the rest
of the environment except where they come up for air, as in crossing the
river. The surface entrances of the stations may be strategic nodes in the
city, but they are related along invisible conceptual linkages. The subway is
a disconnected nether world, and it is intriguing to speculate what means
might be used to mesh it into the structure of the whole."

Kevin Lynch, The Image of the City, MIT Press, 1960, p. 57.

"Most of [the Boston subway stations) are hard to relate structurally to the
ground above them, but some are particularly confusing, such as the utter
directionlessness of the upper-level station at Washington St."

Lynch, p. 74.

The Chauncy St entrance to the Washington subway station is the back entrance; the
front entrance has a number of branches a block away on the intersection of Summer
St and Washington St. If I imagine very hard I can picture the train to Cambridge
traveling along under Summer St to the Boston Common and beyond.

But for purposes of going to work in the morning, there is the entrance and a winding
staircase leading down to the underground 'concourse', an ancient smelly passageway

50 Chapter A3. Walking to the subway

with subway turnstiles at each end and entrances to shops and department stores along
the sides. Once I arrive I often find the near set of turnstiles closed. When this happens,
I walk the length of the concourse and enter the subway at the other end. That this
concourse travels over the train tracks and under Summer St is about as theoretical to
me as quarks conserving color.

Consequently I don't think it ever occurred to me to pass the Chauncy St entrance
and walk the same distance in the relatively fresh air of Summer St, nor did it occur
to me to wonder if some rule governs the turnstiles being open at the Chauncy St end
of the concourse. Not, that is, until one day I was walking to the subway with a friend
and he recoiled when I moved to walk in the Chauncy St entrance. lie very sensibly
prefers to risk losing two minutes walking to the main entrance than risk suffering the
concourse. Since then I've decided that I haven't noticed any rule to the Chauncy St
turnstiles because there isn't any rule to when I go to work. I hypothesize that the
turnstiles open at 11 or 12 on weekdays, but I never remember to check.

A3g About stories

"We have arranged for ourselves a world in which we can live-by positing
bodies, lines, planes, causes and effects, motion and rest, form and content;
without these articles of faith nobody could now endure life. But that does
not prove them. Life is no argument. The conditions of life might include
error."

Friedrich Nietzsche, The Gay Science, 1882, p 121. (Vintage edition, trans-
lated by Walter Kaufmann, 1974.)

This is a good place to post some cautions about this narrative and the other nar-
ratives in this report. First, they are not scientific data, they are stories. Every story is
consistent with a million actual events; every event is consistent with a million stories.
Obviously, the various stories one could tell about a given event vary in their degree
of detail and in which details they report. More importantly, every story has its own
emphasis, its own metaphors, its own angle on the event it recounts. A story is an
imposition. It cannot be otherwise. Reality does not come already carved up into ob-
jects and events, connections and trends. These are useful fictions. We invent these
things-we 'constitute' them-as we pursue our lives, as we continually make sense of
what happens in them. When we forget this, we get in the habit of pretending that
the particular story we've just told is the last word: that matter is inherently parceled
out into the objects our story names, that the metaphors our story invokes are genuine
metaphysical categories, that the world was already the way we're pretending it is. In
ordinary life you usually only need one story at a time, so it doesn't matter if you think
it's the only story there is. But in doing research it matters a great deal. Privileging one
ontology kills observation by preventing one from ever seeing anything genuinely new.
It is also simply a mistake; formalizing human activity in terms of a single ontology is

A3g. About stories 51

a useful exercise, but only because it so rapidly makes evident the fallacy of using that
particular ontology to the exclusion of others.

Second, the stories I tell can never compel the interpretations I make of them.
Usually I have far more reason for my interpretation than shows up in my narration;
past a certain point you just have to have been there. There are no proofs. Again,
it cannot be otherwise. These theories and the interpretations they suggest need to
be judged as a whole against your own experience. They are uncertain, but their
uncertainty is not that of introspective evidence; they are not introspection, in the
sense of sitting still and trying to peek into your own head, whatever that means. One
narrates ordinary routine activity; the n.arrative simply recounts what happened. Nor
are my interpretations intended as self-evident, as things anyone could see. Today's
interpretations are informed by years of working back and forth between new ways of
talking about everyday activity and new theories of machinery.

Third, whereas most of my narratives recount particular episodes, the subway story
is a summary of what tends to happen when I walk to the subway. It would be hard to
record such a long stretch of my own activity without it being corrupted by my being
deliberately aware of it. This corruption would be perfectly valid data in itself; after
all, it's a psychological phenomenon like any other. In this instance, though, it would
be distracting and there would be too much of it to document. In practice, most of the
corruption is not in observing the event but in narrating it. When I'm writing out a
routine event, I often spontaneously articulate some aspect of it I've never thought of
before. Such retrospection can be illuminating, but it's also misleading. It's important
to try to separate these newly articulated aspects from the ones that were part of original
experience.

52 Chapter A3. Walking to the subway

Part B

Running arguments

53

Chapter B1

Context and summary

Perhaps we're all horrendous kludges. Evolutlon, after all, had to find the right tradeoffs
of the various aspects of intelligence against the various aspects of efficiency, and the
result had to be only slightly different from a monkey. For the central system, at least,
I believe that few such tradeoffs exist. It turns out that the simplest architecture one
could imagine can easily support many aspects of the thinking and acting required
for the world of everyday life. My argument for this proposition comes in two parts
corresponding to Part B and Part C. Part B presents a program, the running argument
system, I wrote to experiment with the idea that most activity is improvisatory and
routine. The running argument system does not represent a substantial departure from
conventional Al practice. Careful analysis of this program in operation, in Chapter B5,
will prepare the way for the more radical departures of Part C.

The central idea of the running argument system is that of dependencies. A depen-
dency system has a source that occasionally thinks a new thought and a dependency
network that records each new thought and the reasons for it as a bit of network struc-
ture. What 'thoughts' are is the source's problem. The network is a combinational
logic circuit which continuously drives all the nodes representing propositions to 1 (IN)

or 0 (OUT). Two forms of thought are recognized, each joining reasons to a conclusion.
The simpler, "because I believe X and Y I decided Z" becomes an AND gate joining
the two reason to the conclusion. For example, "Socrates is a person and all people
are mortal so Socrates must be mortal." The more complex, "because I believe X and
have no reason to believe Y I decided I might as well believe Z" becomes an AND-NOT
gate joining the positive reason and the negative reason to the conclusion. For exam-
ple, "Socrates says he's mortal and I have no reason to think he's lying so let's assume
he's mortal." The network doesn't interpret the propositions in any way, so it doesn't
realize that the first example is an instance of a misguided account of generalization or
that the second example is only heuristic. The examples illustrate that explaining the
architecture doesn't explain how best to use it.

A dependency network has some important properties. It can be implemented easily
and extremely efficiently. By remembering only those aspects of a situation that a given

55

.56 Chapter 131. Context and summary

conclusion actually depended on, it generalizes old thoughts to new situations in which
irrelevant and perhaps distracting aspects might differ. Even if there are millions of
recorded thoughts, it continually decides which ones to apply and which ones to stop
applying. It maintains the consistency of the current set of beliefs, relative of course to
the source's standards of consistency. And it participates in the dynamics described by

the theory of routines.
The dependency network is an enormous combinational logic circuit whose inputs

are signals from the sensory systems and whose outputs are signals to the motor sys-
tems. A loop is thus set up between the agent and the world. As the world changes,

the inputs change, the changes propagate through the network, and the outputs change.
The outputs are constantly driving the agent to take action in the world. This action
changes the world (which would probably go on changing even if the agent sat still)
and the loop recommences. As Section B4d explains, it helps to think of the system
as conducting an argument with itself on each cycle. The reasoning has a vaguely di-
alectical nature-at any moment the set of IN propositions constitutes a potentially
enormous argument that the agent should take the actions it is currently taking. As
changes propagate through the network, the subset of IN propositions continually incre-
mentally changes. Relatively uncontroversial propositions change infrequently, whereas
propositions describing transient states or short-lived actions come and go quite often.

As circumstances change the argument structure changes as well, constantly selecting
a new set of elements from the vast stock of past thoughts. This is called a running
argument.

The architecture this chapter describes is implausible in two ways. The first is the
dependency network's 'source'. Where do the new thoughts come from? It matters, but
it's not our topic here. Here I'm concerned with the steady state of routine activity.
In this idealized steady state, the source is nowhere in sight. Enough thoughts have
beer delivered and recorded to produce some sensible response to every situation that
might arise. The result is like Simon's ant, cranking out a stream of actions on a
fixed repertoire of thoughts implemented in a bit of clockwork. Part B maintains the
convenient image of wise new thoughts arriving from a source and being recorded in
a dependency network. Part C likewise neglects the issue by positing a wholly fixed
network. Of course people do sometimes think new thoughts. But one mustn't hasten
to the conclusion that the 'source' is a homunculus, fully general inference mechanism
of the sort so much Al work has sought. All a source must do is provide occasional
increments of circuitry in some novel situations. How and when this happens is the
subject of the theory of routine evolution, with its emphasis on incremental change and
the interpersonal and social context of learning. These are obviously big phenomena
about which many valuable things have already been said, but they lie beyond the scope
of this report. Investigation of their dynamics will, I am certain, whittle away at the
homuncular image of the 'source'.

The second implausibility is the expressive poverty of combinational logic. Chapter

B5 works hard to make this poverty seem severe. Much of the burden of Part C is to

57

demonstrate that the trouble lies primarily in traditional programming and representa-
tion techniques. The traditional techniques were designed to produce processes within
machines, but what we really want are techniques for producing organized interactions
between machines and their worlds.

Combinational logic has three problems, whose solutions are the subject of Part C.
First, there is no good way to implement variables. This is the critical issue. Variables
figure in our only worked-out accounts of abstraction, namely quantified logical formu-
lae and parameterized procedures. In Section C3b I will argue that these accounts are
inappropriate for everyday routine activity, on both epistemic and efficiency grounds.
In their place I will describe the beginnings of a proposal based on indexical represen-
tations. Such representations do not abstract over classes of things-in-the-world that
share certain properties but over classes of situations that share certain relationships
between the agent and whatever objects are present.

Second, there is no good way to implement data structures that can be inspected by
arbitrary processes. The 'representations' I propose are not representations in anything
like the traditional sense. In particular they are not datastructures but rather patches of
dependency network that originated as indexical thoughts about particular situations.
Chapter C2 discusses the issue.

Third, there is no state. There are certainly dynamics which allow the effect of state,
including simple things like making notes to oneself. There is also constantly perceivable
state in one's body (including perhaps the peripheral systems). And obviously people
remember things. I have little to contribute on this topic as yet. All I insist is that
state not be interpreted as a world model. Section C3g returns to the point.

Some advice for the reader.
Chapter B2 is about dependencies. It defines the idea of dependencies from scratch

and discusses their properties in detail using cartoon examples. This chapter is primarily
intended for readers outside the Al community. Except for Section B2e's discussion of
the dependency model of routine evolution, all of its ideas are commonplaces among Al
people.

Chapter B3 is about the running argument system. It defines the Life rule language
and describes its relationship to the dependency system. Little of the technical detail
need be understood to appreciate the central ideas of Part B, so most readers should
skip ahead as soon as they get lost or bored.

Chapter B4, which discussion of some of the dynamic issues around running argu-
ments, contains the theoretical meat of Part B. It discusses four topics: the difference
between Planning and improvisation, the nature of hierarchy and goals, the notion of
argumentation, and the notion of running arguments. It illustrates many of its points
with stories from everyday life. More technically oriented readers may become impa-
tient with this chapter's lack of detailed descriptions of implemented programs. Such

58 Chapter BI. Context and summary

readers should resort to skimming, skip ahead to the demonstrations in Chapter B5,
and return once they have become sated.

Chapter B5, which demonstrates the running argument system in action, contains
the technical meat of Part B. It is approximately self-contained. It carefully defines
the system's goals, discusses the way in which it is supposed to exemplify these goals,
follows the system through several examples, analyzes its performance in great detail,
and then assesses how well it has achieved its goals.

Chapter B2

Dependency maintenance

B2a Context and summary

Dependency maintenance provides a simple way to ensure that an old thought will be
reapplied in any new situation where it might be useful. What is to count as 'thoughts'
is up to whoever thinks them. Some forms of thought are more sensible than others, of
course. As later chapters will argue, in a world of routine there is a great advantage to
thinking forms of thought that can be efficiently reapplied. This turns out to be a stiff
constraint which, however, is miraculously easy to comply with.

I can best summarize dependencies and their importance by contrast with a different
account of thought-saving. You could, upon thinking a good thought, take a snapshot
of your whole mental state and file it away. Now suppose you figure out how to flip a
pancake while on a camping trip. Then you can't use your pancake-flipping snapshot
again unless you're either on a camping trip or willing to hallucinate that you're on a
camping trip (cf. Minsky's idea of k-lines 1986, Chapter 8). Dependencies only save
that part of your mental state that the good thought actually depends on-pancakes,
spatula, wrist action, but not pine smell, mosquito bites, campstove. That way you
can reapply the thought, and automatically, any time the reasons are there, even if it
wouldn't otherwise have occurred to you.

Despite its simplicity, dependency maintenance offers simple dynamic accounts of
a great many important things. These accounts connect situations on which an agent
records dependencies to situations in which it uses them. If we know something about
the organization of everyday activity, we can predict that an innovation recorded in
the dependency network on such-and-such an occasion will find use on certain other
occasions.

This chapter's main purpose is to define the notion of dependency maintenance and
explain carefully its most important properties. Al people can skim it since most of the
ideas will be commonplaces for them.

59

60 Chapter B2. Dependency maintenance

B2b Main ideas of dependency maintenance

Dependency maintenance starts from two premises: first, that thinking new thoughts is
hard, and second, that if a thought has been useful once it's likely to be useful again.
A dependency system has a source, which has the difficult job of thinking useful new
thoughts. By doing the bookkeeping that's required to reapply the old thoughts when

they're needed, the dependency system saves its source from having to do this job over
again. The dependency system has a simple interface that makes no presuppositions
about what counts as 'thoughts'.

First a blizzard of definitions, then some examples. On any moment the source can
hand the dependency system a conclusion and a set of reasons. The conclusion and
the reasons are all propositions. There are two kinds of reasons, positive and negative.
Every proposition has, at any given time, a value of either IN or OUT, meaning roughly
believed or not believed. (If a proposition has an OUT value, that doesn't mean that
the agent believes that it's false, it only means that the agent has no reason to believe
thatit's true.) Given a conclusion and some reasons, the dependency system stores

a justification, declaring that henceforth the conclusion is to be IN whenever all the
positive reasons are IN and all the negative reasons are OUT. (Sometimes justifications
are also called 'dependencies'.) A proposition might have several justifications; it is IN

if any one of them satisfies this condition and OUT otherwise. A proposition with no

justifications at all is called a premise-propositions are thus divided into premises and
conclusions. The value of a premise might be wired IN. Or it might be determined by
some other bit of machinery, like a sensor. If so, it's called an input. A proposition

(probably not a premise) might also directly drive a commands to the periphery. If so,
it's called an output. See Figure B2.1.

The entire collection of propo6 *:ons and justifications is called a dependency network.

Think of a dependency network as a binary logic circuit (regardless of how it happens
to be implemented). Each proposition is a node which is 1 if it's IN and 0 if it's ouT.

Each justification is an n-input AND-NOT gate joining some reasons to some conclusions.

A network is said to be settled if all the IN conclusions are justified and consistent if
there is some assignment of IN and OUT to conclusions that the network can settle to.

Whenever a premise changes value or a new justification is added to the network, the
dependency system somehow finds a new assignment of IN and oUT to the conclusions

that settles the network. Whether settling the network is easy and whether the outcome
is unique depends on the network, as we'll see in a moment.

(Hayes invented dependencies (1975). So did Stailman and Sussman, independently
and a little later (1977). Doyle (1978, 1979) abstracted the functionality of dependencies
to produce the first Truth Maintenance System, a name Doyle and most others now re-

gret. These systems have been used principally to direct backtracking in languages that
express domain-specific search strategies. An important early analysis of the theoretical

problems that motivated the invention of dependency-directed backtracking appears in

(Sussman and McDermott 1972). An extensive technology of TMS's has grown up,

B2b. Main ideas of dependency maintenance 61

Sourc

"* LA

p combhriat onra "t
-

Figure B2.1. A dependency system maintains a dependency network which consists
of propositions, modeled as electrical nodes, joined by justifications, modeled as logic
gates. Some of the propositions correspond to inputs and others to outputs. The system

occasionally adds new circuitry when its 'source' does something new.

62 Chapter B2. Dependency maintenance

including de Kleer's assumption-based version, the ATMS (de Kleer 1986, de Kleer and

Williams 1987). For an interesting theoretical treatment of the complexity issues that
arise in dependency systems, see Provan (forthcoming). Dependencies are similar in
spirit to Minsky's idea of k-lines (1980; 1986, Chapter 8) and to Carbonell's idea of
derivational analogy (1983). McAllester has previously used the idea of accumulating
lines of reasoning in logic circuits, in his notion of semantic modulation and in the lemma
library of his proof checker (1988).)

The vocabulary of dependency maintenance is very suggestive, but very few of its
connotations are actually intended. Propositions have no internal structure so far as the
dependency system is concerned. So far as the dependency system is concerned, they can
contain quantifiers, negations, probabilities, or magic words. The reasons might license
the conclusion deductively, heuristically, or by divination. If there are new conclusions
to be drawn among the existing premises and conclusions, the dependency system will
not draw them automatically.

Let us consider some cartoon examples. Notate a justification this way:

(<= conclusion
(in positive-reasonI positive-reason2 ..
(out negative-reasonl negative-reason2 ...))

(If a justification has no positive reasons I'll omit the empty (in) clause. If it has no
negative reasons I'll omit the empty (out) clause.)

To record an ordinary monotonic deduction, use only positive reasons:

[Example 1.]
(<= (mortal Socrates)

(in (for-all x (implies (human x) (mortal x)))
(human Socrates)))

This justification will be implemented by a single 2-input AND gate, joining the two

reasons to the conclusion. See Figure B2.2.
For the source, the three propositions in Example 1 have internal structure: it is

evidently thinking with first-order logic. The dependency system sees none of this. So
far as it's concerned the source said:

[Example 2.)
(<= mortal-Socrates

(in for-all-x-implies-human-x-mortal-x
human-Socrates))

where the propositions have no internal structure at all. For that matter, the depen-
dency system wouldn't care if the source also said:

[Example 3.)
(< (immortal Plato)

(in (all x (implies (human x) (mortal x)))
(human Socrates)))

B2b. Main ideas of dependency maintenance 63

(htumavl So~rarte-)

Figure B2.2. A justification with only positive reasons creates on AND gate that assures
that its conclusion will be IN whenever both its reasons are IN.

If the source doesn't do such things, our guarantee lies elsewhere. (This chapter will be
full of this sort of loose talk about the source. For now, the source works by magic. As

the next chapter develops a particular system it will become more precise. The words
'thinking' and 'reasoning', however, will stay sloppy; they refer to whatever action in

the machinery I'm discussing in a given context. As words go they're pretty weak.)
A proposition with an empty justification will always be IN:

[Example 4.]
(<= (loves Mommy me))

The propositions in a dependency network don't have to be examples from logic
texts. They are, in fact, more likely to be conclusions about what to do.

[Example 6.3
(<3 (intend (become philosopher))

(in (want truth))
(out (want money)))

Just because dependencies are recorded using logic gates doesn't mean the system's

reasoning has to be restricted by any particular rules of inference. Heuristic justifications

are fair play:

64 Chapter B2. Dependency maintenance

(Wri'teS-i(m Oerr;Ja French-pr4n5)

Figure B2.3. When a proposition has more than one justification, any of its justifications
can support it.

[Example 6.]
(ff (incomprehensible Derrida)

(in (philosopher Derrida)
(French Derrida)))

A proposition might have several justifications. If the source says:

[Example 7.)
(<= (incomprehensible Derrida)

(in (thinks Derrida (too-easy Heidegger))
(writes-in Derrida French-puns)))

the resulting network will comprise two AND gates with their outputs oi'ed. See Fig-
ure B2.3. For compactness, the disjunction is notated as a wired Oft.

Let us note in passing that a justification cannot have variables, or better, the
dependency system knows nothing of variables. If the source says:

[Example Sa.]
(< (incomprehensible x)

(in (philosopher x)
(French x)))

then the dependency system will hear:

B2b. Main ideas of dependency maintenance 65

(<= incomprehensible-x
(in philosopher-x

French-x))

and assign nodes to incomprehensible-x, philosopher-x, and French-x, which probably
don't mean anything. If you surmise that several French philosophers are incomprehen-
sible, you have to do it separately for each one:

[Example 8b.]
(<= (incomprehensible Barthes)

(in (philosopher Barthes)
(French Barthes)))

(<= (incomprehensible Foucault)
(in (philosopher Foucault)

(French Foucault)))
(<= (incomprehensible Deleuze)

(in (philosopher Deleuze)
(French Deleuze)))

Let us refer to a connected subnetwork as a patch of the whole network. We see that
traditional sorts of representation lead to replicated structure in dependency networks;
each French philosopher gets his own patch of network.

Many people have spent much time trying to generalize dependencies to include
variables; there seems no way to do it short of reinventing production systems. This
is a deep fact. An even deeper fact is that, at least for the sorts of everyday routine
activity I have investigated, you don't need variables to enjoy the benefits of dependency
maintenance. Propositions don't have to refer to objects in the world by names, in the
style of first-order logic. Instead, one might say something like:

[Example 9.)
(<= (pick-up the-object-I-am-looking-at)

(in (color the-object-I-am-looking-at gold)
nobody-looking))

This bit of reasoning 'quantifies over' whatever objects you happen to look at. Part C
will develop this suggestion.

Negative reasons are a powerful way to express heuristic lines of reasoning. One
technique is to establish a default:

[Example 1Oa.]
(<= daytime

(in at-work)
(out nighttime))

That is, if we're at work then assume it's daytime unless we're sure it's nighttime. This
justification is said to be non-monotonic. It would be implemented as an AND-NOT gate;
see Figure B2.4.

Let's elaborate the example.

66 Chapter B2. Dependency maintenance

at- work

Figure B2.4. Sometimes a justification will have negative reasons, indicating that it

should only support its conclusion if all its positive reasons are IN and there is no reason

to believe in any of its negative reasons.

[Example lOb.]
(<= daytime

(in out-of-doors
brighxt))

(<= nighttime

(in out-of-doors
dark))

Joining 10a and 10b, we get the network in Figure B2.5. There are six propositions and

three justifications. Four of the propositions- i.e., at-work, out-of-doors, bright, and

dark-are premises because they have no justifications. Let us imagine that the values

of at-work and out-of-doors are determined by other justifications not shown. Let us

also imagine that the whole network is located in the head of an agent named Thomas

and that bright and dark are inputs connected to the Thomas' vision system. Their

values are continually updated according to how bright it is.

(Remember that these are only cartoon examples. Thinking it's nighttime certainly

has more to it than a single wire going high. The point is, whatever compound activity

is actually involved will equally well be recorded in the network and reactivated later.

The examples will slowly become more real as the chapters go by.)
Now suppose Thomas is at work and indoors. At-work is IN and out-of-doors is

OUT. Probably bright will be IN, but since out-of-doors is OUT neither bright nor

dark will influence the conclusions at all. Nighttime is OUT because out-of-doors is

OUT. And daytime is IN because at-work is IN and nighttime is OUT.

B2b. Main ideas of dependency maintenance 67

Wor - I JL

Figure B2.5. In this diagram, the agent will accept certain information as evidence of
it being daytime and other evidence of it being nighttime. If no relevant evidence is
available, the agent will assume that it is daytime.

Now suppose Thomas gets off work and walks outside. When the clock hits 5:00
at-work will go OUT and so daytime will go OUT too. Once he gets out the door, it being
winter in Boston, dark will be IN. Thus nighttime will be IN and daytime will be OUT.

Thomas's reasoning thus far has some holes. Starting at about 4:30 it'll be dark
outside but he, still hard at work, will assume it's daytime. Suppose poor Thomas,
longing for a beer as 5:00 approaches, looks out the window where the parking lot
usually is and is startled to find it dark. Nobody's perfect, but new circuitry can get
you closer.

[Example 10c.]
(<= nighttime

(in looking-out-window
dark))

This new insight, while not spectacular, was no doubt hard work, just because thinking
anything new is hard work. But the great thing about dependencies is that they never
go away. As soon as tomorrow's a-proaching beer leads Thomas to look out the window
again, this bit of thinking (if you're willing to call it that) will happen automatically.
Likewise next week's approaching beers, and next year's. He has permanently gotten
that much smarter. With successive new insights, his network will grow larger and
larger.

To really get a feel for the dynamics of everyday activity, one should get this event
in perspective. Thomas' new thought, even though intended to seem prosaic, was a

68 Chapter B2. Dependency maintenance

fairly unusual accomplishment. If we were to observe him looking out the window on
a randomly chosen day, we would see nothing novel, indeed "nothing at all to speak

of." (Idioms like this one betray a deep understanding of the real picture latent in the
ordinary language. How telling that traditional philosophy has not spoken of them.)

Examples like this one are misleading in the way all stories are misleading. Even when
it concerns an ostensibly ordinary bloke, a story only peeks in when something excep-
tionally interesting is getting ready to happen. It chooses and interprets its events

through their relevance to a point. It then obscures this imposition by withholding its

point until the end, making the interpretations seem natural and presenting the point
as flowing from events that were already just-so. Beneath this spurious intelligibility,
the actual coherence of everyday activity (which cannot be exhausted by any narrative)

flows transparently on. The ordinariness of life goes without saying.
By the way, suppose Thomas also thought something like:

[Example 10d.]
(<- nighttime

(in winter-time
late-afternoon))

It's important to keep in mind that propositions like late-afternoon don't get up-

dated by magic. If Thomas hasn't got a sixth sense for wall-clock time, late-afternoon
will stay OUT, regardless of the time, until some other circuitry drives it IN. But one

has many occasions to try guessing a rough time of day, and these ways of guessing
will accumulate in one's dependency network, applying themselves whenever they get a

chance. Usually one of them will work out.
This brings us to a small matter I haven't mentioned. Not all lapses can be repaired

by adding new justifications. A solar eclipse might make it dark in the daytime and
a baseball stadium might make it light in the nighttime. But it would have taken
impossible foresight to have phrased Example 10b as:

[Example 1Oe.]
(<= daytime

(in out-of-doors
bright)

(out at-baseball-game))
(<= nighttime

(in out-of-doors
dark)

(out solar-eclipse))

Any conclusion about a real-life situation is only true ceteris paribus. One never stops

discovering except ions to one's general rules. Consequently, the source has to be allowed
to add new negative reasons to some of the existing justifications. When Chapter B3

dcsoribes how the running argument system uses dependencies, these justifications will

B2c. Dependency networks 69

be the ones created by "UNLESS" rules. (This is the only extra feature I haven't told
you about.) Adding a new negative reason is called intervention.

(Intervention may seem an unmotivated feature rigk.t now. The restriction to nega-
tive reasons will become clearer when I explain argumentation in Section B4d. Section
B2e on the theory of routines describes the role of intervention in the dynamics of
routine evolution.)

A dependency network can be circular. This can happen when there are equivalent
propositions.

[Example 11.J
(<= looking-at-the-Korning-Star

(in looking-at-the-Evening-Star))
(<= looking-at-the-Evening-Star

(in looking-at-the-Morning-Star))

More generally it can happen when there are several propositicns, any n of which imply

the rest.

[Example 12.]
(<= games=7 (in vins=3 losses=4))
(<= vins=3 (in games=7 losses=4))
(<= losses=4 (in games=7 wins=3))

When a dependency network is circular, drawing it as a logic circuit is misleading. I
will shortly outlaw circular dependencies.

B2c Dependency networks

Much of this report is concerned with the properties of a dependency network as a
whole. A large network might have thousands of nodes, or hundreds of thousands. It
might have long chains of justifications. It might have any number of premises. It might
be so tangled with circularities that every proposition figures in determining the value
of every other. In short, it might be an arbitrary mess. We need words for talking about
dependency networks.

Let us define the notion of support in a dependency network. Let P1 and P2 be
propositions and let NI and N2 be the network nodes that represents them. Informally,
proposition P1 supports P2 if Pl's value enters into determining P2's value. The
proposition P2 might have any number of justifications, each of which might have any
number of reasons, both positive and negative. All of those reasons support P2 because
their values help determine P2's. Support is a transitive relation, so that anything that
supports one of P2's reasons supports P2. In general, P1 supports P2 if you can trace
a path forwards through the network from N 1 to N2. A proposition's support set is the
set of its supports. A proposition's premise set is the set of premises in its support set.

70 Chapter B2. Dependency maintenance

I've already mentioned circular dependency networks. Formally, a network is circular
if any proposition supports itself. Circular dependency networks can have some peculiar
properties. Some have more than one consistent assignment of IN's and OUT'S to nodes
for a given set of assignments to premises.

[Example 13.]
(<= at-work (out at-home))
(<= at-home (out at-work))

A network consisting entirely of these two justifications, while consistent, doesn't contain
enough information to pin down a unique assignment. Either at-work is IN and at-home
is Ou'T or vice versa. The dependency system can choose either assignment arbitrarily.

A circular dependency network can also be inconsistent, meaning that there exist
no legal assignments of IN and OUT to its nodes.

[Example 14.]
(< A (in B))
(<= B (out A))

If A is OUT then B is IN, but then A must be IN. If A is IN then B, being unsupported, is
OUT, but then A, being unsupported, must be OUT.

It makes a big difference whether a network is circular. Every noncircular network
is consistent. There is a trivial algorithm for settling noncircular networks because their
support relationship is a partial order. This is the algorithm suggested by the logic-
gate notation: a noncircular network is a combinational circuit. Every gate continually
assigns its output the value determined by its inputs. If a premise's ascignment is
changed, the change will propagate through the network until it has settled. This will
take time proportional to the depth of the network (on appropriate parallel hardware).
This method has the tremendous advantage of locality: each gate knows everything it
needs to correctly assign a value to its output.

With a circular network, the story is entirely different. The local algorithm, in
particular, is not correct. Recall Example 12:

(<= games=7 (in wins=3 losses=4))
(< wins=3 (in games=7 losses=4))
(< losses=4 (in games=7 wins=3))

Suppose we give wins=3 and losses=4 their own justifications:

(<= wins=3 (in Sox-in-Series))
(< losses=4 (in Mets-in-Series))

In the ;ad y'ar of 1986, these conditions are all satisfied and wins=3 and losses=4

are botlh IN. (Consequently games=7 is IN, no problem. Next year, Mets-in-Series will
go ovr. btij losses=4 will stay IN because both games=7 and wins=3 will be IN! This
M;1v Ibo a good giuess, but it certainly isn't, fair.

B2d. Dependencies as a simple account of many things 71

One cannot reliably settle a circular dependency network in time proportional to
its depth. Indeed, the problem is NP-complete (McAllester, personal communication).
This is a good reason to try to make noncircular dependency networks suffice. I have
always found that tiey do and will simply assume so.

We have now eummerated everything that can happen in a dependency network:
gates propagate biiiary values and new justifications and connections are made. Aside
from these operations, the network is uninspectable. No algorithm can poke through it,
whether to count it, rearrange it, summarize it, decide whether it's circular, compute
a proposition's support, or prove that some output will never change its value. It is a
network in the hardware sense, not the software sense. Even if it is implemented by an
interlinked datastructure in simulation, the accompanying algorithms may only perform
the prescribed operations on it. The presumed uninspectability of the dependencies
has many consequences, as we'll see in Chapter C2. For example, it becomes hard to
implement the common view of representations as inspectable datastructures.

(Intervention through adding a new negative justification is the closest that depen-
dency networks come to being inspectable. Intervention, though, doesn't require anyone
to be able to traverse the network and the source knows ahead of time which gates it
might want to add negative justifications to under which conditions. I don't know how
this works in anyone's brain, though I find recruitment schemes such as those of Marr
(1970) and Feldman (1982) appealing. Chapter B3 explains how intervention works in
my system.)

We might proceed to understand dependency networks by formalizing their proper-
ties in general, proving theorems that apply to any network, no matter how messy and
tangled. This is a useful thing to do (cf. Provan forthcoming), but it is not what we're
doing here. Instead let's ask two dynamic questions:

What sorts of dependency networks lead their owners into useful sorts of
interactions with the world?

What sorts of dependency networks tend to arise in the course of ordinary
everyday activity?

We should hope the answers to these questions overlap. They do, as we'll see.

B2d Dependencies as a simple account of many things

Dependency maintenance is a fabulous idea because it provides simple accounts of a
great many important things. Let us list these, and in so doing anticipate and summarize
the much longer discussions of later chapters.

Suppose we imagine the network to be implemented as actual logic gates or in some
other suitably parallel, distributed hardware. The resulting machinery will be simple
and easy to construct. It will be blindingly fast, even if the gates themselves are slow.
It will apply an enormous amount of reasoning to every moment's activity.

72 Chapter B2. Dependency maintenance

Being fast and automatic, dependencies offer a simple account of how it is you be-
come faster and more fluent at an activity you've practiced. With time, all the necessary
thinking has gotten itself set up in your dependency network. When it's needed it just
happens. People in AI often speak of this sort of thing using metaphors of 'compila-
tion'. Like a good compiler, dependency maintenance finds opportunities for parallelism
in the reasoning it compiles. Two nodes have to be updated in order just in case one
supports the other; otherwise everything is updated in parallel. It is best not to take
the metaphor of compilation too far. Unlike ordinary compilers, a dependency system
doesn't have to manipulate explicit representations of ordering constraints. The 'opti-
mization', like most dynamic phenomena, is epiphenomenal. Furthermore, there is no

"target language' that is interpreted by a stored-program computer. 'Silicon compila-
tion' might be a better metaphor; somebody should try it for real.

In accumulating a history of their owner's past reasoning, dependencies offer a sim-
ple account of search control. In Al it has been common to consider Problem Solving
or Planning tasks in isolation. Some module must produce a substantial hunk of novel

thought in one shot without the benefit of past experience or the possibility of inspecting
the world. No wonder it gets itself into uncontrollable searches. Suppose the machinery
were to maintain dependencies. All the reasoning that went into past Solutions or Plans
would automatically apply itself to the present one. Viewed as search, the dependency

network would quickly search those parts of the search space that have been searched
before. If this isn't enough, the agent can do whatever the culture teaches one to do:
try things, get help, use textbook methods, apply heuristics, take a different tack, cut
corners, or walk away. What does this story amount to technically? How sophisticated
must one's learning machinery be in a normal culture and world? Must one's architec-
ture provide facilities for search after all? To answer these dynamic questions we must

understand what everyday life is like.
Dependencies also provide simple accounts of aspects of reasoning and learning

that've generally been thought to require classification hierarchies, pattern databases
and matchers, symbolic generalization algorithms, and so forth. All of them follow the
same simple slogan:

There are fewer reasons than causes.

Dependencies record the reasons for thoughts, not the causes. For an example, let's
return to Example 10d.

(<= nighttime
(in winter-time

late-afternoon))

Recall that our cartoon agent Thomas, longing for an after-work beer, looked out the
window toward the parking lot and found only blackness. This surprise led him to ask

someone, or consult an almanac, or perform a correlation, and arrive at a sensible set of

B2d. Dependencies as a simple account of many things 73

reasons for it being nighttime. The dependency network recorded the reasons (winter-
time, late afternoon) but not the causes (weariness, thirst, looking out the window). So
this coming Saturday, when Thomas is pulling on his sweats to go out running before
supper, he will, without fanfare, recall that it's winter and thus nighttime. He already
had sense enough to put on his nighttime running gear at night

(<= (put-on nighttime-running-gear)
(in nighttime

(putting-on running-gear)))

but today he'll think to do it before he gets out on the road. Before, as he was putting
on his clothes he had had reasons to dress for nighttime but no causes: there are no
obvious clues inside that it's nighttime and nothing led him to notice. But now, a small
insight Thomas had in the course of conducting one activity (peering out at his car) has
transferred itself to another activity (dressing to go running).

The dynamics by which dependencies transfer novel thoughts to new situations are
called the transfer dynamics. Here is an example of the transfer dynamics in action.

I own a dwindling set of wine glasses, sturdy and unfancy ones with fairly
thick cylindrical stems. I have evolved a routine for washing them that
involves twirling the stem between my right thumb and 2nd and 3rd fingers
to run water on it or rinse off the soap, holding it about 45 degrees off
vertical, toward the left and away from me, this angle determined by what's
both comfortable and visible. I had left one of these wine glasses sitting on
the corner of my desk in the course of last Friday's dinner. I noticed this
glass at some point and thought I should return it to the kitchen, but didn't
do it because I wasn't really headed that way and didn't feel like making a
special trip. Finally on the morning in question I was getting the life of my
apartment put to bed on my way out the door to work and I saw this glass
on my desk so I picked it up and headed for the kitchen. As I had entered
the kitchen and was halfway to the sink, I realized that around the moment
of the sink's coming into view I had placed the glass in my right hand in the
correct grip to execute this twirling motion.

In this story, I believe that an element of my wine-glass-washing routine, namely grasp-
ing the stem just so, has transferred itself to a new situation. The premises behind the
transfer must have had something to do with holding the glass and an intention to wash
it. Evidently one of the premises was predicated on the actual sight of the sink. When
I laid eyes on the sink, enough of the premises came in to suggest grasping the glass
by its stem. The transfer dynamics have an important role in the evolution of routine
patterns of activity. See Section B2e for a brief discussion of the dependency model of
routine evolution.

(Incidentally, I am certain that other forms of interaction with my environment could
have led me to grasp the stem before I caught sight of the sink. Some of these might even

74 Chapter B2. Dependency maintenance

have involved some sort of 'internal' activity involving visualization or subvocalization.
If these happened they would also need to be explained, of course, but in the event they
did not. For a broader discussion of some related phenomena concerning 'reminding'
and its relationship to memory organization see (Schank 1982, Kolodner and Cullingford
1986).)

Though this report is concerned with steady-state dynamics, future work should
characterize the transfer dynamics in more detail. Two important questions arise. (1)
How broadly do newly recorded thoughts transfer? This question concerns matters of
representation. (2) When you encounter a everyday situation that ought to be routine,
does it tend to fall in the scope of a transfer dynamic? Put another way, when are
there sufficient causes for a new idea and when are there merely sufficient reasons? On
a small scale this question concerns the dynamic structure of everyday life. On a large
scale it concerns the dynamic structure of the life cycle in a given culture.

Evidently dependency maintenance gives rise to a sort of automatic generalization.
As generalization mechanisms go it is extremely simple. It doesn't inspect any histories
of its reasoning. It doesn't crawl up and down any classification hierarchies. It doesn't
even substitute any variables for constants. Does the human architecture employ these
features? This is an empirical question, and an interesting one, but barring a neuro-
physiological miracle there's no use in asking it straightaway. First let's ask, does the
simpler machinery suffice to engage in the dynamics of ordinary everyday activity?

In the Al literature, the case of Thomas using his understanding of why it's nighttime
would be called 'explanation-based generalization' (EBG). A closely related idea is called
:cabe-based learning' (Kolodner 1986, Hammond 1986). EBG is a simple, powerful idea.
To explore it, let's consider another example. As Thomas was out running it was
snowing and he came across a rectangular region of pavement with no snow on it. This
struck him as odd. Suppose then he came up with an explanation of why this is-never
mind how. Maybe he saw a car drive away and leave a similar blank spot. Maybe the
spot reminded him of a shadow, so he looked around and noticed cars throwing such
shadows. Maybe he asked someone. (A harder question is, why did that blank spot
strike him as needing an explanation? Things that need an explanation do not always
strike you as such.)

Having produced this explanation in one situation, he can use it in other situations he
encountered. At a minimum, he should be able to interpret his next snowless rectangle
as a place where a car recently was. He shouldn't have any problem generalizing to
motorcycles and trucks. He might also be able to interpret the snowless circles left by
trash cans-he should at least have the sense to ask himself what round thing might
have been there. How does he do this?

Neither dependency maintenance nor EBG explains where explanations come from;
they only explain how explanations lead to generalization. The account offered by
dependency maintenance is simple. Your action of adducing reasons in the first case
is recorded in the network. When those reasons become true in the second case the
explanation will reassert itself. Over your life you've accumulated thousands of such

B2d. Dependencies as a simple account of many things 75

explanations, all ready to interpret a new situation on a moment's notice. Most EBG
schemes are more complicated than this, employing a wide range of searching, substi-
tuting, indexing, and categorizing machinery (Mitchell 1983, Mooney and deJong 1985).
Certainly these complex methods are more powerful, especially when a poorly designed
representation scheme defeats the simple transfer dynamics. On the other hand, they
often produce difficult-to-control searches. Are these extra increments of functionality
any use in the long run? This is a dynamic question, and a hard one, so you can't
answer it without a good dynamic theory. And if you can't answer this question you
have no choice but to make your machinery as sophisticated as possible. An easy idea
becomes hard. Lacking a complete account of the machinery and dynamics of routine
evolution, it is nit yet possible to resolve the question.

Generalization is probably the wrong way to think about what dependencies do
anyway. Dependencies don't work by manipulating datastructures and constructing a
generalized 'idea' or 'proposition' (in the usual sense). They simply make something
happen on Tuesday that happened in a more complicated way on Monday. They get
the effect of generalization, or most of it, without all the machinery and effort.

Dependency maintenance also provides a simple account of belief-system consis-
tency: once the network settles, there are no unjustified IN propositions. This sort of
consistency, of course, is only the same as logical consistency in the unlikely event that
the source is logical. (Even then it requires the source to detect all its own inconsis-
tencies.) This is just as well; logical consistency is a terribly fragile thing. A better
understanding of the interactions between personality structure and the dynamic struc-
ture of one's life as whole should help us formulate a more useful notion of personal
coherence.

Further, when premises change in a dependency network, the network finds a new
consistent assignment incrementally. The propagation of values only affect the parts of
the network that need to change, the reasoning they encode being either newly valid
or newly invalid. When Thomas looks out the window and finds it dark, he is prob-
ably not led to reconsider his job or his politics or how he is holding his pen. In this
way, Thomas' dependency network executes a fresh incremental update on every mo-
ment. He constantly reconsiders his actions because his perceptual premises constantly
change. Chapter B4 discusses this effect, which is called a running argument, in more
detail. Presented with each next change, Thomas reconsiders only what is relevant and
everything that is relevant; what is relevant is determined by what he has found rele-
vant in the past. If he is lucky enough to have encoded all possible relevances in his
network then he will never make a mistake. Of course, there is no end to relevance, so
Thomas will occasionally fail to make a connection. He might, for example, offer a beer
to someone he knows is trying to stop drinking. We all do this sort of thing.

When one's dependency network transfers some reasoning from one part of life to
another, it is tempting to call it 'reasoning by analogy'. The usual account of analogical
reasoning in AI starts from structural mappings between descriptions (Winston 1979,
Gentner 1983). Dependencies, knowing nothing of structures, will not perform such

76 Chapter B2. Dependency maintenance

mappings. Instead, a thought will be transferred between two contexts just in case it
can't distinguish them. As with transfer dynamics generally, when and how often this
happens depends on both representation issues and dynamic issues. In Chapter C3 I will
conjecture that it happens quite a lot because of the indexical and functional properties
of our representations. Now, there are certainly times when people deliberately set out to
make mappings between representations. Dynamically speaking, this is an exceedingly
complicated, culturally specific activity, not to mention difficult and an acquired skill
(Gentner and Toupin 1986), that is only required when the simple transfer dynamics
don't suffice. We don't tend to notice the simpler cases because they just happen.
fluently and efficiently. I expect that two-factor dynamic theories like this one will
become common.

Above all, dependency maintenance provides an account of learning through experi-
ence. Experience accumulates as a side-effect of purposive activity in ongoing concrete
situations and so do dependencies. Whether dependencies are a sufficient account of
experience is, again, a dynamic question. It's the last question to answer because it
must relate an account of everyday activity as a whole to an account of development
as a whole. It helps to pose it negatively: how often in the course of ordinary routine
activity do you have to think something new? Thinking something new is hard work,
requiring an especially auspicious arrangement of circumstance. Five times a second
might be OK, five hundred is definitely not. In an activity that's really completely
routine, the various transfer dynamics will work together smoothly to deliver the right
moves at the right times, recombining things you've learned on past occasions without
needing any new thinking at all. Does the proposed machinery satisfy this condition in
our world?

The question gets complicated quickly. What is the normal run of variation in
ordinary activity like? Can one expect to encounter all the cases asymptotically? How
do we even individuate the 'cases'? Above all, how do you know that you won't,
suddenly, out of nowhere, in the midst of otherwise ordinary routine carrying on, find
yourself high and dry, surrounded by strange creatures and meaningless objects, with
no idea how to proceed?

Dependencies are for creatures who live routine lives. In my view, life is routine,
and when it's not routine it's almost routine. Almost everything you do is something
you've done before. What does this mean? Let us speak strongly for a moment to
put things in their proper perspective. Our 'intuitions' about everyday activity only
repeat a socially constituted official veneer. Beneath this pretention, the real work is
done without any hoopla by dynamic effects that we don't have words for because they
don't need names, Proximally and for the most part, our activity is directed at the
ongoing concrete situation-conducted in the present tense-even when we think we're
"reasoning' and 'theorizing' and 'abstracting'. Ordinary activity is not like science, nor
is it a matt!er of detachedly poking at the world in order to formulate objective, eternal,
predictive, generalized facts about it. We learn from experience not because we try
to but because our machinery keeps dependencies. Our old thoughts get reapplied in

B2e. About routines 77

the present not because we've generalized them but because they can't distinguish the
present from the past (why should they?). If we tell each other we have 'knowledge',
discover 'concepts', and make 'plans', those are just clumsy tricks for bringing about a
few extra dynamic effects that don't happen naturally. Philosophical poetic justice (in
the form of intractable complexity) will be visited upon anyone who tries to base Al on
these scare-quoted ideas.

In summary: properly implemented, dependency networks are blindingly fast, mas-
sively parallel, and easy to construct. They provide simple accounts of 'compilation',
generalization (especially explanation- based generalization), recombining things one has
learned on past occasions, reasoning by analogy, belief-system consistency, and acting
on accumulated experience. The big job is to demonstrate that these simple accounts
suffice.

B2e About routines

My way of walking to the subway, described in Chapter A3, is a routine. The dynamic
phenomena of routines and their evolution were my most important motivation in devel-
oping the ideas in this report. Time and space have kept me from presenting a detailed
account of these dynamics here, but it will be helpful to define the terms, provide some
examples, and discuss the dependency model of routine evolution.

By a routine I mean nothing more precise than the vernacular use of the word, as
in "my morning routine." In other words, a routine is a frequently repeated pattern of
interaction between an agent and the world. A routine is a dynamic. The difference
between the words "routine" and "dynamic" is that a routine involves a particular
individual (it is, for example, "my routine" or "your routine") whereas a given dynamic
might occur in the lives of many individuals.

Here are some typical routines one might engage in: picking up a fork, making a
bowl of cereal, measuring out two cups of flour, putting on a heavy backpack, selecting
a toll booth at the San Francisco Bay Bridge, putting your watch on, breaking an egg
into a bowl, washing the dishes in your kitchen after a large dinner, tossing a wad of
paper into the trash can in the far corner of your office, and writing the word "the."
It is common to speak of a routine 'for' some task, but a routine is defined by what
happens rather than by any endpoint or overall intention. Also, there needn't be any
set routine you engage in 'for' any given activity if, for whatever reason, there is no
set pattern to the way you engage in that activity. One might specify the task, the
circumstances, and the activity constituting the routine in a specific or general way. I
might not have any fixed way of pouring liquids in general, but in my morning stupor
I might have a set way of pouring my first cup of coffee.

Insofar as a routine is a dynamic, routines havw all of the properties of dynamics
that Section A2c has enumerated. A routine, like any dynamic phenomenon, is purely
a descriptive construct, not a thing in the head, not a plan or procedure. No specific
knowledge or competence is required to engage in routines, nor is there a 'routines

78 Chapter B2. Dependency maintenance

module'. If a script (Schank and Abelson 1975 and 1977, Schank 1982) is a mental entity
then a routine is not a script, though a script might be considered a representation of a
routine.

Doing something the same way every time need not result from a specific intention
to do it the same way every time. You can engage in routines without in any sense
knowing it. In general a routine might involve a series of actions, each a response to
the situation resulting from the previous action, without a specific prior intention to
perform that series of actions. You might weave down your street in the same pattern
to avoid the same set of potholes every day just because the potholes are always there.
Conceivably you might avoid the potholes in a consistent way solely for the sake of
consistency, but more likely your principal concern will be for your car's suspension.

The actions comprising a routine are not dictated by the routine; they are the
individual's chosen actions in particular situations. For example, a routine might result
from your always improvising the same response to a given situation-perhaps your
response is the only sensible one. You might switch your umbrella from your right hand
to your left hand so you can use your right hand to get your house keys out of your
pocket every single day without ever having made a deliberate policy of it. Furthermore,
a routine is not a law of nature; you might have poured your morning coffee the same
way a thousand mornings straight, but tomorrow morning your routine might be altered
by any of an endless variety of contingencies, from a ringing telephone to a worn-out
coffee pot to a spontaneous mystical experience to the onset of a well-earned ulcer.

Different individuals might engage in different routines for the same task. Not
everyone has a routine for every task they carry out frequently. It happens that I
have rather a strict routine for making an omelette in my kitchen. This routine varies
so little not because I am deliberately unvarying but because my kitchen is relatively
orderly and because I have put some effort into understanding each of the various
aspects of omelette-making. The opinions I've developed about omelette-making guide
my actions. But thinking things through isn't a necessary condition for an activity
becoming routine. It would really need explaining if someone made a series of omelettes
and did it differently every time. I can think of five ways this might happen:

(1) They haven't made many omelettes before and they're still learning and screwing
it up.

(2) They like to experiment and are deliberately exploring all the different ways of
making omelettes.

(3) They are perversely thinking up gratuitous variations every time.
(4) They are often distracted by extraneous matters. Perhaps they don't care much

about making omelettes, have other concurrent obligations (like minding a two-
year-old), or are persecuted by interferences (like ringing telephones).

(5) For some reason they are always making omelettes in unfamiliar circumstances.

In short, the existence of routines requires no more explanation than determinism. Put
the exact same creature in the exact same situation twice and the exact same things

B2e. About routines 79

will happen. An appeal to determinism, of course, is only a heuristic explanation. Your
coffee-pouring routine doesn't come off 'the same way' every morning down to the last
atom. Explaining exactly why routines exist is actually a difficult project that must
await a fuller exposition.

Everyday life is made of routines at all scales. Your routine of driving to work has
a hundred smaller routines as parts-buckling up, signalling a left turn, picking out
the word "police", keeping distance behind the car in front of you-many of which are
components of other routines as well. Even the most original and unpredictably impro-
vised activity will be composed of already-routine parts. Aside from being practically
inevitable, this property of routines is a computational necessity: nobody could figure
out novel forms of activity on all levels of organization at once.

In observing the remarkable complexity of any given episode of real activity, no
matter how small, it helps to think of an agent's actions as the result of a long process
of routine evolution. The complex forms of interaction do not arise all at once. A new
routine might arise in the course of ordinary activity, but then it evolves to more complex
forms. Just as one can engage in routines without knowing it, one's routines can-and
regularly do-evolve without one knowing it. Most of this undeliberate evolution takes
the form of a series of discrete mutations to the routine. You may drive to work one
way up until Monday and then slightly differently starting Tuesday.

An evolving routine will tend to take account of more and more detailed aspects of
the environment. Actions that were performed serially will begin occurring in parallel.
Warning signs become noticed as if expected and precautions are taken without missing
a beat. Sometimes a routine will develop divergent lines of evolution in response to
variations of circumstance, whether new or previously ignored. Sometimes a routine's
evolution will stall in some comfortable pattern, only to resume at some provocation or
chance discovery. Bits of action that began as improvisations or afterthoughts become
institutionalized, and the boundaries among artificial stages of activity (like preparation,
execution, and cleaning up) fade as actions are rearranged and recombined. Workplaces
and dwellings begin bearing the marks of one's routines, through both accumulated side-
effects and deliberate conventions, and the marks left by each routine prod mutations
of the others.

I have observed several kinds of routine mutation. The simpler ones all appear to
be instances of the transfer dynamics and the more complex ones all involve patterns of
transfer that are induced, even orchestrated, by culturally specific practices for the use
of symbolic representations, whether spoken, subvocalized, or written. This is a very
substantial claim and I will not pretend to adequately state or defend it here.

Dependency maintenance helps in thinking about the role of the transfer dynamics
in routine evolution. In general a routine mutation does not result from a deliberate
adoption of a policy or an explicit change to a plan. Instead, the mutation is the result
of the agent, faced with a slightly different situation or some new information, having
decided on a different action. Having made the novel decision on Tuesday, the agent's
dependency machinery will store its reasons and conclusion. Thus the conclusion will be

80 Chapter B2. Dependency maintenance

reasserted whenever those same reasons hold in the future. As a result, ceteris paribus,
the change to Tuesday's routine will become permanent, at least until some future
mutation reverses it, further modifies it, or changes the routine so that the situation
never comes up again. Note that the agent benefits from this transfer effect without
having to explicitly reflect on the similarities between Tuesday's situation and Monday's.
(For evidence on the tendency of routine mutations to become permanent and on several
other relevant phenomena, see Neches 1981.) This is the dependency model of routine
evolution.

The most common form of routine mutation is backward transfer. Suppose you
engage in a routine that takes a minute. On Monday, at t = 30sec into the routine,
you might make a novel observation, perhaps because something went wrong. The
observation might not have any consequences on Monday but the dependency machinery
records it anyway, connecting its reasons to its conclusion. On Tuesday, those reasons
might come IN again at t = 30sec into the routine. More likely, though, they will come
IN earlier, perhaps at t = 15sec. This effect is an instance of the slogan that novel ideas
have fewer reasons than causes. All the causes required to formulate the idea didn't
co-occur until t = 30sec on Monday, but the reasons first co-occured at t = 15sec. As a
result of backward transfer, everything in a routine tends to back up toward the front.

In a cyclical activity, backward transfer will tend to move things countercyclically.
Earlier on in a cycle you will know things that you originally noticed later on in the
cycle. This will often cause the cycle to change. These two stories illustrate the effect:

I had a stack of records propped up against a box and I was alphabetizing
it according to the artist's name, forming a second, sorted stack propped up
next to the first. I would take a record from the top of the first stack with
my left hand, find and hold open the right place for it in the second stack
with my right hand, place the record in its space, let the stack close over it,
and repeat the cycle. After a while I found I was doing something different:
whereas before my eyes stayed on the new record until I had picked it up,
now I would read the artist's name as soon as I was done with the last record.
Then as I picked it up with my left hand, my eyes were already helping my
right hand find the right place in the second stack.

I was trying to get a long C. program to compile. I was working on a Sun and
had divided the screen between two Unix shell windows so I wouldn't have
to exit and reenter the editor (GNU Emacs) to run the compiler. I'd run the
compiler and it'd get errors, e.g., "syntax error near { on line 173", so I'd
go back to the editor window. The only way I knew to get to line 173 was
to go to the top of the buffer and go down 172 lines. This got to be a cycle,
fixing errors and recompiling. After a while, I found that I would move the
editor to the top line before the compiler had even starting generating error
mossages. (Finally one time the compiler completed without errors and half
of me had to skid to a confused halt.)

B2f. Objections 81

In each case, fragments of the routine (reading artist's name, moving eyes to second
record stack, moving the cursor to the top of the editor) drifted to an earlier point
in the cycle. As the routine proceeded, each fragment acquired its own dependency
records which explained the reasons for each. As a result, the various actions took place
as soon as they could instead of in the more logical order in which they first assembled
themselves as I improvised my way through my dealings with each record or syntax
error.

B2f Objections

One encounters a number of objections to the idea of dependencies playing a central
role in our cognitive machinery.

Dependency networks, being digital, cannot reason with continuous quanti-
ties like size, weight, distance, and loudness.

Dependencies, recall, are only an account of the central system. The sensori-motor
machinery of the periphery will almost certainly be largely analog. If we need, for
example, to decide which of two weights is greater, we might imagine this to be a
peripheral function. Perhaps, then, analog processing is confined to the periphery.
Until we settle the empirical issue, we can try to design peripheral faculties that provide
enough such functions to comfortably accommodate ordinary activities.

Justifications, being digital, either apply or don't apply, and thus fail to cap-
ture our holistic intuitions about the similarity of non-identical situations.

If there is a single, unified notion of similarity then dependencies are certainly a
poor way to compute it. You can make 'similarity' sound as holistic as you like by
accumulating 'intuitions' of similarity in a wide variety of situations and observing that
they haven't got much in common. But asking what similarity amounts to in particular
situations suggests a different picture. At a minimum, similarity depends on what you're
trying to do. You might call two chess boards similar if you're playing chess but not if
you're considering which chess board to buy. Further, if you're playing chess, then two
similar positions are similar for certain reasons. They might both turn on the role of the
knights' pawns in maintaining Black's mobility within the boring closely-knit defensive
structures that the Russians tend to like. If this is so, then their similarity simply
amounts to a shared bit of analysis. The work you do in conducting such analyses will
be encoded in the dependency network. Every thought you've ever applied to a position
tries to apply itself to each new position; perhaps that's holism enough.

The logic-gates model of dependency networks makes us into rigidly logical
thinkers.

82 Chapter B2. Dependency maintenance

This is a level confusion. We have seen that the reasoning encoded in a dependency
network can be as illogical as you like. Another form of the objection claims that
digital hardware must be rigidly logical in some deeper sense. It is hard to answer this
objection '%-cause it isn't an argument, only an association of metaphors. Perhaps this
confusion is excusable, given that the people who invented digital logic made the same
association-they wanted to be rigidly logical but they didn't understand that it can't
be done.

The insight encoded in a given justification can only be reused in same
situation it was recorded in.

How true this is depends on what it means to be the 'same situation'. The whole
idea of dependencies is to define the loosest possible notion of sameness: two situations
are 'the same' just in case they share the salient features, where saliency is determined
by what you're trying to do. Whether this works out as intended depends on your
representations. If every thought you ever think comes with a timestamp on it-e.g.,
"Mary loves John 01:32:16 11/21/86"-then you'll accumulate new justifications at an
incredible rate and never use any of them. Fortunately, your brain probably can't tell
time. A representation scheme can make dependencies useless in other ways as well;
we'll return to these in Chapter C2.

Your head will overflow if you record every new thought.

This, too, depends on issues of representation and dynamics. How many new
thoughts do you really think? What counts as a new thought depends on what your
representations are like. How likely is a new justification to be useful again? This de-
pends on the ways in which everyday life is routine, a dynamic question. If everyday
life is largely routine, then your head had better be big enough for you to be skilled at
all of it.

The permanence of dependencies falsely predicts that you'll never forget
anything.

If forgetting 'something' meant no longer having 'it' in your head then this would
be true (Speaking of a thing as remembered or forgotten is a cheap way to add it to
one's psychological ontology. One should resist this bargain.) Except in cases of organic
brain damage, I don't think you actually do forget anything. Maybe you will never
be reminded of something ever again, but this is a complex dynamic fact, not a fact
about your mental inventory. One shouldn't think that 'remembering' and 'forgetting'
are single, unified phenomena. Dependency maintenance offers a simple account of why
you never forget how to ride a bike: the circuitry is always there, ready to go, even if
your body has changed in small ways so that the calibrations have gotten rusty. The
fact that we are often reminded of things we've long forgotten certainly doesn't prove
that it's all still there, but why insist on the opposite?

B2f. Objections 83

Why two values, IN and OUT? Why not three, or seventeen, or the whole
real numbers?

Indeed, there exist more-or-less obvious generalizations of dependency maintenance
to larger sets of values. One popular proposal is to distinguish YES, NO, and DON'T-

KNOW. Another is to represent either 'certainty' or 'likelihood' (it is often not clear
which) as a real number. I've posited two values out of simple parsimony. As soon as
the developing dynamic theory compels me toward these generalizations I will certainly
consider them. For me anyway, 'uncertainty' doesn't seem like a unified phenomenon.
Even if it were, real uncertainty doesn't seem anything like the real numbers. Maybe
I'm wrong.

Surely we garbage-collect.

This idea confuses me. A Lisp interpreter can only collect garbage because its
interactions with the outside world are so stereotyped that it can prove that certain
structures will never influence output. A garbage collector has to start marking from
somewhere, but how could it start marking from the outside world? If a thought was
useful in the world once, how can you prove that a similar situation will never again
arise?

Chapter B3

The initial implementation

B3a Context and summary

This chapter concerns a computer program called the running argument system. When
I wrote the first simple version of it in 1983, all I knew for sure was that dependency
maintenance is a way of accelerating the workings of a conventional rule system. When
a rule runs, a justification records that the rule and its trigger are reasons for believing
in its conclusion. The next time the same trigger matches the rule, the justification will
rederive the conclusion automatically. This way, a simple gate propagation saves the
effort of firing the rule again: instantiating the rule's right-hand side, building a new
proposition, and installing it in the database. In the vocabulp": of Chapter B2, this
machinery is the 'source' and rule-firings are 'thoughts'.

T'Ae border between Parts B and C of this report corresponds roughly to my un-
derstanding in the middle of 1985, after two years spent trying to make the running
argument system into a plausible cognitive architecture. Part B succeeds if it repro-
duces half the confusion I felt then. (My having told you about dynamic theory spares
you the worst of it.) Four major revisions subdued the implementation issues, meshing
the rule system and dependency system properly by assuring that all the right rules run
with only a small constant overhead. This is reassuring as an existence proof, but since
I don't think we have a rule system in our heads it's not a central point. This chapter
describes these implementation issues.

The real problem comes in connecting a rule system to a simulated world (much
less a real one) and trying to program it. Chapter B4 describes how this interaction
ought to proceed. The dependency network is very much faster than the rule system, so
one should write rules that needn't be continually firing on new triggers. My tr. Aing
in programming had definite opinions about how to write these rules. The standard
methods work for a while: the implemented examples of Chapter B5 demonstrate all
the virtues of dependencies that Chapter B2 has described. This is promising. In
the end. though. one cannot reconcile these methods with the plain impossibility of
using dependencies to support the standard account of abstraction, viz., variables and

84

B3b. Organization 85

constants. Chapter B5 poses this problem and Part C resolves it.
One might take two views of the running argument system. On one view there

are rules being accelerated by dependencies. On the other view there is a dependency
network being incrementally built from convenient but incidental parameterized speci-
fications. You're on the road once the second view becomes natural. We haven't got a
rule system in our heads. We can only properly ask where new dependencies come from
once we understand how one's already-accumulated network leads one to interact with
the world.

B3b Organization

The running argument system started as part of a (never-completed) animation system
at Atari Research. (This was a project with Ann Marion and Jim Davis. I will grossly
simplify the parts that aren't related to our main concerns here.) It provided a language,
called Life, for writing rules about the critters and things in a cartoon world. A user
could define the laws of the cartoon world, set up a cast of characters, arrange some
initial conditions, and turn the system on; and life would go by. A drawing program
could peek at the world at regular intervals to find out what to draw. Our initial goal
was to animate Aesop's fable of The Boy Who Cried Wolf. This turns out to be hard.
The hardest problem is that life doesn't naturally form stories. Left to its own, life falls
into a routine. Days start and end, shepherds tend flocks, townspeople go about their
business, wolves sneak in, shepherds sound alarms, wolves get chased away, townspeople
head for pubs and sit around swearing at wolves, and so on. This is the stuff life is made
of, day after day. To make anything happen against this background, storytellers have
to intervene and say "however, on this particular day the shepherd had an idea." These
were the hardest rules to write, the ones we never felt comfortable with.

This early vei -ion of the system had two parts, a rule system and a dependency
system. These two systems shared a database of propositions (Lisp list structures), some
of which had values of IN or OUT. The user would write rules in the Life language. (I'll
describe the language and its semantics in a moment.) Whenever an IN proposition (the
trigger) matches the pattern of an IN rule, the rule fires and the appropriate consequence
is declared to be IN. If necessary, the system first builds the consequent proposition and
inserts it in the database. Once the system was turned on, it continued running until
there were no more rules to fire. In Al terms, this is roughly an ordinary forward-
chaining rule system. (It is not a production system, as we'll see.)

The machinery underlying the Life language is designed on the assumption that most
rule-firings have happened before. There are many applications in which this assumption
would not apply. It seems plausible for the purpose of simulating everyday activity
because life is routine. Most things that happen have happened before. Consequently,
unlike advanced production systems like OPS5, the process of firing a life ,eal has not
been highly optimized. The dependency system does most of the work. Whenever a
rule fires, the rule system makes a justification, declaring that the rule and the trigger

86 Chapter B3. The initial implementation

are reasons for believing the conclusion. That rule need not fire again on that trigger.
To get an idea of what the system does, let us anticipate the more detailed expla.

nations by considering a simplified example. Here is a rule:

R13: (if (sees the-shepherd the-wolf)
(rings the-shepherd warning-bells))

One sunny Monday, the first wolf appears (either as the consequence of a rule or as
a premise):

A27: (sees the-shepherd the-wolf)

Then rule R13 fires on proposition A2V. The rule has not fired on this trigger before, so
the system builds a new proposition:

A28: (rings the-shepherd warning-bells)

and a new justification:

J41: (<= A28 (in R13 A27))

which we would draw as an AND gate connecting R13 and A27 to A28. Once the wolf goes
away, A27 will go OUT. Assuming A28 has acquired no other justifications, A28 itself will
go OUT as well. Now Tuesday comes and the wolf appears again, so that A27 comes IN
again. Assuming rule R13 is still IN as well, A28 will also come IN, courtesy of justification
J41. Whereas on Monday the system had to do some pattern matching and assemble a
new proposition and a new justification, on Tuesday it only had to propagate a changed
value through a gate. (Later we'll see how this works.) If the wolf makes daily visits
to the shepherd's flock, A27 and A28 will bounce IN and ovT every day. On Monday it
will take a moment to draw the correct conclusions, but on Tuesday it will happen right
away. This effect is impressive in the large; the system accelerates as everything that
happens often happens once.

The original system, then, had two modules (a rule mechanism and a dependency
mechanism) sharing a collection of propositions arranged in two tightly intertwined
datastructures (the database and the dependency network). Later, though, its purpose
changed. In my own work I wanted to design a central system for an agent living in a
world. Whereas originally the Life system simulated an entire world, now I considered
using it as the central system for a single simulated agent. Though they differ in many
ways, these two applications can both benefit from dependency maintenance because
they are both routine. Just as most things that happen in the world have happened
before, most things that happen in your head have happened before, or so I figured.

Since the Life machinery was only a central system, it needed two more components,
a periphery (visual and motor apparatus) and a world simulation. Some of the propo-
sitions in the database serve as inputs from the periphery and others serve as outputs
to the periphery. The running Life program now closes a loop with the outside world.
The Life program together with its periphery and world simulation is called the running
a,'urflnt .system, for reasons explained in Chapter B4. Here is its algorithm:

B3c. Example 87

1. The world simulation updates itself.

2. The periphery computes new values for the central system's inputs, which repre-
sent perceptual information.

3. The periphery compares the new input values to the old ones. Any newly IN input
is declared a premise; any newly OUT input is declared no longer a premise.

4. The central system now propagates dependency values and runs rules. Both the
dependency system and rule system continue to ran until they have both settled.

5. The periphery inspects the values of the central system's outputs, which represent
motor commands.

6. The periphery and world simulation together arrive at (a) a set of proprioceptive
propositions (judgements about the success or failure of the agent's primitive
actions) and (b) a set of motor effects (the immediate physical consequences of
the agent's actions).

7. The world simulation updates itself again, and so on ad infinitum.

This simulation does not bother constructing retinal images and muscle control
signals. Instead, the periphery and world simulation work together to provide the effect
of an agent getting about in a world. Although one should be suspicious of all simulated
worlds, this cooperation in itself is not cheating because I am only studying the central
system, not the rest. Some day, of course, it would be nice to connect the running
argument system to the real visual-motor hardware of a real robot.

(It so happens that the periphery and part of the world simulation are implemented
as another set of Life rules. Also, the modules and their connections are sufficiently
abstract that they can be arranged in arbitrary configurations. I will suppress these
extra generalities because they play no role in the examples. As a result, this chapter's
description differs considerably from that in (Agre 1985). The program has evolved
since then, but its outward behavior has not changed. Both this description and the
one in (Agre 1985) are both correct as far as they go.)

B3c Example

I decided to test the running argument system on the blocks world. Like most of my
predecessors, I chose the blocks world not because it is representative of ordinary human
activity but because I could write the simulation and graphics code in about an hour.
Yet the blocks world was about the worst domain I could have chosen. In fact, as we
will see at the end of Chapter B5, the blocks world is so awful that there is no better
way to expose the shortcomings of a lot of traditional methods than to try using them
to get the running arguments system to work in the blocks world. Along the way we

88 Chapter B3. The initial implementation

(Drogn (seam surrent-W11da :start-rY-1vn)
(Install-world-State 2stafdord-blKkill)
(select -*a"t -deiataio
(tke- ,. nt sions))

->l# se (n i C))
-)90tick notches rules actIVit depth

1 17414 229 d36 4
2 536 X 38 6
3 0 6 4 34 6 6 0 6

6 4119, 0 152 24
7 442a 116 142 29

w 9 4 30 5

li 9617 124 149 26
12 592 6 65 1523 225 5 10) 4
14 0 0 6 6
1.5 0 0 6 0
16 O 0 * O
17 Zr6 11 16 17
-S 2234 30 267 36

A..............i...

Figure B3.1. The system has been asked to put B on C. Since it has never been asked
to do anything before, this task requires the system to run a large number of rules.

will encounter most of the basic structural and dynamic ideas we will need later on. In
the end, I must explain how Al's blocks worlds obscure the nature of ordinary activity
by falsifying the nature of playing with blocks.

Figure B3.1 shows the running argument system being asked to stack some blocks.
In Chapter B5 we'll be seeing these screen snapshots again. For now let's just get the
idea. The demonstration is extremely simple. The world, such as it is, consists of a
table, a hand, and four blocks labeled A, B, C, and D. I'm asking the system to put
block B on block C twice, starting from the same position each time. As we can see in
Figure B3.2, it doesn't happen any differently the second time, only faster. Chapter B5
will go through these two demonstrations in much more detail.

Before we can discuss the dynamic aspects of the running arguments system in
Chapter B5, we need to develop some vocabulary, in Chapter B4. The remainder of
this chapter's examples will be highly simplified versions of the rules from the wolf story,
designed to be as self-explanatory as possible. These rules illustrate only the machinery,
not how anyone would consider programming it.

B3d Rule language semantics

The semantics of the Life rule language is neither procedural nor declarative. There is
a database of propositions, each of which is a Lisp list structure composed of list cells,

B3d. Rule language semantics 89

(Prorn (slud ,Curroat-world :tsflt-Mtrwio)
(se1lft-I0.at-datiabu(t I -11w4 orld-tte .. g)

-,(sI.1 (oton S l)

"tick Maules Was ectiitk get
1 17414 229 3 i3 47

4119 152 24
1 14429 1t 142 29

9 20 4 3" 1

11 91? 124 1A 2I
12 55 0W5 1
13 225 1 1 4

15 0 o o 0

3? 220 11 103 I?
is 24• 2M ? 23

39 0 I 242 31

21 S 4 3
22 40 0
23 0 S S 0
24 0 0 160 25
26 23 5

31 6 5 Is
32 0 10
32 0 S Li
34 Sj35 0 10 17
36 a 0 274 4iTý 23 IO0 i$9ý11 FoeC-U :

Figure B3.2. The second time it happens much faster. The dependency network is still
very busy, but almost no rules need to be run.

symbols, and variables. Variables look like ?x. Each proposition has a value, either
IN or OUT. A proposition is OUT by default. Here are some possible (though hardly
exemplary) propositions:

(forgets 30036 (flies squirrel))

(language is the house of being)
(for-all ?x (implies (human ?x) (mortal ?x)))

(((?x mortal) (?x human) implies) ?x for-all)
(plan put-on (?z ?y)

(preconditions (clear-top 7 h) (clear-top ?y))
(actions (pick-up ?z) (move-to ?y) (put-dorn).
(postconditions (cleartop Wx (on ?x ?y))

For technical reasons, two propositions are considered identical if they are the same
except for the names of variables.

Some of the propositions are rules. There are two kinds of riles, IF rdues and
UNLESS rules. Rules are the only propositions with a prescribed syntax. Their syntax
and semantics are as follows:

(if pautern consequence-(... consequence-n

"So long as paitern is IN, make each consequence-i IN as well."

90 Chapter B3. The initial implementation

(unless pattern consequence-I ... consequence-n)

"So long as pattern is OUT, make each consequence-i IN."

In each case, pattern and each consequence is a proposition. These propositions are
likely to have variables in them. The critical phrase is "so long as." Let us consider
some examples.

The example we considered earlier:

(if (sees the-shepherd the-wolf)
(rings the-shepherd warning-bells))

should be read:

"So long as the shepherd sees the wolf, the shepherd rings warning bells."

As we saw, when the rule's pattern comes IN, the consequences come IN as well. (This
rule, like most, has only one consequence.) When the pattern goes back OUT, each
consequence goes OUT as well, assuming it is not being supported by another rule.

Rules can include variables. Variables are interpreted differently in the two kinds of
rules. We might write:

(if (sees ?anyone the-wolf)
(rings ?anyone warning-bells))

"Whoever sees the wolf rings warning bells."

In general, an IF rule fires when (a) the rule is IN and (b) some proposition matching
the rule's pattern is IN.

Thus if we assert (meaning, establish as a premise):

(sees the-farmer the-wolf)

then the new proposition

(rings the-farmer warning-bells)

will come um as well. If forty people see the wolf, the rule will fire forty times and all

forty people will ring warning bells. Ii the wolf passes out of sight of ten of those people,
those ten will stop ringing their bells even if the other thirty continue.

In general, an UNLESS rule fires when (a) the rule is IN and (b) no proposition
matching the rule's pattern is IN.

We might write:

(unless (rings ?someone warning-bells)
(sneaks-toward the-wolf the-sheep))

B3d. Rule language semantics 91

"So long as nobody rings warning bells, the wolf sneaks toward the sheep."

If this rule is asserted and nobody is ringing warning bells, then the rule's consequence
will be IN. As soon as someone starts ringing warning bells, it will go OUT again. As
soon as everyone stops ringing warning bells, it will come IN again.

Since rules are propositions, a rule's consequences might include other rules. We
might write:

(it (owns-sheep ?person)
(if (hears ?person warning-bells)

(runs-to ?person the-meadow)))

"Anyone who owns sheep and hears the warning bells runs to the meadow."

(if (sneaks-toward the-wolf ?sheep)

(if (is-a ?sheep sheep)
(unless (shoots-at ?person the-wolf)

(grabs the-wolf ?sheep))))

"If the wolf is sneaking toward a, sheep then unless somebody shoots at the
wolf it'll grab the sheep."

Abstract definitions and English paraphrases aside, the rule language is best thought
of as a way of specifying dependency networks. An IF rule defines an AND gate each
time it fires. If an IF rule's pattern has no variables, it will define a single gate. If it does
have variables, it will define a separate AND gate for each matching proposition. See Fig-
ure B3.3. An UNLESS rule defines a single AND-NOT gate; if there are many propositions
matching its pattern then each will be assigned a NOT input. See Figure B3.4.

It is best to learn to think in terms of both rules and networks. A complex rule
defines a sort of template. Every binding of its variables will produce a new patch of
dependency network. Sometimes we are interested in what the rules say and sometimes
we are interested in the structure of the network. In particular, the semantics of the
rules is quite independent of the use of dependencies to recapitulate rule-firings.

Life rules are not productions. The running argument system differs from production
systems like OPS5 (Forgy 1981) in several ways. (Chapter C5 discusses production
systems in more detail.)

1. All rules fire whenever they can. The architecture neither defines a notion of
conflict nor provides mechanisms for conflict resolution.

2. A rule is not an imperative. It does not say 'when' but 'so long as'. It does
not simply make its consequence IN, it also arranges (through the justification it
creates) for the consequence to go OUT again when it is no longer supported.

3. There is no working memory as distinguished from the database as a whole. All
IN rules can fire and all IN propositions can trigger rules. (This is true in practice
for many users of production systems.)

i , , i I •

92 Chapter B3. The initial implementation

M•OO ?X) ba- ?d

.crl 0o~/ , (bcar)

Figure B3.3. If an IF rule has a variable in its pattern, then many propositions might

match it. Each one of the resulting rule firings will generate its own AND gate.

(LitWe55 (moviVIS 7x) al-steojy)

=(,"ov•!• 0,,

Figure B3.4. If an UNLESS rule has a variable in its pattern, then many propositions

might match it. Each one of those propositions will get its own inverted input into the
rule's AND-NOT gate.

B3e. How it works 93

4. The speed of the system does not depend on the speed of the rule-firing machinery.
Most of the work is done in the dependency network, which is easy to implement
in massively parallel machinery.

5. Life's rule-firing machinery is not part of any proposed cognitive architecture.
Where a production-system theory might propose that someone has a certain set
of productions in their head, a running-argaments theory would propose that they
have a certain combinational logic circuit in their head.

The running argument system shares much of the motivation and spirit of production
systems. Indeed, many people find the differences between them immaterial. I have
many philosophical disagreements with this view, but my technical disagreement centers
on the issue of variables and the distinction between imperative and so-long-as rule
semantics. I will return to both issues.

Life programming is more similar to logic programming languages (Kowalski 1974,
Warren 1983), particularly in the semantics of variables. Also, UNLEss rules differ from
logical negation in the same way as negation in logic programming; each means 'not (yet)
derived' instead of 'not derivable' or 'not true'. However, there are some differences:

1. The language defines no notion of predicates or functions. Propositions do not
need to follow any syntactic rules unless they begin with if or unless.

2. There is no unification; in order for a proposition to trigger a rule it must match
the rule's pattern, that is, there must be some assignment to the pattern's variables
that produces the triggering proposition.

3. Whereas most logic programming languages are backward-chaining the Life ma-
chinery is forward-chaining. Also, whereas no logic program would ever derive all
its logical consequences, Life continues firing rules so long as there are rules that
can fire.

4. As with production systems, the efficiency of a Life rule set does not depend on the
speed of pattern-matching. Once the system gets going, the dependency network
does most of the work.

Again, I will return to the issue of variables.

B3e How it works

We have seen that the rule system is inside a loop. On every tick of the clock, the
periphery updates the values of the perceptual inputs, waits for the rule system and
dependency system to settle, and acts on the values of the motor outputs. On the first
few ticks, the rule system is slow to settle because many mules are firing for the first
time. Once the system gets going, though, rule firings become less common. Often

94 Chapter B3. The initial implementation

the perceptual inputs don't change at all. When the inputs do change, the changes
usually propagate through the network without causing any new rules to fire. When
this happens, we would like the rule system to settle very quickly, befitting the speed
of combinational logic. Consequently, the rule system's interface to the dependency
system must satisfy the following contract:

(1) A rule only fires once on a given trigger.
(2) It takes almost no time to determine whether any rules need to fire.

The first condition is easy enough. Every rule has a list of triggers it has fired on. Given
a candidate rule and trigger, the rule system first checks this list and only proceeds if
the trigger is not on it.

The second condition is harder. This section describes a simple mechanism, the
outlines of which were suggested to me by David Chapman, that does fairly well. The
next section (which is unpleasant and optiohal) describes a tricky refinement of my own
that does quite well.

In all the implementations, the database is organized as a lattice of propositions
under generalization. Here is what this means. Given two propositions P1 and P2, P1
generalizes P2 if there is some assignment to Pl's variables that produces P2. Here are
some examples.

(rings ?x warning-bells) generalizes
(rings the-farmer warning-bells)

(eats ?x ?y) generalizes
(eats wolf sheep)

(eats ?x ?x) generalizes
(eats fish fish) but does not generalize
(eats cat fish)

(eats ?x ?y) generalizes
(eats ?x ?x)

(knows ?p ?x) generalizes
(knows ?p (sees ?q ?p)) which in turn generalizes
(knows the-wolf (sees ?q the-wolf)) which in turn generalizes
(knows the-golf (sees the-shepherd the-wolf))

A proposition without variables generalizes nothing and the proposition ?x generalizes
everything. Generalization is a partial order because it has no cycles. But it is not a
total order because it is common for a proposition P1 to generalize both P2 and P3,
neither of which generalizes the other. For example:

Pl: (knows ?p ?x)
P2: (knows the-wolf ?x)
P3: (knows ?p (sees ?q ?p))

B3e. How it works 95

Often the propositions P2 and P3 will both generalize some further proposition P4:

P4: (knows the-wolf (sees ?q the-wolf))

In such cases we speak of reconvergence in the lattice. Reconvergence raises hell with
attempts at massively parallel implementation of a large class of symbolic indexing
schemes, including the lattice technique.

To be technically accurate we should dmend the definition to state that a propo-
sition does not generalize itself. Figure B3.5 shows a sample lattice. The program's
datastructures only record immediate generalization relationships, in technical terms
the 'minimal generalizations' or the 'cover' of the relation. The algorithm that 'indexes'
new propositions into the lattice is subtle and tolerably fast. (Unfortunately, it turns
out that there is no simple way to index many propositions in parallel.) In the blocks
world examples, a typical lattice has a few thousand elements.

The rule system's algorithm uses the proposition lattice. The lattice includes every
proposition that has been made a premise or derived by firing a rule. In particular, it
includes the rules themselves. It also includes a laxge number of 'propositions' that have
no values. Among these are the patterns of all the rules. Thus if the rule

(if (sees ?Unyone the-wolf)
(rings ?anyone warning-bells))

is in the lattice, then so is the proposition

(sees 'anyone the-wolf)

even though it makes no sense by itself and is presumably neither IN nor OUT. As
Figure B3.6 shows, the proposition lattice has a remarkable property. If P is the pattern
of rule R and T is another proposition, T is a potential trigger for R just in case P is
above T in the lattice. This suggests a simple algorithm for the rule system. For IF
rules, the algorithm is:

* Whenever a proposition T comes IN, climb up the lattice from it. Whenever you
encounter a proposition P that is an IF rule R's pattern, if R is IN then fire R on
T (unless R has already fired on T).

9 Whenever an IF rule R comes IN, climb down the lattice from its pattern P.
Whenever you encounter a proposition T that is IN, fire R on T (unless R has
already fired on T).

To fire an IF rule R on proposition T,

1. Match R's pattern to T, obtaining a list of variable assignments.

2. Perform these assignments on each of R's consequences, producing a list of new
propositions C1 ... C, (typically there is only one of them).

96 Chapter B3. The initial implementation

~7?X

(E7TS TX 7/)

(E-n ' poy ?X) (-AVS 7X ?7X)

(CAT$ PQ; Pr-'v A') (cATs F15(FISH)

Figure B3.5. The patterns in the rule system's database are stored in a lattice.

B3e. How it works 97

dp

09

Figure B3.6. To find the patterns of all the rules that a given proposition .ight possibly
fire, one need only move upward in the lattice starting from that propos .on.

98 Chapter B3. The initial implementation

3. Index each of the new propositions into the lattice. (Some of them might already
be there.)

4. For each Ci, construct a new justification: (<= Ci (in R T)).

The algorithm for UNLESS rules is not so intuitive and you will do well to skip it.
(It took three tries to get it right.) An UNLESS rule 'fires' as soon as it first comes
IN. From then on, whenever a new proposition matches the rule's pattern, it 'unfires',
meaning that the new trigger is added to the OUT-list of the justification the rule created
to support its consequence. The algorithm for an UNLESS rule of the form (unless P
C1 ... C.) is:

" Whenever a proposition T comes IN, climb up the lattice from it. Whenever you
encounter a proposition P that is an UNLESS rule R's pattern, unfire R on T
(unless R has already unfired on T).

" Whenever an UNLESS rule R comes IN for the first time, climb down the lattice
from its pattern P. Along the way, accumulate a list of every proposition Ti that
has ever been IN. Finally, make a justification for the each of rule's consequences:
(<= Ci (in R) (out T1...Tk)).

To unfire an UNLESS rule R on proposition T,

1. For each Cj, find the justification that mentions R. (In practice, of course, they
will all share a single AND-NOT gate.)

2. Add T to its OUT-list so that it reads: (<- Ci (in R) (out T1 ... T2 T)).

It is worth noting that no lattice-climbing occurs when a proposition goes OUT. If the
OUT-going proposition enters into the support of any other propositions, the dependency
system will take them OUT too if necessary.

If it seems expensive to climb around in the lattice, remember that every proposition
one encounters while climbing down is a potential trigger and every proposition one
encounters while climbing up is a potential rule pattern. Little effort is wasted. This
version of the algorithm, unfortunately, requires climbing around the lattice every time
a proposition goes from OUT to IN. The refinements in the next section repair this.

(A small technical note. Although the generalization relation does form a lattice
once we go through technicalities like defining a unique minimal proposition, truth in
formalization requires me to point out that the algorithm only requires generalization to
be a partial order. Not all partial orders form lattices; in particular, the generalization
relation probably doesn't form a lattice when restricted to the set of propositions that
has actually been indexed at a given moment.)

133L How it works (details) 99

B3f How it works (details)

This section is optional.
In reality, the system is more complicated. Recall that the goal is to permit the

system to decide very rapidly whether any rules need to be fired. The system described
in the previous section does not achieve this goal because the system must perform
a search in the lattice every time a proposition goes IN or OUT. I will describe the
algorithm only for IF rules because the methods for UNLESS rules are too complicated
to state but still easy enough to rederive.

At a small expense of space, the system can avoid doing any search except the first
time a given proposition comes IN. Every proposition keeps a bit indicating whether it
has ever been in. When a proposition comes IN for the first time, it searches upward in
the lattice; when a rule comes IN for the first time, its left hand side searches downward
in the lattice. While searching, it looks for rules that might be able to fire now. But it
also looks for potential rule firings. When a trigger is searching upward for patterns, it
looks for rules which are not currently IN but have been IN at some point in the past.
Likewise, when a rule's left hand side is searching downward for triggers, it looks for
propositions which axe not currently IN but have been IN at some point in the past. All
of this information is stored with the proposition doing the searching.

Thus every proposition has a list of potential rules and every rule has a list of

potential triggers. Whenever a proposition comes IN or goes OUT , it checks all of its
potential rules to see if they are IN. If any are then the rules fire and axe removed from
the proposition's list of potential rules. Whenever a rule comes IN or goes OUT , it
checks all of its potential triggers to see if they are OUT. If any are then the rule fires
on them and they are removed from the rule's list of potential triggers.

This algorithm works well in practice because the lists of potential rules and triggers
are always short. One could write pathological rule sets in which the lists were choked
with rules and triggers that could lead to useful work in principle but never will in
practice, but this has never happened with any actual rule set.

One additional detail concerns the pattern lattice itself. During a large run of the
system, the lattice typically contains five thousand propositions. All of the algorithms
are carefully designed to search only the minimally necessary regions of the lattice. Still,
some steps of those algorithms take time proportional to the fan-out of the propositions
they visit. If some proposition has a hundred other propositions immediately below
it in the lattice, the algorithm has to make a hundred separate decisions about which
branches to pursue. Almost all of these decisions are typically negative. Consequently,
it is best if the fan-out in the lattice is kept to a minimum.

The problem is worst near the very top of the lattice. The top element of the lattice
is a plain variable, ?x. Unless care is taken, its immediate offspring will be an extremely
long list of left hand sides of various rules. The problem can be alleviated by indexing
such intermediate patterns as (?x ?y) and (it ?x ?y) into the lattice as well. Though
these patterns have no meaning to the system, they partition the offspring of ?x without

100 Chapter B3. The initial implementation

changing the behavior of the algorithm.
Unfortunately, the problem of excessive fan-out also occurs at many other places in

the lattice. For example, any pattern with two variables, such as (on ?x ?y), is liable
to accumulate as offspring all possible instantiations of itself, such as (on c a). The
problem is gets rapidly worse as the rules become more complex; many of the patterns
in the database involve upwards of a hundred list cells. This effect can slow the system
by a factor of ten. This slowness has no theoretical import (because I don't believe
that people have rule systems in their heads) but it does make it impractical to debug
substantial rule sets.

I've developed a series of heuristic tools for dealing with the problem. It is an inter-
esting technical puzzle to write an algoriti, m that, given a proposition and its excessively
numerous immediate specializations, chooses appropriate intermediate specializations.
These intermeoiate specializations should sort the offspring propositions into neatly bal-
anced partitions. The intermediate propositions should be sufficiently natural that the
partitions are likely to stay balanced as future propositions arrive. This puzzle turns
out to be insanely difficult to solve acceptably. The current algorithm, most recent of a
long series, covers several pages of code and does a poor to medium job.

This concludes the description of machinery underlying the Life language.

B3g Incremental updating

We can now leave the microscopic details of the running arguments system's machinery
and begin considering dynamic issues, that is, what it does on a large scale in practice.
The substantial discussion of dynamic issues begins in Chapter B4. We can best prepare
for it by considering what Life programming is like independent of any theoretical
scruples.

Man), of the dynamic ideas turn on the system's ability to update itself incrementally
when its premises change. When the system is interacting with a simulated world, the
premises that change are the perceptual inputs. Rather than dive straight into these
issues, let's take a simpler case of the same effect.

When you're debugging a rule set, the premises that matter are the rules. If you
rewrite a rule, take the old version OUT and make the new version IN. The best way
to debug is to watch the system running. When you don't like what it's doing, poke
around in the dependencies.

Suppose we're debugging the rules for the wolf story. Here are some plausible cartoon
premises:

R12: (if (sees ?anyone the-wolf)
(rings ?anyone warning-bells))

R37: (if (in-town ?person)
(if (rings ?anyone warning-bells)

(hears ?person warning-bells)))
A46: (owns-sheep Katya)

B3g. Incremental updating 101

R47: (if (owns-sheep ?person)
(if (hears ?person warning-bells)

(runs-to ?person the-meadow)))

(The labels- R12, A46, etc.-are assigned by the system to provide short names for the
propositions. This example is fictional because the real rules would require too much
explanation. We'll see plenty of real rules in Chapter B5. Also, keep iii 1hind that
our eventual aim is not to write cartoon simulations but to design central systems for
agents.)

Now you're watching the system run. The story reaches its climax. The wolf appears
and sneaks up on the sheep. The shepherd sees the wolf and rings the warning bells.
The townspeople hear the bells and go running. That isn't right. Stop the system.
Among the IN propositions is:

A63: (runs-to Katya the-meadow)

We can inspect the dependencies behind A63:

(why? A63)
A63 is in because R51 ran on trigger A39:

161: (if (hears Katya warning-bells)
(runs-to Katya the-meadow))

R51 is in because R47 ran on trigger A46:
R47: (if (owns-sheep ?person)

(if (hears ?person warning-bells)
(runs-to ?person the-meadow)))

R47 is a premise.
A46: (owns-sheep Katya)

A46 is a premise.
A39: (hears Katya warning-bells)

A39 is in because R49 ran on trigger A28:
R49: (if (rings ?anyone warning-bells)

(hears Katya warning-bells))
R49 is in because R37 ran on A40

R37: (if (in-town ?person)
(if (rings ?anyone warning-bells)

(hears ?person warning-bells)))
R37 is a premise.

A40: (in-town Katya)
A40 is a premise.

A28: (rings the-shepherd warning-bells)
A28 is in because R12 ran on A27:

112: (if (sees ?anyone the-wolf)
(rings ?anyone warning-bells))

R12 is a premise.
A27: (sees the-shepherd the-wolf)

A27 is in because ...

102 Chapter B3. The initial implementation

And so on through the reasons behind the wolf being in the meadow and the shepherd
seeing it. Even if there are a hundred rules among the premises (not at all unusual) this

display presents only the ones that entered into the troublesome conclusion. Reading
them, we find that the townspeople are too gullible. We've written rules that lead

them to conclude that the shepherd is a liar, but we haven't made them act on that
conclusion. Let's rewrite R.47 to make it more general:

R68: (if (owns-sheep ?person)
(if (believes ?person (at the-wolf the-meadow))

(runs-to ?person the-meadow)))
R69: (if (rings ?anyone warning-bells)

(if (hears ?person warning-bells)
(unless (believes ?person (liar ?anyone))

(believes ?person (at the-golf the-meadow)))))

(What a kludge! It's an instructive exercise to try writing these rules as generally

as you possibly can. When I gave up trying to write rules to completely capture the
,real reasons' behind the events in the wolf story, I was long past a hundred rules and

diverging rapidly.)
When we retract R47, both R51 and A63 go OUT but everything else stays unchanged.

When we now assert R68 and R69, they both run, deriving:

R70: (if (believes Katya (at the-wolf the-meadow))
(runs-to Katya the-meadow)))

R71: (if (hears ?person warning-bells)
(unless (believes ?person (liar the-shepherd))

(believes ?person (at th- wolf the-meadow)))))
R72: (unless (believes Katya (liar the-shepherd))

(believes Katya (at the-wolf the-meadow)))))

The system has already derived:

A54: (believes Katya (liar the-shepherd))

so rule R72 does not license the conclusion that Katya believes the wolf to be in the

meadow. Finally we let the simulation proceed. Katya does not go to the meadow (nor

does anybody else), the wolf eats the sheep, and the shepherd feels bad.
Normally when you fix a bug in a program you run the program all over from scratch,

wasting seconds or minutes getting back to where the problem was. With dependency

maintenance, the program is re-run incrementally. The system only does the work that

needs to be done differently.

B3h Advanced rule-writing

This section contains technical details that will help explain some of the code fragments

in the Chapter B4. It can be safely skipped.

B3h. Advanced rule-writing 103

Life is a simple language, but still perfectly general. It's Turing universal, for what
it's worth, in two senses. One can write a Lisp interpreter in Life rules alone. It's not
hard but it run- ap enormous number of rules. The dependencies do provide automatic
memo-izing, for what it's worth. On the other hand, if a Life system is connected
to a world that behaves like the tape of a Turing machine, one can write Life rules
for a universal Turing machine. These rules require no variables so there's a definite
upper limit on the size of the resulting dependency network. The periphery or the
world probably has to supply a two-phase clock signal to synchronize the discrete tape
operations.

Unlike many rule languages, Life does not provide for boolean combinations of rule
patterns. For example, one might like to rewrite rule R37:

old: (if (in-town ?person)
(if (rings ?anyone warning-bells)

(hears ?person warning-bells)))
new: (if (and (in-town ?person)

(rings ?anyone warning-bells))
(hears ?person warning-bells))

To allow such rules, one can take advantage of the fact that rules are propositions too:

(if (if (and ?p ?q) ?c)
(if ?p (if ?q ?c)))

(if (if (or ?p ?q) ?c)
(if ?p ?c)
(if ?q ?c))

(if (if (not ?p) ?c)
(unless ?p ?c))

(The actual rules are more complicated for reasons of generality and efficiency.)
One could even write rules that support backward-chaining.

(if (if-shown ?p . ?q)
(try-to-show ?p)
(if ?p . ?q))

(if (unless-shown ?p . ?q)
(try-to-show ?p)
(unless ?p . ?q))

(if (can-show ?p)
(if (try-to-show ?p)

7p))

(See (Agre 1985) for a fuller discussion of these rules, which differ from the Amord
versions (deKleer et al 1978) only in their simpler syntax.) For example, it is often
necessary to constrain two variables to have different bindings. To express the idea of
two different people seeing the wolf, one might say:

104 Chapter B3. The initial implementation

(if (and (sees ?a the-wolf) (sees ?b the-wolf))
(if-shown (neq ?a ?b)

We can now write rules for showing equalities and inequalities:

(can-show (eq ?x ?x))
(if (try-to-show (neq ?x ?y))

(try-to-show (eq ?x ?y))
(unless (eq ?x ?y)

(neq ?x ?y)))

Given these rules, if both Katya and Anna see the wolf, then the following spries of
propositions would get asserted, courtesy of these rules:

(if-shown (neq Katya Anna)

(try-to-show (neq Katya Anna))
(if (neq Katya Anna)

(try-to-show (eq Katya Anna))
(unless (eq Katya Anna)

(neq Katya Anna))
(neq Katya Anna)

In practice the running argument system does not use backward-chaining in more com-
plex ways than this.

Rules like these raise a serious question of what's fair in Life programming. If my
psychological theory allows me to write arbitrarily sophisticated Life programs, it has
little content. This question has no easy, complete answer, but a great deal follows
from first principles. One should not write rules that must fire regularly (that is, with
different variable bindings) in situations that ought to be routine. It is also a good
policy not to write rules that fire on other rules except as a notational convenience.
The issue will keep coming up in later chapters. Above all, keep in mind that our
topics are routine activity and the interactions between an already-existing dependency
network and its periphery and world. Life rule sets are not psychological theories but
specifications for networks.

Chapter B4

Running arguments

B4a Context and summary

Chapter B2 has introduced a partial account of central system architecture and Chapter
B3 has described an implementation of it. It might strike you as odd that there is so
little to it, and so little that is original by any familiar standard. The way we ordinarily
think about computer programming, the how-it-works, and usually the what-it-does
too, can be read straight off the 'code'. Once you have described the machinery you're
almost done. That is not true here. We're hardly off the ground. Most of the story
is in issues of personality and dynamics, about which I have only provided hints. This
chapter introduces some basic ideas about these things, starting with the dynamic idea
of a running argument.

Running arguments are one way to think about what goes on in a dependency
network when its owner is engaged in routine activity. According to this view, on
every moment you conduct an argument about what to do now. (I am using the word
'argument' loosely and metaphorically.) The collection of proposals and objections
and evidence and reasons pro and con that enter into the argument is known as the
argument structure. All these components (each generically called an argument) have
dependencies attached to them. The dependency network acts as a warehouse of all the
arguments that have entered into all of one's past decisions. Each argument joins the
argument structure when it is applicable and leaves when it is no longer applicable. Thus
the argument structure is continually incrementally updated to reflect one's current goals
and understanding of the world. This dynamic effect is called a running argument.

The slogan of running arguments (adapted from a saying of John Batali, who derives
quite different conclusions from it) is:

One must continually redecide what to do.

We might describe a running argument thus:

A running argument is a continually incrementally updated hierarchical ar-
gument about what to do ,cw-.

105

106 Chapter B4. Running arguments

There are several words to explain: argument, continually, incrementally, updated,
hierarchical, and now. Above all, a running argument is a dynamic phenomenon; none
of these words names an algorithm or a datastructure. Some simple ideas about the
dynamics of running arguments suggest new views of what Al has called hierarchical,
nonlinear, and incremental planning. The next three sections motivate the idea or
running arguments by contrasting it with conventional Al ideas about the organization
of activity.

Section B4b concerns the conventional notion of Planning. It describes the inflex-
ibility of Plan-following and argues for a continual updating of the reasoning behind
one's actions. Narratives from everyday life help dispel any intuitiveness of Planning in
favor of running arguments.

Section B4c concerns the notion of hierarchy. Al Planning work has typically in-
volved a recursive decomposition of goals into subgoals; this section outlines some of the
changes this view must undergo as our prototypes of activity shift from planning-ahead
to improvisation. Working out the details of these suggestions, however, is a topic for
future work; this report will continue to assume the version described in Section B4c.

Section B4d concerns the notion of deliberation as it appears in Doyle (1980). Doyle
describes a scheme of deciding-what-to-do-next by recursive argument and counterargu-
ment. I will argue that Doyle's scheme is overly centralized. Moving the burden of proof
from the proposer of an action to an objector simplifies the architecture and allows for
massive parallelism.

Section b4e puts the pieces together. It prepares for the demonstrations of Chapter
B5 by describing several ways of thinking about the dynamics of a running argument.

B4b Planning vs knowing what you're doing

In discussing planning, we must not get caught up in a et-rilc oppoif;on between
'planning' and phrases like 'just trying things' or 'muddling through' or 'figuring it all
out as you go along'. This too-common practice contrasts a uselessly inflated notion
of 'planning' with correspondingly anemic alternatives. We must not use the word
'planning' indiscriminately to refer to absolutely any deliberateness or intentionality or
'knowing ahead of time what you are going to do'. Instead, let us recognize two useful
senses of the word. Lower-case 'planning' retains its ordinary vernacular use, that is,
comporting oneself toward a (written or subvocalized) plan. Al research, by contrast,
has been concerned with upper-case 'Planning', which distinguishes a smart Planning
phase and a dumb execution phase. The Planning phase receives representations of a
situation and a goal; in exchange it delivers a Plan. The execution phase carries out the
Plan, to the letter, in a fashion one would call mechanical. One thinks of the Planning
and execution phases as alternating-Plan, execute, Plan, execute, Plan, execute-an
idea called incremental, or interleaved, Planning. (See Chien and Weissman 1975, Giralt
et al 1984, McDermott 1978, Tate 1984, Wilkins 1988.) Chapter C5 discusses some other
variations on the theme.

B4b. Planning vs knowing what you're doing 107

During its execution phase, an agent's Plan is directly responsible for its activity.
The agent itself is almost asleep. It just cranks out the actions indicated by the Plan.
This sort of blind action is obviously dangerous. Adding extra features to the executive
can alleviate some of the more obvious hazards. For example, if one of the actions
detectably fails or is detectably inapplicable, the executive can pass control back to
the Planner-an idea called 'execution monitoring' (Fikes 1971, Ghallab 1985, Munson
1971). One should cease executing a Plan any time the next action it prescribes is
irrational in context. Thus an executive should be approximately as smart as its Planner.

To use a plan, you also have to use some sense. The difference between a Plan
and a plan is that Plans are made for dumb executives whereas plans are made for
ordinarily intelligent agents. Perhaps we could get very far without plans, but they
aren't what directly generate our activity. An executive can't do anything without a
Plan; running arguments are my account of what we do whether or not we happen to be
following a plan. An executive interposes only a simple automaton between its Plan and
its muscles; running arguments are my account of what people interpose between their
plans and their muscles. Dwelling for a few pages on the weaknesses of Planning may
seem redundant, but it will deepen our understanding of moment-to-moment activity
and stop us being seduced by next week's latest extension. At each step we will see the
value of keeping dependencies on all the reasoning leading to one's actions. The section
closes by describing running arguments as a limiting case of incremental Planning, where
the increments have become vanishing small and the Planning-execution distinction has
disappeared. Subsequent sections will elaborate on this description.

In analyzing Planning, the key words are anticipation and trouble. When a plan
goes wrong, there must be have been something you didn't anticipate. One says that
something 'came up'. A contingency is when you fail to anticipate something bad. If you
fail to notice too many contingencies then you will get hurt. An opportunity is when you
fail to anticipate something good. If you fail to notice too many opportunities then you
aren't paying attention. (For an interesting discussion of opportunities see Birnbaum
1986.) There are things you can't anticipate and things it would be foolish bothering
to anticipate; these call for improvisation. Let's consider an example.

I was spending the afternoon making a demo videotape in the vision lab at
Oxford. It had to be done by dinnertime so I could take it on a trip. Every-
thing was going wrong. I had just returned from a trip home to pack. As I
walked in the door, someone told me that S was looking for me, something
about my trip. I wanted to set up the next program to be taped, but all the
equipment was being used by people trying to fix things. So I decided to go
talk to S, who was two flights up. Walking up I also decided I ought to stop
by the bathroom, which is across from S's office. Approaching S's office I
had to decide which room to head for. It occurred to me that I shouldn't
risk missing S, so I decided on S's office. Arriving at S's office, though, I saw
that she was on the phone. Instead of waiting I headed for the bathroom.
For what it's worth, I believe I told myself something to the effect that I

108 Chapter BT. Running arguments

was less likely to miss S so long as she stays on the phone. But this wasn't

anything I was aware of putting much effort into.

I amn certainly not going toargue that 'Planning can't handle this case'. One could build
an executive for which having to wait was sufficient reason to cancel the Plan and return

control to the Planner (assuming the executive can figure out that you can't expect to
talk to someone who is on the phone (unless it's an emergency (unless the phone call

concerns a bigger emergency (etc)))). That is not the point. For every story I can 1,11
about people changing course. one could make another entry on the executive's list of

rea-,ons to cancel Plans. Indeed, it is hard to think of a condition that could never be
-sufficient reason to abandon a Plan. In order to stay ahead of all these conditions, the
increments between Planning steps will have to be pretty small.

So far so good. We could interleave Planning and execution at 10 tlz or so. But
that would be a superficial response; there is more at stake. Even a brief look at the

fine detail of everyday activity reveals a long list of reasons for an executive to appeal
to the more complete intelligence of its Planner. The word 'Planning' begins to dissolve

into an obscure way of referring to 'thinking' in general. The notion of Planning seems
to run together two different, equally important, matters: 'planning ahead'--that is,
using ideas about the future in deciding how to act-and figuring out what makes sense
to do now. Much turns on your intuitions about the relative proportions of these two:
how much you try to anticipate and how much you figure out as you go along. The
word 'Planning' strongly prejudges this question in favor of exhaustive anticipation and
negligible improvisation.

Al Planning research has generally considered domains in which everything can be
anticipated. Since the Planner can't count on the executive to use any sense in carrying

out the Plan, the Plan has to be guaranteed. If you don't know what might happen you
can't Plan. Precise prediction is unnecessary so long as the Planner can characterize a

space of contingencies, whether by enumerating them, forming a common abstraction
from them, or describing a geometrical envelope around them (Lozano-P6rez. Mason,
and Taylor 1984). Nonetheless, as the space of contingencies expands, it becomes less

likely that any one Plan will be sufficient. Faced with such uncertainty, the Planner is
under great pressure to play it safe. I once heard someone suggest formalizing Planning
in terms of game theory: life is a game and the world is playing against you. This
skid-row attitude sums up Planning quite well

Life can be hard, but it's not hard in the way Planning is hard. We organize our
activity without explkitly anticipating everything that might happen. The simplest

coinvrsation is an amazing dance of moment-to-moment give-and-take with a branching
factor beyond calculation. A Planner confronting the world of everyday life sees a
bewildering maze of possibilities. But everyday life doesn't seem like a maze. It seems

perfectly tractable. All we can anticipate is that we'll generally be able to figure things
out when tho time comes.

What makes the world hard to anticipate? When you have to work in novel sur-

roundings, you usually don't know where things are without looking. There is also the

B4b. Planning vs knowing what you're doing 109

frame problem, which makes it computationally difficult to anticipate the effects of your
actions. Your knowledge of a thousand simple matters like the location of your coffee
cup will grow rapidly out of date as you go about your tasks. Even when there is enough
information, keeping track can be a waste of effort. You don't bother (I hope) keeping
track of tne arrangement of the gadgets in your kitchen's gadget-drawer. There is no
use keeping track when you can simply look and see. The world, as we've observed, is
its own best simulation.

Some examples might help. Here are twenty things it would rarely be worth trying
to anticipate:

"* Whether the handle on a refrigerator door is on the left or right.

"* Where the chalk is located on the blackboard's chalk tray.
"• How the aspirin tablets are arranged in the aspirin bottle.

"• Whether any mail has come today.
* How your key ring will be oriented as you retrieve it from your pocket.
* Which section of the newspaper the comics will be in today.

W Where there will be a free seat in the subway.

• How all the dirty dishes wiil be arranged when it is time to wash up.
* How many bottles accumulated for the recycling bin last month.
* Which side of a record will be up when you remove it from its sleeve.
• Whether the record will need cleaning before you play it.

* How the spatula will be tangled among the gadgets in the gadget drawer.
* In what order the shirts are hung in your closet.

* Whether you will have to open another box of cereal.
* How many pennies you have in your pocket.

• Which way the handle will point when you are handed your pint of beer.
* How the other pedestrians will be distributed along the sidewalk.
• Which slots in a half-full egg carton have the eggs in them.
* When your watch battery will start running down.
* Where the knob on the oven is set from the last time it was used.

Some observations on this list, including some dynamic phenomena deserving further
description and explanation:

"* These things might be worth anticipating in another culture. Maybe a penny is a
lot of money, aspirin arrangement is an omen, shirts are worn in a certain order,
poison is kept in left-handed fridges, etc.

"* For every entry on this list, one can imagine circumstances under which it would
be worth trying to anticipating it. There are probably interesting patterns among
the halfways plausible ones.

110 Chapter B4. Running arguments

"* In particular, when's and how-many's are often worth anticipating if they are
going to be grossly outside their usual range. We have a good sense of normal
ranges even though they are often hard to define.

"• Some of these can be anticipated by taking the effort to 'keep track'. Keeping track

of things is usually remarkably difficult. I'd like to know under what conditions it

is relatively easy.

"* Things that aren't worth anticipating are often hard to remember afterward. Most

of them matter so briefly and are accommodated so easily that they don't seem
to make much of an impression.

"* Furthermore, one is rarely aware of explicitly declining to anticipate something.
Maybe we do tons of unconscious declining. More likely we only try to anticipate
what we think we have to.

"• Equipment that nobody else uses will be easier to anticipate. People who live

alone often know exactly how the cereal boxes in their cupboards are arranged.

"* Sometimes you will find yourself anticipating things like these after using the same
item of equipment in the same way under the same conditions very many times.

"* Little is lost in trying to anticipate these things. Many regular subway riders have
superstitious beliefs about where free seats will be found.

Above all, it matters whether everything that happens is caused by the agent. Al
Planners have typically been demonstrated in inert domains. Who knows what other
agents or processes might do? One might think about dealing with others in the way
that games like chess are customarily formalized, using the familiar technical apparatus

of alternating 'moves' from a constrained 'legal' set. Even when this sort of formaliza-
tion is applicable, it often misses the point. Think of a game like go. Some kinds of
philosophical disputation are made of stereotyped moves, but most of life isn't. You

share sidewalks, roads, shops, kitchens, laboratories, and bars with other people. Even
though most of those people are moderately responsible, all of them are only moderately
predictable. If you live with other people, for example, they will mislay the can opener
behind the breadbox, drink your last beer, leave all the forks sitting unwashed in the
sink, occupy the shower when you'd like to be using it, tear Calvin and Hobbes out
of the comics page before you've read it, get half a dozen phone calls at ten minute

intervals, and otherwise foul up your plans. Such contingencies may be annoying, but
rarely are they memorably disastrous.

Why ever plan ahead? Why not figure everything out as you go along? In planning
ahead, you seek to avoid trouble. One idiom warns of 'painting yourself into a corner',
a fate that another idiom blames on 'burning bridges'. There is an important trade-off:
if you plan ahead instead of improvising you might avoid some trouble, but you will
have a lot less information about the circumstances you will be acting in. The role we
assign to planning in the dynamics of everyday activity depends on how impressed we

are by everyday trouble. A Planner that insists on producing guaranteed-correct Plans
is so impressed by trouble that it won't risk any trouble at all. It is easy to understand

B4b. Planning vs knowing what you're doing ill

why programmers should write such timid programs; how else could one's research be
principled? By what a priori criterion could one's program determine certain risks
worth taking and others worth avoiding? Without such a criterion, a heuristic Planner
is in serious danger.

To understand the role of trouble in everyday life, we might start by asking how much
trouble people actually get themselves into. Certainly everyone can cite horrendous
episodes of trouble. People regularly burn themselves, lock themselves out of their
houses, lose their plane tickets, get sick, get lost, get drafted, and run out of garlic.
These are all notorious problems. They make good stories. But trouble is much more
prominent as a conversation topic than as an actual feature of life. Trouble is simply
more memorable than non-trouble. You might make breakfast a thousand mornings in
a row-and remember only the one you dump in your lap. This bias suggests, correctly
I believe, that trouble is less common than we make it out to be. But we still don't
know why trouble is unusual. To understand the nature of trouble, we need a better
understanding of the dynamics of everyday activity. For present purposes, we only need
to consider the matter briefly. The next section will return to it.

Observation of everyday activity immediately reveals a great deal of the following:

I was in a kitchen whose sink is immediately to the right of the oven. I had
just put my lunch in the oven to cook and was standing at the sink washing
dishes. While washing, I noticed something moving out of the left corner of
my eye. It was smallish, white, wispy in appearance, and seemingly floating
in the air over the oven, perhaps a little in front of it. Thinking it might be
smoke from the oven, I turned to look at it. Focusing on it, I saw that it was
a small white feather, perhaps a bit of down. No phrase I can come up with
captures the experience very well. I had no sense of drawing conclusions or
formulating doubts about this possible smoke, nor any sense of needing to do
these things, in the moment before I turned to look. I just turned and looked.
This pattern of glancing to inspect something in one's peripheral vision is
exceedingly common. Sometimes one has no idea what the peripherally
glimpsed thing is, but sometimes a complex set of guesses and arguments
will occur to one in the same momentary flash in which I 'thought it might
be smoke'. Presumably these guesses and arguments accumulate through
experience, but I don't know if the dynamics of accumulations of peripheral
visual interpretations differs from the dynamics of other accumulations.

Often in writing I will begin writing the wrong word, or write the intended
word incorrectly. Noticing this, I will scratch it out, write it correctly, and
carry on. Similarly, typing on a computer I watch the characters trailing
behind the cursor and very frequently (several times the average line) use the
'delete' or 'rubout' key to erase mistaken keystrokes. When more complex
erasing commands are available (as in the text editor) I will often have
occasion to rub out one or more whole words.

112 Chapter B4. Running arguments

I was in bed sick all day, getting up periodically to visit the bathroom. Night
had rer ntly fallen and though my room was lit the rest of the house was
now dark. I got up to head again for the bathroom. Reaching the door of
my room I came upon the fact that it was dark beyond. Hoping to make
some light, I went for the switch-which of course was the light switch in
my own room. Finding myself now in complete darkness I (in some order)
realized what I'd done and reversed the switch. Walking into the hallway I
now looked for and hit the hallway light switch. On subsequent occasions
I was more prepared for the darkness in the hallway and navigated to the
bathroom easily enough in the dim light. Whereupon of course I turned
on the bathroom light, which was controlled by a cord just inside the door.
Although my mistake was interesting in itself, the present point is simply
that nothing bad came of it. This story perhaps overdoes the point, given
that hitting a light switch is the epitome of a reversible action.

In each of these cases, something simple has happened. Trouble has arisen, been
noticed, and been corrected, all without any break in the action. Sometimes the action
breaks momentarily:

This bathroom light cord provides an example of its own. It is about four
feet long and hangs from the ceiling. Like many hanging control cords
(especially on venetian blinds), at the bottom it has a smallish white plastic
cone. (I suppose you are supposed to hold this cone when you pull the
cord.) Unfortunately, the cord is made of fairly light string (a fact I never
formulated till it first occurred to me to use it as an example). Thus when
I reach for the string, I usually inadvertently strike it with my hand and
send it swinging out my grasp. Once set it motion as a pendulum it has
an amplitude of almost a foot and a period of several seconds, so I have
almost no chance of finding it without looking directly at it, especially since
it usually moves close along the wall. If I am walking in then looking at it
takes a little work since it is dark (which of course is why I wanted to pull
the cord in the first place). If I am walking out then I am usually halfway
out the door and have to turn most of the way around to bring the cord
within my field of view. Catching the cord sometimes requires moderate
care and a few tries, but in the end I have never failed altogether to get the
lights switched.

The dynamics that tend to mitigate trouble are many and varied. Together they
render most trouble harmless. Future work should catalog them more thoroughly. In so
doing it can characterize the kinds of trouble that don't tend to take care of themselves.
Rather than pursue the dynamics of trouble in premature detail, let us summarize some
of the more obvious points.

. Trouble is fatal vanishingly often.

B4b. Planning vs knowing what you're doing 113

"* Most trouble isn't even significantly troublesome.
"* Nothing works the first time, but experience is an efficient teacher.
"* Much trouble couldn't be anticipated if you tried.
"* Cultures go out of their way to warn you of hard-to-anticipate trouble.
"* When they don't, people get killed.

In short, much trouble doesn't need to be anticipated and much trouble cannot be
anticipated. What does this mean for planning? We have been seeing that it won't do
to understand planning as Planning, trusting one's Plans to an executive that doesn't
know what it is doing. On the other hand, there is no doubt that people regularly make
and use plans. But such plan-using activity is the exception; the rule is a background
of moment-to-moment improvisation. Matters that stand out against this background
as problematic might become subject to the more sophisticated dynamics of explicit
planning-ahead. I don't pretend to understand these dynamics. (See Agre and Chapman
1988 for further discussion.) The point is that plan-use is an advanced topic, something
we shouldn't expect to understand until we understand quite a lot about the dynamics
of moment-to-moment improvisation. (Some useful computational ideas about trouble
and anticipation have come out of the Yale school. See especially Hammond 1986.)

One way of understanding improvisation is to start once again from Planning. When
trouble arises, it is critical to know what you're doing. When a dumb executive runs into
trouble, it can only hand control back to the Planner, which is supposed to know what
is going on. Imagine, though, the plight of a Planner suddenly awakened to discover
spilled milk, skidding tires, burnt fingers, angry people, or dented furniture. It has little
clue how any of this came about since the executive was blindly following orders when
it should have been keeping its eyes open. It has to reconstruct what it was trying to
do, interpret the newfound damage or danger, assess its consequences for the ongoing
project, and make a new Plan that resolves the trouble and gets the project back on
the road. All of this would now be a lot easier if it had been on top of the situation all
along.

If an agent is split into a Planner and an executive, the only time it knows what
it is doing is when the executive performs the very first action specified by its Plan.
The Planner has presumably arrived at its Plan through some definite line of reasoning,
starting from its assessment of the situation at that moment. Let us speak of this line
of reasoning as an argument, returning to what arguing means later on. Assuming the
world didn't change significantly while the Planner was at work, the agent now has
an argument for taking that action in that situation. Suppose the executive performs
the Planned actions without incident and returns control to the Planner. In a busy or
uncertain environment, the Plan was unlikely to have been very long: a few seconds at
most. Neither the world nor the agent's goals are likely to have changed drastically in
that time. A mislaid spoon might have forced re-Planning, but the dinner ingredients
are still there and an hour of dinner preparation remains. If we compare the arguments
leading to the old and new Plans, they will be almost identical. If your sauce needs stir-

114 Chapter B4. Running arguments

ring, you haven't got the time to rederive the whole argument from scratch. Interleaved
Planning needs to be performed incrementally. This is where dependencies come in.

We saw in Chapter B2 how an agent can use dependencies to incrementally update
its reasoning. When a Planner makes a Plan, it should record justifications for all its
arguments. It is useful to think of the argument motivating the agent's current actions
as an object, the argument structure, which the agent incrementally modifies. When
the agent's premises change, perhaps because it has noticed a change in some aspect
of the world, it only has to rethink the parts of the argument structure that dependt-d
on the aspect that changed. Sometimes changes in the world call for drastic changes
in the argument structure motivating the agent's actions. If the agent is starting to
make dinner, it might notice a fire or a dinner invitation and change course completely.
These things don't happen very often. The change is almost always very small. As we
will see, the agent's argument structure is not a datastructure inside a machine. Like
almost everything else in this theory, it is a dynamic fact, an epiphenomenal property
of the agent's activity in the world.

Recall the definition of a running argument:

A running argument is a continually incrementally updated hierarchical ar-
gument about what to do now.

We can now define a few of these words. Other things being equal, shorter increments
between Planning steps are better. At each Planning step, the agent can take account of
contingencies and opportunities. Short increments mean that the agent need only plan
the aspects of its activity that cannot be improvised. One might have 10 increments
per second, or 100, or 1000. As we take this process to its limit as the increment length
goes to zero, we get a running argument. Running arguments do not bother separating
Planning and execution at all. The agent's perceptual systems continually update its
premises; the continually evolving premises support a continually evolving argument
structure. Whatever action is justified by the agent's current argument structure is
automatically performed. The arguments motivating a moment's action might refer to
plans, laws, or heuristics, but above all they will refer to the agent's current situation.

Section B4e will make the idea of continual incremental updating more concrete.
First, though, we have a couple more words to discuss, hierarchical and argument.

B4c Hierarchy as datastructure vs dynamic

In Al research, it is commonly held that human action is hierarchical in nature. Though
this claim certainly has something to it, this section will argue that its usual interpre-
tations are mistaken. After a brief tour of the vast metaphorical territory covered by
the word 'hierarchy', I will introduce the distinctions we will need to discuss the com-
putational issues. These are:

e Two sets of metaphors used, sometimes together, in talking about hierarchies.
There are images of levels, some higher than others. There are also images of

B4c. Hierarchy as datastructure vs dynamic 115

trees, with roots and terminals and branching points in-between. AI tends toward
tree-images.

" Two very different ways in which something might be hierarchical, by conven-
tion or by design. A human organization might be hierarchical, but only as a
commonly-believed-in fiction. Engineered artifacts, by contrast, might be hierar-
chical through having been designed that way.

"" Two views of hierarchy, the recursive-decomposition view and the metabolic view.
Recursive decomposition is familiar from notions of subgoals and subroutines, each
of which is defined by the has a 'postcondition' or 'output' it produces upon com-
pletion. Metabolism concerns the involvement of an agent in the cyclic patterns of
its physical and social world. Neither of these views is right or wrong and others
certainly exist.

" Two ways of understanding the recursive-decomposition view, as concerning ma-
chinery or dynamics. Both are possible and compatible views, but I will argue
that only the dynamic view is correct. (The metabolic view only makes sense in
reference to dynamics.)

The rest of the section discusses the dynamics of hierarchically organized activ-
ity. My thesis is that the 'simplifications' implicit in most conventional Al views of
hierarchy make things harder than they have to be. Viewing hierarchy as a dynamic
phenomenon instead of a property of datastructures suggests new ways of answering
some longstanding questions.

The word 'hierarchy' ranges over a loosely-knit family of related metaphors. All
involve some notion of some things being higher than others. The family of hierarchy-
metaphors might be arranged into two overlapping clans. One of these invokes an image
of levels, some of which are higher than others. The other invokes an image of a tree (as
a diagram, not a real tree), with each member a vertex. Often there is a general lattice
instead of a tree, though this distinction is not always clear. Either image or both can be
present. The levels-image tends to emphasize the relationship of adjacent levels (which
may or may not be different in kind); the tree-image tends to emphasize individuals and
their relationships. Often (as in Chapter 1 of Miller, Galanter, and Pribram 1960) the
applicability of the level-image is inappropriately taken to imply that of the tree-image.

Technical ideas about computation have used a wide range of hierarchy-ideas, but
particular images predominate. Tree-images are usually stronger than level-images.
Though one often speaks of levels, these are usually poorly defined except among the
topmost and bottommost members. Often the word 'tree' actually names a lattice.
The members of a hierarchy tend to be hardware components, hunks of program code,
datastructures, or mathematical abstractions directly related to one of these. The notion
of hierarchy is usually bound up with the much stronger notion of modularity (cf. Simon
1970). Metaphorically, modularity suggests that members do not 'know about' the

116 Chapter B4. Running arguments

members above them. Members relate as parts and wholes. Each individual is self-
sufficient, offering a definite contract to all takers.

A computer 'is' hierarchical in a different way from, say, a business. The hierarchical
organization of a given computer (given accepted design practice) is practically a law
of nature, entirely governing the flow of control and data in the machine. By contrast,
the hierarchical organizational charts of a business only approximate the actual inter-
actions and power relationships among its members. The hierarchy is prescriptive, not
descriptive. It 'governs' the organization in an administrative sense, not as a natural
law. Members presumably 'believe in' the charts, but the charts only retain their status
as accepted fictions as a continual accomplishment of those members (cf. Heritage 1984,
especially Chapter 7).

The distinction between these two forms of being-hierarchical becomes critical when
we investigate the hierarchical ideas that people use to help organize their activity.
Obviously, people regularly consult hierarchical representations like outlines or charts for
guidance in finding information, interpreting orders, organizing searches, or anticipating
the actions of others. But talking about someone's hierarchy-use is quite different from
talking about hierarchical aspects of someone's activity. Many of the lessons we drew
about plan-use apply to hierarchy-use as well:

"* Neither plans nor hierarchies directly generate anyone's activity.

"• Hierarchies, like plans, are resources that people use in situations.

" Neither following a plan nor using a hierarchy is governed by any fixed procedure.
People regularly rearrange, reinterpret, interleave, interpolate into, adapt, and
abandon their plans. Likewise, operations like establishing and amending hierar-
chies are regularly judgement calls, amenable to no fixed procedure and susceptible
to influence by arbitrary details of the situation.

"* Activity informed by a plan may or may not involve considerable improvisation.
Activity informed by a hierarchy may or may not have an analogously hierarchical
form.

"* Regularity in one's activity may or may not be due to plans one is following. The
hierarchical organization in one's activity may or may not be due to hierarchical
representations.

The dynamics of hierarchy-using, like the dynamics of plan-using, are a special case of
the dynamics of running arguments, an advanced topic. First we need to understand
the basic dynamics of running arguments. This section simply concerns the hierarchical
aspects of these dynamics.

Our question, then, concerns machinery and dynamics. Suppose we regularly observe
people acting as if they were following a hierarchically organized plan. We would quickly
conclude that there are hierarchical aspects to the dynamics of everyday activity. But we

B4c. Hierarchy as datastructure vs dynamic 117

wouldn't have grounds to conclude that there are hierarchical aspects to our machinery.
As we will see, there are scenarios in which an agent with nonhierarchical machinery
would end up engaging in hierarchically organized activity. What forms of dynamic
hierarchy need to be explained by hierarchical plans and the like? Under what conditions
do these occur? To answer these questions, let us compare two views of hierarchy, the
recursive decomposition view and the metabolic view.

Al research has generally formulated hierarchy in activity as a recursive decom-
position. (The notion originates with GPS (Newell, Shaw, and Simon 1960). Miller,
Galanter, and Pribram (1960) took the idea from GPS and incorporated it into their
definition of Planning.) Recursive decomposition envisions a tree or lattice structure
in which every nonterminal element has been decomposed into parts and the terminal
elements are drawn from a fixed set known as primitives.

Recursive decomposition originated in software engineering, particularly in the pro-
gramming style encouraged by languages like Lisp, where a large number of small 'pro-
cedures' 'call' 'subprocedures', with the actual work getting done by 'primitive proce-
dures'. (Note that I have appropriated the also-common term 'routine' for my own
purposes. See Chapter A3 and SectionB2e.) In the early 1970's, Planning research
explicitly borrowed software ideas, modelling Plans after procedures and Planning after
programming (Sussman 1975, Waldinger 1975). On this view, one uses a Plan to pursue
a goal, perhaps invoking sub-Plans to pursue subgoals, and eventually invoking 'prim-
itive actions' that cause change in the world (Sacerdoti 1977, McDermott 1977). Here
is a hierarchical decomposition of the sort one would expect an Al Planner to produce:

make breakfast
assemble materials

get out utensils
get out cereal box
get out milk
get out 03 carton

combine materials
make cereal

open cereal box
pour cereal into bowl
open milk
pour milk into bowl

make 03
open 03 carton
pour 0. into glass

consume food
repeat: eat a spoonful or drink some OJ

clean up
bring utensils to sink
wash utensils

put away
put cereal away
put milk away

118 Chapter B4. Running arguments

put 0J carton away
put utensils away

This Plan decomposes top-level goal of making breakfast into five subgoals: assembling
materials, combining materials, consuming the food, cleaning up, and putting away.
Each subgoal is further decomposed into subgoals of its own. Down at the bottom
of this tree, there will be primitive actions, which might be at the 1--vel of pirking up
an object. (Although many Al Planners have had the capability of choosing among a
number of different decompositions of a goal, it is exceedingly uncommon, as far as I
can tell, for a Planner to actually have more than one way of decomposing any of its
goals.)

According to this account of Planning, one's activity is hierarchical insofar as one's
Plans are hierarchical. This view is coherent, but it is mistaken. It is the sort of
expiaiiation that results from inattention to dynamics: lacking a worked-out idea of how
hierarchical patterns might arise in an agent's interaction with the world, it ascribes
dynamic hierarchy to hierarchy in machinery. A single version of hierarchy, the recursive-
decomposition view, has gotten a monopoly. Certainly the metaphor of goal trees
provides one useful perspective. Lacking competition, though, it has become cast in
concrete as the metaphor we use to answer every technical question we ask. We can
see the effects of this bias by considering a competing view of the hierarchy in everyday
activity. Observing the constructive interference of the two views can help us develop
technical ideas that go beyond simple literal mechanization of either view.

Let us call this competing view of hierarchy the metabolic view. Whereas the
recursive-decomposition view emphasizes the pursuit of some definite end, the metabolic
view emphasizes the continual cycles of reproduction that dominate the more routine
parts of life. The cycles form a hierarchy insofar as some of them contain others. Every
culture has its own cycles: there are cycles of planting and harvesting, the life cycles of
individuals, the cycle of formation of families, ritual cycles over the week and year, the
cyclic repetition of the day's schedule, respiratory and cardiac cycles, menstrual cycles,
the growing and cutting of hair and nails, gait cycles for crawling, walking, and running,
and the cycle of seasons with its attendant cycles of temperature, wind, water (rainfall,
runoff, and well levels). Most work has cycles of its own, from harvesting one rice plant
after another to filling in one form after another. Many everyday tasks are cyclic as
well: chopping, stirring, sweeping, sorting, digging. These cycles form a hierarchy: one
walks to fetch water, works a whole day most days of the year, and completes many
years' work to see a new generation rise.

Furthermore, every household has an elaborate metabolism of its own. A hundred
different supplies are used up and need to be replenished: soap, clean clothes, gasoline,
nails, postage stamps, subway tokens, bandages, coffee, garbage bags. Staple foods
have different cycles according to their shelf life and the storage space they occupy: one
might get fresh milk and bread every couple days, fresh meat and vegetables every week,
fresh coffee and rice every couple weeks, and fresh salt and sugar every couple months.
Garbage accumulates and is disposed of. A thousand different items of equipment wear

B4c. Hierarchy as datastructure vs dynamic 119

out and need to be replaced: batteries, cars, clothes, shoes, tires, motor oil, record-player
needles. (Others, like coffee mugs, pens, and clothespins, vanish mysteriously.) Some
have regular maintenance schedules; others are restored to working order in response
to their regular wearing down (dull knives are one example, though many other items
have become disposable in our culture, at least for most people). Every day's household
chores combine episodes in some set of household cycles.

An Al metaphor gets Al into trouble in exactly the areas it de-emphasizes. If
we use a single metaphor to understand everyday life, we will never notice the parts
of life to which our metaphor doesn't apply well. Thus, in comparing the recursive-
decomposition and metabolism views of hierarchy, the point is not to decide which one
is more accurate. Instead, let us observe how the emphases of each metaphor remind
us of the other's blind spots.

* Recursive decomposition describes a single episode. You decide to make break-
fast, you unfold your breakfast-plan, and you're done. A goal has been achieved.
Metabolism takes a longer view, surveying an eternal cyclic routine. Everything
you accomplish will need to be accomplished again.

* Recursive decomposition evokes the possibility of production and doing something
new. Metabolism evokes the necessity of reproduction and doing the same things
repeatedly.

* Recursive decomposition suggests viewing yourself as essentially independent of
the outside world. Your choice of which way to decompose each goal might be
strongly constrained by extraneous considerations, but these aren't systematically
articulated. Metabolism suggests viewing yourself as part of the world and am-
phauizes the network of everyday practicalities you live within.

* Recursive decomposition assumes a sharp focus, one goal at a time. Metabolism
continually locates you at the intersection of a hundred cycles and poses the prob-
lem of continually negotiating all their claims. The dynamics of this negotiation
are fascinating. Some cycles tend to be in phase, others out of phase. Every cycle
assigns chores; cultures set up ways of living that keep the chores manageably
distributed.

* Recursive decomposition must be supplied with a goal from the outside. The
Planner may know why it is pouring the milk, but it doesn't know why it is
ultimately making breakfast. There is an unexplained First Goal. Metabolism
supplies a steady stream of reasons in the continual furthering of life. Everything
that happens and everything that needs doing takes its place in a cycle.

* Recursive decomposition envisions nested activities reflecting nested goals (though
see Allen and Koomen 1983). Metabolism reminds us that act;.ties uO'erlap. It
also reminds us that many motivations aren't goals because they are nevei really

120 Chapter B4. Running arguments

achieved. (Some Al programs have contained 'goals' like 'staying alive'. This is
worrisome. It stretches the word beyond recognition.)

It is tempting to take conceptual revenge by celebrating the holist virtues of the meta-
bolic view and talking down the reductionist vices of the recursive decomposition view.
But this would be a mistake, and my argument does not require it. One need not adopt
a single unified account of the role of hierarchy in everyday life. The tension between
these two metaphorical systems is a benefit, challenging us not to accept a superficial
stock account of any specific dynamic issue.

Many dynamic phenomena can coexist, but there is only one architecture. Adopting
only the recursive-decomposition view of hierarchy suggests equipping the architecture
with machinery for assembling and manipulating tree-shaped structures. Adopting only
the metabolism view of hierarchy would suggest equipping the architecture with ma-
chinery for assembling and manipulating cycle-shaped structures. Of course, we could
always postulate both sorts of machinery, and twenty others as well, and then ask how
they all work together. This would not be very parsimonious. Tolerating both views of
hierarchy should make us step back and consider the large and difficult question of how
the interactions between an agent and the world could have both sorts of patterns.

An agent might have a collection of ways to decompose goals into subgoals. Let
us consider two extreme approaches the agent might adopt. The first approach is to
make a complete Plan. Given a goal, the agent assembles an exhaustive goal tree by
decomposing every subgoal all the way down to primitive actions. The second approach
is to delay decomposing each goal as long as possible. Given a goal, the agent decides on
a set of subgoals, chooses one to pursue first, sets itself that single subgoal, decomposes
that subgoal into subsubgoals, chooses one of them, and so forth. The arguments that
enter into the agent's choices might make reference to the future, but the agent only
ever decides what to do now. Thus the agent performs the first primitive action before
it even decides what the second subgoal is going to be at any level. The agent never
performs a decomposition or imposes any ordering on subgoals before it has to.

Everything being equal, these two extreme approaches will result in exactly the same
sequence of primitive actions being performed. In each case, the agent's activity will
look like a tree, a recursive decomposition of the original goal. In the extreme Planning
case, this tree will result from the agent's executive reading off an identical tree inside
its head. In the extreme improvisation case, the agent will never have decided any-
thing except which subgoal of each goal to pursue right now. The two extremes define
a trade-off. Making choices immediately requires complex reasoning but it anticipate
later problems. Postponing choices means more information will be available but it
risks painting oneself into a corner. (Although Miller, Galanter, and Pribram explicitly
discuss the possibility of postponing the expansion of Plan hierarchies (1960 p. 16),
the first system to postpone decomposition decisions in a general way was NASL (Mc-
Dermott 1977). Along these lines, Wilensky (1983) discusses the specific technique of
postponing the decomposition of subgoals until the last minute by effectively making the
Planner and executive mutually recursive functions of the Plan's decomposition. Sepa-

B4c. Hierarchy as datastructure vs dynamic 121

rate provision must be made for the possibility that the agent might wish to abandon
already-made decomposition decisions in the face of unforeseen conditions.)

In an unforgiving and predictable world (an odd combination found only in board
games), the case for building detailed goal trees ahead of time is strong. In a relatively
benign and unpredictable world, the case for goal trees is weak. The case for goal trees
is particularly weak if decisions about decomposition and ordering can benefit from past
experience. If the agent must decide correctly every time it needs to perform complex
simulations to anticipate troubles. If it has time to learn from experience then this need
is lessened.

The kitchen sink was broken, so I had to wash out my tea cup and tea infuser
in the bathroom sink. My hands, already informed by much past experience
of washing out tea cups, improvised the following sequence. When I entered
the bathroom, the cup was in my right hand with the infuser in it. As
the sink approached, I passed the cup to my left hand, removed the infuser
from it with my right hand using a grip that would then let me grab the
cold water knob, reached for the knob with my right hand while placing the
cup under the tap, turned the tap on, rinsed out the cup while removing
my right hand from the knob, laid the cup aside while adjusting my right
hand's grip on the infuser, rinsed out the infuser under the still-running
water, withdrew and closed the infuser, and ... observed that the sink was
full of ugly tea leaves. Grudgingly deciding it'd be polite to rinse these down
the drain, I picked up the tea cup, let it fill with water, dumped it around
the outside of the sink, and ... realized I'd already done this a moment ago.
(The dynamics of this amazing sequence are interesting in themselves, but
they are beside the present point.) When I next returned to wash out my
cup, I went through the same sequence, only to pull up short as I was about
to rinse my cup. Reminded of my conclusion from the previous episode, I
first rinsed the infuser instead. This required an extra couple hand motions
which I found myself repairing the third time.

In this story an ordering decision led to duplicated work. Taking this into account the
next time led me to reverse the ordering. A proper analysis of this story would require
a more thorough description of its dynamic context. Since I usually drink one cup of
tea after another whenever I am working, this would involve an analysis of the cycles
of making cups of tea, cleaning up, keeping tea in stock, and caffeine addiction. Tea-
making expeditions are usually combined with other chores, linking tea-making with
other dynamic systems. Further, many of the steps in the tea-making cycle are also
parts of other activities, so we should expect connections to their dynamics as well.

Here is a more complicated example:

One week I was writing an article in the lab of some friends, in whose kitchen
hot water could only be made by boiling it in a kettle on an electric stove.
Decomposing the process of making tea in the obvious manner, I

122 Chapter B4. Running arguments

(1) put a tea bag in a cup,
(2) poured hot water into the cup,
(3) waited a few minutes for the tea to steep, and
(4) threw out the used tea bag.

In particular, I put the water on to boil after getting out the cup and tea
bag. Annoyed by all the time it took waiting for the water to boil, I had

plenty of opportunity to reflect on what I might have been doing instead of
waiting. After a few times I finally realized that I could have been doing

(1). Next time, as I went to get out the cup, this argument came to me and

I put the kettle on to boil first. Shortly afterward, I further decomposed the
substep of preparing hot water and realized that it is best to turn on the
electric stove before filling the kettle rather than after.

Boiling water was part of step (2) of the decomposition because hot water was the

second ingredient in tea. Having to sit waiting made me reflect on the wisdom of this
decomposition. My new decomposition did not arise by magic; finding myself waiting
made me explicitly wonder what I might be doing instead. The decision to decompose

making-tea into steps (1) and (2) was part of the reasoning behind boiling the water, so I
asked myself if I was doing the right thing. All this wondering involved several dynamic

phenomena outside the scope of this report, including some subvocalized language. The

point is that it worked.
One of the principal virtues of decomposing your goals as you go along is that you

can change course as circumstances warrant. At any given time your current primitive
action will be informed by goals at several levels, for example, a chain of subgoals like

making breakfast, assembling materials, fetching the milk, opening the refrigerator,
reaching for the refrigerator door handle, and raising your arm, where each goal is a
subgoal of the one before it. (Obviously this is a cartoon goal chain. Later chapters
will discuss the nature and content of goals in more detail.) As you raise your arm,

you might spot the milk sitting on the kitchen shelf. If you are awake, you will realize
that fetching-the-milk is no longer grounds for opening-the-refrigerator. Lacking ally

other reason to open the refrigerator, you will presumably want to drop that goal and
the others below it. You might then adopt a new subgoal of fetching-the-milk, such as
approaching the region of shelf where you've noticed it. All this is greatly simplified if

you have had the foresight to keep dependencies on your reasons for adopting all your
goals. Once your decision to pursue a goal loses its support in the dependency network,
you should stop pursuing it.

In general, you might decide to drop any subgoal at any time. In this sense, subgoals

are cphemeral, merely means to an end. Since every goal is a subgoal (unless there is an

ultimate First Goal), we must conclude that all goals are ephemeral. It is best to think

of goals, whatever they are, as tools. A goal is not so much part of you as an object you

use, much as you wouid use a recipe or a map. There are unlikely to be simple, fixed,
mechanical methods for using goals, any more than for using plans or hierarchies. In

B4c. Hierarchy as datastructure vs dynamic 123

particular, there are unlikely to be fixed, automatic methods for determining whether a
goal has been achieved-much less specialized machinery implementing such methods.
Al Planners have generally assumed that goal-achievement is a clear-cut matter, that it
is always possible to judge whether goals have been achieved, that the fixed executive
can be trusted to make these judgements, that these judgements do not require any
Planning themselves, and so forth. (Soar is an exception due to its universal subgoaling
mechanism; see Section B4d.) But if goal A is a subgoal of goal B, then a judgement of
whether A has been achieved will depend on the context and, in particular, on B. To see
this, think of any occasion when you'd speak of 'cutting corners' or when we might have
the following conversation. You: 'Could you please accomplish A?'; Me: 'How about if
I just do X?'; You: 'That's good enough'.

Ten ways in which the judgement of goal-achievement can depend on context:

* when computing a number, pi can be 3 for rough feasibility checks
* travelling to London might mean East London or all the way into town
• powering a light, a portable generator is OK if it's only for an evening
• clearing of weeds has to be more thorough near weaker plants
* giving directions, strangers require more details
* opening a window, how wide depends on what has to go through it
* adding salt, to taste
"" choosing a object to use as a paperweight, your choice is subject to the other uses

you might have for the various candidates
"* fetching a bottle of wine for dinner, what's on hand is OK for everyday, but special

occasions call for a trip to the wine shop
"* painting a wall, one coat is OK in a closet, but the kitchen needs two

A Planner, or any other device that is given a goal to pursue by decomposition, is in
a rough spot. Lacking any idea of why it is supposed to pursue this goal, it has no way
to make all the judgement calls that go into normal goal-using. This is why Planners
must assume that there are fixed, automatic methods for using goals. A Planner tries
to work out of context.

This conclusion, though true as far as i1 goes, is not very helpful. It is notoriously
difficult to give a general account of the ways in which context can influence judgements.
Context quickly gets out of control, seeming to seep into every crack of our attempts
at reasoning. The very word 'context' offers us the dangerous invitation to address
the 'problem of context', as if there were a single object or a homogenous substance
called 'context' to be explained. Faced with the problem of context, one has about four
options.

* Ignore it and hope it goes away. Deride as mystical anybody who insists on its
importance.

* Formalize exactly the bits of it you need for each specific example without ad-
dressing the question of how to formalize it in general.

124 Chapter B4. Running arguments

"* Bluff by introducing a formal object called 'context' (or 'situation'), passing the
whole voluminous package as an extra argument to your Planner or semantic
theory.

"• Spell out its bizarre properties and use indiscriminate appeals to holism to cele-
brate it as the solution to all problems.

None of these moves is very helpful. The phenomenon of context is better viewed as a
symptom of a deeper problem. Something like 'context' will pester any ill-considered
partition of research into human activity. Dividing the organization of everyday activity
into 'Planning' and 'everything else' was a nice try, but the 'problem of context' is
trying to tell us that 'everything else' is refusing to break cleanly away. The idea of
Planning treats non-Planning phenomena like improvisation as marginal, but (as it
turns out) they aren't marginal. Context is the leftover trace of this repressed margin.
Like any repressed problem, it festers, manifesting itself in innumerable ways, each
of which appears as a technical difficulty. Among these difficulties are the recalcitrant
inflexibilities of Planning, such as the seeming need for fixed methods for detecting goal-
achievement. No doubt one could extend Planning to patch this particular manifestation
or any other, but only at the price of another one appearing somewhere else.

The problem of context is one more indication that our machinery does not directly
manipulate plans, trees, and goals. Running arguments--continual incremental updat-
ing of the argument motivating action-are an account of what the machinery does do
directly. Nobody could deny that plans and goals exist (though trees are more ques-
tionable). Using plans and goals is one thing a running argument might do-one of the
more difficult things. Interposing running arguments between the machinery and the
plans and goals is not simply a matter of reconstructing the latter at a 'higher level of
abstraction'. It makes an important qualitative difference. Neither plans nor goals work
according to fixed rules or fixed procedures. People can decide to use plans and goals
however they wish, according to custom, perversity, or the demands of the situation.
The task now is to inquire into the dynamics of when and how people use plans and
goals.

The aim of this this long section has been to shake loose some customary ways
of thinking about hierarchically organized activity. It has not tried to provide any
finishe& answers. The question of the First Goal is still a serious problem (named,
by the way, by analogy to the medieval problem of First Cause). Is there really a
definite goal at the top of everybody's recursive decomposition? What would it be?
Survival? Love? Continuation of the species? Continuation of one's own genes? A
better idea would be to replace the idea of a goal with a better worked-out theory of
motivation. The real story is presumably long and complicated. Rather than trivialize
this difficulty, the demonstrations of Chapter B5 presume a particularly simple account
of hierarchy, elaborating the straightforward recursive-decomposition view of running-
argument dynamics.

B4d. Argument and centralization 125

B4d Argument and centralization

In speaking of a 'running argument', I am obviously using the word argument in some
special way. My use of the word has only a loose and metaphorical relationship to its
vernacular uses. I absolutely do not intend these 'arguments' as a model of real, live
arguments, such as everyday quarrels or philosophical disputes. I will provide no formal
definition of arguments, only a discipline of writing Life rules that fits with certain
dynamic ideas.

Thus 'argumentation' here is a metaphor for a style of rule-language programming.
What characterizes this style of programming is its other-things-being-equal control
structure. Many rule languages have a deductive semantics, whereby the right hand
side is a proposition to be unconditionally believed as soon as the rule manages to fire.
Other rule languages have an imperative semantics, whereby the right hand side is an
action to be unconditionally taken as soon as the rule manages to fire.

Section B4b, in discussing improvisation, sketched a few ideas about arguments.
From moment to moment, it suggested, you conduct an argument with yourself. On
each next moment, through your arguing, you arrive at some conclusion about what to
do, and you do it. Naturally these conclusions will often seem premature, but you have
to do something, if only to keep breathing and maintaining your balance until you can
settle on something more elaborate.

Section B4b also referred to "argument structures." An argument structure evolves
by constant incremental changes. These changes in an agent's argument structure ought
to be small when the agent's situation is changing slowly and large only on the relatively
rare moments when the agent's situation changes drastically. Argument structures
might look like the diagrams logicians draw to trace how some conclusion might be
justified from certain premises, but the arguments' coherence isn't enforced by any of
the local, formal standards of admissible inference that govern systems of formal logic.

My ideas about arguments descend from those of (Doyle 1980). Doyle introduces
the notion of "dialectical argumentation." Doyle's concern, unlike mine, was to make
"a model of reflective thought, that is, the sort of thing you do when you struggle with
"a big decision. Doyle assimilates thought to action. Deciding what you think is like
deciding what to do. You decide what to do by conducting an argument within yourself.
Any active component of oneself can offer suggestions about what to do and adduce
arguments about why. When disagreements arise, choosing among the argur.ments is
itself a decision to be made by argumentation, recursively: each component may adduce
arguments as to why its arguments are better than the others.

Before going into detail, let's consider a silly cartoon example:

(propose (hold-up baybanks))

Contradictory arguments are put forward:

(propose (support (hold-up baybanks) money-in-it))
(propose (object (hold-up baybanks) it-would-be-wrong))

126 Chapter B4. Running arguments

The first argument encounters no objections, so it is accepted:

(take (support (hold-up baybanks) money-in-it))

But some part of the system considers the second argument inferior and proposes that
it be considered so.

(propose (object (object (hold-up baybanks) it-would-be-wrong)
prefer-practical-to-moral-arguments))

There being no objections to that line of argument, it is accepted:

(take (object (object (hold-up baybanks) it-would-be-wrong)
prefer-practical-to-moral-arguments))

Consequently, the moral argument against robbing the bank is rejected:

(blocked (object (hold-up baybanks) it-would-be-wrong))

Since no other objections are outstanding, the motion stands:

(take (hold-up baybanks))

Dialectical argumentation, then, involves the adducing of arguments and counterar-
guments concerning a proposal for action. Because each argument and counterargument
is itself an action, the argumentation process itself is fair game for argumentation. The
system approaches the problem of deciding between conflicting arguments in just the
same way that it approaches any problem in the world. The method has some important
properties:

" All reasons for action are defeasible, meaning that they might be overridden if
there are good reasons to do so.

" The decision process is additive, meaning that all parts of the system can con-
tribute to the reasoning in a uniform way, by contributing arguments.

" Individual decision processes are automatically converted into dependency net-
works. Thus an arbitrarily complex argument structure can be used many times a
second. In particular, an argument's conclusions will stay IN as long as its premises
stay IN.

"* Because an argument recorded in the dependency network will be recapitulated
whenever its premises are satisfied, it will be automatically carried over to analo-
gous future situations.

"* The system's reasoning can be modified without ever introducing a side-effect. By
simply providing an argument explaining why an action is a mistake, a person or
program can arrange for it to be overridden in the future.

B4d. Argument and centralization 127

The rules in a running argument do not prescribe actions, they simply propose
actions. One rule might propose that the agent lift its hand. Another might propose
placing its hand on block B. Another might propose moving left. As all of this arguing
gets converted into network stuff, we can imagine various regions of the network arguing
with one another. One region might have proposed moving left and another might have
proposed moving right. Since these proposals conflict, the one region might raise an
objection to moving left, perhaps on the grounds that doing so would knock over the
tower. The other might respond, you can't move right because getting to the objective
by moving right would take too long. A third region of the network might then step in
and object to the latter objection on the grounds that it is weaker than the former. In
general, one can propose objections to objections to objections arbitrarily deeply. It is
up to the programmer to make sure that the system neither deadlocks nor attempts to
perform conflicting actions.

Despite all the anthropomorphism, all of this proposing and objecting is imple-
mented by ordinary rules. The rule system itself does not have any special knowledge
of proposals and objections; they are all just list structures in a database. To propose
an action you assert:

(propose action)

To object to an action you propose objecting to the action on some grounds:

(propose (object action reason))

You don't simply object, you propose an objection. In the center of the action is a rule
that says that any proposed action is taken unless some objection is sustained against
it:

RI: (if (propose ?action)
(unless (take (object ?action ?reason))

(take ?action)))

This three line rule, R1, is the soul of argumentation. Notice that its UNLESS rule has an

unbound variable, namely ?reason. Even if Ri fires once for a given binding of ?action,
and even if that action actually gets taken, someday some new objection might come
along to defeat the proposal. If this happens, the action will no longer be taken. If
the action is currently under way, it will stop. If the proposal to perform the action
is asserted again and the objection is still in force, the proposal will not be adopted.
The new-found objection will amend the AND-NOT gate in the dependency network
corresponding to this UNLESS rule, adding a new inverted input to the gate through the
mechanism Chapter B2 called intervention.

Let us consider some examples of this rule in operation in the blocks world introduced
in Section B3c. Suppose some rule proposes that the agent move its hand to the left:

A2: (propose (move hand left))

128 Chapter B4. Running arguments

When this proposition comes IN, R1 will fire, producing the following:

R3: (unless (take (object (move hand left) ?reason))
(take (move hand left)))

In other words, move the hand left unless there is some reason not to. The UNLESS rule,
R3, will generate a non-monotonic dependency, an AND-NOT gate. For the moment,
this gate will have no inverted inputs since no objections have ever been raised to that
proposal. The output of that gate will be:

A4: (take (move hand left))

But suppose that some rule files an objection:

AS: (propose (object (move hand left) (would bump tower)))

Now something more complicated happens. This being a proposal like any other, rule
RI fires a second time, producing a rule that will accept this objection unless some
objection is sustained against it in turn:

R6: (unless (take (object (object (move hand left)
(would bump tower))

?reason))
(take (object (move hand left)

(would bump tower))))

(So far as the rule system is concerned, both the actions and the reasons are arbitrary
list structures. It is up to the user to formulate a consistent ontology of actions, rea-
sons, and so forth and to express these in a real representation. This example uses a
toy representation for simplicity, though none of the system's representations are very

convincing either.)
This new UNLESS rule, R6, now checks for second-order objections. If none are

present, then the UNLESS rule will license its conclusion:

AT: (take (object (move hand left) (would bump tower))

This sustained objection will now attract the attention of the original UNLESS rule of a
moment ago, R3. Thus the proposal of moving the hand left will not be adopted. As we
mentioned, R3 has most likely already fired, creating an AND-NOT gate whose output is
A4. If so, then this gate will now receive an additional inverted input, namely A7. And
the agent will not move its hand to the left.

The propnsed action in this example, moving the hand left, happens to be one of the
system's primitive actions. At the end of every clock cycle, the motor system decides
whether to move left by checking whether A4 is IN or OUT. These conventions about

proposals and objections apply equally well to compound or abstract actions. In each
case, though, when the system adopts some proposal, that adoption is only good for

B4d. Argument and centralization 129

the current clock cycle. If some compound action covers many clock cycles, it must be
proposed, argued for, and adopted on every one of those cycles. This is not a great
computational burden for the system so long as all this arguing, at least after the first
cycle, takes place in the dependency network and not through the firing of new rules.
In other words, the system takes its actions only so long as they are supported by
argument.

Rule Ri is special in that it explicitly relates proposals and objections to actions.
All the other rules propose actions, raise objections, and adduce reasons pro and con.
In practice one programs with a collection of macros, all written as rules themselves, for
expressing complex ideas about priorities, weighing of arguments, decomposing com-
pound actions, and proposing alternative and interpolated actions. The details of these
methods of argumentation are not especially original or general, nor do they bear on
the theoretical issues at hand.

We could construe the notion of argumentation in two different ways, according to
who has the burden of proof in putting forward their argument. A system could have an
inner loop that says, "decide what to do then do it." That method poses the positive task
of choosing some particular action to take, one action at a time. The running argument
system takes a different, decentralized view. Any patch of dependency network can
make proposals and the proposed actions are taken by default. Rather than having to
positively argued for an action, you just propose jumping off the cliff, and if nobody
offers any objections then you'll jump. All through the network proposals are being
made, arguments are being conducted, objections and supporting evidence are being
offered.

It would be nice to have some unified theory of argumentation, about evidence and
its weighing and so forth. Philosophers have been looking for such a thing for millenia
and I certainly haven't got one. The system now uses a mishmash of a couple different
theories of argumentation that I tried out; it gets baroque. In any event the important
principle is that proposed actions are taken by default.

The point of this decentralized style of programming is that rules do not have to offer
guarantees. If a rule proposes some an action without ironclad guarantees that it is the
optimal thing to do, then that information can be embodied in separate rules that raise
objections in appropriate situations. (Compare Minsky (1980; 1986 Chapter 27) and
Winston (1983) on censors.) The world is a complicated place; your rules can address
prototypical cases and leave the endless enumeration of exceptional cases for an endless
later. In practice, new rules get written when one observes the system making a mistake,
going into a loop, floating off into space, or seizing up, one stops it. After looking at
its arguments, one can formulate a new rule objecting to the erroneous proposal and
perhaps proposing an alternative. (Recall the discussion of incremental repair of rule
sets in Section B3g, where we extended the rules to cause the townspeople to conclude
that the shepherd is a liar.) The system accumulated several dozen arguments about
blocks world over a period of several months. I'd let friends watch the system; when

they'd complain about it I'd try to convert their complaints into new rules. The system

"o k world... . .
ove a pe io of se e a m onthsm I'di let frind wa c thmy te ;w e

130 Chapter B4. Running arguments

still isn't very good about circumventing obstacles and working in tight spaces. But it
does engage in interactions of some complexity, as we will see in the demonstrations.

Let us consider an example rule.

(if (and (propose (try (grasp ?x)))
(on hand ?x)
(on hand ?y))

(if-shown (neq ?x ?y)
(suggest (prefer-option

(try (center-on hand ?x))
(try (grasp ?x)))

(avoid-unnecessary-grabbing ?y))))

This rule uses the and and if-shown constructs described in Section B3h. In English it
says, "if we have proposed grasping x and the hand is on two different objects x and y
then propose postponing the grasping operation until we have had a chance to center
the hand on x." The suggest form combines making a proposal with proposing a reason
to support it:

(if (suggest ?action ?reason)
(propose ?action)
(propose (support ?action ?reason)))

(Bear in mind that this is Life code, not Lisp code, so the semantics is not Lisp's if-
then-else. An if rule with multiple consequences asserts all of them when it fires.) If
nobody raises any objections to preferring centering to grabbing, then the system will
adopt that preference. Taking this action will then offer support for centering and raise
a concomitant objection to grabbing:

(if (take (prefer-option ?better-action ?worse-action))
(propose (object ?worse-action

(preferable ?better-action)))
(suggest ?better-action

(preferable-to ?worse-action)'))

This rule is part of the system's domain-independent knowledge about arguments. Ob-
serve how the argument about whether to take the action of grabbing x has spawned
another argument about whether to prefer another action instead. Only once the system
has resolved this second, inner argument can it resolve the first, outer argument.

Centering the hand isn't always a good idea, though. If block x already has a block
on it, we shouldn't push it all the way off of x without a good reason.

(if (propose (support (prefer-option
(try (center-on hand ?x))
(try (grasp ?x)))

(avoid-unnecessary-grabbing ?y)))

B4d. Argument and centralization 131

(it-shown (and (on ?z ?x) (neq ?z hand))
(propose (object (prefer-option

(try (center-on hand ?x))
(try (grasp ?x)))

(centering-would-shove ?z)))))

This rule is simpler than it looks. It reacts to the proposal made by the suggest form a
couple rules back, checks whether something besides the hand is resting on x, and if so
it objects to the proposal of preferring centering the hand on x to immediately grasping
it. If no other arguments are put forward, this objection will cause the system to decline
to prefer centering to grabbing. Lacking any other arguments, the system will go ahead
with its original proposal of grabbing x.

Both Doyle's argumentation scheme and the one I have described have much in
common with Laird's notion of universal subgoaling (1983). Laird, Rosenbloom, and
Newell have demonstrated universal subgoaling in the context of the Soar architecture
(1986). Section C5d will discuss Soar in detail. Universal subgoaling is, very simply, the
idea that any decision an agent makes can become the topic of fully general reasoning.
In the context of the Soar architecture, this "fully general reasoning" takes the form
of search in a "problem space;" uncertainties about where the search should proceed
lead to the spawning of a subgoal. This new subgoal itself becomes the object of a
problem space, as if the system had called itself recursively (cf. Batali 1983 and 1985).
Indeed, the system maintains a stack of active goals and only considers a single goal
at a time. This is not as severe a restriction as it appears, since Soar has a scheme
analogous to dependency maintenance, called "chunking," for summarizing problem
solutions (see Section B5f). The difference between Soar's universal subgoaling and the
running argument system's argumentation scheme is that the former is an explicit part
of the architecture whereas the latter is a relatively informal programming convention.
Universal subgoaling is thus a much better worked out idea than argumentation. At the
same time, it carries considerable baggage. Is every activity organized by being aimed
at a single goal? Section B4c has cast serious doubt on that view, but I will not offer a
serious alternative in this report.

The remainder of this section is optional.
The system's arguments do get considerably more complex than these, but not in

any theoretically important way. In particular, I tried to write a very general facility
for weighing arguments for and against conflicting proposals. In retrospect this was a
quixotic enterprise insofar as a system can't be truly decentralized if it has more than
one way of doing anything. Suppose the system proposes two conflicting actions, A
and D. Then Joe might see the proposal of A and, not knowing anything about B,
propose an objection against A. At the same time, Jane might see B and, ignorant of

A, offer support for B. And then Jos6 might see both A and B and offer support for the
proposition that A is better than B.

Nc-. we hive three items of information about A and B, but they are all in different
places. Some rule has to go around and make Jos6's argument into support for A

132 Chapter B4. Running arguments

and an objection to B. Or somebody has to make Joe's objection against A into an
objection against A's being better than B and also make Jane's support for B into
another objection against A's being better than B. Once the arguments have been
made commensurable by having been gathered together as objections to or support for
the same proposal, we can imagine some rules (general or specific) weighing them and
arriving at a conclusion.

As a result I have some baroque rules for shuffling arguments all around to try
making them commensurable. The Joe/Jane/Jos6 example is about the simplest; it
can get much worse. What is worse yet is that it is hard to keep the system from
redundantly arguing the whole thing through in 2 or 4 or 16 different ways courtesy of
the symmetries in these generic rules.

In practice this is all nonsense. Life rule language programming may not involve
serial execution, but most of the principles of good programming practice remain. When
you write a line of code you have to know what other lines of code it might interact
with. You have to use abstraction properly so you can formulate proper conventions
about where to hang your arguments.

B4e Running arguments

There is no way to provide a precise, technical definition of the dynamics of running
arguments; they will vary depending on the sort of activity you are engaged in. Instead,
this section presents some useful ways of thinking about the dynamics of a running
argument in particular situations. First, let us summarize the pieces we have already
assembled.

1. Your architecture is divided into peripheral systems and a central system. The
peripheral systems consist of innately wired modules concerned with early percep-
tual processing and with low-level details of motor control. The central system,
so far as I will specify it, consists only of a dependency network whose inputs and
outputs are connected to the periphery, together with a device called the 'source'.

2. Your central system starts life with nothing (or almost nothing) in it. Over the
course of your life, a dependency network grows as the 'source' adds new proposi-
tions and justifications. I am leaving the details of the 'source' largely mysterious
except to say that it is always concerned with the situation at hand, that it adds
new connections relatively infrequently, that it is as simple as it can possibly be,
and that it is probably very simple indeed. Thinking of the network as a depen-
dency network rather than just an arbitrary combinational circuit will prove to be
a big help in understanding its structure and dynamics.

3. Thus your dependency network reflects your past history of dealing with slightly

novel situations. Once new elements are added to the network they never go away.
At any given time, almost all the action in your central system is propagation of

B4e. Running arguments 133

values in the dependency network. Since the network's premises are the inputs
from the periphery, values change in the network when these inputs change. Since
the network's outputs drive the periphery's motor-control functions, the motor
functions you are performing change when these outputs change.

4. At any given moment, a snapshot of your dependency network will assign values of
IN (or 1) to some propositions and OUT (or 0) to the rest. This assignment changes
as a continuous function of time. At any given moment, the set of IN propositions
can be interpreted as an argument that you should take certain actions now.
Considered as a function of time, this set of IN propositions is called the argument
structure. The argument structure almost always changes very slightly because it
is rare to suddenly drastically change what you are doing.

5. The argument structure is hierarchical in some way. Lacking a better worked-out
dynamic account of hierarchy, I will assume each moment's argument reflects a
recursive decomposition of some goal. Thus any given moment's action will be
justified by a chain of subgoals successively decomposing a First Goal into one or
more primitive actions. I will draw some pictures to help in thinking about this.

Section B4d concerned a process of argumentation that takes place over a single clock
cycle. More interesting is the way in which the argument structure evolves over time as
the agent interactions with its world. A running argument is just a continually evolving
argument structure. Proposals and objections and reasons come and go over time. The
argument structure 'evolves' in that little of it typically changes from one clock cycle to
the next. A new objection might arise as the agent encounters an unexpected condition,
but then it might be overruled, leaving the agent to carry on as before. An opportunity
might arise to pursue some subgoal in a straightforward way, leading to a proposal
which is adopted and acted upon and then which evaporates once the subgoal has been
achieved. Every once in a while there comes a big change, such as in an emergency or
when the agent finishes with one large subgoal and moves on to another. But usually
nothing at all changes past the finest details of perception and motor control. In general,
the argument structure changes to the extent that something different is happening. At
least that's the ideal.

The best way to think about the evolving argument structure is to imagine the
agent's whole combinational logic circuit spread out across a large sheet of paper, much
as we did at the beginning of the chapter. Imagine a sort of brain scan, whereby the
currently active regions of the network glow while the remainder stays dark. As the
agent's interaction with the world proceeds, various regions will be lit at various times.
Some regions will be almost always lit, perhaps indicating long-term projects or eternal
truths. Other regions will only be lit in very exceptional conditions. And some regions
will pulse in and out with fair regularity as the system goes through cyclic activities.
Some regions will be relatively domain-specific, others might relate to forms of reasoning
that come up occasionally in any domain, and others might relate to common bodily

134 Chapter B4. Running arguments

motions. Perhaps some of it will never light up. And I imagine at least one node will

light up whenever you see your grandmother.
Combinational logic is such grade-school stuff that it is easy to lose track of how

profound it is. You have this large sheet of circuitry, with inputs on the left and

outputs on the right, and all of it is running all the time. All of it is working to
maintain some relationship between inputs and outputs. Every gate is always ready to
change its state instantly if its output ought to have a different value. If every single
gate is the equivalent of one rule, or as one instance of a rule, then a fantastic amount
of computation is effectively happening all the time. An agent conducting a running
argument does not take an action because some program counter reads 7. It acts because

it has thought through what it ought to be doing. It knows what it is doing. A planner,
by contrast, is something much shallower. Suppose the executive is moving the agent's
hand to the left. The agent once understood why it should be moving its hand left,
but that understanding is off in another module if it was saved at all. A system based
on combinational logic will take unexpected conditions in stride, meeting the world's

prevailing contingency halfway instead of attempting to rigidly impose its own will. If
the agent has adopted a subgoal, it knows why, so that if that subgoal is no longer a

useful means to an end it is no big production to abandon it.
Reid Simmons' thesis (1988a and 1988b) is about keeping dependencies on the Plan-

ning process so as to incrementally redo it in different situations. The innovation here is
that the dependencies are always running the show, with no distinction between Plan-
ning phase and execution phase. Even if the rules make plans, it is the reasoning leading
the agent to adopt a plan that runs the show, not the plan itself. That is important,

for all the reasons we have discussed.
The notion of a running argument also offers us an account of the slogan of contin-

ually redeciding what to do. The system accepts a new set of perceptual inputs and

delivers a new set of perceptual outputs in real time. That's still discrete, but it's a
decent approximation to continual. The system sometimes needs to run some rules, but
only the rules that are actually novel. If the agent's activity, once it has settled into a
pattern, is almost entirely routine, then it shouldn't have to run very many rules. The
slogan is, five rules per cycle. The scheme has its faults, which we will discuss later, but
it provides at least one technical rendering of the slogans I posted as our goal at the
beginning.

The hardest thing to accept about running arguments is that they are an account
of the steady state dynamics of an agent's activity in a world. They are not an account
of either the causes or effects of new thoughts. In terms of Chapter B2's vocabulary for

dependencies, running arguments concern the dependency network, not the source. This
can be hard to accept because we in AI are so accustomed to assuming that no activity
is interesting unless it involves large hunks of novel thinking, whether by Planning or

Problem Solving or Learning. This attitude is ingrained in our language. If I propose
to address 'making breakfast', I will be understood to mean something like, 'making
breakfast, never having made breakfast before, doing it without any help, and getting

B4e. Running arguments 135

it right the first time'. But I mean nothing of the sort. I mean 'making breakfast,
given that you have done it enough that you can do it routinely'. Given the customary
distinction between an impossibly smart Planner and a hopelessly stupid executive, it is
hard to imagine how this can be an interesting topic for study. If the agent isn't thinking
anything new, goes this argument, it must simply be executing a compiled Plan. This
argument poses a double bind, demanding a choice between two equally unworkable
alternatives. There is no way that one could make breakfast (a real breakfast, in a
real kitchen) by executing a Plan. The whole point of a running argument is that it
is vastly more flexible than executing a Plan. A running argument improvises rather
than always trying to anticipate, takes advantage of opportunities rather than ploughing
blindly onward, and responds sensibly to contingencies rather than circumventing them
all through exhaustive conservatism.

Chapter B5

Experiments with running
arguments

B5a Introduction

This chapter demonstrates the running arguments system. I built this system in 1984
and 1985 to help me think about the ways in which novel patterns of activity become
routine. The system achieves a number of striking successes that distinguish it from
previous architectures for artificial agents. Rather than basing its decisions about ac-
tion on a shallow representation constructed by a Plan-construction module, the system
effectively figures out on every cycle of its clock what to do now. The system integrates
a traditional rule language with a dependency system that permits the system to ac-
celerate its own operation without thereby complicating its reasoning. The mechanism
that maintains the dependencies accelerates the system's operation gracefully and in-
crementally and is completely transparent to the rules' author.

After much effort, though, I concluded that the system has a couple of severe short-
comings. Extended reflection on these shortcomings led to the novel ideas about per-
ception and representation that Part C describes and that were later embodied in the
Pengi system. The system is worth discussing at length, not despite of its shortcomings,
but indeed because of them. I built the running arguments system in the way I was
taught to build Al systems. Its shortcomings and their consequences are shared by many
other Al systems. Briefly put, these shortcomings concern the objective ontology of the
system's representation of its world. This ontology has two principal consequences: the
unrealistic demand that the perceptual systems maintain a world model and an account
of abstraction that cannot be implemented without excessive computational effort and
unnecessary architectural complexity.

Although these lessons seem obvious to me in retrospect, it is also clear in retrospect
that many factors colluded to obstruct their discovery. The most frustratingly gratuitous
of these factors is the misleading nature of 'blocks world'. Blocks world both hid these
difficulties by tending to excuse unacceptable compromises and hindered their resolution

136

B5b. Architecture 137

by suppressing the properties of real activity that permit the correct solutions to work.
This chapter has six sections.
Section B5b concerns the architecture of the running argument system and explains

the technical accounts it offers of the ideas that motivate it. The system's goal is to do
technical justice to the slogans of "knowing what you're doing," "continually redeciding
what to do," and the "mostly routine" nature of activity. Chapter B3 has already gone
into some detail about the relationship between the rule language and the dependency
system, so this chapter just gathers these ideas together to aid in interpreting the
demonstrations.

Section B5c presents two initial demonstrations of the system. After stepping slowly
through a single task, it then demonstrates how the system's dependency network has
grown through the experience. This demonstration, which we have already seen quickly
in Section B3c, only proves the simple point that the dependencies accelerate the system
in a situation that is precisely identical to one it has already been through.

Section B5d presents three more demonstrations. The demonstrations in Section B5c
have proven the trivial point that dependencies accumulated during a given task can
accelerate the system's performance on the same task. The more important question,
though, is whether and when the dependencies will transfer to other tasks. In this the
system achieves a mixed success that offers some important clues for later analyses.

Section B5e presents two final demonstrations. The first of these assigns the system
a long task involving a compound goal. The system goes through some instructive
gyrations to perform the task. Many issues arise along the way. The final demonstration
repeats the same task, now with the benefit of the additional dependency network
circuitry.

Section B5f interprets the results of these demonstrations in terms of larger points
about the forms of perception and representation most appropriate to a situated agent.
The chapter concludes with a historical conjecture about the ways in which the choice
of blocks world as an experimental domain made these lessons difficult to discover and
appreciate.

B5b Architecture

The running argument system has three motivations.
1. It is best to know what you're doing. Plan Execution is inflexible because actions

are not based on an understanding of the current situation, only on the symbols in the
Plan. The Planner once had a hypothetical understanding of why the prescribed action
might turn out to be the right one, but that understanding is long gone. Flexible action
in a world of contingency relies on an understanding of the current situation and its
consequences for sensible action. (In case it isn't clear, I'm using phrase "know what
you're doing" loosely and metaphorically. I do not mean to make any strong claims
here about the nature of knowledge.)

138 Chapter B5. Experiments with running arguments

2. One must continually redecide what to do. Decisions about action typically
depend on a large number of implicit or explicit premises about both the world and
oneself. Since any one of those premises might change, one must keep one's reasoning
up to date. Each moment's actions should ideally be based on a fresh reasoning-through
of the current situation.

3. All activity is mostly routine. Most everything you do during the day is something
you have done before. This is not to say that one switches back and forth between two
modes, one for routine situations and one for the occasional novel situation. Even when
something novel is happening, the vast majority of what you are doing is routine. It
has to be, otherwise you'd become hopelessly confused.

All this is more easily said than done. This chapter must explain how, as a technical
matter, the running argument system instantiates these three ideals. In what way does
the system know what it is doing? We think of "deciding what to do" as taking time,
so how can the system be redoing it continually? How can the system determine which
five percent of its reasoning needs to be conducted by non-routine mechanisms?

The running argument system engages in a rapid interaction with its simulated
world. We can look at the system in two different ways, from the outside or the inside.
First let's consider it from the outside. From the outside, the system is a fairly standard
old-fashioned kind of rule system. We have already looked at this rule system in detail
in Chapter B3. It has rules with left hand sides and right hand sides. Both left and right
hand sides have variab'les. When the left hand side matches something in the database,
the rule fires, the right hand side is instantiated with the appropriate variable bindings,
and the resulting proposition is asserted in the database, perhaps causing other rules to
fire in turn.

The system has a large set of rules, perhaps forty pages of code. Some of the rules
concern the usual amenities of programming languages, such as boolean conditions
in rules, simple forms of modularity, and macros that cause several assertions to be
performed from a pattern. Some concern domain-independent ideas about actions,
plans, evidence, issues, and arguments. Some concern stereotyped forms of domain-
specific inference, such as the transitivity of 'above'. The most interesting rules concern
domain-specific strategies and tactics and the arguments by which the system selects
the applicable ones and chooses among them in particular situations.

The system behaves as if that entire set of rules ran completely to exhaustion,
forward chaining until nothing is left to run, on every clock cycle. After the rules run,
certain propositions in the database indicate which of its actions the agent intends to
take on this cycle, perhaps picking up block B or moving right or standing still. In
particular, the system has a proposition corresponding to each of its primitive motor
capabilities. The motor system will decide what to do by checking which of these
propositions are IN and which are OUT. The technical problem is that if we implemented
this scheme literally, actually running all the rules on every cycle, it would be far too
slow. The system ought to issue a new set of primitive motor commands about ten times
a second. The rule system is fairly efficient, but it would still take it about five minutes,

B5b. Architecture 139

running from scratch, to run all those rules. That is a real technical problem. One
solution would be to apply brute force, carefully recoding the system for performance
and running it on hardware that is three orders of magnitude faster. Such a solution
would be an embarrassing kludge, offer no understanding of the problem, and scale very
poorly. Fortunately, there is a better way.

Looked at from the inside, the system accelerates its operation by accumulating
dependencies. Dependencies are helpful because life is mostly routine. Storing depen-
dencies is a good investment because so much of what you do is something you are liable
to do again. Furthermore, dependencies permit even a fairly general decision mecha-
nism to operate in real time because so much of what you are doing at any given time
is something you have done before. When a rule fires, the system builds a dependency
record stating that a certain rule and a certain trigger lead to a certain conclusion. That
rule need never fire on that trigger again. As the previous chapters have explained, we
can think of a dependency network as a combinational logic circuit. Each proposition
and rule corresponds to an electrical node in this circuit and each dependency record
corresponds to a logic gate, an AND gate for IF rules and an AND-NOT gate for UNLESS

rules.
This scheme offers technical accounts of the three slogans that formed our motiva-

tion. As the system runs, it accumulates this network. If the system gets into a routine
way of life, goes the theory, then it should be able to run almost entirely out of the
dependency network. The system knows what it is doing insofar as it effectively works
through its reasoning from scratch rather than following a canned Plan. Combinational
circuitry is highly parallel and extremely fast, so this reasoning takes little effort even if
the circuit is a hundred deep. The system is continually redeciding what to do insofar
as the circuitry produces a fresh set of decisions about action many times a second.
Finally, due to the algorithms described in Chapter B3, the system can rapidly deter-
mine when its current situation calls for some novel rule-running. Even if a given cycle's
decision is effectively based on hundreds of rules, the system only pays the price of the
few truly novel rule firings. What is original about this system is not its 'compilation' of
previous rule firings, but this graceful, automatic, incremental recourse to 'interpreted'
rules when 'compiled' materials don't suffice.

Whether the running argument system actually does justice to our motivating slo-
gans is an empirical question. Since no two situations in life are utterly identical, the
system's success will turn on whether the dependency system really transfers the agent's
lines of reasoning to appropriate future situations. If our current situation is ninety-five
percent similar to something we have seen before, we ought to be reusing ninety-five
percent of what we figured out before. As a detailed technical matter, then, does the
system satisfy that ideal? That is what this chapter's demonstrations are about.

140 Chapter B5. Experiments with running arguments

B5c Demonstration

Let's look at a simple demonstration. All the demonstrations take place in a simple
blocks world. I chose blocks world because of its long history in the Planning literature
(Sussman's Hacker (1975) was one of my influences at the time) and because its sim-
ulation and graphics code is easy to write. Figure B5.1(a)is a snapshot of the system
before it has been asked to do anything. The horizontal line of bold dots is a table.
The vertical line is just x = 0 and has no physical significance. The squares with letters
A-B-C-D in them are blocks. The square with the stylized fingers is a hand.

The physics of this blocks world is very simple. On a given clock cycle, the agent
can move the hand one unit horizontally and/or one unit vertically. Thus single-unit
diagonal motions are allowed. If the bottom surface of the hand is touching the top
surface of a block the agent can grasp the block. The hand has no state, so if the agent
wishes to keep grasping the block it must continue asserting the grasping action. The
world has gravity, so that unsupported blocks fall. It has no momentum, however, so
that a moving hand can stop immediately when the agent stops commanding it to move.
Blocks do not rotate. They obey velcro physics: one block will stay stacked on another
so long as the bottom of the upper block is in contact with the top of the lower block,
regardless -f where the upper block's center of gravity is located. All of this will become
clearer as thi demonstrations proceed.

In this scerne, the user has asked the hand to put block B on block C. Let's watch
what happens cycle by cycle. I will explain what the numbers as we go along. In all
cases, only the rough magnitude of the numbers is significant. (So don't worry if the
numbers have been photocopied into illegibility.) The hand starts above and a little to
the right of center of B. By the second frame, Figure B5.1(b), it has moved down and
landed on B. This process has taken five cycles.

On the left side of the frame, some statistics are being kept to measure how much
work the system is doing. Each line presents the statistics for one clock cycle. On the
first cycle the number in the "rules" column is 229, meaning that the system ran 229
rules. This is the largest number of rules the system will run on any one cycle during
these demonstrations, because this is the first time the system had ever been asked to
do anything.

On the first cycle, it made two decisions: one to go left to get the hand centered on
B and another to go down. As a result, it went left and down on that first tick. The
reasoning that led to this step involved successively decomposing the goal into subgoals
and planning ahead. Its first step was to get the hand on B; then it was going to have
to grab B. All of the arguing this required took 229 rules.

Think of this rule language as a fairly general-purpose programming language. One
could use it to write a Planner or a Scheme interpreter or anything else. This particular
rule set implements a simple Planner using ordinary ideas about subgoal decomposition,

preconditions, and the like. But it differs from most Planning systems in that it leads
to a decision about what to do right now, effectively conducting the whole Planning

B5c. Demonstration 141

C,. tect-eawt-ditabm. it
(take- 11"hIt 1Ontf

-)u(Olga ton 6 01I

IS. .~ .1 5 . .b . L..

Figure B5.1(a). The user asks the system to put block B on block C.

(pro"~ (sand sturrtft-.g.I2 :start- flfs

->(lg" (n C, I)LI

1 .. Mtch.. 1,il1e s atil tt depth
1 7414 Uz 4

2 S3

3 . .

I..~~~~1 SI .g .W .

Figure~~~~~~~ ~~~~ .51() Onc it get une way th syte nee no ru .n ue ih
han to c e B.

142 Chapter B5. Experiments with running arguments

iaroU~~~~~~*ds.)ar-raAjm

(theta r Wl-sg s tate I stnit be 2

)(IIIM@ isiek e))

miks~tciwo ftls detttV& "Notb
1 4114) 229 U 4

2 W6 £

5

'C. ~ ~ ~ ~ ~A'~US] ~ - k .lU~ . ..

Figure B5.1(c). Never having picked up a block, the system has to run some rules to
figure out how.

(instal I-torld-stat. '
I,. 1.t-aemnt-astastae

->(Diem. (an 0 C)

Itick Mutch rot". intl,
1 17414 229 47:
2 W6 39 U 6

3 4. 10 4 3

7 4424 116 142 24

......................................I
C

Figure B5.1(d). Never having moved a block anywhere, the system has to run some
rules to figure out how, after which it runs smoothly until it strikes an obstacle.

B5c. Demonstration 143

41 3

(•nts I-oed-eet I~tM 1•le I
(t~e-lmqH~.

-...

.

14 S . .

A L
ii '-,' " ~IA" °LWU IX Lim %M I*"

Figure B5.1(e). Never having hit an obstacle, the system has to run some rules to figure
out how to circumvent it. Some more rules are required right at the end.

process afresh on every cycle.
The first cycle is atypical since the system is presented with the huge novelty of

being presented with its first task. The subsequent cycles are more interesting. The
hand only moves left for one cycle because it is only slightly off-center relative to B.
But it goes down for five cycles. The decision to go down, according to the system's
principles, ought to involve most of those 229 rule firings. Each cycle's incremental
downward motion should result from a fresh reasoning-through of the situation, just
in case something has come up to invalidate the previous cycle's reasoning. From the
outside the system should appear as if it ran 229 all rules on all five of these cycles.
But in fact it ran 8 rules in the second cycle and on the next three cycles it ran no
rules at all. That is because nothing qualitatively changed in that time. The eight rules
may have to do with the hand's ceasing to move left. Then it went down, step by step,
and landed on B. Nothing qualitative changed, so no rules had to run. Figure B5.1(c)
presents the situation just before the system has noticed that the hand is touching the
block.

Figure B5.1(d) shows the scene exactly one cycle later. Sensory information has
told the system that the hand is touching B, whereupon 89 rules run, a large number.
But that is not all that happens on this cycle. Look at the number for cycle 6 in the
"activity" column. On this cycle, 152 nodes in the dependency network changed their
state. Much of that reflects the newly run rules; the system has never before found

144 Chapter B5. Experiments with running arguments

its hand on something it is trying Lo pick up. But much of the activity also reflects
the reasoning that is going out now that one of the reasons to keep going downward,
mamely that the hand wasn't touching B, is now false. A wire that once read zero now
reads one. That one has rippled through the network and now a lot of the arguments
for moving down are unsupported. As they went out, zeroes went rippling through
large parts of the network, thus accounting for some of the activity. The system didn't
exactly decide to stop moving. The argument leading it to keep moving was no longer
justified, so it is no longer moving.

On cycle 7 it takes the system 116 rules to decide to move B toward its destination.
As before, the system must run a large number of rules since it has never moved a block
toward its destination before. Once it gets moving, though, all the arguments that take
place in those 116 rules continue to hold so the hand moves along without having to
run any more rules.

Figure B5.1(e) shows the system after four more cycles. The hand has picked up B
and has moved off toward C. The system doesn't have a lot of foresight and doesn't know
very much about trajectories. It has chosen its motions serviceably, but nonetheless it
has bumped into C. What happens now, on cycle 11? There had been an argument
for going up, which was that B was below C and needs to be above C and the hand is
holding B, so the system moves its hand up. There was also an argument for moving
left, which is that B needs to be overlapping horizontally with C, and B is all the way
to the right of C, so it is moving left. This argument for moving left is still good since B
is still to the right of C. But now the side of B is touching C. That fact is causing some
rules to fire that had never been involved before. The rules object to moving left on
the ground that it is not a good idea to push the object you are moving toward. This
objection, like all objections, is only offered ceteris paribus. But since no rule objects
to it in turn it is accepted and the proposal to move left is defeated. All this action
takes 124 rules. The argument for going up is still wholly uncontroversial, though, so
the hand continues moving upward.

When it gets up far enough that B clears C, the argument against moving left no
longer holds, so there is a lot of activity in the network as that objection goes out.
Henceforth it is free to move left. The proposal of moving left has been active all the
while, but it has not been adopted because of the objection overriding it.

On the final cycle, B is now on top of C. This is velcro physics, so slightly on is
on. It finishes, running 38 rules because this is the first time it has ever finished a job.
Those rules are associated with detecting that the job has been finished and perhaps
with cleaning up. The network is extremely active on this final cycle, with 287 nodes
changing state, a large portion of the whole network. Those 287 nodes represent the
whole apparatus of inference and argument behind the top-level goal, its decomposition
into subgoals, and the idea of having the hand on something and moving it along. Now
that B is on C, the goal has been achieved, so the support for all of that apparatus
has gone out. Where once was a one is now a zero, so a bunch of zeroes propagate
through the network, and the network settles down to its rest state. Large sections of

B5c. Demonstration 145

the network that turned on during the first cycle now turn off during the last cycle.
Some patterns in these numbers indicate some of the important dynamics of the

system. Most of the patterns concern the levels of activity in the network. Observe that
on the first three cycles an initial burst trails off to zero: 336 to 38 to 4 to 0. Then a
second burst starts on cycle 6. That burst lasts for two cycles, one for grabbing B and
one for getting moving, but then like the initial burst it fades to zero. Then starting on
cycle 11 is a third burst as B hits C and beings sliding up along it. At the end are two
bursts on adjacent cycles, for clearing C and then for finishing the job. This burst-decay
pattern will be ubiquitous during all the demonstrations.

To understand this burst-decay pattern, think of the dependency network as moving
through a gigantic phase space with a dimension for each node. As the system works
on its task, it describes a trajectory through this space. When nothing is qualitatively
changing, the network has no activity. When the network crosses a boundary into a
qualitatively different region, such as when it encounters an unexpected situation or
moves from one subgoal to another, then the network will change its configuration to
reflect the change. Patches of the network that had been active will turn off and other
patches that had been quiet will become active in their place. Each burst of activity
reflects this sort of change. The burst usually doesn't decay to zero immediately because
of proprioception; the system receives a signal from its body indicating that an attempt
to move the hand or to grab something is actually succeeding. Observe that the burst-
decay pattern only concerns the amount of activity in the network, not the number of
rules that fire. In later demonstrations will see the "activity" number repeatedly burst
and decay without any rules at all being fired.

A second pattern concerns the relative magnitudes of the activity numbers. The
network is most active at the very beginning and the very end. At the beginning it
is starting with a top-level goal and it is decomposing that progressively down into
subgoals. That very top-level goal and its associated structure remain IN during the
whole process. A region of network configures itself for putting B on C and it stays in
that configuration until the end. The numbers in-between tend to be smaller because
they reflect smaller events. The other peaks of activity occur when the system switches
from one major subgoal to the next. Another peak occurs when the system must pull
up short and reason about an unexpected condition, B's hitting C; and then again to
retract all that reasoning when the unexpected condition goes away.

This pattern becomes even clearer if we look at the "depth" numbers, which reflect
the length of the longest chain of nodes in the network that changed state-that is,
the longest causal chain within the network on this cycle. This number will tend to
relate to the depth of the reasoning patterns. The depth is very high when the system
is decomposing its top-level goal on the first cycle and when it retracts all the reasoning
behind the decomposition on the last cycle. In more complex examples we'll see that
pattern nested within itself.

The system has now finished performing its first task. In doing so, it has had to run
several hundred rules, but it has also built up several hundred gates worth of dependency

146 Chapter B5. Experiments with running arguments

(pro" (Sand4 snufr4t-warlI, :atg-~R)(tastall-.~ detlE-tte mt ngsr4-bli K•I |

a(D Ieest , t -t i W

tick uttces Wats tI Vti *Atb
1 17411 229 47
2 6 9 2
3 6 * 4 34 * 6t 6 O . . .

? 11 B 116 142 24
6 '•9 4 29 S
9 0 I S S

Is 9611 124 149 26
12 59M 65 15

5) 1 6 16 4
14 6 6 * 615 6 6 6 0
16 A I l 1 .

S11 1 1 17.

J# •]I ZI? 36

i......> ~ ~~

S. o

"L 2 ".. .. i

Figure B5.2(a). Here is the first demonstration run over again.

(N ltct-a .e~t-istSmlta).
1(1ntak• l ur.ldl ta te))- 4" 0 " 6* 0) .t

>tick Michas Ige .,tlwlY UOtI
17414

2 SM I* G3 6 0 4 3
4 0 6 d S i .~ i i i i. .
5 0 0 S S

6 419 69 152 24
7 4V9 116 142 296 •6 4 30 5

31 I17 14 I' A.
12 S O .5 1513 • S IS 4
14 O O 0 .

15 O S S .16 6 0 6 g0
17 2n 11 o1t 17

O5 Z O i 3 .21 0 4

.4 . . ~ . ' i iii
25 149 3' 9

29 6 S 5S.

031 S 101 4

a 0 6 274 49

- *I* !gL. .. . "

Figure B5.2(b). The user has restored the blocks to their original positions and set the
system running again with the same goal. After running a single rule to recover from
the discontinuity, the system can run entirely out of its dependency network.

B5d. Patterns of transfer 147

network. If the system is working well, those dependencies ought to permit the sybtem
to run fewer rules in the future. Later sections will present some detailed experiments
to assess whether the system's experience putting B on C transfers in satisfactory ways
to other activities. For the moment, though, let's just test the simplest case. Do the
dependencies permit the system to perform exactly the same task in exactly the same
situation without running a significant number of rules?

Figure B5.2(a) shows the system after the blocks and the hand have been restored to
their original positions. (This will slightly confuse the system for a moment because the
discontinuous change will foul up the computation of the proprioceptive information.)
The same request, putting B on C, is still in effect. Then we set the system running.
It runs a single rule on the first cycle (to recover from the discontinuous change), but
after that it runs absolutely no rules at all. It makes exactly the same moves it made
before, including bumping into the side of C. The system is not learning in the sense
of adaptively changing its behavior; it is just doing the same dumb thing much more
efficiently. The system is firing no rules and performing no pattern matches, but the
numbers for the activity in the network are qualitatively the same. The activity is
very high at the beginning and end and exhibit peaks at significant transitions. We
can observe the same repeated burst-decay pattern in the activity levels. Likewise,
the depths are the largest at the beginning and end, with intermediate values when the
system changes subgoals or when something exceptional happens. From the outside, the
system appears running all the hundreds of rules it ran before. From the inside, though,
no rules are firing because the dependency network covers every case that comes up.
An observer sitting at the Lisp Machine console sees the system move along smoothly
and rapidly, whereas before the system hesitated at important transitions.

As I mentioned, this test is not very difficult. Of course the dependencies suffice
to perform precisely the same task again. This result is entirely independent of what
the rules say. The subsequent demonstrations rest more heavily on the ideas about
arguments presented in Section B4d.

B5d Patterns of transfer

To evaluate how well the running argument system lives up to the slogans that form its
motivation, let us consider five more demonstrations of the system in action. We are
concerned with whether and when dependency maintenance accelerates the system, so
each demonstration except the last picks up where the original demonstration left off,
with the system just having been asked to put block B on block C. In having performed
this task, the system has built several hundred gates worth of dependency network.
The question now is, what can the system now do automatically, running out of its
dependencies instead of rules, in virtue of having had that experience? We saw that
you can do precisely the same thing; that is not very interesting. The question is, what
can you do that is not precisely the same? What makes a situation sufficiently similar
that the effort of building that hunk of dependency network is going to transfer? How

148 Chapter B5. Experiments with running arguments

much transfer does the system exhibit? Do the system exhibit all the transfer we feel
it ought to, given the slogan that most everything you do is something you have done

before?
The third demonstration is a success story. In Figure B5.3(a) we have backed up

to just after the completion of the first demonstration and restored the four blocks and
the hand to their original positions. Now, instead of asking it to put B on C, we are
asking it to put B on D. It is a different task, but both tasks involve picking up B.

On the first cycle, number 19, the system runs 34 rules. That is not bad given
the 229 rules it ran on the first cycle during its first task; many of those rules must
have carried over to this second task. Those 34 rules presumably concern the different
destination.

On cycle 24 the hand stops upon reaching B and decides that it should grab B.
The first time out, during the task of putting B on D, that took 89 rules. This time
it takes one rule. The activity number is still high, 152 as compared to 160 before,

re-flecting the network's change in configuration as one region of the network goes OUT

and another ccmes IN.

On the next cycle, nurabcr 25, the system decides to pick up B and move it to the
right towards D. That takes 85 rules, as compared to the 116 rules it took to decide
to move B to the left toward C during the first demonstration. Evidently little has
transferred from the first task to the second, but it is hard to say how much ought

to have transferred. Certainly moving left toward C and right toward D are "fferent
activities.

The system completes its task without further incident on cycle 35. The final cycle,
on which it realizes it is done, takes 29 rules, as compared to the 38 rules it took to
complete the first task. The activity number is high and approximately the same in
both cases, 262 as compared to 287 before, reflecting all of the apparatus that has gone

OUT once the system has achieved its goal. Again, little appears to have transferred
from the completion of the first task to the completion of the second, but it is again
hard to say how much ought to have transferred.

Despite the uncertainties, this demonstration offers us two clear instances of depen-
dencies constructed on the first task carrying over to the second. On the very first cycle,
much of the apparatus of decomposing the goal and initiating action appears to have
been independent of the particulars of the two tasks. And when the hand found itself on
B and decided to grab it, the apparatus associated with that subgoal was independent

of the larger goals of which it was a part.
The fourth demonstration also begins after the system has completed its first task of

putting B on C. The initial situation is precisely the same except that all have different

names now. Instead of A-B-C-D we have E-F-G-H. The task now is putting F on G.
Thus the situation and goal are both exactly isomorphic to the originals except for the

names of the blocks. Are the situation and task the 'same' as before? Yes and no, but
we'd really like the dependency structure from the first task to carry over here. After
all, the system's actions and the reasoning behind it will have exactly the same form as

B5d. Patterns of transfer 149

,(I1...... .. C4

leg eIVI94-5

21 4 3

23S
2q 1 1 I.

a,

Figure B5.3(b). The system has already picked up B in the previous task, so that
portion of the dependency network transfers to the new task.

150 Chapter B5. Experiments with running arguments

-1m.*tell

t ICU "Wtche. rules "VI

20 0 9 36 6
21 i 0 4 3
2 O S 0 1

23 0 S 0
24 .61 I 25
25 3472 5* 155 35a 4 39 5
2 MS S

29 1 5 a
30 5 7 13
33 0 O 0

34 3• 4 ?
35 If" 29 262 36

Figure B5.3(c). The rest of the task requires somewhat fewer rules than before, but the
dependencies do not transfer to putting something on D.

before. How much does transfer? Not enough.
The numbers prove it. The numbers of rule firings at major transitions range from

half to three quarters of the corresponding numbers over the first demonstration. It
takes 159 rules to get moving. When the hand lands on F it takes 45 rules to grab it
and 64 rules to get it moving. It takes 96 rules when it hits the obstacle. Notice that
the decay portion of the burst-decay pattern has transferred; all the system's reactions
to proprioceptive information have transferred. Much that was independent of the
particular individuals has transferred. For example, the system has already unfolded
some relatively domain-independent apparatus having to do with arguments and plans.
But nothing that relates to these particular blocks has carried over. If the system runs
a rule like

(if (and (trying (grasp ?x))
(on hand ?x))

(propose (grasp)))

then this rule will have to run again for every block that the system is ever trying to
grasp. During the first demonstration it ran with z bound to B. During the second and
third demonstrations it did not have to run because the system did not ever try to grasp
any block except B. During this fourth demonstration, though, it tried to grab F. As far
as the system's representation scheme is concerned, F is a wholly different block from

B5d. Patterns of transfer 151

B, so all the rules that originally mentioned B must now be fired again with x bound to
F, thus creating a duplicate, parallel dependency network structure. None of this makes
the dependency network any deeper, but it does make it bulkier. This proliferation of
network stuff doesn't have any principled end. So long as new blocks keep coming, tb,
system will keep having to build more network stuff.

Even worse is a rule that mentions two blocks. Consider the following rule, simplified
in various ways for purposes of exposition.

(if (and (propose (move hand ?direction))
(horizontal ?direction)
(grasping ?x)
(sides-touch ?x ?y)
(in-direction ?direction ?y ?x))

(propose (object (move hand ?direction) (dont-push ?pushed))))

This rule, or actually a more general version of it, posted an objection in the first

demonstration when B accidentally bumped into C. It also posted an objection oiL the

fourth demonstration when F accidentally bumped into G. Each time, the system had
to build a new patch of network structure. The system is faced with the possibility of
having to build an amount of dependency stuff proportional to the square of the number
of blocks it encounters. This might be tractable in some domains, but it certainly isn't
very satisfying.

The running argument system might be at its worst on an assembly line. Asked to
perform analogous tasks in an endless stream of analogous situations comprising differ-
ent individuals, the system will generate a vast number of analogous circuits, none of
which it will ever use again. Imagine passing a thousand cars on a long car trip, turning
the knobs on a thousand doors over the course of a year, turning a thousand pages
while reading comic books on the beach, or eating a thousand spoonfuls of cereal over
successive breakfasts. Each series involves interactions, each perhaps subtly different,
with a thousand different individuals whose individuality per se has little effect on what
actions are correct. The knowledge embodied in the running argument system's rules
is abstracted away from the particulars of a thousand situations with the use of vari-
ables. But dependencies do not support variables, nor can dependencies be generalized
to support variables without losing most of the virtues of dependencies.

The lesson of the two foregoing examples is that reasoning involving the same indi-
viduals will transfer, even into different contexts. But no transfer will take place between
one set of individuals and another. The system decomposes its reasoning automatically
but it doesn't make analogies automatically.

The fifth demonstration proves that the rule set isn't perfect. Here we are picking
up from the end of the first demonstration without restoring the blocks or hand to their
original positions. The new task is to put C on B. It would be easy enough to write rules
to exercise some foresight in such cases, but I haven't. The hand shuffles to the right
around B and then pushes it to the left on its way to grabbing C. It now reasons that
the hand is on C, that C ought to be on B, that B is higher than C, and that therefore

152 Chapter B5. Experiments with running arguments

,tests)) wooe *,-1CkI)

_>(6lm (se to r 1)
-4 O acor riw ecI1 ct

is 14M 1"iE

-(S90 2690 r i 146

26 06 0 a 021 sa 16 43 3
22 677 65 5 ..

34 0 0 0
25 2512 45 lot 1
Xt 2M 29 26 3

3rý21 2571,1 0L4M TEL to4~w 0%

Figure~3 54() Hain bee setoatsthtipefclanogutoneths

perfr 3e beoe th syte mutrnmayrls

M.d. Pat terns of transfer 153

)4161~ (o C 1)

..

tos pu C.o.B

3.......... I)
..

..
..1.

..2. I2 31. I

to put C on B.

:20 00 (0 C 11))

33 0!

25 172 To 22

Rl 0 0 2 6

3? S7 0 2 4

SI
I~. U ~.I

Figre 5.5b).Unfrtuatey han'twritenruls t coerthi.c.e..o.i.mesesup

154 Chapter B5. Experiments with running arguments

it should move thb harid upward. A separate line of reasoning leads it to move the
hand leftward as well since it would like to center C on B. Both these lines of reasoning
proceed to apply on each next cycle ad infinitum as the hand and blocks float upward
and leftward uff the screen. The dependencies capture the bogus lines of reasoning right

away, so once the hand and blocks get going they move along with no hesitation. They
have the nonchalant quality of a balloon taking off. Naturally something more realistic
and interesting would have happened had I paid more careful attention to modeling the
practicalities of arms, hands, and motor control.

B5e Transfer and goal structure

The sixth demonstration is longer and, having been chosen for its twists and turns,
illustrates some additional dynamic effects. Once again the system has just put B on C
and the blocks and hand have been restored to their original positions. The task now
is a sequence of two subtasks, putting D on C and then putting A on B.

The "and" in the task description is not a logical conjunction but rather an instruc-

tion to perform the subtasks in sequence. Originally "and" was a conjunction but it
got to be too much trouble to implement the conjunctive semantics. The reason was
quite annoying. Naturally when the system faced two tasks it needed rules to determine
which one to perform first. As with all its decisions, the system needed to conduct an

argument with itself, putting forward proposals and weighing the arguments for and
against them. In many situations it is plain which to do first. Perhaps the hand is
already perched on the block it would have to move first to perform one of the subtasks.
Or perhaps the blocks need to be stacked in a particular order. Rules for cases like these
were easy and fun to write. The rules were harder to write when there was no reason at

all to choose one task rather than another. Even though it didn't matter which it chose,

the rule language had no way of expressing an arbitrary choice. All the rules fired on
all the individuals to which they applied. I considered extending the rule language with
a mechanism for performing arbitrary choices, but I couldn't come up with anything
sufficiently principled and general. I ended up writing rules that implemented utterly
arbitrary decision schemes, but no one criterion s'ifficed to discriminate in all cases, so
the criteria then had to conduct an elaborate argumeht among themselves. This did
work, but nothing was gained in waiting for all the hundreds of necessary rules to fire.

The issue is deeper than it looks; I will return to it after the demonstrations.
On the first cycle, number 19, the system has a lot of work to do. It has never

been asked to perform a sequence of tasks, so it must run many rules to decompose the
compound task, assign itself the subtask of putting D on C, and figure out how to head
toward ._. All of this action takes 251 rules, quite a large number. Once it gets moving,
it puts D on C without incident. The burst-decay pattern occurs repeatedly throughout

the process. Deciding to grab D takes 46 rule firings and deciding to move D upward
and leftward toward C takes 72 rules. Bloth of these numbers are probably excessive,

given that the system has already put B on C, a fairly analogous task.

B,5e. Transfer and goal structure15

II.. . .k .~~ .t .. .~ .I .

tieS~~.. . .ibe ...s.... et

..5

..

..

.

9 1142 251

16

.5 25 , 5.

Figure~~ 456() Itpae nwihu niet

156 Chapter B5. Experiments with running arguments

,>(peS &" (OWIn a 0) (an a 11)))

tick tchcel rules a lct
1s Isl 251e

22 4

23 332 1 6
24 1 6 6
25 0 45 32I a 027 164 2 7

29 2940 72 111 a2

331 M I 0
32 S .0 0
33 0 0 I 0

S O 24S. .
35 2W / 5 1

25 O s o 3
3? 0 0 0 0

39 1"4 a 2 S
39 413 S 57 B
40 251 1 9 4
43 0 0 5 I
42 9 0
43 U 2 is 6
4 44 I 31

45 0 2 1 .

4? O 0 4 I
40 15173 640 62

45

Eth 22 6,5,54 AW. CI" Lie *,*Am'i ara

Figure B5.6(c). It prepares to move the hand around D on its way to pick up A.

>Ints tal I
:> (Plese iuNW (an' d 0 (a- a W)i

ýtck Masckhe. roles aet"M Gt
19 15129 251 W~%
251 321 4 16 4

23 r" 1 6 4
24 1 25 6
25 q 3

27 164 Q 2 7
29 US9 46 1"
29 2940 72 151 29

32 a 0 0 0
33 5
34 656 24 9
35 256 15 5

30 164 1 2 639 413 1 S?
40 251 1 9 4
41 0 0
42 q
43 no 2 19 6"44 10 31 7
45 0 2 1
46 1 047 M 4 7.
49 si 157 62
49 672 5 145 23

II.. U~.. k.9,U...........!x

Figure B5.6(d). Centering the hand over A causes it to bump D off of C, thus undoing
the first subgoal.

B5e. Transfer and goal structure 157

Aplebe (W le" 4 0) (OR 9 b)).
mtC~j......O.........

16 4

66 1" n

1;
16 .. .6.

413 14
61'

SL . ~.

Figure B5.6(e). Shifting back to its pursuit of the first subgoal, it chases D as it falls.

3 Ietall
-Neleeg.t (eOW (as 0 C) (on a Wf)

4 16 m4w2

33 6 4
II 5

* 4 2
* 9

I44
................

Figure B5.6(f). Having caught D again, it puts it back on C.

158 Chapter B5. Experiments with running arguments

tuck MItSR: relve MlcIvlt MOMt

25 b .Us5] S. .i.

Figure B5.6(g). This time it decides to go around to the right.

tick Mmttbeb gul. S t?.I dth
13 3JIM V9 ?I I*. . : : : .

64 S 6
67 0 0

AS n 2 i0

72 0 0 13 S

n.......3..

5*~.ii .. * ~ S .

Figur B5.6h). eadin forA, th.han.stries.C

BMe. Transfer and goal structure 159

tick ,MUMS rule, Aetvit 66tb
63 3166 49 711 49
64 5 4

17 0 0
inM 06 ED

69 376 72 30 34

7Z 2 13 6
73 1619 36 311 3074 173 I 20 32
75 1S74 22 142 26
76 0 Z
7*7 0 0 0
70 561 2 1 0

lf- 2) U* ft&A *z I 0 10IW

Figure B5.6(i). Working its way around C, the hand arrives on A and grabs it, pushing
C and D off along the way.

14 0 1 6
65 0 0 4 1

6 le I 1" 23

19 371 12 12, 34

72 5 6 3
73 3.09 3 9 11 0

74 173 6 270 32
75 is"4 a 142 26

77 1 01
76 a, I I I

61 41 I 0
1 011 41 1
12 5 0 16 4

a 021 7 in0 17
*6 430 72 INI NO67.

.). . . .

.. iz..

Figure ~ ~ ~ ~ B6()FillitpaeAonBwtoticdt.......

160 Chapter B5. Experiments with running arguments

Figure B5.6(b) shows the system after cycle 47, immediately after the system has
put D on C and is about to discover that it has finished with the first subgoal and then
get started on the second. A great deal happens in the next few cycles.

Something complicated happens on cycle 48. Having finished with its first subtask,
the system is pursuing the task of putting A on B. Its first subsubtask is to get its
hand on A. A is below the hand so the system proposes moving downward. But then
the objection arises that the hand cannot move down because a stack of blocks is
directly below it. (The system anticipates the problem without trying to move the
hand downward.) Another rule then offers the alternative of going around and proposes
moving left. There being no objections, the hand moves lcft. This took 250 rules,
indicating quite a complex process of a sort the system has never before performed.
The level of activity in the network is very high, 799, reflecting both this reasoning
coming iN and the reasoning behind the first subtask going OUT.

Something unfortunate happens on cycle 49. The proposal of moving down to get on
top of A, having been made on the previous cycle, still applies. And the objection against
it, that the stack of blocks is in the way, no longer applies, so the hand moves down.
Another rule points out the virtue, other things being equal, of centering the hand over
the block, and thus proposes moving to the right. No rule objects to the unfortunate
combination of proposals, so the system adopts both and the hand moves downward
and to the rigiti, pushing D to the right off of C. (This is not the sort of mistake that
most blocks-world Planners would ever make, but then then it couldn't even happen
in most blocks worlds, which are even less realistic than mine. For an exception see
(Fahlman 1974).) All this took only 5 rules since almost all of this reasoning had taken
place in other contexts. It did involve an activity of 165 in the dependency network,
much of which was no doubt due to objections from the previous cycle that no longer
applied and so went OUT.

Cycle 50 is the most interesting. Since D is no longer on C, the first subgoal does not
hold true, so one of the justifications for pursuing the second subtask has been removed.
The activity is very high, 582, as the network changes configuration, sending the second
subtask's apparatus out and bringing the first subtask's apparatus back in. The process
takes 61 rules, many of which reflect D's top surface being above the bottom surface of
the hand, leading the system to conclude that it must move the hand upward. Some of
them also reflect the hand being in side-to-side contact with D, leading the system to
defeat the proposal of moving to the right.

Starting on cycle 51, D falls and the hand begins chasing it rightward and downward.
The hand's transition from upward to downward motion occurs mostly courtesy of the
network, having transferred from the first time it fetched D. Finally the hand lands on
D on cycle 55. On cycle 56 it decides to grasp D, which reasoning carries over entirely
from the first time it grasped D, except for one stray rule. On cycle 57 the hand lifts
D straight up, having run some rules to defeat the proposal of moving leftward as well.
When B bumped into C during the first demonstration, it took 124 rules, much of which
has transferred over to this case despite the different individuals. Much of this transfer

B5e. Transfer and goal structure 161

does not concern bumping-into per se; cycle 11 was the first argument of any difficulty
that the system had conducted with itself on any topic. From cycles 58 to 62 the system
moves D back up onto C with no rule firings at all.

On cycle 63 the activity number is very high again, 715, reflecting another grand
swap as the first subtask's apparatus goes back OUT and the second subtask's apparatus
comes back IN. The system does run 49 rules on rule 63; these concern the old problem
of getting the hand around the stack of blocks and onto A. This time, the hand is right of
center instead of left, so some rule proposes moving to the right around the blocks. The
system adopts this proposal and moves right. As before, objections defeat a proposal
to move downward.

The rest of the trip is comparatively uneventful. The hand clears the right edge
of D on cycle 67. On cycle 68 it begins moving downward and to the left toward A,
inadvertently pushing D to the left as it goes. Fortunately it does not push D off of
C again. Instead it lands on C on cycle 72 and repeats the same trick, moving to the
right one step and then changing course again to move downward and to the left. This
motion pushes D to the left as well.

The hand moves to the left all the while in order to get itself centered on A. Several
rules offer objections and counter-objections around the issue of whether it is OK to push
the blocks out of the way; in this case they approve. Although the line of reasoning for
circumventing C was closely analogous to that for D, we observe little transfer because D
and C are different individuals. Some general-purpose reasoning about getting around
things did transfer, but not very much.

Finally the hand lands on A on cycle 78, just in time to push D and C completely off
of A. Some rules fire on cycles 79 and 80 because the system has never picked up A or
moved a block to the right before. (Left and right, like the block names, are individuals
across which transfer fails as well.) Some additional rules navigate A over top of B
when it accidentally bumps into it; again we do not see much transfer from previous
such cases. Finally the system completes its task on cycle 86.

Before looking at the numbers in more detail, let's go through a seventh and final
demonstration. This demonstration, unlike the others, picks up from the sixth. The
system has just finished with the compound task of putting D on C and A on B. We
have restored the blocks to their original positions and set it running again. The same
compound goal is in effect, so the system marches through precisely the same actions
as before. It takes a couple rules to get moving. The activity numbers exhibit the usual
burst-decay pattern. The system has not gotten any smarter about performing this task
but it has gotten faster.

In both the second and seventh demonstrations, the system was running through a
task it had already performed. In each case, the system went through the same reasoning
and the same motions and ended up with the same results. Yet in each demonstration
some stray rules got run at various points. In no case did these newly run rules change
the system's behavior on that cycle. Instead, these rule firings resulted from a peculiarity
of the relationship between the perceptual system, the dependency network, and the

162 Chapter B5. Experiments with running arguments

I* 61A lateb ru1e0 agtlaw

* C o 16 4*P C I S O

92 M 2
93 0 0 4I 3

94 O O 2 6

95 2

161 0 63

,. . • 1" 30t
1.2 0 6 24I.. •. ..

163 0 0 16 6
*04 6
105I2, . .7.. ..

I*? 07 0 0

112 S o 31 .

*14M 0 5I o S

*15 0 S 4 6

116 1 1 637 3
11I 2 165 23

111 0 0 121 *7
121 0 0 S
*2221S
123 2 2 23 9

121• l 1 217 25..

S O O 29 5
121 0 e 201

12$ Sl I 25 42.. .. .
126 S 0 S1 S

-GUN • . , .. Lie % 9 i

Figure B5.7(a). Having completed its two-part task, the blocks are restored to their
original positions and the system is set running on the same task.

f Wm O "0
132 : : • O
133 4 1
134 S 0

1"- 6 O 1ie 23
13 V 6 121 26
13. 5 0 6 0*39) O S S B
1" 0 0 13 6
'41 2 2 1" 3t42 0 0 276 32
143 0 S 142 26
144 O 0 2 1

1416 4 l •
*47 0 295 2?1941 S S 155 3.
*4,19 0~ 0 91• $
133l 5 6 16; 4. . ..
1$1 O 0 *6 44
152 5 S 79 1$

15 0 0 in IS7

...- ,

Figure B5.7(b). This time the task requires only a trivial number of rules. The levels
of activity in the dependency network, though, still have a complex structure.

BMe. Transfer and goal structure 163

rule-firing mechanism. On each new cycle the perceptual system assigns new values,
either IN or OUT, to the proposition corresponding to each of the primitive percepts.
The blocks world is pretty stable, so the new cycle's value is usually the same as the old
cycle's value. When it isn't, the change's consequences ripple through the dependency
network. This network activity sometimes causes new rules to fire.

While the perceptual propositions are still being updated, though, the central system
is effectively being told a false, or even inconsistent, story about the state of the outside
world. So long as some of the perceptual propositions have been updated and others
haven't, rules are going to fire in an attempt to pursue the current goal in the improperly
specified rule state. The central system will restore itself to a consistent state once
the perceptual propositions have all been updated, but only after a certain amount of
extraneous activity. As far as I can tell, all of the rule firings during the second and
seventh demonstrations fall in this class.

It is impossible to avoid this problem completely. Since I don't believe that people
have rule systems in their heads, any attempt at alleviating the problem would only be
an engineering curiosity. Some important issues would, however, arise in such a project.
One is that it is unrealistic to hold the system still on cycles when hundreds of rules
need to run. The whole system would be more honest if the dependency system really
ran at a fixed real-time rate, occasionally letting the rule system fall behind. Unless
the goal is plain engineering, though, research into such matters should wait until their
connection to dynamic issues is clarified.

Let us look once again at the "depth" numbers for the sixth and seventh demonstra-
tions. Recall that the "depth" measures the longest causal chain in the just-completed
cycle's modifications to the dependency network. In discussing the first demonstration
we saw that these numbers are particularly large when the system is either switching
from one subgoal to another or performing a complicated argument in a difficult sit-
uation. The deeper the change in the goal hierarchy, the deeper the network activity
is likely to be. The reason for this is simple. The top-level reasoning about breaking
the compound goal (and (on d c) (on a b)) into two subgoals (on d c) and (on a b),
comes IN on the first cycle and remains IN through the entire process, finally going OUT
on the final cycle once the compound goal is finally achieved. The reasoning for each
goal in the hierarchy forms part of the support for the reasoning for its subgoals. The
depth numbers are particularly high on the first and last cycles because the reasoning
for the entire goal hierarchy is going IN and OUT. In general, when the system moves
from one subgoal to another, the depth numbers will be proportional to the depth of
those subgoals in the system's current goal hierarchy. Thus on cycles 48, 50, and 63,
when the system switches back and forth between its first and second major subtasks,
the depths are 62, 62, and 48. (The two 62's are likely to be a coincidence. Only the
rough order of the numbers is significant.) As the intermediate goals switch back and
forth the depth numbers assume intermediate values.

164 Chapter B5. Experiments with running arguments

B5f Conclusion

The goal of the running argument system was to do technical justice to three slogans,
that everyday activity necessitates "knowing what you're doing," that it is a matter of
"continually redeciding what to do," and that it is "mostly routine" in its nature. In
order for the system to approximate these ideals, it somehow had to produce the effect
of a huge, involved decision process on every cycle of a fairly rapid clock. The system
proposed to achieve this effect by maintaining dependencies on all of its novel items
of reasoning (rule firings). As a narrow technical matter, this technique is certainly a
success.

As we have argued, though, maintaining dependencies is only a sufficient help if
two conditions hold. First, most everything you do must be something you have done
before. Although it is difficult to evaluate such a broad proposition in such a narrow
and artificial domain as blocks world, I have argued (or, more honestly, posited) that
this first condition is a property of the everyday activity of human beings.

Second, dependency records must transfer to a sufficiently broad range of future
situations. This second condition has been the principal focus of the analyses in this
chapter. As we have seen, the results have been equivocal. On one hand, a dependency
record generated in one situation canrtot help but transfer to a broad class of other
situations, for all the reasons discussed in Chapter B2. The exact patterns of transfer
will depend on the kinds of arguments and goals that drive the system and on the
properties of particular domains. Unfortunately, though, the system I have described
does not exhibit nearly enough transfer among situations involving different individuals.
While it may not be clear exactly which analogies the system ought to be exhibiting,
we have seen some clear-cut cases where it fails.

Although I have not dwelt on the point, the system also fails to exhibit another
large and important class of transfer dynamics. Recall that the whole point of the
transfer dynamics is learning. Chapter B2 explained the transfer dynamics using the
slogan that there are fewer reasons than causes. New insights about block-stacking or
cooking or driving depend on fortuitous circumstances, but once one has encapsulated
an insight into a dependency record, it will be available whenever it applies. An insight
might transfer to a different activity or to a different place in subsequent instances
of the same activity. If a system's performance on a task has room for improvement,
the dependencies ought to pick up any insights into the difficulty and transfer them to
the moment when the system can use them to act differently. The running argument
system was only intended as a model of routine activity and was not designed to explain
anything about learning. Still, it will be interesting to analyze why, even though the
dependencies are working as advertised, the system always performs exactly the same
actions no matter how many times it is assigned a given task.

Yet another failure, already noted in the context of the sixth demonstration of this
chapter, is that the system requires too much laborious rule writing for making arbitrary
choices. I changed the meaning of conjunctive goals in order to avoid writing these rules

B5f. Conclusion 165

and I expect that such constrictions would plague a rule-writer in any domain where
the system was not so clearly focused as it is in blocks world.

I see these three problems-failure of transfer by analogy, failure of transfer learning,
and the difficulty of making arbitrary choices-as symptoms of a mistake I made in
building the system. Specifically, something is very wrong about the system's perceptual
apparatus and the way goals are specified. Perception works in this system the way it
works in most Planners. On every cycle the system is given a full specification of the
current world situation in terms of a set of propositions such as:

(on a table)
(on b a)
(left-of b c)
(above hand table)
(touching hand c)
(moving hand left)
(moving c left)

In particular, the system is given a situation (that is, a situation description) in which

all the individuals have names. Now, it is odd to imagine that in real world situations
you could expect your perceptual system to provide all that information. There is going
to be an awful lot of it. All the individuals and their spatial relationships out in the
room in front of me right now adds up to a lot of information. It is odder still that the
situation description contains such constant symbols as A, B, C, HAND, and TABLE.
What perceptual system knows what the objects it senses are called? Yet the input and
output representations of almost all Planning systems have employed such names.

What really needs to be explained is why this practice has never seemed odd. One
big part of the problem, I believe, lies in the pathology of blocks world. The choice
of blocks world has also been standard practice in the Planning literature. A 'goal'
presented to a Planner might read, (put-on B C). One does not present the goal by
aiming a TV camera at some blocks on the table, reaching one's hand into the scene,
pointing, and saying "put this block on that block." As implausible as the (put-on B C)
style of goal-specification might be for much of everyday life, in blocks world it does not
seem so intolerable since children's toy blocks very often have large letters written on
them. The diagrams in this literature depict the blocks in just this way. The block's
name is not drawn outside the block and connected to it with an arrow. Instead, the
diagrams put the name inside the block, as if one could read things' anames off them.
This convention would seem to suppress some hard work.

One might, however, argue as follows. "All of that is someone else's problem. We
are simplifying the problem for ourselves by assuming that we are being given all this
information. We aren't doing perception research, we are doing Planning research."
This line of argument, I believe, is critically misleading. Referring to the objects in
a Planner's input situation through names is a 'simplification' that actually makes
things harder. One symptom of its falsehood is the way that dependencies fail to
make transfers. Dependencies support transfer in a very simple way, whereas many

166 Chapter B5. Experiments with running arguments

other projects have used much more complex machinery, such as pattern matchers and
subgraph isomorphism algorithms, to either actually construct an analogy between two
situations or to abstract away from the individuals of one situation to get a structure
with variables in it which can then be instantiated over future situations.

One approach to a solution is the mechanism of chunking (Rosenbloom 1983) used in
the Soar production-system architecture (Newell, Laird, and Rosenbloom 1986, Laird,
Newell, and Rosenbloom 1987). Chapter C5 will describe the Soar system as a whole,
Chapter CG has compared running arguments to Soar's universal subgoaling, and Chap-
ter 133 has already distinguished the running argument system's rule system from a pro-
duction system, contrasting the so-long-as semantics of Life rules with the imperative
semantics of productions. Chunking is a technique for summarizing the consequences
of a collection of production firings that have collaborated to solve some problem by
locating a successful path through a problem space. The summary takes the form of a
single large production rule, or 'chunk', that collects the productions' initial premises
and asserts their final consequences. Chunking is not intended to enable the system to
solve any new problems, only to save it effort-albeit an often considerable amount of
effort--when it faces similar problems in the future.

Chunking and dependency maintenance are related concepts. The process of build-
ing the chunk is very similar to tracing the dependencies of the productions' conse-
quences. Like dependency maintenance, it is a learning scheme that works in the back-
ground without requiring the agent to deliberately go out and 'learn' things. Similar
transfer effects appear (Laird, Rosenbloom, and Newell 1984). Whereas a simple de-
pendency system such as that of the running argument system need only record the
dependencies in the form of digital circuitry (whether actual or simulated), the chunk-
ing mechanism actually inspects the dependency network, traversing a region of it to
collect its premises. A chunk effectively connects these premises directly to their con-
sequences, skipping the intermediate layers of network structure. A system that relies
on its dependency network to recapitulate old lines of reasoning need not bother short-
circuiting these intermediate layers because the processing in each occurs in parallel
and takes only the time of a gate delay. Chunking is necessary in a production system
architecture because the system must invest a great deal of effort to fire the productions:
matching the patterns, selecting the correct productions, calculating their consequences,
and asserting them. Since the productiors in Soar guide a symbolic search, summarizing
their operation is all the more important since they may have been very numerous and

because many of them may have had no useful consequences as the system explored
false paths in the sear,:h space.

Chun king faces a number of dificulties. One is that it is not always safe to collapse
tli irnternal structure of nonmonotonic reasoning, lest some novel assertion come along
to undo an intermediate deduction. The system must somehow recover flom tile re-
Siltiag ovprgeneralization. A second problem is that the chunks themselves tend to he
quite largo A chunk may summarize dozens of productions into one, but the savings will

niot bh proportional since that :, will be expensive to use (Tambe and Newell 1988).

B5f Conclusion 167

Because it can be computationally complex to match productions with many clauses
against a database, the Soar project is currently exploring schemes for restricting the
expressive power of the production language (especially by requiring that a variable
only appear once in the left hand side of any given production), hoping thereby to
reduce the computational load without crippling programmers (Rosenbloom, personal
communication).

As we will see in future chapters, a cleaner and more elegant solution lies in an
account of representation that is much more suitable for an embodied agent that must
interact with actual concrete materials. Instead of starting from a notion of objective
individuals, it starts from a notion of focus and of the causal relationships between an
agent and objects in its environment. The agent represents the objects not in terms
of their objective identities but in terms of their indexical and functional relationships
to the agent's body and ongoing projects. Such an account of representation has many
virtues compared to conventional objective accounts. For example, it does not involve
variables and is thus far more compatible with simple central system machinery and
with the dependency model of routine evolution.

The notion of focus is critical. The running argument system has no focus. Its
perceptual system delivers it a complete world model, as if its world were actually located
in its own head. Its knowledge about the world is represented completely independently
of its current goals, its current practicalities of perception and motor control, and indeed
even of its existence. So far as the perceptual system is concerned, the system as a whole
is always involved equally with every individual in the world, every property of these
objects, and every relation among them.

This notion of focus offers a resolution to the problem of arbitration. There are
usually many things one could be doing. Often a major reason why you choose one of
them is that it is the first one you laid eyes on. Or perhaps it was the one that was
ready to hand. When it doesn't matter very much what you choose, these arbitration
schemes are as good as any. Usually one needn't even become aware of the existence of
a choice.

The notion of focus also helps in understanding the running arguments system's
failure to alter its behavior through the predicted transfer dynamics. Dependencies
lead to routine evolution because insights about one's activities have fewer reasons
than causes. But the running argument system, courtesy of its always-updated world
model, always automatically knows everything there is to know about its world. It
can't discover very much because the only new facts to discover are quite complex. The
system's failure to evolve, of course, has other causes as well. For example, it doesn't
support any sort of statistical induction.

Blocks world also tends to reinforce mistaken views of representation insofar as all
blocks look alike. The blocks on a blocks-world table, unlike the tools and materi-
als of most concrete activities, don't lend themselves to readily perceptible functional
distinctions. A spatula plainly affords pancake-flipping, a hammer plainly affords nail-
pounding, and your band plainly affords all manner of things once it is suitably cupped

168 Chapter B5. Experiments with running arguments

or flattened or clenched. Each of them carries more than enough information on it

to deduce its relevance to your current activity. Blocks-world blocks, by contrast, are

simple bleak squares with letters in them. All blocks look alike, regardless of their
functional roles. Blocks certainly afford grabbing and stacking. But if someone says
"please stack block A on block B," then nothing about either block will signal its role

as the-block-to-stack or the-block-to-stack-it-onto. Lacking meaningful cues, one has no
choice but to memorize arbitrary names.

There is a valuable lesson here. The domains chosen by Al researchers are often

symptoms of the shortcomings of their technology. They choose the domain that makes
their technology look the most obvious. This need not reflect bad faith; the people who

introduced blocks world into Planning research did so because it was a simple place

to demonstrate some complex forms of reasoning about subtask ordering. Once blocks
world was written into textbooks and taught to students, many of its assumptions, such

as the availability of a world model in which objects are automaticaily labeled with
their names, became invisible. It is valuable to critically 'read' a domain and ask what

biases it has and how it is atypical of human activities. It helps to go experience the

domain yourself and compare it to the task being posed to programs. All too often
you'll find that the difficult technical aspect of a program results from a failure of the
program's task to correspond to any real task. I interpret the technical complexities of

pattern matching and subgraph isomorphism detection as symptoms of ways in which

domains have been accidentally falsified. Perhaps the skill of making and testing such

interpretations can help get at the essence of activity in the world.

Part C

Deictic representation

169

Chapter C1

Context and summary

deic-tic \'dik-tik, 'dik-; d•-'ik-\ adj [Gk deiktikos, fr. deiktos, verbal of
deiknynai to show] : showing or pointing out directly (the words this, that,
and those have a - function)

Webster's New Collegiate Dictionary, eighth edition.

In its search for interactionist alternatives to the mentalist concept of planning,
Part B has introduced and demonstrated the concept of running arguments. Running
arguments shift the emphasis in computational theories of action from anticipation
through plan-construction to improvisation through a continual redecision about what
to do now. Instead of relying on difficult hypothetical calculations involving world
models and simulation, a running argument relies on all the information and resources
available to an agent as it is actually at work in the world. While improvisation does
not rule out trying to anticipate the future, it may relieve the need for cumbersome
machinery for this purpose. We cannot know such things for certain so long aq we lack
a thorough dynamic analysis of such matters as mistakes, trouble, transfer, and cultural
support for learning and action. Nonetheless, arguments from informal observation,
computational experiments, and first principles have offered important guidance.

Experiments with running arguments, though, have found them hampered by an
inappropriately mentalist theory of representation. Analysis of these experiments pro-
visionally ascribed the difficulty to its use of constant symbols to name objects and the
resulting overhead of using variables to represent information abstractly and allow it to
transfer to a sufficiently wide variety of other situations. The principal work of Part C is
to introduce a new, interactionist theory of representation called deictic representation.
Not only does deictic representation fit better with an improvisational theory of action
than objective representation, it is also compatible with much simpler machinery. This
is a subtle fact, though, and we must approach it with some care.

Insofar as issues of representation are close to the heart of human existence, replacing
one's theory of representation is like replacing one's heart. Representational theories,
like hearts, are connected to a great many other things, and all of these connections

171

172 Chapter C1. Context and summary

require careful attention. Chapter C2 takes up a series of such questions from the
standpoint of the principle of machinery parsimony. What technical difficulties arise
if we adopt a policy, such as that preached by the connectionists, of sticking with
simple machinery and inventing new concepts rather than proliferating complicated
machinery to implement old concepts? Starting from my thesis that the proper design
of machinery begins with careful analysis of dynamics, Chapter C2 demonstrates how
poorly the concepts of control, datastructures, and variables fare when we insist on
starting with parsimonious theories of machinery. The tension between conventional
technical ideas and simple machinery, though, is not cause for alarm. Instead, it provides
a long-overdue occasion for reopening the questions which the conventional ideas were
supposed to answer. In each case, new interactionist ideas, many of them admittedly
poorly worked out as yet, offer promising alternatives to the conventional ideas.

Once Chapter C2 has cleared some conceptual ground, Chapter C3 introduces the
notion of deictic representation. Whereas an objective representation scheme posits
structures that resemble things in the outside world, a deictic representation scheme
posits recurring forms of causal connection between an agent and entities in its sur-
roundings. A typical entity might be the-car-I-am-passing. An agent will interact
with the-car-I-am-passing by registering aspects of it such as the-car-I-am-passing-is-
signalling-a-turn and basing its decisions about action on their current values.

Deictic representation resolves most of the difficulties I reported in Chapter B5 con-
cerning my experience with the running argument system. A system employing deictic
representation can be built with simple machinery because it can achieve abstraction
without recourse to pattern matching and variable binding. Instead, deictic represen-
tation leads to passive abstraction. A deictic representation scheme represents objects
in terms of their relationship to the agent and their role in the agent's projects, not in
terms of their objective identity. As a consequence, a deictic representation will apply

equally well to any objects that play the same role in the agent's current activities
without requiring the agent to form an explicit generalization of it.

Chapter C3 then demonstrates deictic representation in the context of a computer
program called Pengi that plays, in simulation, a video game called Pengo. Pengi's
architecture consists of a moderately realistic visual system and a central system made
of simple digital logic. Pengi's architecture can be simple because it is informed by an
understanding of the dynamics of routine activity in general and video game playing
in particular. In particular, Pengi's operation, unlike that of a conventional Planning
system, involves a constant and very tight interaction between its visual system and
central system, and between the agent as a whole and its environment.

Chapter C4 describes Pengi in detail. Most of this description concerns Pengi's
visual system. Chapter A3 has already mentioned the central idea of this visual system,
an idea resembling Ullman's notion of visual routines. Because Pengi depends so heavily
on vision and because a Pengo screen is such a visually busy place, the details of the
particular visual operators are heavily constrained. (Most likely they are too heavily
constrained, given that playing video games seems to require greater skill in the hurried

173

use of one's visual system than just about any other common activity.)
Pengo bears only a glancing resemblance to any activity in the physical world. I do

not mean to suggest that Pengi's ability to play Pengo proves anything about other ac-
tivities. Pengi merely illustrates a number of principles-machinery parsimony, running
arguments, deictic representation, visual routines, simple central system machinery, and
so forth-that I originally arrived at through my studies of everyday activities and my
experiences with the running argument system, long before Chapman suggested the
video-game domain and began building Pengi. (Although the program is our joint work
and principally Chapman's, the description and interpretations of it in Chapters C3 and
C4 are my own responsibility.)

In building Pengi, we did not attempt attempt to model the transfer dynamics or
any other learning phenomena. The dynamics of learning to play Pengo are still obscure
to us, more so than those of most everyday activities. Future work probably should not
investigate learning in Pengo. Instead it should concentrate on activities like making
breakfast and driving to work. Any understanding that results should be illustrated in
some more appropriate domain.

Pengi invites comparison to several existing projects. These include the classical
Planning literature, a number of extended Planning schemes, the various architectures
based on production systems including ACT* and SOAR, situated automata, and the
MIT mobile robots. Chapter C5 discusses these projects in turn. Although many
specific issues arise, a few themes predominate. One of them is the necessity of basing
any theory of action on an account of the dynamics of whatever form of activity one
seeks to explain. This is not to claim that I have a complete theory of activity, only that
serious traps await anyone who doesn't at least try to make one. A second recurring
theme is that a theory of cognition or of knowledge is not a theory of action. Focusing
on action rather than on putatively mental operations drags an agent's involvement in
the outside world to center stage where it belongs.

Chapter C6 concludes the report by telling some long stories to illustrate in detail
the place of deictic representation in everyday life as a whole. All of these stories
take place in an office and a laboratory at the Robotics Laboratory of the University
of Oxford. They describe some of the ways in which these workspaces organized my
activities within them aitd served as a background for my experience of those activities.

Some advice for the reader.
Chapter C2 consists of extended conceptual discussions that will not be to everyone's

taste. It can be safely skipped on a first reading. Still, it is easy to underestimate the
importance of digging up the assumptions and prejudices behind conventional computa-
tional ideas. A proper revision of computational theory from mentalist to interactionist
premises requires some such conceptual exhumation sooner or later.

Chapter C3 is an approximately self-contained introduction to deictic representation
and overview of Pengi. It concludes by answering a long list of objections that Pengi and

174 Chapter C1. Context and summary

the larger project of which it is a part have routinely provoked in my presentations to
technical audiences. Everyone should read this entire chapter their first time through.

Chapter C4 is a detailed, relatively formal description of Pengi and its workings. It
describes Pengi's visual system at some length and explains how we went about wiring
its central system circuitry. Aside from the material in Chapter C3, the only background
it requires is some exposure to the logic design methods used in conventional computer
architectures.

Chapter C6 tells stories. Since most of the stories' points correspond to nothing I
have implemented, one might consider it a 'Future Work' chapter. Because of the scope
and difficulty of its ideas, this chapter is much more careful in presenting its narrations
than previous chapters have been. Even so, readers with a background in Continental
philosophy or sociology will find that the theoretical apparatus has been considerably
watered down for a technical audience.

Chapter C2

On connectionism

C2a Context and summary

After a long struggle, one day I had to admit that the ideas in Part B made me a connec-
tionist. A connectionist is a computational psychologist who works from the hypothesis
that the machinery in our heads is a connection network, that is, a large collection of
simple, uniform 'nodes' interacting through a fixed arrangement of 'connections'. This
is quite a drastic assumption, given that Al programming has heretofore made heavy
use of transient, easily reconfigurable networks of datastructures joined by pointers. For
many, connection networks are appealing because they seem 'brain-like'. For me though,
connection networks are merely a logical starting place. Parsimony suggests exhausting
the dynamic possibilities of simple machinery before positing anything more sophisti-
cated. What sorts of dynamics do agents with connectionist machinery get themselves
into?

Unfortunately, this is a hard question to answer because our ways of thinking about
computation are shot through with unarticulated assumptions from conventional hard-
ware and software practice. Previous chapters have begun the project of critically
re-examining conventional ideas about computation. This chapter carries on, using the
difficulty of reconstructing conventional methods in connection networks to help focus
the search for alternative methods. Section C2b expands on this strategy by considering
the slogan of 'software', through which computational practice has become increasingly
'abstracted' (i.e., detached) from the 'details' (i.e., the fundamental nature) of the
physical realization of its computations. Subsequent sections consider particular issues:

Section C2c concerns the notion of 'control' as a metaphor for the organization of a
computation. Both 'control' and the related metaphor of 'search' originate in a version
of Al whose prototype of human activity is detached cogitation about abstract puzzles.
The combinatorial arbitrariness over which puzzle-solving algorithms must struggle to
maintain control is almost entirely absent from concrete activity. This, together with
our partial understanding of the dynamics of concrete activity, makes it plausible to
excuse the difficulty of building search spaces in connection networks.

175

176 Chapter C2. On connectionism

Section C2d concerns the notion of 'datastructures' as an account of activity in-
volving structured entities like sentences, plans, and lists. Datastructures are hard to
implement in connection networks because pointers let one connect anything to any-
thing else at any time. I argue that this flexibility is excessive. Also plausible is an
alternative (though still sketchy) account that emphasizes so-called 'internal language'
and interactions with structured physical artifacts like signs, instructions, and shopping
lists.

Section C2e concerns the notion of 'variables' as an account of agents' abilities to
abstract their knowledge away from particular circumstances. There is a metaphorical
tension between the notion of 'variable binding' and the fixed configuration of connec-
tion networks. And indeed, variable binding has proven cumbersome to implement in
connection networks, even in restricted cases. The problem originates in a mistaken on-
tology. Most existing semantic theories, for example the usual model theory of first-order
logic, posit a relationship of 'reference' between constant symbols in a representation
and objectively individuated objects in the world (or the model). This section discusses
some of the difficulties with this account; Chapter C3 presents an alternative account
based on 'aspects' of indexically and functionally individuated 'entities'. Aspects are
compatible with a wide range of connectionist proposals, including accounts that (unlike
my own) take some position about the nature of state.

A central, recurring theme of this chapter concerns the temporality implicit in models
of computation. An agent's machinery, I have been suggesting, is principally oriented
toward its continual interaction with the world. If so, one must evaluate a theory of
machinery according to a model of computation whose notion of time is the real time
of the agent's concrete activity. Models of computation have rarely had much to do
with the outside world, but ideas about programming have moved steadily even further
away from this ideal, to the point of celebrating models (like logic programming and
functional programming) that have no temporality at all. A connection network can
operate in its owner's 'real time', provided it has a continual causal connection to its
owner's world.

C2b Connectionism reminds us of what's important

Why can't our computers figure out for themselves what to do? This chapter considers
two answers to this question. One answer, as Chapter B4 began explaining, is that
computers haven't been allowed to participate in concrete situations in the world. They
haven't got anything interesting to do. This chapter begins explaining a second, closely
related answer. 'Software engineering' has been overwhelmingly preoccupied with get-
ting systems to work at all. This is perfectly understandable. But it has meant that
computer technology has consistently suppressed most of the constraints inherent in a
device's physical realization. This trend is most obvious in the predominance of serial
computers. Seriality simplifies programming at the expense of an extremely unnatural
physical realization.

C2b. Connectionism reminds us of what's important 177

The notion of software also tends to suppress issues of physical realization. The
purpose of a programming language, it is often said, is to 'abstract away from the details
of the hardware' by affording the programmer the illusion of working on a simplified
'virtual machine'. This 'abstraction' is often extreme, letting programmers make ready
use of such facilities as recursion, backtracking, symbolic programming, dynamic storage
allocation, and virtual memory. While extraordinarily flexible, these capabilities have
a price. Both linguistic abstractions and serial computer architectures themselves tend
to obscure just how much overhead they involve. While we have many ways of talking
about their 'power', we have few ways of talking about their cost. As evidence for
the view that this 'power' is illusory, I submit that large Al systems that 'exploit' it
are so drastically underconstrained that they regularly get lost in a 'search space' of
indistinguishable options. The task of keeping the space of options from getting out
of hand is often reified as the 'control problem'. This 'problem' is just as hard as the
entire 'AI problem' and much harder to think about. As Section C2c suggests, 'control'
should be understood as a symptom, not a research project in itself.

Two schools of Al research have given a central place to issues of physical real-
ization. One is Minsky's remarkable 'Society of Mind' project (1986). The other is a
confederation of researchers calling themselves 'connectionists' (Feldman and Ballard
1982, Feldman 1985, Hinton 1981, McClelland and Rumelhart 1981, Rumelhart, Hin-
ton, and Williams 1986, et al). The connectionist movement is united by an admirable
but troublingly vague desire to make 'neurophysiologically plausible' theories of cogni-
tive machinery. Connectionists intend their models to be as easily physically realized
as possible. These models involve large numbers of simple, uniform 'nodes' interacting
through a fixed arrangement of 'connections'. Such a 'connection network' can be drawn
as a graph. Ongoing debates concern whether the graph is directed, how many kinds of
nodes there are, how network behaves over time, and so forth.

What's really staggering is the amount of conventional 'programming technology'
that has no practical analog in connectionist systems. Section C2d will consider the
matter of pointers and datastructures. Despite some heroic attempts (e.g., Hinton and
Touretzky 1985, Touretzky 1986), it seems impractical to use the static connectivity
of a connection network to provide the dynamic reconfigurability required by symbolic
programming as currently understood. Section C2e will consider the more subtle mat-
ter of variables and constants. The possibility of binding any of several variables to
any of several values would seem to require hardware proportional to the number of
possible bindings. In each case, it seems to require considerable overhead to implement
conventional methods in connection networks. I can think of several possible responses
to this situation.

* One might use these prospective difficulties to justify dismissing connectionism as
an arbitrary and unmotivated constraint.

* One might be indifferent to connectionist research, considering that it operates at
'too low a level of abstraction'. On this view, connectionism might be a harmless

178 Chapter C2. On connectionism

pastime, but at best it can only reconstruct what we otherwise know at more

appropriate levels. I will argue that this attitude-exhibited to a remarkable
degree by some connectionists-is hubris.

" One might wait for unforeseen practical techniques for implementing analogs of
conventional programming technology in connection networks. These techniques
would certainly be an important discovery, but I will argue that we probably
wouldn't want them anyway.

" One might decide that all the overhead is worth paying. Having decided this, one
might develop a connectionist technology based on standardized building blocks
and higher levels of abstraction. It's at least plausible. If a million connections
don't sound like much to you then it's a live option, though some care will be
required to achieve acceptable rates of convergence.

" One might look for alternatives to pointers, datasiructures, variables, and con-
stants that one can implement in a natural manner in small numbers of connec-
tions. This is the approach of this chapter. I will present such alternatives and
survey their consequences and limitations.

It is certainly too early to choose among these alternatives. Clearly, though, embracing
connectionism entails a lot of work. For many, a choice among these alternatives will

depend on intuitions about whether all the effort will be well spent. One might well ask,
isn't it backwards to let decisions about machinery drive research? And why exactly

connectionist machinery? In designing connection networks, isn't one just wandering
in mechanism space? Even if the models can be made to do something, what will
be learned? Everyone needs answers to these questions. I have two. One is that

the constraints of connectionism, by forcing attention to issues of physical realization,
encourage a useful conceptual housecleaning. When long-accepted ways of defining
AI's research tasks lead to unappealing technical aporia, one is encouraged to reopen
old questions. Why did we want our agents to have pointers? And why variables?
And why control structures? In retrospect, many traditional ideas will seem to depend
on accidents of technological history, such as the serial operation and primitive 'I/O'
facilities of early computers. Using accidents to define the terms of research, while
perhaps inevitable and understandable as a historical matter, is nonetheless asking for

trouble. It is too easy to treat the symptoms of such a mistake as natural and necessary,
as topics of research in themselves. An artificially constrained new beginning can focus
the project of exposing these accidents as accidents. The slogan is,

Connectionism doesn't cause problems, it reminds us of them.

A second answer is that concern with machinery is only an invitation to wander in
mechanism space, not an order. What we'd like is some principled account of what con-
nectionist machinery is and isn't 'good at'. The last way to achieve this is to consider a

C2c. Beyond 'control' 179

connection network in isolation, like a kitty-cat with electrodes stuck in its head. Well
before this detailed stage we should ask basic questions about machinery and dynam-
ics. What are the dynamics of everyday activity and how appropriate is connectionist
machinery for an agent whose life is organized that way? By frustrating the habit
of throwing sophisticated machinery at every new problem, connectionism compels us
to move the focus of our research from detached cognition to situated activity, from
internal mental processes to the dynamics of an agent's interaction with the world.
Critically, the resulting insights are largely independent of the particular constraints of
connectionism.

C2c Beyond 'control'

Though I don't recall ever seeing it written, I have often heard it said that "all interesting
AI problems are intractable." I can only hope thiF is intended in the technical, capital-
letters sense. When a Problem is intractable, the best possible algorithm typically takes
the form of a nondeterministic 'search' through the whole space of possible solutions.
Many early AI people appear to have been happy to resign themselves to this sort of
algorithm. Since any Problem can be formalized in this way, 'search' seemed like a
powerful unifying theme. Artificial Intelligence would be achieved as soon as someone
resolved the detail of how to 'control' this search. As a side-effect of this enthusiasm,
within the Al community the word 'search' quickly came to name a mental process
rather than an activity in the world.

It is only a mild exaggeration to categorize present-day Al schools as deriving from
the history of various reactions to the difficulties of search control.

" Some consider search control a problem for someone else, or for the future. These
people are happy to make 'competence theories', especially in first-order logic and
its modal extensions, without any concern for whether they could ever be tractably
used.

"* Some investigate the properties of fixed search-control policies. This approach,
though far from extinct, is not currently ascendant.

" Some observe that little or no search is required if one chooses the right representa-
tion and pose AI as the science of good representation. Since good representations
are domain-specific, this sort of research tends to focus on individual problems and
postpone research on AI as a general matter.

" Some observe that little or no search is required if one has enough 'knowledge' and
pose AI as the accumulation of knowledge. This attitude characterizes 'expert
systems' research. It works to exactly the extent to which you can assimilate
everything to 'knowledge'.

180 Chapter C2. On connectionism

* Some focus on the widespread observation that 'search control' is every bit as hard
as Al in general. This suggests applying the whole range of AI methods at the
,meta level', so they set off to investigate 'meta-level architectures'.

Many schools take elements from more than one of these responses. All five have had
their day at CMU, where the slogan of 'search' is most prevalent. All five have their bit of
truth. My purpose here is neither to attack them nor to choose among them. Instead, let
us consider the metaphorical presuppositions behind 'search' and, in particular, behind
'control'. The issue is topical because facilities for building and exploring descriptions of
search spaces are singularly difficult to implement in connection networks. Does search
make a useful central concept for understanding everyday routine activity? I contena
not.

What is the word 'search' telling us? In a 'search' one is looking around in some
territory, oftcn known as a 'space', for some object, starting at a definite location.
The searcher might keep some map of where it has been, but it only knows about
the regions it hasn't visited in the most general terms. A search conducted by an
algorithm in an abstract space is different from a search conducted by an agent in the
physical world. Abstract search spaces are strange places with little sense of temporality,
continuity, or familiarity. Abstract searchers typically don't pay any price to travel long
distances in the known regions of the search space. A search algorithm rarely has any
business in its space except finding its object; the space doesn't change and the object
doesn't move. Most importantly, though, abstract searches typically take place in vast
or infinite territories. Only rarely is a search space entirely laid out in a machine.
Instead, descriptions of the locations, called nodes, are built as they are needed. It is
this building that is difficult to implement in a connection network.

A search algorithm has two modules. One module incrementally builds the space
by 'opening' a node; the other 'controls' the search by deciding which nodes to open.
Speaking of a search 'algorithm' emphasizes the seriality of the search metaphor: you
can only look one place at a time. A further system of metaphors addresses this mod-
ularity. A 'control scheme' must take immense care because, in most search spaces,
an exponential amount of territory unfolds with growing distance of the starting point.
Careless searching results in an 'exponential explosion'; one imagines the control scheme
working to keep this ever-incipient explosion 'under control'.

A search process is like a nuclear power plant, where 'control rods' govern an inher-
ently exponential process so as to avoid an explosion. Each case involves an intervention
from outside an existing process that regulates its level of activity. But there is a critical
diff,,rence between the two cases. Whereas a nuclear plant only cares about the amount
of activity, a search algorithm also cares about which activity is permitted. A control
scheme needs foresight; it has to be ruthlessly selective about which directions to search
without knowing where the object is. It has always been extremely difficult to reconcile
these conflicting demands. Parallel search methods can hell), but the constant factor
they can provide is nothing in the face of an exponential explosion.

The metaphors of Al's search methods are mentalistic. Search happens inside the

C2c. Beyond 'control' 181

computer or inside the head. Meanwhile, what's happening in the world outside? S'arch
methods have generally been applied to difficult, abstract intellectual tasks which let
us imagine the world waiting patiently for an answer. They have not often been ap-
plied to more participatory activities in which the temporality of the agent's being is
stereotypically at issue. As a consequence, the temporality of a search process is oddly
formless. It doesn't matter in which order the agent opens the nodes, nor how many
it opens at once, nor (within some large factor) how many it opens in total. And this
formlessness runs deeper. The explosion of a search process is most often identified as a
'combinatorial' explosion. This means that, at every step, the control scheme faces a set
of formally indistinguishable options with little benefit of experience and no recourse to
the world outside. When combinatorial searches can be controlled, it is because these
arbitrary choices can be constrained using information about the domain or about uhe
specific situation occasioning the search.

It has seemed natural to apply search methods to difficult, abstract intellectual
tasks, for two reasons. First, these tasks are stereotypically non-routine. By putting
a premium on novel thinking, they justify metaphors of exploration and construction.
Second, these tasks are stereotypically non-concrete. By putting a premium on detached
cogitation, they justify metaphors of autotelic processes unconnected with the world
outside. In each case I say 'stereotypically' because these are idealizations. In real
life, much is routine in, say, an experienced engineer's problem-solving. Likewise, most
people who prove theorems and solve puzzles do so on scratch paper, often interacting
v.ith the paper in sophisticated ways. Nonetheless. the temporal formlessness of abstract
search processes makes them so open-endedly Protean that it almost impossible to argue
against them. But why start out by studying difficult, unnatural, and culturally specific
activities? If someone tries applying some method to such an activity and never quite
succeeds, little has been learned.

Concrete activity can be difficult, but it certainly does not share the temporal form-
lessness of abstract search. The temporal organization of concrete activity is highly
constrained by the practicalities of an agent's interaction with its workplaces, mate-
rials, and equipment. This constraint, the inherent orderlinets of concrete activity, is
certainly not complete. But it is so extensive that it challenges the whole metaphor of
'control'.

What is the word 'control' telling us? The metaphorical likeness between abstract
search and a nuclear plant has already suggested one element: control stands outside a
process and attempts to limit it. The word 'control' entered English from the French
phrase contre-ri1e, literally counter-ledger, whicih referred to a feu-' I practice of mon-
itoring the fiscal affairs of an estate through a second, duplicate ledger. In general,
control connotes an oversight so close as to bh unnatural. To speak of something as
'under control' is equally to invoke a latent potential for getting 'out of control'. The
extensive black markets and large underground cultures of Communist cour - peak of
the illusory nature of total political control. People who are 'controlling' oi controlled'
are artificially rigid in their dealings with others or with themselves, presumably be-

182 Chapter C2. On connectionism

cause they feel they have to he. The coiled spring one must control is an aberration in
the first place.

This analysis suggests a diagnosis of search-control disorders. Few search methods
have been informed by the orderliness of routine activity, whether by continually looking
to the world for guidance or by learning from long incremental experience (Soar is an
exception). Instead they have relied on control schemes that attempt to reproduce this
orderliness through artificially explicit, centrally applied policies. But life is not like
this. Your life is 'under control' not through any artificial 'self-cointrol' but because you
have found a way of smoothly participating in the network of criss-crossing dynamic
patterns that make up everyday life. An important question for dynamic theory is, how
it is that most people can feel more or less comfortably involved in the dynamics of
everyday life?

These considerations offer a new perspective on the nature of parallelism in ma-
chinery. We saw that the mentalist solipsism of abstract search produces a formless,
uncontrollable proliferation. More generally, mentalist metaphors drastically undercon-
strain our attempts to choose among different styles of parallelism. If a computation
is metaphorically disconnected from any 'real time', all temporal organization is a mis-
fortune to be dismissed as a variety of archaic seriality. If all forms of parallelism are
equally desihable, a process is judged solely on how close it comes to finishing in unit
time. If there are activities for which the temporality of the outside world is truly su-
perfluous, then this makes sense. But everyday routine activity is not like this. Once we
recognize that our continual decisions about action must take continual account of the
outside world, we can focus the question: what sort of parallel machinery best supports
this moment-to-moment assessment and decision?

Obviously this is a big question. But, just as obviously, a connection network has this
much to recommend it: when changes in the world cause its inputs to change, it devotes
massive paralle.sm to adjusting to the new information. The new information might be
significant in millions of different ways, and the network checks every possibility at once.

We have already seen many manifestations of Zhis sort of noticing; we will see many
more. Indeed, without some sophistication, connection networks are too responsive
to their inputs. Future work on connection networks must determine what provisions
t(, make for maintaining state that is neither directly wired into the connections nor
directly available from the periphery or the world.

(For further discussion of the relationship between connectionism and the dynamics
of serial order in organized activity see Jordan 1986 and Jordan and Rosenbaum 1988.)

C2d Beyond datastructures

"T he history of programming is largely the history of .he index register. Using index
registers. language designers have gradually pulled loose from the constraints of fixed
address assignment by devising ever more extensive standardized schemes of indirect
rf,,roerce. The resulting abstractions have grown steadily more extreme, but my argu-

C2d. Beyond datastructures 183

ment centers on two innovations of the late 1950s, stack frames and pointers. The next
section concerns the consequences of the generalization of variable semantics permitted
by stack frames; both Algol and Lisp use stack frames to determine the reference of
local variables relative to a particular call on a procedure, even if several calls are active
at once. This section concerns pointers, datastructures, and dynamic storage alloca-
tion. A pointer to an object in memory is simply a binary representation of the object's
address. A process can gain access to an abject by obtaining a pointer to it. Most
commonly these objects are datastructures. (To simplify discussion, I will restrict the
term 'datastructure' to mean a dynamically allocated record structure that processes
can inspect and modify through a pointer.) Large Al systems are usually made mostly
or entirely of datastructures.

Given the prevalence of datastructures in AI models, it is tempting to ask whether
people have datastructures in their heads. The question is made topical by the severe
tension between the transience and reconfigurability of datastructures tnd the static
configurations of connection networks (Fodor and Pylyshyn 1988). Connectionist im-
plementation of datastructures-at least in general, at least in any obvious way-has
proven extremely difficult. On reflection, though, the question isn't very useful. Few Al
models insist on being implemented with datastructures. Instead, they insist only on
an abstract specification, sometimes called a 'competence model' or a 'computational
theory'. Even when a model provides for structured entities like parse trees or plans,
pointers and datastructures are merely implementation details. Or so it is held. Since
nobody seriously believes that human memory has numerical 'addresses' with which to
implement pointers, we need to consider the notion of structuredness more abstractly.

One of the principal origins of the modern-day psychology's notion of structure is
Chomsky's notion of generative grammar (1965). Indeed, computational ideas of struc-
ture still closely mirror the context-free grammars of the simplest generative linguistic
theories. A context-free grammar might specify

S -N P VP

meaning that a sentence is a noun phrase followed by a verb phrase-and that any noun
phrase and any verb phrase can be juxtaposed to produce a grammatical sentence. A
sentence is still a string of words, but only on the surface; each sentence has a recursively
composite 'phrase structure', often drawn as a tree with an S at the top and individual
words at the terminals. Programmers use different metaphors. Instances of S, NP,
and VP might be c-lled 'objects'; an S might be said to 'contain' an NP and a VP, or
alternatively to 'point at' them.

For Chomsky, faced with the intellectual desert of behaviorist linguistics, ideas of
structure were profoundly significant because of their generativity. If behaviorism spoke
of a fixed repertoire of 'verbal behaviors', according to Chomsky a proper grammar per-
mits the construction of all the grammatical sentences of a language. In doing so, the
grammar "makes infinite use of finite means" (1965 p. v, quoting Humboldt). Chomsky
starts from an assumption that syntax is 'autonomous', meaning that one cali specify in

184 Chapter C2. On connectionism

wholly syntactic terms the competence speakers need to relate the 'surface' and 'deep'
forms of a sentence, whether to produce a sentence or to parse it. Chomsky professes
agnosticism about whether these phrase structures correspond to datastructures in hu-
man heads. Still, it is undeniably attractive to interpret the observation that people
can act in novel ways and invent novel ideas in terms of newly geaerated structures.
This intuition suggests structured conceptions of Al ideas like plans and knowledge
representations.

A second virtue of structures is reconfigurability. Chomsky observes that his tree-
shaped phrase structures permit relatively accurate accounts of the forming of questions,
at least compared to completely unstructured models. When "he ate a crayon" becomes
"what did he eat?," Chomsky sees a structural transformation from the former sentence's
phrase structure to the latter's. Al models, too, continually posit processes that modify
structures, either by rearranging their elements or by replacing existing elements with
new ones.

A third virtue of structures might be called inspectability. Structures encourage
visual metaphors: a process using a structure is often said to be looking at it. This
metaphor describes a radical separation between structures and processes: structures are
passive and processes are active. Any process can look anywhere in any structure it likes.
The issue of inspectability has already arisen in Chapter B2's discussion of dependencies:
methods such as dependency-directed backtracking must inspect dependency networks,
but the use of dependencies to recapitulate old lines of reasoning can be implemented
using uninspectable combinational logic.

There is no denying the place of structure in our computational theories of psychol-
ogy. And pointers provide one simple, clean way of implementing generative, reconfig-
urable, inspectable structures. But pointers also require machinery more sophisticated
than connection networks. The critical question here is, when must we interpret struc-
ture in terms of something like pointers? The differences between Chomsky's and Al's
structures help focus the issue. Putatively universal properties of human language
strongly constrain all three aspects of linguistic structures. Early Chomskyan gram-
mars, like the type systems of all conventional programming languages, could generate
any recursively enumerable language. The generative power of more recent grammars,
though, has been much more precisely circumscribed A' a result, and because linguistic
structures need only be manipulated by a fixed collection of mechanisms, computational
linguists can now build plausible parsers using relatively simple machinery. These re-
sults do not depend on Chomsky's particular formulations, nor do they require syntactic
processing to be subserved by a dedicated peripheral module. One can exploit the nat-
ural temporality of language by working left to right through the sentence (cf. Marcus
1980), or spread the parsing task among the machinery implementing the lexicon en-
tries (cf. (Small 1981) and (Small, Cottrell, and Shastri 1982), see also Berwick's (1983)
commentary on Small et al).

Syntax can afford the constraint necessary to simplify its machinery, but how about
Planning? The question has rarely been asked because Al's 'symbolic programming' has

C2d. Beyond datastructures 185

always taken full advantage of the 'power' of unconstrained generativity. For symbolic
programming, structures are passive and wholly inspectable. Anything can be connected
to anything else at any time. Generality always has a price, and the general use of
pointers in symbolic programming is no exception. But serial computers conspire with
the metaphors of structure to hide this price. The von Neumann bottleneck permits a
process to follow only one pointer at a time and reinforces the centralized, homuncular
imagery of 'looking at' a structure. It's certainly possible to permit many processes
to inspect many structures by building generalized switching networks, but it's also
inordinately clumsy. This clumsiness is not a natural, normal research topic, it is a
symptom.

An interactionist alternative to pointers and datastructures begins with the hope
that language-use requires only relatively simple machinery. This alternative account
of structure (already stated in a different, partially interactionist, form by Rumelhart,
Smolensky, McClelland, and Hinton 1986) has four parts:

1. Structure-use is exceptional. For most purposes, activity is subserved by inter-
actions among a connection network, some peripheral machinery, the body as a
whole, and the outside world. In particular, plan-use is only an occasional sup-
plement to the prior dynamics of moment-to-moment improvisation.

2. It is best not to think of 'structures' as a formal calculus of things-in-the-head
at all. The prototypical structures are structured artifacts like riaps, sLopping
lists, signs posted over supermarket aisles, instructions on cake mix boxes, spoken
advice about testing batter, and so forth. Interactions with structured artifacts
have their own complex dynamics.

3. Many cognitive skills develop in the course of interactions with structured arti-
facts. This process, often misleadingly called 'internalization', proceels through
a disparate collection of dynamics that gradually replace the presence of the ar-
tifacts. Their effects are haphazard and incomplete, and they generalize poorly.
Above all, they rarely work by, in any sense, reproducing the structure in your
head. For example, you may not need to consult a recipe once you've followed it
two dozen times, but even then you'd have little chance of reproducing it verbatim
(cf. Hutchins 1987). In general, it is extremely difficult to remember structured
information by rote.

4. The principal exception is so-called 'internal speech', the capacity for which ap-
pears to arise through a complex 'internalization' of hearing oneself speak. Internal
speech is unlikely to be subserved by datastructures because it is (or at least, seems
to be) time-extended in the same way as ordinary speech. It is also highly ellip-
tical and indexical in the same way as children's egocentric speech (cf Vygotsky
1978) and adult conversations (cf. Sacks, Schegloff, and Jefferson 1978).

5. Even our interactions with external structured representations are time-extended

186 Chapter C2. On connectionism

processes. Arraying structures in time rather than space is more compatible with
simple machinery (cf. Elman 1988).

The mentalistic connotations of the phrases 'internalization' and 'internal speech' are

a shame. Speech is the very clearest case of an activity that is indifferent to inside-

outside boundaries. Even when it is formal or asymmetric, a dialog smoothly merges

two 'internal' monologues.

C2e Beyond variables and constants

An account of abstraction must explain how an agent might transfer the lessons of an

episode on Monday to a new situation on Tuesday. By far the most widespread account

involves variables and constants. Monday's objects are named by constants; the agent

abstracts by replacing these constants with variabies. The resulting abstract structures

embody Monday's lessons independently of Monday's particular objects. On Tuesday,
the agent replaces the variables with constants naming the new objects.

How might variables be implemented in connection networks? In the simple case
where variables and their values are localized in the network, some sort of crossbar

must join the variables to their possible values (McClelland 1984, Blelloch 1986). Or

one might allocate a separate node for every possible variable-value pair and force

them to exclude one another by using some method like a 'winner take all' network.
With a small number of values this is acceptable; with a large or infinite number it

isn't. Unfortunately, many ranges are infinite, such as the names of possible objects
or people. Algol- and Lisp-style variables are especially difficult because connection
networks have no way of generating fresh copies of a structure on demand. Alternatives
implementations have been scarce. Distributed representation (Hinton, McClelland, and
Rumelhart iý'3) can save a small constant factor at the price of some unreliability in
the form of 'crosstalk' errors (Feldman 1986, Willshaw 1981). (See also Blelloch 1986,

Chapman 1988.)
What is the problem? Let us consider first-order universal quantification as an

account of abstraction. A universally quantified formula states that some predicate
must hold true of every individual in any model of the theory. A theory can name
individuals using a constant symbol; each constant symbol will refer to some individual

in any model. To generalize some insight from Monday's activity, then, one replaces the
constant symbols naming Monday's objects with universally quantified variables. To
transfer this insight to Tuesday, one instantiates the quantified formula over symbols

naming Tuesday's objects.
There is no way to enumerate the variations of this story. Can your kitchen be a

model? Or is a model a mathematical object? If so, what is the relationship between

a kitchen-model and a real kitchen? In any case, the picture has three players: a
variable, which might be instantiated with some constants, which refer to individuals in

the world. This is the classical account of representation. Almost all Al representation

C2e. Beyond variables and constants 187

schemes are instances of the classical account (cf. Hayes 1977). Indeed, so are almost
all computer programs, insofar as their calculations concern things in the outside world.
So, in particular, are most of Al's 'symbolic programming' schemes, insofar as they have
any clear semantics at all.

What good is this story for an agent trying to get on in the world? It's incomplete
at best. The symbols in a classical representation may refer to individuals in the world,
but this says nothing about the agent's causal relationship to those individuals. The
reference relationship is simply posited. In virtue of what does a reference relationship
obtain? Anglophone philosophy has generally formulated this as a question of epis-
temology; none of the innumerable proposals are very convincing. Al systems have
usually fudged the issue by permitting their primitive perceptions and actions to traffic
in constant symbols. This is an all-too-easy mistake when the 'world' is simulated using
a subprogram that shares constant symbols with the model. But when a Plan contains
MOVE(BLOCK-A,,BLOCK-B) as a primitive operation, something is wrong. Why is this toler-
ated? It is tolerated because mentalist ways of speaking hide its absurdity. (For a fine
example of this absurdity, see Chapter B5.)

We have here a especially bad case of mentalism. Unless you think about it carefully,
mentalism will make it plausible that acting on symbols in your head is just as good
as acting on the world. The gap between reference and causality is wide. Converting
constants into actions and perceptions into constants can be, and often is, hard work. It
is not always possible. When it is, it regularly requires one's full intelligence. Picking up
the magnetized screwdriver might mean trying both screwdrivers' tips next to a screw
or figuring that it must be in the kitchen where you last used it. Picking up your water
glass might mean looking at which of your neighbors at the table seems to have two.
Picking out the right key might mean rubbing your thumb against them to see which
has the square head.

Other cases require a tremendous amount of keeping track. It would take some work
to figure out that the newspaper that's lying on your kitchen table when you get home
at night is the same one you left there in the morning. As if it mattered. Of course it's
easier once you know that it's the same table, but that takes work too.

What's worse, the hardest cases are often the ones that matters least. If your
roommate eats the last of the corn flakes before bed c",d opens a new box, then you
need to know that this morning's corn flakes box is CFB-137 rather than CFB-136. Worse
yet, if you are fishing one screw after another out of a box, they all need their own
symbols. You neeu a symbol for every coathanger in your closet, every coin in your
pocket, every can in your cupboard, every chair you ever sit in, every car you ever pass
on the road, every cup you ever drink from, and every page you turn in every book you
read. Symbols with meaningless numbers on them ought to suggest that meaningless
distinctions are being made.

The problem, I claim, is ontological. Just about every semantic theory ever made,
including the usual model theory of fopc, assumes that symbols refer to objectively
individuated objects out in the world. By "objectively individuated" I mean defined

188 Chapter C2. On connectionism

independently of the location, attitudes, projects, or even existence of the agent. On this
account, the world is populated with objects. These objects were already there before
you came and they'll still be there when you go. The objects and their relationships are
independent of where you are and what you're trying to do. It doesn't matter whether
this account is true, it only matters whether it is useful. In Chapter C3 I'll present an
alternative account according to which objects are individuated indexically (according
to their relationship to your body) and functionally (according to their relationship to
your purposes). For the moment, though, let us consider the shortcomings of objective
ontologies in more detail.

All the unnecessary distinctions required by an objective ontology make for unnec-
essary work. For example, it seems redundant to instantiate your universally quantified
automotive knowledge for every car you pass. In AI practice, this instantiation usually
occurs in a pattern matcher. Control structures based on pattern-matching have long
been standard practice in Al. They were central to a long line of 'production systems'
(see Section C5d); they were also central to the 'pattern-directed' systems that were
common in the 1970s (Waterman and Hayes-Roth 1978). A pattern matcher applies
a set of 'patterns' to the propositions in a database. The matching process is purely
syntactic; it conducts no reasoning and makes no reference to the world outside. When
a pattern matches, some code is executed. The system alternates between matching
and execution.

The simplicity of pattern-matching algorithms is purchased at the same price as the
simplicity of semantic theories based on reference. Determining whether your present
circumstances fit a pattern is a fairly complicated matter in real life, but the slogan
of 'pattern matching' reduces it to a simple structural comparison. This simplification
doesn't eliminate any work, it only pushes it around. Before pattern-matching can help
you, you have to have represented the world in the terms required by your patterns.
What's missing is an account of how the propositions get into the database. The problem
is hidden in puzzle-solving and other simple scratch-paper domains: it is so easy to
reproduce the world in the database that there is never any need to actually look at it.
In real life, by contrast, one must continually choose among a hu..dred ways of looking

at the world.
Furthermore, systems based on pattern-matching derive an inherent seriality from

the need to ration access to the pattern-mmatching machinery. In a production system,
for example, only one production can run at a time. We have already seen that tuere is

nothing wrong with seriality, provided it corresponds to the natural seriality imposed
by the dynamics of one's activity. But the seriality of a production system is at a much
finer level: the very smallest units of cognition much occur in serial, not the resulting
physical actions. Running arguments do not have this restriction; all the circuitry runs
all the time. The next few chapters demonstrate this in practice.

Chapter C3

Pengi

C3a Context and summary

Previous chapters have expressed in some detail my dissatisfaction with the theories
of action implicit and explicit in the models of artificial intelligence, particularly the
notions of world models and planning. This chapter presentr some new ideas about
action, beginning from a new, interactionist theory of representation called deictic rep-
resentation.

These ideas are embodied in a computer program called Pengi that plays a video
game (Agre and Chapman 1988). David Chapman and I, though principally Chapman,
wrote this program as an exercise in building systems that engage in an improvisatory
interaction with continually evolving surroundings. Rather than maintaining elaborate
world models and constructing symbolic plans, Pengi relies heavily on its interactions
with the world to organize its activity. As a consequence, Pengi could be made of
very simple machinery, consisting of a moderately realistic visual system and a central
system made of combinational logic. The orderliness of Pengi's activity and its effec-
tiveness at playing the game arise not through exhaustive knowledge and simulation
but through the continual interaction among its central system, its visual system, and
its surroundings.

Section C3b introduces deictic representation. Chapters B5 and C2 have already
discussed the need for an account of representation that does not rely on variables and
constants and that can be conveniently implemented on simple, connectionist hardware.
This section distinguishes deictic representation from the more convention&' objective
representation.

Section C3c introduces the Pengi's domain, a Lisp Machine reimplementation of a
commercial video game called Pengo. It describes some of the more important aspects
of the activity of playing Pengo. Finally it introduces the Pengi program itself, briefly
describes its organization, and summarizes the relationships between its machinery and
dynamics chat later sections will discuss in more detail.

Section C3d describes some of the ways in which Pengi uses deictic representation to

189

190 Chapter C3. Pengi

play Pengo. Formulating Pengi's deictic representations depends on an understanding
of the common patterns of interactions between skilled players and the game.

Section C3e describes the way in which Pengi embodies the ideal of improvisation.
Its machinery engages in a continual interaction with its perceptual apparatus and with
the outside world. It proceeds not by following a worked-out plan but by continually
redeciding what to do based on each next moment's situation. By leaning on the world
to provide for much of its representational and control needs, it avoids the complex
machinery prevalent in past systems. Chapter C4 will explain in much more detail just
how Pengi works.

Section C3f draws out the close relationship between the computational themes of
seriality and focus. The necessity of constraining one's focus to particular items or
regions or issues entails serialized interactions. Chapter C2 has already discussed this
theme abstractly. In Pengi the theme arises at three levels: in the dynamic phenomena
inherent in having a body, in the notion of focus realized by Pengi's visual system, and
in the abstract notion of 'functional' focus that is part of deictic representation.

Section C3g addresses a number of objections that arise in discussions of Pengi.
Many of these concern the precise distinctions to be drawn between Pengi and other
technical ideas and projects.

C3b Deictic representation

Traditionally the study of representation in Al has been centered on issues of expressive
power. Talk about these issues is organized by mentalist metaphors of inside and outside.
A representational token in one's head expresses some state of affairs in the world;
one manipulates and recombines these tokens in ways that, one hopes, preserve their
faithfulness to outside circumstances. Competence at worldly activities is founded upon
the accuracy of correspondences between structured tokens inside and structured states
of affairs outside.

Representation schemes have described the world. The point, however, is to change
it. Let us center our representation scheme on metaphors of interaction. Representations
play a mediating role in their owner's ongoing involvement with its surroundings. The
point is not to express states of affairs but to maintain causal relationships with them.
Instead of focusing on quasi-eternal statements involving proper names ("Snow is white,"
"-Emus don't fly," "John loves Mary"), let's focus on statements about the state and
progress of concrete activities ("The hammer I am using is too heavy," "This lane is
being blocked by someone waiting to make a left turn," "The eggs I am beating are
about as beaten as they're going to be").

Let us contrast two kinds of kinds of ontologies that a representation scheme might
posit. Objctitve representation schemes posit a collection of individuals out in the world.
These individuals are objective in that they exist independently of the existence or ori-
entation or purposes of any observer. An agent refers to things in the world using a
collection of constant symbols (and perhaps other, compound terms) in the represen-

C3b. Deictic representation 191

tation scheme that correspond (potentially many-to-one since terms can codesignate)
to some of the objective individuals in the world. First-order predicate calculus is an
example of an objective representation scheme. (For an ambitious attempt at an alter-
native that nonetheless maintains the framework of model theory see Barwise and Perry
1983.)

By contrast, the a deictic representation scheme individuates things an agent's world
indexically-in relation to the agent's body and identity-and functional!y--in relation
to the agent's ongoing goals and projects. Whereas one specifies the reference of an
objective representation independently of its owier, the reference of a deictic represen-
tation depends critically on its owner's involvements in the world.

Although the utility of an indexical and functional ontology for a situated agent
has no necessary connection with the metaphysical question of whether things in the
world have an objective existence, the two issues are obviously related. The concept
of objective existence, of course, has a long philosophical history and all the obvious
formulations of it encounter grave difficulties. In Being and Time (1927), Heidegger
presents a conception of ontology that transcends the metaphysical opposition between
subjectivity and objectivity. Heidegger approaches the question not from the possibility
of objective knowledge in science or religion but rather from the phenomenology of
everyday activities. His analysis (in Chapter 3) of worldhood, in particular the notions
of significance and assignment, influenced the notion of deictic *'epresentation.

The particular deictic representation scheme I will present posits entities in the
world, such as the-cup-I-am-drinking-from, and aspects of th..se entities, such as the-
cup-I-am-drinking-from-is-empty. The names of entities look like hypntenated noun
phr- -s and the names of aspects look like hyphenated sentences that mention one or
more entities. Each entity is specified indexically ("1") and functionally ("drinking")
and mentions some role that a person, place, or thing can play in that activity ("cup").
A phrase like the-cup-I-am-drinking-from is not the entity itself, it is only a name for
the entity. These names are only theorist's conveniences, not symbols in agents' heads.
(Thus one should not be misled by the surface similarity between the names of entities
and what Russell and subsequent philosophers have called definite descriptions. An
entity is not at all a linguistic phenomenon. One should also resist the temptation to
understar._ deictic representation in terms of Russell's distinction between definite and
demonstrative descriptions, since this can only lead to confusion.)

Deictic representation schemes offer a very different account of abstraction from
objective representation schemes. An objective representation scheme puts names, such
as CUP-37, to each of the individuals involved in any episode. In order to represent
knowledge that is independent of any particular situation one must put in a variable for
each constant, perhaps expressing the abstraction as a universal quantification. Chapter
C2 has already considered and rejected this approach. A deictic representation scheme
does not make a distinction between the specific and the general. As a result, deictic
representation transfers to new situations passively. If you know something about what
to do when the-cup-I-am-drinking-from-is-empty, it will apply to what-xer cup you

192 Chapter C3. Pengi

happen to be drinking from. If Monday's CUP-37 and Tuesday's CUP-38 have no
salient differences, then the representation scheme will not distinguish them. The agent

simply won't be able to tell them apart. Smith (1986a), following Perry, has spoken

of passive abstraction in terms of the "efficiency" of indexical representation. (Similar

ideas appear in (Evans 1992). Although Evans worked in the tradition of Frege and

Russell, his treatment of indexical phenomena is remarkably subtle. For a broader, and
I believe more useful, conception of indexicality based on careful study of naturally

occurring activities see (Heritage 1984 Chapter 4).)

As a matter of vocabulary, if a particular agent is opening a certain door, the entity
the-door-I-am-opening will be bound to that door; the door will be assigned to the

entity; furthermore the agent, or perhaps some element of its machinery, will register

the aspect the-door-I-am-opening-won't-budge according to whether the door is budging.

It is possible for a given object to be assigned to two different entities at once. Here is

an example:

I was sitting at an outdoor caf6 table drinking coffee and reading the news-

paper. A light breeze arose and my paper turned up a corner and threatened
to sail away, so I looked around for an object to use as a paperweight. The

coffee mug suggested itself so I placed it on the newspaper. A little later I

wanted to take a sip of coffee so I lifted the coffee mug. A breeze happened to

be passing through just then, so the newspapers started sailing away again.

Mistakes like this one are consequences of assigning the same object two multiple enSi-
ties. They are not inevitable consequences, though they would seem to be the default.
Sometimes, perhaps as a result of an experience like this, one will begin to register

an aspect such as the-cup- I-a in-drinking-from-is-the-same-as-the-paperweight-holding-
down-my-papers which will help one coordinate the two causal relationships or else

separate them by selecting a different paperweight. A second example is equally telling:

A friend of mine was working at a small software company on a project
with a tight deadline. During this time he maintained a 120 hour per week

schedule by snorting cocaine. Cocaine snorting tends to dry out the mucous

membranes in one's nose. Because of this, cocaine users have a custom of
snorting drops of water from their fingertips to alleviate the discomfort. So

my friend had two different occasions to go to the water cooler, thirstiness
or a dry nose. One day the water cooler was moved to a new location, Ile

had no problem remembering the change when he was thirsty, but it took

him a couple of weeks to break the habit of going to the old location when

his nose was dry.

I am pleased to report that my friend has stopped doing this.

Because entities and aspects relate to the agent's material surroundings. it is im-

poirta;nit that they bh operational. Being able to express "the cup I am drinking from is

C3b. Deictic representation 193

empty" is all very well, but to actually get any work done one must causally relate the
representational token to the physical reality. If the agent is to register the aspect the.
cup-I-am-drinking-from-is-empty, it must, at the appropriate times, track the emptiness
of its cup. Consequently, instead of speaking of the 'meaning' or 'semantics' of entities
and aspects, we speak of their causal relationships to the material circumstances they
mention.

The causal relationship between me and the-cup-I-am-drinking-from is a fact about
me, about my habitual ways of interacting with the cup, about the cup itself, about my
surroundings more broadly, and about physics. As I sit writing, my causal relationship
with the-cup-I-am-drinking-from consists in my participating in a certain routine: keep-
ing the cup on its coaster a little to my left on the table in front of me, picking it up
repeatedly to drink and then putting it back down in its place, putting my eyes on it
while going to grab it or put it down, and so forth. More broadly, these routines carry
the cup to particular locations for making more tea, washing the cup out in the kitchen,
letting it sit upright on its coaster overnight or else inverted on a towel to dry out after
having been washed, and so forth. This is not to say that I would fail to recognize
my cup were it to be randomly displaced by someone else; I am perfectly capable of
recognizing it as my cup from its color and shape. These practices do not define the
cup; they just constitute my causal relationship to it qua the-cup-I-am-drinking-from.

Establishing and maintaining my causal relationship to the-cup-I-am-drinking-from
can take an arbitrary amount of work. At a formal dinner table it can require some
reasoning and negotiation to assign water glasses to diners. At a bar, I have to try to
keep track of whose glass was whose after buying another round. Whatever the patterns
of interaction by which I keep myself in relation to this cup, they pick it out as being
the-cup-I-am-drinking-from.

Having a causal relationship to an entity isn't a matter of extracting information
from a single sensory impression but of maintaining an continuing connection between
oneself and the equipment and materials of one's ongoing projects. As a technical
matter, we need to relate the dynamics of these causal relationships to details of the
agent's body, sensory apparatus, and ways of using this apparatus.

Think of all the entities involved in some activity as collected into a frame, in some-
thing like Minsky's sense of the term (1986, Chapter 24). Consider a particular activity,
my custom of drinking tea while I work at the terminal in my office. As I work, I am en-
gaged in a system of causal relationships with the-tea-I-am-drinking (I mean the actual
liquid, which is currently Irish Breakfast, though when I don't need the caffeine so badly
it's usually herb tea), the-cup-I-am-drinking-from (one of the three identical green coffee
mugs I keep in my office), the-handle-of-the-cup-l-am-drinking-from (now facing off to
the left), the-coaster.on-which-I-rest-my-cup (which I swiped from an English pub), the-
temperature-of-the-tea- I-am-drinking (tepid), the-tea-in-the-sip-I-am-taking (sometimes
this refers to a particular bit of tea and sometimes it doesn't), the-hand-with-which-I-
lift-the-cup-I-am-drinking-from (currently my left hand). Each of these entities specifies
a role in the ongoing routine of my drinking tea while sitting at the terminal in my

194 Chapter C3. Pengi

office. I take this routine with me when I work in other offices.
Following Minsky's original example (1974), one could equally well define the entities

involved in a birthday party one is attending, the-birthday-person-at-the-birthday-party-
I-amn-atte tiding, the-presents-received-at-the- birthday-party-I-am-attending, the-birthday-
cake-at-the-birthday-party-I-am-attending, and so forth. It is important that each of
roles in this enumeration is defined indexically and functionally, not objectively. It's
not just any old birthday party, it's the-birthday-party-I-am-attending. A frame, on my
deictic account, is different from a 'record structure'. A system using record structures
c'ni!d represent arbitrarily many birthday parties by making many instantiations of its
generic birthday-party record. These records would indicate nothing about the agent's
relationship to each party-I am attending it now, it is my own next birthday party, it
was the best birthday party I ever attended, or whatever. Thus the records would be
objective, not deictic. The kind of 'frame' implemented by FRL (Roberts and Goldstein
1977) is also a record structure, not a dynamic phenomenon like deictic representation.
When Hayes (1977) claimed that fram 's were best understood in terms of the semantics
of an objective logic such as an extended fopc, he was probably right about FRL-style
frames, but not about deictic frames.

Ultimately, I would also like to understand the dynamics according to which the
common forms of causal relationship arise and evolve. Deictic representation interacts
with dependency maintenance in useful ways. Since reasoning in a deictic representation
does not distinguish between situations that share the salient indexical and functional
aspects, the dependency network will transfer a line of reasoning that has been saved
in one situation to any other situation that shares those features, even if it occurs in
a different setting and involves different individuals. I conjecture that most, if not all,
transfer dynamics can be explained in this way. In particular, deictic representation is
an important element of the dependency model of routine evolution discussed in Section
B2e.

The particular deictic representation scheme I am describing is relatively simple,
As the hyphens in the entities and aspects indicate, this scheme, by contrast to the
usual practice in Al, does not posit any internal structure in its representational tokens.
For example, nothing about the aspect the-cup-I-am-arinking-from-is-empty in itself
indicates that it concerns the same entity as the-cup-I-am-drinking-from-is-within-reach.
Other more sophisticated proposals might wish to relax this restriction if doing so turns
out to solve any problems. Also, the scheme I will present has no formal semantics. I
am not against formal semantics, but any syst, iatic semantical analysis of a deictic
representation scheme would have to differ from _,ost existing ideas about semantics in
giving a central role to the agent who owns the representational tokens.

Deictic rupresentation is not supposed to be a theory of structured symbolic rep-
resentation. Chapter C2 has already discussed some of the difficulties vN*h theories of
symbolic representation based on datastructures and has suggested investigating other
forms of symbolic representation such as time-extended internal language or external
writton representations such as directions and recipes. Many forms of activity will pre-

C3c. Pengo and Pengi 195

surnably require agents to use internal language in addition to deictic representations.
See (Chapman and Agre 1986, Chapman forthcoming) for the beginnings of an account
of the relationship between the two forms of representation.

Deictic representation does not solve all representational problems. Regardless of
the theory of representation one uses, one must choose particular categories to represent.
The theory suggests that the categories must be operational (at least when they need
to be) and reflect the actual indexical and functional significance of the entity for the
agent, but any further guidance must come from an understanding of the dynamics
of the domain. In practice, the decisions tend to be analogous to representational
decisions in any other kind of representational scheme. For example, one must choose
whether to represent the-cup-I-am-drinking-from or the- container- I-am- ingesting-from
or the-china-tea-cup-I-am-drinking-from or some combination of them or something else
entirely. A system that learns must be informed by some understanding of the dynamics
influencing agents' choice of entities and aspect to represent. In building Pengi we made
the choices ourselves, but the choosing was only difficult because understanding the
detailed dynamics of the game was difficult.

Deictic representation is closely related to Gibson's notion of affordances (1979).
Affordances concern the aspects of objects in the world that facilitate recurring forms
of interaction between an agent and those objects. Flat horizontal objects afford putting
things down, handles afford grasping, and so forth.

The theme of functionality also recalls Piaget's theme of egocentricity (see Singer
and Revenson 1978 for a clear explanation). Piaget describes the emergence of the
adult ability to treat objects as permanent and independent of one's own perspective.
Piaget observes that this ability grows out of the child's experience with the invariant
properties maintained by an object when the child interacts with it through multiple
indexical and functional relationships. Some other related dynamic themes appear in
Drescher's (1985) computational model of the stages of sensorimotor development de-
scribd by Piaget. He focuses on certain kinds of causal relationship that present the
child with statistically measurable correlations that reflect regularities in the dynamics
of the child's interactions with things in its environment. He also describes the con-
cept of a canonical perspective, a dynamic effect that facilitates the discovery of deictic
regularities by modifying the child's relationship to the world in recurring ways. An
example would be the habit of bringing interesting objects into the middle of the visual
field at a standard distance.

C3c Pengo and Pengi

Our domain is a reimplementation on the Lisp Machine of a commercial video game
called Pengo. The player looks at a video monitor that portrays a number of discrete
figures. The player has a joystick and a button that controls a cartoon penguin. The
screen also contains cartoon ice cubes and bees. Pengo is a fairly difficult game. Playing
it is an activity of moderate visual complexity and low motor complexity.

196 Chapter C3. Pengi

tseii_ Wino

Figure C3.1. A Pengo game in progress.

The rules are as follows. The bees are trying to kill the penguin. If a bee gets too
close to the penguin and stings it the penguin dies. !f a bee or a penguin kicks an ice
cube, the ice cube slides along in the direction it has been kicked. If it should happen
to hit a bee or a penguin then that creature dies. Thus the bees can kill the penguin in
two ways, by stinging it or by kicking ice cubes at it. The penguin can kill the bees in
one way, namely by kicking ice cubes at them. The penguin has as its advantage is that
it is presumably more intelligent than the bees, which operate by a very simple Markov
process. The bees are always moving at the same speed. They tend to move in the
general direction of the penguin; they randomly change their headings roughly every
few seconds. If they find themselves able to kick an ice cube at the penguin they do so,
but they don't go out of their way to position themselves behind an appropriate ice cube.
The point is not at all to emphasize the element of opposition or antagonism between
malevolent equals. We haven't made the bees particularly smart for the simple reason
that intelligent, resourceful assassins are not a normal part of everyday life. Detailed
knowledge about how the bees operate goes into an expert's playing of the game.

As a domain, Pengi is a big improvement on blocks world. Things move, the ge-
ometry is more complicated, the way objects are arranged in space is more meaningful,
and the individual tasks relate in a clear way to an overall goal (winning the game).
But at the same time, Pengi certainly does not capture many elements of the dynamic
structure of everyday activity. Your breakfast is not out to kill you. Nonetheless,

C3c. Pengo and Pengi 197

the combination of goal-directedness and improvisation involved in playing the game
is a fundamental and universal aspect of routine activity for which Pengi does offer a
computational model.

Playing Pengo is certainly not a matter of executing plans. If you make a plan to
sneak around behind a certain ice cube and kick it at a certain bee then that plan is
usually not going to work. In fact, rigidly following such a plan is a good way to lose
the game. Other bees will fly into range, the bee you are attacking will fly away, or the
ice cube you have decided to sneak around behind will itself get kicked out of the way.
Things go wrong in these ways on a regular basis. At the same time, playing Pengo is
not a matter of continually reacting to things that go wrong. You need some notion
of what you are trying to accomplish. You might want to get around behind some ice
cube, or to run away down some channel, or to kick some ice cube out of the way. Your
activity must be organized toward goals, but you have to stay on your toes.

Pengi plays a pretty decent game of Pengo. In its present state it is a little better
than I am, which is to say that it wins from time to time and usually puts up a good fight.
It ought to be able to support all the Pengo-playing dynamics we feel we understand.
Chapman, though, who is extremely expert at the game, engages in some forms of
interaction with the game that are more subtle than we've been able to describe, so
perhaps the system cannot be made to exhibit some of the very advanced dynamics.

The player has a periphery and a central system. The periphery is fixed innate
domain-independent machinery for early vision and low-level motor control. The cen-
tral system is responsible for anything you'd call reasoning or making decisions. The
interesting aspect of the architecture is that, even though Pengi does things for which
conventional Planners would use enormously complex machinery, the central system is
made entirely of combinational logic: gates and wires. It has no flip-flops, much less
software. It has no pattern-matcher, no dynamic storage allocation, and no pointers. It
has a clock, but the central system has no state.

Pengi constantly interacts with the game simulation. It is constantly generating
actions, in the form of three bits representing joystick positions and button states.
Our modeling of motor control is trivial since elaborate motor control is not a principal
feature of this domain. Our modeling of vision, on the other hand, is fairly sophisticated.
It matters how the visual system works.

The principal purpose of this chapter is to explain why combinational logic should
suffice to be the central system of such a creature. The answer is going to be an instance
of my thesis that understanding of dynamics leads to simple machinery. The machinery
can be simple because we understand something about the dynamics of playing Pengo.
Part of this understanding gets at the nature of improvisation and is fundamental to
all routine activity. That is not to say that this architecture provides a complete model
of making breakfast, or that it is an ultimate account of cognition. Certainly not, since
there are interactional phenomena that arise in the world but don't arise in playing this
game. Pengi, for example, can always see the whole game board, so it never has its
back turned on anything. Nonetheless, that Pengi's central system can be made wholly

198 Chapter C3. Pengi

of combinational logic is a substantial claim.
Briefly, Pengi's central system can be made of combinational logic for two reasons.

One reason is that Pengi embodies an account of representation, namely deictic repre-
sentation, that can be readily implemented with combinational logic because it does not
involve variables and pattern matching. The other reason is that Pengi can engage in
an orderly, flexible, goal-directed interaction with its world without maintaining a plan
or world model, so the central system does not need to keep any state. The next few
sections explain these points in more detail.

C3d Entities and aspects in Pengi

On just about any conventional account, an agent that played Pengo would maintain
a world model of the evolving game board. This model would assign names such as
BEE-34 and BEE-35 and ICE-CUBE-61 and ICE-CUBE-62 to all the individuals in
the world, or at least the ones that matter. Likewise, the world model would contain
symbolic representations of all these individuals' important properties and relations.
The world model would be 'maintained' by a process, presumably involving perception,
that kept track of changes in the world and updated the world model to reflect them.
(Most Planning systems assume that the world model is maintained automatically,
but see (Chatila and Laumond 1985) for an impressive study in the complexities of
actually trying to maintain an accurate world model in a grossly simplified environment.)
Decisions about what to do next would involve inference from that world model to
formulate plausible courses of action and simulate their likely effects. This is an objective
style of representation insofar as its elements correspond, without regard to the agent's
location or heading or projects or attitudes, to objectively individuated objects in the
world. This conception of representation has already come in for some abuse in earlier
chapters.

Deictic representation is ideally suited to an activity such as playing Pengo. These
are some of the entities that Pengi has to keep track of at various times.

"* the-ice-cube-I-am-kicking. This is simple enough. The "I" really refers metonymi-
cally to the penguin; a more accurate name would be the-ice-cube-which-the-
penguin- 1- a rn-controlling- is-kicking.

" the-direction-I-am-headed-in. Entities do not have refer to concrete objects. They
can refer to directions, in this case up, down, left, or right. This is not to say that
Pengi has a variable called thc-direction-I-a rn-headed-in, only that Pengi is in a
certain causal relationship to the direction in which it is heading.

" the-bce-I-am-attacking. If Pengi is attacking some bee over some period, it might
dance aroin, and try to get behind varimiq ire cu.bes to kick at the bee. The
whole while, in virtue of being in that pattern of interaction, that bee will be
thc-bee- l-n m-attacking.

C3e. How Pengi decides what to do 199

the-bee-on-the-other-side-of-this-ice-cube-next-to-me is good to keep an eye on. If
the penguin is aligned with an ice cube and a bee, it is important to keep an eye
on the bee since it could kick the ice cube, and if it can't then maybe Pengi can
kick the ice cube at it.

In general, Pengi's entities will refer to the objects near the penguin. In this sense,
Pengi has a strong sense of focus. Objects and events off at the other end of the board
probably won't have any functional significance for the player, so they usually won't be
the referent of any entities at all.

Pengi's central system can get along without a pattern matcher or other complex
variable-binding facilities because deictic representation permits it to generalize across
indexically and functionally equivalent situations by simply not introducing spurious
distinctions among them. If Pengi attacks BEE-34 on one moment and BEE-35 the next,
an objective representation scheme would force those two episodes to be represented
differently. But all that matters to Pengi is that it is engaged in a certain routine
pattern of interaction with the-bee-I-am-attacking. If Pengi knows what to do about
the-bee-I-am-attacking, it will do it in each case without bothering to distinguish. They
are functionally identical cases.

As Pengi actually decides what to do, it reasons in terms of aspects of the various
entities. If an entity sounds like a noun phrase, as in the-bee-I-am-attacking, then an
aspect will sound like a sentence, as in the-bee-I-am-attacking-is-running-away-from-me.
It is an urgent situation when the-bee-on-the-other-side-of-this-ice-cube-next-to-me-is-
closer-to-the-ice-cube-than-I-arm since the bee could run up to the ice cube and kick
it at the penguin before the penguin could run up to the ice cube and kick it at the
bee. Consequently, Pengi had better get the penguin out of the way. The situation is
less urgent if the-bee-on- the-other-side-of-this- ice-cube-next-to-rme-is- moving-away-from-
the-ice-cube, though. These are a useful pieces of knowledge about the game, but in
themselves they don't explain how they are operationalized and how Pengi actually
carries them out. That is the next section's topic.

C3e How Pengi decides what to do

Figure C3.2 is a diagram of Pengi's best trick. In the diagram is a bee that isn't lined
up with any ice cube. Lacking any way to kill the bee, Pengi is reduced to waiting
around for the bee to align itself with an appropriate ice cube. An alternative, though,
is for Pengi to move an ice cube so that it aligns with the bee. You can't win the game
without doing this regularly. In the example in the diagram, Pengi can kick the ice cube
on the left so that it hits the ice cube on the right. (Momentum is not conserved in this
game. The movinig ice cube stops dead when it strikes the stationary one.) Now that
the ice cube is aligned with the bee, the penguin can move around behind it and kick
it at the bee.

One might be tempted to refer to this trick as a plan. Yet Pengi neither makes
nor uses plans. The two-ice-cube trick is one of the routines we foresaw when we

200 Chapter C3. Pengi

the-pen tin

Figure C3.2. Pengi's best trick is to move one ice cube into position by kicking it up
against another one.

built Pengi's central system circuitry. Pengi engages in the routine because it knows
what to do in each situation that arises in it, not because it refers to a plan or other
representation of the routine. Let us contrast the way Pengi performs this trick with
the way a conventional Planner might perform it, on three counts.

One count is, why would each kick the ice cube in the first place? How does it know
that this is a good move? A traditional Planner would do a simulation in its world
model and, through inference over some logical codification of the geometry, deduce
that this ice cube can be gotten from there to there to there. Pengi does something
different. Instead of performing inference against a world model it visualizes against
the world as it actually sees it. The visual system is good for visualizing things against
the world because it provides a set of visual operations that have functional significance
in many domains: coloring in regions, finding out whether things are lined up, finding
something of a given shape or color or style of movement in a given vicinity, telling
whether anything is located between two designated points, keeping a finger someplace
for future reference, and several others. These visual operations are combined into visual
routines, by means of which the central system uses the visual system to register the
current values of various aspects of its environment. The actual situation will contain
all kinds of visual clutter not shown in the figure, but by running these visual operations
Pengi will be ablc to visualize that these two channels are clear and that the second ice
cube is in position to stop the first one.

C3e. How Pengi decides what to do 201

Figure C3.3. Pengi visualizes where the ice cube the penguin has just kicked will end
up by using its visual operators.

We wrote Pengi's visual routines ourselves. But a growing expertise at any activity,
from cooking to mathematics, includes acquiring a set of visual routines and learning to
use the visual operators more efficiently, more sparingly, and more accurately, choosing
the right one for the job. Beginners use their visual operators in fairly crude, generic,
safe, heavily redundant ways; as they become skilled their visual routines evolve just
as all routines evolve. Future work needs to elucidate the dynamics by which visual
routines evolve in the context of larger activities.

Chapter C4 will explain Pengi's visual operators and the technical issues around
them in detail. For the moment let us consider an example. Figure C3.3 shows how
Pengi finds the-ice-cube- that-the- ice-cube-I-just-kicked-will-collide- with. Pengi has just
kicked this ice cube and has a marker tracking it. It also knows the direction the ice
cube is moving. So it uses an operator that starts on the marker, moves to the right,
and drops a second marker on the first thing it hits. Once this operation completes,
Pengi can use further visual operations to register various aspects of the-ice-cube-that-
the- ice-cu be-I-just-kicked-will-collide-with.

The second count on which we might contrast Pengi with a conventional Planner
concerns why each would kick the ice cube the second time. A conventional planner
would take that step because the program counter in its executive is equal to two. The
Planner's executive chooses the next Plan step to execute by following a pointer to some
structure like (kick a).

202 Chapter C3. Pengi

Pengi, by contrast, kicks the-projectile-cube because it is lined up with the bee. It
sees a clear channel, an ice cube, a bee, and a penguin in the right spatial relationships,
so it moves the penguin behind the ice cube and kicks it at the bee. That the ice cube
got there by having been kicked by the penguin earlier on doesn't really affect why it
is a good reason to kick it at the bee. Pengi is, on each next moment. deciding what is
the right thing to do in the world as it is then.

Pengi's ability to rederive its course of action from the evolving game situation makes
it more flexible than the Planner in the face of unexpected situations. The bee might fly
out of range, or another bee might fly into range to make it dangerous to traverse this
territory here. Or some bee might kick the-stop-cube out of the way. Pengi chooses the
best actions to take in the world as it finds it right now. That one's program counter
equals two is not a good reason to do anything. A program counter's connection to the
actual situation outside is far too tenuous to be an agent's principal resource in choosing
actions.

Pengi's policy of continually redeciding what to do is also an improvement on the
conventional technique of execution monitoring. An executive might be asked to monitor
all the conditions that would indicate that things are not going according to Plan.
The original and simplest version of this proposal is to associate with each Plan step
a set of "preconditions" that the executive can check on before executing that step.
Even assuming that provision has been made for cases where the monitored conditions
aren't operational or cannot be checked without potentially complex manipulations,
monitoring can only determine when a given Plan is going wrong, not when a different
Plan would be an improvement. Pengi regularly aborts one of its routines when a better
opportunity arises. Having pursued the opportunity, it might return to the original
routine if that seems like its best option when the time comes.

The third count is machinery parsimony. Both Pengi and the conventional Planner
can perform the two-block trick; which one does so with the simpler machinery? Clearly
Pengi's is simpler. Pengi has no need of structural Plans (either upper- or lower-case)
or pointers. All Pengi needs is the ability to look at the world and decide what to do,
something any situated agent needs. Pengi has just enough state to keep a finger on
the important aspects of the world, but it doesn't have a whole full-blown model of the
world in its head. An understanding of dynamics leads to simpler machinery.

In summary, Pengi's scheme of continually redeciding what to do based on what it
observes in the current situation is both simpler and more flexible than the conventional
Planner's scheme of making a Plan and executing it until something goes wrong.

It helps to think of Pengi's strategy as a dynamic version of Newell, Shaw, and
Simon's technique of difference reduction (1960). Difference reduction was originally a
technique for searching problem spaces. Given a state known to be reachable from the
initial state, the problem solver computes a set of differences between that state and
the goal state. It then indexes those differences into a table to discover which ones it
can reduce by applying an operator. The operator will produce a new state. If that
now state is the goal state then, in Newell, Shaw, and Simon's vocabulary, the problem

C3f. Seriality and focus 203

is considered solved. If not, difference reduction can be applied to the new state. This
method can be repeated until the problem is solved. None of this happens in the real
world. To 'apply' an 'operator' does not involve taking an actions in the world, only
simulating the action's effect.

Dynamic difference reduction, by contrast, happens in the real world. The agent
alternates between finding something to do and doing it. In the case of the two-ice-cube
trick, each of the player's actions reduces a difference: kicking the ice cube once gets an
ice cube lined up with a bee and kicking it again kills a bee. One could imagine an agent
making an omelette the same way, repeatedly looking for things that need doing and
then doing them. Using this method requires some knowledge of what steps will need to
be taken, but it requires no explicit representation of serial order. The agent might take
the actions in different orders on different occasions, according to the happenstances of
noticing. But so long as it understands the preconditions of its actions-almost all of
which are readily visible and furthermore enforce themselves by rendering the actions
impossible by their absence-it will get the job done each time. Since these actions take
place in the real world and not in simulation, of course, they cannot be retracted by
simply moving to a different lccation in the search space. It helps if an agent engaging
in dynamic difference reduction knows about difference reductions that lead to wasted
physical effort, just as it helps if a search method knows about paths that lead to wasted
search effort.

Pengi certainly has limitations. It is hard to be precise about where the capabilities
of Pengi's architecture leave off-it could easily be the case that such machinery can
participate in dynamics we haven't observed or understood yet. Nonetheless, Pengi
was only designed to participate in a certain collection of dynamics, not in the whole
of human activity. Other domains might require Pengi to have other capabilities. For
example, if Pengo got harder, Pengi might sometimes have to refer to a plan. The plan
would explain how to deal with some tricky situation, or perhaps what strategic issues
bear on the matter of which bees to attack when. The plan wouldn't be exhaustive like
a program because Pengi isn't dumb like a programming language interpreter. Instead,
the plan might consist of natural language, or something very much like it. Other
activities will require a central system to maintain state, to use its visualization abilities
without any domain materials being present, and so forth. Precise specification of this
additional machinery should await an elucidation of the relevant dynamics.

C3f Seriality and focus

Pengi can have such a simple architecture because we went to the trouble of understand-
ing something about the dynamics of situated activity in general and Pengo-playing in
particular. Central to this understanding is the fact that a situated agent, far from
being a detached abstract intelligence, has a body. Having a body implies a great deal:
facing in a direction, having a location, the tendency of the objects near us to be the
significant ones, and more generally all the resources the physical world provides to aid

204 Chapter C3. Pengi

us in our activities.
This section concentrates on two intertwined themes that figure in the dynamics

of any embodied agent's interactions with its environment: seriality and focus. These
themes of seriality and focus manifest themselves on three different levels.

The first level is in the realm of dynamics. Simply having a body imposes a certain
seriality on your activity. You can only be in one place at a time. You can only be
facing and looking in one direction at a time. You can only do about one thing with
your hands at a time. You can only drink from one cup at a time. If you have several
things to do, you have to do them in some serial order.

The second level is that of the visual system. The themes of seriality and focus assert
themselves again. The visual system, as we've seen, employs visual markers, in terms of
which many of the visual operations are defined. Recall the parking-lot example from
Section A3e-if I am using my visual system to map out the free space I am going to
walk through when I am walking through a parking lot, I can't be using that operation
to mark out free space for some other purpose as well. I am focused on one thing at a
time in the sense of my eyes being aimed in one general direction at a time, in the sense
of foveating in a particular place, and in the sense of my visual markers being allocated
to certain locations and not others.

Finally, the themes of seriality and focus assert themselves on the level of represen-
tation. I can only have one the-cup-I-am-drinking-from at a time. I am only going to
be involved with one such cup at a time. There is a strong claim here, that if I actually
want to deal with several such objects it has to be one at a time.

All these kinds of seriality and focus, as it were, line up. The representation scheme
is less general than others in that it can't represent arbitrary spaces of meaninglessly
distinguished objects with identical significances all at once. But then it don't need
to, since an embodied agent can only interact with a small number of functionally
distinguished objects at a time.

In the end, this is the main way in which our understanding of dynamics has led us
to simpler machinery. The machinery only provides the capacities we really need and
takes advantage of the inherent properties of interaction in relatively benign worlds for
its power rather than relying on complete generality.

Despite these lessons, Pengi only has a body in a limited sense. It stands transfixed
in front of its video screen without moving among the materials and equipment of its
task. Nothing is ever behind it. It interacts continually with the world but it is not
truly in the world. More genuinely autonomous embodied agents will require a deeper
understanding of the dynamics of embodiment.

It would be instructive to try applying Pengi's technology in a different domain.
Doing so will presumably reveal that we made many mistaken decisions about this
architecture's underconstrained features. Some of our mistakes will have resulted from
the exigencies of having to make it programmable at all, given our rough understanding
of the detailed dynamics of this particular activity. Other mistakes will be due to the
tle kinds of biases this domain has forced on us. A Pengo board is a very visually busy

C3g. Objections 205

place. Since the bees have a uncooperative random element, a Pengo player must keep
a finger on an abnormally large number of details of its environment. That things are
clustering about you, that there are emergencies, that you need a fairly diffuse kind of
focus, are different from making breakfast, where the simple fact of your having a body
determines a fairly tight focus.

C3g Objections

Pengi reliably provokes a long list of questions. Though I have tried to deal with most
of these while developing the argument, several are best dealt with here in isolation. I
have tried to word most of these questions in exactly the way people tend to ask them.

You say that Pengi doesn't use plans. But couldn't we view its combinational
logic network as a plan?

I suppose we could, if we used the word 'plan' so broadly as to border on uselessness.
But the vocabulary of plans and planning is hardly the most useful way to look at
Pengi-like networks. The plan language in question would not look much like any
existing programming language or the plan language of any existing Planner. It seems
very unlikely that any planner could understand enough about the dynamics of activities
such as Pengo-playing to generate networks such as Pengi's in the fashion of conventional
Planners.

You say that Pengi isn't a Planner. But how can it be a serious model of
any kind of activity without looking ahead into the future?

A system can look ahead into the future without being a Planner. All that is required
is that one's actions take sufficiently reliable ideas about the future into account. In a
Planner, this takes two forms: the decompositions of goals into subgoals provided by the
programmer and the simulations of possible future courses of events that the Planner
performs. Pengi also looks ahead into the future, in two senses. First, Pengi'b tactics
were designed using an understanding of the dynamics of the game. This understanding
involves ideas about what tends to happen next and about how individual actions lead
to winning the game. Second, Pengi uses its visual system to visualize possible courses
of events. Chapter C4 will demonstrate Pengi's visualization in more detail. Pengi does
not have a general facility for simulating the future. It doesn't need one.

You say that Pengi doesn't use world models. But couldn't we view its
retinal image of the Pengo screen as a world model and its visualizing as
simulation?

The distinction between performing a simulation and running visual routines is
indeed not as clear-cut as it appears. Perverse as it would strike me, one might choose

206 Chapter C3. Pengi

to view the visual operations as performing some sort of logical deduction. Visual
routines certainly do not constitute a general simulation or theorem proving facility,
but inference need not imply a general inference facility. The important difference is
that the representations over which the visual operators apply are retinocentric and
thus not objective world models. A retinal image is a poor world model because it
onlv encodes the very most primitive information about intensities of light. It does
not encode the identities or structural relations of the visible materials. Furthermore,
a retinal image is not a world model because its relation to outside events depends on
the agent's location and orientation. Pengi, it is true, always has the same location and
orientation, but other systems employing the same technology need not.

You say that Pengi doesn't use variables. But couldn't we view entities as
variables? Couldn't we view the visual system's markers as variables?

I suppose we could, if we used the word 'variable' so broadly as to border on useless-
ness. We can use the word 'variable' in any fashion so long as some words are left over to
express the intended distinctions. A variable, unlike either an entity or a visual marker,
participates in a relationship between two abstractions inside a machine, namely the
variable and its current value. Entities and markers, by contrast, participate in a rela-
tionship between an agent and a thing in the world, namely the object currently bound
to the entity or the object the marker is currently tracking. In each case, the entity
or marker, unlike a variable, participates in a causal relationship between an agent and
certain materials in the world.

You emphasize the way Pengi's entities support a sense of focus. Couldn't
you implemelit focus in a much more straightforward way, perhaps by only
maintaining a model of what's happening within a certain radius from the
penguin?

That wouldn't do, since a bee can kick an ice cube from an arbitrary distance. It
would also be a domain-specific solution that would not be very helpful in real-world
domains where it would be prohibitively complicated to model all the materials within
any reasonable radius of anything, be it the agent's gaze or hands or tools or whatever.

You say that deictic representation does not involve constant symbols or
proper names. This is convenient enough for Pengi given that it lives in a
world where all the objects are perfectly generic. But what if Pengi needed
to keep track of a particular bee, say because it was especially dangerous?
If Pengi were dealing with real people rather than cartoon bees, wouldn't it
want to have separate names for all of them?

This (plestioll is much more complex than correspondence theories of representation
niak, out. Simply expr(ssing an object's individuality is only the easy part of keeping
track of it. Next lime you play a video game, pick out an arbitrary monster and try

C3g. Objections 207

to keep track of it as you play the game. It is next to impossible. In reality, people
can usually identify functionally distinct objects because indistinguishable things tend
to be interchangeable. To keep track of an object whose special functional significance
is not obvious, we must resort to such methods as marking it or putting it in a special
place.

Since every person is interestingly different from every other, people make an ex-
cellent opposite extreme from cartoon bees. You only learn and remember a person's
name, though, once they acquire a distinctive significance for you. When you sell people
hamburgers at McDonald's or give directions to strangers, you rarely get any glimpse
of their individuality and you hardly ever learn their names. Once you get to know
someone well enough to have any use for their name, you are certainly best advised to
remember basic facts about them, but do you really store these facts by predicating
them on the person's name? When you run into a recent acquaintance on the street,
you regularly remember how you met them and what they do even though you can't
remember their name.

There can be no doubt that the ability to express unique identities, such as through
proper names, is sometimes useful. But proper names are such a complex phenomenon
that they should not be made into a primitive representational element. Proper names,
like a great many other complex representational techniques, are part of natural lan-
guage. Pengi doesn't use natural language. If Pengi did use natural language it would
not replace deictic representation. Instead, the strings of natural language would be
resources among others that the agent would use in getting things done. Deictic repre-
sentation, not natural language, is the fundamental type of representation.

You say that deictic representation is different from traditional logics such
as fopc. But couldn't we use fopc to express reasoning using deictic repre-
sentation by including an indexical constant term "I"?

Expressive power is over-rated. First-order logic can express all kinds of things,
but it offers no account of epistemics. Deictic representation, by contrast, concerns the
causal relationships that permit agents to keep track of objects. Simply expressing an
idea in deictic terms isn't any help. The point is to describe the causal relationships into
which the various entities and aspects enter. Simply positing a relationship between "I"
and the agent doesn't address the problem.

You criticize conventional representation schemes for having an objective,
correspondence semantics. But this isn't how people in AI use the word
'representation'. A representation is just a structure that a program manip-
ulates. Aren't you attacking a straw man here?

Let's get a few distinctions clear. I did not say that every representation scheme ever
created has an objective semantics. The story structures that have been manipulated
by many programs at Yale, for example, resemble natural language in some principled

208 Chapter C3. Pengi

respects. Many representation schemes have had no clear semantics at all, despite an
evident desire to represent the outside world.

I refer to objective representation schemes as 'conventional' because correspondence
semantics, usually in the form of a compositional semantics a la Tarski, is the only
serious, worked-out theory of semantics, philosophical or mathematical, that is widely
used in Al research. To the extent that most Al representation schemes can be said to
have any clear semantics it is an objective semantics. Hayes' argument, in "In defense
of logic" (1977) that practically all Al representation schemes boil down to first-order
logic is over ten years old now, but so far as I am aware it is still accurate.

Within computer science, there is indeed a widespread practice of referring to all
datastructures as 'representations'. I consider this usage a pretentious corruption of the
word, but that's not the point. The point is that a great many of the datastructures
employed by Al programmers are plainly intended to have some reference to actual,
particular things in the outside world. They include the names of physical and social
individuals, they mention physical and social processes, and so forth. The practice
of building systems that construct and manipulate these structures is a sham unless
there exists some account of the way in which they relate to the actual individuals and
processes they mention. This is the job of a theory of representation.

In insisting upon some theory of representation, I do not mean to advocate the con-
ventional explanations of representations in terms of meaning and reference, much less
the representational theory of intentionality as a whole. But people use representations,
in one way or another, and representations relate to the world, in one way or another.
(For an enumeration of some other options, see Smith 1986.) Whether we want to do
psychology or engineering, we need a theory of these phenomena.

Isn't Pengi's central system just a finite state machine? And hasn't it been
proven that there are very strong constraints on what a finite state machine
can compute?

Technically speaking, Pengi's central system is not a finite state machine since none
of its output wires re-enter immediately as inputs. All of the output wires lead into the
visual system or the motor system, where they can cause various events whose effects
might be detected in the next cycle's inputs. As for the FSM computability theorems,
these theorems all concern the functions from inputs to outputs a given type of machine
can or can't 'compute' in the sense of getting every case correct. I have no idea how to
relate them to the dynamics of any particular real activity such as making breakfast,
where false starts and cut corners are so common. Beyond all this, the critical point is
that Pengi by itself doesn't really 'compute' anything at all. It is in Pengi's interactions
with its world that work gets done.

Pengi doesn't have any state in its central system, but surely people remem-
ber things.

C3g. Objections 209

People certainly do remember things. Pengi is not supposed to be a model of all
human activity. Pengi does not have any state in its central system purely as a matter
of machinery parsimony. Pengi's central system doesn't need any state because we
studied the dynamics of the activity Pengi is intended to engage in. Other domains will
presumably be different.

If I have a bias against state, it is a reaction lo the extreme practice of building
world models. A situated agent's environment provides vast resources for keeping track
of its materials and activities. Why maintain a model when you can look and see? The
world makes more sense in a glance than anything could prove it makes in an hour.

Pengo is such a specialized domain. Why should we consider that Pengi has
taught us anything about everyday life as a whole?

Pengi's ability to play Pengo certainly proves nothing about making breakfast. I
don't plan to demonstrate any propositions about everyday life by generalizing from
Pengi. Instead, Pengi is an illustration of some things I feel I learned about everyday life
by moving back and forth between observation and pencil-and-paper technical exercises.
I believe what. I do about everyday life because I went and looked at it. Chapman and
I chose the Pengo domain because we couldn't build a breakfast simulator that did
justice to the reality of breakfast-making, because we feel we understand most of the
steady-state dynamics of Pengo-playing, and because the central dynamic themes of
improvisation, contingency, and goal-directedness all arise in Pengo-playing in natural
ways. To be honest, the Pengo domain was Chapman's idea and it took me a while to
reconcile myself to it. Its only drawback as a first experimental domain is its adversary
nature.

It seems as though playing Pengo involves reacting to a series of crises. Com-
binational logic is going to be very good at this, but what about anything
else? Haven't you cooked the Pengo domain to show off the strengths of
your architecture and hide its weaknesses?

Playing Pengo isn't like that at all. A Pengo player that does not use complex tactics
and anticipate the future then you will indeed find itself reacting to a series of crises.
Beginners tend to find themselves alternating between periods when they're attacking
and periods when they have gotten in trouble and have to focus on surviving. More
advanced players must often defend themselves, but the line between attack and defense
is more blurred. Pengi itself is a relative beginner, but it spends at least as much time
on the attack as it does dealing with crises. In particular, Pengi constantly uses its
visualization abilities to see if it can use its various tactics.

You insist that the world is fundamentally a benign place, yet your domain
is violent. If the efficacy of improvisation depends on the beneficence of the
world, why should we believe in your analysis of why Pengi can play Pengo?

210 Chapter C3. Pengi

When I worked at Atari we used to sit around and bemoan the seeming fact that all
the simple, interesting, comprehensible things one can do in real time in simulation on a
.iormal-sized computer involve violence. The adversary nature of Pengo is unfortunate,
but we can be precise about the way in which it disrupts our efforts to build Pengi.

The principal difficulty is that Pengi, like any human player of Pengo, must contin-
ually work to keep track of the bees because of the random component to their motion.
A Pengo-player cannot take advantage of many of the dynamics by which one can keep
track of things in other domains, such as keeping them in a special place, carrying them
in a pocket or purse, going and finding them when a need for them arises, or relying on
them to send you an occasional letter. As a result, playing Pengo places much heav-
ier demands on one's visual system than most normal activities. As Chapter C4 will
explain at length, the most difficult thing about writing Pengi is to arbitrate among
the visual operators that Pengi uses to keep track of all the bees and their geometrical
relations to the penguin. That the only serious difficulty in writing Pengi corresponds
so closely to the principal difficulty in playing Pengo is encouraging.

At the same time, the video-game metaphor of killing-or-being-killed shouldn't dis-
tract us from the benign properties that the Pengo domain does share with routine
activities in the world of everyday life. The materials of the player's immediate activ-
ity are readily visible. The vast majority of its objects-the ice cubes-do not move
about capriciously. The domain has a strong sense of locality since objects do not
move quickly compared to the dimensions of the game board. And the player does not
encounter wholly unfamiliar types of objects.

Furthermore, it is important to distinguish Pengo from activities that involve genuine
violence. One simple distinction is that in Pengo it is the penguin that dies, not the
player. But there is a deeper distinction as well. The world of Pengo works in a definite,
unvarying way. The bees are always driven by the same simple Markov algorithm.
Pengo would be much harder if the bees were smarter. The bees could, for example,
observe patterns to the player's actions and devise strategies to take advantage of them.
If Pengo's bees changed their flight patterns, Pengi would certainly compensate to a
limited extent, but if the changes were substantial then Pengi would not be able to
formulate the new representations that adaptive strategic changes would require. If
someone is genuinely trying to kill you-if you are organizing a war or being hunted-
then the way you represent the world is your Achilles' heel. All the unarticulated
assumptions behind your reasoning and all the unreflective patterns to your actions
create opportunities to catch you off guard. For example, as weapons systems and their
logistical support grow more complex, and as the components that must work together
grow more numerous, the opportunities for subversion and sabotage multiply. None of
this is at issue in Pengo or other formalized wars such as chess. In such domains you can
characterize the entire spa, e of possibilities a priori. I don't advise constructing explicit
representations of those spaces of possibilities, so long as your tactics implicitly take
their properties sufficiently into account through your understanding of the dynamics
of playing the game.

C3g. Objections 211

The lesson here is that part of the benign nature of both Pengo and the everyday
world is that, far from working to subvert your understanding of them, both help ensure
that the representations you've developed will continue to work well enough. Pengo of-
fers this assurance through its simple lack of change. In the everyday world, though,
the story is more complicated. The unvarying nature of physical laws and the tendency
of physical objects to stay where you've put them certainly help your representations
to keep on working. Beyond this, considerable effort goes into keeping the physical
apparatus of everyday activities tidy and in working order. But above all, the order of
the everyday world is a social order that is actively maintained through the intricately
organized efforts of all its participants. Far from subverting the common reality, ev-
eryone makes everyone else participate in the common task of maintaining it (Heritage
1984 Chapter 4). The vast majority of this work is invisible to casual inspection, but
careful investigation or experiments in deliberate disruption can easily reveal it. Every
element of the everyday world retains its significance and its salient properties through
this continual cooperative effort. For a striking examination of this proposition in the
context of a particular door see (Latour 87).

Does Pengi really understand what it is doing? After all, you built the
circuitry in Pengi.

Lacking a satisfactory technical or philosophical interpretation of the word 'under-
standing', it is hard to speak plainly to this objection. The short answer is no, Pengi
does not understand what it is doing. No computer has ever understood to any signifi-
cant degree what it is doing.

We built Pengi's circuitry ourselves and the authors of Planners provide them with
the possible decompositions of their possible goals and with functions for computing
the consequences of their actions. What grounds could we have for ascribing some mea-
sure of understanding to a conventional Planner? One ground might be the amount of
relevant material made explicit by the Planner's representations. Without computation-
ally tractable procedures for manipulating these elaborately structured representations,
though, why should we credit the Planner with understanding them to any greater de-
gree than Pengi understands the mnemonic labels, such as the-bee-on-the-other-side-of-
this. ice-cube- next-to-me-is-moving-away-from-the-ice-cu be, that we place on its wires?
Completely general systems are easy to define, but they don't properly exist until they
really work.

Chapter C4

How Pengi works

C4a Context and summary

Recall that our project is to relate ideas about the organization of the everyday ordinary
routine activity of ordinary people to computational issues of architectures and circuitry.
The challenge of the project lies in the large range of issues involved, all the way from
whole ways of life down to details of circuitry. The last chapter was somewhere in the
middle of that range. It concerned the elements of everyday activity that I have broken
off and made my starting place, an architecture that fits with those ideas about activity,
and an overview of a system Chapman and I have built that embodies that architecture.

This chapter discusses the system's technical details-what the wires mean, where
the clock lines and delay lines are, and so forth. I will try to relate these small details
of the machinery to larger dynamic issues, if not to making breakfast at least to the
larger organization of playing this particular video game.

Section C4b describes the architecture as a whole and addresses the computational
significance of the distinctions between its two principal components, the visual system
and the central system, and the well-defined interface that joins them.

Section C4c discusses the visual system. It presents a list of the particular visual
operations implemented by Pengi's visual system and a set of criteria for evaluating this
list.

Section C4d discusses the central system. The central system is made of combina-
tional logic whose construction requires some sort of principled methods.

Section C4e puts these elements together and goes through an extended example
showing how the penguin kills a bee. Many issues arise, such as the arbitration of
conflicting claims on visual operators and the connections of this particular scenario to
the larger dynamics of the game, especially the pervasive consequences of contingency.

C4b Architecture

212

C4b. Architecture 213

V isjck
11-1

Figure C4.1. Pengi is composed of a central system made of combinational logic, a
moderately realistic visual system, and a trivial motor system. It interacts with its
simulated world on a fairly fast clock.

214 Chapter C4. How Pengi works

Figure C4.1 shows the top-level modularity of the system. We need to consider the
various boxes and arrows on two levels. One level is the ideal of an actual video game
from whose video-out an actual cable leads into the frame buffer on a Connection Ma-
chine, which performs early visual processing and connects to the parallel central system
hardware. In reality, though, large parts of this are simulated. The game runs on a
Lisp machine. There is no early visual processing because we don't have a sufficiently
robust and integrated set of vision subroutines for a Connection Machine. Instead, the
visual system simulates its early vision by reaching into the game's internals and figur-
ing out what the outcomes of various visual operators would be. The simulated visual
system certainly sweeps some important issues under the rug. The operation of the
central system's circuitry is simulated as well, but since the simulation is down at the
wire-and-gate level fewer important issues are elided there. Since our principal concern
here is not early visual processing, and to suppress unnecessary implementation detail,
I am going to proceed as if the system were organized according to the ideal.

The vision and central systems together form the player and they close a loop with
the game itself. Indeed they close a very tight loop; the game moves fast and the player
must act continually. The wires on the motor control bus continually need new values.

Implicit in Figure C4.1 are several assertions about the architecture. One claim
concerns the boundary between the visual system and central system. The architecture
offers an answer to the longstanding question concerning the relationship between a
visual system of the sort suggested by Marr-innate, bottom-up, domain-independent,
massively parallel, probably analog-and the central system-which isn't wholly innate
or so easily partitionable into modules. I believe in a sharp distinction between periph-
eral systems and a central system. (I say 'central system' in singular since I don't think
of it as modular.)

It does not matter how modular the peripheral systems are, so far as this archi-
tecture is concerned, provided they are distinct from the central system. Nor is it
wholly certain where the peripheral-central boundary is: how far along that bottom-up,
domain-independent kind of processing goes; and whether it only goes as far as shading
and minimal line-finding or whether it goes as far along as symbolic labeling and aggre-
gation of features into larger units. I do insist, however, that this boundary does not
transmit or maintain a world model. I disagree with the metaphor of inverse optics, at
least beyond the earliest visual processing. Surely some understanding of the physics
of image formation is useful in building a vision system. But one should not take that
metaphor to the extreme of saying the vision system reconstructs the world in your
head by inference from the signal on your retina (cf. Horswill 1988).

Motor control in Pengi is very simple. In the arcade, one's left hand is on a joystick
that can go left-right-up-down and one's right hand is on a button for kicking. Pengi
does not model the relevant motor skills in any detail. Three wires encode the possible
values passing from the central system to the game simulation.

Computationally speaking, the visual system and the central system differ in their
use of massive parallelism. Both systems perform a tremendous amount of computa-

C4b. Architecture 215

tion all the time, but they distribute their parallelism differently. The visual system's
computation is parallel across the image. It performs locally connected parallel com-
putation among a stack of flat arrays of simple elements, one array per stage of visual
processing. These flat arrays generate a series of intermediate representations of the
visual field. Certain kinds of global information might be collected or distributed, but
relatively few, and certainly no elaborate structures are built. Once computed, these
representations are all available to the central system. The central system's parallelism,
by contrast, is distributed across considerations. A wide variety of matters might enter
into determining the best next action. Many details might become relevant. The player
might consider taking a lot of different actions. Time is short and it must continually
decide. Thus the central system needs to be able to consider its options, reasons for and
against them, issues that bear on its decisions, and so forth in parallel. Ultimately, of
course, at the point where motor commands are issued, all that parallelism has to result
in some decision-left or right, up or down, kick or not kick-so all that logic converges
eventually. Nonetheless, a great deal of parallelism is both necessary and possible.

Pengi's account of the boundary between the visual system and the central system
roughly follows the 'visual routines' scheme of Shimon Ullman (1984), though Pengi
diverges from Ullman's account on some points. (For an important related project
see Treisman and Gelade 1980.) One can, for instance, read Ullman as not requiring
this sharp break between vision and the central system, only that routines run over
certain representations. Though we agree with Ullman's conception of visual routines
as employing a set of primitive visual operators (Ullman refers to these as elemental
operations or basic operations), we differ from Ullman in how we imagine the routines
themselves to be implemented. For Ullman, a routine resembles a computer program
that might be either compiled on the fly or retrieved from a library. For us, by contrast,
a visual routine is merely a theorist's abstraction for a common pattern of interaction
between an agent's central system and visual system. The player decides on each next
moment what operations to invoke based on its current understanding of its situation
and options.

The boundary between the visual system and the central system is like a horizontal
microinstruction set. The visual system presents to the central system a set of visual
operators that the central system can invoke any time. The central system side uses
familiar methods from logic design. A typical visual operator might follow a line, shade
in a region, pick out the red bit and put a marker on it, or tell whether the red bit is
moving. Figure C4.2 is a diagram of the general case of a visual operator's interaction
with the central system. (Hardly any of the operators are this complicated.) Operators
can take arguments, all of which are simple one- to three-bit quantities, not pointers
or symbolic names or structured information. (The arguments may or may not be
necessary, as we will see.) Most operators take one or two arguments, though a couple
take more. Once the arguments are available, the circuitry can assert an enable line
to actually perform the operation. A result is produced. There might be a number of
results, but only a few operators have more than a single bit of result. Another bit, the

216 Chapter C4. How Pengi works

Visual system CerntpaI systee,

Sargume.nt

resw It__ _ _ _

reajy £
Figure C4.2. Pengi's central system interacts with its visual system through its visual
operators. Many visual operators provide a constant read-out of some aspect of the
visual image, but others have more complex interfaces. Some of them take arguments,
all of which are carried on one- to three-bit buses. Others cause side-effects and are
governed by a control line that indicates when they should take place.

C4c. Visual system 217

mirror image of the enable bit, indicates that the result is ready. The operation might

also cause side effects within the visual system.
The results that come back from a visual operator, in addition to being immediately

available to the central system's circuitry, also go through delay lines. Thus the central

system can use the results from both this clock cycle and the previous one. The reason
for this, briefly, is that the central system has no state. It is combinational logic that
is clocked on its inputs and its outputs. It has no place to remember things like what
it was doing, or what large goal it is pursuing right now, or what use it is making of a

given operator right now-whether the operator, for example, is referring to a bee or
to spaces between ice cubes. Thus the operator values that motivated the last cycle's

queries is kept around long enough for the system to determine what use to make of the
answers. The solution of provided delay lines on operator results may not seem very

general, but it is in accord with the principle of machinery parsimony: only postulate

the absolute minimum amount of machinery necessary to cleanly explain the dynamic
phenomena. One could implement the idea of 'remembering what you were doing' with

latches, and for a while the network had some latches. But if a simpler scheme can,
without unworkable complexity, limit the state to just a delay and corner it in one part

of the system, then it is better to adopt the simpler scheme until evidence or experience
dictates something more general.

Roughly speaking, the system uses a standard two-phase clock. The central system

has inputs and outputs and gates in-between. (Our convention is to reckon 'inputs' and
'outputs' from the point of view of the central system, not the visual system.) When

the inputs change, the clock lines on the outputs need to wait until the circuitry has

all settled down before admitting the outputs into the visual system. And once these
commands to the visual system are ready, they need to be driven long enough for the

visual system to run. Since the wires leading from the central system to the visual

system are clocked in this way, the wires going the other way-i.e., the inputs to the

central system from the visual system-do not need to be clocked, though in the current

implementation they are anyway for clarity. Thus one two-phase clock clocks the inputs
to the central system and the other two-phase clock close the outputs from the central

system. The motor outputs are clocked together with the other outputs. The input
clock lines also govern the delay lines.

C4c Visual system

Conceptually, Pengi's visual system has two components, early vision and the machin-

ery implementing the visual operators. Each component is characterized by its form of

computation. Early vision performs spatially uniform, bottom-up, local-based opera-

tions on the retinal image to produce a set of two-dimensional base representations of

the visual scene. Its various modules find edges, calculate depth from stereo disparity

cues where possible, infer surface normals from shading cues where possible, and so

forth. The visual operators perform hierarchical aggregations of the information avail-

218 Chapter C4. How Pengi works

able in the base representations to individuate visual objects, mark patches with certain
specified properties, calculate spatial relationships among the marked patches, and so
forth. Pengi performs all these computations in simulation. For more about how they
might be organized in a real visual system see (Mahoney 1987).

Pengi's visual system provides about twenty visual operators, depending (as we will
see) on how you count. The first methodological principle governing these operators is
the principle of machinery parsimony. Postulate only the minimally necessary operators
and use the simplest operators that will cleanly do the job. Past that, the set of visual
operators should have several other properties as well.

1. The operators should permit Pengi to play a competent game of Pengo.

2. Each operator should plausibly be computable by the sort of visual system archi-
tecture we have envisioned.

3. The operators should not strike our engineering judgement as kludges.

4. The operators should be domain-independent, in the sense that specifying or com-
puting them should not invoke Pengo-specific knowledge.

5. Each operator's existence and behavior should be verified by psychophysical ex-

perimentation.

6. The set of operators ,.iould be sufficient and convenient for a broad range of
activities, ideally including the whole of human everyday life.

Later in this section I will consider Pengi's visual system against these considerations
in detail. For the moment, I should mention that whereas the first three properties are
nearly satisfied, some serious deficiencies remain: the operator set is very incomplete, ar-
bitrarily specifies several underconstrained design issues, needs far more psychophysical
verification, and (as we will shortly see) contains some Pengi-specific operators in areas
where the current state of research did not offer us enough guidance to formulate a seri-
ous theory. I will have many occasions to express uncertainty about the computational
reasonableness and empirical validity of details of Pengi's visual system architecture;
these issues all invite future work.

The fourth criterion is that the operators have to be domain-independent. This
domain-independence has two aspects. The relatively easy aspect is that the operators
should not depend on domain-specific facts to perform their operations. The operators
showld not be defined in terms of domain-specific concepts and categories. The current
operator set violates this rule in a couple of places, but the violations are not important.
They could easily be repaired, but the available evidence didn't sufficiently constrain
them.

The second aspect of domain-independence is more subtle. The visual operator
set should not be biased or restricted to some domain or some kind of domain. This
c(,nldition can be hard to judge without independent verification. Ideally someone should

C4c. Visual system 219

implement a set of visual operators that satisfies at least the first three criteria in some
completely different domain. Mahoney has done some pencil-and-paper exercises with
visual operators for reading topographic maps, for example (personal communication).
One could imagine implementing visual operators for picking up parts or for making
breakfast or for driving down a small-town street. One could then compare the results
for the various activities, try to make them compatible, and combine them to make a
set of visual operators that is sufficient for each individual activity and eventually for
all human activity. Obviously a great deal of work is necessary before this plan can be
put into action.

The fifth criterion is that the operators' existence be verified by psychophysical
experimentation. If one's goal is to do engineering rather than psychology then this
is obviously not a consideration. If one's goal is to do psychology then it this fifth
criterion could conceivably conflict with the third and fourth criteria. That is, it could
be that people have some operators that strike us as inelegant or domain-specific. Until
faced with overwhelming evidence, though, one should resist such hypotheses in favor
of hypotheses consistent with people being well engineered.

The visual operators are defined around three concepts:

Objects. The visual system individuates visual objects. A visual object is not
a three-dimensional articulated object and Pengi's visual system does not
perform any kind of 'object recognition.' Instead, the visual system marks
off as an object, purely on visual evidence, a patch of relatively uniform
qualities that is relatively localized (that is, not complicatedly distended),
moves as a coherent whole, and has some kind of locatable boundaries.
Several of the operators are defined in terms of these objects. The Pengo
world, conveniently, has exactly three types of objects: penguins, bees, and
ice cubes. The three object types are readily distinguishable, largely because
the video game's designer has worked to make them readily distinguishable.
It is up to the central system to invoke the operators which distinguish the
various object types.

Indexing operations. Pengi has operators that permit it to pick out the "odd
man out" (Ullman's phrase) in a visual scene. The indexed feature might
be the only red bit in the image, or the only curved bit, or the only moving
bit. The properties the visual system can pick out are called indexable
properties. Typically only very simple, atomic properties are indexable. For
more complex properties, one must perform a number of operators or even
resort to serial scanning of the visual scene.

Markers. Many visual operations are predicated on a focusing mechanism,
suggested by Ullman, involving markers. Markers implement a certain sense
of focus. Using a marker, one can mark a location in the visual field for
future reference. Suppose you have gone to the work of locating a place
on the image where something interesting is going on. If you should then

220 Chapter C4. How Pengi works

go off and focus somewhere else, under certain conditions you can jump

quickly back to your previous location. Many operators are defined in terms
of markers, especially operators for determining the spatial relationships
among the locations they mark. A marker resting on a moving object moves
along with it; this is called tracking. I don't know how many markers people
have, but Pengi has six.

(We have defined our versions of the indexing and marker concepts broadly enough that
they subsume the functionality that Ullman refers to as shifting the processing focus.
Pengi has no operators for what Ullman calls boundary tracing.)

Before listing the operators, let us describe how the central system uses the visual
operators. Each operator has a protocol of a sort that follows standard logic design
practice. Most operators have both inputs and outputs.

Inputs. Many operators have arguments, which are usually three-bit buses
specifying markers, directions, or distances. Each operator that has side-
effects has a single-bit activation input wire that tells the visual system to
perform the operator. All the other operators run on every cycle.

Outputs. Almost all outputs are binary signals that answer specific queries.

Some operators are guaranteed to produce an accurate answer on their out-
put wires by the next clock cycle. Other operators each supply a ready
output wire that indicates that the output wires have been assigned a new

set of values.

All the output wires are clocked so that their values remain available to the central

system until they are revised with new values, usually on the next clock cycle. The

input wires are clocked so that the visual system only sees their values after the central
system's circuitry has had a chance to settle down after the last change of the output
wires' values.

Operations on markers fall into five groups. (Keep in mind that Pengi implements
all of these operators in Lisp simulations, not as real computations over visual images.)

Indexing operators.

index-thing!(mt): Cause marker m to move to some t (either bee, penguin,
or cube), if one is visible. If it is already on one, choose a different one.

inrdex-thing-near!(mn,t): Cause marker m to move to some t (either bee,
pernguin, or cube) in the vicinity of the object marked n, if one exists. If it
is already on one, choose a different one.

C4c. Visual system 221

index-moving-thing-near!((m,n,r): Cause marker m to move to a moving
object within distance r of marker n. r is one of a small number of roughly
exponentially increasing distances.

Marker assignment operators.

warp-marker!(m,n): Move marker m to the same location as marker n. If

marker n is tracking an object, then marker m will commence tracking that

object as well. (There are actually two instances of this operator, called
warp-marker!-I and warp-marker!-2. I will explain this and several other

odd facts in a moment.)

warp-freespace!(m,n,d): Move marker m onto whatever object you find, if

any, by starting at marker m and moving over the empty space in direction

d. d is one of north, south, east, west.

unassign-marker!(m): Remove marker m, so that it no longer has any loca-
tion.

Marker inspection operators.

marker-rm-assigned?: Is marker m assigned? (One operator for each marker
that ever needs it. Each operator is always running.)

marks-bee?(m), marks-penguin?(m), marks-cube?(m): Is marker m resting

on a bee/penguin/cube?

marker-rm-moving?: Is marker m moving? (If so, it follows that marker m is
tracking a moving object.) (One operator for each marker that ever needs

it. Each operator is always running.)

Marker comparison operators.

towards?(m,n): Is marker m moving toward marker n?

near?(m,n,r): Is marker m within a distance r of marker n? r is one of a
small number of roughly exponentially increasing distances.

nearer?(n,p,q): Is the distance between marker n and marker p greater than

the distance between marker n and marker q? (Pengi has two copies of this

operator, named nearer?l and nearer?2.)

direction-from-rm-to-n: Returns the direction from marker m to marker n.

Two two-bit outputs, representing the major and minor axes (out of the four

compass directions) of the vector from m to n. This operator is replicated

across several pairs of m, n. All these replicated operators are running all

the time.

aligned?(m,n): Are markers n and m aligned (within some fixed, small tol-
erance) along either axis? If so, an output line encodes which axis. (Pengi

has two copies of this operator, named aligned?l and aligned?2.)

222 Chapter C4. How Pengi works

Object comparison operators.

adjacent?(m,n): Are the objects under markers n and m adjacent?

wholly-beside?(m,n): Is the object under marker n wholly in direction d
from the object under marker m?

freespace-between?(m,n): Is there nothing but empty space between the
objects under markers n and m?

This list of operators reflects a series of design choices. Lacking enough empirical
information, we had to make many of them arbitrarily.

It is an unresolved empirical issue how many markers people have. It is also not
clear whether all markers track moving objects. (In Ullman's version of the theory they
cannot.) Perhaps only one of them can, or only a few. Pengi rarely needs to track more
than two.

Most of the operators take particular markers as arguments. The aligned? operator,
for example, consults two three-bit input buses, each of which encodes one of the markers
whose locations it should compare. I am not sure if this is reasonable. What is the
engineering trade-off? The circuitry for implementing the argument scheme, while not
baroque, is a little complicated. One might choose, instead, to provide a separate
operator for every pair of markers. But this alternate scheme would seem to require
many more operators than the evidence currently warrants. A compromise proposal
would be to provide operators only for the markers that need them. One would like to
make this assignment in a principled fashion. Perhaps some heavily-used markers have
many operators whereas others are only used in special circumstances. This seems like a
reasonable proposal, but evaluating it will require some experience assembling suitable
operator sets for other domains.

The indexing operators take types of objects as arguments; Pengi's visual system
can primitively distinguish bees from penguins from cubes. At first sight this might
seem intolerably domain-specific. But in the video-arcade version of Pengo, the various
types of objects are very readily distinguishable by properties that might be expected
to be indexable: their colors, rough shapes, and characteristic forms of motion. Pengi's
visual system can distinguish the various types primitively, but we could just as easily
have arbitrarily assigned distinct colors to the different types of objects and provided a
index-color! operator.

We chose to make the index! operators take the object type as an argument rather
than providing separate operators for each type out of simple parsimony. The question
of whether the indexing property is a parameter or whether each one has a separate
operator will have to be investigated in domains where one uses a greater variety of
indexable properties.

Some of the operators neither take arguments nor cause side-effects. Pengi maintains
a convention that such operators have require no activation inputs and continually
update their values. They might be thought of as providing a read-out of a continually

C4c. Visual system 223

computed parameter of the image. This convention seems fairly reasonable for the
particular operators in this set, but it need not be reasonable in general, depending on
the practicalities of the machinery implementing the architecture. Two sets of always-
running operators, marker-assigned? and marker-moving?, are replicated across all the
markers.

A third set of always-running operators, direction-from, is replicated across certain
pairs of markers-about half a dozen pairs. This is because Pengi often needs to keep
track of the spatial relations among several moving objects at once. We have no princi-
pled reason to believe that this particular set of marker-pairs should be sufficient across
all tasks. But Pengo-playing, with all its incompletely predictable moving objects, re-
quires an awful lot of continual analysis of spatial relations compared to most activities.
It is an empirical question whether Pengi can judge more spatial relations at one time
than people can. Most likely it can. The machinery hypothesized for shifts in selective
attention by Koch and Ullman is also more strongly focused than Pengi.

More generally, it seems more necessary to replicate operators across their possible
arguments when different lines of reasoning have frequent, conflicting needs for the
same operator. Often we find a trade-off between complexity of axbitration schemes in
the central system and proliferation of operators. We have tried to call each trade-off
according to our engineering judgement, but more experience with other domains will
be required to make these choices in a more principled fashion. This is an important
area for future research.

A few operators have multiple copies in cases where it seems necessary for Pengi
to use the operator in multiple ways, with different arguments, during the same cycle.
We don't know how reasonable this is, but we expect that the necessity is specific to
time-pressured domains like Pengo. In any event, I suspect that much of the skill of
playing Pengo well is in developing complex schemes for sharing operators across the
various purposes to which they continually need to be put. I also suspect that some of
these schemes are more complex than we can comfortably wire up by hand in building
Pengi's central system.

Some of the indexing operators start "near" some already marked location. (They
are related to what Koch and Ullman call proximity preference in shifting operations.)
These operators offer no strict contract about which object they will pick out or whether
it will be the very nearest, except that if they are activated often enough the operators
will eventually pick out each of the objects in turn. Recent experimental evidence on
return inhibition (Klein 1988) suggests that we would be justified in making Pengi's
indexing operators cycle through all the nearby indexable objects rather than always
choosing new ones randomly. This would greatly improve Pengi's performance since it
would be able to focus on newly dangerous ice cubes and bees more quickly.

Likewise, the comparison operators that determine "nearness" and comparative "dis-
tance" are not guaranteed to be very accurate, and the central system should not depend
on any great accuracy. Some applications would probably benefit from a more carefully
specified qualitative contract, though.

224 Chapter C4. How Pengi works

Some of the operators take a "distance" argument. The argument can only take a
smallish number of values which correspond roughly to the various scales on which the
visual system operates. Pengi's visual system has no worked-out conception of multiple-
scale vision, but I suspect that many operators are replicated across scales. Another
possibility is that the whole operator set employs one scale at a time and the central
system can change this scale whenever it wants. In any event, Pengi only uses on, of
the legal values for distance, a value corresponding to about a quarter of the width of
the game board.

Some of the operators suggested by Ullman employ a notion of bounded activation
or coloring. Ullman suggests that some visual operators 'color in' certain distinctive
regions of the visual field. (This idea is unrelated to the perception of colored light, as
in red. yellow, and blue.) This cap help, for example, to determine whether something
is inside or outside a curve or to sweep out certain significant regions of the scene. It
is also useful in separating figure from ground. Still, although coloring must play an
important rolo An other domains, it has not yet found a use in Pengi. I suspect that,
in Pengc-playing, coloring is only necessary for some very advanced sorts of navigation
amidst mazes of ice cubes.

It is evident that the design of these visual operators is underconstrained. What is
more, Pengi's visual operators do not address many of the issues in vision that do not
arise in playing Pengo. Examples include texture, scale, shading, and depth. In a more
realistic set of operators, the individual operators would have to be more general and
there would have to be more operators for all of those concepts. Perhaps a hundred
different operators are necessary, but it is far too early to tell. In the end, it is an
empirical matter what operators human beings have and whether those operators would
be ideal for robots. Psychophysical experiments can help resolve such questions. Ullman
describes a number of such experiments.

C4d Central system

Recall that the central system is made of combinational logic. Inputs arrive from the
visual system for both this clock cycle and the previous one; the circuitry generates the
outputs. Some of the outputs are operator requests to the visual system; others are
commands out to the motor system. The central system consists of several hundred
gates, most of them specified individually in a simple language.

The hardest part of building the central system, particularly in this domain, concerns
contention for visual operators. A Pengo board is a visually busy place. Often Pengi will
have three different uses for some operator at once. Consider, for example, the operator
that determines whether two objects are close together. Pengi might want to know if
the bee is close to the obstacle and if the penguin is close to the projectile at the same
time. Thus arises the difficult technical question, already mentioned in the discussion
of the visual operators, of how to arbitrate among competing claims on an operator.
This question has a number of answers. In building Pengi's circuitry we use a set of

C4d. Central system 225

macros for representing conflicts and priorities among various claims on an operator.
When this doesn't suffice, as we have seen, it can become necessary to replicate the
visual operators. There is a trade-off between very complex forms of arbitration and
operator replication, but this is not the best domain to explore the trade-off. The real
experts in the game, I suspect, are doing very sophisticated things to use their visual
operators. They may depend on properties of their circuitry and operators that Pengi
does not model, such as the slow propagation time of brain circuitry.

To read the remainder of .-his chapter you will have to be very comfortable with
basic digital logic design ideas.

We built the circuitry with Lisp procedures; the simulator calls this code before
starting the game. To build an and gate we call andg. The andg function's arguments
are the gate's input wires; its output is the gate's output wire. The org function builds
or gates; the invert function builds inverters. This being Lisp, we can nest these calls,
making an and gate whose inputs are taken from the outputs of or gates whose inputs
are taken from the outputs of inverters. The wires can be assigned to global variables or
passed around as arguments. Constants include the various directions and scales that
are sent to the operators; typically they will be one to three bits worth of information.
Another set of functions generates simple circuitry for manipulating these buses. For
example, if-bus takes a condition wire and two buses and returns a output bus that is
driven by one of the two input buses according to the condition; this is a simple matter
of logic design, two gates for every bus line. (This simple scheme for specifying circuitry
is not at all novel. It resembles Kaelbling's REX language (1987).)

The code that builds the central system's circuitry largely revolves around the prob-
lem of deciding which values to place on the operators' input wires. Much depends on
whether a given operator has more than one use. When an operator only has a single
use one can use the set-inputs! form to permanently set its inputs. For example,

(set-inputs! marks-penguin? marker penguin-marker)

says to set the marker argument to the marks-penguin? operator to the value of the
global variable penguin-marker, which is 0. Thus the marks-penguin? operator's result
will always indicate whether marker 0 is resting on the penguin.

Canned arbitration circuitry is necessary in the more complicated cases. This cir-
cuitry is generated by a set of functions- condition, overrides-action, and several
others-that expand into calls on basic circuit-construction functions like andg and
invert. These functions implement much the same argumentation scheme first dis-
cussed in Chapter B4 and used in the rules in the running argument system. As in
the running argument system, the metaphor is that various patches of circuitry in the
network conduct an argument. A patch of circuitry can propose an action, either a
primitive action (such as kicking or moving a marker) or a compound action (like en-
gaging in a certain bee-hunting tactic). Another patch of circuitry might make its own
proposal or else raise an objection to the first proposal. A proposed action is taken pro-
vided no objection against it is sustained. The condition function declares a condition

226 Chapter C4. How Pengi works

under which some objection should be posted against an action. The overrides-action
declares that the taking of one action constitutes an objection to some other action.
Each function defines appropriate circuitry in a straightforward fashion.

F(,r example, the flloowiiig code arranges for marker 0 to index the penguin as soon
as the game begins:

(action index-to-penguin index-thing!
marker penguin-marker
object-type (constant 'penguin 'object-type)
doit? *t*)

The action function defines an action named index-to-penguin. In Pengi's terminology,
an action is an assignment of values to an operator's inputs. The action function creates
circuitry that gates these values onto the operator's inputs on those cycles when Pengi
decides to take that action. In this case the operator is index-thing!, which has three
inputs: the marker to be moved (i.e., marker), the indexable property to be employed
(i.e., object-type), and the operator's activation line (i.e., doit?).

This next bit of code assures that Pengi only performs the index-to-penguin action
on the very first cycle of the game. Once Pengi does perform index-to-penguin, marker
0 will rest on the penguin for the rest of the game. As a result, the marks-penguin? op-
erator, whose marker input we set to 0 a moment ago, will return false on the first cycle
and true forever afterward.

(condition index-to-penguin (invert *marks-penguin?-result*))

The condition function takes an action name and a wire. Here the wire is the output of
an inverter whose input is the result of the marks-penguin? operator. (In general, the
result of an operator is a wire or bus bound to the global variable *operator -result*.)
The index-thing! operator is also used to find bees; another bit of code assures that the
action implementing this use of the operator is suppressed while Pengi is finding the
penguin:

(overrides-action index-to-penguin index-to-bee)

The overrides-action function takes two actions and generates circuitry that assures
that the second one is suppressed whenever the first one is activated.

To summarize, the bits of code we have just discussed construct circuitry for three
closely related purposes: (1) to assure that the result of the marks-penguin? operator
always indicates whether marker 0 is located on the penguin, (2) to use the index-
thing! operator to move marker 0 onto the penguin on the first cycle of the game, and
(3) to assure that Pengi does not attempt to use the index-thing! operator to find both
penguins and bees on the same cycle.

C4e. Example 227

Figure C4.3. In this schematic situation from a Pengi game, the player will notice that
the ice cube is aligned with the bee, move the penguin alongside the ice cube, and tell
the penguin to kick it.

C4e Example

Figure C4.3 presents a schematic situation from a Pengo game. The penguin finds itself
in a particular situation involving two ice cubes and a bee. (In a normal situation more
blocks and bees would be found nearby.) It would probably be a good idea for the
bee to walk up behind the ice cube and kick it at the penguin. How does this work?
In my explanation I will interpolate some of the code, simplified in various ways, that
builds the circuitry that is responsible for these routines. I won't be presenting all of the
necessary code because it is voluminous and very dense, so some of the terms mentioned
in the code will go undefined or described only in English.

As we saw in the previous section, Pengi has a convention that marker 0 tracks
the-penguin. As the penguin moves across the screen, marker 0 moves along with it.
Consequently, Pengi can now perform on marker 0 all the operators that are predi-
cated on markers and thus find things out about the penguin. For example, it can
perform visual operations to judge other objects' spatial relationships to the penguin
and determine whether the-penguin-is-moving.

Another, more complicated, convention is that marker 1 is, with specific rare excep-
tions, on the-current-bee, the bee that Pengi is either running away from or attacking.
In this case Pengi is going to try to attack the bee. The circuitry must maintain this
invariant that marker I stays on the current bee. If some other bee becomes more inter-
esting, either more dangerous or more readily attackable, then somehow marker 1 has

228 Chapter C4. How Pengi works

to get on that more interesting bee. Thus, marker 2 is constantly picking out moving
objects and some circuitry is constantly checking if marker 2 marks a bee and if that
bee is more interesting, by various criteria, than the bee under marker 1. (Dangerous
attacking bees, for evanmple, are more interesting than vulnerable bees that are running
away.) If it is then Pengi moves marker 1 onto marker 2, unassigns marker 2, and
then starts once again looking around at other bees with marker 2. As a consequence,
Pengi will drop whatever it was doing to the previous bee and now set about dealing
with the new bee. Marker 2's scanning routine is always proceeding in the background.
Whenever the arbitration circuitry lets it use the necessary operators, the circuitry im-
plementing this routine tries to find the most interesting bee. These operations have a
relatively low priority, but they are always trying to happen.

Here is the code that drops marker 2 (i.e., moving-marker) on moving objects near
the penguin.

(set-inputs! index-moving-thing-near!
tracking-marker moving-marker
locus-marker penguin-marker
radius (constant 200 'distance)
doit? (andg *penguin?-result*

(invert *index-moving-thing-near !-result*)))

Some care is required to make this operator run at the right times. At the very beginning
of the game, it should wait until marker 0 has started to track the penguin. More
importantly, it should only run every other cycle so that other operators can spend the
odd cycles performing tests on the new object it has identified. As a result, it only runs
on cycles when it is not returning a result.

Once Pengi finds a new moving object, here is the code that determines whether the
moving object should be declared the currently most interesting bee:

(set-inputs! varp-marker!-1
markerI bee-marker
marker2 moving-marker
doit? (andg *index-moving-thing-near!-result*

marks-bee?-result
(definitely *nearer?1-result*)))

Pengi has two warp-marker! operators because we didn't have the patience to figure out
how to arbitrate between their two uses. (This could be more principled. The other use
involves identifying and avoiding ice cubes that have been kicked by bees.) This copy of
warp-marker! moves marker 1 (i.e., bee-marker) to the object being tracked by marker 2
(i.e., moving-marker) provided that we have just picked out a moving object, the object
is a bee, and the bee is closer to the penguin than was the previous interesting bee. One
might add many more conditions.

Figure C4.4 shows the initial scene with markers 0, 1, and 2 assigned. We draw
markers with polygons. Triangle is marker 0, square is marker 1, and so forth.

C4e. Example 229

Figure C4.4. Pengi assigns marker 0 (triangle) to the penguin. It moves marker 2
(pentagon) among the nearby bees until it finds one that seems vulnerable or dangerous,
whereupon it also moves marker 1 (square) onto that bee so it can focus on it.

Another operator says, pick out an ice cube near the penguin. Pengi applies this
operator repeatedly, picking out all the nearby ice cubes and running some more circuitry
to see if it might use the ice cube to attack the current bee. It does this by using
freespace-between? to determine whether there is free space between marker 1 (the bee)
and marker 3 (the ice cube). If so, and if various other conditions apply, then the ice
cube is a good candidate projectile. Next Pengi starts figuring out the directions among
things. It uses direction-from twice, to find the axes that relate the bee and the ice cube
and also to determine the direction of the penguin from the ice cube in terms of these
axes. A fair amount of circuitry sorts among the various cases. For example, perhaps
the penguin will have to back up and move around behind the ice cube and kick it.
Perhaps it will already be lined up with the ice cube. Different circuitry covers different
cases. This case at hand is relatively simple.

Here is the code that determines whether marker 3 has managed to land on an
acceptable projectile.

(uetq *direct-proJ ectile-won?*
(andg *frsespac*-bstwe.n?-rssult*

(invert *diroct-moving?*)
(invert (andg (possibly *noarer?2-result*)

tovards?-rosult
(invert *aligned?1-result*))))

230 Chapter C4. fow Pengi works

Figure C4.5. Pengi has now assigned marker 3 (hexagon' to the ice cube because it
seems like a good projectile for attacking the bee.

I he ice cube under marker 3 is an acceptable projectile under three conditions. First,
there should be free space between it and the bee. Second, it should not be moving (i.e.,
from someone having kicked it). (Another bit of code sets the constant *direct-moving?*
to the output wire of a circuit that determines whether the object under marker 3 is
moving.) Third, it should not be the case that the bee is closer to the ice cube than the
penguin and also headed toward it. The third condition is prudent lest the bee arrive
at the ice cube first and kick it.

Figure C4.5 shows the same scene with the marker 3 assigned and the various di-
rections mapped out.

The next step is to start moving. Pengi knows what direction it needs to move now by
performing a simple calculation (using logic circuitry) with the various representations
of directions and axes. In the diagram, the penguin must move upward so as to align
with the projectile. Once aligned, it then moves rightward toward the projectile.

Here is the code that aligns the penguin with the projectile.

(action align-with-projectile got
direction (diroction-in-othar-diuension-from

*targot-to-proj ectile-diroction-major'
*penguin-to-proj octilo-direction-majors
penguin-to-proj ectile-direction-minor)

doit? oto)
(condition align-with-projectile (invert *alignod?I-reult*))

The global variablet used in computing go!'s direction input are the buses that return

C4e. Example 231

frees pace.

Figure C4.6. Pengi has aligned the penguin with the ice cube and is about to kick it at
the bee.

the two components of the two direction-from operators. The call on the function
direction-in-... expands into circuitry for computing the appropriate direction. Since
this action is conditionalized on the penguin not being aligned with the projectile, it
will stop suggesting itself once the penguin is aligned. Once the penguin is aligned with
the projectile, the following code will propose moving the penguin toward the projectile.

(action run-for-projectile go!
direction *penguin-to-proj ect ile-direct ion-maj or*
doit? *Ct)

(condition run-for-projectile *aligned?1-result*))

Instead of the condition on the run-for-projectile action, we could equally well have
specified:

(overrides-action align-with-projectile run-for-projectile)

This would guarantee that Pengi would not move the penguin toward the projectile
until it had finished aligning the penguin with the projectile. The two actions are
incompatible because the penguin cannot be moved diagonally.

Finally, once the penguin is adjacent to the ice cube, it kicks it at the bee.

(action kick-projectile kick! doit? *te)
(condition kick-projectile *adjacent?-result*)

232 Chapter C4. How Pengi works

Remember that all of these operators have been running all the time. Pengi is
constantly checking if there is free space between the projectile and target, and that is
constantly a condition of the next move. It is also constantly checking whether the bee
is aligned with the projectile, and that too is constantly a condition of the next move.
Consequently, if the bee moves out of range then Pengi will stop attacking the bee,
though a different bit of circuitry could make a separate decision to proceed anyway in
case the bee moves back into range. This more speculative tactic is not implemented
but a beginning player like me regularly does it and it would be easy to implement.

Pengi is also always checking, as much as it can, to see whether it has marker 1 on
the most interesting bee. If some other bee is easier to attack or is too dangerous, it
always wants to know that. That is why, as mentioned earlier, the routine whereby Pengi
marches marker 2 among the various bees and compares them with the current bee is
happening all the time as well. The penguin may take a definite path across the board
to kick the ice cube, but the process by which it does so is not a four-step serial program.
As a consequence, many different lines of reasoning want to make claims on the visual
operators all the time. This is the origin of the problem of operator contention. Some
of these routines can wait for a few cycles if necessary. Checking around for a dangerous
bee, for example, can't wait all day, but it can wait for a couple cycles. It can have a
fairly low priority. The programmer must make many such judgements, such as what
conflicts with what and what has to happen right immediately after what.

Keep in mind that all the operators can run in parallel. It is not a matter of one
operator per cycle. Still, the programmer does operate under several constraints. First,
Pengi must check all its conditions frequently enough. Second, Pengi must not try
to do conflicting things with an operator on any given cycle. Third, Pengi must be
able to keep track of the various claims on its operators despite its minimal state. In
order to interpret its operators' results, it must also be able to reconstruct what it was
doing on the previous cycle. It doesn't, for example, have a queue into which it can
put the different functions which it wants to assign to an operator. Nor would such a
queue help, since the various operators making up a particular visual routine have to
be coordinated so closely. A lot of the state comes from the markers resting on things.
Pengi can reconstruct a lot of what it was doing by looking at the markers. A fourth
constraint is that the programmer's task must be tractable. These considerations trade
off in various ways.

The routine for kicking the ice cube at the bee can get off track for a variety of
reasons. It can be a good idea to abort: Pengi might see another bee coming too close,
or the bee it is attacking might move out of range, or someone might kick the projectile
ice cube of the way, or something else might block its path, or something might block the
penguin's path (though the penguin might be able to kick it away), etc. More generally,
this routine might interact with many other routines. After all, Pengi is checking a lot
of conditions all the time; many contingencies might arise. For example, Pengi might
go through the first half of this routine, be distracted by something, and then come
back and go through the second half. This is what it means to be continually redeciding

C4e. Example 233

what to do. It can stop on a dime if something else becomes the right thing to do.
Pengi does have a small degree of inertia, so to speak. Pengi's inertia does comes

not from pushing ahead with some Plan but from the inertia of its markers. The
markers' being on various objects focuses the system on them and thus to a certain
extent preoccupies it. Sometimes the action is moving so thick and fast that there isn't
time to move marker 2 around among other candidate interesting bees, so that a bee
can sneak up behind the penguin and sting it. That is how I lose the game very often.
Typically when I watch Chapman play the game by looking over his shoulder, I observe
by his actions that he is only noticing a portion of what I am noticing. No doubt he is
seeing things that I am not as well. One's perception is necessarily very selective, and
skill in the game lies largely in effective selection policies. It is not a matter of making
a world model and processing everything there is to know about it. Pengi's interactions
with its world have a sense of focus that arises from the interaction with its marker
assignment policies with the ways in which the game board commonly evolves.

Chapter C5

Related work

C5a Context and summary

This chapter discusses briefly how Pengi and the larger project of which it is a part
compare to several other projects within AL. These projects fall under two overlapping
headings: cognitive architectures and theories of action as such. Since I am concerned
with the relationship between theories of action and theories of machinery, I will only
consider the aspects of these projects that bear on this issue. In particular, while a
great deal of interesting work has been done on the processes by which Plans might
be constructed (for a survey see Tate 1985), leading to ideas like adaptive planning
(Alterman 1986), case-based planning (Hammond 1986), derivational analogy (Carbonell
1983), meta-planning (Stefik 1971, Wilensky 1971), and opportunistic planning (Hayes-
Roth a.,d Hayes-Roth 1979), my concern here is not with Plan-construction per se but
rather with theories of action, whether they involve Plans (or even plans) or not.

Even though I have severe disagreements with most of the projects I will describe, I
have learned from all of them. Because they were conducted by intelligent and thought-
ful people, both their successes and their failures are informative about the nature of
cognition and activity. Since many of the projects are still under way, many questions
remain open.

Four themes recur. First, a theory of cognition (at least as construed mentalistically,
as thought within the head), even of the cognition involved in constructing plans, is
not a theory of action. Studying cognition, whether as psychology or engineering, is
a perfectly valid enterprise, but theories that posit as-detailed-as-necessary cognitive
models and simulations of the outside world must face the computational complexity
invariably attendant on such an aggressively mentalist stance in application to real
domains.

A second theme is my insistence that ideas about machinery be motivated by a seri-
ous account of activity. Toy problems cut to the measure of overly simple formulations
of action offer a severely impoverished basis for evaluation.

A third theme is the trade-off between oversimplified formalizations and ccippling

234

C5b. The classical Planning literature 235

computational complexity that marks a great deal of Al work. Section A2d has already
sketched my analysis of this problem and offered a plausibility argument for considering
it an inevitable consequence of mentalist premises. Nonetheless, some recent projects
have begun attacking the trade-off between oversimplification and intractability with
much greater subtlety than in the past. Time will tell whether and under what condi-
tions these projects will succeed.

Finally, several of these projects have, unlike my own, implemented their ideas on
actual mobile robots. Whereas the running argument system and Pengi have merely
interacted with simulated worlds, their robots have actually been located in the real
physical world. Building a robot and getting it to wander down a fluorescent-lit office-
building hallway, of course, is no guarantee that one's theoretical ideas are correct, but
extended experience with even the most restricted robots has forced some hard thought
about the hard problems of organizing activity in a world of contingency.

C5b The classical Planning literature

Several chapters have already discussed the tenets of the classical Planning literature.
Activity is the execution of Plans, which are program-like structures that come from
a Planner whose inputs are descriptions of the situation and goal. In Chapter Al we
saw that the very earliest definitions of Planning (Miller, Galanter, and Pribram 1960,
Newell, Shaw, and Simon 1960) emphasized that a Plan is a hierarchical structure whose
lower, tactical levels can often be left unelaborated until it comes time to execute them.

But much of the early Planning work was concerned with a more constrained prob-
lem: given situation and goal descriptions, produce a Plan whose execution in that
situation is guaranteed to produce that goal. This early work concentrated oih the is-
sue of subgoal interactions: if a goal has a conjunctive form, as in "achieve both A
and B", then the Planner must take care that the Plan steps for achieving the var-
ious subgoals don't interact destructively. The projects that pursued the problem of
domain-independent Plan-construction for conjunctive goals form an impressive coop-
erative inquiry over a period of about ten years (Sussman 1975, Warren 1974, Tate 1975,
Waldinger 1975, Sacerdoti 1977, Stefik 1980, Wilkins 1983). It's an attractive technical
problem because it comes with a simple, clean formal correctness criterion. One can
state "if this Planner produces a Plan then the execution that Plan in the relevant
situation will effect the relevant goal" as a mathematical proposition and then prove it.
As I've already mentioned, it turns out that all of this work can be viewed as proving
special cases of a single theorem (Chapman 1987).

Anybody can make up a theory of action by building a machine with inputs and
outputs. What's hard is to make a theory of activity that offers some good reason to
believe that the prescribed actions will work. Viewing Plan-construction as automatic
programming provides an especially definite reason-to-believe in the form of a correct-
ness theorem. The problem, as Section A2f has mentioned, is that when formalizations
of Plans, goals, and situations become more realistic, proving this theorem becomes im-

236 Chapter C5. Related work

practical and then impossible. Some other account is required. 'Hcuristic' mechanisms
that merely achieve their goals sometimes are not satisfactory without a principled char-
acterization of when they do and don't work. Nor are mechanisms that keep driving till
they hit something and then figure out what to do next.

A realistic theory of activity has to characterize the larger equilibria that govern
interactions between sensible creatures and benign worlds. Making a theory of activity
is extremely difficult because it requires taking a broad range of issues into account.
Whereas proving Plans correct tends to force oversimplification by eliminating contin-
gency and collaboration and culture, characterizing real activity tends to force one to
take all these meliorative influences into account. Technical questions tend to become
continuous with philosophical and psychological and sociological questions. Much as
one might wish it were different, that's how it is.

One of the most important early Planners was the Strips Planner used by the Shakey
robot at SRI (Fikes and Nilsson 1971, Fikes, Hart, and Nilsson 1972, Nilsson 1984).
Having been motivated by a real mobile robot rather than simulated blocks worlds, this
project exhibited some uncanny insight into the nature of Planning, little of which was
followed up by later work (though see Chien and Weissman 1975).

One of the novel elements introduced into artificial intelligence research
by work on robots is the study of execution strategies and how they interact
with planning activities. Since robot plans must ultimately be executed in
the real world by a mechanical device, as opposed to being carried out in a
mathematical space or by a simulator, consideration must be given by the
executor to the possibility that operations in the plan may not accomplish
what they were intended to, that data obtained from sensory devices may
be inaccurate, and that mechanical tolerances may introduce errors as the
plan is executed.

Many of these problems of plan execution would disappear if our system
generated a whole new plan after each execution step. Obviously, such a
strategy would be too costly, so we instead seek a plan execution scheme
with the following properties:

(1) When new information obtained during plan execution implies that
some-remaining portion of the plan need not be executed, the executor
should recognize such information and omit the unneeded plan steps.

(2) When execution of some portion of the plan fails to achieve the in-
tended results, the executor should recognize the failure and either direct
reexecution of some portion of the plan or, as a default, call for a replanning
activity (Fikes, Hart, and Nilsson 1972, page 268).

The system that executed Shakey's Plans, called Planex, had access to a summary of the
reasoning behind the Plans in the form of the Planner's 'triangle tables'. This informa-
tion allowed Planex to perform some limited kinds of execution-time improvisation and
repair. For example, having discovered that some plan step's precondition was already

C5c. Extended Planning schemes 237

satisfied in some way, it would know enough to cancel the plan steps whose purpose wa•
to satisfy the precondition in some other way. But the Shakey project did not take the
logical step of effacing the distinction between Planning and execution altogether, and
later work in the field concentrated on Planning to the near-total exclusion of execution.
A few executives grew relatively sophisticated, especially that of another mobile robot
called Hilare (Giralt et al 1984), but clear lines have separated the executive's job from
the Planner's.

Incidentally, the word 'planning' has a second, less common use in the AI literature
that should not be confused with the more established use this section has been dis-
cussing. This alternate use begins with GPS (Newell, Shaw, and Simon 1960). GPS has
two heuristics for searching its problem spaces (or, to use the 1960 vocabulary, 'task
environments'-note that the 'task environment' is a structure in the agent's mind,
not its actual physical environment). One (pp. 259-261) is the technique of means-
ends analysis using difference reduction (cf. Section C3e). The second, called 'planning'
(pp. 261-262), involves constructing a coarser problem space by, for example, system-
atically removing information from each of the states and operators in the first space.
A solution in the coarser space might provide signposts for a solution in the original
space. Although Miller, Galanter, and Pribram used many ideas from GPS in their
classical formulation of Planning (1960), their actual notions of Plans and Planning are
not related to those of GPS. The GPS notion of planning survives in projects such as
(Durfee and Lesser 1986). Abstrips (Sacerdoti 1974) uses a closely related technique to
control search in Plan spaces.

C5c Extended Planning schemes

Several projects, most of them still in progress, have sought to extend the concept of
Planning in various ways. They are a disparate lot, but the ideas about activity that
Section Ala called the 'planning view' continue to unite them. On this view, activity
is fundamentally a matter of constructing and executing Plans. All of these projects,
avowedly or not, also continue to treat Plans as computer programs in accord with the
research project originally defined by Miller, Galanter, and Pribram.

Perhaps the culmination of the classical Planning tradition is Wilkins' book Practi-
cal Planning (1988), which describes a nonlinear Planner called SIPE. SIPE's strengths
and weaknesses are succinctly described in Chapter 2 of his book. Briefly, Wilkins
faces head-on the necessity for a "balance between epistemological and heuristic ade-
quacy" that he accurately sees as the central problem for classical Plan-construction
research, "retaining as much expressive power as is practical, yet making enough re-
stricting assumptions so that a viable, efficient implementation can still be realized"
(p. 12). Whereas I consider this balance unachievable for purposes of living everyday
life, it is impossible to make a knock-down argument that no acceptable balance can be
found. Wilkins' strategy is to reduce the complexity of evaluating the Planner's truth
criterion by embracing the very restrictive Strips state-space style of action represen-

238 Chapter C5. Related work

tation. He then attempts to compensatz for the resulting expressive difficulties with
a collection of reasonably principled heuristic methods, both domain-independent and
domain-specific. Wilkins also asserts that search should be controlled with domain-
specific heuristics, though it remains to be seen what it takes to tame the vast searches
generated by an "epistemologically adequate" Planner in real domains. Wilkins neglects
many epistemological questions by permitting SIPE to rely heavily on an accurate and
continually updated world model. (It is unfortunate and telling that he uses the word
,epistemological' to refer to the expressive power of the Planner's representation scheme
rather than to the practicalities of stocking its world model with definite knowledge
about the actual world.) SIPE can express its uncertainty on specific points, but it has
no principled way of compensating for its uncertainty. Thus an application of SIPE to
real domains will require facing the difficulties of making genuine world models. Wilkins
assumes the classical partition of responsibilities between Planner and executive. His
executive is capable of initiating re-Planning when things go wrong (Wilkins 1985), but
in doing so it too relies heavily on the world model. In Chapter 12 Wilkins briefly men-
tions a project to reconcile 'planning' and 'reactivity' by loosely coupling SIPE with
PRS (Georgeff. Lansky, and Schoppers 1986) to drive the Flakey robot. This project
should be very interesting to watch as it begins to seriously address the executive's re-
sponsibility to act flexibly on the spirit of Plans rather than inflexibly on their letter. To
date, though, Wilkins' accomplishment has been to work within the classical Planning
framework, hoping to alleviate its serious shortcomings by amending and generalizing
it. While he has made classical Planning into a more serious proposition, he has also
made it much harder to evaluate. In the end, we cannot seriously address whether and
when and why a scheme like Wilkins' will suffice until we move on from isolated toy
problems to a much more detailed theory of activity as a whole.

The recent work of Dean represents another assault on the trade-off between episte-
mological and heuristic adequacy in Planning. Dean's principal contribution has been
an unprecedented subtlety in the application of the tools of computational Complexity
theory to research in Plan-construction. Noting the seeming impossibility of resolving
the trade-off between epistemological and heuristic adequacy in domain-independent
Plan-construction, Dean is investigating Plan-construction in classes domains whose
formalizations have some non-trivial structure. For example, (Dean and Boddy 1987)
investigates the possibilities of algorithms that perform inference tasks over a formal-
ization of causality, buying tractability at the price of incompleteness. Future work
must determine whether these incomplete algorithms suffice for Plan-construction prob-
lems in real domains. (For an analogous project exploring the strategy of purchasing
tractability with incompleteness in deduction tasks involving objective representation
schemes see Levesque and Brachman 1987.) In a related project, (Dean 1987) inves-
tigates time-pressured Plan-construction in a formalization of action related to those
of the process control literature. Instead of meaningless the 'state spaces' of classical
domain-independent Planners, Dean approaches the problems of resource allocation in
scheduling activities involving continuous flows of materials. Insight into the relation-

C5c. Extended Planning schemes 239

ships between epistemological and heuristic adequacy in such restricted but interestingly
structured domains will doubtless lead to a deeper understanding of the issues involved
in using Plans to organize other, less restricted forms of activity.

Section B4b has already discussed the concept of interleaved Planning and Section
B4c has discussed the concept of postponing explicitly manipulating the recursively
decomposed goal-structure.

Much work has gone into generalizing Planning's formalizations of action beyond the
class':al Strips assumptions of discrete operators and states, particularly by explicitly
representing and reasoning about the temporal relationships among the salient actions
and world states (see particularly Allen 1981, Allen and Koomen 1983, Dean 1985,
Dean and McDermott 1987, McDermott 1982, Shoham 1987 and 1988, Vere 1983). As
the analysis of Section A2d would suggest, the increased realism of world modeling
has led to grave Complexity difficulties. Lozano-P~rez, Mason, and Taylor (1984) have
begun a project to extend classical Plan-construction techniques to employ relatively
sophisticated formalizations of spatio-temporal relationships motivated by problems of
motion Planning in robotics. See Donald (1987a and 1987b) and Erdmann (1987) for
further development of these ideas. Once again, increased realism in Planning is bought
at the price of grossly intractable Complexity. See Canny (1987) for further insightful
analysis of the Complexity of motion Planning and related problems. Lansky (1987) is
also exploring Plan-construction Problems whose solution can benefit from knowledge
of domain geometry.

Georgeff and Lansky (1987) and Firby (1987) describe two closely related projects
under the rubric of 'reactive planning'. Although this phrase has been widely used in
"a generic way in the AI community since around 1984, for these projects it refers to
"a technique whereby specified conditions cause an agent to retrieve certain Plans from
its library and begin executing them. The 'reactiveness' is thus fairly coarse. This
technique will have to be evaluated in terms of properties of the Plan library and the
forms of interaction to which the agents Plan-selection policies give rise in various kinds
of worlds. (For an earlier project that refers to its techniques as 'reactive' and prefigures
some of these ideas see Fox and Smith 1984a and 1984b.)

Schoppers (1987) describes 'universal plans'. A universal plan is a highly conditional-
ized Plan built by exploring all possible paths through the space of possible interactions
between an agent and its environment. This approach of explicitly representing the
dynamics of the agent's prospective activity is praiseworthy, but a representation of
dynamics at the classical state-space level would not seem to have enough structure to
keep the space of possible interactions from exploding and resulting in unwieldy Plans.
Future work might explore the possibility of using a more sophisticated formalization
of action to control the explosion by making explicit the domain structure that a state-
space representation collapses.

240 Chapter C5. Related work

C5d Production systems, ACT*, and Soar

In the 1960's, Newell and Simon initiated a research project that envisions using pro-
duction systems to explain what people do when they pursue such intellectual tasks as
constructing logic proofs and solving cryptarithmetic puzzles. Their classic description
of production systems is (Newell and Simon 1972).

Simplifying a little, a classical production system is organized around a distinction
between short-term and long-term memory. Short-term memory is a limited-capacity
store of symbols. The knowledge in one's long-term memory takes the form of a collec-
tion of productions. When the left-hand side of a production matches the contents of
the short-term memory, it fires and deposits the contents of its right-hand side into the
short-term memory. Only one production fires at a time. If several productions wish to
fire then some conflict resolution scheme chooses among them. Many standard control
structures can be implemented within this scheme (Newell 1973) and Nilsson's (1980)
text formalizes many AI issues within a production system framework.

Production systems have many attractions. They are simple and uniform. They
offer a simple account of learning as incremental accumulation of productions. They
suggest both the elements of flexible decentralization and parallelism of human thought
(in the process by which productions decide whether they would like to fire) and its
elements of rational centralization and seriality (in the selection among the candidate
productions). And they lend themselves to modeling the verbal reports of subjects in
experiments such as those reported in (Newell and Simon 1972).

Chapter B3 has already distinguished between the imperative semantics of produc-
tions and the so-long-as semantics of Life rules and dependency networks. Whereas
both a Life rule and a production will fire when they are applicable, only a Life rule's
consequences will be retracted automatically when they are no longer justified. As a
result, the running arguments system always has a clear, consistent sense of what it is
doing. Similar comments apply to Pengi's combinational logic, each of whose gates only
keeps producing a given output so long as its inputs retain the appropriate values. Each
moment's argument structure provides the system with freshly thought-out grounds for
its actions.

Pengi, likewise, does not have a short-term memory, at least in the same sense as
a production system. It does have its visual markers, but visual markers are far more
restricted than a production system's short-term memory in that they are tied to a
specific modality and cannot contain arbitrary symbols. Production systems have gen-
erally referred to individuals in the world through their corresponding names, but I
don't know if this practice is part of the essence of production systems. (Some authors'
examples of production systems, such as Winston's textbook example of toy productions
for identifying animals (1984 pages 177-180), have employed a vaguely deictic vocab-
ulary, but production systems have never, to my knowledge, been associated with an
explicit, thought-out indexical theory of representation.)

While a production system is capable of perception (into its short-term memory)

C5d. Production systems, ACT*, and Soar 241

and of action (through special clauses in productions), production systems are correctly
advertised as models of cognition, that is, of abstract thought. In this way, production
systems are as strongly mentalist in approach as Pengi is interactionist. Cryptarithmetic
is not very much like making breakfast. This in itself certainly does not invalidate the
research program. But the various production system models of cognition would seem
to predict that people can solve difficult cryptarithmetic puzzles (and derive complex
syllogisms etc.) in their heads. Plainly this prediction is false. Those people who can
solve cryptarithmetic puzzles do so using scratch paper. Some people do some of their
thinking while staring into space, but scratch paper is used in practically all forms of
intellectual endeavor. Interaction with scratch paper may not require deftness or brawn,
but it is still a complex form of interaction with the physical world whose dynamics ought
to be investigated. People must use scratch paper for a good reason; what is it? The
assimilation of scratch paper to short-term memory reflects a failure to acknowledge the
difference between internal representations and external reality. Newell and Simon's
mentalism thus extends beyond their choice of metaphors and strategies and into the
untenable view that the world might as well be located inside one's head, much as the
general discussion of Chapter A2 has anticipated. This complaint will become more
consequential as we discuss the further development of production system technology.

Production system technology has developed continually and has been widely applied
(Davis and King 1975, Bachant and McDermott 1984). The OPS5 system (Forgy 1981),
for example, supported research by several groups, both as a framework for cognitive
models and as a general programming language (Brownston et al 1985). Since the inner
loop of a production system is its pattern matcher, OPS5 featured a heavily optimized
pattern-matching scheme called Rete (Forgy 1982).

Various advanced architectures have been based on production system ideas. One
of these, called ACT*, was developed by John Anderson (1983a). Anderson started
by positing that the human cognitive architecture consisted of a production system
and a semantic network. Through an impressively large program of experiments, he
then attempted to determine the details of rule semantics, propagation patterns in the
network, and the like. ACT* is a model of "higher cognitive processes" (p. 1), not
of action. It is also very complicated and I will not attempt to describe it in detail.
Anderson offers some example production rules for transforming goal hierarchies in
response to the sorts of difficulties cataloged by Sacerdoti (1977), but does not discuss
what one does with a plan.

Another, rapidly expanding production system project is the Soar architecture, de-
veloped by Allen Newell together with two of his students, Paul Rosenbloom and John
Laird. Soar is a substantial revision and extension of the classical production system
scheme. The most important revision is that the elimination of conflict resolution.
When Soar runs productions, all productions that match the short-term memory run
in parallel until the system quiets down. The extensions involve three ideas: the idea
that all cognition involves search in problem spaces, the concept of universal subgoaling
(described in Section B4d), and the chunking mechanism (described in Section B5f).

242 Chapter C5. Related work

The Soar architecture starts from a theory of problem solving based on search in

problem spaces, an idea descended from GPS (Newell, Shaw, and Simon 1960, Newell

and Simon 1963, Ernst and Newell 1969). A problem space is a directed graph whose
nodes are 'states' and whose arcs are 'operators'. A search is successful when some

chain of operators reaches a goal state. A path through a problem space is, in effect, a
simulation of some course of events in the relevant domain. The domain might be out

in the world or it might concern Soar's own internal processing. If the domain is out in
the world, then the search only 'solves' the actual concrete problem in the sense that

it has located a Plan it expects would solve it if executed in the appropriate situation.

Knowledge encoded in productions guides both choice among problem spaces and search
within particular problem spaces. When these productions run, they assert preferences
about how the search should proceed. If these preferences add up to a single consistent
answer, that answer is accepted. Otherwise the system declares an impasse and forms
a subgoal to resolve it.

The great virtue of this scheme lies in the interactions between universal subgoal-
ing and chunking. Universal subgoaling is a uniform control scheme for every decision
the system ever makes. Likewise, chunking is a uniform learning scheme for summa-

rizing the outcome of any decision process the system ever successfully undertakes.

Other research projects have used problem spaces for both problem solving and learn-
ing (cf. Mitchell 1983). The novelty of Soar is the elegant, general way in which it uses
problem spaces. Through its aspect generality, Soar avoids, to use Mitchell's wonderful

phrase, the "wandering bottleneck problem."
Chunking is billed as a "general learning mechanism." Evaluating this characteri-

zation is a tricky matter. It is general in the sense of being domain independent, but

even this claim requires problem spaces to be an appropriate way to organize activity in
all domains. Chunking does accelerate Soar's problem-solving, but as with the analysis
of dependency maintenance in Chapter B5, one cannot conclude that a chunk merely

speeds up the system's performance in the exact same situation. Instead, recurring
patterns of transfer cause the system to exhibit interesting forms of apparent insight
into the problem. A chunk formed for a particular subgoal will transfer to anywhere
that subgoal appears, whether in the same task or in different tasks.

Furthermore, because chunks use variables to abstract away from situation particu-

lars, they can transfer to analogous situations as well. Laird, Rosenbloom, and Newell
describe a particularly striking example in which the within-task transfer of a chunk im-

plicitly exploited problem symmetries to avoid a threatened exponential search explosion
(1984). Chapter B5 speculated that deictic representation would permit dependencies
a similar generalizing power. It is hard to make a direct comparison, though, given
the radically different contexts in which Soar's chunking and the running argument
system's dependency maintenance operate. Certainly, as Chapter C3 has argued, deic-

tic representation ought to generalize across instances of deictically specified subgoals,
abstracting across instances passively instead of using variables and pattern matching.

For example, a particular patch of circuitry permits Pengi can pursue the subgoal of

C5d. Production systems, ACT*, and Soar 243

kicking an ice cube in the context of several different larger goals. And if Pengi did
any higher-level arguing such as that demonstrated in Section B4d then the higher-level
arguments would transfer passively as well. But Pengi does not have a general problem
space scheme. It does not need one, but then Pengi is not trying to solve puzzles in its
head.

Soar has only recently been fitted with machinery for perception and action (Rosen-
bloom, personal communication). In the published examples in which chunking has
been demonstrated, the action takes place entirely within Soar. As a result, everything
chunking learns can be derived from what the system knows when it is set running. One
might argue that, because it does not introduce any previously underiveable informa-
tion, chunking is only a speed-up mechanism, and while a general speed-up mechanism
is certainly a fine thing, it could not cause Soar to solve any new problems. While I
believe this argument to be correct in spirit, it is not quite accurate because chunk-
ing can overgeneralize and is thus unsound. One might regard the unsoundness of
chunking as a positive heuristic rather than as a simple violation of logic. An overgen-
eralized chunk might lead Soar to explore regions of its problem space it might not have
explored otherwise, thus possibly achieving new or better solutions to subsequent prob-
lems (cf. Anderson 1983b, Laird 1988). I do not know if the Soar group has investigated
the utility of this heuristic in realistic domains. As with any overgeneralizing induction
scheme, the domain representation will determine which overgeneralizations chunking
makes. Consequently, the utility of overgeneralization as a learning heuristic depends
strongly on the suitability of the representation. This is not an objection in itself, but
it is another reason to use good representations.

In any event, Soar does not learn anything about the outside world and chunking
offers no obvious guidance about how such learning might proceed. As my analysis of
the running argument system in Chapter B5 demonstrated, simple access to the outside
world does not suffice if 'access' means that the agent magically maintains an accurate
world model. Fortunately, though, Pengi and Soar both have somewhat more realistic
perceptual systems. I expect that chunking will prove to have a role in a model of
learning about the world, just as I expect that dependency maintenance has a role
in routine evolution. But both propositions have yet to be properly worked out and
demonstrated.

When Soar is asked to participate in complex activities in realistic domains that
involve an outside world, it will have to face all the hard questions of what Wilkins
called epistemological and heuristic adequacy. The states and operators of problem
spaces are highly analogous to the Strips model of action and make a very poor model
of actions in the real world. Likewise, the states in a state space look tractable enough
they represent positions in an 8-puzzle, but when they represent configurations of a
kitchen they face all the difficulties of building realistic world models. In approaching
issues of activity in the real world, the Soar project must search for a set of restrictions
and extensions that will strike an acceptable balance between expressive power and
efficiency. The work of Wilkins, Dean, and others represents a practically identical

244 Chapter C5. Related work

search that has been long under way in the Planning literature. As with the Planning
literature, some strong heuristic arguments suggest that no such balance can be found.
But, also as with the Planning literature, no knock-down arguments are possible. Much
will be learned from each search.

Beyond my detailed objections to Soar's architecture is my disagreement with prob-
lem solving as a view of activity. The problem-space formalization of states and oper-
ators would seem appropriate for domains such as theorem-proving and puzzle-solving
that are actually characterized by discretely individuated world states produced by a
series of discrete actions taken from a definite set of types. These stipulations are ex-
tremely restrictive. Many activities, most notably real physical activities in kitchens
and offices and garages, exhibit more complex forms of interaction.

C5e Situated automata theory

In work over the last several years, Rosenschein and Kaelbling have been developing
situated automata theory and applying it to the construction of mobile robots (Kaelbling
1988, Rosenschein 1985, Rosenschein and Kaelbling 1986). Situated automata theory
envisions a robot controlled by a digital logic circuit. The theory provides two tools for
analyzing the robot's relationship to its surroundings.

The first tool is a model-theoretic semantics for a modal logic of knowledge that
permits a formal analysis of the content of-in their words the "information carried
by"-any given region of the circuit, down to a single wire.

The second tool is an algorithm for deriving such a circuit from a theory expressed in
their logic. This algorithm first builds an abstract circuit by backward-chaining from all
possible actions through the theory's space of possible inferences. Then it uses standard
logic-design methods such as constant-folding to make this circuit manageably compact
while preserving enough information about its provenance to permit ready inspection
and debugging.

These tools have been implemented and demonstrated on a simple mobile robot
called Flakey. More amibitious demonstrations are currently under construction. The
situated automata project invites comparison to my own insofar as both offer technical
and theoretical prescriptions for the design of situated agents. A careful comparison,
though, shows that the two projects are based on conflicting philosophies and have
significantly different though partially compatible aims.

First let us consider the situated automata theory of the information content of
machinery states. Situated automata theory provides the user with a notation. This
notation is a modal generalization of first-order logic and has a sophisticated model-
theoretic semantic theory. This semantic theory's basis in model theory marks the
situated automata notion as an objective theory of representation. The particular se-
mantic innovation of the theory is to stipulate that an agent's sensor readings provide
points of space-time at which models of the theory an agent embodies can be pinned,
as it were, to the agent's concrete circumstances. The sensor readings cnter the the-

C5e. Situated automata theory 245

ory as axioms stating that certain readings were obtained at certain points in time.
In other words, the semantic theory relates the causal contacts between an agent and
its surroundings via its sensors to a correspondence theory of the truth status of its
representations.

Whereas situated automata theory provides a theory of knowledge, I have been
presenting a theory of activity. When designing the machinery for a situated agent
of any sort, there is no substitute for an understanding of the dynamics of the agent's
intended activity. Situated automata theory provides a theory of action which formalizes
the proposition that the robot will take the actions that it deduces it should take.
Although a theory of action for one's agent is indispensible, it is still only a small part
of a proper theory of activity. An understanding, even a limited one, of the complex
relationships between machinery and dynamics, can motivate a principled methodology
for the design of situated agents. Once one has designed particular machinery, the formal
methods of situated automata theory might provide insights in the detailed analysis of
certain aspects of the machinery's interactions with its world, namely what information
various elements of machinery carry under various conditions. The value of any such
insights, though, would seem to be contingent on the value of the concept of knowledge
in thinking about situated agency. Let us investigate the matter in more detail.

While Rosenschein and Kaelbling certainly do not consider themselves to be do-
ing philosophy, their theory is an instance, albeit the most credible one, of the old
and perpetually unsatisfying philosophical view of the nature of knowledge whose first
recognizably modern statement is found in Locke. This tradition seeks to explain the
human ability to get along in the world in terms of propositional knowledge possessed
by individuals. Its project is to explain how human beings can derive knowledge of the
world from sense impressions. Insofar is it focuses on quasi-mechanical processes oc-
curring within individuals and on structural correspondences between knowledge-within
and the-world-without, this is a mentalist account of human existence-and, by exten-
sion, of the existence of any other creature or automaton to which it might be applied.
Despite a proliferation of increasingly sophisticated variations, this account has come
down nearly to the present day in Anglo-American philosophy without essential change.

The difficulty with basing a theory of action on a theory of knowledge is that knowl-
edge of the world is very hard to come by. Situated automata theory, like any other
theory of knowledge, must face the fact that sensor readings are noisy and do not pro-
vide sufficient justification for knowledge. Sense impressions underdetermine the world

because sensors can only register that information which is contained in the energy of
the appropriate kind that happens to reach them. That Rosenschein and Kaelbling's
logic is monotonic, as are all logics whose model theories are satisfactorily understood
and not intolerably pathological, prevents them from expressing, much less resolving,
the inherently heuristic nature of sensor interpretation. That knowledge appears both
necessary and unobtainable is the fundamental and abiding epistemological paradox
of mentalist, correspondence theories of knowledge. A detailed understanding of its
consequences for the situated automaton project will become possible as the project

246 Chapter C5. Related work

proceeds. Rosenschein is currently addressing these difficulties by generalizing his logic
to incorporate probabilities (personal communication). Time will tell whether he can
find a principled and practical way to manage the mass of a priori probabilities upon
which the accuracy of non-trivial probabilistic reasoning depends.

One principled attitude to the underdetermination of knowledge by sense impressions
is contained in the methodology of David Marr, which advises postulating 'constraints'
on sensor interpretation processes. Constraints should ideally derive from natural prop-
erties of the domain. Typical constraints in visual perception include assumptions of
rigidity and general I- ition. Constraints do not solve the problem of underdetermi-
nation from a logical point of view, though from an evolutionary point of view they
might confer sufficient survival value. Attempts to generalize Marr's methodology to
more general reasoning tasks have foundered on the difficulty of 'encapsulating' central-
system functions sufficiently to permit the formulation of reliable constraints. For a
clear exposition of the problem see (Fodor 1983).

The epistemology of a situated automaton's states is to be distinguished from that of
deictic representation, which does not involve any notion of correspondence but rather
a description of the causal relationships between the agent and the materials and equip-
inent in its environment. Our explanation of Pengi's competence at Pengo does not
rest on a calculation of the truth conditions of Pengi's putative knowledge of its world.
Rather, Pengi's design rests on our understanding of activity in general and the par-
ticular activity of playing Pengo. Furthermore, while the semantic ideas of situated
automata theory provide a certain account of indexicality in representation, it offers no
particular account of functionality. Some notion of functionality is probably compati-
ble with situated automata theory, though, insofar as functionality is best considered a
dynamic concept.

Let us summarize the argument. The situated automata theory of representation is
certainly more formal by far than any existing deictic theory. And this formality aids
certain analyses. Nonetheless, situated automata theory does not help us understand
Pengi or its representations because its monotonicity and its model-theoretic semantics
are wholly incompatible with the theory behind Pengi. Pengi's theory of deictic repre-
sentation was strongly guided by the special requirements of a theory of activity and
is, for the reasons Chapter C3 has presented, far better suited to the purpose than an
objective representation scheme such as that of situated automata theory. In designing
a situated agent such as Pengi, there is no substitute for a theory of the dynamics of
the agent's activities. Only on such a basis can one properly justify a theory of the
machinery of situated agents. A model-theoretic semantics is not a theory of dynamics.

Finally, let us consider a few topics concerning the architecture envisioned by situ-
ated automata theory and embodied by the Flakey robot. Many people, observing that
Pengi networks and situated automata both use combinational logic, have asked if one
could we view Pengi as a particular situated automaton. The answer is yes. That the
use of digital logic should be held to suggest any deeper affinities, though, is a remark-
able measure of the theoretical disruption that the concept of software has caused in

C5f. The MIT mobile robot group 247

AI research. Digital logic is simply what computers are made of. Any robot built with
our current computational technology would employ digital logic, at least in its central
system. Any computational theory of activity must explain particular configurations of
an agent's digital logic in terms of the dynamics of the agent's activities.

One minor difference between Pengi's digital logic and a situated automaton's is
that whereas Pengi's central system has no latches, a situated automaton will typically
have quite a lot of them. This is not a very important distinction, though. As I've
mentioned, I certainly believe that people have state in their heads. Still, the principle
of machinery parsimony suggests that state be minimized, other things being equal.

Aside from machinery parsimony, a second reason why Pengi's central system does
not keep any state is that 'state' in AI research has almost always meant 'world model'.
Given the objective semantics of its states, a situated automaton's collection of latched
bits precisely implements a world model, however dispersed. Each bit indicates a point of
correspondence between the logical theory embodied by the automaton and objectively
defined states of affairs holding in the outside world. Previous chapters have already
articulated my dissatisfaction with world models and correspondence semantics. It is
difficult enough to explain the difference between state and world models that we were
glad for an opportunity to avoid keeping any state.

C5f The MIT mobile robot group

By far the most similar project to my own is that of Rod Brooks and his group at MIT
(Brooks 1986a, 1986b, and 1987, Brooks and Connell 1986). Brooks et al have built a
series of mobile robots that engage in sensibly organized interactions with their world
despite their simple machinery (Brooks, Connell, and Flynn 1986, Brooks, Connell, and
Ning 1978). Brooks refers to these robots as Creatures. His intention is not to reproduce
human activity but rather to get at the essentials of interactions between very simple
devices and the physical world.

Brooks rejects the conventional modularity of perception and Planning and execu-
tion. Indeed, he opposes any modularity. Instead, he proposes a method, based on
the idea of subsumption architecture, for relating a dynamic analysis to a design for
the agent's machinery. Specifically, he suggests sorting a Creature's way of life into
a set of behaviors and building a layer of machinery corresponding to each. The ma-
chinery in each layer is a circuit wired up from simple, standardized components. As
the word 'layer' suggests, some of the behaviors are to be considered more fundamental
than others. For example, a Creature's bottom layer might lead it to wander around
stochastically and avoid running into things. A higher layer might lead it to investigate
any interesting objects it comes across. A yet higher layer might lead it to systemat-
ically explore a territory. Each layer operates by overriding specific control signals in
the layers below under particular circumstances. For example, the object-investigating
layer will lie dormant until a sufficiently interesting object comes into view, whereupon
it will override the mechanism that stochastically reorients the robot, substituting its

248 Chapter C5. Related work

own orientation control signals.
In building subsumption-architecture robots, Brooks et al use many of the dynamic

principles that I have found important in my own work. Far from executing a Plan, the
robot employs all its circuitry in continually redeciding what to do. Decisions leading
to action are bas 'd, as far as practicable, on sensor readings rather than on world
models. When bailding a robot that is supposed to carry out a set procedure, they
permit downstream actions to be cued by the noticeable effects of upstream actions
rather than by a program counter, thus allowing for great flexibility and adaptability in
the actual organization of the activity on particular occasions (Connell 1987, 1988, and
forthcoming). And they make a policy of avoiding unnecessary generality and keeping
their machinery as simple as possible.

The ideas of Brooks et al about perception are siailar in spirit to my own, though
they are quite different in letter. The idea of visual routines rejects the idea that the
job of perception is to build world model and replaces it with the idea that the agent's
ongoing activities determine which aspects of the current environment are worth regis-
tering. But this idea does not extend to early vision, which is still domain-independent.
For Brooks, though, the design of a given Creature's entire perceptual systems should
start from an understanding of the way of life in which the Creature is to participate.
Even the most basic operators applied to the retinal inputs-indeed, even whether the
Creature has retinas--depends on what information the Creature needs to register un-
der what conditions. This disjunction in our two approaches to perception is readily
comprehensible in terms of our differing goals. Whereas I wish to understand human
beings in their relative generality, Brooks wishes to build highly specialized insect-like
robots. The principle of relating machinery to dynamics is the same in each case.

The work of Ilorswill (1988) develops this theme of dynamically informed visual-
system design. Ilorswill demonstrates a mobile robot whose vision machinery can be
very simple because he has understood the dynaittics of the robot's assigned task, namely
chasing things in an indoor environment. Rather than building a general-purpose visual
system, he watched kittens chasing things, analyzed the dynamics of the activity (wan-
dering, noticing something, moving to keep it in view) and observed that the necessary
sensory information must only be registered under particular conditions. As a result,
a set of very simple visual computations complement one another to assure that the
robot continues participating in the dynamics of chasing. Though too sirniple to draw
very firm conclusions, this exercise does suggest a method for designing visual systems
in the context of a dynamic analysis of a Creature's whole way of life.

In another project in this group, Viola (1988) used computer simulations to explore
the possibility of sophisticated subsumption-architecture Creatures arising through evo-
lution. Surveying the subsumption-architecture design practices that had developed in
Brooks' group, Viola observed that most of the robots' circuits could be viewed as as-
semblies of standardized circuit design cliches. Having devised a notation for a mobile
robot's "genetic code" that could specify such assemblies in a natural way, he began
simulating the interactions of robots with simple environments, determining in each

C5f. The MIT mobile robot group 249

case the robot's success in acquiring nourishment. Robots that kept themselves alive
were permitted to reproduce through a process of genetic replication that often suffered
mutations. Extended simulations through several generations led to robots that partici-
pated in reasonably interesting forms of interaction with their environments. The lesson
of Viola's project is strikingly parallel to that of Lenat's AM system (1982), where the
'density' of interesting representations guaranteed that a sufficient number of mutations
would lead to interesting results (Lenat and Brown 1984). The interest of this work
is the way in which evolution connects machinery and dynamics. By focusing on the
bottom line of reproductive success, evolution can select for the adaptive value of a
Creature's entire way of life without having to be smart enough to formulate a repre-
sentation of the dynamics of the Creature's activity. Whereas several previous projects
have used metaphors of evolution through natural selection in models of abstract cogni-
tion (Holland 1975, Lenat 1983), Viola applies this theme to actual interactions between
Creatures and their world. My own notion of routine evolution (see Section B2e) uses
a metaphor of evolution in describing some of the dynamics of individual learning. It
would be interesting to apply metaphors of natural selection per se to individual learn-
ing, but it is not clear how to proceed.

Chapter C6

Thinking about the background

C6a Context and summary

Previous chapters have presented some elements of a computational theory of routine ac-
tivity and cognitive architecture. These ideas are organized around a distinction between
cognitive machinery and the dynamic&--that is, recurring patterns of interaction--of ac-
tivity in the world. I developed these ideas about machinery and dynamics by moving
back and forth between model-building and observation of actual routine activity, both
through participant-observation of my own everyday activities and videotape studies of
others'.

So far I have been concerned with routine activity and not with learning. I feel I
understand enough about routine activity to have made a few suggestions about ma-
chinery. Despite great effort, though, I do not feel the same about about the dynamics
of learning in everyday activity. This chapter describes some starting places. My goal
here is not to suggest any specific machinery but rather, through my stories and my
provisional analyses of them, to help focus attention on some of the phenomena.

The chapter's discussions are organized around several stories. It presents three
particular stories in some detail. All three took place during a visit of several months at
Oxford University. The analyses concentrate on the way in which an workspace serves
as the background for its occupants' activities. Careful, but still very preliminary, con-
sideration of this phenomenological notion of 'background' suggests ways of thinking
about some of the more advanced dynamics involving deictic representation, especially
some of the dynamics of learning in the course of mostly routine activities. In formulat-
ing these views I have leaned heavily on Heidegger's description of the phenomenology
of everyday routine activity. My contribution is simply to help draw some helpful con-
nections between this material and the computational theorizing that earlier chapters
have begun.

Section C6b introduces the chapter's three main stories. In doing so, it distinguishes
between two kinds of information about the events the stories recount. A theorist watch-
ing the events from the outside might assimilate them to larger patterns of dynamics

250

C6b. Three stories about the background 251

involving interactions between certain kinds of agents and certain kinds of workspaces.
My own recounting of my experiences-that is, what is was like-is a matter of phe-
nomenology. Dynamics and phenomenology have a subtle but close relationship, and
each has a subtle but close relationship to matters of machinery.

Section C6c is a story about trying to use a computer terminal on a cluttered tabletop
in the Oxford robotics lab. The story introduces the phenomenological theme of the
background and its connections to the idea of deictic representation. In particular, it
emphasizes that the way we experience objects in our environment is strongly informed
by our current projects. This is why entities in deictic representation are individuated
not just indexically but functionally as well.

Section C6d is a story about the evolution of my routines for interacting with the
electric kettle in my Oxford office. This story expands on the phenomenological theme of
the background by recounting how my experience of the activity of unplugging the kettle
evolved over time. Entities that emerged from the background and acquired new sig-
nificances retained those significances during my future interactions. This phenomenon
also leads to suggestions about the dynamics of deictic representation.

Section C6e recounts several more episodes in my getting used to my Oxford office.
These stories expand further on the theme of entities emerging from the background
and acquiring new significances. Furthermore, the significances of objects in the room
changed wholesale as new people arrived and our institutional relationship to the room
evolved.

Section C6f draws lessons from these stories. It distinguishes between two ways of
relating to the objects in one's surroundings, either working around them or actively
changing them. When you v .rk around something it remains very much a part of
the background, mere unquestioned clutter that you have never stopped and focused
on. When you actually change things, they emerge from the background and present
themselves as problems to be solved. Rather than routinely and unreflectively trying
to avoid them, you might ask, for example, "where would be a better place to put
this?" My final suggestion is that this phenomenological distinction corresponds to an
important dynamic distinction. This dynamic distinction might, I hope, lead to a more
usefully concrete way of talking about learning in the context of ongoing activities.

C6b Three stories about the background

I believe that learning, by and large, occurs in the context of ongoing involvements in
the world. I would like to explore this idea through three stories from my year at Oxford.
All of them concern becoming accustomed to a new workspace. In particular, they all
concern the way in which these newly encountered workspaces formed a background for
my activity in them. All three stories take place at 19 Parks Road, Oxford. In the first
story the workspace is the robotics lab, room 11; in the other two it is my office, room
27.

I took these places pretty much as Lhey came. I had to. I did not choose them, nor

252 Chapter C6. Thinking about the background

did I design them or furnish them. Nor did it ever occur to me to remake them from
scratch. When I encountered them they were already arranged in accordance with the
familiar patterns of laboratories and offices; I simply set about my work in them as I
would in any laboratory and office. My activity in these rooms was shaped by their
contents, layout, climate, and lighting, and by the habits of their other occupants. The
emerging patterns of my my activity in turn left their marks: piles of papers and books,
equipment stashed in and on desks, movements of chairs and doors and windows, stains
from spills of tea and water, sweaters and coats and towels habitually left lying on file
cabinets, and so forth. Yet with all this activity, remarkably little about the office's
original layout ever got changed. Things changed when something didn't work or got
in the way or was missing--or when we were neglecting our work by perversely looking
around for something to change.

In telling these stories I can tell you two things, what happened and what it was
like. Our goal is to fit both sorts of things into larger systems of description.

The 'what happened' is in the realm of dynamics; that is, the recurring
patterns of interaction between agents (in this case me) and environments
(in this case a laboratory and an office).

The 'what it was like' is in the realm of phenomenology; that is, the structure
of human experience (in this case my own experience of conducting routine
work in relatively unfamiliar settings).

The events recounted in these stories weren't particularly intricate, dynamically speak-
ing, so we'll be concerned mostly with matters of phenomenology. 'Background', in
particular, is a phenomenological idea. I cannot define the word in any simple way; its
meaning and properties will unfold in the course of the stories.

The stories of earlier chapters have not been particularly careful in distinguishing
between dynamics and phenomenology. Phenomenology is a difficult subject and this is
the first chapter to attempt a systematic treatment of a phenomenological idea, namely
background.

What's missing from my list, of course, is the realm of machinery; that is, whatever
it was about my brain that led to my interacting with these workspaces in the ways I did.
My project here is to deduce something about machinery from ideas about dynamics
and phenomenology. It's always possible that vast amounts of 'unconscious processing'
separate the facts of machinery from the recurrences we find in our narrations. But
experience and parsimony alike have led me to believe that ideas about machinery,
dynamics, and phenomenology are all tightly interconnected. In particular, talk about
the background helps make ideas about 'world models' seem like a poor fit to our
observations. Instead, let us focus on the ways that one takes things as they come.

C6c First story: The Oxford robotics lab

This story happened early in the year, before the robotics lab had any com-

C6c. First story: The Oxford robotics lab 253

puters to speak of. In particular, the only way to read netmail from the
robotics lab was to sit at an old, rarely-used terminal in a corner which
was connected to a machine across the street from which one could log in
on someone else's account and use a dialup line to connect to a machine
that could receive netmail. The desk on which this terminal sat was largely
covered with clutter: wires, tools, electrical devices, manuals, and so forth,
none of which had any particular significance for me. I was writing a paper
with a friend in the US and he had netmailed me the latest draft. I didn't
want to figure out how to use the local mail readers and printers, so I de-
cided I would jot notes about the draft on a sheet of line printer paper that
was left over from some earlier task and then ype more elaborated versions
of them in a net message to him. This story is about the clutter on the
desk, but it's important that I had never been aware of remarking on the
clutter or focusing on it in any way. It had simply never gotten in my way.
It had remained part of the background along with details like the drawers
in the desk, the cracks in the desk's veneer, the wires hanging down along
the wall behind the desk, the scuffs and scratches on the terminal, and a
thousand other things I never became sufficiently aware of to write down or
remember. I had been sitting at this terminal exchanging netmail for a while
before I started working on this paper draft; during this time I had worked
around the clutter before when finding places to put things down and leave
keys and pieces of paper. For example, when I wanted to put down my keys
I glanced at the table near my right hand to find an unobstructed patch
of brown table-top. In fact, earlier on when I wanted to make reference to
the line printer paper, I had laid it on top of the clutter, which even served
to tip the paper toward an angle normal to my gaze. When it came time
to jot my first comment, though, I needed writing space and there wasn't
any. Whereupon something neat happened. The clutter snapped out of the
background into the foreground as the idea of shoving it all out of the way
formed itself. I now saw the clutter as clutter. And I shoved it all out of the
way.

In this story we encounter the notion of 'background'. A wall of the room makes a
good exemplar of background: an observer composing a dynamic account would observe
that the wall is always physically present and always has consequences for what one
does (e.g., on account of what they prevent one from seeing). But for the purposes of
one's own phenomenological narration, one only becomes 'aware' of the wall (a familiar
phrase, but a vague and difficult and imprecise one) when it's time to lean on it, or
bounce a ball off it, or hang something on it, or curse its failure to dampen music being
overheard through it. In such situations, the wall might be said to 'emerge from the
background', 'show itself', 'recommend itself' as suitable for some activity, or the like.
Obviously these phrases are not meant so literally as to suggest that the wall is animate
or acts of its own accord.

254 Chapter C6. Thinking about the background

The whole physical setting of one's activity is also part of the background. Objects
in the environment that have no significance for the currently ongoing activity stay in
this background. At one point in this story a patch of table-top briefly emerged from
the background to recommend itself as a place to put my keys. At another point a
portion of the clutter on the desk briefly emerged from the background to recommend
itself as a place to prop my listing; in this case I had only been looking for a place to lay
the listing down, so the offer of a tilted 'surface' on which to rest the listing came as a
pleasant-though almost subliminal-surprise. The clutter-which, after all, is only a
collection of particular objects not innately labeled as 'clutter'-only emerged from the
background as clutter once it became sufficiently obtrusive. It was clutter in virtue of
frustrating my attempt to find a place to rest the listing when I wanted to write on it.

(This explanation illustrates one of the severe difficulties I encounter in writing these
stories. In telling you about the territory in which the narrative takes place, I have to
articulate for you various aspects of it that I had not had any occasion to articulate for
myself as the action was actually going on. Thus, for example, I had to tell you about
the 'clutter' on the desk at the beginning of the story, just because that's the simplest
way to describe it, even though the story was exactly about how I came to think of the
collectivity of individual objects composing it as 'clutter'. This problem tends to make
me, as the subject of the story, sound like I understood my surroundings and equipment
and materials in a much more complete and objective way than I really did. Books
about fictional narration talk about this problem.)

This story teaches us some of the important features of the background.

1. An object doesn't emerge from the background 'in itself' but rather in the role it
plays in the ongoing activity. The patch of desk emerges as suitable for stowing
my keys, not as a naked stretch of wood or as roughly triangular in outline. (Thus
it is teiribly misleading, or at least critically ambiguous, to say that I 'became
aware' of the patch of desk.)

2. What counts as an 'object' that emerges from the background depends on your
purposes. I imagine that other people with other purposes have encountered
different objects on that table than I did, and I imagine I would have encountered
them myself if I had ever put together circuitry or needed a coffee-cup or wanted
to look up a phone number while sitting at that desk, but I can only guess at the
desk-top's actual inventory. The desk-top's materials did not appear as individual
wholes whose tops happened to form a plane; instead the tops of these various
materials appeared to me corporately as a roughly planar place to put my listing.

3. A given object can emerge from the background with different significances at
different times. The objects that had once formed a place to rest my listing now
coalesced into a larger entity that struck me as a disorganized mass of 'clutter'
once 'it' got in my way.

All of these points, remember, are still about phenomenology. (In fact, Heidegg-r
says most of this in Being and Time (1927), and he says it much better and in much

C6d. Second story: The electric kettle in my Oxford office 255

more detail. He doesn't use the sloppy word 'background', though I have borrowed many
of his other words. Many others have said similar things, often in terms of 'figure and
ground'.) Nonetheless, I believe they correspond quite closely to matters of dynamics
and machinery.

Point (1), for example, must have something to do with the 'functionality' much
emphasized in the theory of deictic representation. We see various objects or collections
of objects assigning themselves to entities. No hyphenated gloss of these entities is going
to be very accurate, but they'd be something like:

* the-pa tch-of-su rface-on-which-to-put-down-the-object- in-my- right-hand
* the-tilted-surface-on-which- to-rest-the-paper-I-intend-to-refer-to
* the-clutter-obstructing-my-activity-on- this-work-surface

An object in the world, like a given patch of tabletop, might be assigned to several
different entities on different occasions, according to its function (or 'role') in each
occasion's ongoing activity. Indeed, an object might be assigned to several different
entities at once if it is playing several roles-or, in my phenomenological terminology,
if it has several significances-in the activity.

If we accept that routines involving various aspects of these entities underlay my
activity in the episode I reported, then we can translate points (2) and (3) into impor-
tant suggestions about deictic representation. Most particularly, entities need not be
bound to individuals that would show up in any detached accounting of the 'objects'
in my presence. But that's OK, since all that matters about deictic individuation of
'objects' is that all the routines pertaining to a given entity should be capable of reg-
istering their aspects and conducting their actions. As a dynamic matter, we might
explain the success of a routine by observing that all the aspects it registered related
to the same spatiotemporally continuous coffee mug. Other routines won't be so easily
explained because their entities refer to 'objects' such as 'clutter' whose boundaries and
membership happen, for dynamic reasons, never to become obtrusively uncertain.

Aside from these details, this story is actually pretty simple. In particular, it makes
the 'background' sound excessively homogenous. None of the objects composing it had
ever played any role in any of my past activities. Nor was any of the stuff even slightly
interesting to me. Microcomputer assembler manuals bore me and I know next to
nothing about electronics. Even when these objects did come into play in my activity,
it was in virtue of their brute physical presence, not in terms of the uses for which
they were designed. Here, then, is a story in which these matters become slightly more
complicated:

C6d Second story: The electric kettle in my Oxford office

This story takes place in my Oxford office near the end of my year there, after
a fair amount of stuff had accumulated and found its place. (In particular,

256 Chapter C6. Thinking about the background

this story happens after story number 3, whose details do not matter yet.)
The office is about 40' long and 10' wide; one visitor compared it to a
bowling lane. If you walk in the door and turn left you'll be looking down
a long thin room; my desk will be centered on the far wall. To the left of
my desk, against the left wall of the room, is a drafting table left over from
the previous occupants. Under the drafting table are many boxes of laser-
printer supplies. Along the left wall is the desk of one of my office-mates,
whose name was Stephen. Between Stephen's desk and the drafting table,
also along the left wall, is a table on which Stephen stores his overflow of
books and papers. At the far end of this table is an electric kettle. Under the
table on the wall just to the inside of its leg is a pair of electric sockets. The
important point is that the area around the kettle is cramped, what with
the drafting table, the boxes, Stephen's table, and a trash can I haven't
mentioned yet.

As the story opens we find both electric sockets in use. The kettle is plugged
into the left socket and my tape recorder is plugged into its 220V-to-110V
transformer, which is plugged into the right socket. We also find the kettle
sitting toward the front of the table with its handle and plug-and-switch
assembly hanging off the edge. I got into the habit of setting the kettle
down that way because when the kettle automatically shuts itself off as
the water boils (a feature of electric kettles in this land of electrical safety
fanatics) it mysteriously discharges a tablespoon of water underneath this
assembly. After sweeping the resulting puddles onto the floor a few times
I decided to spare myself the trouble and avoid making a mess by setting
the kettle down in such a way that this water would fall on the floor (or,
often, in the trash can). (I do not recall the exact history of my coming to
do this routinely, else we could take apart its dynamics in more detail than
this unhelpful 'because X I decided to Y'.)

And so Che end of the evening came and it was time to put my tape recorder
back in its desk drawer. So I squatted down by the front corner of the desk
to retrieve the transformer. This has always been a clumsy matter, given the
clutter of the drawing table and the trash can and boxes, not to mention the
table itself. It was always necessary to adapt details of my posture to avoid
all these things. But on this particular evening, as I leaned over to fetch
the transformer I found the kettle poking itself in my face in an annoying
fashion. So I aborted my leaning-over long enough to push the kettle back
out of the way (without thinking to have any regard for my policy of hanging
its switch assembly off the end of the table, not that I would have cared just
then had I thought of it) and proceeded to retrieve the transformer.

The next evening as I went to retrieve the transformer, as I squatted down
in the usual manner I saw the kettle in the usual place and pushed it back

before reaching for the transformer at all. Later I realized that the kettle

C6d. Second story: The electric kettle in my Oxford office 257

was not nearly so much in the way that evening as it had been the previous
evening when I had first pushed it aside. I further realized that it was no
more in the way on this second evening than it had been on a dozen or more
other evenings, when I had taken care to avoid it no more or less than I had
taken care to avoid the desk top, the near desk leg, the drafting table, the
boxes, and the trash can, as part of a background of clutter.

This story exhibits many of the same features as the first one. A bunch of equipment
serves as a background of clutter that I work around in my routine activities. One
particular episode leads to a breakdown in which some of the equipment stands out as
obtrusively in-the-way and recommends itself for being shoved away.

Some of the equipment in this story, unlike the equipment in the terminal-table story,
had played a role for me in the past. I had moved Stephen's table a few inches so its
leg wouldn't block access to the electric sockets. Stephen and I had moved the drafting
table into that corner. Nonetheless, when I was leaning over to fetch my transformer
these items had no further significance for me than obstacles for me to avoid.

Much of the equipment, moreover, has a role in other activities that routinely occupy
me in that space. I regularly throw things in that trash can, usually from a few feet's
distance as I sit in the chair at my desk. Indeed, when I throw something toward that
trash can it often bounces off (or lands on) the boxes or the leg or support of the drafting
table. When this happens, the boxes and drafting table do not stand out as 'storage' or
as 'drafting table', but simply as surfaces on which my rubbish has bounced or landed.

Now consider the electric kettle. I regularly use it in making tea, an operation with
many components, each of which has its own history. I mentioned my habit of replacing
the kettle on the edge of the table in such a way that its leakage falls on the floor. (It
was this habit of mine, recall, that was responsible for my finding the kettle in my face
on the evening in question.) To take another example, when I go to refill the kettle
with water, I remove its electric cord and wedge the plug in the pulley apparatus that
supports the sliding straightedge on drafting table; that way it won't fall on the floor
and become difficult to retrieve when I return with the refilled kettle.

Yet until the events recounted in this story, when I leaned forward to fetch my
tape recorder's transformer the kettle had joined all the rest of the equipment as
background-or, to be precise, as having no significance past being obstacles around
which to adapt my posture.

Something about a sufficiently obtrusive obstacle makes you decide you're sick of
working around it. The ongoing activity has definitely broken down, but it's not that
the obstacle has absolutely prevented you from proceeding; on the evening in question I
could have contorted my body one extra notch and avoided striking the kettle. Compare
this story, from the sink in the robotics lab at Oxford:

This story unfolds over several hours when I was working in the robotics lab,
making myself a new cup of tea every so often as always. The whole time
a mug was sitting in the sink. I vaguely found this mug familiar but didn't

258 Chapter C6. Thinking about the background

give it any thought. Part of my routine for making a new cup of tea was
dumping the dregs of the previous cup into the sink. This mug was pretty
much where I wanted to dump my tea each time (four times?) but I left it
there, dumped around it, each time registering the minor hassle of its being
slightly in the way. On one of those occasions, though, I got fed up and it
recommended itself to me as needing to be moved. So I shoved it to one
corner of the sink.

The two stories aren't quite analogous: the kettle was definitely more in-the-way
than it had been before, whereas the mug in the sink had just been equally in-the-way
on several occasions. But in each case, as in the terminal-table story, I switched-for
what reason I don't exactly know-from a passive working-around to seeing the obstacle
as an obstacle and taking action to get 'it' out of the way.

The main point is that once the kettle emerged from the background as an obstacle
worthy of being pushed aside, it retained that significance on subsequent evenings.
Furthermore, on those subsequent evenings the kettle emerged from the background and
recommended itself for being pushed aside (a) before I even started leaning forward and
(b) even though it would not have been any more in-the-way than on past occasions
when I had simply adapted my posture to it as part of a generalized obstacle. This
suggests that the significances of entities are not merely regenerated every time they
emerge from the background. Instead, an entity's newly established significances 'stick'
to it.

The kettle story recounts one episode in a trend that is always part of settling into
a new space. When I first began working in my new office, I used its equipment (desk,
chair, door, carpet, etc) in fairly generic ways. As time went on though, I began using
the various objects in ways that were special to them. Rolling my chair about required
special care on account of its sticky casters. Setting cups of tea on the desk required
special care because the desktop was stained incredibly easily. (I later discovered that
the stains magically disappeared with time but I never stopped taking care not to inflict
them in the first place.) The kettle in particular gathered a series of new significances
in the course of various problematical interactions with it: it left puddles and got in the
way.

These observations suggest that a chair or desk or kettle acquires its identity through
its accumulated significances. While this is not the place for a detailed treatment of this
approach to the difficult question of the nature of the identity of objects, we should pause
long enough to reject a couple of oversimple alternatives. One should be wary of the
naive view that the world contains a collection of objectively defined individuals. While
this might be true in some metaphysical sense, it begs the epistemic and representational
questions of how one goes about distinguishing the supposed individuals. One should
also be wary of the instrumental view that partitions an object's properties into a generic
'function' plus some additional idiosyncrasies. Manufactured commodities like electric
kettles are intended to be regarded with this attitude, but the attitude itself is artificial,
historically specific, and very often inappropriate.

C6e. Third story: Moving into my Oxford office 259

Consider the tendency of the kettle to get in my way as I lean forward to fetch the
transformer from the wall socket. This is not, narrowly speaking, a 'property of the
kettle', since the kettle wouldn't necessarily get in my way in another office. Indeed,
it is hard to define this 'property' at all without referring to a large network of my
practices in this office: that I listen to tapes on my tape recorder as I work, that I put
the tape recorder back in the desk as I go home, that there is such an institution as
'going home at the end of the day', that when using the tape recorder I set it on a
nearby chair, that when I do this I plug the tape recorder into that socket, and so forth.
Notice the habitual simple present tense of the verbs in these phrases and in the phrase
'the kettle gets in my way'. The habitual simple present tense indicates that the kettle's
significance for me is defined in terms of a role it plays in a institutionalized routine
pattern of activity that has become woven into the broader organization of my day. In
general, when an object emerges from the background in the course of some activity, the
'significances' it has for that activity often (perhaps always) cannot be defined except
against the activity as a whole. In this sense, the activity's very organization is itself
an element of the background.

These phenomenological ideas about background and significance make important
suggestions about representational issues. I have suggested that one represents objects
in terms of their role in one's project. Specifically, objects are assigned to entities, which
one writes with such hyphenated noun phrases as:

* the-chair-I-am-sitting-in
* the-tape-recorder-I-am-listening- to
* the- wall-socket- the- tape-recorder-I-am.listening-to- is-plugged-into

We have just seen, though, that the actual significances of the various objects might be
impossible to specify completely. One might get started writing:

* the-kettle- that-gets- in-my-way-as-I- lean-forward- to-unplug-...

without any principled idea of when to stop. Fortunately, though, these hyphenated
noun phrases are only our outsiders' approximate renderings of someone's actual entities.
In particular, the hyphenated word-strings do not reflect structures that get traversed
or rearranged by their owners. At the same time, if we cannot exhausively define these
entities ourselves then we can expect their actual use to be sloppy or problematic in
some way. This is not a problem with the theory, merely an element of the nature of
everyday life.

C6e Third story: Moving into my Oxford office

This is a story about my office at Oxford, the same one in which the kettle
story took place. The robotics group was growing rapidly, and our office
had been newly requisitioned by the department from a group studying soil

260 Chapter C6. Thinking about the background

mechanics. Stephen and I were its first occupants from the robotics group.
The story recounts several episodes that took place over our first several
weeks in this office.

I had peeked into the office before it had been officially deeded to us. I
approved of it-especially the light that came in through its two skylights-
and resolved to occupy the desk along the far wall. In the event, Stephen
made the first choice of a desk, moving his belongings, fortunately, into the
desk along the left wall. Soon afterward, or perhaps the next day, I arrived
and laid claim to the desk I had coveted. Sitting in the chair that seemed
associated with my new desk, I found its casters annoyingly sticky. After
failing to find a comfortable way of moving the chair around, I resolved to
lay claim to one of the other chairs. I figured Stephen's chair was out of
circulation, but I went around the room and tried out each of the other two
chairs. (The room contained a total of five chairs, one for each of four desks
and one for a table. Each of them sat on five casters and swiveled. None of
them, I am sorry to say, reclined.) Neither of them was much better, but
the one behind the desk nearest to the door seemed best. After extracting
it from between its desk and the adjacent wall and wheeling it over to my
desk, I moved my now-discarded chair to the desk whose chair I had just
appropriated. In all of this I felt a certain "well, tough" selfishness that I
don't particularly regret.

What's interesting throughout this story is the extent to which we took the arrange-
ment of the room as given. We never asked ourselves how we wanted the room to be
arranged, as if laying it out from scratch. For example, it wasn't until I started writing
these stories in my notebook that it occurred to me to wonder how else the furniture
might have been arranged. The furniture was arranged in a sufficiently customary fash-
ion that we took it for granted that the desks were to be regarded as so many personal
territories and that the various chairs were associated with their nearby desks. Indeed,
it would have been odd to remark on these things at all. The room also contained
two tables, one of which Stephen appropriated. The other, smaller table, the one I
mentioned before, was obviously-to-all destined to house our Sun workstation. I did,
however, exchange chairs with an as-yet unoccupied desk. Why? Because my origi-
nal chair was a nuisance. I didn't deliberately try out this original chair to determine
whether it was going to be suitable; one can rely on nuisances to bring themselves to
one's attention. After appropriating my new chair, I went to the trouble of restoring
the office to the customary one-to-one association of desks to chairs, for the sake of
subsequent arrivals.

The office's previous occupants were abstractions for us. We didn't even
know their names. I was amused by the whole idea of 'soil mechanics' and
I was fond of the archetypal soil-mechanics diagram these folks had left
behind in red chalk on the office's blackboard. They had left numerous

C6e. Third story: Moving into my Oxford office 261

items behind, and I vaguely expected that they would come get them. I
don't recall if they ever came for any of it, aside from some clothes stored
in a file cabinet drawer.

Evidently I was so accustomed to the typical furnishing of university office spaces
that I was, without being especially aware of it, regarding each of the office's objects as
either 'belonging there' or 'left behind'. In my dealings with the office up to this point,
the vast majority of the ioom's objects remained in the background. Even so, every one
of them simply had one of these two significances.

By the way, I eventually discovered an inventory sheet attached to the inside of the
office door. The office did not contain many of the items it listed, including (alas) an
electric fire (the British name for an electric space heater). But, given the age of the
building, I assumed it was hopelessly out of date and so didn't concern myself with the
discrepancy.

One thing they left behind was a large drafting table. Two aspects of this
table soon attracted my attention. The first was a fascinating counter-
weighted cable-and-pulley apparatus that permitted smooth vertical motion
of the level across the drawing surface. The second was a green pad, pre-
sumably intended as a disposable backing for the drafting paper, that was
attached to the table by an adhesive. This pad attracted my attention be-
cause it had partly fallen off in a peculiar manner, its adhesive having come
loose at the top.

This drafting table was always oddly detached from my larger experience of the
room. I'm not sure I had spent more than a couple minutes around a drafting table
before, nor did this one enter into any of my routine activities. While I didn't have any
clear idea of what a soil mechanic would do with a drafting table, neither did it stand
out as wildly inappropriate. While each of these aspects (fascinating apparatus, pad
coming loose) subsequently figured in other instructive stories, neither of them figured
in any larger system of meanings in my life. In particular, neither of them led me to
articulate a third aspect ...

It took me much longer to become properly aware of a third aspect of the
drafting table, viz., that it was located almost directly in front of the office's
only window. It didn't actually obstruct me in walking around the office,
nor did it get in my way when I walked to the window to look out at the park
across the street. The window was small and one couldn't see much besides
clouds out of it without walking right up to it, so I never formed any explicit
notion of having my view blocked. In short, its location did not obstruct any
particular activity. It merely blocked some light and made the room more
cramped than it had to be. I had a growing sense of annoyance at these
things, but I didn't properly articulate it until one day when I was avoiding

262 Chapter C6. Thinking about the background

my writing by looking around the office, more or less deliberately assessing
it as an office. Stephen and I were both sitting at our desks. All at once
I remarked to Stephen that the drafting table had to go. Stephen agreed
and said that it had been bothering him as well. So I wondered aloud where
we might put it. We both looked around the office for a suitable place. At
length I saw that the space to the left of my desk, between my desk and the
wall, was of a roughly suitable size. We cleared a channel for the drafting
table-we might even have moved aside the table next to Stephen's desk-
and moved the drafting table into the space. It fit quite well. Stephen asked
me if I minded it there and I assured him I didn't. We both then remarked
with satisfaction how much better the room looked.

As in the story of the coffee mug in the sink, the drafting table did not announce its
obtrusiveness straight away. Instead it brought a cumulative, inarticulate annoyance. In
the case of the drafting table, this annoyance only found expression as I looked around
the room with a special and fairly artificial attitude. This attitude might be likened to
the artist's method of 'looking at how it looks'. Just as few people deliberately look at
the quality of the light in a scene or at the 'negative space' surrounding an object, my
idly inspecting the room qua working space was bound up with my history of interest
in architecture and semiotics.

Contrast this relatively detached attitude with the more involved, directed attitude
with which Stephen and I scanned the room while looking for a space to stow the
drafting table. During this search, we saw the room as so many hunks of space, each
recommending itself as too small or as blocking a passage or whatever else was relevant
to stowing the drafting table. The solid rectangle of space between my desk and the
wall actually struck me as remarkably exact in size; in fact the drafting table fit there
with comfortable precision. This was the first time we had had occasion to stow a large
object in the office. But if we had had several more such occasions, I suspect that these
hunks of space would have become individuals with their various particularities. They
would be just as familiar as the desks and chairs.

The anonymous soil mechanics had also left several items on the window sill.
I don't recall the entire list, but they included a small potted spider plant.
This plant wasn't very happy when we arrived and it proceeded to die by
degrees. (I guess I don't particularly notice house plants. I am not a very
good house-sitter.) There were also some sheets of line printer paper and a
University telephone book. All of this stuff went untouched for many weeks.
None of it got in the way of anything. I suppose I also had a vague idea that
its owners might come for it. Eventually one day I resolved to throw all this
stuff away. By that time we had a new office mate, named Paul. As I was
pitching the scratch paper I asked them if anyone wanted this plant. Paul
replied that he had adopted it so I left it alone. Last I saw it was still there.

C6e. Third story: Moving into my Oxford office 263

Again the same pattern. The stuff got on my nerves. I had already resolved to get
rid of it on a couple of occasions, but now I finally did it. Why did I ask if anyone
else wanted the plant? I don't know for sure, but I do know that I once threw out a
seemingly dead plant that someone else later proved to have been greatly attached to.
(The whole psychology of plant ownership is beyond me.)

The soil mechanics left behind a few drawers worth of aged files. I wasn't
occupying any file drawers so I paid no attention to them. When Paul ar-
rived, though, he asked Stephen and me if any of it belonged to us. Learning
that it didn't he resolved to locate the soil mechanics and ask them if they
wanted it. A few days later there appeared, between the door and one of
the file cabinets, a few boxes of paperback books and other similar stuff.
Some of the stuff was quite odd, like an album of fifty-year-old collector's
cards depicting various automobiles, from a brand of German cigarettes. I
assumed this stuff had been removed from the file cabinets and was awaiting
disposal so I resolved to take possession of some of the more peculiar items.
When I asked Stephen about the stuff, he informed me that it belonged to
Paul, who had gotten it from a friend who was clearing out his attic.

As the office became more populous, it became, in a sense, more rigid. When
Stephen and I had just moved in, the office's particulars all seemed up for grabs. We
could switch chairs around, erase the blackboard, occupy desks, appropriate desk lamps,
keep the door locked, and so forth without worrying that someone else had preferences
or dibs. As the space became dense with the consequences and conventions of the settled
patterns of work, every object-indeed, every aspect of the office-began referring to
the others.

This condition was importantly asymmetrical. Stephen and I knew that the rubbish
in the file cabinets and on the window sill had predated us. Neither we nor its presumed
owners had touched it in the months we had occupied the space. Paul, however, had no
way of knowing this short of asking us. (He could have inspected the stuff and found
evidence of its belonging to soil mechanics. As far as I know, though, he didn't. Even
if he had, for all he knew we could well have promised the soil mechanics we wouldn't
throw the stuff out.) For Paul, the office as a background for his activity was saturated
with the possibility that Stephen or I had established conventions that would require
deference or negotiation. When Paul arrived, the terminal table, for example, was still
sitting exactly where Stephen and I had found it. It was still sitting there not out of
sume positive decision we had made to leave it there, but rather out of its never having
occurred to us to move it anywhere.

Another instance of this effect regularly occurs on subway trains. When I
board a subway car I often spot a newspaper sitting on a seat next to one

of the passengers. Since I am usually desperate for reading material at such
moments, it often occurs to me to grab the newspaper. The question is. does

264 Chapter C6. Thinking about the background

it belong to the person sitting next to it? Usually I don't feel like asking
them. Never do I feel like just picking it up and seeing what happens. I like
to think that almost all such newspapers have sat next to dozens of subway
riders since being abandoned by their purchasers.

Matters of degree aside, the background is thoroughly social for everyone all the
time. If I had, for instance, thought to saw a leg off a table or get a wavering fluorescent
bulb replaced or carry off the carpet to my flat then the institutional context of the
office would have become immediately apparent. Even the reading material on my desk
acquired a social significance, insofar as I imagined that it must be giving visitors an
odd impression of me. I didn't care about this and I didn't dwell on it, but it was part
of the materials' significance nonetheless.

C6f The background: Phenomenology and dynamics

One of the recurring themes in these stories has been the ways in which one 'works
around' the circumstances one finds. The most memorable examples were all instances
of 'clutter'. I poured my tea dregs around the mug in the sink, I formed my body around
the clutter of furniture near the electric socket, and I didn't insist on walking and looking
through the space occupied by the drafting table. The distinguishing feature of clutter,
though, is not that you work around it. It's clutter when it gets on your nerves and
recommends itself as redundant and in-the-way.

But we also worked around many other details of the office. I never moved my
desk. I never thought of changing its dimensions or its handles. It still contains the
collection of pins, paper-fasteners, and other items (including a half-inch ball bearing
whose origin it never once occured to me to wonder aboit) it contained. I never thought
of :earranging its drawers, even though it occurs to me now that it'd have been mildly
more convenient for the larger file-drawer to have been on the left instead of the right.
And so forth forever.

We did change some things. We moved some furniture. We discarded or stowed
some redundant stuff. We erased the blackboard once we wanted to use it ourselves.
We got some bookshelves installed. Let us make a provisional classification of occasions
for change:

Something goes wrong or get the way or gets on our nerves. Most of my
stories were about this, largely because annoyance and disaster stands out
as memorable.

Something is missing. Offices need bookshelves. They also need space
heaters at night during the winter, but nobody would buy us one.

Something is conventionally reuseable and we get around to using it, which
involves clearing its past state. The chalkboard is one example. Another is
the location of portable equipment. Should we even count this as change?

C6f. The background: Phenomenology and dynamics 265

The background, then, manifests itself in two ways, when you're working around it and
when you're changing something.

Working-around takes things as they come. Things show themselves from
the background in their role in the ongoing activity. The significance they
have for your activity might depend on past experiences.

Change starts with a break in the routine flow of activity. Either work
is disrupted or something new has begun. One 'has something done'. Or
one 'looks around' in a way that takes the environment as a resource. Or
one 'puts straight' or 'puts aside' the offending things. Nonetheless the
significance of the relevant materials can, and often does, make reference to
the whole of the ongoing activity.

The background is a difficult idea. One is never done understanding it. Yet even my
brief, coarse exposition here provides some important suggestions about the dynamics
of routine activity. I have described, briefly and incompletely, some ways in which the
properties of the background seem to accord with the deictic theory of representation.
My larger point, though, concerns the large-scale dynamics of activity. The stories I
have told about the office as the setting of work are a special case of something large
and important about the world-as-a-whole as the setting of all one's activity. The two
manifestations of background, in working-around and in change, correspond to two
modes of activity.

Working-around is a matter of routine: things show themselves intelligibly
and in ways one can accommodate without breaking stride. No surprises.
But working-around is, in another way, a matter of improvisation. One takes
things as they come. Things show themselves, as it were, any way they want.
One does not work from a 'world model' that explains how things will be in
every detail ahead of time. This does not mean one does not learn through
experience, only that the organization of activity is forever dense with the
influence of the world's contingency.

Changing things can be a matter of problem-solving. Something comes up.
Things become complicated. One adopts much more sophisticated attitudes
to things. One might try for an objective view, or read a how-to book, or
lay things out on paper, or stare at the materials and imagine them going
together in various ways. But no activity is any sort of pure, undiluted
problem-solving. Even the most articulately abstract problem-solving is
made out of individual episodes that are themselves matters of routine. And
the fate of problem-solving innovations is to become folded into the larger
network of improvisation and routine. Working-around is, in this sense, the
prior phenomenon.

266 Chapter C6. Thinking about the background

This distinction is obviously oversimple. Much more remains to be said about the
phenomenology and dynamics of both routine and problem-solving. And beyond these
are the hardest questions:

Why are there these accordances between phenomenology and dynamics?
And what do they mean?

How does the dynamics of routine and of problem-solving constrain our
cognitive machinery? And vice versa?

Finally, let us return to our original slogan:

Learning occurs in the context of ongoing involvements in the world.

What, then, about learning? The notion of background provides a way to get started
talking about 'involvement'. For one thing, one never has a complete, perfect map of
the world and all the ways it bears on the practicality of one's projects. One kind of
'learning' is what's going on when problem-solving leads to changes, whether in the
world or in one's routine ways of acting. Is there also a kind of learning that doesn't
involve breakdowns, difficulties, annoyances, or important novelties? I think there is,
but that'll have to wait. For now, at least, we can state the distinction. We can also
state the question of the relationship between the two kinds of learning. If working-
around is prior to changing-things, perhaps this less obtrusive and more fundamental
kind of learning is the basis for all the more explicit and articulate forms. I think this
is true, but I don't yet have all the words to say it.

Bibliography

Philip E. Agre, Routines, AI Memo 828, MIT Artificial Intelligence Laboratory, 1985.

Philip E. Agre and David Chapman, What are plans for?, AI Memo 1050, MIT Artificial
Intelligence Laboratory, 1988. Submitted to the AI Magazine.

Philip E. Agre and David Chapman, Pengi: An implementation of a theory of activity,
Proceedings of the Sixth National Conference on Artificial Intelligence, Seattle, 1987,
pages 196-201.

James F. Allen, An interval-based representation of temporal knowledge, Proceedings of
the Seventh International Joint Conference on Artificial Intelligence, Vancouver, 1981,
pages 221-226.

James F. Allen, Towards a general theory of action and time, Artificial Intelligence
23(2), 1984, pages 123-154.

James F. Allen and Johannes A. Koomen, Planning using a temporal world model, Pro-
ceedings of the Eighth International Joint Conference on Artificial Intelligence, Karl-
sruhe, West Germany, 1983, pages 741-747.

Richard Alterman, An adaptive planner, Proceedings of the Fifth National Conference
on Artificial Intelligence, Philadelphia, 1986, pages 65-69.

John R. Andersc.-, The Architecture of Cognition, Harvard University Press, 1983a.

John R. Anderson, Knowledge compilation: The general learning mechanism, Proceed-
ings of the International Machine Learning Workshop, Monticello, Illinois, 1983b, pages
203-212.

Judith Bachant and John McDermott, R1 revisited: Four years in the trenches, AI
Magazine 5(3), 1984, pages 21-32.

Jon Barwise and John Perry, Situations and Attitudes, MIT Press, 1983.

.Tohn Batali, Computational introspection, AT Memo 701, MIT Artificial Intelligence

Laboratory, 1983.

John Batali, A proposal for research with the goal of formulating a computational theory

267

268

of rational action, Working Paper 269, MIT Artificial Intelligence Laboratory, 1985.

Walter Benjamin, Moscow Diary, MIT Press, 1986. Written in German in 1926.

Eric Berne, Games People Play, Grove Press, 1964. Paperback from Bantam.

Eric Berne, What Do You Say After You Say Hello?, Grove Press, 1972. Paperback
from Bantam.

Robert C. Berwick, Transformational grammar and artificial intelligence: A contempo-
rary view, Cognition and Brain Theory 6(4), 1983, pages 383-416.

Mark H. Bickhard and D. Michael Richie, On the Nature of Representation: A Case
Study of James J. Gibson's Theory of Perception, Praeger, 1983.

Wilfred Bion, Attention and Ir..erpretation, Tavistock, 1970.

Lawrence Birnbaum, Integrated Processing in Planning and Understanding, PhD Thesis,
Yale University Computer Science Department, 1986. Available as Report RR-489.

Guy Blelloch, AFL-I: A Programming Language for Massively Concurrent Comput-
ers, Master's thesis, MIT Department of Electrical Engineering and Computer Science
Department, 1986. Available as Technical Report 918, MIT Artificial Intelligence Lab-
oratory, 1986.

Pierre Bourdieu, Outline of a theory of practice, Cambridge University Press, 1977.

Rodney A. Brooks, Achieving artificial intelligence through building robots, Al Memo
899, MIT Artificial Intelligence Laboratory, 1986a.

Rodney A. Brooks, A robust layered control system for a mobile robot, IEEE Journal
of Robotics and Automation 2(1), April 1986b, pages 14-23.

Rodney A. Brooks and Jonathan H. Connell, Asynchronous distributed control system
for a m, lIe robot, Cambridge Symposium on Optical ,nd Optoelectronic Engineering,
SPIE, October 1986, pages 77-84.

Rodney A. Brooks, Jonathan H. Connell, and Anita Flynn, A mobile robot with onboard
parallel processor and large workspace arm, Proceedings of the Fifth National Conference
on Artificial Intelligence, Philadelphia, 1986, pages 1096-1100.

Rodney A. Brooks, Intelligence without representation, unpublished manuscript, 1987.

Rodney A. Brooks, Jonathan H. Connell, and Peter Ning, Herbert: A second generation
mobile robot, Al Memo 1016, MIT Artificial Intelligence Laboratory, 1988.

Rodney A. Brooks, A robot that walks: Emergent behaviors from a carefully evolved
network, unpublished manuscript, 1988.

I.,- Brownston, Robert Farrell, Elaine Kant, and Nancy Martin, Programming Expert

269

Systems in OPS5: An Introduction to Rule-Based Programming, Addison-Wesley, 1985.

Richard L. Campbell and Mark H. Bickhard, Knowing Levels and Developmental Stages,
S. Karger, 1986.

John F. Canny, The Complexity of Robot Motion Planning, MIT Press, 1987.

Jaime G. Carbonell, Derivational analogy and its role in problem solving, Proceedings
of the National Conference on Artificial Intelligence, Austin, Texas, 1983, pages 64-69.

David Chapman and Philip E. Agre, Abstract reasoning as emergent from concrete
activity, in Michael P. Georgeff and Amy L. Lansky, eds, Reasoning about Actions and
Plans, Proceedings of the 1986 Workshop, Timberline, Oregon, 1986, pages 411-424.

David Chapman, Planning for conjunctive goals, Artificial Intelligence, 32(3), 1987,
pages 333-377.

David Chapman, Connections, encodings, and descriptions, unpublished manuscript,
1988.

David Chapman, forthcoming PhD thesis, MIT Computer Science Department.

Raja Chatila and Jean-Paul Laumond, Position referencing and consistent world mod-
eling for mobile robots, Proceedings of the IEEE International Conference on Robotics
and Automation, St. Louis, 1985, 138-145.

R. T. Chien and S. Weissman, Planning and execution in incompletely specified envi-
ronments, Advance Papers of the Fourth International Joint Conference on Artificial
Intelligence, Tbilisi, USSR, 1975, pages 169-174.

Noam Chomsky, Aspects of the Theory of Syntax, MIT Press, 1965.

Jonathan H. Connell, Creature design with the subsumption architecture, Proceedings of
the Tenth International Joint Conference on Artificial Intelligence, Milan, 1987, pages
1124-1126.

Jonathan H. Connell, A behavior-based arm controller, Al Memo 1025, MIT Artificial
Intelligence Laboratory, 1988.

Jonathan H. Connell, Task-Oriented Spatial Representations for Distributed Systems,
forthcoming PhD Thesis, MIT Department of Electrical Engineering and Computer
Science.

Roy Goodwin D'Andrade, The cultural part of cognition, Cognitive Science 5(3), 1981,
pages 179-195.

Randy Davis and Jonathan King, An overview of production systems, Memo AIM-271,
Stanford Artificial Intelligence Laboratory, 1975.

Thomas L. Dean, Temporal imagery: An approach to reasoning about time for plan-

270

ning and problem solving, Technical Report 433, Computer Science Department, Yale
University, 1985.

Thomas L. Dean and Drew V. McDermott, Temporal data base management, Artificial
Intelligence 32(1), 1987, pages 1-55.

Thomas L. Dean and Mark Boddy, Incremental causal reasoning, Proceedings of the
Sixth National Conference on Artificial Intelligence, Seattle, 1987, pages 196-201.

Thomas L. Dean, Intractability and time-dependent planning, in Michael P. Georgeff
and Amy L. Lansky, eds, Reasoning about Actions and Plans, Proceedings of the 1986
Workshop, Timberline, Oregon, 1986, pages 245-266.

Johan de Kleer, Jon Doyle, Guy L. Steele, Jr., and Gerald Jay Sussman, Explicit con-
trol of reasoning, Proceedings of the ACM Symposium on Artificial Intelligence and
Programming Languages, Rochester, New York, 1977. Also available as Al Memo 427,
MIT Artificial Intelligence Laboratory.

Johan de Kleer, Jon Doyle, Charles Rich, Guy L Steele Jr, and Gerald Jay Sussman,
AMORD: A deductive procedure system, Al Memo 435, MIT Artificial Intelligence
Laboratory, 1978.

Johan de Kleer, An assumption-based TMS, Artificial Intelligence 28(2), 1986, pages
127-162.

Johan de Kleer and Brian C. Williams, Reasoning about multiple faults, Artificial In-
telligence 32(1), 1987, pages 97-130.

Bruce R. Donald, A search algorithm for motion planning with six degrees of freedom,
Artificial Intelligence 31(3), 1987a, pages 295-353.

Bruce R. Donald, Error Detection and Recovery for Robot Motion Planning with Uncer-
tainty, PhD Thesis, MIT Department of Electrical Engineering and Computer Science,
1987b. Available as Technical Report 982, MIT Artificial Intelligence Laboratory.

Jon Doyle, Truth Maintenance Systems for Problem Solving, Master's Thesis, MIT
Department of Electrical Engineering and Computer Science, 1978. Also available as
Technical Report 419, MIT Artificial Intelligence Laboratory, 1978.

Jon Doyle, A truth maintenance system, Artificial Intelligence 12(3), 1979, pages 231-
272.

Jon Doyle, A model for deliberation, action, and introspection, PhD Thesis, MIT Depart-
ment of Electrical Engineering and Computer Science, 1980. Also available as Technical
Report 581, MIT Artificial Intelligence Laboratory, 1980.

Gary Drescher, The Schema Mechanism: A Conception of Constructivist Intelligence,
Master's Thesis, MIT Department of Electrical Engineering and Computer bScl'nce,

271

1985.

Hubert Dreyfus, What Computers Can't Do, 2nd edition, Harper and Row, 1979. The
introduction to the 2nd edition is also in (Haugeland 1981), pages 161-204.

Hubert Dreyfus, Being-in-the-world: A commentary on Heidegger's Being and Time,
Division I, MIT Press, forthcoming.

Edmund H. Durfee and Victor R. Lesser, Incremental planning to control a blackboard-
based problem solver, Proceedings of the Fifth National Conference on Artificial Intel-
ligence, Philadelphia, 1986, pages 58-64.

Jeff Elman, Finding structure in time, Technical Report 8801, Center for Research in
Language, University of California at San Diego, 1988.

George W. Ernst and Allen Newell, GPS: A Case Stud- in Generality and Problem
Solving, Academic Press, 1969.

Michael Erdmann, On Motion Planning with Uncertainty, Master's Thesis, MIT De-
partment of Electrical Engineering and Computer Science, 1987.

Michael Erdmann, Using backprojections for fine motion planning with uncertainty,
International Journal of Robotics Research 5(1), 1986, pages 19-45.

Gareth Evans, The Varieties of Reference, edited by John McDowell, Oxford University
Press, 1982.

Scott E. Fahlman, A planning system for robot construction tasks, Artificial Intelligence
5(1), 1974, pages 1-49.

Jerome A. Feldman, Dynamic connections in neural networks, Biological Cybernetics
46(1), 1982, pages 27-39.

Jerome A. Feldman, Four frames suffice: A provisional model of vision and space,

Behavioral and Brain Sciences 8(2), 1985, pages 265-313.

Jerome A. Feldman and Dana H. Ballard, Connectionist models and their properties,
Cognitive Science 8(3), 1982, pages 205-254.

Jerome A. Feldman, Neural representation of conceptual knowledge, Technical Report
189, Computer Science Department, University of Rochester, 1986.

Richard E. Fikes, Monitored execution of robot plans produced by Strips, Proceedings
of the IFIP Congress 71, Ljubljana, Yugoslavia, North-Holland, 1971, pages 189-194.

Richard E. Fikes and Nils J. Nilsson, Strips: A new approach to the application of
theorem proving to problem solving, Artificial Intelligence 2(3), 1971, pages 189-208.

Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson, Learning and executing generalized
robot plans, Artificial Intelligence 3(4), 1972, pages 251-288.

• I IJ

272

R. James Firby, An investigation into reactive planning in complex domains, Proceedings
of the Sixth National Conference on Artificial Intelligence, Seattle, 1987, pages 202-206.

Jerry A. Fodor, Representations: Philosophical Essays on the Foundations of Cognitive
Science, MIT Press, 1981.

Jerry A. Fodor, The Modularity of Mind, MIT Press, 1983.

Jerry A. Fodor and Zenon W. Pylyshyn, Connectionism and cognitive architecture: A

critical analysis, Cognition 28(1), 1988, pages 3-72.

Charles L. Forgy, OPS5 user's manual, Technical Report 81-135, Computer Science
Department, Carnegie-Mellon University, 1981.

Charles L. Forgy, Rete: A fast algorithm for the many pattern/many object pattern
match problem, Artificial Intelligence 19(1), 1982, pages 17-37.

Mark S. Fox and Stephen Smith, The role of intelligent reactive processing in produc-
tion management, 13th Meeting and Technical Conference, CAM-I, London, November
1984a.

Mark S. Fox and Stephen Smith, ISIS: A knowledge-based system for factory scheduling,
Expert Systems 1(1), 1984b, pages 25-49.

Harold Garfinkel, Studies in Ethnomethodology, Polity Press, 1984. Originally published
in 1967.

Clifford Geertz, On the nature of anthropological understanding, American Scientist
63(1), 1975, pages 47-53.

Dedre Gentner, Structure-mapping: A theoretical framework for analogy, Cognitive

Sciencebf 7(2), 1983, pages 155-170.

Dedre Gentner and Cecile Toupin, Systematicity and surface similarity in the develop-
ment of analogy, Cognitive Science 10(3), 1986, 277-300.

Michael P. Georgeff, Amy L. Lansky, Reactive reasoning and planning, Proceedings of
the Sixth National Conference on Artificial Intelligence, Seattle, 1987, pages 677-682.

Michael P. Georgeff, Amy L. Lansky, and Marcel J. Schoppers, Reasoning and planning
in dynamic domains: An experiment with a mobile robot, Technical Note 380, SRI
International Artificial Intelligence Center, 1986.

Malik Ghallab, Task execution monitoring by compiled production rules in an advanced
multi-sensor robot, in Hideo Hanafusa and Hirochika Inoue, eds, Robotics Research: Th_

Second International Symposium, Kyoto, 1985, pages 393-401.

James J. Gibson, The Ecological Approach to Visual Perception, IHoughton Mifflin, 1979.

James J. Gibson, Conclusions from a century of research on sense perception, in (Koch

273

and Leary 1985), pages 224-230.

Georges Giralt, Raja Chatila, and Marc Vaisset, An integrated navigation and mo-
tion control system for autonomous multisensory mobile robots, in Michael Brady and
Richard Paul, eds, Proceedings of the First Symposium on Robotics Research, MIT Press,
Bretton Woods, NH, 1984, pages 191-214.

Margaret A. Hagen, James J. Gibson's ecological approach to visual perception, in
(Koch and Leary 1985), pages 231-249.

Joseph Halpern, ed, Proceedings of the Conference on Theoretical Aspects of Reasoning
About Knowledge, Monterey, California, 1986.

Kristian J. Hammond, CHEF: A model of case-based planning, Proceedings of the Fifth
National Conference on Artificial Intelligence, Philadelphia, 1986, pages 267-271.

Kristian J. Hammond, Case-based Planning: An Integrated Theory of Planning, Learn-
ing and Memory, PhD Thesis, Computer Science Department, Yale University, 1986.
Available as Report RR-488.

John Haugeland, ed, Mind Design, Bradford Books, 1981.

Patrick J. Hayes, In defence of logic, Proceedings of the Fifth International Joint Con-
ference on Artificial Intelligence, Cambridge, Massachusetts, 1977, pages 559-565.

Philip J. Hayes, A representation for robot plans, Advance Papers of the Fourth Inter-
national Joint Conference on Artificial Intelligence, Tbilisi, USSR, 1975, pages 181-188.

Barbara Hayes-Roth and Frederick Hayes-Roth, A cognitive model of planning, Cogni-
tive Science 3(4), 1979, pages 275-310.
Martin Heidegger, Being and Time, translated by John Macquarrie and Edward Robin-

son, Harper and Row, 1961. Originally published in German in 1927.

John Heritage, Garfinkel and Ethnomethodology, Polity Press, 1984.

R. D. Hinshelwood, What Happens in Groups, Free Association Books, 1987.

Geoffrey E. Hinton and James A. Anderson, Parallel Models of Associative Memory,
Lawrence Erlbaum Associates, 1981.

Geoffrey E. Hinton, Implementing semantic networks in parallel hardware, Chapter 6
in (Hinton and Anderson 1981), pages 161-187.

Geoffrey E. Hinton and David S. Touretzky, Symbols among the neurons: Details of a
connectionist inference architecture, Proceedings of the Ninth International Joint Con-
ference on Artificial Intelligence, Los Angeles, 1985, pages 238-243.

Geoffrey E. Hinton, James L. McClelland, and David E. Rumelhart, Distributed repre-
sentation, Chapter 3 in (Rumelhart and McLelland 1986), pages 77-109.

274

John H. Holland, Adaptation in Natural and Artificial Systems, Michigan University
Press, 1975.

Ian D. Horswill, Reactive Navigation for Mobile Robots, Master's thesis, MIT Depart-
ment of Electical Engineering and Computer Science, 1988.

Ian D. Horswill and Rodney A. Brooks, Situated vision in a dynamic world: Chas-
ing objects, Proceedings of the Seventh National Conference on Artificial Intelligence,
St. Paul, MN, 1988, pages 796-800.

Edwin Hutchins, Mediation and automatization, ICS Report 8704, Institute for Cogni-
tive Science, University of California at San Diego, 1987.

Margaret Jean Intons-Peterson and JoAnne Fournier, External and internal memory
aids: When and how often do we use them?, Journal of Experimental Psychology:
General 115(3), 1986, pages 267-280.

Philip N. Johnson-Laird and Peter C. Wason, Thinking: Readings in Cognitive Science,
Cambridge University Press, 1977.

Michael I. Jordan, Serial order: A parallel, distributed approach, Report 8604, Institute
for Cognitive Science, University of California at San Diego, 1986.

Michael I. Jordan and David A. Rosenbaum, Action, in Michael I. Posner, ed, Handbook
of Cognitive Science, MIT Press, forthcoming.

Leslie Pack Kaelbling, Rex: A symbolic language for the design and parallel imple-
mentation of embedded systems, Proceedings of the AIAA Conference on Computers in
Aerospace, Wakefield, Massachusetts, 1987.

Leslie Pack Kaelbling, Goals as parallel program specifications, Proceedings of the Sev-
enth National Conference on Artificial Intelligence, St. Paul, MN, 1988, pages 60-65.

Kenneth Kaye, The Mental and Social Life of Babies: How Parents Create Persons,
University of Chicago Press, 1982.

Raymond Klein, Inhibitory tagging system facilitates visual search, Nature 334, 4 Au-
gust 1988, pages 430-431.

Donald Knuth, The Art of Computer Programming, Volume 1: Fundamental Algo-
rithms, Addison-Wesley, 1983.

Sigmund Koch and David E. Leary, A Century of Psychology as Science, McGraw-Hill,
1985.

Janet L. Kolodner and Richard E. Cullingford, Towards a memory architecture that sup-
ports reminding, Report 86-10, School of Information and Computer Science, Georgia
Institute of Technology, 1986.

275

Robert A. Kowalski, Predicate logic as a programming language, Proceedings of the
IFIP Congress 74, North-Holland, 1974, pages 569-574.

John E. Laird, Universal Subgoaling, PhD Thesis, Computer Science Department, Carne-
gie-Mellon University, 1983. Available in (Laird, Rosenbloom, and Newell 1986).

John E. Laird and Allen Newell, A universal weak method: Summary of results, Proceed-
ings of the Eighth Inte, rational Joint Conference on Artificial Intelligence, Karlsruhe,
West Germany, 1983, pages 771-773.

John E. Laird, Paul S. Rosenbloom, and Allen Newell, Toward chunking as a general
le .rning mechanism, Proceedings of the National Conference on Artificial Intelligence,
Austin, Texas, 1984, pages 188-192.

John E. Laird, Paul S. Rosenbloom, and Allen Newell, Chunking in Soar: The anatomy
of a general learning mechanism, Machine Learning 1(1), January 1986, pages 11-46.

John E. Laird, Paul S. Rosenbloom, and Allen Newell, Universal Subgoaling and Chunk-
ing: The Automatic Generation and Learning of Goal Hierarchies, Kluwer, 1986.

John E. Laird, Allen Newell, and Paul S. Rosenbloom, Soar: An architecture for general
intelligence, Artificial Intelligence 33(1), 1987, pages 1-64.

John E. Laird, Recovery from incorrect knowledge in Soar, Proceedings of the Seventh
National Conference on Artificial Intelligence, St. Paul, MN, 1988, pages 618-623.

Amy L. Lansky and David S. Fogelsong, Localized representation and planning meth-
ods for parallel domains, Proceedings of the Sixth National Conference on Artificial
Intelligence, Seattle, 1987, pages 240-245.

Jill Larkin and Herbert A. Simon, Why a diagram is (sometimes) worth ten thousand
words, Cognitive Science 11(1), 1987, pages 65-100.

Bruno Latour, Sociology of a door, Twente II, Eschende, Holland, 1987.

Jean Lave, Cognition in Practice, Cambridge University Press, 1988.

Douglas B. Lenat, The nature of heuristics, Artificial Intelligence 19(2), 1982, pages
189-249.

Douglas B. Lenat, Eurisko: A program that learns new heuristics and domain concepts,
Artificial Intelligence 21(1), 1983, 61-98.

Douglas B. Lenat and John Seely Brown, Why AM and Eurisko appear to work, Arti-
ficial Intelligence 23(3), 1984, pages 269-294. A shorter version appears in Proceedings
of the National Conference on Artificial Intelligence, Washington, DC, 1983, pages 236-
240.

Hector J. Levesque and Ronald J. Brachman, Expressiveness and tractability in knowl-

276

edge representation and reasoning, Computational Intelligence 3(2), 1987, pages 78-93.

Theodore Linden, Plan and goal representations, in William Swartout, ed, DARPA
Santa Cruz Workshop on Planning, AI Magazine 9(2), 1988, pages 115-131.

Tomris Lozano-P6rez, Matthew T. Mason, and Russell H. Taylor, Automatic synthesis
of fine-motion strategies for robots, International Journal of Robotics Research 3(1),
1984, pages 3-24.

Kevin Lynch, The Image of the City, MIT Press, 1960.

James V. Mahoney, Image Chunking: Defining Spatial Building Blocks for Scene Analy-
,-is, Master's Thesis, MIT Department of Electrical Engineering and Computer Science,
1987.

Mitchell Marcus, A Theory of Syntactic Recognition for Natural Language, MIT Press,
1980.

David Marr, A theory for cerebral neocortex, Proceedings of the Royal Society of London
B 176, pages 161-234, 1970.

David Marr, Artificial intelligence: A personal view, Artificial Intelligence 9(1), 1977,
pages 37-48.

David Marr, Vision, Freeman, 1982.

David McAllester, ONTIC: A Knowledge Representation System for Mathematics, MIT
Press, 1988.

James L. McClelland and David E. Rumelhart, An interactive activation model of the
effect of context on language learning (Part I), Psychological Review 88(5), 1981, pages
375-407.

James L. McClelland, Putting knowledge in its place: A scheme for programming par-
allel processing structures on the fly, Cognitive Science 9(l), 1984, pages 113-146.

Drew V. McDermott, Flexibility and Efficiency in a Computer Program for Designing
Circuits, Technical Report 402, MIT Artificial Intelligence Laboratory, 1977.

Drew V. McDermott, PIPnning and acting, Cognitive Science, 2(2), 1978, pages 71-109.

Drew V. McDermott, A temporal logic for reasoning about processes and plans, Cogni-
tire Science 6(2), 1982, pages 101-155.

Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, eds, Machine Learning:
An Artificial Intelligence Approach, Tioga, 1983. Reprinted by Morgan Kaufmann,
1983.

Iyszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, eds, Machine Learning:
Atl A rtificial Intelligence Approach, Volume II, Morgan Kaufmann, 1986.

277

George A. Miller, Eugene Galanter, and Karl H. Pribram, Plans and the Structure of
Behavior, Henry Holt and Company, 1960.

Marvin Minsky, A framework for representing knowledge, AI Memo 306, MIT Artificial
Intelligence Laboratory, June 1974. Also in part in (Winston 1975a) pages 211-277 and
in (Haugeland 1981) pages 95-128. Another version appears in Proc TINLAP 1975 and
in (Johnson-Laird and Wason 1977) pages 355-376.

Marvin Minsky, K-Lines: A theory of memory, Cognitive Science 4(2), 1980, pages
117-133.

Marvin Minsky, Jokes and the logic of the cognitive unconscious, AI Memo 603, MIT
Artificial Intelligence Laboratory, 1980.

Marvin Minsky, The Society of Mind, Simon and Schuster, 1986.

Tom Mitchell, Learning and problem solving, Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, 1983, pages 1139-
1151.

Raymond Mooney and Gerald DeJong, Learning schemata for natural language process-
ing, Proceedings of the Ninth International Joint Conference on Artificial Intelligence,
Los Angeles, 1985, pages 681-687.

John H. Munson, Robot planning, execution, and monitoring in an uncertain environ-
ment, in Proceedings of the Second International Joint Conference on Artificial Intelli-
gence, London, 1971, pages 338-349.

Robert Neches, Models of Heuristic Procedure Modification, PhD Thesis, Psyc.i'ology
Department, Carnegie-Mellon University, 1981.

Allen Newell, J. Clifford Shaw, and Herbert A. Simon, Report on a general problem solv-
ing program, in Proceedings of the International Conference on Information Processing,
UNESCO, Paris, 1960, pages 256-264.

Allen Newell and Herbert A. Simon, GPS: A program that simulates human thought,
in Edward A. Feigenbaum and Julian Feldman, eds, Computers and Thought, McGraw-
Hill, 1963, pages 279-296.

Allen Newell and Herbert A. Simon, Human Problem Solving, Prentice-Hall, 1972.

Allen Newell, Production systems: Models of control structures, in W. G. Chase, ed,
Visual Information Processing, Academic Press, New York, 1973.

Milind Tambe and Allen Newell, Some chunks -re expensive, Procecdings of the Fifth
International C'cnfrtence on Machine Learning, Ann Arbor, Michigan, 1988, pages 451-
458.

Nils .1 Nilsson, Principles of Artificial Intelligence, Tioga, 1980.

278

Nils J. Nilsson, Shakey the Robot, Technical Note 323, SRI Artificial Intelligence Center,
1984.

Donald A. Norman, The Psychology of Everyday Things, Basic Books, 1988.

Elizabeth F. Preston, Representational and Non-Representational Intentionality: Hus-

serl, Heidegger, and Artificial Intelligence, PhD Thesis, Department of Philosophy,

Boston University, 1988.

Gregory Provan, Efficiency analysis of multiple-context TMSs in scene representation,
Proceedings of the Sixth National Conference on Artificial Intelligence, Seattle, 1987,

pages 173-177.

Gregory Provan, Complexity Analysis of Truth Maintenance Systems, with Application
to High Level Vision, DPhil thesis, Department of Engineering, University of Oxford,

forthcoming.

R. Bruce Roberts and Ira P. Goldstein, The FRL manual, Al Memo 409, MIT Artificial
Intelligence Laboratory, June 1977.

Barbara Rogoff and Jean Lave, eds, Everyday Cognition: Its Development in Social

Context, Harvard University Press, 1984.

Richard Rorty, Philosophy and the Mirror of Nature, Princeton University Press, 1979.

Paul S. Rosenbloom, The Chunking of Goal Hierarchies: A Model of Practice and
Stimulus-Response Compatibility, PhD Thesis, Department of Computer Science, Carne-
gie-Mellon University, August 1983.

Stanley J. Rosenschein, Formal theories of knowledge in Al and robotics, New Genera-
tion Computing 3(4), pages 345-357.

Stanley J. Rosenschein and Leslie Pack Kaelbling, The synthesis of digital machines
with provable epistemic propert-es, in (Halpern 1986), pages 83-98.

David E. Rumelhart and James L. McLelland, eds, Parallel Distributed Processing:
Exploration in /he Microstructure of Cognition, MIT Press, 1986.

David E. Rumelhart, Geoffrey E. Hinton, and R. J. Williams, Learning internal rep-
resentations by error propagation, Chapter 8 in (Rumelhart and McClelland 1986),
volume 1, pages 318-362.

David E. Rumelhart, Paul Smolensky, James L. McClelland, and Geoffrey E. Hinton,

Schemata and sequential thought processes in PDP models, Chapter 14 in (Rurnelhart
and McClelland 1986), volume 2, pages 7-57.

l"arl D. Sacerdoti, Planning in a hierarchy of abstraction spaces, Artificial Intelligenct
5(2), 1974, pages 115-135.

279

Earl D. Sacerdoti, The nonlinear nature of plans, Advance Papers of the Fourth Inter-
national Joint Conference on Artificial Intelligence, Tbilisi, USSR, 1975, pages 206-214.

Earl D. Sacerdoti, A Structure for Plans and Behavior, Elsevier, 1977.

Harvey Sacks, Emanuel A. Schegloff, and Gail Jefferson, A simplest systematics for
the organization of turn-taking in conversation, in Jim Schenkein, ed, Studies in the
Organization of Conversational Interaction, Academic Press, 1978, pages 7-55.

Roger C. Schank and Robert P. Abelson, Scripts, plans, and knowledge, Advance Papers
of the Fourth International Joint Conference on Artificial Intelligence, Tbilisi, USSR,
1975, pages 151-157.

Roger C. Schank and Robert P. Abelson, Scripts, Plans, Goals, and Understanding,
Lawrence Erlbaum Associates, 1977.
Roger C. Schank, Dynamic Memory: A Theory of Reminding and Learning in Comput-

ers and People, Cambridge University Press, 1982.

Bob Scher, The Fear of Cooking, Houghton-Mifflin, 1984.

Marcel J. Schoppers, Universal plans for reactive robots in unpredictable environments,
Proceedings of the Tenth International Joint Conference on Artificial Intelligence, Milan,
1987, pages 1039-1046.

Alfred Schutz, The Phenomenology of the Social World, translated by George Walsh
and Frederick Lehnert, Heinemann, 1967. Originally published in German in 1932.

Sylvia Scribner, Studying working intelligence, in (Rogoff and Lave 1984), pages 1-40.

Yoav Shoham, Temporal logics in Al: Semantical and ontological considerations, Arti-
ficial Intelligence 33(1), 1987, pages 89-104.

Yoav Shoham, Reasoning About Change, MIT Press, 1988.

John Shore, The Sachertorte Algorithm and Other Antidotes to Computer Anxiety,
Viking, 1975.

Reid G. Simmons, Combining Associational and Causal Reasoning to Solve Interpreta-
tion and Planning Problems, PhD Thesis, MIT Department of Electrical Engineering
and Computer Science, 1988a.

Reid G. Simmons, A theory of debugging plans and interpretations, Proceedings of
the Seventh National Conference on Artificial Intelligence, St. Paul, MN, 1988b, pages
94-99.

Herbert A. Simon, The Sciences of the Artificial, MIT Press, 1970.

Dorothy G. Singer and Tracey A. Revenson, A Piaget Primer: How a Child Thinks,
New American Library, 1978.

280

Steven Small, Viewing word expert parsing as linguistic theory, Proceedings of the Sixth
International Joint Conference on Art ficial Intelligence. Vancouver, 1981, pages 70-76.

Steven Small, Garrison Cottrell, and Lokendra Shastri, Toward connectionist pars-
ing, Proceedings of the National Conference on Artificial Intelligence, Pittsburgh, 1982,
pages 247-250.

Brian Cantwell Smith, Varieties of self-reference, in (Halpern 1986a), pages 19-44.

Brian Cantwell Smith, The correspondence continuum, Proceedings of the 6th Canadian
AI Conference, Montreal, 1986b.

Richard M. Stallman and Gerald Jay Sussman, Forward reasoning and dependency-
directed backtracking in a system for computer-aided circuit analysis, Artificial Intelli-
gence 9(2), 1977, pages 135-196.

Mark Stefik, Planning and meta-planning, Artificial Intelligence 12(2), 1981, pages 141-
170.

Mark Stefik, Planning with Constraints, PhD Thesis, Computer Science Department,
Stanford University, 1980. Also Stanford Computer Science Department Memo 80-784.

Lucy Suchman, What is a plan?, ISL Technical Note, Xerox Palo Alto Research Center,
1986.

Lucy Suchman, Plans and Situated Action, Cambridge University Press, 1987.

Harry Stack Sullivan, The interpersonal theory of psychiatry, Norton, 1953.

Gerald Jay Sussman and Drew McDermott, Why conniving is better than planning, MIT
Al Lab Memo 255A, 1972, also in Proceedings of the Fall Joint Computer Conference
41, AFIPS Press 1972, pages 1171-1179.

Gerald Jay Sussman, A Computer Model of Skill Acquisition, Elsevier, 1975.

Robert Tarjan, Algorithm design, Communications of the ACM 30(3), 1987, pages 205-
212.

Austin Tate, Interacting goals and their use, Advance Papers of the Fourth International
Joint Conference on Artificial Intelligence,-Tbilisi, USSR, 197.5 pages 215-218.

Austin Tate, Planning and Condition Monitoring in a FMS, International Conference
on Flexible Manufacturing Systems, London, July 1984.

Austin Tate, A review of knowledge-based planning techniques, The Knowledge Engi-
neering Review 1(3), June 1985, pages 4-17.

David S. Touretzky, A distributed connectionist production system, Technical Report
86-172, Computer Science Department, Carnegie-Mellon University, 1986.

281

Ann Treisman and Garry Gelade, A feature integration theory of attention, Cognitive
Psychology 12(1), 1980, pages 97-136.

Shimon Ullman, Against direct perception, Behavioral and Brain Sciences 3(3), 1980,
pages 373-381. With peer commentary on pages 381-408 and author's response on pages
408-415.

Shimon Ullman, Visual routines, Cognition 18, 1984, pages 97-159.

Steven A. Vere, Planning in time: Windows and durations for activities and goals, IEEE
Transactions on Pattern Analysis and Machine Intelligence 5(3), 1983, pages 246-267.

Paul Viola, Mobile Robot Evolution, Bachelor's thesis, MIT Department of Electrical
Engineering and Computer Science, 1988.

Lev Vygotsky, Thought and Language, translated and edited by Alex Kozulin, MIT
Press, 1986. Originally published in Russian in 1934.

Lev Vygotsky, Mind in Society: The Development of Higher Psychological Processes,
edited by Michael Cole, Vera John-Steiner, Sylvia Scribner, and Ellen Souberman, Har-
vard University Press, 1978.

Richard Waldinger, Achieving several goals simultaneously, Technical Note 107, SRI
Artificial Intelligence Center, 1975.

David Warren, Warplan: A system for generating plans, Memo No. 76, Department of
Computational Logic, University of Edinburgh, 1974.

David Warren, An abstract Prolog instruction set, Technical Note 309, SRI International
AI Center, 1983.

Donald A Waterman and Frederick Hayes-Roth, eds, Pattern-Directed Inference Sys-
tems, Academic Press, 1978.

James W. Wertsch, Vygotsky and the Social Formation of Mind, Harvard University
Press, 1985.

Robert Wilensky, Meta-planning: Representing and using knowledge about planning
in problem solving and natural language understanding, Cognitive Science 5(3), 1981,
pages 197-233.

Robert Wilensky, Planning and Understanding: A Computational Approach to fluman
Reasoning, Addison-Wesley, 1983.

David E. Wilkins, Representation in a domain-independent planner, Proceedings of the
Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, West Ger-
many, 1983, pages 733-740.

David E. Wilkins, Domain-independent planning: Representation and plan generation,

282

Artificial Intelligence 22(3), 1984, pages 269-301.

David E. Wilkins, Recovering from execution errors in SIPE, Computational Intelligence
1(1), 1985, pages 33-45.

David E. Wilkins, Practical Planning: Extending the Classical AI Planning Paradigm,
Morgan Kaufmann, 1988.

David Wilishaw, Holography, associative memory, and inductive generalization, Chapter
3 in (Hinton and Anderson 1981), pages 83-104.

Donald Winnicott, Playing and Reality, Tavistock, 1971.

Donald Winnicott, On Human Nature, Basic Books, 1988.

Patrick 11. Winston, The Psychology of Computer Vision, McGraw-Hill, 1975.

Patrick H. Winston, Learning and reasoning by analogy, Communications of the ACM
23(12), 1979, pages 689-703.

Patrick 11. Winston, Learning by augmenting rules and accumulating censors, Proceed-

ings of the International Machine Learning Workshop, Monticello, Illinois, 1983, pages
2-11. Also Chapter 3 in (Michalski, Carbonell, and Mitchell 1986), pages 46-61.

Patrick H. Winston, Artificial Intelligence, 2nd edition, Addison-Wesley, 1984.

