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‘ : Abstract
J

Computational theories of action have generally understood the organized nature
of human activity in terms of the construction and execution of computer-program-like
structures called plans. By consigning the phenomena of contingency and improvisation
to peripheral roles, this view of activity has led to grossly impractical technical proposals.
I would like to propose an alternative view of human activity. According to this view,
contingency is a central feature of the world of everyday activity and improvisation is the
principal means by which people get along in the world. Starting from these premises, I
offer a computational model of certain aspects of everyday routine activity. This model
is based on two ideas, a way of organizing improvised activity called running arguments
and an account of representation for situated agents called deictic representation.

A running argument means continually redeciding what to do. Continually fede-
ciding what to do is more flexible than executing a plan because it is more responsive
to opportunities and contingencies. It is possible to approximate the ideal of continual
redecision because life is almost wholly routine. The routine portion of the reasoning
leading to each moment’s action can be implemented very efficiently by recording the
reasons behind any novel bits of reasoning, a method known as dependency maintenance.
A comp@blfet"program called the running argument system illustrates this point.

Deictic representation means individuating things in the world not objectively (in-
dependently of the agent’s location or heading or projects or attitudes) but rather
indexically (in terms of their relation to the agent) and functionally (in terms of the
role they play in the agent’s ongoing projects). Deictic representation does not involve
a notion of objective identity, but then objective identity is rarely a help, usually a
hindrance, and always much too great an epistemic protlem to make into a central rep-
resentational category. A computer program called Pengi illustrates the use of deictic
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Part A

Studying everyday life




Chapter Al

Context and summary

Ala Activity

Everyday life is almost wholly routine, an intricate dance between someone who is trying
to get something done and a fundamentally benign world that is continually shaped
by the bustle of human activity. I have been exploring the connections between the
organization of everyday routine activity and the organization of the human cognitive
architecture.

The project of relating a theory of activity to a theory of machinery offers great .
promise and raises great difficulties. The promise is that a serious theory of everyday
activity as a whole can provide a firm basis for the engineering analyses required by seri-
ous computational research, whether this research is intended to produce an explanatory
theory of human beings or a justified design for an autonomous robot.

The difficulty is that our existing technical vocabulary is not well suited for design-
ing and analyzing devices that continually interact with their environments. While this
conventional vocabulary has been helpful in getting computer technology off the ground,
its presuppositions and shortcomings now confuse and disrupt efforts to build systems
that can interact flexibly with real environments. The beginnings of a principied al-
ternative lie in careful attention to the nature of routine interactions between sensible
agents and benign worlds.

The job of a theory of activity is to describe and explain the ordinary everyday
activities of ordinary people. Investigations of activity begin with the idea that human
activity has an internal logic of its own. While the organization of human activity is
deeply affected by its history, it also has an inherent orderliness, coherence, and laws of
change. In short, human activity is the way it is for a good reason.

A great deal is known about the nature of human activity. Perhaps the principal
contribution of twentieth century sociology has been to convincingly relate broad ques-
tions of social order to the finest details of everyday activity. Among the foundational
works in this tradition were careful descriptions of the structure of everyday experi-
ence: Heidegger’s account of everyday routine activities (1927) and Schutz’s account of

]




10 Chapter A1. Context and summary

everyday social interactions (1932). More recently, profound insights into the social or-
ganization of routine activities have arisen from investigations of everyday cognition (see
for example Bourdieu 1977, Garfinkel 1967, Lave 1988, Rogofl and Lave 1984, Scribner
1984, Wertsch 1985). Much of this work is marvelous for its observational acuity and
its theoretical rigor.

The theme of connecting large-scale phenomena to the detailed organization of ev-
eryday activity is also central to my own work. For clarity, let us distinguish a particular
‘action’ from ‘activity’ in the large. A theory of action explains how individuals come to
do particular things in particular situations. The notion of activity, by contrast, relates
to the broader organization of human doings; a theory of activity should describe how
individuals’ actions are knitted into larger structures of relationships and societies.

My own interest in theories of activity began with my dissatisfaction with the ideas
about action I was taught in classes on artificial intelligence. These ideas center on
the notion of ‘planning’. Perhaps the most influential early statement of the idea of
‘planning’ occurs in a book called Plans and the Structure of Behavior, published in
1960 by Miller, Galanter, and Pribram. These authors rejected the extreme behaviorist
view that the organized nature of activity results from isolated responses to isolated
stimuli. Instead, they adopted the opposite extreme view that the organization of
human activity results entirely from the execution of Plans.

What is a Plan? “A Plan is any hierarchical process in the organism that can control
the order in which a sequence of operations is to be performed” (page 16). They state,
as a “scientific hypothesis™ about which they are “reasonably confident,” that a Plan is
“essentially the same as a program for a computer,” a connotation the term has carried
to the present day. Shortly thereafter, though, they state that “we shall also use the
term ‘Plan’ to designate a rough sketch of some course of action, just the major topic
headings in the outline, as well as the completely detailed specification of every detailed
operation” (page 17). Thus a new Plan’s hierarchical structure need not initially reach
down to the most primitive actions, though the hierarchy must be filled out by the time
any given step of it is executed. This view of P'ans and their role in organizing activity
has been so long unquestioned within Al that, as one author pointedly observed in
summarizing a recent workshop discussion, “the alternatives are not yet clear” (Linden
1988, page 121).

(Unlike subsequent authors, Miller, Galanter, and Pribram were careful to capitalize
their version of ‘Plan’ to avoid confusion with vernacular usage. For them, capitalizing
the word emphasized the hierarchical nature of Plans. I will capitalize the word for
clarity as well, but in order to emphasize the resemblance between Plans and computer
programs.)

Miller, Galanter, and Pribram worked from a distinction and a policy that have
remained almost axiomatic in artificial intelligence research down to the present day.
They distinguished two activities, ‘Planning’ and ‘execution’. (I will capitalize ‘Plan-
ning’ as well for consistency even though they did not. They imagined that most Plans
are retrieved from a collection of stored Plans and had little to say about the actual
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process of formulating new Plans.) Beginning with a ‘goal’, one chooses an appropriate
‘Plan’ and then one ‘executes’ it. They define execution by saying that “a creature
is executing a particular Plan when in fact that Plan is controlling the sequence of
operations he is carrying out” (page 17).

Their policy was to apply the term ‘Plan’ as broadly as they possibly could. Chapter
by chapter, they marched through the various aspects of everyday life, focusing on
elements of intentionality, regularity, and goal-directedness and applying the term ‘Plan’
to each one. One of the many frustrations inherent in trying to argue against Planning
is that absolutely any phenomenon in human life can, if looked at right, be viewed as
an instance of it. In order to view actions as instances of Planning, though, important
aspects of activity must be consigned to peripheral vision. And anybody can concoct
convenient toy ‘problems’ that sourd like bits of human activity. But principled research
into computational models of action must make explicit its views about the nature of
activity as a whole.

The notions of ‘Plans’ and ‘Planning’ that descend from Miller, Galanter, and Pri-
bram carry with them a definite view of everyday activity. Subsequent researchers have
proposed a variety of technical specifications for ‘Planning’, ‘execution’, et al. But all of
them, whether explicitly or through their continued use of the terms, have shared this
view,

If an agent’s activity has a certain organization, that is solely because the
agent constructs and deploys a symbolic representation of that activity,
namely a plan.

Everyday activity is fundamentally planned; contingency is a marginal phe-
nomenon. An agent conducts its everyday activity entirely by constructing
and deploying plans.

The world is fundamentally hostile. Life is a series of problems to be solved.

Let us call this the ‘planning’ view of everyday activity. Since I have defined it indepen-
dently of the computer-program connotations of the Al notion of ‘Plans’, it is actually
more general than the view handed down from Miller, Galanter, and Pribram. I wish to
dispute this view of everyday activity and to substitute my own, the ‘situated activity’
view,

Everyday life has an orderliness, coherence, and laws of change that are
not the product of any representation of them. Everyday activity is almost
entirely routine, even when something novel is happening.

Everyday activity is fundamentally improvised; contingency is the central
phenomenon. An agent conducts its everyday activity by continually rede-
ciding what to do.

The world is fundamentally benign. Life is a fabric of familiar activities.
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People certainly use plans. But real plans are nothing like Plans. Rational, goal-directed
activity need not be organized by a plan. And plans never serve as direct specifications
of action. Instead, a plan is merely one resource among many that an agent might use
in deciding what to do (c¢f. Suchman 1986, 1987). Before and beneath any plan-use is
a continual process of moment-to-moment improvisation. Improvisation might involve
ideas about the future and it might employ plans, but it is fundamentaily a matter of
deciding what to do now. Indeed, plan-use is a relatively peripheral phenomenon and
not a principal focus of this work. (See Agre and Chapman 1988 for a different theory
of plans. See also Chapman and Agre 1986.)

Alb What I did

Computational research into activity seeks technical ideas about action and representa-
tion that are well suited to the special requirements of situated, embodied agents living
in the real world. The ‘agents’ could be robots we would like to build or creatures—
insects, cats, or people—we would like to understand. To say that an agent is “situated’
is to emphasize that it is always in some particular situation in the physical and social
world. It is always provided with particular concrete materials and involved with par-
ticular other agents. To say that an agent is ‘embodied’ is simply to say that it has
a body. It is physically localized and has limited experience and finite abilities. It is
always in the world and among the world’s materials and other agents.

This report has three parts. This part, Part A, carefully defines the project and
its method and vocabulary. Chapter A2 introduces a way of talking about organized
activity based on the idea of dynamics—that is, regularities in the interactions between
certain kinds of agents and certain kinds of worlds. I will argue that the principal task
of artificial intelligence research is not the proliferation of complex forms of machinery
but rather the elucidation of the dynamic structure of complex forms of activity. Having
developed an understanding of dynamics, one should seck the simplest machinery that
is consistent with the forms of activity one wishes to produce or explain. Chapter A3
uses a narration of the walk from my apartment to the subway to sketch some of the
important dynamic concepts I have found useful in using analyses of human activity to
motivate computational models. In particular, it introduces the notion of a routine and
briefly describes some of the dynamics of routines and their evolution.

Parts B and C each describe an idea and a computer program that illustrates it, I
will sketch these ideas and programs very briefly here. For more detailed summaries
of the individual chapters in Parts B and C, see Chapters B1 and C1 respectively.
In general, this report is organized to appeal to people with relatively little technical
background. Those who wish to start with formal technical discussions should head for
Chapter B5 and then proceed to Chapters C3 and C4.

Part B’s idea is a way of organizing improvisatory action called running arguments.
Whereas a Plan is executed by a dumb executive with little idea of the reasoning behind
its actions, an agent engaging in a running argument can be far more flexible because




Alc. Everyday life 13

it continually rederives, to the greatest extent possible, the reasoning behind each mo-
ment’s actions. This reasoning is non-monotonic and takes the form of an argument
among conflicting options and considerations. Because the reasons behind consecutive
moments’ actions will usually be very similar, it suffices to continually incrementally
update the arguments leading to action. To facilitate this incremental updating process,
the agent maintains dependencies on its reasoning. Part B describes a computer pro-
gram, the running arguments system, that illustrates these ideas. Driven by a rule set
written in a fairly conventional rule language, the system interacts with a simp'e simu-
lated world. The system accelerates its own operation by keeping dependencies on its
reasoning. Chapter B5 demonstrates the running arguments system in action, carefully
analyzing its performance and drawing some negative conclusions about conventional
computational views of representation.

Part C’s idea is a novel theory of representation for situated agenis called deictic
representation. Whereas a conventional objective representation scheme such as first-
order logic individuates things in the world objectively (independently of the agent’s
location or heading or projects or attitudes) a deictic representation scheme individuates
things indexically (in terms of their relationship to the agent) and functionally (in terms
of the roles they play in the agent’s ongoing activities). Thus deictic representation
does not involve any kind of objective identity. While an agent might also use other
forms of representation, such as natural language with its complex, socially organized
notions of identity, I will argue that objective identity should not be a central concept
in a representation scheme for situated agents. It is almost always a hindrance and
hardly ever a help. This is a difficult idea. Part C illustrates it with a system called
Pengi that plays a video game. The game requires its player to participate in organized,
goal-directed improvisatory activity. Deictic representation permits Pengi to continually
rederive its best course of action without complex machinery or elaborate computations.
Part C concludes with some long, detailed stories about some of the ways in which a
workspace helps organize everyday routine activities.

Alc Everyday life

In developing these ideas, my method was to move back and forth between observing
real activities (involving both myself and others) and building computational models.
My goal in watching people was not a shallow replication of human ways. I don’t believe
such a thing is even possible. Instead, I sought to understand the nature of activity in
general. Exploring computational models—seeing what can and cannot be gotten to
work—helps isolate which aspects of human activity are essential and which are not. If,
as I believe, human activity is the way it is for a good reason, then that reason ought
to be just as binding on robots as it is on people.

Everyday life is just the whole of our ordinary activity: making breakfast, gardening,
hanging out, walking into town, cleaning up messes, shopping in supermarkets, working
in offices, participating in everyday rituals. I propose investigating the everyday activ-
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ities of human beings and relating the organization of human activities to hypotheses
about the workings of human bodies and brains. While the logic of my proposal might
Le clear cnough, it is difficult to properly appreciate the idea that everyday life is some-
thing that needs to be studied. Who is an authority on the nature of everyday life?
It is a deep and consequential fact that simply living everyday life does not, in itself,
qualify one to theorize about it. Second-hand intuitions and made-up stories need not,
and usually do not, bear any relationship to the reality of everyday activity. One must
go looking.

The hardest part of everyday life to see is its routine nature. Qur simplest activ-
ities have a great deal of detailed organization: flexibly improvised adaptations and
rearrangements, fluent synchronization, contingencies accommodated, and false starts
rebegun, all taking place against a background of continual fine adjustments. Since the
vast majority of this organization doesn’t raise any obtrusive difficulties, it goes almost
entirely unremarked. We don’t we have many words for talking about it. We take it so
thoroughly for granted that it is invisible even when it’s staring us in the face. Even on
a slowed-down videotape, it is remarkably difficult to see it without much patient effort.

When we talk about everyday life, what stands out to be talked about are problems.
We complain about our problems; we focus on them and name them and discuss them
and work out plans for dealing with them; we buy books and take classes and go to
professionals to help us resolve them; and we create institutions whose job it is to
alleviate them. Given this natural imbalance in attention, it is equally natural that,
lacking detailed investigation, our ideas about the nature of activity should center on
problems and their solution. Pretheoretical intuitions such as these suggest studying
the mentation through which we plan our way out of problems. But such a view of
everyday life has, to put it mildly, a warped sense of proportion. Its misplaced focus
doesn’t simply falsify the nature of everyday activity in the large, it also falsifies the
nature of the particular phenomena it advises us to study. Problems aren’t like that.

When I say that everyday life is almost wholly routine, I mean that it is always
almost wholly routine. Even when we face problems, even when we’re doing something
new, even when we make mistakes, even when we're trying to pay attention and be
careful, just about everything we do is something we can do routinely because we've
been doing it so regularly for so long. In particular, to say that everyday life is almost
wholly routine is not to say that our lives consist of stretches of mechanical execution
punctuated by episodes of pure novelty. Everyday life has to be almost wholly routine
or clse it would be impossibly complicated. Even the activity called “solving problems”
takes place against a background of routine activities: looking around, poking at your
materials, trying things, drawing diagrams, asking help, keeping your balance, keeping
your limbs under control, and so forth. Articulating the unproblematically beneficial
structure of the routine background of our activities ought to change the way we look
at all our activities.

Using more sophisticated ideas about activity to guide computational model-building
is not simply a matter of knowing a correct, finished theory. Such things don’t exist.
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Instead, one must forever work at being aware of and articulating one’s own experience
of everyday life. This isn’t a magical ability that some people are born with. And it
certainly isn’t a white-coated technology of introspection. It is a capacity that lies latent
in everyone and awakens now and 2 ain by degrees with no particular correlation with
age or class or abstract intelligence or moral exhortation or literature classes. Its basis
is not theoretical abstraction but rather a spontaneous openness to the mind-blowing
intricacy of humble phenomena. An awareness lost in projects and goals continually
passes over these phenomena. To catch sight of them, one must, deep down, find one’s
own everyday life interesting.

So severe is the disjunction between prevalent computational methods and the actual
nature of everyday life that it is hard to make any connection between them at all. I
know people who, at home, can be perfectly articulate about the creative use they make
of recipes but who, at work, insist that plans are like computer programs and treat any
demurral as a heresy against reason. In trying to connect technical talk and everyday
experience, it does not suffice to keep stretching quasi-technical words like ‘planning’
and ‘knowledge’ and ‘hierarchy’ to fit any next example that comes along. One must be
willing to use technical difficulties—computational intractability, excessive complication,
the seemingly incorrigible necessity for artificially constrained task environments, and
generally the whole range of engineer’s headaches—as opportunities to articulate the
view of activity behind received technical ideas, to ask whether everyday activity is
really like that, and to go looking.

Looking at everyday life can take many forms. It can involve watching people do
things. It can involve watching videotapes a frame at a time. It can involve talking
the phenomena over with people (preferably not technical people) who are especially
articulate about their everyday lives. It can involve consulting the writings of people
who have already looked carefully at everyday activity and then trying to see for oneself
what they saw. While I have done all these things, for me looking at everyday life has
largely taken the form of spontaneously noticing events in my own everyday life that
seem relevant, often in obscure and even disturbing ways, to the technical questions
1 am studying. I will recite several stories about these events in the course of my
presentation. You don’t have to believe the stories if you don’t want to. They are there
to help connect abstract analysis to real experience. I hope they will provoke you to
notice such things on your own. It is not that any list of stories can compel one to
adopt one technical proposal rather than another. Instead, the stories serve a heuristic
role, deepening the intuitions one brings to one’s technical practice. The final test of
engineering proposals is, as always, whether they work. Whereas the planning view of
everyday life suggests machinery that doesn’t work, the situated activity view, I believe,
suggests different machinery that does.
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Ald Technical and narrative language

Part of any conceptual reorientation such as the one I suggest is a redoubled effort to
be clear about words and what they mean. The images called up by a vocabulary have
enormous influence over our intuitions, and the coherent network of images called up by
an unreflectively customary way of speaking can encode and convey an entire worldview,
long before the first axiom is set to paper. This is equally true for the language of
everyday life and for the languages of philosophy and psychology and computer science.
In order to dig up the unarticulated assumptions behind our technical practice, we have
to look at our words.

Many words will appear in scare quotes in this report. Ishould explain this practice.
Words in double quotes are simple quotations. Words in single quotes, though, are words
I would like to call into question. In doing so, my intention is never to ridicule those
words or the people who use them. Instead, I want to call attention to the metaphors
and stresses implicit in those words. These matters of image and connotation might
be evident when words are used in poetry or story-telling, but they tend to hide when
they’re used in technical discourse. Recovering the history and associations of a quasi-
technical word like ‘structure’ or ‘control’ can help us reconnect the intuitions behind
the technology to the everyday experiences we also associate with those words. One
can never make a knock-down argument out of such connections, of course, but they
are regularly have heuristic value nonetheless.

I am particularly concerned to draw clear distinctions between the technical and
vernacular—or, as I like to say, narrative—meanings of words. Plenty of AI's words
have both technical and narrative meanings. It takes great care to avoid shuffling back
and forth between the two meanings, blurring the vocabulary with which we tell stories
into the vocabulary with which we program computers. One word that often suffers
such treatment is ‘plan’; Chapter A2 will discuss many more. In order to help avoid
such confusions, I will capitalize the technical versions of a few especially important
words—Plan, Problem, and Complexity—to mark the critical differences between their
technical and narrative meanings.




Chapter A2

Machinery and dynamics

“...the Western conception of the person as a bounded, unique, more or less
integrated motivational and cognitive universe, a dynamic center of aware-
ness, emotion, judgement, and action organized into a distinctive whole and
set contrastively both against other such wholes and against a social and nat-
ural background is, however incorrigible it may seem to us, a rather peculiar
idea within the context of the world’s cultures.”

Clifford Geertz, On the nature of anthropological understanding, American
Scientist 63(1), 1975, page 48.

A2a Context and summary

Implicit in every community’s way of speaking is some view of its world. This chapter
has four purposes: to clearly distinguish between two broad views of human existence,
mentalism and interactionism; to enumerate some of the ways of speaking that have
made mentalism invisibly prevalent in Al and the greater Cognitive Science community;
to explain why interactionism is the preferable view; and to describe how interactionism
has informed my methods and strategy in performing the work reported here.

Section A2b defines and contrasts mentalism and interactionism. Each of these two
-isms is organized by a certain taste in metaphors. Mentalism prefers metaphors of
inside and outside. It begins with an entity called ‘the mind’. Inside this ‘mind’ are
mental structures and processes. These mental contents can be defined purely formally
without any reference to the outside world. Inside/outside metaphors have governed
Al research, almost without exception, since its beginning. Interactionism, by contrast,
prefers such metaphors of interaction as servocontrol, participation, metabolism, and
routine. A principled choice between mentalism and interactionism must begin with an
awareness of the ways of speaking that tend to presume them.

Section A2c presents some of the methods of interactionism. Interactionist research
begins with an investigation, both theoretical and empirical, of the dynamics of the
interactions that arise between various kinds of creatures and various kinds of worlds.

17
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Anr understanding of the dynamics of a given form of activity can help in inferring the
machinery of a creature that engages in that activity—or in designing the machinery
for such a creature. My own work has followed the principle of machinery parsimony:
postulate the simplest machinery that is consistent with the dynamic phenomena you
understand. The deeper your understanding of dynamics, the simpler the machinery
becomes. My initial work has concentrated on some of the more fundamental dynamic
phenomena, those involved in the everyday routine solitary activity of human beings.
Future work must deal with learning, social interaction, and all the rest.

Section A2d explains why Al research needs dynamic theory. Any time you design
a device, you have to explain why it ought to work. Such explanations often take the
form of a demonstration that the device solves the general case of some formally defined
Problem. I have nothing against formality. Solving the general case, though, almost
invariably leads to a no-win trade-off between unrealistically simple formalizations and
intractable computational Complexity. Heuristic methods are no help unless they come
with some good reason to believe that the device will work. The only way out is
through a sufficient understanding of the inherent orderliness of interactions between
sensible agents and benign worlds.

Section A2e presents some distinctions that help in developing theories of the dy-
ramics of human activity. The human machinery changes through learning, so it is best
to distinguish between the innate, unvarying architecture and the personality that forms
within it. The dynamics of your interactions with the world change, obviously, as your
personality evolves.

Section A2f investigates the tangled question of the computational Complexity of
conventional Planning as a study in the narrowness of mentalist theory. I would like
to argue that conventional Planning makes a poor theory of activity for any existing
or possible creature. Ammunition for such an argument would seem readily available
in the form of extremely negative Complexity results. But Complexity theory itself,
frustratingly, is an inappropriate means of evaluating theories of activity. Mentalist
metaphors are responsible for the trouble in each case. Chapter B4 will analyze the
question of Planning in a more sophisticated way.

Section A2g discusses about a dozen authors in other fields whose ideas about human
activity have been organized around metaphors of interaction. They make a disparate
group, but all of them offer useful suggestions about how one might proceed with the
project of relating dynamic theories to computational principles.

A dynamic theory, like any other, is a large abstraction carrying no warranties
against woolly thinking. This is the role of computer programs and observation of ev-
eryday life. Part A concerns only the form of the argument, not its substance. Programs
and evidence will appear beginning in Part B.
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A2b Mentalism and interactionism

In its technical practice, Al has a lot of vocabulary for talking about structures and
processes inside of computers. If you start looking at the original vernacular meanings
of these words, a remarkable pattern emerges. Actually two closely related patterns:

(1) A word that once referred to something in the world now refers to a structure
in the computer. Common examples include ‘situation’, ‘pattern’, ‘context’, ‘object’,
‘list’, ‘map’, ‘structure’, and ‘problem’. Individual programmers have defined hundreds
of others.

(2) A word that once referred to an activity conducted by agents in the world
now refers to a process occurring entirely in the computer. Examples include ‘search’,
all verbs for operations on datastructures (‘construct, manipulate, inspect, point at,
traverse, collect, recycle’), and many predicates on technical entities. ‘Efficiency’, for
example, was once a quality—i.e., not something to be measured—ascribed to a person.

This terminological practice has always been considered perfectly harmless. All those
datastructures and processes are well-defined; they ezist inside the computer; they need
names; they bear a certain resemblance to those objects and activities; words’ meanings
are extended through metaphorical resemblance all the time; so why not? And, indeed,
this is a perfectly valid argument. One has every right to define those abstractions and
give them those names.

The problems start when these words become part of a theory of an agent’s activity
in the world. Many words have both vernacular and technical (or quasi-technical)
meanings, and most of these meaning-pairs differ in just this way. I can’t use the words
‘search’ or ‘list’ or ‘stack’ in an Al context without being taken to be talking about the
insides of computers or heads. Things are even worse when someone writes a ‘planner’
one of whose arguments is a datastructure called a ‘situation’; or an ‘interpreter’ one
of whose arguments is a datastructure called a ‘context’ or an ‘environment’. Students
are exposed to this sort of talk without anyone systematically making the distinctions
clear for them. This is bound to be confusing. What is the problem?

The villain of our story is mentalism. Mentalism, as I will use the term, is not
precisely a scientific or philosophical position. Instead, mentalism refers to any psy-
chology or philosophy organized around metaphors of Inside and Qutside. According
to mentalism, ‘the mind’ has ‘contents’ which are radically different from things in the
‘outside world’. Mentalism is informed by a strong sense of boundary that marks off
the mental as a separate realm. Above all, mentalism leads one to make theories that
posit objects and processes residing entirely within the head. In particular, mentalism
encourages us to define the topic of our research as a mental process called cognition.
(For a clear statement of the form of mentalism most common in cognitive science, see
the introduction to Fodor’s Representations (1981). For an especially extreme statement
that brings out much of mentalism’s perverse inner logic see Fodor’s “Methodological
solipsism” paper, Chapter 9 of the Representations volume.)

We should pay attention to the place of metaphors in computational theorizing.
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Metaphors suggest problems, judge solutions, define prototypes, and distinguish cen-
tral from marginal phenomena. Above all, the metaphors behind our technical terms
encode a view of the nature of activity. They also tend to perpetuate that view by
making it seem transparently obvious. The metaphors of ‘inside’ and ‘outside’ are a
shadowy backstage presence in AI. They can be seen in words like ‘in’ (the head or the
mind), ‘cognition’ {a separate realm of inward activity), ‘perception’ (arriving inside),
‘behavior’ (emerging outside), ‘correspondence’ (between representations inside and the
world outside) and many more words for mental events and things. The metaphors
don’t make you hold any particular technical and scientific position. The difficulties
that arise can always be blamed on a specific position. The metaphors hover in the
background, acting as arbiters of plausibility without ever taking any blame.

In disagreeing with mentalism, I am not denying a theory or a philosophy, though
I disagree with plenty of mentalist theories and philosophies. I am not saying that
people don’t have minds (what an awful thought!) or denying the existence of cognition.
Certainly we have machinery in our heads and certainly people often sit and think. The
question is, as theorists, how do we proceed from there? I don’t believe it is very useful
to posit very abstract entities in the head, and certainly not things like search trees
and sentences of logic. Most especially, I am not denying any phenomena. I am only
criticizing a way of talking about them.

Mentalism provides a simple formula that provides plausible answers for all ques-
tions: put it in the head. If agents need to think about the world, put analogs of the
world in the head. If agents need to act in situations, put datastructures called ‘situa-
tions’ in the head. If agents need to figure out what might happen, put simulations of
the world in the head. If there are many possibilities, put a process of ‘search’ in the
head. The tacit policy of mentalism, in short, is to reproduce the entire world inside
the head: a ‘world model’. Consider the slogan of ‘mental models’, according to which
‘reasoning’ about the world depends on having access to as complete a simulacrum as
possible. Or the slogan of vision as ‘inverse optics’. The development of computational
methods over the last thirty years has been shaped by the steady pressure of this habit.
The sophisticated structures and processes we’ve learned how to define are not geared
to living in the world, they are geared to replacing it.

In place of mentalism, I prefer a view I call interactionism. Interactionist words—
‘interaction’, ‘conversation’, ‘involvement’, ‘participation’, ‘servocontrol’, ‘metabolism’,
‘regulation’, ‘cooperation’, ‘improvisation’, ‘turn-taking’, ‘symbiosis’, ‘routine’, ‘man-
agement’, and so forth—shift our attention from ‘cognition’ to ‘activity’. They lead
us to posit structures and processes that cross the boundaries of agents’ heads. Sure,
perhaps some of these structures and processes are entirely inside of agents’ heads, but
that’s just an unusual special case with no particular privilege. Future chapters will
describe many interactionist theoretical ideas. Many more are needed.

Mentalism and interactionism are incompatible. No doubt many mentalist ideas
have interactionist analogs and vice versa, but each of them offers its own distinctive
way of approaching every phenomenon of human existence.
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It is difficult to argue against mentalism. Not being a technical position, it doesn’t
admit of formal disproof. If interactionist technical proposals achieve stunning technical
successes, that’s certainly good evidence. Unfortunately, such successes in themselves
are unlikely to form a basis for comparison between mentalism and interactionism. By
making different aspects of human existence prototypical, mentalism and interaction-
ism suggest starting in very different places. Until the far-off day when we finish a
computational psychology, one can always ask ‘how does your theory explain X?’ This
report is mostly about something that has rarely even been considered a problem: the
organization of ordinary, routine activity. Its greatest weaknesses are in areas that have
generally been considered central. In these areas I lack access to the easy answers of
mentalism.

Fortunately, stronger arguments are available. These arguments concern the meta-
phors themselves. Let us return to the words Al uses for the insides of computers—
‘search’, ‘list’, ‘pattern’, ‘context’, etc. Dozens of times I've given up on one of these
ideas, only to discover that the idea I really wanted was very much closer to the original,
vernacular meaning of the word. Gradually I realized that the vernacular words, unlike
their AI namesakes, suggest interactionist ideas.

¢ An actual search is an interaction between an actual agent and an actual space
(like the messy workbench where the tin-snips might be buried).

¢ You might accumulate an actual list (of, say, things to get at the store) on an actual
piece of paper (like the back of the bank statement that has been cluttering your
coat pocket).

e Many activities are organized in part by actual, physical patterns, for example
sewing, filling out forms, and writing from an outline.

e It’s hard to make a hard-and-fast rule about whether to cross the street since the
wisest decision can depend on so many aspects of the context.

Later chapters will present many specific arguments about the metaphors behind men-
talist ideas. In general we should ask, what troubles should befall mentalist research
if the right way to talk about human activity is actually interactionist? Interactionism
constantly directs our attention to the connections between inside and outside; it con-
stantly reminds us that inside and outside are inextricably bound up with one another.
If mentalist research always starts by drawing a sharp distinction and firm boundary
between mind and world, we should expect inside and outside to try to reunite in some
more covert way. But this is exactly what happens when mentalism tacitly pretends
that the world is inside the head. The price of mentalism’s artificial partition between
inside and outside is the seductive but spurious plausibility that derives from constantly
obfuscating the difference between inside and outside.

If I insist on restoring AI's current words to their vernacular meanings, what words
is psychology supposed to use? Switching to neologisms would miss the point. There
is nothing wrong with recruiting existing English words to name theoretical ideas. I'm
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only disagreeing with the practice of indiscriminately populating heads or computers
with analogs of the materials and equipment of the outside world.

In his famous discussion of the ant on the beach, Simon clearly anticipated the view
that organized activity arises from the interaction between relatively simple creatures
with complex but benign worlds (1970, pp. 24-25). But one page later, Simon abandons
his insight, asserting that he is only interested in cognition and not in embodied agents,
and moves on to discuss his studies of human performance on cryptarithmetic puzzles.
The computational models of Newell and Simon’s school have affirmed their wholly
cognitive view of such puzzle-solving by locating the state of the process within the
individual’s short-term memory. (See Section C5d.) I do not know whether Simon
meant to draw an equivalence between interacting with one’s short-term memory and
interacting with the outside world, but I regard these two concerns as polar opposites.
To be fair, though, Simon has more recently participated in interesting research on
“external memory” practices such as the use of scratch paper (Larkin and Simon 1987).
(For other work on this subject see Intons-Peterson and Fournier 1986.)

All our thinking and acting and learning takes place against the enormous back-
ground of everyday routine activity. For this report, it will be enough to describe the
network of patterns of interaction that make up this activity. Let us now begin devel-
oping a vocabulary for ideas about interaction.

A2c Machinery and dynamics

The central idea of this report is the distinction between machinery and dynamics. This
section defines both terms, describes the notion of dynamics in detail, describes the
close interconnections between machinery and dynamics, and explains the consequences
of these ideas for interactionist research methodology.

A machine, as usual, is a physically realized, formally specified device. It is an object
in the physical world that participates in the laws of physics. It will presumably have
some internal state of its own, including perhaps the potential for changing its internal
configuration. It’s analog or digital or both. The mass term ‘machinery’ is intended to
suggest particular metaphors for thinking about the machinery’s physical realization:
its operation depends on a configuration which is more or less fixed.

The notion of dynamics is less familiar. It concerns the interactions between an
individual (robot, ant, cat, or person) and the world. The word is used in a number
of forms. In making dynamic explanations one often isolates a particular ‘dynamic’,
which is a common, lawlike regularity in the way that some sort of individual interacts
with some sort of world. As an adjective, there are ‘dynamic explanations’, ‘dynamic
theories’, and the like. One might speak of the ‘dynamics’ of Simon’s ant on its beach
and the ‘dynamic structure’ of the ant’s life on the beach. Both simply mean “everything
there is to say about the way the ant and beach interact.” Both the version of dynamics
that Newton and Euler would use to describe our physical interactions with the world
and the version of dynamics associated that Freud would use to describe our emotional
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interactions with the world are instances of my general notion, but neither of these
extreme cases figures much in this report.
Here are some simple examples.

e In your kitchen cupboard you probably have a set of bowls stored in a stack. If
you use one of them, you are likely to return it to the top of the stack. Over time,
the bowls you never use (or no longer use, or have not begun using) tend to sink
to the bottom. If you use some of the bowls and not others then the bowls you use
and the bowls you don’t use become segregated. These sinking and segregation
effects are dynamics.

e The elevators in MIT building NE43 are not very smart. If someone is waiting,
say, to go down from the fifth floor, then all elevators that happen to be passing
that way will stop. It is common for three of the four elevators to stop. and I
have seen all four. As a result, if you are in an elevator and it stops somewhere
on its way to your destination, it is quite likely that nobody will get on. Having
learned this, and having often waited too long for elevators that were off stopping
uselessly at other floors, many residents of the building have formed the habit
of punching the DOOR CLOSE button after only the most cursory search for
approaching people. As a result, many visitors have noticed and commented upon
the seeming rudeness of the building’s residents. This has gone on for the whole of
the nearly ten years I have worked in this building, despite its continual turnover
of personnel. This interaction between the elevators and the building residents is
a dynamic.

e I can’t work without music playing, so I have a record player and a shelf of records
in my office. Since I play upwards of two dozen records a day when I’'m working,
I've developed a definite routine for getting a record down off the shelf, removing it
from its sleeve, picking a side to play, putting it down on the turntable, cleaning it
and setting it going, removing it from the turntable when it’s done, returning it to
its sleeve, and returning it to its place in alphabetical order on the shelf. Though
this routine happens very quickly (about fourteen seconds to put the record on
and about twelve seconds to put it back), it is enormously complex, involving
several changes of grip and orientation. One evening I went through this routine
about thirty times and wrote down every detail of it. In doing so, I was able to
satisfy myself of the accuracy of the following hunch about it: if I always play
side 1 (say) of a given record, then side 1 will always be facing up at the point in
my routine where, having just removed the record from its sleeve, I check whether
the side I wish to play is facing upward or downward. This is unfortunate; since
I happen to be holding the record from underneath just then, it would be much
less clumsy to turn it over in the course of putting it down on the turntable. This
invariant in my interactions with my office is a dynamic.

¢ This story covers four days one winter. One morning when arriving in my office,
I decided I was sick of my coat cluttering my office, so I decided to leave the
coat lying on top of the file cabinet just outside my office door. Shifting my
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concern to the day’s work, I walked into my office and tossed the door shut behind
me as always—except that today it didn’t slam behind me as always. Huh?
Investigating, I found an edge of the coat caught in the door jamb and preventing
the door from closing. I herded the coat out of the way, closed the door, and
went back to work. The next day I left the coat on top of the file cabinet, headed
into my office, and tossed the door shut as always—and it didn’t slam behind me
again. Shoot. This time, though, I immediately knew what the problem was. The
next day I left the coat on top of the file cabinet as before, but as soon as I turned
to head into my office I realized that the coat was liable to get caught, so I herded
the coat out of the way again. The fourth day, I was aware of the problem as I
was placing the coat down on the file cabinet, so I made a point of placing it as far
as was readily practicable from the door jamb. On each day, a bit of the previous
day’s insight had drifted back toward the beginning of the routine. This backward
transfer effect is a dynamic, one of the principal dynamics through which routine
patterns of activity evolve.

These examples illustrate a number of points.

1. Dynamics are only descriptions, not causal agencies. The bowls do not sink and
segregate because the dynamics force them to; they do so because on a series of
occasions you returned the objects you’ve used to the top of the stack. Everyday
activity is, as the ethnomethodologists say, ‘locally organized’ (Heritage 1984).
Nonetheless, just as a figure of speech, it is often useful to say that something
happens ‘because’ of some dynamic.

2. A dynamic is most emphatically not a structure in any agent’s head. A dynamic
is a theorist’s description, not a datastructure or a plan or a mental object of
any kind. Having identified a recurring form of interaction between an agent
and its world, one can set about determining what kinds of machinery might be
compatible with it. The agent’s machinery participates in the dynamic but is not
solely responsible for it.

3. The dynamic depends on certain facts about both the individual and the world.
It depends on the world in that stacks require gravity, objects are often made to
stack, stacks tend to stay orderly unless disturbed, organic garbage decomposes,
customs propagate, my records are at eye level where my turntable is at waist
level, doors close flush to their jambs, and so on. These particular dynamics
only depend on some rather vaguely described aspects of the individual (puts the
stacked objects back reliably, participates in customs, checks record labels). Many
others depend on more specific aspects of the individual’s machinery, either how it
works or how it’s configured. It is an interesting question, one which I cannot now
answer, whether the backward transfer dynamic would occur with any agent whose
learning machinery works in any sensible way. A dynamic description is not simply
a description of an agent’s outward behavior. A dynamic describes a recurring
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causal chain in which components of the individual’s machinery participate on an
equal basis with objects in the world.

4. A dynamic only continues occurring ceteris paribus; many different events might
interrupt it. You might use all the bowls in a stack for a party one evening so that
the next morning the newly reconstituted stack will be scrambled. The kitchen
might be closed. Someone might play my records in my absence. My file cabinet
might get moved. In studying an activity one concentrates on its more stable
dynamics. But any dynamic description that would aspire to the status of natural
law is limited by the possibility that any of a thousand additional factors might
arise to change the outcome next time.

5. Most likely these dynamic effects are unintended; usually they are unnoticed as
well. If they were intended or noticed, of course, they would still be dynamics.
It is common to notice and describe to yourself an existing dynamic effect. The
dynamic picture might then become more complicated if you begin deliberately
doing things differently or if you go out of your way to encourage or retard the
effect. Having noticed your stack of bowls segregating, you might deliberately put
a rarely-used bowl back in its place to make the commonly-used ones easier to
remove. Building residents might notice the prevalent pattern of rudeness and
resolve to be more polite. Noticing the backward transfer dynamic in action
definitely accelerates it, though I don’t understand why. What’s more, once you
articulate a dynamic effect, the effect will often spread to new situations, even
without your specifically intending it to.

6. Activity in workspaces (kitchens, shops, desks, bathrooms, cars) tends to have a
great deal of dynamic structure. These places are also where our most complex
solitary activities take place. They are thus important laboratories of dynamic
theory. (For some wonderful stories abcut the dynamics of the use of appliances
and tools in workspaces and how the implications of these dynamics for design see
Norman 1988.) One central question is, how is it that we take so much advantage
of the dynamic structure of workspaces without representing most of it?

7. A dynamic description does not completely specify any particular workspace or
any particular episode of bowl-using or elevator-riding or record-playing or coat-
stashing. No matter how carefully you write out a description of an instance of
human action, I and many others have found through long experience, you will
always find yourself with more to write. Indeed, the very action of writing out a
round of description is generally enough to make you see a whole new dimension
to the action that you had previously overlooked. I don’t know why this happens,
but it does. Fortunately, there is no need for completely specifications. We only
need enough dynamic theory to sufficiently constrain a theory of machinery.

How can ideas about dynamics help us find ideas about machinery? Accounts of
the dynamics of everyday life play two roles, one general and one specific. The general
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role is to impress us with the inherent orderliness of everyday life and thus make us
more confident in relatively simple accounts of machinery. The more specific role of
dynamic descriptions is to help constrain particular aspects of the machinery. Any
machinery issue (such as timing, state, speed, digital vs. analog, or noise tolerance)
makes predictions about dynamics. Once you have a dynamic question in mind, you
can consult the reality of everyday life. Indeed, observations of everyday life should
be an everyday part of computational research into any aspect of activity. If you are
preoccupied with some technical question, often you will simply spontaneously notice
what yvou need to know as you're making breakfast or taking out the trash. Or you
might watch somebody else’s activity or look at a videotape.

In working backwards from observations about dynamics to hypotheses about ma-
chinery, it helps to imagine that someone explicitly designed the machinery for everyday
routine activity. What was the designer’s reasoning? What dvnamics do various sorts
of machinery get themselves into, how do these compare to the dynamics we observe,
and what design principles do these comparisons suggest? The answers to these ques-
tions will raise new questions which occasion further observation. Repeat this cycle of
theory and observation a hundred times and you’ll be ready for rigorous experimental
tests. I've been through it on two large occasions and several small ones. The first large
occasion produced the idea of running arguments (see Part B), the second the idea of
deictic representation (see Part C).

An account of the dynamics of everyday life explains what the machinery is re-
sponsible for. The machinery, in turn, determines what accounts of dynamics can be
explained. Machinery and dynamics constrain one another so strongly that accounts of
machinery and dynamics should be developed in parallel. Otherwise, one will inevitably
be misled into positing useless machinery and unimplementable dynamics. A contrary
view insists that “you can’t design the machinery unless you know what it’s going to
compute.” Such a slogan tends to emphasize the virtues of generality and explicitness
and discount the constraints of physical realization. This is a mistake. One might
formulate the what’s-computed in many ways, and today’s neglect of implementation
issues brings tomorrow’s baroqueness and intractability.

The most important principle of interactionist methodology is machinery parsirmony.
Postulate the simplest machinery that is consistent with the dynamic phenomena you
understand. When you feel the need for extra machinery coming on, go look at the
phenomena and ask what people really do. Do this even if your goal is engineering
and not psychology: if people don’t do something, they probably have a good reason
not to. Rigorously applying this principle, we will discover repeatedly that the deeper
your understanding of dynamics, the simpler the machinery becomes. This is much
preferable to the more common approach of antomatically ascribing any regularity in
human activity to explicit representations and general algorithms residing in the head,
leaving ‘efficiency’ for someday.

Why does an understanding of an agent’s interactions with its world lead to simpler
hypotheses about its machinery? Real agents lean on the world. The world is its own
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best representation and its own best simulation. It isn’t an obstacle or a problem, it’s
a helpful place. Your interactions with the worlc, both past and present, provide many
ways to alleviate computational burdens. Why conduct elaborate deductions about
your surroundings when you can look and see? In particular, why maintain elaborate
control structures when you can look and see what needs to be done? Why make highly
detailed Plans when you can improvise? Why require instant expertise when you can
improve by just keeping on doing it? Why try figuring it out yourself when you can
collaborate with others who have been there? Why insist on figuring out every situation
afresh when you can trust your accumulated experience? All these dynamic phenomena
can work together to suggest imaginative ways to simplify machinery or even eliminate
parts of it altogether. Put someone in solitary confinement and they fall apart: people
rely on the organizing presence of the world.

I am suggesting an inversion of values, not only in artificial intelligence but in all
forms of computational and psychological inquiry. Faced with an empirical phenomenon
to explain, our first explanatory recourse should be to dynamics, not to machinery.
Faced with a technical problem to solve, our engineering should begin with dynamics,
not with machinery. Heretofore, people have gotten prizes for inventing new machinery.
But we’ve got far too much machinery. I would like to suggest that people get prizes
for getting rid of machinery. One should aspire to invent novel dynamic effects and
experience regret when forced to invent novel devices. In Parts B and C of this thesis
I am going to state, dead seriously, that plain, ordinary combinational logic suffices to
support some important dynamic phenomena. But combinational logic is obviously not
the critical contribution of my work. If I were inventing simple machinery for its own
sake, I would be wandering in mechanism space. And if I were mindlessly applying
my ideas about machinery to every next problem, I would be missing the point. My
contributions are my description, admittedly sketchy and provisional, of some of the
dynamics of everyday routine activity and my suggestions about how a particular type
of simple machinery is capable of participating in these dynamics.

Where should we start? Psychology must account for a wide range of phenomena,
but research must find some principled way to focus its attention. Focusing on a par-
ticular domain, in itself, usually doesn’t isolate a research problem, since most dynamic
phenomena operate in most domains. In other words, any given activity is just as com-
plicated as activity as a whole. One might also try focusing on one module of machinery
at a time. This works fine for peripheral faculties like vision but there are good reasons
to believe that the central system isn’t and couldn’t be modular (see Fodor 1983).

My own approach is to focus on particular dynamic phenomena. In this report I will
consider some of the dynamics of everyday routine activity. Everyday routine activity
is a promising place to start because it is the most pervasive and representative sort
of human activity. Every activity is built on a base of unproblematic routine. By
studying routine activity, I start studying everything. Everyday routine activity is also
the sort of activity our cognitive machinery was designed for. Studying everyday activity
encourages a realistic picture of everyday life as benign and orderly. It no longer seems
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necessary to invoke general-purpose methods at every turn.

I will further restrict my attention in three ways. First, I will only consider solitary
activities. (See Chapman (forthcoming) for a start on cooperative activities.) Second, I
will consider only adulthood and not development. Third, I will only attempt to explain
the steady state of routine activity. In other words, I will concentrate on the dynamics
that don’t involve learning. Even with these restrictions, we can make some good
guesses about architectures. I will offer several initial suggestions about the dynamics
of learning, but I will present no actual learning scheme. Lacking detailed theories of
the dynamics of personality development, I will play programmer throughout, building
whatever structures seem to work within principled limits.

A2d Why be concerned with dynamics?

There are several reasons to be concerned with dynamics.

The dynamics of everyday life describe what our cognitive machinery does: its op-
eration is a critical part of our purposeful activity in the world. Simple as this claim
sounds, though, its actual substance compared to existing Al practice is subtle. Method-
conscious Al people already claim to work from a specification of what their devices
are to do. At the level of the theorist’s design of an agent’s machinery, the machinery
is typically broken into modules, each of which solves (even if heuristically) the general
case of some formal Problem. At the level of the agent’s concrete actions in the world,
these actions are typically specified in terms of a Plan, that is, an explicit representation
of primitive actions to be performed and their expected consequences.

(I've capitalized ‘Problem’ because, as with ‘Plan’, it’s important to avoid confusing
them with the ordinary word. The capital-P notion of ‘Problem’ is the theory-of-
computation notion of a function from discrete inputs to discrete outputs, not the
notion that comes with the slogan of ‘problem solving’. I also disagree with problem
solving as a view of action, but that’s a different matter. See Section C5d.)

Both Problems and Planning suggest misleading metaphors of activity. Each of them
concentrates on the boundaries of a module. A problem or goal arrives, thinking takes
place, and a solution or Plan emerges, eventuating in a stretch of action. Improvisation,
contingency, feedback, or midstream changes have no place in this picture. Nothing
happens that the agent doesn’t make happen, and nothing consequential is true that
the agent doesn’t represent. Focusing on the action within a self-sufficient module
makes it easy to forget the outside world altogether. To put the world back in the
picture, we have to understand what really goes on in the world. The aspects of the
world that matter are the dynamic ones: that things tend to stay put, that habits have
cumulative consequences, that you are more likely to notice things that are out in the
open, that one automatically remembers how to ride a bike but doesn’t automatically
remember people’s names, that if you keep on consuming a resource it runs out, and
so on. Dynamic matters have their own laws; these laws would be hard to express by
talking only about machinery.




A2d. Why be concerned with dynamics? 29

Disregard of dynamic matters leads to two forms of confusion that may seem to
cancel but in fact are tenaciously cooperative. Without any sense of what an agent in
the world does and doesn’t have to do, one must assume the worst and design algorithms
that can solve the general case. But that same ignorance also allows oversimplifying
metaphors to seduce one into trivialized formalizations of the issue at hand. The more
intractable one’s formalizations become, the less motivation there is to adopt more
realistic ones. One example of this destructive symbiosis is general-purpose Planning.
A theorist designing a general-purpose Planner has no way of knowing what cases are
actually important to get right because the criteria are infinitely variable and can only
be known when the time comes. As it turns out, general-purpose Planning is intractable
or even undecidable for any but the most watered-down formalizations. (Section A2f
will discuss these results.) Planning as it is generally formalized cannot model the
full complexity of real human activity, but only the simplest possible formalizations
seem technically practical. (Section C5c will discuss some particular proposals in more
detail.) In short, general-purpose Planning is a conceptual black hole attracting anyone
who neglects to work out the dynamics of activity the world of their interest.

Similar comments apply to attempts to study individual ‘domains’. Restricting
oneself to a single domain, like chess or medical diagnosis or stacking blocks, is no
help because all nontrivial human activities appear to exhibit most of the important
dynamic phenomena. As a result, it is a rare Al project that doesn’t make a mockery of
its domain, isolating a real computational issue only by boiling the domain down to a
formal puzzle. To salvage any methodological respectability one must solve this puzzle
in the general case, the same black hole.

The origin of these black holes is the very attempt to view situations in everyday
activity as ‘cases’ of a ‘Problem’. One must always ask, which dynamics are actually
needed, and which actually occur? When you are faced with a real live problem (in the
ordinary sense of the word), you have many advantages over a Planner or other general
algorithm. You have a past which has provided you with relevant experience. You have
a future which goes on whether you succeed or fail, provided you don’t get yourself
killed. You have all the resources of the situation to help inspire you to solutions. Most
importantly, you know why you care about this problem. You can judge what’s good
enough, you can decide to take a different tack, or you can decide to give up and move
on. A general-purpose algorithm can’t make judgements like these because there is no
@ priori limit on what might be relevant to them. The usual result is a simplifying
assumption that no such judgements are to be made, or only a very narrow, restricted
class of them. The resulting general problem is almost invariably intractable; thus the
black hole.

Getting out of these black holes requires an account of the dynamics of everyday
routine activity as a whole. To understand the problem, it helps to think of all technical
difficulties in Al as falling into two classes, OR problems and NOT problems. OR prob-
lems come from the need to anticipate all contingencies through search. When either X
or Y might happen, one must search through both and risk a combinatorial explosion.
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NoT problems come from the all-too-familiar gap between knowing something to be true
and merely having failed to prove it false. Attempts to build general-purpose Planners
encounter both orR problems and NOT problems, as will any general-purpose algorithm.
Somehow an agent acting in a concrete situation must have a sufficient grasp of the
totality of what-might-be-going-on that general search is unnecessary and a policy of
acting on any idea that isn’t obviously wrong won’t be fatal.

A2e Architecture and personality

The machinery is made of an innate architecture and an acquired personality. After
defining these terms I will discriss how they relate to issues of dynamics.

The word architecturc used to concern buildings; here it comes from computer design.
Architecture is the machinery you are born with. A theory of architecture should
explain what sorts of things are in the machinery, what they do, how they interact,
whnt happens in serial and what in parallel, and roughly how fast things happen. Many
standard computational design issues arise: whether there are latches, whether there is
a clock, whether there is persistence and delay in the circuitry, how new connections
get made, and whether everything can really be connected to everything else.

Most existing computer architectures are specified in terms of their instruction sets;
the machine interprets instructions and has a many-layered memory hierarchy. The
kind of architecture envisioned here is quite different. It has two regions, the (modular)
periphery, which concerns low-level perceptual and motor operations, and the (nonmod-
ular) center, which concerns everything else. I'll assume the picture of the periphery
outlined by Marr (1982) and Fodor (1983). In particular, the boundary between pe-
riphery and center is clearly defined. Our main topic is the center, for which modular
methods are entirely inappropriate.

The possibility of distinguishing the center from the periphery does not imply that
we can study it in isolation. The dynamics of an agent’s involvements in the world
implicate the periphery and center equally. Since concrete activities place the periphery
and center in constant interaction, the design of each of them strongly influences the
other. Part C will pursue this theme.

Personality, as I'll use it, is not the vernacular word but rather a computationalized
version of the psychoanalytic term. Your personality is the structure that gets built
within the central system of your architecture in the course of your life’s activities. The
presumptions of this definition (that stuff gets ‘built’ in your head, that it is usefully
spoken of as ‘machinery’ and as having a ‘structure’) are part of the burden of my
argument. Your personality, according to this argument, is a large network that is
accumulated by a dependency-recording mechanism (see Part B). The word network
is ambiguous: this is a network in sense of a physical device, not in the sense of a
datastructure (as in the phrase ‘semantic network’). The theorist inquires into the
structure of the network. Of course, the network can vary among individuals and be
a mess in all of them. But in the light of dynamic theory there is much to say about
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personality structure, on both large and small scales.

Architecture and personality both interact strongly with dynamic issues. By working
out enough of these interactions we can hope to arrive at a finished theory of architec-
ture. The simpler the architecture the more hope there is for an early victory. So far
I've been able to Jo a great deal with only simple assumptions about architecture, but
obviously many issues remain.

Details of architecture design have dynamic consequences. Much of the present
argument about architecture proceeds directly from claims about dynamics, though it
soon becomes necessary to take aspects of personality structure into account. Given
any new phenomenon to explain, it is always tempting to postulate a new special-
purpose architectural feature. But machinery parsimony requires an honest hunt for
possible dynamic explanations that involve little or no modification to the aspects of
architecture you already believe in. For example, often one can explain the phenomenon
by making some assumption about personality structure. In this case you must search
for dynamics that might give rise to such structures.

Once the outlines of architecture have been settled, matters of personality have
their own intricate dynamic consequences. How you live your life depends on your
personality and on the world, and your personality depends on how you have lived
your life in the past. This dialectic is exceptionally important for infants and small
children because they are laying down the most basic aspects of their personalities.
The dialectic is probably simpler in adulthood. We might idealize it as follows. Most
of the time your life is in equilibrium. Nothing new is happening and there is an
established, routine way of dealing with every situation. Then something new happens:
a novel opportunity, discovery, contingency, or responsibility. In dealing with it you
do something new, augmenting your personality with the new skill and thus modifying
the dynamics of your life. Your new action will generally bring about another novel
opportunity, discovery, contingency, or responsibility. This cycle continues until your
life achieves a new equilibrium.

For example, someone gives you a package of loose tea. To use it, you have to acquire
the right equipment. Then you have to learn how to use it through a series of firsts: first
time opening the package, timing the brew, washing the equipment, putting it away,
finding it again, discovering its quirks. Your routines for using it evolve. Eventually you
get it down. The value of dynamic descriptions is evident here: as a result of a single
event, your machinery is modified in dozens of separate ways whose interconnection is
only comprehensible in terms of the dynamics of tea-making.

A2f Complexity and efficiency

It would be nice to have some principled method for evaluating computational theories
of action. The most widely used technical vocabulary for comparing the efficiency
of different computational methods is the computation-theoretic notion of asymptotic
Complexity (Tarjan 1987). Complexity theory can seem perverse to the uninitiated. A
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br.ef review will help remind us why the uninitiated are right. In particular, we will see
how poorly suited Complexity theory is for discussing the appropriateness of an agent’s
machinery for its ongoing life in its world. Computational Complexity is defined with
reference to a mathematical entity called a Problem, which is a class of formal input-
output pairs. It envisions a machine engaged in a stylized dialog with an interlocutor.
The interlocutor presents the machine with an input and waits until the machine replies
with a corresponding output. Typically the interlocutor requires that the output be the
exact output specified for that input by the Problem. In this case we say the machine
‘solves’ the Problem.

The sequence of queries is arbitrary. The machine cannot maintain any internal
state between queries. Typically, the machine will provide the same output every time
a given input appears. If not, such as when the machine employs some randomizing
device, there is no significance to which particular output the machine returns on a
given occasion.

(Incidentally, I capitalize Complexity because, notoriously, it bears little relationship
to any vernacular notion of complexity. Indeed, the simplest method is often the most
Complex and the least Complex method is often very complex.)

Complexity theory is concerned with some properties of this dialog. The best-known
theorems concern ‘asymptotic worst-case time Complexity’. This is a measure of how
long the machine takes to return an output as a function of the ‘size’ of the input. (What
aspect of the inputs should be accounted as their ‘size’ is often a topic of dispute.) The
theorems concern the behavior of this function as ‘size’ grows infinitely. To make sense
of this concern, one imagines the machine to have an infinite supply of ‘memory’ or
‘tape’ or, in the case of paraliel machine models, ‘processors’. Given a Problem, one
defines the Complexity of a Problem as the best Complexity function one can obtain
across all machines in some class that solve that Problem. It is typically accounted a
positive result if this function is bounded by some polynomial in the input size, and a
negative result if this function is exponential in the input size. For example, a Problem
would be exponential if, by adding one new element to the input, one could always
double the amount of time required to produce the required output. A polynomial
Problem is said to be tractable and an exponential Problem is said to be intractable.

The view of activity envisioned by the metaphors of Complexity theory is mentalistic.
A definite boundary separates the machine from its interlocutor. Only the occasional
input or output crosses this boundary. One discusses processes that occur entirely within
the machine. Beyond the constraints on single isolated input-output exchanges, one
cannot discuss any significant property of the dialog between machine and interlocutor.
The machine has no internali state and thus no continuing identity. The machine cannot
refer hack to its interlocutor, much less to some ‘world cutside’, in the course of its
deliberations. If it cannot produce the required output given only the required input
then it simply fails. Thus the input must encapsulate all the information that might
be relevant to the machine’s reasoning. Indeed, in Al a Problem’s input often includes
something called a ‘situation’, as if a situation were something one could ‘pass in’ to a
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machine. Considerations of the Complexity of an Al algorithm become a function of
the ‘size’ of a situation, whatever that means. These properties of Complexity theory
bear little relation to the job of being an agent in a world.

In 1985, Chapman proved a series of Complexity-theoretic results about conventional
nonlinear Planning. A Planner takes a (description of a) situation and a (description
of a) goal as inputs and produces a Plan as output. The Planning Problem specifies
a mapping between inputs and acceptable outputs, that is, correct Plans. Input size
is reckoned in terms of the sizes of the situation and goal description. The Planner is
organized as a nondeterministic search through the space of partially specified Plans.
As soon as this search finds an acceptable fully specified Plan it returns. The algo-
rithm’s inner loop is the subroutine that checks the partially specified Plans. Chapman
asked about both the Complexity of the checking subroutine and the Complexity of the
nondeterministic search as a whole. These Complexities depend on exactly how one for-
malizes situations, goals, and Plans. There appears to be no way to guarantee that the
search itself will succeed, even when a correct Plan exists. This has not been a problem
in the simple cases that have been tried. More striking is the number of assumptions
required to make the Plan-checking inner loop itself tractable.

Atomic actions.

Atomic domain propositions.

No loops or branches in the plan.

No derived side-effects.

Effects may not depend on the situation of action.

No resource constraints.

Goals are conjunctions of atomic propositions to be achieved.
No autonomous processes.

Each of these assumptions, once interpreted in terms of ordinary activities, is violated
all the time in everyday life. But eliminating any one of them makes Plan-checking
iutractable. (Most of these results are described in Chapman 1987, which explains the
jargon. The rest are personal communications from Chapman and easy to rederive given
the already published proofs.) Few interesting tractable relaxations of them are known.

These are, by conventional standards, extremely negative results, about as negative
as one could imagine proving. At first Chapman and I were both very pleased with
these theorems. We knew there was something wrong with Planning and we hoped to
parlay his results into a general argument against it. It soon became clear, though,
that they are of little value because asymptotic worst-case time Complexity has almost
nothing to do with AL

e Nobody is expected to plan themselves out of a worst case. One would like to
speak of ‘average case’ Complexity, if only one could find a defensible way to define
the ‘average case’ of Planning. We would want to weight the different Planning
situations by the frequency of their occurrence, or their importance, or something
like that.
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¢ Heuristic methods and the attendant occasional screw-ups might be permissible if
they bring tractability, if only one could find a defensible way to define ‘occasional’.
It seems likely that assessing the seriousness of a screw-up might require a great
deal of knowledge about the situation and about what other considerations might
be active.

e Approximately correct Plans might also be permissible if they bring tractabil-
ity. Again, one needs a defensible way to define this ‘approximate correctness’.
It seems likely that assessing degrees of correctness also require a great deal of
knowledge about the situation and about what other considerations might be ac-
tive,

Upper-case Planning and upper-case Complexity have a conspiracy going. Upper-
case Planning is an upper-case Problem. One rates Problems according to their Com-
plexity. But negative Complexity results don’t seem capable of definitively refuting
Planning as a way of understanding the organized nature of human activity. This isn’t
fair. What’s going on?

The original problem, common to Problems, Planning, and Complexity alike, is the
inappropriate metaphor-system of inside and outside, boundary and contents. Activity
in the world is just not like that. In the context of Complexity-theoretic analyses of
Planning, the artificiality of mentalistic metaphors manifests itself in the need to ‘pass
in’ the entire situation to any process of making or evaluating Plans. As so often, an
artificial effort to reconstruct the world within the agent’s head must compensate for
mentalism’s artificially rigid boundary between inside and outside. In practice, this
tactic entails domain representations that cut a situation’s description to a minimum.
Ordinary activity is not amenable to such rigid a priori circumscriptions of relevance.

A2g Interactionism abroad

Systematic application of themes of interaction, participation, and activity is a novelty
in the technologically oriented human sciences, but not elsewhere. I have learned a
great deal bv reading interactionist literatures in other fields. All of this work is grossly
incommensurable with existing computational vocabulary. Nor do these projects rep-
resent any kind of unified movement; indeed they regularly disagree with or ignore
one another. Moreover, most of their central figures would be wary about the use to
which I am putting them here. Nonetheless, their shared themes offer a powerful al-
ternative to the mentalist metaphors that burden artificial intelligence and cognitive
science. Authors working within or inspired by cognitive science have made other, con-
flicting interpretations of some of them, but as you might expect, I regard most of these
cognitivist appropriations as superficial or mistaken.

These writers are strikingly original thinkers and do not fall into helpful categories, so
let us consider them alphabetically. I will try to summarize their work briefly though this
is an impossible task, comparable to briefly summarizing literary criticism or chemistry
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or Buddhism. All of them were active in this century or are still active today. The list
is incomplete and omits many important figures.

Eric Berne was an American psychoanalyst who founded a school called transac-
tional analysis. Although he saw his work as a development of Freud’s formulations of
psychoanalysis, he stated most of his important ideas in plain English in his best-selling
books Games People Play (1964) and What Do You Do After You Say Hello? (1972).
Insofar as Berne’s books effectively founded the genre of popular self-help psychology,
he is often not taken seriously. This is unjust. Berne mapped the recurring patterns
of interpersonal entanglement he called games, describing what made each participant
willing to participate in them. Berne developed his ideas into a markedly democratic
form of group therapy based on using observations of individuals’ unconsciously habit-
ual games as ways of identifying and facing their underlying conflicts. Though some of
Berne’s particular formulations have dated with the growth of feminism and of object-
relations psychoanalysis, his methods have had a wide influence.

Mark Bickhard is a psychological theorist who has developed a distinctive approach
to psychology he calls interactivism. Although my attention was drawn to Bickhard’s
work only in the last year, some of his interests bear a striking resemblance to my
own. For Bickhard, representation is interactive and functional and knowledge cannot
be thought of as having the sort of structure we associate with symbolic programming
(Bickhard and Richie 1983, Campbell and Bickhard 1986). Bickhard does not connect
his work to computational themes, but this would be a interesting project.

Wilfred Bion was a British psychoanalyst who moved back and forth between the
British object-relations school of psychodynamic theory and his own distinctive theo-
ries of group dynamics (1970). Expanding on the psychoanalytic principle that one’s
personality is organized through one’s formative interactions with other people, Bion
stressed the analogies between unconscious experience and the processes that arise in
groups, be they families, circles of friends or colleagues, or therapy groups. He stressed
the success or failure of a group in ‘containing’ the potentially disintegrative stresses
experienced by the individual and he connected this theme to the individual’s forma-
tive experiences of containment. The only accessible introduction to Bion’s ideas I've
encountered is (Hinshelwood 1987).

Harold Garfinkel is an American sociologist who founded a school called ethnomethod-
ology (1967). While passionately concerned with the classical sociological problem of the
nature of social order, ethnomethodology starts from a radical critique of the nature
of sociological theorizing—and, by extension, of all theorizing about human activity.
People predicate their actions on the existence of companies or parking spaces or rules
or plans. We can study those actions but to endow those companies or parking spaces or
rules or plans with any objective existence would miss the whole point. All those things
are collective fictions kept alive from moment to moment by the cooperative actions of
individuals. For Garfinkel, this phenomenon recommends a severe methodological par-
ticularism that is both constraining and liberating in ways that are difficult to express.
Garfinkel’s writing is difficult, and for good reasons, but (Heritage 1984) is an accurate,
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clear introduction. Suchman (1987) has been productively practicing ethnomethodology
in the analysis of computer-based office automation systems that use AI concepts.

James J. Gibson was an American perceptual psychologist who reacted against the
prevailing notion of visual perception as the extraction of information from single, iso-
lated retinal images (1985). Instead, he proposed a theory of direct perception according
to which the visual system evolved to pick up invariants of the physical world over time
(1979). He also described objects in the world as bearing certain affordances which
enter into their characteristic patterns of sensorimotor interactions with human beings
(for example, handles afford grabbing and pulling). Gibson’s theories have been heavily
criticized within computational vision research for their lack of a clear computational
foundation (Ullman 1980), but computational theorists have paid less attention to his
useful insistence that vision research start with environmental invariants and recurring
forms of interactions between agents and their surroundings. For a brief account of
Gibson’s ideas see (Hagen 1985).

Martin Heidegger was a German philosopher who based his profound revision of
Western philosophy on a careful description, in his 1927 book Being and Time, of the
experience of engaging in everyday routine activity. He attempted, with substantial but
incomplete success, to systematically reject the opposition between a perceiving subject
and an independent external object and the attendant problems of epistemology and
ontology. Instead, he described our experience of things as fundamentally bound up
with their role in our ongoing projects. He also emphasized that our experience in the
world merges indistinguishably with that of our neighbors and that our practices for
getting along in the world merge indistinguishably with the traditions handed down
through our culture. Heidegger’s philosophy was the principal basis of Dreyfus’ analy-
sis of Al in his unfortunately titled book What Computers Can’t Do (1979). Dreyfus
views Al, correctly I believe, as having developed within a tradition largely unaffected
by Heidegger’s thought and the rest of Europe’s twentieth-century innovations in phi-
losophy. For a careful and sensible analysis of Dreyfus’ arguments see (Preston 1988).
Heidegger's writing (at least in Division [ of Being and Time, which is the relevant text
for our concerns here) has a crystalline precision that is hard to comprehend unless you
already have some idea what he’s trying to do. (Dreyfus forthcoming) is an excellent
guide to the text.

Kenneth Kaye is an American developmental psychologist whose book The Men-
tal and Social Life of Babies carefully describes the evolving dynamics of interactions
between infants and their parents, starting from the very simple interactions involved
in feeding and into the critical ability, seemingly specific to human beings, to take
turns in play and conversation. Once these turn-taking dynamics are in place, they
form a stable foundation on which much more complex patterns of interaction can be
built. Kaye emphasizes that the evolution of these dynamics depends critically on the
parent regarding the child as more intelligent, rational, knowledgeable, goal-directed,
comprehending, cooperative, etc. than the child really is. Unfortunately, his theorizing
is limited by the primitive theories of action and communication he has available to
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describe the phenomena he has observed. (His theory of action, for example, is taken
from Miller, Galanter, and Pribram.) I expect that more sophisticated ways of talking
about activity can help turn Kaye's observations into a useful proposal about how an
infant’s learning machinery can exploit the interactional regularities Kaye observes.

Jean Lave is an American anthropologist whose studies of everyday cognition have
been heavily influenced by Soviet activity theory and exhibit a theoretical depth and
rigor that is rare in this country. Her book Cognition in Practice (1988) explores the
peculiar fact that ‘just plain folks’ who score poorly on school arithmetic tests and
consider themselves bad at math perform very well on the complex calculations required
to shop in the supermarket. She rejects the view of cognition as something that takes
place in the head. Instead, she view cognition as a concrete activity that takes place in
the individual’s interactions with the physical and social world. Her more recent work
has elaborated these themes in the context of a study of apprenticeship among West
African tailors.

Richard Rorty is an American philosopher who, after a long and distinguished ca-
reer as an analytic philosopher, embraced the Continental philosophies of Derrida and
Heidegger and began to question the claim of philosophy to a foundational role and,
more particularly, the central claims of the traditional Anglo-American philosophies of
mind and language. His book Philosophy and the Mirror of Nature (1979) deliberately
subverts these projects from within with arguments on their own terms. He also de-
scribes in clear terms (in Chapters 1 and 3) the history of mentalism, thus allowing
it to be seen as the contingent result of particular choices rather than as an invisibly
monolithic fact.

Harvey Sacks was an American sociologist who had an uncannily precise eye for the
methods by which people maintain the often-invisible rules of social conduct. Along with
Emanuel Schegloff and Gail Jefferson, he founded a discipline of conversation analysis,
which investigates the properties of ordinary, naturally occurring conversations through
extraordinarily detailed studies of tape recordings and videotapes. For example, one
of the first important papers of the field, (Sacks, Schegloff, and Jefferson 1978), is a
close analysis of the dynamics of turn-taking in conversation. Sacks, unfortunately,
died before writing very much. The vast majority of his ideas are only available in
transcripts of his lectures. These lectures are currently being edited for publication.

Harry Stack Sullivan was an American psychiatrist whose interpersonal theory of
psychiatry centered on the interactions (‘dynamisms’) between people rather than on
structures and processes in their heads (1953). His psychology traces the patterns of
interaction characteristic of various points in the human life cycle and traces the ways
they can go wrong through unfortunately formative influences. Sullivan’s work can be
refreshing insofar as he was the last important clinical psychologist not to be heavily
influenced by Freud. His writing is also perfectly clear.

Lev Vygotsky was a Russian social psychologist who emphasized the role of the so-
cial environment in individual development. His principal work was his book Thought
and Language (1934). (For an anthology of his articles see Vygotsky 1978.) One of
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Vyeotsky’s important ideas is that cognition arises through the internalization of col-
laborative activity. This idea has inspired a productive school of Soviet activity theory
that investigates human psychology in its social context. Much of this work has not
been translated into English, but an introduction to it is available in (Wertsch 1985).
Donald Winnicott was a British psychoanalyst who brought his long experience as a
pediatrician to the task of psychoanalytically reconstructing the earliest experiences of
his adult patients. It must be said that psychoanalysis has come a very long way since
the crude, sexist, mechanistic ideas that originated with Freud. The credit for these sub-
sequent developments must be split many ways, but Winnicott was an important figure
in the early development of the object relations school, which focused on the structure
of individual’s formative interactions with other people, particularly their mothers. and
the consequences of these interactious for one’s experience of human interactions later
in life. Winnicott emphasized the basic trust in the world that is necessary for healthy
living. In particular, he described the conditions that permit the infant to feel able to
embrace the reality of a world independent of its own desires. Through investigation of
the consequences of an untrustworthy early environment, Winnicott described the kind
of early basic emotional contact and practical support he referred to as holding. Winni-
cott’s views strongly influenced the theme of dynamic holism that Chapter A3 begins to
develop. Winnicott’s writing is a model of clarity. Start with his anthology Playing and
Reality (1971) or with his posthumously edited manuscript On fluman Nature (1988).




Chapter A3

Walking to the subway

Joshu asked Nansen: “What is the path?”

Nansen said: “Everyday life is the path.”

Joshu asked: “Can it be studied?”

Nansen said: “If you try to study, you will be far away from it.”

Joshu asked: “If I do not study, how can I know it is the path?”

Nansen said: “The path does not belong to the perception world, neither
does it belong to the nonperception world. Cognition is a delusion and
noncognition is senseless. If you want to reach the true path beyond doubt,
place yourself in the same freedom as the sky. You name it neither good nor
not-good.”

At these words Joshu was enlightened.

Mumon’s comment: Nansen could melt Joshu’s frozen doubts at once
when Joshu asked his questions. I doubt though if Joshu reached the point
that Nansen did. He needed thirty more years of study.

In spring, hundreds of flowers; in autumn, a harvest moon;

In summer, a refreshing breeze; in winter, snow will accompany you.
If useless things do not hang in your mind,

Any season is a good season for you.

Ekai, The Gateless Gate, 1228. In Paul Reps, ed, Zen Flesh, Zen Bones,
Anchor Press, no date.

A3a Context and summary

I live in Boston, in a loft on the top floor of an old factory building at the relatively safe
end of Edinboro St, a dirty, noisy side street in Chinatown. On about 400 mornings over
three years I have walked from my home to the Washington St subway station, a distance
of about three blocks, starting down Edinboro St and crossing Essex St to the Avenue
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Figure 1. Boston’s Chinatown circa 1986. I have often walked from my apartment ov
Edinboro St to the Washington St subway station entrance on Chauncy St.

de Lafayette (no kidding), which I cross to cut diagonally across a parking lot and
continue down Chauncy St to the subway entrance. Each morning’s navigation of these
three blocks is informed by a great deal of history. I propose to narrate my morning’s
walk to the subway, pausing along the way to point out and summarize some important
dynamic themes. (The route evolves continually, both because I discover new aspects
of the landscape and because the landscape changes. I wrote the narration in early
1986 and the dynamic analysis in early 1987.) These themes have been omnipresent in
my investigations of routine activity. Together with the dynamics of routine activity in
workspaces, they are the principal motivation for my theories of machinery.

I should make clear that this narrative is not a ‘complete theory’ or a ‘worked-
out example’. One should not expect this to be possible—at least without massive
simplification—since most of the important dynamic phenomena occur in any non-
trivial activity. To exhaust this example would be to present a complete theory of
human activity. (Indeed, this is regularly true of narratives covering half a second.)
Interesting dynamic issues are involved in keeping my balance, sighting the spot where
I'll put my foot when stepping unto a curb, fishing a subway token out of my pocket,
and so on, but I don’t understand them very well.

As a summary, here are the important dynamic issues that will agise here.

1. The nature of plans. No plan could ever be so exhaustive tha. you could me-
chanically ‘execute’ it. Carrying out a plan requires continual improvisation, in-




A3a. Context and summary 41

terpretation, and fine judgement—especially about whether to revise or abandon
the plan in mid-course. This is just as well, given that you’re probably not doing
anything else with your brain while you’re out there following the plan. Real plans
can be concise compared to Plans because they can rely on many aspects of how,
where, and by whom they’ll be used. See (Agre and Chapman 1988) for a longer
discussion of plans.

2. Routines and their evolution. Everyday life is, for the most part, routine. Our
everyday interactions with familiar people, places, and things tend to fall into
recurring patterns called routines. This chapter, for example, describes my routine
for walking from my apartment to the subway. A routine, like any other dynamic
entity, is just a theorist’s construct. A routines, in particular, is not a plan.
Someone engages in a routine because, for whatever reason, their interactions
with a certain environment regularly work out a certain way. Routines are not
plotted out from scratch. Rather they evolve as the relevant agents pursue their
ordinary activities. New routines can evolve fairly quickly, but the vast majority
of everyday routines evolve slowly if at all. Section B2e describes routines and
their properties in more detail.

3. The accumulation of responses. When you do something repeatedly, you accumu-
late a repertoire of methods for dealing with the opportunities and contingencies
it tends to present. Individually these methods are useful for saving the trouble of
figuring them out again. Collectively they’re an efficient substitute for paranoia:
after a while you can be confident you’ve seen it all. You can carry on assuming
that you needn’t have any worries except the ones that come to mind on their
own. Section B2e will discuss further the dynamics of accumulated responses.

4. Visual routines. The dynamics of vision in real activities suggests a resolution
of the conflict between the ‘bottom-up’ and ‘top-down’ views. The periphery
continually performs calculations uniformly over the present pair of images; the
center continually applies a massive collection of possible lines of reasoning to the
problem of what to do now. At the boundary between them, the center poses a
serial stream of queries to the periphery. This view derives from Ullman’s notion
of visual routines. Chapters C3 and C4 wili describe visual routines in detail and
discuss an implementation of them.

5. Improvisation. Everyday activity, however routine, is not a matter of mechanically
following a plan. You might or might not have plans and signs and shopping lists
to help you carry on your daily activities, but in any event you must continually
redecide what to do. Everyday activity is, in this sense, fundamentally impro-
visatory. Our activity takes account of multitudinous details of our surroundings,
conforming to their particular arrangements and continually either recommitting
to a course of action or else choosing a new one. The dynamics of improvisation
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will take different forms in different sorts of activities. Chapter C4 will discuss
the notion of improvisation in more detail.

Later we will see how some of these dynamics arise through interactions between par-
ticular sorts of machinery and particular sorts of worlds.

A3b The route

Walking in the city is not an abstract exercise. There is a city in front of you at all
times, making your task both easy and hard in ways that maps omit. City streets are
complicated places, crammed with people and things that have different significances
for different people at different times. Boston’s navigational peculiarities are notorious.
We talk about the specificity of a place, but for 95% of the mundane business of walking
around, all cities are identical. To start with, sidewalks are paths.

Following a path is an extreme of unplanned activity. Paths tend to dissolve time
by presenting themselves as a heap of disconnected events. The landmarks along even
a very familiar path can be hard to recall in order unless some logic connects each one
to the next. This would matter if towns exchanged places in the night. Paths tell you
where to go. They don’t need maps.

My route to the subway isn’t an unambiguous path, but it still doesn’t require much
of a plan. I don’t remember if I first did it from directions or if I was shown. In any
event if I were to direct you to the subway, you wouldn’t need any more plan than “left
out the door, cross straight over Essex then left up the hill, take the first right and it’ll
be on your left,” which is nothing next to the actual complexity of the trip. Consider
how much these directions leave out. “The door” is presumably the front door of the
building. There’s no need to tell you to walk down Edinboro St in the direction that
“left out the door” will leave you headed; when you’re on a path you don’t need a plan.
No mention, either, of the fact that Essex St is not marked as such at its intersection
with Edinboro St, nor of the fact that it will be still entirely clear which street was
meant once you get there. (Experimental subjects given these directions were actually
bothered by a lack of a marking, though they got to the subway without incident.) “Left
up the hill” will manage to refer to the Avenue rather than to Essex St because it’s the
only hill you can see when you’re standing at that intersection looking that way. (If you
turn around and look hard, you can see another hill near the expressway interchange
about half a mile away.) Getting to the Avenue will require a brief rightward detour to
get around a fence. No need to mention either this detour or the necessity of crossing
the Avenue. The directions leave out the parking lot altogether; presumably you will
have the sense to see the first right coming and cut the corner; and it doesn’t matter
if you don’t. You'll also need the sense not to interpret a driveway or the parking lot
itself as that first right. Everyone relies heavily on these sorts of things when giving
directions. Some people are better at it than others. For example, experienced urban
direction-givers know that alleys often confuse people who've been directed to count
lefts or rights.
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When you're following a plan, your surroundings are available as a resource for
interpreting it. The existence of this resource in turn influences the phrasing of the
plan.

I was ill and consulting with a doctor. He wanted me to get an X-ray, so he
gave me some forms and told me to walk over to the hospital, several blocks
away. After determining that I knew where the hospital was, he said “Go to
the X-ray department. I'd explain where it is but it’s too complicated. Ask
around, you'll find it.” (I figured he must have been through this before.)
In the event, the only complicated part was locating a suitable entrance
door, the sign for which managed to escape me because of the architectural
chaos in the section of the hospital grounds I had walked into. There were
many doors but all had unpromising labels. At length the door labeled
“Neurosciences Outpatient Reception” sounded promising; as I approached
it I finally saw the signs labeling it as the entrance door I was seeking. (It was
obviously an entrance door once I managed to focus on it.) After walking
in, I scanned the opposite wall and immediately spotted a map with a You
ARE HERE. After scanning the map for about five seconds I found X-RrAy,
found the YOU ARE HERE again, concluded I should turn right, and doing
so, immediately picked up a trail of X-RAY signs with arrows.

Likewise, a plan that refers to “the hill” counts (roughly speaking) on there only being
one hill apparent to someone who has gotten that far in the plan. A plan that instructs
you to “take the first right” counts on it being clear which street is indicated. ‘Counts’
and ‘clear’ are defined reflexively, almost circularly, as that which a given person will
be able to figure out in a given situation. In particular, they leave it implicit that one
counts streets, not alleys and passageways and subway entrances. There’s probably not
a rule for determining what to count, but it doesn’t matter if it’ll be clear when you get
there.

The plan alsc relies on your experience and skill. The instruction to “walk down
Edinboro St” assumes you have the sense to disobey it when the street is full of slush
or garbage or worrisome people, as it often is. The plan omits things you already know,
like how to cross a street, how to use street signs, how to notice another street coming
up, and where it’s safe and legal to walk. It also omits things you can be trusted to
figure out for yourself, like how to recognize the subway station, how to wind your way
past the trash strewn outside Ming’s grocery, and how to get some new directions if
you get lost. In short, plans are abbreviated in each of the many ways that you and
I share an understanding of the world (¢f. Suchman 1987). (Future work will explore
the extremely complicated dynamics of these abbreviations. They have been extensively
documented by Garfinkel and others.) This is the only reason plans can be written down
at all. Plans are not algorithms; algorithms only work inside computers. Programming
texts that compare algorithms to recipes severely confuse this critical issue. (For more
about the nature of recipes, see Scher 1984. For a typical statement of the view that
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recipes are at best defective computer prograins see Knuth 1984 page 6. See also Waite
1975.)

A3c Edinboro St

“One only knows a spot once one has experienced it in as many dimensions
as possible. You have to have approached a place from all four cardinal
points if you want to take it in, and what’s more, you also have to have
left it from all these points, Otherwise it will quite unexpectedly cross your
path three or four times before you are prepared to discover it. One stage
further, and you seek it out, you orient yourself by it. The same thing with
houses. It is only after having crept along a series of them in search of a very
specific one that you come to learn what they contain. From the arches of
gates, on the frames of house doors, in letters of varying sizes, black, blue,
yellow, red, in the shape of arrows or in the image of boots or freshly-ironed
laundry or a worn stoop or a stairway’s solid landing, the life leaps out at
you, combative, determined, mute. You have to have traveled the streets by
streetcar to realize how this running battle continues up along the various
stories and finally reaches its decisive pitch on the roofs. Only the strongest,
most venerable slogans or commercial signboards manage to survive at this
height and it is only from the air that one can survey the industrial elite of
the town ... beneath one’s eyes.”

Walter Benjamin, Moscow Diary, 1926, p. 25.

A path may tell you everything you need to know, but my path to the subway tells
me more than it used to. Anticipating a little, let us consider a certain tree along the
Avenue de Lafayette. Once “just a tree,” this tree became “the tree that hangs too low
over the sidewalk,” so I started walking around it. This transmutation didn’t occasion
any fanfare; I'm sure a hundred more like it have escaped my theoretical curiosity
and go unremarked to this day. The tree presumably owes its significance to some
event from my past that somehow changed me. Perh~ps the tree has been assigned a
name which figures in full-blown representations relating it to axioms of eye-poking and
circumnavigation. But that seems like overkill. The psychic residue of my experience
with the tree has exactly one job: to notice the tree approaching and remind me of its
low clearance. Except for the very moment I'm rounding the corner onto the Avenue,
that bit of mental stuff is best to hide in some dormant lobe. In fact that’s what it
does; I only managed to exhume it for you because my interest in navigation routines
made me notice my aversion to this tree one morning.

To avoid trivializing my case, I should distinguish two kinds of results of the history
of this walk. First there are the ‘associations’ and ‘things I'm reminded of’. There are
hundreds of bits of text on doors and windows that my eyes happen past; they're all
familiar each time but I can only recall a few of them. The sincerely strident graffiti
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on various walls reminds me of its author, a remarkable individual late a neighbor of
ours. The incongruously unfaded yellow lines on the Avenue de Lafayette reminds me
that this historic-sounding boulevard was actually built in 1985 as an access road to a
shopping mall. Being reminded of these things no longer provokes any new trains of
thought, much less any memory of having been reminded of them. Their only distinction
lies in being so phenomenologically peripheral.

Reliable as they are, these effects make for less compelling arguments than experi-
ences that have influenced where and how I walk. The tree example is not particularly
consequential because my response to my tree is unvarying and might seem somehow
programmed. The calculations I make while walking down Edinboro St are more com-
plex. Though almost always perfectly routine, these calculations vary from moment
to moment and day to day as patterns of life evolve and experience accumulates. I
have never been assaulted or otherwise damaged on Edinboro St. On the other hand, I
have been obstructed by delivery trucks and garbage piles, bumped into by handtrucks,
intimidated by suspicious people, buzzed by cars of revellers driving on the sidewalk,
and felled by wintertime ice patches. I've also had occasion to step in pothole puddles,
ankle-deep slush, and the fishy slime that Ming washes from his loading dock. These
things don’t happen very often, nor have they left any deep marks on me. Nonetheless,
they enter into every morning’s walk in a routine, unspectacular way. Every moment’s
step forward has a collection of precedents that apply themselves with no discernable
effort. I now anticipate the sections of curb where puddles collect, the handtrucks
emerging from behind the delivery trucks, the icky sheen on Ming’s sidewalk, and so
on. Long before the activity behind Ming’s hold me up I've checked if the sidewalk is
passable and crossed if it’s not. I’'m sure I couldn’t write a program to assess the vary-
ing configurations of people, delivery trucks, garbage piles, discarded cleaning water,
stacked vegetable crates, and large angry fish being transferred between tanks. Such a
judgement becomes routine asymptotically as some space of combinations plays itself
out. Of course there’s no reason to have any sense of this space, much less to imagine
what’s left of it. On any given morning I deal with what’s there. One morning I found
a large fish lashing about in my face.

If I never changed, I'd fall for the pothole puddles every morning. Obviously my
experiences have changed me. As Part B explains, I would like to explain these changes
in terms of dependency maintenance. The accumulation of responses corresponds to an
accumulation of circuitry; some combination of existing circuitry operates each morn-
ing.

My accumulated responses are useful both individually and as a group. Individually,
they save me the trouble of figuring out how to get around the trash, jump the puddle
in the gutter, wait for the store workers to go by with their loads, and so on. The first
time I had to take these actions, I had to stop, look around, figure out what was going
on, consider some options, choose one of them, look for any obvious pitfills, and go.
This took some thought, some looking around, and some time. Now I only perform the
minimum necessary thinking and acting, and doing so doesn’t interrupt anything else.
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Considered as a group, one’s accumulated responses offer a solution to the frame
problem. If you’re considering taking some action, there is no way to prove that nothing
bad will come of it. Our thought underdetermines the world in endless ways. There
is simply not enough information. The frame problem renders any fixed algorithm
incompetent to decide what to do next. For example, one cannot address this difficulty
by inquiring into the properties of a single unified substance called ‘uncertainty’. Calling
some mathematical idea by this name only confuses the issue. There are no proofs.
Existing planners can only prove the correctness of their plans because their domains
are artificially simple and their domain models are artificially tractable. Moreover, a
planner must prove the correctness of its plans. Otherwise there is no reason to believe
the plans will work.

The frame problem requires a holistic solution: not holistic machinery but a partic-
ular sort of dynamic holism. As you become experienced at something, you accumulate
ways of anticipating difficulties. Each pitfall in your catalog asserts iiself whenever it
becomes applicable. Any action you consider gets performed unless a candidate problem
asserts itself. You’re optimistic by default; you count on your accumulated responses to
qualify your optimism. This strategy sounds dangerous, but cultures are set up to make
it work by compensating for its systematic lapses and offering practices that amplify
its effect. One of these practices is the trick of looking around before taking a novel
action, just in case you spot something that signals a warning. Every morning, I walk
down Edinboro St like nothing’s wrong. If I spot a delivery person with a handtruck, I
routinely figure I should cross the street to get out of the way. But if no warnings occur
to me, I walk straight on.

A3d Crossing Essex St

Using experience requires subtlety; one shouldn’t give generalizations too much priority
over the actual circumstances of this morning’s walk. It’s all right to keep avoiding the
low spots even when it’s dry, but specificity matters when you’re crossing a busy street.
Not having grown up near a city I experience crossing a city street as a skill. What is
this skill made of? Most of the skill seems to apply to new streets, but at the same time
crossing Essex St seems a skill of its own. Essex St constricts to one narrow lane in front
of the Chinese markets as people load groceries into double-parked cars. Drivers who
see daylight at the end of this channel have long lost any sympathy for pedestrians. The
eye is good at extrapolating accelerating objects in rational situations—thus, trucks ac-
celerate slowly and so leave gaps in traffic—but not here. This particular generalization
has probably saved my life.

Once a hole opens in traffic and I start across Essex St, the scale of the landscape
suddenly increases as a big hunk of territory opens up. For the first time I actually see
the far sidewalk of Essex St, the rise along the Avenue de Lafayette, and the large open
space to which it leads. What’s most remarkable about this space is the invisibility
of the buildings that bound it. Straight ahead is a featureless cube of beige brick I
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associate vaguely with the MBTA (the public transit authority). To the far left is the
back of a tall dark grey shopping mall-hotel-parking garage (after which the Avenue
de Lafayette is named, you see) which only registers as a preconscious absence of sky.
To the sides are two 1900-era buildings whose functions, aside from a few street-level
shops, are a mystery to me. In the middle is a parking lot marking time until a building
appears on it. (Actually, since I wrote this the building has appeared.) The parking lot
is invisible too at first because it is about three feet lower than the top of the Avenue
de Lafeyette (the only change in elevation, aside from expressway ramps, for several
blocks). In Chinatown your body acts as a whole picking its way through traffic, but in
these planned urban spaces the eye is in charge, plotting straight lines over each next
patch of terrain.

And so even though I'm still in the middle of Essex St my eye is plotting a straight
line up to the Avenue de Lafeyette sidewalk. But the joke is on my eye because on the
far side of Essex St there is generally a parked car centered precisely on that line. When
this happens, I often find myself suspended between two perfectly symmetrical ways of
circumventing around the car, left and right, since nothing recommends either direction
over the other. The ensuing deadlock reminds me that I am here, now, crossing a busy
street by the transient grace of the traffic. This deadlock could be resolved by appeal
to astrology for all I care, but because nothing sensible can discriminate I have to focus
my thinking for a moment and formulate an arbitrary way of deciding. Everyone who
has spent fifteen minutes staring indecisively at a menu knows what I mean.

A3e L’Avenue de Lafayette and the parking lot

Walking in the city requires a continual negotiation between imaginary straight lines
and genuine automobiles. If you need to cross a street that’s perpendicular to your
path, you have to wait for a hole in traffic but then you can keep going on the same
course. If you’re walking along a street and need to cross eventually, you get to choose
the right moment. On quiet streets you can wait for a comfortable gap between the
parked cars, something your eye can pick out at a distance. On busier streets you
can cross the parked cars first and then walk along in the street waiting for a safe
.gap among the moving ones. The angle at which you cross a street balances forward
progress and safety according to some calculation that resides in the body rather than
the mind. The mind is now in charge of crossing the Avenue de Lafayette, however,
because the wisdom of the body hands me over to the low-hanging tree I mentioned
earlier. One day as I approached the tree I decided to head straight for the near corner
of the parking lot rather than crossing the street at a more conventionally acute angle.
The Avenue conducts very little traffic for all its landscaping, but even so this little
innovation appears to run afoul of the tendency of early training in our culture to treat
potential moving cars as actual. So potential cars faintly materialize as a matter of
routine and the stray actual car delivers a routine echo of a told-you-so.

Now I'm at the top of the low hill, approaching the near corner of the parking lot.
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The lot is at the prevailing elevation, the hill about three feet above. Accordingly,
there is an asphalted slope between me and the lot. Once I clear the last tree I can
see the whole lot. The ensuing diagonal crossing of the parking lot is the hardest case
of the negotiation of straight lines and parked cars. My first job is to pick a direction
to walk in. Let us dwell a moment on the images falling on my eyes. They depict
stationary and moving cars, pavement in a few different textures, concrete sidewalks,
the lot clerk’s shed, trees, people, buildings, signs, lamp posts, trash cans, and assorted
rubbish. I want to leave on Chauncy St from the opposite corner of the parking lot. To
pick out the spot I'm headed for, I should just look straight ahead and find the occluding
contour of the building in the center of the image. Unobstructed paths among the cars
show up as black strips headed in that general direction. Most likely there will be a
large black strip heading for the lo.’s entrance, somewhat off to the right of my desired
direction. Usually there are others.

Your kitchen looks entirely different according to whether you intend to make break-
fast or find the cat. Likewise, this same parking lot scene would look entirely different if
[ was looking for my car. Instead of inspecting the buildings and the black patches and
interpreting everything else as obstacles, I'd be picking out blue patches and checking
to see if any of them is my car. I pick out my car from among the other ten thousand
blue Japanese cars in Boston by looking at its dents, its lack of bumper stickers, the
flying carp windsock hanging in its rear right window, and the duct tape over its rust
holes—whichever is visible. Thus, the goal I'm pursuing powerfully constrains what I'd
like to know next about my visual field. I’d like to pick out a depth discontinuity, or a
black strip, or a blue patch, wherever in a large region it might lie.

We might caricature Al vision research as a dispute between two opposed tendencies.
The older one emphasized ‘top-down’ goal-directed querying of the image and paid
little regard to the physics underlying the image (cf Winston 1975). A more recent
movement has emphasized ‘bottom-up’ processing of the image by a collection of pre-
wired modules (Marr 1982). You can make either tendency plausible a priori if you
pick your prototypical examples right. If you inspect a retinal image out of all context,
all that seems plausible is to ‘recognize’ or ‘classify’ everything in sight and make a
complete model of the whole scene. The right way to adjudicate this dispute is to ask
what real people care to know about visual images in the course of real activities.

Part C will argue for the view that the parking lot example hints at. The machinery
consists of a periphery and a center. The periphery is precisely the sort of bottom-up
device envisioned by Marr. The center, by contrast, is constructed during one’s develop-
ment. There is a very clear boundary between the two, almost exactly as described by
Ullman (1984). There is a strong sense of focus; a small number of image features can
be marked. The center poses the periphery tasks like “pick out a blue thing,” “pick out
a line,” and “follow the marked contour.” The exact ‘instruction set’ of these queries is
unknown, to be determined both by psychophysics and dynamic analysis. Chapter 4
works out an example.

Let us continue into the parking lot. Sometimes my eye will pick out a convenient
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channel through the cars—the eye is very good at this. But usually it doesn’t, and my
body will complain at the prospect of tacking a Manhattan-style approximation to the
theoretical Line from Here to There. The eye, knowing only the Theory of Straight
Lines, responds by reassigning There to some new spot on the edge of the lot, generally
following the main path to the entrance on the right. Then often a moment later I'll
change course again as a more direct channel appears. An agent that understands its
activities will modify its subgoals when they become inconvenient. In this parking lot,
the management of subgoals is a matter of sighting new courses. In other domains the
sense of perspective and proportion required to maintain subgoals is more abstract, but
here the eyes are in charge because all the relevant considerations lie in visible geometry.

Some version of this drama of subgoals takes place every morning. There is so much
variation in the pattern of parked cars in this lot that I have no fixed policy about
how to cross it, but there’s a routine nonetheless. The routine lies in the negotiation of
subgoals between eyes and body. Nowadays when my body complains my eyes just set
about finding a more navigable channel, without breaking my stride or distracting me
from my distractions. This routine would no doubt simplify itself if there were never
a roughly diagonal channel among the cars, or if there were always one. The routine
has tuned itself to the actual variation of the parking lot. This tuning is different from
compulsive optimization; it is simply the accumulated consequence of my having walked
to work on a set of mornings.

A3f Chauncy St and the subway entrance

“The buried paths of the Boston subway could not be related to the rest
of the environment except where they come up for air, as in crossing the
river. The surface entrances of the stations may be strategic nodes in the
city, but they are related along invisible conceptual linkages. The subway is
a disconnected nether world, and it is intriguing to speculate what means
might be used to mesh it into the structure of the whole.”

Kevin Lynch, The Image of the City, MIT Press, 1960, p. 57.

“Most of [the Boston subway stations] are hard to relate structurally to the
ground above them, but some are particularly confusing, such as the utter
directionlessness of the upper-level station at Washington St.”

Lynch, p. 74.

The Chauncy St entrance to the Washington subway station is the back entrance; the
front entrance has a number of branches a block away on the intersection of Summer
St and Washington St. If I imagine very hard I can picture the train to Cambridge
traveling along under Summer St to the Boston Common and beyond.

But for purposes of going to work in the morning, there is the entrance and a winding
staircase leading down to the underground ‘concourse’, an ancient smelly passageway
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with subway turnstiles at each end and entrances to shops and department stores along
the sides. Once I arrive I often find the near set of turnstiles closed. When this happens,
I walk the length of the concourse and enter the subway at the other end. That this
concourse travels over the train tracks and under Summer St is about as theoretical to
me as quarks conserving color.

Consequently I don’t think it ever occurred to me to pass the Chauncy St entrance
and walk the same distance in the relatively fresh air of Summer St, nor did it occur
to me to wonder if some rule governs the turnstiles being open at the Chauncy St end
of the concourse. Not, that is, until one day I was walking to the subway with a friend
and he recoiled when I moved to walk in the Chauncy St entrance. He very sensibly
prefers to risk losing two minutes walking to the main entrance than risk suffering the
concourse. Since then I've decided that I haven’t noticed any rule to the Chauncy St
turnstiles because there isn’t any rule to when I go to work. I hypothesize that the
turnstiles open at 11 or 12 on weekdays, but I never remember to check.

A3g About stories

“VWe have arranged for ourselves a world in which we can live—by positing
bodies, lines, planes, causes and effects, motion and rest, form and content;
without these articles of faith nobody could now endure life. But that does
not prove them. Life is no argument. The conditions of life might include
error,”

Friedrich Nietzsche, The Gay Science, 1882, p 121. (Vintage edition, trans-
lated by Walter Kaufmann, 1974.)

This is a good place to post some cautions about this narrative and the other nar-
ratives in this report. First, they are not scientific data, they are stories. Every story is
consistent with a million actual events; every event is consistent with a million stories.
Obviously, the various stories one could tell about a given event vary in their degree
of detail and in which details they report. More importantly, every story has its own
emphasis, its own metaphors, its own angle on the event it recounts. A story is an
imposition. It cannot be otherwise. Reality does not come already carved up into ob-
jects and events, connections and trends. These are useful fictions. We invent these
things—we ‘constitute’ them—as we pursue our lives, as we continually make sense of
what happens in them. When we forget this, we get in the habit of pretending that
the particular story we’ve just told is the last word: that matter is inherently parceled
out into the objects our story names, that the metaphors our story invokes are genuine
metaphysical categories, that the world was already the way we'’re pretending it is. In
ordinary life you usually only need one story at a time, so it doesn’t matter if you think
it’s the only story there is. But in doing research it matters a great deal. Privileging one
ontology kills observation by preventing one from ever seeing anything genuinely new.
It is also simply a mistake; formalizing human activity in terms of a single ontology is
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a useful exercise, but only because it so rapidly makes evident the fallacy of using that
particular ontology to the exclusion of others.

Second, the stories I tell can never compel the interpretations I make of them.
Usually I have far more reason for my interpretation than shows up in my narration;
past a certain point you just have to have been there. There are no proofs. Again,
it cannot be otherwise. These theories and the interpretations they suggest need to
be judged as a whole against your own experience. They are uncertain, but their
uncertainty is not that of introspective evidence; they are not introspection, in the
sense of sitting still and trying to peek into your own head, whatever that means. One
narrates ordinary routine activity; the narrative simply recounts what happened. Nor
are my interpretations intended as self-evident, as things anyone could see. Today’s
interpretations are informed by years of working back and forth between new ways of
talking about everyday activity and new theories of machinery.

Third, whereas most of my narratives recount particular episodes, the subway story
is a summary of what tends to happen when I walk to the subway. It would be hard ¢o
record such a long stretch of my own activity without it being corrupted by my being
deliberately aware of it. This corruption would be perfectly valid data in itself; after
all, it’s a psychological phenomenon like any other. In this instance, though, it would
be distracting and there would be too much of it to document. In practice, most of the
corruption is not in observing the event but in narrating it. When I'm writing out a
routine event, I often spontaneously articulate some aspect of it I've never thought of
before. Such retrospection can be illuminating, but it’s also misleading. It’s important
to try toseparate these newly articulated aspects from the ones that were part of original
experience.
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Chapter B1

Context and summary

Perhaps we’re all horrendous kludges. Evolution, after all, had to find the right tradeoffs
of the various aspects of intelligence against the various aspects of efficiency, and the
result had to be only slightly different from a monkey. For the central system, at least,
I believe that few such tradeoffs exist. It turns out that the simplest architecture one
could imagine can easily support many aspects of the thinking and acting required
for the world of everyday life. My argument for this proposition comes in two parts
corresponding to Part B and Part C. Part B presents a program, the running argument
system, I wrote to experiment with the idea that most activity is improvisatory and
routine. The running argument system does not represent a substantial departure from
conventional Al practice. Careful analysis of this program in operation, in Chapter B5,
will prepare the way for the more radical departures of Part C.

The central idea of the running argument system is that of dependencies. A depen-
dency system has a source that occasionally thinks a new thought and a dependency
network that records each new thought and the reasons for it as a bit of network struc-
ture. What ‘thoughts’ are is the source’s problem. The network is a combinational
logic circuit which continuously drives all the nodes representing propositions to 1 (IN)
or 0 (ouT). Two forms of thought are recognized, each joining reasons to a conclusion.
The simpler, “because I believe X and Y I decided Z” becomes an AND gate joining
the two reason to the conclusion. For example, “Socrates is a person and all people
are mortal so Socrates must be mortal.” The more complex, “because I believe X and
have no reason to believe Y I decided I might as well believe Z” becomes an AND-NOT
gate joining the positive reason and the negative reason to the conclusion. For exam-
ple, “Socrates says he’s mortal and I have no reason to think he’s lying so let’s assume
he’s mortal.” The network doesn’t interpret the propositions in any way, so it doesn’t
realize that the first example is an instance of a misguided account of generalization or
that the second example is only heuristic. The examples illustrate that explaining the
architecture doesn’t explain how best to use it.

A dependency network has some important properties. It can be implemented easily
and extremely efficiently. By remembering only those aspects of a situation that a given
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conclusion actually depended on, it generalizes old thoughts to new situations in which
irrelevant and perhaps distracting aspects might differ. Iven if there are millions of
recorded thoughts, it continually decides which ones to apply and which ones to stop
applying. It maintains the consistency of the current set of beliefs, relative of course to
the source’s standards of consistency. And it participates in the dynamics described by
the theory of routines.

The dependency network is an enormous combinational logic circuit whose inputs
are signals from the sensory systems and whose outputs are signals to the motor sys-
tems. A loop is thus set up between the agent and the world. As the world changes,
the inputs change, the changes propagate through the network, and the outputs change.
The outputs are constantly driving the agent to take action in the world. This action
changes the world (which would probably go on changing even if the agent sat still)
and the loop recommences. As Section B4d explains, it helps to think of the system
as conducting an argument with itself on each cycle. The reasoning has a vaguely di-
alectical nature—at any moment the set of IN propositions constitutes a potentially
enormous argument that the agent should take the actions it is currently taking. As
changes propagate through the network, the subset of IN propositions continually incre-
mentally changes. Relatively uncontroversial propositions change infrequently, whereas
propositions describing transient states or short-lived actions come and go quite often.
As circumstances change the argument structure changes as well, constantly selecting
a new set of elements from the vast stock of past thoughts. This is called a running
argument,

The architecture this chapter describes is implausible in two ways. The first is the
dependency network’s ‘source’. Where do the new thoughts come from? It matters, but
it’s not our topic here. Here I'm concerned with the steady state of routine activity.
In this idealized steady state, the source is nowhere in sight. Enough thoughts have
beep delivered and recorded to produce some sensible response to every situation that
might arise. The result is like Simon’s ant, cranking out a stream of actions on a
fixed repertoire of thoughts implemented in a bit of clockwork. Part B maintains the
convenient image of wise new thoughts arriving from a source and being recorded in
a dependency network. Part C likewise neglects the issue by positing a wholly fixed
network. Of course people do sometimes think new thoughts. But one mustn’t hasten
to the conclusion that the ‘source’ is a homunculus, fully general inference mechanism
of the sort so much Al work has sought. All a source must do is provide occasional
increments of circuitry in some novel situations. How and when this happens is the
subject of the theory of routine evolution, with its emphasis on incremental change and
the interpersonal and social context of learning. These are obviously big phenomena
about which many valuable things have already been said, but they lie beyond the scope
of this report. Investigation of their dynamics will, I am certain, whittle away at the
homuncular image of the ‘source’.

The second implausibility is the expressive poverty of combinational logic. Chapter
B5 works hard to make this poverty seem severe. Much of the burden of Part C is to
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demonstrate that the trouble lies primarily in traditional programming and representa-
tion techniques. The traditional techniques were designed to produce processes within
machines, but what we really want are techniques for producing organized interactions
between machines and their worlds.

Combinational logic has three problems, whose solutions are the subject of Part C.
First, there is no good way to implement variables. This is the critical issue. Variables
figure in our only worked-out accounts of abstraction, namely quantified logical formu-
lae and parameterized procedures. In Section C3b I will argue that these accounts are
inappropriate for everyday routine activity, on both epistemic and efficiency grounds.
In their place I will describe the beginnings of a proposal based on indexical represen-
tations. Such representations do not abstract over classes of things-in-the-world that
share certain properties but over classes of situations that share certain relationships
between the agent and whatever objects are present.

Second, there is no good way to implement data structures that can be inspected by
arbitrary processes. The ‘representations’ I propose are not representations in anything
like the traditional sense. In particular they are not datastructures but rather patches of
dependency network that originated as indexical thoughts about particular situations.
Chapter C2 discusses the issue.

Third, there is no state. There are certainly dynamics which allow the effect of state,
including simple things like making notes to oneself. There is also constantly perceivable
state in one’s body (including perhaps the peripheral systems). And obviously people
remember things. I have little to contribute on this topic as yet. All I insist is that
state not be interpreted as a world model. Section C3g returns to the point.

Some advice for the reader.

Chapter B2 is about dependencies. It defines the idea of dependencies from scratch
and discusses their properties in detail using cartoon examples. This chapter is primarily
intended for readers outside the Al community. Except for Section B2e’s discussion of
the dependency model of routine evolution, all of its ideas are commonplaces among Al
people.

Chapter B3 is about the running argument system. It defines the Life rule language
and describes its relationship to the dependency system. Little of the technical detail
need be understood to appreciate the central ideas of Part B, so most readers should
skip ahead as soon as they get lost or bored.

Chapter B4, which discussion of some of the dynamic issues around running argu-
ments, contains the theoretical meat of Part B. It discusses four topics: the difference
between Planning and improvisation, the nature of hierarchy and goals, the notion of
argumentation, and the notion of running arguments. It illustrates many of its points
with stories from everyday life. More technically oriented readers may become impa-
tient with this chapter’s lack of detailed descriptions of implemented programs. Such
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readers should resort to skimming, skip ahead to the demonstrations in Chapter B5,
and return once they have become sated.

Chapter B5, which demonstrates the running argument system in action, contains
the technical meat of Part B. It is approximately self-contained. It carefully defines
the system’s goals, discusses the way in which it is supposed to exemplify these goals,
follows the system through several examples, analyzes its performance in great detail,
and then assesses how well it has achieved its goals.




Chapter B2

Dependency maintenance

B2a Context and summary

Dependency maintenance provides a simple way to ensure that an old thought will be
reapplied in any new situation where it might be useful. What is to count as ‘thoughts’
is up to whoever thinks them. Some forms of thought are more sensible than others, of
course. As later chapters will argue, in a world of routine there is a great advantage to
thinking forms of thought that can be efficiently reapplied. This turns out to be a stiff
constraint which, however, is miraculously easy to comply with.

I can best summarize dependencies and their importance by contrast with a different
account of thought-saving. You could, upon thinking a good thought, take a snapshot
of your whole mental state and file it away. Now suppose you figure out how to flip a
pancake while on a camping trip. Then you can’t use your pancake-flipping snapshot
again unless you're either on a camping trip or willing to hallucinate that you're on a
camping trip (c¢f. Minsky’s idea of k-lines 1986, Chapter 8). Dependencies only save
that part of your mental state that the good thought actually depends on—pancakes,
spatula, wrist action, but not pine smell, mosquito bites, campstove. That way you
can reapply the thought, and automatically, any time the reasons are there, even if it
wouldn’t otherwise have occurred to you.

Despite its simplicity, dependency maintenance offers simple dynamic accounts of
a great many important things. These accounts connect situations on which an agent
records dependencies to situations in which it uses them. If we know something about
the organization of everyday activity, we can predict that an innovation recorded in
the dependency network on such-and-such an occasion will find use on certain other
occasions.

This chapter’s main purpose is to define the notion of dependency maintenance and
explain carefully its most important properties. Al people can skim it since most of the
ideas will be commonplaces for them.

39
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B2b Main ideas of dependency maintenance

Dependency maintenance starts from two premises: first, that thinking new thoughts is
hard, and second, that if a thought has been useful once it’s likely to be useful again.
A dependency system has a source, which has the difficult job of thinking useful new
thoughts. By doing the bookkeeping that'’s required to reapply the old thoughts when
they’re needed, the dependency system saves its source from having to do this job over
again. The dependency system has a simple interface that makes no presuppositions
about what counts as ‘thoughts’.

First a blizzard of definitions, then some examples. On any moment the source can
hand the dependency system a conclusion and a set of reasons. The conclusion and
the reasons are all propositions. There are two kinds of reasons, positive and negative.
Every proposition has, at any given time, a value of either IN or OUT, meaning roughly
believed or not believed. (If a proposition has an OUT value, that doesn’t mean that
the agent believes that it’s false, it only means that the agent has no reason to believe
that it’s true.) Given a conclusion and some reasons, the dependency system stores
a justification, declaring that henceforth the conclusion is to be IN whenever all the
positive reasons are IN and all the negative reasons are ouT. (Sometimes justifications
are also called ‘dependencies’.) A proposition might have several justifications; it is IN
if any one of them satisfies this condition and OoUT otherwise. A proposition with no
justifications at all is called a premise—propositions are thus divided into premises and
conclusions. The value of a premise might be wired IN. Or it might be determined by
some other bit of machinery, like a sensor. If so, it’s called an input. A proposition
(probably not a premise) might also directly drive a commands to the periphery. If so,
it’s called an output. See Figure B2.1.

The entire collection of propos “*ons and justifications is called a dependency network.
Think of a dependency network as a binary logic circuit (regardless of how it happens
to be implemented). Each proposition is a node which is 1 if it’s IN and 0 if it’s ouT.
Each justification is an n-input AND-NOT gate joining some reasons to some conclusions.
A network is said to be settled if all the IN conclusions are justified and consistent if
there is some assignment of IN and OUT to conclusions that the network can settle to.
Whenever a premise changes value or a new justification is added to the network, the
dependency system somehow finds a new assignment of IN and oUT to the conclusions
that settles the network. Whether settling the network is easy and whether the outcome
is unique depends on the network, as we’ll see in a moment.

(Hayes invented dependencies (1975). So did Stallman and Sussman, independently
and a little later (1977). Doyle (1978, 1979) abstracted the functionality of dependencies
to produce the first Truth Maintenance System, a name Doyle and most others now re-
gret. These systems have been used principally to direct backtracking in languages that
express domain-specific search strategies. An important early analysis of the theoretical
problems that motivated the invention of dependency-directed backtracking appears in
(Sussman and McDermott 1972). An extensive technology of TMS’s has grown up,
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Figure B2.1. A dependency system maintains a dependency network which consists
of propositions, modeled as electrical nodes, joined by justifications, modeled as logic
gates. Some of the propositions correspond to inputs and others to outputs. The system
occasionally adds new circuitry when its ‘source’ does something new.
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including de Kleer’s assumption-based version, the ATMS (de Kleer 1986, de Kleer and
Williams 1987). For an interesting theoretical treatment of the complexity issues that
arise in dependency systems, see Provan (forthcoming). Dependencies are similar in
spirit to Minsky’s idea of k-lines (1980; 1986, Chapter 8) and to Carbonell’s idea of
derivational analogy (1983). McAllester has previously used the idea of accumulating
lines of reasoning in logic circuits, in his notion of semantic modulation and in the lemma
library of his proof checker (1988).)

The vocabulary of dependency maintenance is very suggestive, but very few of its
connotations are actually intended. Propositions have no internal structure so far as the
dependency system is concerned. So far as the dependency system is concerned, they can
contain quantifiers, negations, probabilities, or magic words. The reasons might license
the conclusion deductively, heuristically, or by divination. If there are new conclusions
to be drawn among the existing premises and conclusions, the dependency system will
not draw them automatically.

Let us consider some cartoon examples. Notate a justification this way:

(<= conclusion
(in posilive-reasonl positive-reason? ...)
(out negative-reasonl negalive-reason?2 ...))

(If a justification has no positive reasons I’ll omit the empty (in) clause. If it has no
negative reasons I'll omit the empty (out) clause.)
To record an ordinary monotonic deduction, use only positive reasons:

[Example 1.]
(<= (mortal Socrates)
(in (for-all x (implies (human x) (mortal x)))
(human Socrates)))

This justification will be implemented by a single 2-input AND gate, joining the two
reasons to the conclusion. See Figure B2.2.

For the source, the three propositions in Example 1 have internal structure: it is
evidently thinking with first-order logic. The dependency system sees none of this. So
far as it’s concerned the source said:

[Example 2.]
(<= mortal-Socrates
(in for-all-x-implies~human-x-mortal-x
human-Socrates))

where the propositions have no internal structure at all. For that matter, the depen-
dency system wouldn’t care if the source also said:

[Example 3.]
(<= (immortal Plato)
(in (all x (implies (human x) (mortal x)))
(human Socrates)))
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Figure B2.2. A justification with only positive reasons creates on AND gate that assures
that its conclusion will be IN whenever both its reasons are IN.

If the source doesn’t do such things, our guarantee lies elsewhere. (This chapter will be
full of this sort of loose talk about the source. For now, the source works by magic. As
the next chapter develops a particular system it will become more precise. The words
‘thinking’ and ‘reasoning’, however, will stay sloppy; they refer to whatever action in
the machinery I’m discussing in a given context. As words go they’re pretty weak.)

A proposition with an empty justification will always be IN:

(Example 4.]
(<= (loves Mommy me))

The propositions in a dependency network don’t have to be examples from logic
texts. They are, in fact, more likely to be conclusions about what to do.

[Example 5.]

(<= (intend (become philosopher))
(in (vant truth))
(out (want money)))

Just because dependencies are recorded using logic gates doesn’t mean the system’s
reasoning has to be restricted by any particular rules of inference. Heuristic justifications
are fair play:
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Figure B2.3. When a proposition has more than one justification, any of its justifications
can support it.

{Example 6.]
(<= (incomprehensible Derrida)
(in (philosopher Derrida)
(French Derrida)))

A proposition might have several justifications. If the source says:

(Example 7.]
(<= (incomprehensible Derrida)
(in (thinks Derrida (too-easy Heidegger))
(vrites-in Derrida French-puns)))

the resulting network will comprise two AND gates with their outputs OR’ed. See Fig-
ure B2.3. For compactness, the disjunction is notated as a wired OR.

Let us note in passing that a justification cannot have variables, or better, the
dependency system knows nothing of variables. If the source says:

[Example 8a.]
(<= (incomprehensible x)
(in (philosopher x)
(French x)))

then the dependency system will hear:
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(<= incomprehensible-x
(in philosopher-x
French-x))

and assign nodes to incomprehensible-x, philosopher-x, and French-x, which probably
don’t mean anything. If you surmise that several French philosophers are incomprehen-
sible, you have to do it separately for each one:

{Example 8b.]
(<= (incomprehensible Barthes)
(in (philosopher Barthes)
(French Barthes)))
(<= (incomprehensible Foucault)
(in (philosopher Foucault)
(French Foucault)))
(<= (incomprehensible Deleuze)
(in (philosopher Deleuze)
(French Deleuze)))

Let us refer to a connected subnetwork as a patch of the whole network. We see that
traditional sorts of representation lead to replicated structure in dependency networks;
each French philosopher gets his own patch of network.

Many people have spent much time trying to generalize dependencies to include
variables; there seems no way to do it short of reinventing production systems. This
is a deep fact. An even deeper fact is that, at least for the sorts of everyday routine
activity I have investigated, you don’t need variables to enjoy the benefits of dependency
maintenance. Propositions don’t have to refer to objects in the world by names, in the
style of first-order logic. Instead, one might say something like:

[Example 9.]
(<= (pick-up the-object-I-am-looking-at)
(in (color the-object-I-am-looking~at gold)
nobody-looking))

This bit of reasoning ‘quantifies over’ whatever ob jects you happen to look at. Part C
will develop this suggestion.

Negative reasons are a powerful way to express heuristic lines of reasoning. One
technique is to establish a default:

(Example 10a.]

(<= daytime
(in at-work)
(out nighttime))

That is, if we're at work then assume it’s daytime unless we’re sure it’s nighttime. This
justification is said to be non-monotonic. It would be implemented as an AND-NOT gate;
see Figure B2.4.

Let’s elaborate the example.
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Figure B2.4. Sometimes a justification will have negative reasons, indicating that it
should only support its conclusion if all its positive reasons are IN and there is no reason
to believe in any of its negative reasons.

{Example 10b.]
(<= daytime
(in out-of-doors
bright))
(<= nighttime
(in out-of-doors
dark))

Joining 10a and 10b, we get the network in Figure B2.5. There are six propositions and
three justifications. Four of the propositions—i.e., at-vork, out-of-doors, bright, and
dark—are premises because they have no justifications. Let us imagine that the values
of at-work and out-of-doors are determined by other justifications not shown. Let us
also imagine that the whole network is located in the head of an agent named Thomas
and that bright and dark are inputs connected to the Thomas’ vision system. Their
values are continually updated according to how bright it is.

(Remember that these are only cartoon examples. Thinking it’s nighttime certainly
has more to it than a single wire going high. The point is, whatever compound activity
is actually involved will equally well be recorded in the network and reactivated later.
The examples will slowly become more real as the chapters go by.)

Now suppose Thomas is at work and indoors. At-work is IN and out-of-doors i8
ouT. Probably bright will be IN, but since out-of-doors is OUT neither bright nor
dark will influence the conclusions at all. Nighttime is OUT because out-of-doors is
OUT. And daytime is IN because at-work is IN and nighttime is OUT.
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Figure B2.5. In this diagram, the agent will accept certain information as evidence of
it being daytime and other evidence of it being nighttime. If no relevant evidence is
available, the agent will assume that it is daytime.

Now suppose Thomas gets off work and walks outside. When the clock hits 5:00
at-work will go OUT and so daytime will go OUT too. Once he gets out the door, it being
winter in Boston, dark will be IN. Thus nighttime will be IN and daytime will be ouT.

Thomas’s reasoning thus far has some holes. Starting at about 4:30 it’ll be dark
outside but he, still hard at work, will assume it’s daytime. Suppose poor Thomas,
longing for a beer as 5:00 approaches, looks out the window where the parking lot
usually is and is startled to find it dark. Nobody’s perfect, but new circuitry can get
you closer.

[Example 10c.]
(<= nighttime

(in looking-out-window
dark))

This new insight, while not spectacular, was no doubt hard work, just because thinking
anything new is hard work. But the great thing about dependencies is that they never
go away. As soon as tomorrow’s ay proaching beer leads Thomas to look out the window
again, this bit of thinking (if you’re willing to call it that) will happen automatically.
Likewise next week’s approaching beers, and next year’s. He has permanently gotten
that much smarter. With successive new insights, his network will grow larger and
larger.

To really get a feel for the dynamics of everyday activity, one should get this event
in perspective. Thomas’ new thought, even though intended to seem prosaic, was a
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fairly unusual accomplishment. If we were to observe him looking out the window on
a randomly chosen day, we would see nothing novel, indeed “nothing at all to speak
of.” (Idioms like this one betray a deep understanding of the real picture latent in the
ordinary language. How telling that traditional philosophy has not spoken of them.)
Examples like this one are misleading in the way all stories are misleading. Even when
it concerns an ostensibly ordinary bloke, a story only peeks in when something excep-
tionally interesting is getting ready to happen. It chooses and interprets its events
through their relevance to a point. It then obscures this imposition by withholding its
point until the end, making the interpretations seem natural and presenting the point
as flowing from events that were already just-so. Beneath this spurious intelligibility,
the actual coherence of everyday activity (which cannot be exhausted by any narrative)
flows transparently on. The ordinariness of life goes without saying.
By the way, suppose Thomas also thought something like:

(Example 10d.]
(<= nighttime
(in winter-time
late-afternoon))

It’s important to keep in mind that propositions like late-afternoon don’t get up-
dated by magic. If Thomas hasn’t got a sixth sense for wall-clock time, 1ate-afternoon
will stay ouT, regardless of the time, until some other circuitry drives it IN. But one
has many occasions to try guessing a rough time of day, and these ways of guessing
will accumulate in one’s dependency network, applying themselves whenever they get a
chance. Usually one of them will work out.

This brings us to a small matter I haven’t mentioned. Not all lapses can be repaired
by adding new justifications. A solar eclipse might make it dark in the daytime and
a baseball stadium might make it light in the nighttime. But it would have taken
impossible foresight to have phrased Example 10b as:

[Example 10e.]
(<= daytime
(in out-of~doors
bright)
(out at-baseball-game))
(<= nighttime
(in out-of-doors
dark)
(out solar-eclipse))

Any conclusion about a real-life situation is only true ceteris paribus. One never stops
discovering exceptions to one’s general rules. Consequently, the source has to be allowed
to add new negative reasons to some of the existing justifications. When Chapter B3
describes how the running argument system uses dependencies, these justifications will
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be the ones created by “UNLESS” rules. (This is the only extra feature I haven’t told
you about.) Adding a new negative reason is called intervention.

(Intervention may seem an unmotivated feature righ.t now. The restriction to nega-
tive reasons will become clearer when I explain argumentation in Section B4d. Section
B2e on the theory of routires describes the role of intervention in the dynamics of
routine evolution.)

A dependency network can be circular. This can happen when there are equivalent
propositions.

[Example 11.]
(<= looking-at-the-Morning-Star

(in looking-at-the-Evening-Star))
(<= looking-at-the-Evening-Star

(in looking-at-the-Morning-Star))

More generally it can happen when there are several propositicns, any » of which imply
the rest.

[Example 12.]

(<= games=7 (in wins=3 losses=4))
(<= wins=3 (in games=7 losses=4))
(<= losses=4 (in games=7 wins=3))

When a dependency network is circular, drawing it as a logic circuit is misleading. I
will shortly outlaw circular dependencies.

B2c Dependency networks

Much of this report is concerned with the properties of a dependency network as a
whole. A large network might have thousands of nodes, or hundreds of thousands. It
might have long chains of justifications. It might have any number of premises. It might
be so tangled with circularities that every proposition figures in determining the value
of every other. In short, it might be an arbitrary mess. We need words for talking about
dependency networks.

Let us define the notion of support in a dependency network. Let P1 and P2 be
propositions and let N1 and N2 be the network nodes that represents them. Informally,
proposition P1 supports P2 if P1l’s value enters into determining P2’s value. The
proposition P2 might have any number of justifications, each of which might have any
number of reasons, both positive and negative. All of those reasons support P2 because
their values help determine P2’s. Support is a transitive relation, so that anything that
supports one of P2's reasons supports P2. In general, P1 supports P2 if you can trace
a path forwards through the network from N1 to N2. A proposition’s support set is the
set of its supports. A proposition’s premise set is the set of premises in its support set.
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I've already mentioned circular dependency networks. Formally, a network is circular
if any proposition supports itself. Circular dependency networks can have some peculiar
properties. Some have more than one consistent assignment of IN’s and OUT’s to nodes
for a given set of assignments to premises.

[Example 13.]
(<= at-work (out at-home))
(<= at-home (out at-work))

A network consisting entirely of these two justifications, while consistent, doesn’t contain
enough information to pin down a unique assignment. Either at-work is IN and at-home
is oUT or vice versa. The denendency system can choose either assignment arbitrarily.

A circular dependency network can also be inconsistent, meaning that there exist
no legal assignments of IN and OUT to its nodes.

[Example 14.]
(<= A (in B))
(<= B (out A))

If Ais oUT then B is IN, but then A must be IN. If A is IN then B, being unsupported, is
OUT, but then A, being unsupported, must be ouT.

It makes a big difference whether a network is circular. Every noncircular network
is consistent. There is a trivial algorithm for settling noncircular networks because their
support relationship is a partial order. This is the algorithm suggested by the logic-
gate notation: a noncircular network is a combinational circuit. Every gate continually
assigns its output the value determined by its inputs. If a premise’s ascignment is
changed, the change will propagate through the network until it has settled. This will
take time proportional to the depth of the network (on appropriate parallel hardware).
This method has the tremendous advantage of locality: each gate knows everything it
needs to correctly assign a value to its output.

With a circular network, the story is entirely different. The local algorithm, in
particular, is not correct. Recall Example 12:

(<= games=7 (in wins=3 losses=4))
(<= wins=3 (in games=7 losses=4))
(<= losses=4 (in games=7 wins=3))

Suppose we give wins=3 and losses=4 their own justifications:

(<= wins=3 (in Sox-in-Series))
(<= losses=4 (in Mets-in-Series))

In the sad yvear of 198G, these conditions are all satisfied and wins=3 and losses=4
are both 1N, Consequently games=7 is IN, no problem. Next year, Mets-in-Series will
o OUT, but losses=4 will stay IN because both games=7 and wins=3 will be In! This
nayv bhe a good guess, but it certainly isn’t fair.
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One cannot reliably settle a circular dependency network in time proportional to
its depth. Indeed, the problem is NP-complete (McAllester, personal communication).
This is a good reason to try to make noncircular dependency networks suffice. 1 have
always found that they do and will simply assume so.

We have now eaumerated everything that can happen in a dependency network:
gates propagate binary values and new justifications and connections are made. Aside
from these operations, the network is uninspectable. No algorithm can poke through it,
whether to count it, rearrange it, summarize it, decide whether it’s circular, compute
a proposition’s support, or prove that some output will never change its value. It is a
network in the hardware sense, not the software sense. Even if it is implemented by an
interlinked datastructure in simulation, the accompanying algorithms may only perform
the prescribed operations on it. The presumed uninspectability of the dependencies
has many consequences, as we'll see in Chapter C2. For example, it becomes hard to
implement the common view of representations as inspectable datastructures.

(Intervention through adding a new negative justification is the closest that depen-
dency networks come to being inspectable. Intervention, though, doesn’t require anyone
to be able to traverse the network and the source knows ahead of time which gates it
might want to add negative justifications to under which conditions. I don’t know how
this works in anyone’s brain, though I find recruitment schemes such as those of Marr
(1970) and Feldman (1982) appealing. Chapter B3 explains how intervention works in
my system.)

We might proceed to understand dependency networks by formalizing their proper-
ties in general, proving theorems that apply to any network, no matter how messy and
tangled. This is a useful thing to do (cf. Provan forthcoming), but it is not what we’re
doing here. Instead let’s ask two dynamic questions:

What sorts of dependency networks lead their owners into useful sorts of
interactions with the world?

What sorts of dependency networks tend to arise in the course of ordinary
everyday activity?

We should hope the answers to these questions overlap. They do, as we’ll see.

B2d Dependencies as a simple account of many things

Dependency maintenance is a fabulous idea because it provides simple accounts of a
great many important things. Let us list these, and in so doing anticipate and summarize
the much longer discussions of later chapters.

Suppose we imagine the network to be implemented as actual logic gates or in some
other sujtably paraliel, distributed hardware. The resulting machinery will be simple
and easy to construct. It will be blindingly fast, even if the gates themselves are slow.
It will apply an enormous amount of reasoning te every moment’s activity.




72 Chapter B2. Dependency maintenance

Being fast and automatic, dependencies offer a simple account of how it is you be-
come faster and more fluent at an activity you've practiced. With time, all the necessary
thinking has gotten itself set up in your dependency network. When it’s needed it just
happens. People in Al often speak of this sort of thing using metaphors of ‘compila-
tion’. Like a good compiler, dependency maintenance finds opportunities for parallelism
in the reasoning it compiles. Two nodes have to be updated in order just in case one
supports the other; otherwise everything is updated in parallel. It is best not to take
the metaphor of compilation too far. Unlike ordinary compilers, a dependency system
doesn’t have to manipulate explicit representations of ordering constraints. The ‘opti-
mization’, like most dynamic phenomena, is epiphenomenal. Furthermore, there is no
‘target language’ that is interpreted by a stored-program computer. ‘Silicon compila-
tion’ might be a better metaphor; somebody should try it for real.

In accumulating a history of their owner’s past reasoning, dependencies offer a sim-
ple account of search control. In Al it has been common to consider Problem Solving
or Planning tasks in isolation. Some module must produce a substantial hunk of novel
thought in one shot without the benefit of past experience or the possibility of inspecting
the world. No wonder it gets itself into uncontrollable searches. Suppose the machinery
were to maintain dependencies. All the reasoning that went into past Solutions or Plans
would automatically apply itself to the present one. Viewed as search, the dependency
network would quickly search those parts of the search space that have been searched
before. If this isn’t enough, the agent can do whatever the culture teaches one to do:
try things, get help, use textbook methods, apply heuristics, take a different tack, cut
corners, or walk away. What does this story amount to technically? How sophisticated
must one’s learning machinery be in a normal culture and world? Must one’s architec-
ture provide facilities for search after all? To answer these dynamic questions we must
understand what everyday life is like.

Dependencies also provide simple accounts of aspects of reasoning and learning
that’ve generally been thought to require classification hierarchies, pattern databases
and matchers, symbolic generalization algorithms, and so forth. All of them follow the
same simple slogan:

There are fewer reasons than causes.

Dependencies record the reasons for thoughts, not the causes. For an example, let’s
return to Example 10d.

(<= nighttime
(in winter-time
late-afternoon))

Recall that our cartoon agent Thomas, longing for an after-work beer, looked out the
window toward the parking lot and found only blackness. This surprise led him to ask
someone, or consult an almanac, or perform a correlation, and arrive at a sensible set of
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reasons for it being nighttime. The dependency network recorded the reasons (winter-
time, late afternoon) but not the causes (weariness, thirst, looking out the window). So
this coming Saturday, when Thomas is pulling on his sweats to go out runrning before
supper, he will, without fanfare, recall that it’s winter and thus nighttime. He already
had sense enough to put on his nighttime running gear at night

(<= (put-on nighttime-running-gear)
(in nighttime
(putting-on running-gear)))

but today he’ll think to do it before he gets out on the road. Before, as he was putting
on his clothes he had had reasons to dress for nighttime but no causes: there are no
obvious clues inside that it’s nighttime and nothing led him to notice. But now, a small
insight Thomas had in the course of conducting one activity (peering out at his car) has
transferred itself to another activity (dressing to go running).

The dynamics by which dependencies transfer novel thoughts to new situations are
called the transfer dynamics. Here is an example of the transfer dynamics in action.

I own a dwindling set of wine glasses, sturdy and unfancy ones with fairly
thick cylindrical stems. I have evolved a routine for washing them that
involves twirling the stem between my right thumb and 2nd and 3rd fingers
to run water on it or rinse off the soap, holding it about 45 degrees off
vertical, toward the left and away from me, this angle determined by what’s
both comfortable and visible. I had left one of these wine glasses sitting on
the corner of my desk in the course of last Friday’s dinner. I noticed this
glass at some point and thought I should return it to the kitchen, but didn’t
do it because 1 wasn’t really headed that way and didn’t feel like making a
special trip. Finally on the morning in question 1 was getting the life of my
apartment put to bed on my way out the door to work and I saw this glass
on my desk so I picked it up and headed for the kitchen. As I had entered
the kitchen and was halfway to the sink, I realized that around the moment
of the sink’s coming into view I had placed the glass in my right hand in the
correct grip to execute this twirling motion.

In this story, I believe that an element of my wine-glass-washing routine, namely grasp-
ing the stem just so, has transferred itself to a new situation. The premises behind the
transfer must have had something to do with holding the glass and an intention to wash
it. Evidently one of the premises was predicated on the actual sight of the sink. When
I laid eyes on the sink, enough of the premises came in to suggest grasping the glass
by its stem. The transfer dynamics have an important role in the evolution of routine
patterns of activity. See Section B2e for a brief discussion of the dependency model of
routine evolution.

(Incidentally, I am certain that other forms of interaction with my environment could
have led me to grasp the stem before I caught sight of the sink. Some of these might even
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have involved some sort of ‘internal’ activity involving visualization or subvocalization.
If these happened they would also need to be explained, of course, but in the event they
did not. For a broader discussion of some related phenomena concerning ‘reminding’
and its relationship to memory organization see (Schank 1982, Kolodner and Cullingford
1986).)

Though this report is concerned with steady-state dynamics, future work should
characterize the transfer dynamics in more detail. Two important questions arise. (1)
How broadly do newly recorded thoughts transfer? This question concerns matters of
representation. (2) When you encounter a everyday situation that ought to be routine,
does it tend to fall in the scope of a transfer dynamic? Put another way, when are
there sufficient causes for a new idea and when are there merely sufficient reasons? On
a small scale this question concerns the dynamic structure of everyday life. On a large
scale it concerns the dynamic structure of the life cycle in a given culture.

Evidently dependency maintenance gives rise to a sort of automatic generalization.
As generalization mechanisms go it is extremely simple. It doesn’t inspect any histories
of its reasoning. It doesn’t crawl up and down any classification hierarchies. It doesn’t
even substitute any variables for constants. Does the human architecture employ these
features? This is an empirical question, and an interesting one, but barring a neuro-
physiological miracle there’s no use in asking it straightaway. First let’s ask, does the
simpler machinery suffice to engage in the dynamics of ordinary everyday activity?

In the Al literature, the case of Thomas using his understanding of why it’s nighttime
would be called ‘explanation-based generalization’ (EBG). A closely related idea is called
‘case-based learning’ (Kolodner 1986, Hammond 1986). EBG is a simple, powerful idea.
To explore it, let’s consider another example. As Thomas was out running it was
snowing and he came across a rectangular region of pavement with no snow on it. This
struck him as odd. Suppose then he came up with an explanation of why this is—never
mind how. Maybe he saw a car drive away and leave a similar blank spot. Maybe the
spot reminded him of a shadow, so he looked around and noticed cars throwing such
shadows. Maybe he asked someone. (A harder question is, why did that blank spot
strike him as needing an explanation? Things that need an explanation do not always
strike you as such.)

Having produced this explanation in one situation, he can use it in other situations he
encountered. At a minimum, he should be able to interpret his next snowless rectangle
as a place where a car recently was. He shouldn’t have any problem generalizing to
motorcycles and trucks. He might also be able to interpret the snowless circles left by
trash cans—he should at least have the sense to ask himself what round thing might
have been there. How does he do this?

Neither dependency maintenance nor EBG explains where explanations come from;
they only explain how explanations lead to generalization. The account offered by
dependency maintenance is simple. Your action of adducing reasons in the first case
is recorded in the network. When those reasons become true in the second case the
explanation will reassert itself. Over your life you've accumulated thousands of such




B2d. Dependencies as a simple account of many things 75

explanations, all ready to interpret a new situation on a moment’s notice. Most EBG
schemes are more complicated than this, employing a wide range of searching, substi-
tuting, indexing, end categorizing machinery (Mitchell 1983, Mooney and deJong 1985).
Certainly these complex methods are more powerful, especially when a poorly designed
representation scheme defeats the simple transfer dynamics. On the other hand, they
often produce difficult-to-control searches. Are these extra increments of functionality
any use in the long run? This is a dynamic question, and a hard one, so you can’t
answer it without a good dynamic theory. And if you can’t answer this question you
have no choice but to make your machinery as sophisticated as possible. An easy idea
becomes hard. Lacking a complete account of the machirery and dynamics of routine
evolution, it is not yet possible to resolve the question.

Generalization is probably the wrong way to think about what dependencies do
anyway. Dependencies don’t work by manipulating datastructures and constructing a
generalized ‘idea’ or ‘proposition’ (in the usual sense). They simply make something
happen on Tuesday that happened in a more complicated way on Monday. They get
the ¢ffect of generalization, or most of it, without all the machinery and effort.

Dependency maintenance also provides a simple account of belief-system consis-
tency: once the network settles, there are no unjustified IN propositions. This sort of
consistency, of course, is only the same as logical consistency in the unlikely event that
the source is logical. (Even then it requires the source to detect all its own inconsis-
tencies.) This is just as well; logical consistency is a terribly fragile thing. A better
understanding of the interactions between personality structure and the dynamic struc-
ture of one’s life as whole should help us formulate a more useful notion of personal
coherence.

Further, when premises change in a dependency network, the network finds a new
consistent assignment incrementally. The propagation of values only affect the parts of
the network that need to change, the reasoning they encode being either newly valid
or newly invalid. When Thomas looks out the window and finds it dark, he is prob-
ably not led to reconsider his job or his politics or how he is holding his pen. In this
way, Thomas’ dependency network executes a fresh incremental update on every mo-
ment. He constantly reconsiders his actions because his perceptual premises constantly
change. Chapter B4 discusses this effect, which is called a running argument, in more
detail. Presented with each next change, Thomas reconsiders only what is relevant and
everything that is relevant; what is relevant is determined by what he has found rele-
vant in the past. If he is lucky enough to have encoded all possible relevances in his
network then he will never make a mistake. Of course, there is no end to relevance, so
Thomas will occasionally fail to make a connection. He might, for example, offer a beer
to someone he knows is trying to stop drinking. We all do this sort of thing.

When one’s dependency network transfers some reasoning from one part of life to
another, it is tempting to call it ‘reasoning by analogy’. The usual account of analogical
reasoning in Al starts from structural mappings between descriptions (Winston 1979,
Gentner 1983). Dependencies, knowing nothing of structures, will not perform such
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mappings. Instead, a thought will be transferred between two contexts just in case it
can't distinguish them. As with transfer dynamics generally, when and how often this
happens depends on both representation issues and dynamic issues. In Chapter C3 I will
conjecture that it happens quite a lot because of the indexical and functional properties
of our representations. Now, there are certainly times when people deliberately set out to
make mappings between representations. Dynamically speaking, this is an exceedingly
complicated, culturally specific activity, not to mention difficult and an acquired skill
(Gentner and Toupin 1986), that is only required when the simple transfer dynamics
don’t suffice. We don’t tend to notice the simpler cases because they just happen.
fluently and efficiently. I expect that two-factor dynamic theories like this one will
become common.

Above all, dependency maintenance provides an account of learning through experi-
ence. Experience accumulates as a side-effect of purposive activity in ongoing concrete
situations and so do dependencies. Whether dependencies are a sufficient account of
experience is, again, a dynamic question. It’s the last question to answer because it
must relate an account of everyday activity as a whole to an account of development
as a whole. It helps to pose it negatively: how often in the course of ordinary routine
activity do you have to think something new? Thinking something new is hard work,
requiring an especially auspicious arrangement of circumstance. Five times a second
might be OK, five hundred is definitely not. In an activity that’s really completely
routine, the various transfer dynamics will work together smoothly to deliver the right
moves at the right times, recombining things you’ve learned on past occasions without
needing any new thinking at all. Does the proposed machinery satisfy this condition in
our world?

The question gets complicated quickly. What is the normal run of variation in
ordinary activity like? Can one expect to encounter all the cases asymptotically? How
do we even individuate the ‘cases’? Above all, how do you know that you won't,
suddenly, out of nowhere, in the midst of otherwise ordinary routine carrying on, find
yourself high and dry, surrounded by strange creatures and meaningless objects, with
no idea how to proceed?

Dependencies are for creatures who live routine lives. In my view, life is routine,
and when it’s not routine it’s almost routine. Almost everything you do is something
yvou've done before. What does this .nean? Let us speak strongly for a moment to
put things in their proper perspective. Our ‘intuitions’ about everyday activity only
repeat a socially constituted official veneer. Beneath this pretention, the real work is
done without any hoopla by dynamic effects that we don’t have words for because they
don’t need names. Proximally and for the most part, our activity is directed at the
ongoing concrete situation—conducted in the present tense—even when we think we're
‘reasoning’ and ‘theorizing’ and ‘abstracting’. Ordinary activity is not like science, nor
is it a matter of detachedly poking at the world in order to formulate objective, eternal,
predictive, generalized facts about it. We learn from experience not because we try
to but because our machinery keeps dependencies. Our old thoughts get reapplied in
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the present not because we’ve generalized them but because they can’t distinguish the
present from the past (why should they?). If we tell each other we have ‘knowledge’,
discover ‘concepts’, and make ‘plans’, those are just clumsy tricks for bringing about a
few extra dynamic effects that don’t happen naturally. Philosophical poetic justice (in
the form of intractable complexity) will be visited upon anyone who tries to base Al on
these scare-quoted ideas.

In summary: properly implemented, dependency networks are blindingly fast, mas-
sively parallel, and easy to construct. They provide simple accounts of ‘compilation’,
generalization (especially explanation-based generalization), recombining things one has
learned on past occasions, reasoning by analogy, belief-system consistency, and acting
on accumulated experience. The big job is to demonstrate that these simple accounts
suffice.

B2e About routines

My way of walking to the subway, described in Chapter A3, is a routine. The dynamic
phenomena of routines and their evolution were my most important motivation in devel-
oping the ideas in this report. Time and space have kept me from presenting a detailed
account of these dynamics here, but it will be helpful to define the terms, provide some
examples, and discuss the dependency model of routine evolution.

By a routine I mean nothing more precise than the vernacular use of the word, as
in “my morning routine.” In other words, a routine is a frequently repeated pattern of
interaction between an agent and the world. A routine is a dynamic. The difference
between the words “routine” and “dynamic” is that a routine involves a particular
individual (it is, for example, “my routine” or “your routine”) whereas a given dynamic
might occur in the lives of many individuals.

Here are some typical routines one might engage in: picking up a fork, making a
bowl of cereal, measuring out two cups of flour, putting on a heavy backpack, selecting
a toll booth at the San Francisco Bay Bridge, putting your watch on, breaking an egg
into a bowl, washing the dishes in your kitchen after a large dinner, tossing a wad of
paper into the trash can in the far corner of your office, and writing the word “the.”
It is common to speak of a routine ‘for’ some task, but a routine is defined by what
happens rather than by any endpoint or overall intention. Also, there needn’t be any
set routine you engage in ‘for’ any given activity if, for whatever reason, there is no
set pattern to the way you engage in that activity. One might specify the task, the
circumstances, and the activity constituting the routine in a specific or general way. I
might not have any fixed way of pouring liquids in general, but in my morning stupor
I might have a set way of pouring my first cup of coffee.

Insofar as a routine is a dynamic, routines have all of the properties of dynamics
that Section A2c has enumerated. A routine, like any dynamic phenomenon, is purely
a descriptive construct, not a thing in the head, not a plan or procedure. No specific
knowledge or competence is required to engage in routines, nor is there 2 ‘routines
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module’. If a script (Schank and Abelson 1975 and 1977, Schank 1982) is a mental entity
then a routine is not a script, though a script might be considered a representation of a
routine.

Doing something the same way every time need not result from a specific intention
to do it the same way every time. You can engage in routines without in any sense
knowing it. In general a routine might involve a series of actions, each a response to
the situation resulting from the previous action, without a specific prior intention to
perform that series of actions. You might weave down your street in the same pattern
to avoid the same set of potholes every day just because the potholes are always there.
Conceivably you might avoid the potholes in a consistent way solely for the sake of
consistency, but more likely your principal concern will be for your car’s suspension.

The actions comprising a routine are not dictated by the routine; they are the
individual’s chosen actions in particular situations. For example, a routine might result
from your always improvising the same response to a given situation—perhaps your
response is the only sensible one. You might switch your umbrella from your right hand
to your left hand so you can use your right hand to get your house keys out of your
pocket every single day without ever having made a deliberate policy of it. Furthermore,
a routine is not a law of nature; you might have poured your morning coffee the same
way a thousand mornings straight, but tomorrow morning your routine might be altered
by any of an endless variety of contingencies, from a ringing telephone to a worn-out
coffee pot to a spontaneous mystical experience to the onset of a well-earned ulcer.

Different individuals might engage in different routines for the same task. Not
everyone has a routine for every task they carry out frequently. It happens that I
have rather a strict routine for making an omelette in my kitchen. This routine varies
so little not because [ am deliberately unvarying but because my kitchen is relatively
orderly and because I have put some effort into understanding each of the various
aspects of omelette-making. The opinions I’ve developed about omelette-making guide
my actions. But thinking things through isn’t a necessary condition for an activity
becoming routine. It would really need explaining if someone made a series of omelettes
and did it differently every time. I can think of five ways this might happen:

(1) They haven’t made many omelettes before and they’re still learning and screwing
it up.

(2) They like to experiment and are deliberately exploring all the different ways of
making omelettes.

(3) They are perversely thinking up gratuitous variations every time.

(4) They are often distracted by extraneous matters. Perhaps they don’t care much
about making omelettes, have other concurrent obligations (like minding a two-
year-old), or are persecuted by interferences (like ringing telephones).

(5) For some reason they are always making omelettes in unfamiliar circumstances.

In short, the existence of routines requires no more explanation than determinism. Put
the exact same creature in the exact same situation twice and the exact same things
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will happen. An appeal to determinism, of course, is only a heuristic explanation. Your
coffee-pouring routine doesn’t come off ‘the same way’ every morning down to the last
atom. Explaining exactly why routines exist is actually a difficult project that must
await a fuller exposition.

Everyday life is made of routines at all scales. Your routine of driving to work has
a hundred smaller routines as parts—buckling up, signalling a left turn, picking out
the word “police”, keeping distance behind the car in front of you—many of which are
components of other routines as well. Even the most original and unpredictably impro-
vised activity will be composed of already-routine parts. Aside from being practically
inevitable, this property of routines is a computational necessity: nobody could figure
out novel forms of activity on all levels of organization at once.

In observing the remarkable complexity of any given episode of real activity, no
matter how small, it helps to think of an agent’s actions as the result of a long process
of routine evolution. The complex forms of interaction do not arise all at once. A new
routine might arise in the course of ordinary activity, but then it evolves to more complex
forms. Just as one can engage in routines without knowing it, one’s routines can—and
regularly do—evolve without one knowing it. Most of this undeliberate evolution takes
the form of a series of discrete mutations to the routine. You may drive to work one
way up until Monday and then slightly differently starting Tuesday.

An evolving routine will tend to take account of more and more detailed aspects of
the environment. Actions that were performed serially will begin occurring in parallel.
Warning signs become noticed as if expected and precautions are taken without missing
a beat. Sometimes a routine will develop divergent lines of evolution in response to
variations of circumstance, whether new or previously ignored. Sometimes a routine’s
evolution will stall in some comfortable pattern, only to resume at some provocation or
chance discovery. Bits of action that began as improvisations or afterthoughts become
institutionalized, and the boundaries among artificial stages of activity (like preparation,
execution, and cleaning up) fade as actions are rearranged and recombined. Workplaces
and dwellings begin bearing the marks of one’s routines, through both accumulated side-
effects and deliberate conventions, and the marks left by each routine prod mutations
of the others.

I have observed several kinds of routine mutation. The simpler ones all appear to
be instances of the transfer dynamics and the more complex ones all involve patterns of
transfer that are induced, even orchestrated, by culturally specific practices for the use
of symbolic representations, whether spoken, subvocalized, or written. This is a very
substantial claim and I will not pretend to adequately state or defend it here.

Dependency maintenance helps in thinking about the role of the transfer dynamics
in routine evolution. In general a routine mutation does not result from a deliberate
adoption of a policy or an explicit change to a plan. Instead, the mutation is the result
of the agent, faced with a slightly different situation or some new information, having
decided on a different action. Having made the novel decision on Tuesday, the agent’s
dependency machinery will store its reasons and conclusion. Thus the conclusion will be
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reasserted whenever those same reasons hold in the future. As a result, ceteris paribus,
the change to Tuesday’s routine will become permanent, at least until some future
mutation reverses it, further modifies it, or changes the routine so that the situation
never comes up again. Note that the agent benefits from this transfer effect without
having to explicitly reflect on the similarities between Tuesday’s situation and Monday’s.
(For evidence on the tendency of routine mutations to become permanent and on several
other relevant phenomena, see Neches 1981.) This is the dependency model of routine
evolution.

The most common form of routine mutation is backward transfer. Suppose you
engage in a routine that takes a minute. On Monday, at t = 30sec into the routine,
you might make a novel observation, perhaps because something went wrong. The
observation might not have any consequences on Monday but the dependency machinery
records it anyway, connecting its reasons to its conclusion. On Tuesday, those reasons
might come IN again at t = 30sec into the routine. More likely, though, they will come
IN earlier, perhaps at t = 15sec. This effect is an instance of the slogan that novel ideas
have fewer reasons than causes. All the causes required to formulate the idea didn’t
co-occur until t = 30sec on Monday, but the reasons first co-occured at t = 15sec. As a
result of backward transfer, everything in a routine tends to back up toward the front.

In a cyclical activity, backward transfer will tend to move things countercyclically.
Earlier on in a cycle you will know things that you originally noticed later on in the
cycle. This will often cause the cycle to change. These two stories illustrate the effect:

I had a stack of records propped up against a box and I was alphabetizing
it according to the artist’s name, forming a second, sorted stack propped up
next to the first. I would take a record from the top of the first stack with
my left hand, find and hold open the right place for it in the second stack
with my right hand, place the record in its space, let the stack close over it,
and repeat the cycle. After a while I found I was doing something different:
whereas before my eyes stayed on the new record until I had picked it up,
now I would read the artist’s name as soon as I was done with the last record.
Then as I picked it up with my left hand, my eyes were already helping my
right hand find the right place in the second stack.

I was trying to get a long C program to compile. I was working on a Sun and
had divided the screen between two Unix shell windows so I wouldn’t have
to exit and reenter the editor (GNU Emacs) to run the compiler. I'd run the
compiler and it’d get errors, e.g., “syntax error near { on line 173", so I'd
go back to the editor window. The only way I knew to get to line 173 was
to go to the top of the buffer and go down 172 lines. This got to be a cycle,
fixing errors and recompiling. After a while, I found that I would move the
editor to the top line before the compiler had even starting generating error
messages. (Finally one time the compiler completed without errors and half
of me had to skid to a confused halt.)
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In each case, fragments of the routine (reading artist’s name, moving eyes to second
record stack, moving the cursor to the top of the editor) drifted to an earlier point
in the cycle. As the routine proceeded, each fragment acquired its own dependency
records which explained the reasons for each. As a result, the various actions took place
as soon as they could instead of in the more logical order in which they first assembled
themselves as I improvised my way through my dealings with each record or syntax
error.

B2f Objections

One encounters a number of objections to the idea of dependencies playing a central
role in our cognitive machinery.

Dependency networks, being digital, cannot reason with continuous quanti-
ties like size, weight, distance, and loudness.

Dependencies, recall, are only an account of the central system. The sensori-motor
machinery of the periphery will almost certainly be largely analog. If we need, for
example, to decide which of two weights is greater, we might imagine this to be a
peripheral function. Perhaps, then, analog processing is confined to the periphery.
Until we settle the empirical issue, we can try to design peripheral faculties that provide
enough such functions to comfortably accommodate ordinary activities.

Justifications, being digital, either apply or don’t apply, and thus fail to cap-
ture our holistic intuitions about the similarity of non-identical situations.

If there is a single, unified notion of similarity then dependencies are certainly a
poor way to compute it. You can make ‘similarity’ sound as holistic as you like by
accumulating ‘intuitions’ of similarity in a wide variety of situations and observing that
they haven’t got much in common. But asking what similarity amounts to in particular
situations suggests a different picture. Ata minimum, similarity depends on what you’re
trying to do. You might call two chess boards similar if you’re playing chess but not if
you're considering which chess board to buy. Further, if you're playing chess, then two
similar positions are similar for certain reasons. They might both turn on the role of the
knights’ pawns in maintaining Black’s mobility within the boring closely-knit defensive
structures that the Russians tend to like. If this is so, then their similarity simply
amounts to a shared bit of analysis. The work you do in conducting such analyses will
be encoded in the dependency network. Every thought you’ve ever applied to a position
tries to apply itself to each new position; perhaps that’s holism enough.

The logic-gates model of dependency networks makes us into rigidly logical
thinkers.
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This is a level confusion. We have seen that the reasoning encoded in a dependency
network can be as illogical as you like. Another form of the objection claims that
digital hardware must be rigidly logical in some deeper sense. It is hard to answer this
objection ‘»cause it isn’t an argument, only an association of metaphors. Perhaps this
confusion is excusable, given that the people who invented digital logic made the same
association—they wanted to be rigidly logical but they didn’t understand that it can’t
be done.

The insight encoded in a given justification can only be reused in same
situation it was recorded in.

How true this is depends on what it means to be the ‘same situation’. The whole
idea of dependencies is to define the loosest possible notion of sameness: two situations
are ‘the same’ just in case they share the salient features, where saliency is determined
by what you’re trying to do. Whether this works out as intended depends on your
representations. If every thought you ever think comes with a timestamp on it—e.g.,
“Mary loves John 01:32:16 11/21/86”—then you’ll accumulate new justifications at an
incredible rate and never use any of them. Fortunately, your brain probably can't tell
time. A representation scheme can make dependencies useless in other ways as well;
we’ll return to these in Chapter C2.

Your head will overflow if you record every new thought.

This, too, depends on issues of representation and dynamics. How many new
thoughts do you really think? What counts as a new thought depends on what your
representations are like. How likely is a new justification to be useful again? This de-
pends on the ways in which everyday life is routine, a dynamic question. If everyday
life is largely routine, then your head had better be big enough for you to be skilled at
all of it.

The permanence of dependencies falsely predicts that you’ll never forget
anything.

If forgetting ‘something’ meant no longer having ‘it’ in your head then this would
be true (Speaking of a thing as remembered or forgotten is a cheap way to add it to
one’s psychological ontology. One should resist this bargain.) Except in cases of organic
brain damage, I don’t think you actually do forget anything. Maybe you will never
be reminded of something ever again, but this is a complex dynamic fact, not a fact
about your mental inventory. One shouldn’t think that ‘remembering’ and ‘forgetting’
are single, unified phenomena. Dependency maintenance offers a simple account of why
you never forget how to ride a bike: the circuitry is always there, ready to go, even if
your body has changed in small ways so that the calibrations have gotten rusty. The
fact that we are often reminded of things we’ve long forgotten certainly doesn’t prove
that it's all still there, but why insist on the opposite?
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Why two values, IN and ouT? Why not three, or seventeen, or the whole
real numbers?

Indeed, there exist more-or-less obvious generalizations of dependency maintenance
to larger sets of values. One popular proposal is to distinguish YES, No, and DON'T-
KNOW. Another is to represent either ‘certainty’ or ‘likelihood’ (it is often not clear
which) as a real number. I've posited two values out of simple parsimony. As soon as
the developing dynamic theory compels me toward these generalizations I will certainly
consider them. For me anyway, ‘uncertainty’ doesn’t seem like a unified phenomenon.
Even if it were, real uncertainty doesn’t seem anything like the real numbers. Maybe
I’'m wrong.

Surely we garbage-collect.

This idea confuses me. A Lisp interpreter can only collect garbage because its
interactions with the outside world are so stereotyped that it can prove that certain
structures will never influence output. A garbage collector has to start marking from
somewhere, but how could it start marking from the outside world? If a thought was
useful in the world once, how can you prove that a similar situation will never again
arise?




Chapter B3

The initial implementation

B3a Context and summary

This chapter concerns a computer program called the running argument system. When
I wrote the first simple version of it in 1983, all I knew for sure was that dependency
maintenance is a way of accelerating the workings of a conventional rule system. When
a rule runs, a justification records that the rule and its trigger are reasons for believing
in its conclusion. The next time the same trigger matches the rule, the justification will
rederive the conclusion automatically. This way, a simple gate propagation saves the
effort of firing the rule again: instantiating the rule’s right-hand side, building a new
proposition, and installing it in the database. In the vocabular of Chapter B2, this
machinery is the ‘source’ and rule-firings are ‘thoughts’.

T'e border between Parts B and C of this report corresponds roughly to my un-
derstanding in the middle of 1985, after two years spent trying to make the running
argument system into a plausible cognitive architecture. Part B succeeds if it repro-
duces half the confusion I felt then. (My having told you about dynamic theory spares
vou the worst of it.) Four major revisions subdued the implementation issues, meshing
the rule system and dependency system properly by assuring that all the right rules run
with only a small constant overhead. This is reassuring as an existence proof, but since
I don't think we have a rule system in our heads it’s not a central point. This chapter
describes these implementation issues.

The real problem comes in connecting a rule system to a simrulated world (much
less a real one) and trying to program it. Chapter B4 describes how this interaction
ought to proceed. The dependency network is very much faster than the rule system, so
one should write rules that needn’t be continually firing on new triggers. My trz .iing
in programming had definite opinions about how to write these rules. The standard
methods work for a while; the implemented examples of Chapter B5 demonstrate all
the virtues of dependencies that Chapter B2 has described. This is promising. In
the end. though, one cannot reconcile these methods with the plain impossibility of
using dependencies to support the standard account of abstraction, viz., variables and

84
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constants. Chapter B5 poses this problem and Part C resolves it.

One might take two views of the running argument system. On one view there
are rules being accelerated by dependencies. On the other view there is a dependency
network being incrementally built from convenient but incidental parameterized speci-
fications. You're on the road once the second view becomes natural. We haven’t got a
rule system in our heads. We can only properly ask where new dependencies come from
once we understand how one’s already-accumulated network leads one to interact with
the world.

B3b Organization

The running argument system started as part of a (never-completed) animation system
at Arari Research. (This was a project with Ann Marion and Jim Davis. I will grossly
simplify the parts that aren’t related to our main concerns here.) It provided a language,
called Life, for writing rules about the critters and things in a cartoon world. A user
could define the laws of the cartoon world, set up a cast of characters, arrange some
initial conditions, and turn the system on; and life would go by. A drawing program
could peek at the world at regular intervals to find out what to draw. Our initial goal
was to animate Aesop’s fable of The Boy Who Cried Wolf. This turns out to be hard.
The hardest problem is that life doesn’t naturally form stories. Left to its own, life falls
into a routine. Days start and end, shepherds tend flocks, townspeople go about their
business, wolves sneak in, shepherds sound alarms, wolves get chased away, townspeople
head for pubs and sit around swearing at wolves, and so on. This is the stuff life is made
of, day after day. To make anything happen against this background, storytellers have
to intervene and say “however, on this particular day the shepherd had an idea.” These
were the hardest rules to write, the ones we never felt comfortable with.

This early veiion of the system had two parts, a rule system and a dependency
system. These two systems shared a database of propositions (Lisp list structures), some
of which had values of IN or ouT. The user would write rules in the Life language. (I'll
describe the language and its semantics in a moment.) Whenever an IN proposition (the
trigger) matches the pattern of an IN rule, the rule fires and the appropriate consequence
is declared to be IN. If necessary, the system first builds the consequent proposition and
inserts it in the database. Once the system was turned on, it continued running until
there were no more rules to fire. In Al terms, this is roughly an ordinary forward-
chaining rule system. (It is not a production system, as we’ll see.)

The machinery underlying the Life language is designed on the assumption that most
rule-firings have happened before. There are many applications in which this assumption
would not apply. It seems plausible for the purpose of simulating everyday activity
because life is routine. Most things that happen have happened before. Consequently,
unlike advanced production systems like OPSS5, the process of firing a life 1eal has not
been highly optimized. The dependency system does most of the work. Whenever a
rule fires, the rule system makes a justification, declaring that the rule and the trigger
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are reasons for believing the conclusion. That rule need not fire again on that trigger.
To get an idea of what the system does, let us anticipate the more detailed expla-
nations by considering a simplified example. Here is a rule:

R13: (if (sees the-shepherd the-wolf)
(rings the-shepherd warning-bells))

One sunny Monday, the first wolf appears (either as the consequence of a rule or as
a premise):

A27: (sees the-shepherd the-wolf)

Then rule R13 fires on proposition A27. The rule has not fired on this trigger before, so
the system builds a new proposition:

A28: (rings the-shepherd warning-bells)
and a new justification:
J41: (<= A28 (in R13 A27))

which we would draw as an AND gate connecting R13 and A27 to 428. Once the wolf goes
away, A27 will go OUT. Assuming A28 has acquired no other justifications, A28 itself will
go ouUT as well. Now Tuesday comes and the wolf appears again, so that A27 comes IN
again. Assuming rule R13 is still IN as well, A28 will also come IN, courtesy of justification
J41. Whereas on Monday the system had to do some pattern matching and assemble a
new proposition and a new justification, on Tuesday it only had to propagate a changed
value through a gate. (Later we'll see how this works.) If the wolf makes daily visits
to the shepherd’s flock, 427 and A28 will bounce IN and OUT every day. On Monday it
will take a moment to draw the correct conclusions, but on Tuesday it will happen right
away. This effect is impressive in the large; the system accelerates as everything that
happens often happens once.

The original system, then, had two modules (a rule mechanism and a dependency
mechanism) sharing a collection of propositions arranged in two tightly intertwined
datastructures (the database and the dependency network). Later, though, its purpose
changed. In my own work I wanted to design a central system for an agent living in a
world. Whereas originally the Life system simulated an entire world, now I considered
using it as the central system for a single simulated agent. Though they differ in many
ways, these two applications can both benefit from dependency maintenance because
they are both routine. Just as most things that happen in the world have happened
before, most things that happen in your head have happened before, or so I figured.

Since the Life machinery was ounly a central system, it needed two more components,
a periphery (visual and motor apparatus) and a world simulation. Some of the propo-
sitions in the database serve as inputs from the periphery and others serve as outputs
to the periphery. The running Life program now closes a loop with the outside world.
The Life program together with its periphery and world simulation is called the running
arqument system, for reasons explained in Chapter B4. Here is its algorithm:
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1. The world simulation updates itself.

2. The periphery computes new values for the central system’s inputs, which repre-
sent perceptual information.

3. The periphery compares the new input values to the old ones. Any newly IN input
is declared a premise; any newly oUT input is declared no longer a premise.

4. The central system now propagates dependency values and runs rules. Both the
dependency system and rule system continue to ran until they have both settled.

5. The periphery inspects the values of the central system’s outputs, which represent
motor commands.

6. The periphery and world simulation together arrive at (a) a set of proprioceptive
propositions (judgements about the success or failure of the agent’s primitive
actions) and (b) a set of motor effects (the immediate physical consequences of
the agent’s actions).

7. The world simulation updates itself again, and so on ad infinitum.

This simulation does not bother constructing retinal images and muscle control
signals. Instead, the periphery and world simulation work together to provide the effect
of an agent getting about in a world. Although one should be suspicious of all simulated
worlds, this cooperation in itself is not cheating because I am only studying the central
system, not the rest. Some day, of course, it would be nice to connect the running
argument system to the real visual-motor hardware of a real robot.

(It so happens that the periphery and part of the world simulation are implemented
as another set of Life rules. Also, the modules and their connections are sufficiently
abstract that they can be arranged in arbitrary configurations. I will suppress these
extra generalities because they play no role in the examples. As a result, this chapter’s
description differs considerably from that in (Agre 1985). The program has evolved
since then, but its outward behavior has not changed. Both this description and the
one in (Agre 1985) are both correct as far as they go.)

B3c Example

I decided to test the running argument system on the blocks world. Like most of my
predecessors, I chose the blocks world not because it is representative of ordinary human
activity but because [ could write the simulation and graphics code in about an hour.
Yet the blocks world was about the worst domain I could have chosen. In fact, as we
will see at the end of Chapter B5, the blocks world is so awful that there is no better
way to expose the shortcomings of a lot of traditional methods than to try using them
to get the running arguments system to work in the blocks world. Along the way we
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Figure B3.1. The system has been asked to put B on C. Since it has never been asked
to do anything before, this task requires the system to run a large number of rules.

will encounter most of the basic structural and dynamic ideas we will need later on. In
the end, I must explain how AI’s blocks worlds obscure the nature of ordinary activity
by falsifying the nature of playing with blocks.

Figure B3.1 shows the running argument system being asked to stack some blocks.
In Chapter B5 we’ll be seeing these screen snapshots again. For now let’s just get the
idea. The demonstration is extremely simple. The world, such as it is, consists of a
table, a hand, and four blocks labeled 4, B, ¢, and D. I'm asking the system to put
block B on block ¢ twice, starting from the same position each time. As we can see in
Figure B3.2, it doesn’t happen any differently the second time, only faster. Chapter B5
will go through these two demonstrations in much more detail.

Before we can discuss the dynamic aspects of the running arguments system in
Chapter B5, we need to develop some vocabulary, in Chapter B4. The remainder of
this chapter’s examples will be highly simplified versions of the rules from the wolf story,
designed to be as self-explanatory as possible. These rules illustrate only the machinery,
not how anyone would consider programming it.

B3d Rule language semantics

The semantics of the Life rule language is neither procedural nor declarative. There is
a database of propositions, each of which is a Lisp list structure composed of list cells,
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Figure B3.2. The second time it happens much faster. The dependency network is still
very busy, but almost no rules need to be run.

symbols, and variables. Variables look like ?x. Each proposition has a value, either
IN or OUT. A proposition is OUT by default. Here are some possible (though hardly
exemplary) propositions:

(torgets moose (flies squirrel))
(language is the house of being)
(for-all ?x (implies (human ?x) (mortal 7x)))
(((?x mortal) (?x human) implies) ?x for-all)
(plan put-on (?x ?y)
(preconditions (clear-top 7x) (clear-top ?y))
(actions (pick-up ?x) (move-to ?y) (put-down))
(postconditions (cleartop ?x) (on ?x ?y)))

For technical reasons, two propositions are considered identical if they are the same
except for the names of variables.

Some of the propositions are rules. There are two kinds of rules, IF rules and
UNLESS rules. Rules are the only propositions with a prescribed syntax. Their syntax
and semantics are as follows:

(it patlern consequence-1 ... consequence-n)

“So long as pattern is IN, make each consequence-i IN as well.”
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(unless patlern consequence-1 ... consequence-n)
“So long as pattern is oUT, make each consequence-i IN.”

In each case, pattern and each consequence is a proposition. These propositions are
likely to have variables in them. The critical phrase is “so long as.” Let us consider
some examples.

The example we considered earlier:

(it (sees the-shepherd the~wolf)
(rings the-shepherd warning-bells))

should be read:
“So long as the shepherd sees the wolf, the shepherd rings warning bells.”

As we saw, when the rule’s pattern comes IN, the consequences come IN as well. (This
rule, like most, has only one consequence.) When the pattern goes back ouT, each
consequence goes OUT as well, assuming it is not being supported by another rule.

Rules can include variables. Variables are interpreted differently in the two kinds of
rules. We might write:

(it (sees 7anyone the-wolf)
(rings ?7anyone warning-bells))

“Whoever sees the wolf rings warning bells.”

In general, an IF rule fires when (a) the rule is IN and (b) some proposition matching
the rule’s pattern is IN.
Thus if we assert (meaning, establish as a premise):

(sees the-farmer the-wolf)
then the new proposition
(rings the-farmer warning-bells)

will come 1v as well. If forty people see the wolf, the rule will fire forty times and all
forty people will ring warning bells. It vhe wolf passes out of sight of ten of those people,
those ten will stop ringing their bells even if the other thirty continue.

In general, an UNLESS rule fires when (a) the rule is IN and (b) no proposition
matching the rule’s pattern is IN.

We might write:

(unless (rings ?someone warning-bells)
(sneaks-toward the~wolf the-sheep))
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“So long as nobody rings warning bells, the wolf sneaks toward the sheep.”

If this rule is asserted and nobody is ringing warning bells, then the rule’s consequence
will be IN. As soon as someone starts ringing warning bells, it will go OUT again. As
soon as everyone stops ringing warning bells, it will come IN again.

H Since rules are propositions, a rule’s consequences might include other rules. We
might write:

(it (owns-sheep ?person)
(it (hears ?person warning-bells)
(runs-to ?person the-meadow)))

“Anyone who owns sheep and hears the warning bells runs to the meadow.”

(it (sneaks-toward the-wolf ?sheep)
(it (is-a 7sheep sheep)
(unless (shoots-at 7person the-wolf)
(grabs the-wolf ?sheep))))

“If the wolf is sneaking toward 2 sheep then unless somebody shoots at the
wolf it’ll grab the sheep.”

Abstract definitions and English paraphrases aside, the rule language is best thought
of as a way of specifying dependency networks. An IF rule defines an AND gate each
time it fires. If an IF rule’s pattern has no variables, it will define a single gate. If it does
have variables, it will define a separate AND gate for each matching proposition. See Fig-
ure B3.3. An UNLESS rule defines a single AND-NOT gate; if there are many propositions
matching its pattern then each will be assigned a NOT input. See Figure B3.4.

It is best to learn to think in terms of both rules and networks. A complex rule
defines a sort of template. Every binding of its variables will produce a new patch of
dependency network. Sometimes we are interested in what the rules say and sometimes
we are interested in the structure of the network. In particular, the semantics of the
rules is quite independent of the use of dependencies to recapitulate rule-firings.

Life rules are not productions. The running argument system differs from production
systems like OPS5 (Forgy 1981) in several ways. (Chapter C5 discusses production
systems in more detail.)

1. All rules fire whenever they can. The architecture neither defines a notion of
conflict nor provides mechanisms for conflict resolution.

2. A rule is not an imperative. It does not say ‘when’ but ‘so long as’. It does
not simply make its consequence IN, it also arranges (through the justification it
creates) for the consequence to go OUT again when it is no longer supported.

3. There is no working memory as distinguished from the database as a whole. All
IN rules can fire and all IN propositions can trigger rules. (This is true in practice
for many users of production systems.)

O ~e—
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(if (Foo ™) (bar 7))
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Figure B3.3. If an IF rule has a variable in its pattern, then many propositions might
match it. Each one of the resulting rule firings will generate its own AND gate.
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Figure B3.4. If an UNLESS rule has a variable in its pattern, then many propositions
might match it. Each one of those propositions will get its own inverted input into the
rule’s AND-NOT gate.
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4. The speed of the system does not depend on the speed of the rule-firing machinery.
Most of the work is done in the dependency network, which is easy to implement
in massively parallel machinery.

5. Life’s rule-firing machinery is not part of any proposed cognitive architecture.
Where a production-system theory might propose that someone has a certain set
of productions in their head, a running-arguments theory would propose that they
have a certain combinational logic circuit in their head.

The running argument system shares much of the motivation and spirit of production
systems. Indeed, many people find the differences between them immaterial. I have
many philosophical disagreements with this view, but my technical disagreement centers
on the issue of variables and the distinction between imperative and so-long-as rule
semantics. I will return to both issues.

Life programming is more similar to logic programming languages (Kowalski 1974,
Warren 1983), particularly in the semantics of variables. Also, UNLESS rules differ from
logical negation in the same way as negation in logic programming; each means ‘not (yet)
derived’ instead of ‘not derivable’ or ‘not true’. However, there are some differences:

1. The language defines no notion of predicates or functions. Propositions do not
need to follow any syntactic rules unless they begin with if or unless.

2. There is no unification; in order for a proposition to trigger a rule it must match
the rule’s pattern, that is, there must be some assignment to the pattern’s variables
that produces the triggering proposition.

3. Whereas most logic programming languages are backward-chaining the Life ma-
chinery is forward-chaining. Also, whereas no logic program would ever derive all
its logical consequences, Life continues firing rules so long as there are rules that
can fire.

4. As with production systems, the efficiency of a Life rule set does not depend on the
speed of pattern-matching. Once the system gets going, the dependency network
does most of the work.

Again, I will return to the issue of variables.

B3e How it works

We have seen that the rule system is inside a loop. On every tick of the clock, the
periphery updates the values of the perceptual inputs, waits for the rule system and
dependency system to settle, and acts on the values of the motor outputs. On the first
few ticks, the rule system is slow to settle because many rules are firing for the first
time. Once the system gets going, though, rule firings become less common. Often
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the perceptual inputs don’t change at all. When the inputs do change, the changes
usually propagate through the network without causing any new rules to fire. When
this happens, we would like the rule system to settle very quickly, befitting the speed
of combinational logic. Consequently, the rule system’s interface to the dependency
system must satisfy the following contract:

(1) A rule only fires once on a given trigger.
(2) It takes almost no time to determine whether any rules need to fire.

The first condition is easy enough. Every rule has a list of triggers it has fired on. Given
a candidate rule and trigger, the rule system first checks this list and only proceeds if
the trigger is not on it.

The second condition is harder. This section describes a simple mechanism, the
outlines of which were suggested to me by David Chapman, that does fairly well. The
next section (which is unpleasant and optional) describes a tricky refinement of my own
that does quite well.

In all the implementations, the database is organized as a lattice of propositions
under generalization. Here is what this means. Given two propositions P1 and P2, P1
generalizes P2 if there is some assignment to P1’s variables that produces P2. Here are
some examples.

(rings ?x warning-bells) generalizes
(rings the-farmer warning-bells)

(eats ?x 7y) generalizes
(eats wolt sheep)

(eats ?x ?x) generalizes
(eats fish fish) but does not generalize
(eats cat fish)

(eats 7x 7y) eneralizes
y g
(eats ?x 7x)

(knows ?p ?x) generalizes

(knows ?p (sees ?q ?p)) which in turn generalizes

(knows the-wolf (sees ’q the-wolf)) which in turn generalizes
(knows the-wolt (sees the-shepherd the-wolf))

A proposition without variables generalizes nothing and the proposition ?x generalizes
everything. Generalization is a partial order because it has no cycles. But it is not a
total order because it is common for a proposition Pl to generalize both P2 and P3,
neither of which generalizes the other. For example:

P1: (knows 7p ?x)
P2: (knows the-wolf 7?x)
P3: (knows ?p (sees ?q 7p))
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Often the propositions P2 and P3 will both generalize some further proposition P4:

P4: (knows the-wolf (sees ?q the-wolf))

In such cases we speak of reconvergence in the lattice. Reconvergence raises hell with
attempts at massively parallel implementation of a large class of symbolic indexing
schemes, including the lattice technique.

To be technically accurate we should amend the definition to state that a propo-
sition does not generalize itself. Figure B3.5 shows a sample lattice. The program'’s
datastructures only record immediate generalization relationships, in technical terms
the ‘minimal generalizations’ or the ‘cover’ of the relation. The algorithm that ‘indexes’
new propositions into the lattice is subtle and tolerably fast. (Unfortunately, it turns
out that there is no simple way to index many propositions in parallel.) In the blocks
world examples, a typical lattice has a few thousand elements.

The rule system’s algorithm uses the proposition lattice. The lattice includes every
proposition that has been made a premise or derived by firing a rule. In particular, it
includes the rules themselves. It also includes a large number of ‘propositions’ that have
no values. Among these are the patterns of all the rules. Thus if the rule

(if (sees 7anyone the-wolf)
(rings 7anyone warning-bells))

is in the lattice, then so is the proposition

(sees ?anyone the-wolf)

even though it makes no sense by itself and is presumably neither IN nor ouT. As
Figure B3.6 shows, the proposition lattice has a remarkable property. If P is the pattern
of rule R and T is another proposition, T is a potential trigger for R just in case P is
above T in the lattice. This suggests a simple algorithm for the rule system. For IF
rules, the algorithm is:

e Whenever a proposition T comes IN, climb up the lattice from it. Whenever you
encounter a proposition P that is an I1F rule R’s pattern, if R is IN then fire R on
T (unless R has already fired on T').

¢ Whenever an IF rule R comes IN, climb down the lattice from its pattern P.
Whenever you encounter a proposition T that is IN, fire R on T (unless R has
already fired on T).

To fire an IF rule R on proposition T,

1. Match R’s pattern to 7, obtaining a list of variable assignments.

2. Perform these assignments on each of R’s consequences, producing a list of new
propositions C; ... Cy (typically there is only one of them).
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Figure B3.5. The patterns in the rule system’s database are stored in a lattice.
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Figure B3.6. To find the patterns of all the rules that a given proposition right possibly
fire, one need only move upward in the lattice starting from that propos .on.
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3. Index each of the new propositions into the lattice. (Some of them might already
be there.)

4. For each C;, construct a new justification: (<= C; (in R T)).

The algorithm for UNLESS rules is not so intuitive and you will do well to skip it.
(It took three tries to get it right.) An UNLESS rule ‘fires’ as soon as it first comes
IN. From then on, whenever a new proposition matches the rule’s pattern, it ‘unfires’,
meaning that the new trigger is added to the ouT-list of the justification the rule created
to support its consequence. The algorithm for an UNLESS rule of the form (unless P
Cy...Cp) is:

e Whenever a proposition T' comes IN, climb up the lattice from it. Whenever you
encounter a proposition P that is an UNLESS rule R’s pattern, unfire R on T
(unless R has already unfired on T).

e Whenever an UNLESS rule R comes IN for the first time, climb down the lattice
from its pattern P. Along the way, accumulate a list of every proposition Ti that
has ever been IN. Finally, make a justification for the each of rule’s consequences:
(<= C; (in R) (out T Tk))

To unfire an UNLESS rule R on proposition T,

1. For each C;, find the justification that mentions R. (In practice, of course, they
will all share a single AND-NOT gate.)

2. Add T to its ouT-list so that it reads: (<= C; (in R) (out 77...T: T)).

It is worth noting that no lattice-climbing occurs when a proposition goes ouT. If the
OUT-going proposition enters into the support of any other propositions, the dependency
system will take them OUT too if necessary.

If it seems expensive to climb around in the lattice, remember that every proposition
one encounters while climbing down is a potential trigger and every proposition one
encounters while climbing up is a potential rule pattern. Little effort is wasted. This
version of the algorithm, unfortunately, requires climbing around the lattice every time
a proposition goes from OUT to IN. The refinements in the next section repair this.

(A small technical note. Although the generalization relation does form a lattice
once we go through technicalities like defining a unique minimal proposition, truth in
formalization requires me to point out that the algorithm only requires generalization to
be a partial order. Not all partial orders form lattices; in particular, the generalization
relation probably doesn’t form a lattice when restricted to the set of propositions that
has actually been indexed at a given moment.)
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B3f How it works (details)

This section is optional.

In reality, the system is more complicated. Recall that the goal is to permit the
system to decide very rapidly whether any rules need to be fired. The system described
in the previous section does not achieve this goal because the system must perform
a search in the lattice every time a proposition goes IN or ouT. I will describe the
algorithm only for IF rules because the methods for UNLESS rules are too complicated
to state but still easy enough to rederive.

At a small expense of space, the system can avoid doing any search except the first
time a given proposition comes IN. Every proposition keeps a bit indicating whether it
has ever been in. When a proposition comes IN for the first time, it searches upward in
the lattice; when a rule comes IN for the first time, its left hand side searches downward
in the lattice. While searching, it looks for rules that might be able to fire now. But it
also looks for potential rule firings. When a trigger is searching upward for patterns, it
looks for rules which are not currently IN but have been IN at some point in the past.
Likewise, when a rule’s left hand side is searching downward for triggers, it looks for
propositions which are not currently IN but have been IN at some point in the past. All
of this information is stored with the propaosition doing the searching.

Thus every proposition has a list of potential rules and every rule has a list of
potential triggers. Whenever a proposition comes IN or goes OUT , it checks all of its
potential rules to see if they are IN. If any are then the rules fire and are removed from
the proposition’s list of potential rules. Whenever a rule comes IN or goes oUT , it
checks all of its potential triggers to see if they are ouT. If any are then the rule fires
on them and they are removed from the rule’s list of potential triggers.

This algorithm works well in practice because the lists of potential rules and triggers
are always short. One could write pathological rule sets in which the lists were choked
with rules and triggers that could lead to useful work in principle but never will in
practice, but this has never happened with any actual rule set.

One additional detail concerns the pattern lattice itself. During a large run of the
system, the lattice typically contains five thousand propositions. All of the algorithms
are carefully designed to search only the minimally necessary regions of the lattice. Still,
some steps of those algorithms take time proportional to the fan-out of the propositions
they visit. If some proposition has a hundred other propositions immediately below
it in the lattice, the algorithm has to make a hundred separate decisions about which
branches to pursue. Almost all of these decisions are typically negative. Consequently,
it is best if the fan-out in the lattice is kept to a minimum.

The problem is worst near the very top of the lattice. The top element of the lattice
is a plain variable, ?x. Unless care is taken, its immediate offspring will be an extremely
long list of left hand sides of various rules. The problem can be alleviated by indexing
such intermediate patterns as (?x ?y) and (if 7x ?y) into the lattice as well. Though
these patterns have no meaning to the system, they partition the offspring of ?x without
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changing the behavior of the algorithm.

Unfortunately, the problem of excessive fan-out also occurs at many other places in
the lattice. For example, any pattern with two variables, such as (on ?x ?y), is liable
to accumulate as offspring all possible instantiations of itself, such as (on ¢ a). The
problem is gets rapidly worse as the rules become more complex; many of the patterns
in the database involve upwards of a hundred list cells. This effect can slow the system
by a factor of ten. This slowness has no theoretical import (because I don’t believe
that people have rule systems in their heads) but it does make it impractical to debug
substantial rule sets.

I've developed a series of heuristic tools for dealing with the problem. It is an inter-
esting technical puzzle to write an algoriti m that, given a proposition and its excessively
numerous immediate specializations, chooses appropriate intermediate specializations.
These intermeaiate specializations should sort the offspring propositions into neatly bal-
anced partitions. The intermediate propositions should be sufficiently natural that the
partitions are likely to stay balanced as future propositions arrive. This puzzle turns
out to be insanely difficult to solve acceptably. The current algorithm, most recent of a
long series, covers several pages of code and does a poor to medium job.

This concludes the description of machinery underlying the Life language.

B3g Incremental updating

We can now leave the microscopic details of the running arguments system’s machinery
and begin considering dynamic issues, that is, what it does on a large scale in practice.
The substantial discussion of dynamic issues begins in Chapter B4. We can best prepare
for it by considering what Life programming is like independent of any theoretical
scruples.

Many of the dynamic ideas turn on the system’s ability to update itself incrementally
when its premises change. When the system is interacting with a simulated world, the
premises that change are the perceptual inputs. Rather than dive straight into these
issues, let’s take a simpler case of the same effect.

When you're debugging a rule set, the premises that matter are the rules. If you
rewrite a rule, take the old version oUT and make the new version IN. The best way
to debug is to watch the system running. When you don’t like what it’s doing, poke
around in the dependencies.

Suppose we're debugging the rules for the wolf story. Here are some plausible cartoon
premises:

R12: (if (sees ?7anyone the-wolf)
(rings 7anyone warning-bells))
R37: (if (in-town ?person)
(it (rings ?anyone warning-bells)
(hears ?person warning-bells)))
A46: (owns-sheep Katya)
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R47: (if (owns-sheep ?person)
(it (hears ?person warning-bells)
(runs-to 7person the-meadow)))

(The labels— R12, A48, etc.—are assigned by the system to provide short names for the
propositions. This example is fictional because the real rules would require too much
explanation. We’ll see plenty of real rules in Chapter B5. Also, keep in mind that
our eventual aim is not to write cartoon simulations but to design central systems for
agents.)

Now you’re watching the system run. The story reaches its climax. The wolf appears
and sneaks up on the sheep. The shepherd sees the wolf and rings the warning bells.
The townspeople hear the bells and go running. That isn’t right. Stop the system.
Among the IN propositions is:

A63: (runs-to Katya the-meadow)

We can inspect the dependencies behind A63:

(why? A63)
A63 is in because R61 ran on trigger A39:
R51: (if (hears Katya warning-bells)
(runs-to Katya the-meadow))
RE1 is in because R47 ran on trigger A46:
R47: (if (owns-sheep ?person)
(if (hears ?person warning-bells)
(runs-to ?person the-meadow)))
R47 is a premise.
A46: (owns-sheep Katya)
A46 is a premise.
A39: (hears Katya warning-bells)
A39 is in because R49 ran on trigger A28:
R49: (it (rings 7anyone warning-bells)
(hears Katya warning-bells))
R49 is in because R37 ran on A40
R37: (it (in-town ?person)
(it (rings ?anyone warning-bells)
(hears ?person warning-bells)))
R37 is a premise.
A40: (in-town Katya)
A40 is a premise.
A28: (rings the-shepherd warning-bells)
A28 is in because R12 ran on A27:
R12: (it (sees ?anyone the-wolf)
(rings ?anyone warning-bells))
R12 is a premise,
A27: (sees the-shepherd the-wolf)
A27 is in because ...
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And so on through the reasons behind the wolf being in the meadow and the shepherd
seeing it. Even if there are a hundred rules among the premises (not at all unusual) this
display presents only the ones that entered into the troublesome conclusion. Reading
them, we find that the townspeople are too gullible. We've written rules that lead
them to conclude that the shepherd is a liar, Lut we haven’t made them act on that
conclusion. Let’s rewrite R47 to make it more gencral:

R68: (if (owns-sheep ?person)
(if (velieves ?person (at the-wolf the-meadow))
(runs-to ?person the-meadow)))
R69: (if (rings ?7anyone warning-bells)
(it (hears ?person warning-bells)
(unless (believes ?person (liar ?anyone))
(believes ?person (at the-wolf the-meadow)))))

(What a kludge! It’s an instructive exercise to try writing these rules as generally
as you possibly can. When I gave up trying to write rules to completely capture the
‘real reasons’ behind the events in the wolf story, I was long past a hundred rules and
diverging rapidly.)

When we retract R47, both R51 and 463 go OUT but everything else stays unchanged.
When we now assert R68 and R69, they both run, deriving:

R70: (if (believes Katya (at the-wolf the-meadow))
(runs-to Katya the-meadow)))
R71: (if (hears ?person warning-bells)
{(unless (believes ?psrson (liar the-shepherd))
(believes ?person (at the wolf the-meadow)))))
R72: (unless (believes Katya (liar the-shepherd))
(believes Katya (at the-wolf the-meadow)))))

The system has already derived:
A54: (believes Katya (liar the-shepherd))

so rule R72 does not license the conclusion that Katya believes the wolf to be in the
meadow. Finally we let the simulation proceed. Katya does not go to the meadow (nor
does anybody else), the wolf eats the sheep, and the shepherd feels bad.

Normally when you fix a bug in a program you run the program all over from scratch,
wasting seconds or minutes getting back to where the problem was. With dependency
maintenance, the program is re-run incrementally. The system only does the work that
needs to be done differently.

B3h Advanced rule-writing

This section contains technical details that will help explain some of the code fragments
in the Chapter B4. It can be safely skipped.
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Life is a simple language, but still perfectly general. It's Turing universal, for what
it’s worth, in two senses. One can write a Lisp interpreter in Life rules alone. It’s not
hard but it run< ap enormous number of rules. The dependencies do provide automatic
memo-izing, for what it’s worth. On the other hand, if a Life system is connected
to a world that behaves like the tape of a Turing machine, one can write Life rules
for a universal Turing machine. These rules require no variables so there’s a definite
upper limit on the size of the resulting dependency network. The periphery or the
world probably has to supply a two-phase clock signal to synchronize the discrete tape
operations.

Unlike many rule languages, Life does not provide for boolean combinations of rule
patterns. For example, one might like to rewrite rule R37:

old: (if (in-town ?person)
(if (rings ?anyone warning-bells)
(hears ?person warning-bells)))
new: (if (and (in-town ?person)
(rings 7anyone warning-bells))
(hears ?person warning-bells))

To allow such rules, one can take advantage of the fact that rules are propositions too:

(it (if (and ?p ?7q) 7¢)
(it 7p (if ?q ?¢)))
(if (if (or ?p 7q) ?¢)
(it 7p ?¢)
(it ?2q 7¢))

(it (if (not ?p) 7¢)
(unless ?p ?c))

(The actual rules are more complicated for reasons of generality and efficiency.)
One could even write rules that support backward-chaining.

(it (if-shown ?p . ?q)
(try-to-show 7p)
(if 7p . 7q))

(iz (unless-shown 7p . 7q)
(try-to-show 7p)
(unless ?p . 7q))

(it (can-show 7p)
(it (try-to-show 7p)

?p))

(See (Agre 1985) for a fuller discussion of these rules, which differ from the Amord
versions (deKleer et al 1978) only in their simpler syntax.) For example, it is often
necessary to constrain two variables to have different bindings. To express the idea of
two different people seeing the wolf, one might say:
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(it (and (sees 7a the-wolf) (sees ?b the-wolf))
(if-shown (neq ?a 7b)

- )
We can now write rules for showing equalities and inequalities:

(can-show (eq ?x ?x))

(it (try-to-show (neq ?x ?y))
(try-to-show (eq ?x ?y))
(unless (eq ?x ?7y)

(neq ?x 7y)))

Given these rules, if both Katya and Anna see the wolf, then the following series of
propositions would get asserted, courtesy of these rules:

(if-shown (neq Katya Anna)
o)
(try-to-show (neq Katya Anna))
(if (neq Katya Anna)
el )
(try-to-show (eq Katya Anna))
(unless (eq Katya Anna)
(neq Katya Anmna))
(neq Katya Anna)

In practice the running argument system does not use backward-chaining in more com-
plex ways than this.

Rules like these raise a serious question of what’s fair in Life programming. If my
psychological theory allows me to write arbitrarily sophisticated Life programs, it has
little content. This question has no easy, complete answer, but a great deal follows
from first principles. One should not write rules that must fire regularly (that is, with
different variable bindings) in situations that ought to be routine. It is also a good
policy not to write rules that fire on other rules except as a notational convenience.
The issue will keep coming up in later chapters. Above all, keep in mind that our
topics are routine activity and the interactions between an already-existing dependency
network and its periphery and world. Life rule sets are not psychological theories but
specifications for networks.




Chapter B4

Running arguments

B4a Context and summary

Chapter B2 has introduced a partial account of central system architecture and Chapter
B3 has described an implementation of it. It might strike you as odd that there is so
little te it, and so little that is original by any familiar standard. The way we ordinarily
think about computer programming, the how-it-works, and usually the what-it-does
too, can be read straight off the ‘code’. Once you have described the machinery you’re
almost done. That is not true here. We’re hardly off the ground. Most of the story
is in issues of personality and dynamics, about which I have only provided hints. This
chapter introduces some basic ideas about these things, starting with the dynamic idea
of a running argument.

Running arguments are one way to think about what goes on in a dependency
network when its owner is engaged in routine activity. According to this view, on
every moment you conduct an argument about what to do now. (I am using the word
‘argument’ loosely and metaphorically.) The collection of proposals and objections
and evidence and reasons pro and con that enter into the argument is known as the
argument structure. All these components (each generically called an argument) have
dependencies attached to them. The dependency network acts as a warehouse of all the
arguments that have entered into all of one’s past decisions. Each argument joins the
argument structure when it is applicable and leaves when it is no longer applicable. Thus
the argument structure is continually incrementally updated to reflect one’s current goals
and understanding of the world. This dynamic effect is called a running argument.

The slogan of running arguments (adapted from a saying of John Batali, who derives
quite different conclusions from it) is:

One must continually redecide what to do.
We might describe a running argument thus:

A running argument is a continually incrementally updated hierarchical ar-
gument about what to do ncw.

105
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There are several words to explain: argument, continually, incrementally, updated,
hierarchical, and now. Above all, a running argument is a dynamic phenomenon; none
of these words names an algorithm or a datastructure. Some simple ideas about the
dynamics of running arguments suggest new views of what Al has called hierarchical,
nonlinear, and incremental planning. The next three sections motivate the idea or
running arguments by contrasting it with conventional Al ideas about the organization
of activity.

Section B4b concerns the conventional notion of Planning. It describes the inflex-
ibility of Plan-following and argues for a continual updating of the reasoning behind
one’s actions. Narratives from everyday life help dispel any intuitiveness of Planning in
favor of running arguments.

Section B4c concerns the notion of hierarchy. AI Planning work has typically in-
volved a recursive decomposition of goals into subgoals; this section outlines some of the
changes this view must undergo as our prototypes of activity shift from planning-ahead
to improvisation. Working out the details of these suggestions, however, is a topic for
future work; this report will continue to assume the version described in Section B4c.

Section B4d concerns the notion of deliberation as it appears in Doyle (1980). Doyle
describes a scheme of deciding-what-to-do-next by recursive argument and counterargu-
ment. [ will argue that Doyle’s scheme is overly centralized. Moving the burden of proof
from the proposer of an action to an objector simplifies the architecture and allows for
massive parallelism.

Section B4e puts the pieces together. It preparcs for the demonstrations of Chapter
B5 by describing several ways of thinking about the dynamics of a running argument.

B4b Planning vs knowing what you’re doing

In discussing planning, we must not get caught up in a sterilc oppasition between
‘planning’ and phrases like ‘just trying things’ or ‘muddling through’ or ‘figuring it all
out as you go along’. This too-common practice contrasts a uselessly inflated notion
of ‘planning’ with correspondingly anemic alternatives. We must not use the word
‘planning’ indiscriminately to refer to absolutely any deliberateness or intentionality or
‘knowing ahead of time what you are going to do’. Instead, let us recognize two useful
senses of the word. Lower-case ‘planning’ retains its ordinary vernacular use, that is,
comporting oneself toward a (written or subvocalized) plan. Al research, by contrast,
has been concerned with upper-case ‘Planning’, which distinguishes a smart Planning
phase and a dumb execution phase. The Planning phase receives representations of a
situation and a goal; in exchange it delivers a Plan. The execution phase carries out the
Plan, to the letter, in a fashion one would call mechanical. One thinks of the Planning
and execution phases as alternating—Plan, execute, Plan, execute, Plan, execute—an
idea called incremental, or interleaved, Planning. (See Chien and Weissman 1975, Giralt
et al 1984, McDermott 1978, Tate 1984, Wilkins 1988.) Chapter C5 discusses some other
variations on the theme.
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During its execution phase, an agent’s Plan is directly responsible for its activity.
The agent itself is almost asleep. It just cranks out the actions indicated by the Plan.
This sort of blind action is obviously dangerous. Adding extra features to the executive
can alleviate some of the more abvious hazards. For example, if one of the actions
detectably fails or is detectably inapplicable, the executive can pass control back to
the Planner—an idea called ‘execution monitoring’ (Fikes 1971, Ghallab 1985, Munson
1971). One should cease executing a Plan any time the next action it prescribes is
irrational in context. Thus an executive should be approximately as smart as its Planner.

To use a plan, you also have to use some sense. The difference between a Plan
and a plan is that Plans are made for dumb executives whereas plans are made for
ordinarily intelligent agents. Perhaps we could get very far without plans, but they
aren’t what directly generate our activity. An executive can’t do anything without a
Plan; running arguments are my account of what we do whether or not we happen to be
following a plan. An executive interposes only a simple automaton between its Plan and
its muscles; running arguments are my account of what people interpose between their
plans and their muscles. Dwelling for a few pages on the weaknesses of Planning may
seem redundant, but it will deepen our understanding of moment-to-moment activity
and stop us being seduced by next week’s latest extension. At each step we will see the
value of keeping dependencies on all the reasoning leading to one’s actions. The section
closes by describing running arguments as a limiting case of incremental Planning, where
the increments have become vanishing small and the Planning-execution distinction has
disappeared. Subsequent sections will elaborate on this description.

In analyzing Planning, the key words are anticipation and trouble. When a plan
goes wrong, there must be have been something you didn’t anticipate. One says that
something ‘came up’. A contingencyis when you fail to anticipate something bad. If you
fail to notice too many contingencies then you will get hurt. An opportunityis when you
fail to anticipate something good. If you fail to notice too many opportunities then you
aren’t paying attention. (For an interesting discussion of opportunities see Birnbaum
1986.) There are things you can’t anticipate and things it would be foolish bothering
to anticipate; these call for improvisation. Let’s consider an example.

I was spending the afternoon making a demo videotape in the vision lab at
Oxford. It had to be done by dinnertime so I could take it on a trip. Every-
thing was going wrong. I had just returned from a trip home to pack. As I
walked in the door, someone told me that S was looking for me, something
about my trip. I wanted to set up the next program to be taped, but all the
equipment was being used by people trying to fix things. So I decided to go
talk to S, who was two flights up. Walking up I also decided I ought to stop
by the bathroom, which is across from S’s office. Approaching S’s office I
had to decide which room to head for. It occurred to me that I shouldn’t
risk missing S, so I decided on S’s office. Arriving at S’s office, though, I saw
that she was on the phone. Instead of waiting I headed for the bathroom.
For what it’s worth, I believe I told myself something to the effect that I
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was less likely to miss S so long as she stays on the phone. But this wasn’t
anything I was aware of putting much effort into.

l am certainly not going to argue that ‘Planning can’t handle this case’. One could build
an executive for which having to wait was sufficient reason to cancel the Plan and return
control to the Planner (assuming the executive can figure out that you can't expect to
talk to someone who is on the phone (unless it’'s an emergency (unless the phone call
concerns a bigger emergency (etc)))). That is not the point. For every story I can tell
about people changing course. one could make another entry on the executive’s list of
reasons to cancel Plans. Indeed. it is hard to think of a condition that could never be
sufficient reason to abandon a Plan. In order to stay ahead of all these conditions, the
increments between Planning steps will have to be pretty small.

So far so good. We could interleave Planning and execution at 10 Hz or so. But
that would be a superficial response; there is more at stake. Even a brief look at the
fine detail of everyday activity reveals a long list of reasons for an executive to appeal
to the more complete intelligence of its Planner. The word ‘Planning’ begins to dissolve
into an obscure way of referring to ‘thinking’ in general. The notion of Planning seems
to run together two different, equally important, matters: ‘planning ahead’—that is,
using ideas about the future in deciding how to act—and figuring out what makes sense
to do now. Much turns on your intuitions about the relative proportions of these two:
how much you try to anticipate and how much you figure out as you go along. The
word ‘Planning’ strongly prejudges this question in favor of exhaustive anticipation and
negligible improvisation.

Al Planning research has generally considered domains in which everything can be
anticipated. Since the Planner can’t count on the executive to use any sense in carrying
out the Plan, the Plan has to be guaranteed. If you don’t know what might happen you
can’t Plan. Precise prediction is unnecessary so long as the Planner can characterize a
space of contingencies, whether by enumerating them, forming a common abstraction
from them, or describing a geometrical envelope around them (Lozano-Pérez. Mason,
and Taylor 1984). Nonetheless, as the space of contingencies expands, it becomes less
likely that any one Plan will be sufficient. Faced with such uncertainty, the Planner is
nnder great pressure to play it safe. I once heard someone suggest formalizing Planning
in terms of game theory: life is a game and the world is playing against you. This
skid-row attitude sums up Planning quite well

Life can be hard, but it’s not hard in the way Planning is hard. We organize our
activity without explicitly anticipating everything that might happen. The simplest
conversation is an amazing dance of moment-to-moment give-and-take with a branching
factor beyond calculation. A Planner confronting the world of everyday life sees a
bewildering maze of possibilities. But everyday life doesn’t seem like a maze. It seems
perfectly tractable. All we can anticipate is that we’ll generally be able to figure things
out when the time comes.

What makes the world hard to anticipate? When you have to work in novel sur-
roundings, you usually don’t know where things are without looking. There is also the
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frame problem, which makes it computationally difficult to anticipate the effects of your
actions. Your knowledge of a thousand simple matters like the location of your coffee
cup will grow rapidly out of date as you go about your tasks. Even when there is enough
information, keeping track can be a waste of effort. You don’t bother (I hope) keeping
track of tne arrangement of the gadgets in your kitchen’s gadget-drawer. There is no
use keeping track when you can simply look and see. The world, as we’ve observed, is
its own best simulation,

Some examples might help. Here are twenty things it would rarely be worth trying
to anticipate:

o Whether the handle on a refrigerator door is on the left or right.

o Where the chalk is located on the blackboard’s chalk tray.

o How the aspirin tablets are arranged in the aspirin bottle.

o Whether any mail has come today.

e How your key ring will be oriented as you retrieve it from your pocket.
o Which section of the newspaper the comics will be in today.

o Where there will be a free seat in the subway.

e How all the dirty dishes wiil be arranged when it is time to wash up.

¢ How many bottles accumulated for the recycling bin last month.

Which side of a record will be up when ycu remove it from its sleeve.
Whether the record will need cleaning before you play it.

How the spatula will be tangled among the gadgets in the gadget drawer.
In what order the shirts are hung in your closet.

Whether you will have to open another box of cereal.

How many pennies you have in your pocket.

Which way the handle will point when you are handed your pint of beer.
o How the other pedestrians will be distributed along the sidewalk.

¢ Which slots in a half-full egg carton have the eggs in them.

e When your watch battery will start running down.
¢ Where the knob on the oven is set from the last time it was used.

Some observations on this list, including some dynamic phenomena deserving further
description and explanation:

e These things might be worth anticipating in another culture. Maybe a penny is a
lot of money, aspirin arrangement is an omen, shirts are worn in a certain order,
poison is kept in left-handed fridges, etc.

o For every entry on this list, one can imagine circumstances under which it would
be worth trying to anticipating it. There are probably interesting patterns among
the halfways plausible ones.
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o In particular, when’s and how-many’s are often worth anticipating if they are
going to be grossly outside their usual range. We have a good sense of normal
ranges even though they are often hard to define.

¢ Some of these can be anticipated by taking the effort to ‘keep track’. Keeping track
of things is usually remarkably difficult. I'd like to know under what conditions it
is relatively easy.

e Things that aren’t worth anticipating are often hard to remember afterward. Most
of them matter so briefly and are accommodated so easily that they don’t seem
to make much of an impression.

s Furthermore, one is rarely aware of explicitly declining to anticipate something.
Maybe we do tons of unconscious declining. More likely we only try to anticipate
what we think we have to.

e Equipment that nobody else uses will be easier to anticipate. People who live
alone often know exactly how the cereal boxes in their cupboards are arranged.

e Sometimes you will find yourself anticipating things like these after using the same
item of equipment in the same way under the same conditions very many times.

e Little is lost in trying to anticipate these things. Many regular subway riders have
superstitious beliefs about where free seats will be found.

Above all, it matters whether everything that happens is caused by the agent. Al
Planners have typically been demonstrated in inert domains. Who knows what other
agents or processes might do? One might think about dealing with others in the way
that games like chess are customarily formalized, using the familiar technical apparatus
of alternating ‘moves’ from a constrained ‘legal’ set. Even when this sort of formaliza-
tion is applicable, it often misses the point. Think of a game like go. Some kinds of
philosophical disputation are made of stereotyped moves, but most of life isn’t. You
share sidewalks, roads, shops, kitchens, laboratories, and bars with other people. Even
though most of those people are moderately responsible, all of them are only moderately
predictable. If you live with other people, for example, they will mislay the can opener
behind the breadbox, drink your last beer, leave all the forks sitting unwashed in the
sink, occupy the shower when you’d like to be using it, tear Calvin and Hobbes out
of the comics page before you’ve read it, get half a dozen phone calls at ten minute
intervals, and otherwise foul up your plans. Such contingencies may be annoying, but
rarely are they memorably disastrous.

Why ever plan ahead? Why not figure everything out as you go along? In planning
ahead, you seek to avoid trouble. One idiom warns of ‘painting yourself into a corner’,
a fate that another idiom blames on ‘burning bridges’. There is an important trade-off:
if you plan ahead instead of improvising you might avoid some trouble, but you will
have a lot less information about the circumstances you will be acting in. The role we
assign to planning in the dynamics of everyday activity depends on how impressed we
are by everyday trouble. A Planner that insists on producing guaranteed-correct Plans
is so impressed by trouble that it won’t risk any trouble at all. It is easy to understand
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why programmers should write such timid programs; how else could one’s research be
principled? By what a priori criterion could one’s program determine certain risks
worth taking and others worth avoiding? Without such a criterion, a heuristic Planner
is in serious danger.

To understand the role of trouble in everyday life, we might start by asking how much
trouble people actually get themselves into. Certainly everyone can cite horrendous
episodes of trouble. People regularly burn themselves, lock themselves out of their
houses, lose their plane tickets, get sick, get lost, get drafted, and run out of garlic.
These are all notorious problems. They make good stories. But trouble is much more
prominent as a conversation topic than as an actual feature of life. Trouble is simply
more memorable than non-trouble. You might make breakfast a thousand mornings in
a row—and remember only the one you dump in your lap. This bias suggests, correctly
I believe, that trouble is less common than we make it out to be. But we still don’t
know why trouble is unusual. To understand the nature of trouble, we need a better
understanding of the dynamics of everyday activity. For present purposes, we only need
to consider the matter briefly. The next section will return to it.

Observation of everyday activity immediately reveals a great deal of the following:

I was in a kitchen whose sink is immediately to the right of the oven. I had
just put my lunch in the oven to cook and was standing at the sink washing
dishes. While washing, I noticed something moving out of the left corner of
my eye. It was smallish, white, wispy in appearance, and seemingly floating
in the air over the oven, perhaps a little in front of it. Thinking it might be
smoke from the oven, I turned to look at it. Focusing on it, I saw that it was
a small white feather, perhaps a bit of down. No phrase I can come up with
captures the experience very well. I had no sense of drawing conclusions or
formulating doubts about this possible smoke, nor any sense of needing to do
these things, in the moment before I turned tolook. I just turned and looked.
This pattern of glancing to inspect something in one’s peripheral vision is
exceedingly common. Sometimes one has no idea what the peripherally
glimpsed thing is, but sometimes a complex set of guesses and arguments
will occur to one in the same momentary flash in which I ‘thought it might
be smoke’. Presumably these guesses and arguments accumulate through
experience, but I don’t know if the dynamics of accumulations of peripheral
visual interpretations differs from the dynamics of other accumulations.

Often in writing I will begin writing the wrong word, or write the intended
word incorrectly. Noticing this, I will scratch it out, write it correctly, and
carry on. Similarly, typing on a computer I watch the characters trailing
behind the cursor and very frequently (several times the average line) use the
‘delete’ or ‘rubout’ key to erase mistaken keystrokes. When more complex
erasing commands are available (as in the text editor) I will often have
occasion to rub out one or more whole words.
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I was in bed sick all day, getting up periodically to visit the bathroom. Night
had rer ntly fallen and though my room was lit the rest of the house was
now dark. I got up to head again for the bathroom. Reaching the door of
my room [ came upon the fact that it was dark beyond. Hoping to make
some light, I went for the switch—which of course was the light switch in
my own room. Finding myself now in complete darkness I (in some order)
realized what I'd done and reversed the switch. Walking into the hallway I
now looked for and hit the hallway light switch. On subsequent occasions
I was more prepared for the darkness in the hallway and navigated to the
bathroom easily enough in the dim light. Whereupon of course I turned
on the bathroom light, which was controlled by a cord just inside the door.
Although my mistake was interesting in itself, the present point is simply
that nothing bad came of it. This story perhaps overdoes the point, given
that hitting a light switch is the epitome of a reversible action.

In each of these cases, something simple has happened. Trouble has arisen, been
noticed, and been corrected, all without any break in the action. Sometimes the action
breaks momentarily:

This bathroom light cord provides an example of its own. It is about four
feet long and hangs from the ceiling. Like many hanging control cords
(especially on venetian blinds), at the bottom it has a smallish white plastic
cone. (I suppose you are supposed to hold this cone when you pull the
cord.) Unfortunately, the cord is made of fairly light string (a fact I never
formulated till it first occurred to me to use it as an example). Thus when
I reach for the string, I usually inadvertently strike it with my hand and
send it swinging out my grasp. Once set it motion as a pendulum it has
an amplitude of almost a foot and a period of several seconds, so I have
almost no chance of finding it without looking directly at it, especially since
it usually moves close along the wall. If I am walking in then looking at it
takes a little work since it is dark (which of course is why I wanted to pull
the cord in the first place). If I am walking out then I am usually halfway
out the door and have to turn most of the way around to bring the cord
within my field of view. Catching the cord sometimes requires moderate
care and a few tries, but in the end I have never failed altogether to get the
lights switched.

The dynamics that tend to mitigate trouble are many and varied. Together they
render most trouble harmless. Future work should catalog them more thoroughly. In so
doing it can characterize the kinds of trouble that don’t tend to take care of themselves.
Rather than pursue the dynamics of trouble in premature detail, let us summarize some
of the more obvious points.

e Trouble is fatal vanishingly often.
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Most trouble isn’t even significantly troublesome.

Nothing works the first time, but experience is an efficient teacher.
Much trouble couldn’t be anticipated if you tried.

Cultures go out of their way to warn you of hard-to-anticipate trouble.
¢ When they don’t, people get killed.

In short, much trouble doesn’t need to be anticipated and much trouble cannot be
anticipated. What does this mean for planning? We have been seeing that it won’t do
to understand planning as Planning, trusting one’s Plans to an executive that doesn’t
know what it is doing. On the other hand, there is no doubt that people regularly make
and use plans. But such plan-using activity is the exception; the rule is a background
of moment-to-moment improvisation. Matters that stand out against this background
as problematic might become subject to the more sophisticated dynamics of explicit
planning-ahead. Idon’t pretend to understand these dynamics. (See Agre and Chapman
1988 for further discussion.) The point is that plan-use is an advanced topic, something
we shouldn’t expect to understand until we understand quite a lot about the dynamics
of moment-to-moment improvisation. (Some useful computational ideas about trouble
and anticipation have come out of the Yale school. See especially Hammond 1986.)

One way of understanding improvisation is to start once again from Planning. When
trouble arises, it is critical to know what you’re doing. When a dumb executive runs into
trouble, it can only hand control back to the Planner, which is supposed to know what
is going on. Imagine, though, the plight of a Planner suddenly awakened to discover
spilled milk, skidding tires, burnt fingers, angry people, or dented furniture. It has little
clue how any of this came about since the executive was blindly following orders when
it should have been keeping its eyes open. It has to reconstruct what it was trying to
do, interpret the newfound damage or danger, assess its consequences for the ongoing
project, and make a new Plan that resolves the trouble and gets the project back on
the road. All of this would now be a lot easier if it had been on top of the situation all
along.

If an agent is split into a Planner and an executive, the only time it knows what
it is doing is when the executive performs the very first action specified by its Plan.
The Planner has presumably arrived at its Plan through some definite line of reasoning,
starting from its assessment of the situation at that moment. Let us speak of this line
of reasoning as an argument, returning to what arguing means later on. Assuming the
world didn’t change significantly while the Planner was at work, the agent now has
an argument for taking that action in that situation. Suppose the executive performs
the Planned actions without incident and returns control to the Planner. In a busy or
uncertain environment, the Plan was unlikely to have been very long: a few seconds at
most. Neither the world nor the agent’s goals are likely to have changed drastically in
that time. A mislaid spoon might have forced re-Planning, but the dinner ingredients
are still there and an hour of dinner preparation remains. If we compare the arguments
leading to the old and new Plans, they will be almost identical. If your sauce needs stir-
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ring, you haven’t got the time to rederive the whole argument from scratch. Interleaved
Planning needs to be performed incrementally. This is where dependencies come in.

We saw in Chupter B2 how an agent can use dependencies to incrementally update
its reasoning. When a Planner makes a Plan, it should record justifications for all its
arguments. It is useful to think of the argument motivating the agent’s current actions
as an object, the argument structure, which the agent incrementally modifies. When
the agent's premises change, perhaps because it has noticed a change in some aspect
of the world, it only has to rethink the parts of the argument structure that dependc.d
on the aspect that changed. Sometimes changes in the world call for drastic changes
in the argument structure motivating the agent’s actions. If the agent is starting to
make dinner, it might notice a fire or a dinner invitation and change course completely.
These things don’t happen very often. The change is almost always very small. As we
will see, the agent’s argument structure is not a datastructure inside a machine. Like
almost everything else in this theory, it is a dynamic fact, an epiphenomenal property
of the agent’s activity in the world.

Recall the definition of a running argument:

A running argument is a continually incrementally updated hierarchical ar-
gument about what to do now.

We can now define a few of these words. Other things being equal, shorter increments
between Planning steps are better. At each Planning step, the agent can take account of
contingencies and opportunities. Short increments mean that the agent need only plan
the aspects of its activity that cannot be improvised. One might have 10 increments
per second, or 100, or 1000. As we take this process to its limit as the increment length
goes to zero, we get a running argument. Running arguments do not bother separating
Planning and execution at all. The agent’s perceptual systems continually update its
premises; the continually evolving premises support a continually evolving argument
structure, Whatever action is justified by the agent’s current argument structure is
automatically performed. The arguments motivating a moment’s action might refer to
plans, laws, or heuristics, but above all they will refer to the agent’s current situation.
Section B4e will make the idea of continual incremental updating more concrete.
First, though, we have a couple more words to discuss, hierarchical and argument.

B4c Hierarchy as datastructure vs dynamic

In Al research, it is commonly held that human action is hierarchical in nature. Though
this claim certainly has something to it, this section will argue that its usual interpre-
tations are mistaken. After a brief tour of the vast metaphorical territory covered by
the word ‘hierarchy’, I will introduce the distinctions we will need to discuss the com-
putational issues. These are:

e Two sets of metaphors used, sometimes together, in talking about hierarchies.
There are images of levels, some higher than others. There are also images of
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trees, with roots and terminals and branching points in-between. Al tends toward
tree-images.

e Two very different ways in which something might be hierarchical, by conven-
tion or by design. A human organization might be hierarchical, but only as a
commonly-believed-in fiction. Engineered artifacts, by contrast, might be hierar-
chical through having been designed that way.

e Two views of hierarchy, the recursive-decomposition view and the metabolic view.
Recursive decomposition is familiar from notions of subgoals and subroutines, each
of which is defined by the has a ‘postcondition’ or ‘output’ it produces upon com-
pletion. Metabolism concerns the involvement of an agent in the cyclic patterns of
its physical and social world. Neither of these views is right or wrong and others
certainly exist.

¢ Two ways of understanding the recursive-decomposition view, as concerning ma-
chinery or dynamics. Both are possible and compatible views, but I will argue
that only the dynamic view is correct. (The metabolic view only makes sense in
reference to dynamics.)

The rest of the section discusses the dynamics of hierarchically organized activ-
ity. My thesis is that the ‘simplifications’ implicit in most conventional AI views of
hierarchy make things harder than they have to be. Viewing hierarchy as a dynamic
phenomenon instead of a property of datastructures suggests new ways of answering
some longstanding questions.

The word ‘hierarchy’ ranges over a loosely-knit family of related metaphors. All
involve some notion of some things being higher than others. The family of hierarchy-
metaphors might be arranged into two overlapping clans. One of these invokes an image
of levels, some of which are higher than others. The other invokes an image of a tree (as
a diagram, not a real tree), with each member a vertex. Often there is a general lattice
instead of a tree, though this distinction is not always clear. Either image or both can be
present. The levels-image tends to emphasize the relationship of adjacent levels (which
may or may not be different in kind); the tree-image tends to emphasize individuals and
their relationships. Often (as in Chapter 1 of Miller, Galanter, and Pribram 1960) the
applicability of the level-image is inappropriately taken to imply that of the tree-image.

Technical ideas about computation have used a wide range of hierarchy-ideas, but
particular images predominate. Tree-images are usually stronger than level-images.
Though one often speaks of levels, these are usually poorly defined except among the
topmost and bottommost members. Often the word ‘tree’ actually names a lattice.
The members of a hierarchy tend to be hardware components, hunks of program code,
datastructures, or mathematical abstractions directly related to one of these. The notion
of hierarchy is usually bound up with the much stronger notion of modularity (cf. Simon
1970). Metaphorically, modularity suggests that members do not ‘know about’ the

——
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members above them. Members relate as parts and wholes. Each individual is self-
sufficient, offering a definite contract to all takers.

A computer ‘is’ hierarchical in a different way from, say, a business. The hierarchical
organization of a given computer (given accepted design practice) is practically a law
of nature, entirely governing the flow of control and data in the machine. By contrast,
the hierarchical organizational charts of a business only approximate the actual inter-
actions and power relationships among its members. The hierarchy is prescriptive, not
descriptive. It ‘governs’ the organization in an administrative sense, not as a natural
law. Members presumably ‘believe in’ the charts, but the charts only retain their status
as accepted fictions as a continual accomplishment of those members (cf. Heritage 1984,
especially Chapter 7).

The distinction between these two forms of being-hierarchical becomes critical when
we investigate the hierarchical ideas that people use to help organize their activity.
Obviously, people regularly consult hierarchical representations like outlines or charts for
guidance in finding information, interpreting orders, organizing searches, or anticipating
the actions of others. But talking about someone’s hierarchy-use is quite different from
talking about hierarchical aspects of someone’s activity. Many of the lessons we drew
about plan-use apply to hierarchy-use as well:

e Neither plans nor hierarchies directly generate anyone’s activity.
o Hierarchies, like plans, are resources that people use in situations.

o Neither following a plan nor using a hierarchy is governed by any fixed procedure.
People regularly rearrange, reinterpret, interleave, interpolate into, adapt, and
abandon their plans. Likewise, operations like establishing and amending hierar-
chies are regularly judgement calls, amenable to no fixed procedure and susceptible
to influence by arbitrary details of the situation.

e Activity informed by a plan may or may not involve considerable improvisation.
Activity informed by a hierarchy may or may not have an analogously hierarchical
form.

e Regularity in one’s activity may or may not be due to plans one is following. The
hierarchical organization in one’s activity may or may not be due to hierarchical
representations.

The dynamics of hierarchy-using, like the dynamics of plan-using, are a special case of
the dynamics of running arguments, an advanced topic. First we need to understand
the basic dynamics of running arguments. This section simply concerns the hierarchical
aspects of these dynamics.

Our question, then, concerns machinery and dynamics. Suppose we regularly observe
people acting as if they were following a hierarchically organized plan. We would quickly
conclude that there are hierarchical aspects to the dynamics of everyday activity. But we
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wouldn’t have grounds to conclude that there are hierarchical aspects to our machinery.
As we will see, there are scenarios in which an agent with nonhierarchical machinery
would end up engaging in hierarchically organized activity. What forms of dynamic
hierarchy need to be explained by hierarchical plans and the like? Under what conditions
do these occur? To answer these questions, let us compare two views of hierarchy, the
recursive decomposition view and the metabolic view.

Al research has generally formulated hierarchy in activity as a recursive decom-
position. (The notion originates with GPS (Newell, Shaw, and Simon 1960). Miller,
Galanter, and Pribram (1960) took the idea from GPS and incorporated it into their
definition of Planning.) Recursive decomposition envisions a tree or lattice structure
in which every nonterminal element has been decomposed into parts and the terminal
elements are drawn from a fixed set known as primitives.

Recursive decomposition originated in software engineering, particularly in the pro-
gramming style encouraged by languages like Lisp, where a large number of small ‘pro-
cedures’ ‘call’ ‘subprocedures’, with the actual work getting done by ‘primitive proce-
dures’. (Note that I have appropriated the also-common term ‘routine’ for my own
purposes. See Chapter A3 and SectionB2e.) In the early 1970’s, Planning research
explicitly borrowed software ideas, modelling Plans after procedures and Planning after
programming (Sussman 1975, Waldinger 1975). On this view, one uses a Plan to pursue
a goal, perhaps invoking sub-Plans to pursue subgoals, and eventually invoking ‘prim-
itive actions’ that cause change in the world (Sacerdoti 1977, McDermott 1977). Here
is a hierarchical decomposition of the sort one would expect an Al Planner to produce:

make breakfast
assemble materials
get out utensils
get out cereal box
get out milk
get out 0J carton
combine materials
make cereal
open cereal box
pour cereal into bowl
open milk
pour milk into bowl
make 0J
open 0J carton
pour 0J into glass
consume food
repeat: eat a spoonful or drink some 0J
clean up
bring utensils to sink
wash utensils
put away
put cereal away
put milk away
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put 0J carton away
put utensils away

This Plan decomposes top-level goal of making breakfast into five subgoals: assembling
materials, combining materials, consuming the food, cleaning up, and putting away.
Each subgoal is further decomposed into subgoals of its own. Down at the bottom
of this tree, there will be primitive actions, which might be at the level of picking up
an object. {Although many Al Planners have had the capability of choosing among a
number of different decompositions of a goal, it is exceedingly uncommon, as far as I
can tell, for a Planner to actually have more than one way of decomposing any of its
goals.)

According to this account of Planning, one’s activity is hierarchical insofar as one’s
Plans are hierarchical. This view is coherent, but it is mistaken. It is the sort of
expianation that results from inattention to dynamics: lacking a worked-out idea of how
hierarchical patterns might arise in an agent’s interaction with the world, it ascribes
dynamic hierarchy to hierarchy in machinery. A single version of hierarchy, the recursive-
decomposition view, has gotten a monopoly. Certainly the metaphor of goal trees
provides one useful perspective. Lacking competition, though, it has become cast in
concrete as the metaphor we use to answer every technical question we ask. We can
see the effects of this bias by considering a competing view of the hierarchy in everyday
activity. Observing the constructive interference of the two views can help us develop
technical ideas that go beyond simple literal mechanization of either view.

Let us call this competing view of hierarchy the metabolic view. Whereas the
recursive-decomposition view emphasizes the pursuit of some definite end, the metabolic
view emphasizes the continual cycles of reproduction that dominate the more routine
parts of life. The cycles form a hierarchy insofar as some of them contain others. Every
culture has its own cycles: there are cycles of planting and harvesting, the life cycles of
individuals, the cycle of formation of families, ritual cycles over the week and year, the
cyclic repetition of the day’s schedule, respiratory and cardiac cycles, menstrual cycles,
the growing and cutting of hair and nails, gait cycles for crawling, walking, and running,
and the cycle of seasons with its attendant cycles of temperature, wind, water (rainfall,
runoff, and well levels). Most work has cycles of its own, from harvesting one rice plant
after another to filling in one form after another. Many everyday tasks are cyclic as
well: chopping, stirring, sweeping, sorting, digging. These cycles form a hierarchy: one
walks to fetch water, works a whole day most days of the year, and completes many
years’ work to see a new generation rise.

Furthermore, every household has an elaborate metabolism of its own. A hundred
different supplies are used up and need to be replenished: soap, clean clothes, gasoline,
nails, postage stamps, subway tokens, bandages, coffee, garbage bags. Staple foods
have different cycles according to their shelf life and the storage space they occupy: one
might get fresh milk and bread every couple days, fresh meat and vegetables every week,
fresh coffee and rice every couple weeks, and fresh salt and sugar every couple months.
Garbage accumulates and is disposed of. A thousand different items of equipment wear
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out and need to be replaced: batteries, cars, clothes, shoes, tires, motor oil, record-player
needles. (Others, like coffee mugs, pens, and clothespins, vanish mysteriously.) Some
have regular maintenance schedules; others are restored to working order in response
to their regular wearing down (dull knives are one example, though many other items
have become disposable in our culture, at least for most people). Every day’s household
chores combine episodes in some set of household cycles.

An AI metaphor gets Al into trouble in exactly the areas it de-emphasizes. If
we use a single metaphor to understand everyday life, we will never notice the parts
of life to which our metaphor doesn’t apply well. Thus, in comparing the recursive-
decomposition and metabolism views of hierarchy, the point is not to decide which one
is more accurate. Instead, let us observe how the emphases of each metaphor remind
us of the other’s blind spots.

o Recursive decomposition describes a single episode. You decide to make break-
fast, you unfold your breakfast-plan, and you’re done. A goal has been achieved.
Metabolism takes a longer view, surveying an eternal cyclic routine. Everything
you accomplish will need to be accomplished again.

¢ Recursive decomposition evokes the possibility of production and doing something
new. Metabolism evokes the necessity of reproduction and doing the same things
repeatedly.

¢ Recursive decomposition suggests viewing yourself as escentially independent of
the outside world. Your choice of which way to decompose each goal might be
strongly constrained by extraneous considerations, but these aren’t systematically
articulated. Metabolism suggests viewing yourself as part of the world and em-
phasizes the network of everyday practicalities you live within.

o Recursive decomposition assumes a sharp focus, one goal at a time. Metabolism
continually locates you at the intersection of a hundred cycles and poses the prob-
lem of continually negotiating all their claims. The dynamics of this negotiation
are fascinating. Some cycles tend to be in phase, others out of phase. Every cycle
assigns chores; cultures set up ways of living that keep the chores manageably
distributed.

¢ Recursive decomposition must be supplied with a goal from the outside. The
Planner may know why it is pouring the milk, but it doesn’t know why it is
ultimately making breakfast. There is an unexplained First Goal. Metabolism
supplies a steady stream of reasons in the continual furthering of life. Everything
that happens and everything that needs doing takes its place in a cycle.

¢ Recursive decomposition envisions nested activities reflecting nested goals (though
see Allen and Koomen 1983). Metabolism reminds us that activiues vverlap. It
also reminds us that many motivations aren’t goals because they are never really
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achieved. (Some Al programs have contained ‘goals’ like ‘staying alive’. This is
worrisome. It stretches the word beyond recognition.)

It is tempting to take conceptual revenge by celebrating the holist virtues of the meta-
bolic view and talking down the reductionist vices of the recursive decomposition view.
But this would be a mistake, and my argument does not require it. One need not adopt
a single unified account of the role of hierarchy in everyday life. The tension between
these two metaphorical systems is a benefit, challenging us not to accept a superficial
stock account of any specific dynamic issue.

Many dynamic phenomena can coexist, but there is only one architecture. Adopting
only the recursive-decomposition view of hierarchy suggests equipping the architecture
with machinery for assembling and manipulating tree-shaped structures. Adopting only
the metabolism view of hierarchy would suggest equipping the architecture with ma-
chinery for assembling and manipulating cycle-shaped structures. Of course, we could
always postulate both sorts of machinery, and twenty others as well, and then ask how
they all work together. This would not be very parsimonious. Tolerating both views of
hierarchy should make us step back and consider the large and difficult question of how
the intcractions between an agent and the world could have both sorts of patterns.

An agent might have a collection of ways to decompose goals into subgoals. Let
us consider two extreme approaches the agent might adopt. The first approach is to
make a complete Plan. Given a goal, the agent assembles an exhaustive goal tree by
decomposing every subgoal all the way down to primitive actions. The second approach
is to delay decomposing each goal as long as possible. Given a goal, the agent decides on
a set of subgoals, chooses one to pursue first, sets itself that single subgoal, decomposes
that subgoal into subsubgoals, chooses one of them, and so forth. The arguments that
enter into the agent’s choices might make reference to the future, but the agent only
ever decides what to do now. Thus the agent performs the first primitive action before
it even decides what the second subgoal is going to be at any level. The agent never
performs a decomposition or imposes any ordering on subgoals before it has to.

Everything being equal, these two extreme approaches will result in exactly the same
sequence of primitive actions being performed. In each case, the agent’s activity will
look like a tree, a recursive decomposition of the original goal. In the extreme Planning
case, this tree will result from the agent’s executive reading off an identical tree inside
its head. In the extreme improvisation case, the agent will never have decided any-
thing except which subgoal of each goal to pursue right now. The two extremes define
a trade-off. Making choices immediately requires complex reasoning but it anticipate
later problems. Postponing choices means more information will be available but it
risks painting oneself into a corner. (Although Miller, Galanter, and Pribram explicitly
discuss the possibility of postponing the expansion of Plan hierarchies (1960 p. 16),
the first system to postpone decomposition decisions in a general way was NASL (Mc-
Dermott 1977). Along these lines, Wilensky (1983) discusses the specific technique of
postponing the decomposition of subgoals until the last minute by effectively making the
Planner and executive mutually recursive functions of the Plan’s decomposition. Sepa-
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rate provision must be made for the possibility that the agent might wish to abandon
already-made decomposition decisions in the face of unforeseen conditions.)

In an unforgiving and predictable world (an odd combination found only in board
games), the case for building detailed goal trees ahead of time is strong. In a relatively
benign and unpredictable world, the case for goal trees is weak. The case for goal trees
is particularly weak if decisions about decomposition and ordering can benefit from past
experience. If the agent must decide correctly every time it needs to perform complex
simulations to anticipate troubles. If it has time to learn from experience then this need
is lessened.

The kitchen sink was broken, so I had to wash out my tea cup and tea infuser
in the bathroom sink. My hands, already informed by much past experience
of washing out tea cups, improvised the following sequence. When I entered
the bathroom, the cup was in my right hand with the infuser in it. As
the sink approached, I passed the cup to my left hand, removed the infuser
from it with my right hand using a grip that would then let me grab the
cold water knob, reached for the knob with my right hand while placing the
cup under the tap, turned the tap on, rinsed out the cup while removing
my right hand from the knob, laid the cup aside while adjusting my right
hand’s grip on the infuser, rinsed out the infuser under the still-running
water, withdrew and closed the infuser, and ... observed that the sink was
full of ugly tea leaves. Grudgingly deciding it’d be polite to rinse these down
the drain, I picked up the tea cup, let it fill with water, dumped it around
the outside of the sink, and ... realized I'd already done this a moment ago.
(The dynamics of this amazing sequence are interesting in themselves, but
they are beside the present point.) When I next returned to wash out my
cup, I went through the same sequence, only to pull up short as I was about
to rinse my cup. Reminded of my conclusion from the previous episode, I
first rinsed the infuser instead. This required an extra couple hand motions
which I found myself repairing the third time.

In this story an ordering decision led to duplicated work. Taking this into account the
next time led me to reverse the ordering. A proper analysis of this story would require
a more thorough description of its dynamic context. Since I usually drink one cup of
tea after another whenever I am working, this would involve an analysis of the cycles
of making cups of tea, cleaning up, keeping tea in stock, and caffeine addiction. Tea-
making expeditions are usually combined with other chores, linking tea-making with
other dynamic systems. Further, many of the steps in the tea-making cycle are also
parts of other activities, so we should expect connections to their dynamics as well.
Here is a more complicated example:

One week I was writing an article in the lab of some friends, in whose kitchen
hot water could only be made by boiling it in a kettle on an electric stove.
Decomposing the process of making tea in the obvious manner, I
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(1) put a tea bag in a cup,

(2) poured hot water into the cup,

(3) waited a few minutes for the tea to steep, and
(4) threw out the used tea bag.

In particular, I put the water on to boil after getting out the cup and tea
bag. Annoyed bv all the time it took waiting for the water to boil, I had
plenty of opportunity to reflect on what I might have been doing instead of
waiting. After a few times I finally realized that I could have been doing
(1). Next time, as [ went to get out the cup, this argument came to me and
I put the kettle on to boil first. Shortly afterward, I further decomposed the
substep of preparing hot water and realized that it is best to turn on the
electric stove before filling the kettle rather than after.

Boiling water was part of step (2) of the decomposition because hot water was the
second ingredient in tea. Having to sit waiting made me reflect on the wisdom of this
decomposition. My new decomposition did not arise by magic; finding myself waiting
made me explicitly wonder what I might be doing instead. The decision to decompose
making-tea into steps (1) and (2) was part of the reasoning behind boiling the water, so I
asked myself if I was doing the right thing. All this wondering involved several dynamic
phenomena outside the scope of this report, including some subvocalized language. The
point is that it worked.

One of the principal virtues of decomposing your goals as you go along is that you
can change course as circumstances warrant. At any given time your current primitive
a