
P Tf 1 F COPY

SOAR: AN ARCHITECTURE FOR0 GENERAL INTELLIGENCE

OTechnical Report AIP-9

0[John E. Laird, Allen Newell
and Paul S. Rosenbloom

University of Michigan .
0 j Carnegie-Mellon University

Stanford University

The Artificial Intelligence
and Psychology r Project DTJC

S ELEC TEN;it* EC 2 9 1 C8 8

Departments of .
Computer Science and Psychology
Carnegie Mellon University

Learning Research and Development Center
University of Pittsb~urgh

Apprroved for public rve a,, .; distribut)iof unlmited.l

88 12 28 138

ka)

SOAR: AN ARCHITECTURE FOR
GENERAL INTELLIGENCE

Technical Report AIP-9

John E. Laird, Allen Newell
and Paul S. Rosenbloom

University of Michigan
Carnegie-Mellon University

Stanford University

29 September 1987

ELECTE
i EC 2 9 1988

This research was supported by the Computer Sciences Division, Office of Naval Research

and DARPA under Contract Number N00014-86-K-0678; the Defense Advanced Research

Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics

Laboratory under contracts F33615-81-K-1539 and N00039-83-C-0136 and by the

Personnel and Training Research Programs, Psychological Sciences Division, Office of

Naval Research, under Contract Number N00014-82C-0067, contract authority

identification number NR667-477, and by the Sloan Foundation.. Computer facilities were

partially provided by NIH grant RR-00785 to Sumex-Aim. The views and conclusions

contained in this document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of the Defense Advanced

Research Projects Agency, the U.S. Government, and the Sloan Foundation, or the National

Institutes of Health. Reproduction in whole or in part is permitted for purposes of the

United States Government. Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE
4, REPORT SECURITY CLASSIFICArION lb. RESTRICTIVE MARKINGS

t.'nc lassif led
Za. SECURITY CLASSIPFICATION AUTHORITY 3, OlSTRIUUTION/AVAILABILITY OF REPORT

2b. 03RL~ssi~c~r5Ni0 WNG11,tGSCHEDUI~LE Approved for public release;
Distributicn uniinited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AIP - 9

64 NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Carnegie-Mellon University (ifa Joicablo) Computer Eciences Division

Office of Naval 2esearch (Code 11'3)

IState and ZIP Coe) 7b ADDRESS (City, Start. and ZIP Code)
eartr.ent of Ps'.,chology 300 N. (uin'cy Street

Pittsbur gh, Pennsylvania i3.U3 trlin;tor,, Virginia 22417-5000

81. NAME OF 9LPNDING /SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATION (if applicale)

Sa:i.e as Monitoring Organi-atio N00014-86-k-0678

ac. ADDRESS (City. State. and ZIP Code) !0 SOURCE OF FUNOING NUMBER t 4 OC05ub ,i - 4-zo
PROGRAM PROJECT [TASK I WORK UNIT
ELEMENT NO NO. NO ACCESSION NO

•N/A I /A IA ",/.-N

I1 IrITLE (Include Security Cification)

Scar: An Architecture for General Intelligence

12 PERSONAL AUTmOR(S)

J.E. Laird, A. Newell and '.S. Rosenbloom
13& P'YPE OF REPORT 13b, TIME COVtAEO 4DT OF REPORT YeMrr a) S AECOUNT

ecnicaL .. FROM 86SeptlTOgiSePrl 87 September 29 6S

16 SUPPLEVIENARY NOTATION

'7 COSArI CODES 18 SujECT TERMS (Continue on re f~~j necessary and id~iAti'y.by block number)
:ELD GROUP SUB-GROUP _Artificial.tel.ligence, Machine Learning,

Cognitive Architecture

!9 A\SS2ACT %Continue on reverse ,f necessary and identify by block number)

.. ". The ultimate goal of work in cognitive architecture is to provide a foundation for a system capable of general
intelligent behavior. That is, the goal is to provide the underlying structure that would enable a system to
perform the full range of cognitive tasks, employ the full range of problem-solving methods and
representations appropriate for the tasks, and learn about all aspects of the task and its performance on them.
In this article we present Soar, a- implemented proposal for such an architecture. We describe its "
organizational principles, the sy.,tem as currently implemented, and demonstrations of its capabilities. ,-.-

20 :ISTRIBUTONAVAI.ABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
aUNCLASSIFIED/UNLIMITED M SAME AS RPT) rC USERS

22A NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area COde) 22C. OFFICE SYMBOL
Ur. Alan L. Meyrowitz (202) 696-4 i0.' 1 00014

DO FORM 1473, 84 MAR 83 APR editiOn Mayt o sed until e,,nlusted. SECURITY CLASSIFICATION OF THIS PAGE
All oter et ,tons are obsolete. Unclass if ed

C24-CS-86-171

Soar: An Architecture for General Intelligence ..
r

COPY

John E. Laird 1N., " - TE
Department of Electrical Engineering and Computer Science

University of Michigan
(this work was done while at Accesion For

Intelligent Systems Laboratory
Xerox Palo Alto Research Center) NTIS CRA&I

DTIC TAB
Allen Newell U:d1LnouncCd

Department of Computer Scica Jnsilic~t~on
Carnegie-Mellon University

By
Paul S. Rosenbloom

Know ledge System s Laboratory, _________

Departments of Computer Science and Psychology Avaiab;aity Cod
Stanford University D i Aw'I nd/ or

Drsl Soucial

3 December 1986 J

Abstract

The ultimate goal of work in cognitive architecture is to provide the foundation for a system
capable of general intelligent behavior. That is, the goal is to provide the underlying structure that
would enable a system to perform the full range of cognitive tasks. employ the full range of
problem-solving methods and representat-ons appropriate for the tasks, and learn about all aspects
of the tasks and its performance on them. In this article we present Soar, an implemented
proposal for such an architecture. We describe its organizational principles, the system as cur-
rently implemented, and demonstrations of its capabilities.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
3597. monitored by the Air Force Avionics Laboratory under contracts F33615-81-K-1539 and N00039-83-
C-0136. and by the Personnel and Training Research Programs. Psychological Sciences Division. Office of
Naval Research. under contract number N00014-82C-0067. contract authority identification number
NR667-477. Additional partial support was provided by the Sloan Foundation and some computing support
was supplied by the SUMEX-AIM facility (NIH grant numbcr RR-00785). The views and conclusions
contained in this document are those of the authors and should not be interpreted as reprcscnting the official
policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the Office of Naval
Research. the Sloan Foundation. the National Institute of Health. or the US Government.

REFER ENCES PAGE I

Table of Contents
1. Preview 3

1.i. Uniform task representation by problem spaes 4
1.2. Any decision can be an object of goal-oriented attention 6
1.3. Uniform representaocn of all long-term knowledge by a production system 6
1.4. K nowledge to control scarch expressed by preferences 8
1.5. A,. goals arise to cope with impasses 8
1.6. Continuous monitoring of goal termination 8
1.7. The basic problem-so~vwg methods arise direcdy from knowledge of the task 9
1.8. Continuous learning by experience through chunking 9

2. The Soar Architecture 10
2.1. The Architecture for Problem Solving 10
2.2. The Working Memory 12
2.3. The Processing Structure 15

2.3.1. The elaborauon phase 17
2.3.2. The decision procedure 18
2.3.3. Implemenung the eight puzzle 23

2.4. Impasses and Subgoals 27
2.5. Default Knowledge for Subgoals 29
2.6. Chunking 33

2.6.1. The chunking mechanism 34
2.6.". An ex'npIe of chunk creation 37

3. Discussiou 40
3.1. Combining knowledge and problem solving 40
3.2. Weak Methods 43
3.3. Learning 46

3.3.1. Caching. within-trial transfer and across-trial transfer 46
3.3.2. Learning in an expert-system task 51
3.3.3. Chunking, generality, and representation 53

4. Conclusion 5
References 59

PAGE LI SOAR: AN ARCHITECTURE FOR GENERAL INTELUGENCE

List of Figures
Figure 1: Summary of Soar performance scope. 3
Figure 1-1: The structure of problem-space search for the eight puzzle. 5
Figure 1-2: The ae of subgoals and thei: problem spaces. 7
Figure 2-1: Problem-space race in the eight puzzle. (Task implementation steps are bracketed.) 11
Figure 2-2: Architectural structure of Soar. 12
Figure 2-3: Snapshot of fragment of working memory. 13
Figure 2-4: Working memory representation of the structure in Figure 2-3. 15
Figure 2-5: Graphic representation of an eight puzzle state. 16
Figure 2-6: A sequence of decision cycles. 17
Figure 2-7: The encoding of preferences. 20
Figure 2-8: The semantics of preferences. 21
Figure 2-9: Productions that set up the eight puzzle. 24
Figure 2-10: Production for creating eight puzzle operator instanuaions. 25
Figure 2-1 1: Productions for applying eight puzzle operator instandations. 25
Figure 2-12: Search-control productions for the eight puzzle. 25
Figure 2-13: Trace of initial eight puzzle problem solving. 26
Figure 2-14: The subgoal structure for the eight puzlJe. 31
Figure 2-15: A trace of steepest ascent hill climbing. 33
Figure 2-16: Partial production trace of an eight-puzzie evaluation subgoal. 37
Figure 2-17: Production built by chunking the evaluation subgoal. 39
Figure 3-1: Task problem spaces for the extended version of Ri-Soar [75]. 41
Figure 3-2: Task operators for the extended version of RI-Soar (75]. 42
Figure 3-3: Performance of the extended version of Ri-Soar (without learning). 44
Figure 3-4: Weak methods, as patterns of behavior. 47
Figure 3-5: Structure of weak methods realized in Soar [291. 48
Figure 3-6: Learning in the eight puzzle (33). 49
Figure 3-7: Across-task transfer in the eight puzzle [33]. 50
Figure 3-8: Learning in RI-Soar. 51
Figure 3-9: Performance of the extended version of Ri-Soar (with bottom-up learning) [75]. 52
Figure 3-10: Transfer possible with macro-operators in ,he eight puzzle. 56

P AGE i

Soar: An Architecture for General Intelligence1

Soar is an architecture for a system that is to be capable of general intelligence. Soar is to be able to: (1)

work on the full range of tasks, from highly routine to extremely difficult open-ended problems: (2) employ

the full range of problem-solving methods and representaions required for these casks: and (3) learn about all

aspects of the tasks and its performance on them. Soar has existed since mid 1982 as an expenmental software

system (in Ops5 and Lisp). initially as Soar 1 [31. 32], then as Soar 2 129. 351, and currently as Soar 4 [30]. Soar

realizes the capabilities of a general intelligence only in part, with significant aspects sutll missing. But enougn

has been attained to make worthwhile an exposition of the current system.

Soar is one of many artificial intelligence (Al) systems that have attempted to provide an appropnate

organization for intelligent action. It is to be compared with other organizations that ha e been put forth.,

especially recent ones: MRS [22]: Eurisko [38. 39]: blackboard archlitccturcs [4. 16. 24. 56j: Pam/Pandora

['91 and Nast [40]. Soar Ls also to be compared with machine learning systems that involve some form of

problem solving (10. 15, 3"7. 45. 46]. Especially unportant are exisung sstems that engage in some significant

form of both problem solving and learning. such as: ACT* [2]: and Repair heor. [3]. embodied in a system

called Sierra [77]. ACT' and Repair theory are both psychological Lheones of huin3n cogniuon. Soar, whose

antecedents have layed a strong role in cognitive theories. is also intended as the basis for a psycho!ogical
t.eor . but this aspect is not yet well developed and is not discussed furLher.

Soar has its direct roots in a contint ous l:ne of research that starts back in 1956 wit the Logic Theorist

[53] and list processing (the IPLs) [S]. The line goes through GPS [1", 541, the general theor\ of human

problem solving [511 and the development of producuon s stems. PSG [48], Psanis [661 and ;,he Ops series [20.

211. Its roots include the emergence of the concept of cognitive architecture [48]. the lnsLarctabic Producuon

System project [67, 68] and the extension of the concept of problem spaces to routine behavior [49]. The) aiso

include research on cognitive skill and its acluisition [11. 35, 50. 63]. Soar is the current culminauon of all this

work along the dimension of architectures for intelligence.

Soar's behavior has ulrcady been studied over a range of tasks and methods (Figure 1). which sample its

in:."ndcd range. though unsyseCmatIcall . Soar has been run on most of the standard ..\I toy prubiems [29. 31].

T'ncse tasks elicit knowledge-lean. goal-oriented behavior. Soar has been run on .a small number of routine.

essenually algorithmic, tasks, such as matching forms to objects, doing elementary sllogisms. and searching

for a root of a quadratic equation. Soar has been run on knowledgc-intcnsi'e casks that are typ~cai ofcurrent

expert systems. The lactic has been to do the same task as an existing Al expert systcm, using ,he same

1We would 'Ae to thunk r id Sic~er and Danny Bobrow for .hmcr hclpfjl commems en .. rlier drafts of dhis arxcc. and Randy
Gobbcl for isslarcc in he final prcpamion of Lhc r.inuscript.

PAGF ! SOAR: AN ARCIIITFCTIURE FOR GENURAL IN'rELLIGENCE

knowledge. The main effort has beer R1-Soar (65], which showed how Soar would realize a classical expert

system, R1, which configures Vax and PDP-11 computers at Digital Equipment Corporation [3, 41]. R1 is a

large system and Ri-Soar was only carried tar enough in its detailed coverage (about 25% of the functionality

of RI) to make clear that it could be extended to Full coverage if the ctTort warranted [751. In addition. Soar

versions of other substantial systems are operational although not complete: Neomycin (13], which itself is a

reworking of the classical expert ,ystem, Mycin [711: and Designer [26], an Al system for designing al-

gorithms. Soar has also been given some tasks that have played important roles in the development of

artificial intelligence: natural-language parsing, concept learning, and predicate-calculus theorem proving. In

each case the performance and knowledge of an existing system has been adopted as a target in order to learn

as much as possible by comparison: Dypar [6], Version Spaces (44] and Resolution [601. These have so far

been small demonstration systems: developing them to full-scale performance has not seemed profitable.

A variety of different representations for tasks and methods can be realized within Soar's architecturally

given procedural and declarative representations. Essentially all the familiar weak methods [47] have been

realized with Soar and used on several tasks [31]. In larger tasks, such as Ri-Soar, different weak methods

occur in different subparts of the task. Alternative decompositions of a task into subtasks [75] and alternative

basic representations of a task have also been explored [31]. but not intensively.

Soar has a general mechanism for learning from-experience [33, 36] which applies to any task it performs.

Thus, it can improve its performance in all of the tasks listed. Detailed studies of its learning behavior have

been done on several tasks of varying characteristics of size and task-type (games. puzzles. expert-system

tasks). This single learning mechanism produces a range of learning phenomena. such as improvement in

related tasks (across-task transfer): improvement even within the learning trial (within-uial transfer): and the

acquisition of new heuristics, operator implementations and macro-operators.

Several basic mechanisms of cognition have not yet been demonstrated with Soar. Potentially, each such

mechanism could force the modification of the architecture, although we expect most of them to be realized

without major extension. Some of the most important missing aspects are deliberate planning, as developed

in artificial-intelligence systems [69]; the automatic acquisition of new tasks [23]; the creation of new task

representations (1, 27]; extension to additional types of learning (e.g.. by analysis, instruction, example.

reading): and the ability to recover from errors in learning (which in Soar occurs by overgeneralization [341).

It is useful to list these lacunae. not just to indicate present limitations on Soar, but to establish the intended

scope of the system. Soar is to operate throughout the entire spectrum of cognitive tasks.

The first section of this paper gives a preview of the features of Soar. The second section describes the Soar

architecture in detail. The third section discusses some examples in order to make clear Soar's structure and

operation. 'he final section concludes with a list of the principal hypotheses underlying the design of Soar.

PAGF 3

Small. knowledGe-lean tasks (typical Al toy tasks):
Blocks world, eight puzzle, eight queens, labeling line drawings (constraint satisfaction),
magic squares, missionaries and cannibals, monkey and bananas, picnic problem.
robot location-finding, three wizards problem, tc-tac-toe. Tower of Hanoi,
water-jug task

Small routine tasks:
Expression unification, root finding, sequence extrapolation, syllogisms. Wason verification task

Knowledge-intensive expert-system tasks:
R i-Soar: 3300 rule industrial expert system (25% coverage)
Neomycin: Revision of Mycin (initial version)
Designer: Designs algorithms (initial version)

Miscellaneous Al tasks:
Dypar-Soar: Natural language parsing program (small demo)
Version-spaces: Concept formation (small demo)
Resolution theorem-prover (small demo)

Multiple weak methods with variations, most'used in multiple small tasks:
Generate and test. AND/OR search. hill climbing (simple and steepest-ascent), means-ends analysis.
operator subgoaling. hypothesize and match, breadth-first search, depth-first search,
heuristic search. best- first search. A0. progressive deepening (simple and modified),
BO (progressive deepening), minimax (simple and depth-bounded), alpha-beta, iterative deepening, B°

Multiple organizations and task representations:
Eight puzzle. picnic problem, RI-Soar

Learning:
Learns on all tasks it performs by a uniform method. (chunking)

Detailed studies on eight puzzle. RI-Soar. tic-tac-toe, Korf macro-operators
Types of learning:

Improvement with practice, within-task transfer, across-task transfer, strategy acquisition.
operator implementation, macro-operators, explanation-based generalization

Major aspects still missing:
Deliberate planning, automatic task acquisition. creating representations. varieties of learning,
recovering from overgeneralizatdon, interaction with external task environment

Figure 1: Summary of Soar performance scope.

1. Preview

In common with the mainstream of problem-solving and reasoning systems in Al. Soar has an explicit

symbolic representation of its tasks, which it manipulates by symbolic processes. It encodes its knowledge of

the task environment in symbolic structures and attempts to use this knowledge to guide its behavior. It has a

general scheme of goals and subgoals for representing what the system wants to achieve, and for controlling

its behavior.

PA\G C 4 SOAR: .\N ARCIIIrEC"URI" FOR GENERAL INTELLIGENCE

Beorid thvsc basic Communalitics, Soar embodies mechanisms and organiz.ational principles that express

distinctive hypotheses about the nature of the architecture or intelligence. These hypotheses are shared by

other systems to varying extents, but taken together they determine Soar's unique position in the space of

possible architectures. We preview here these main distinctive characteristics of Soar. The Full details of all

these features will be given in the next section on the architecture.

1.1. Uniform task representation by problem spaces

In Soar. every task of attaining a goal is formulated as finding a desired state in a problem spoce (a space

with a set of operators that apply to a current state to yield a new state) (491. Hence, all tasks take the form of

heuristic search. Routine procedures arise, in this scheme, when enough knowledge is available to provide

complete search control. i.e., to determine the correct operator to be taken at each step. In Al. problem spaces

are commonly used for genuine problem solving [18, 51. 57. 58. 59. 721, but procedural representations arc

commonly used fcr routine behavior. For instance, problem-space operators are typically realized by Lisp

code. In Soar, on the other hand, complex operators are implemented by problem spaces (though sufficiently

simple operators can be realized directly by rules). The adoption of the problem space as the fundamental

organization for all goal-oriented symbolic activity (called the Problem Space Hypothesis [491) is a principal

feature of Soar.

Figure 1-1 provides a schematic view of the important components of a problem-space search for the eight

puzzle. The lower, triangular portion of the figure represents the search in the eight puzzle problem space.

while the upper. rectangular portion represents the knowledge involved in the definition and control of the

search. In the eight puzzle, there arc eight numbered tiles and one space on a three-by-three board. The

states are different configurations of the tiles on che board. The operators are the movements of an adjacent

tile into the space (up, down, left and right). In the figure. the states are represented by schematic boards and

the operators arc represented by arrows.

Problem-space search occurs in the attempt to attain a goal. In the eight puzzle the goal is a desired state

representing a specific con fizuradion of the tiles - the darkened board at the right of the figure. In other

tasks, such as chess, where checkmate is the goal. there are many disparate desired states, which may then be

represented by a test procedure. Whenever a new goal is encountered in solving a problem, the problem

solver begins at some initial state in the new problem space. For the eight puzzle. the initial state is just a

particular configuration of the tiles. The problem-space search results from the problem solver's application

of operators in an attempt to find a way of moving from its initial state to one of its desired states.

Only the current position (in Figure 1-I. it is the board pointed to by the downward arrow from the

knowledge box) exists on the physical board, and Soar can generate new states only by applying the operators.

I PREVIEW PAGE 5

Task
Implementation

Search-control
Knowledge

~~I1S5

EgtPuzzle
Problem Space

Figure H:1 T'he sucturc of problem-spac,: search for thc eight puzzle.

Likewise, the States in a problem space, except the current state and possibl% a few rcmembcrcdl states, do not

preexist -as data strucrures in the croblcrn solver, so they, must be gcatdby. a3pki;rng opct'a[Cors io st'ates

that do CXiSL

P \G F6 SOAR: ..\, ,RCI rIFcrURF I OR GI.NIRA, IN'F..I..IGENCE

1.2. Any decision can be an object of goal-criented attention

All decisions in Soar relate to searching a problem space (selection of operators. selection of states, etc.).

The hox in Figure 1-1 represents the knowledge that can be immediately brought to bear to make the

decisions in a particular space. However. a subgoal can be set up to make any decision for which the

inmediate knowledge is insufficienL For instance, looking back to state S1. three moves were possible:

moving a tile adjacent to the blank left, right or down. If the knowledge was not available to select which

move to try, then a subgoal to select the operator would have been set up. Or. if the operator to move a dle

left had been selected, but it was not known immediately how to perform that operator, then a subgoal would

have been set up to do that. (The moves in the eight puzzle are too simple to require this, but many operators

arc more complex. e.g.. an operato," to factor a polynomial in an algebraic task.) Or, if the left operator had

been applied and Soar attempted to evaluate the result, but t.e evaluation was too complicated to compute

directly. then a subgoal would have been set up to obtain the evaluation. Or, to tac just one more example, if

Soar had attempted to apply an operator that was illegal at state S1, say to move tile I to the position of tle 2.

then it could have set up a subgoal to satisfy the preconditions of tlie operator (that the position of tile 2 be

blank).

In short, a subgoal can be set up for any problematic decision, a property we call universal subgoaiing.

Since setting up a goal means that a search can be conducted for whatever information is needed to make the

decision, Soar can be described as having no fixed bodies of knowledge to make any decision (as in writing a

specific Lisp function to evaluate a position or select among operators). The ability to search in subgoals also

implies that further subgoals can be set up within existing subgoals so that the behavior of Soar involves a tree

of subgoals and problem spaces (Figure 1-2). Because many of these subgoals address how to make control

decisions. this implies that Soar can reflect [731 on its own problem-solving behavior, and do this to arbitrary

levels [641.

1.3. Uniform representation of all long-term knowledge by a production system

There is only a single memory organization for all long-term knowledge, namely, a production system [9.

14, 25, 42, 78]. Thus, the boxes in Figures 1-1 and 1-2 are filled in with a uniform production system.

Productions deliver control knowledge, as when a production action rejects an operator that leads back to the

prior position. Productions also provide procedural knowledge for simple operators, such as the eight-puzzle

moves, which can be accomplished by two productions, one to create the new state and put the changes in

place and one to copy the unchanged tiles. (As noted above, more complex operators are realized by

operating in an implementation problem space.) The data structures examinable by productions - that is,

the pieces of knowledge in declarative form - are all in the production system's short-term working memory.

However, the long-term storage of this knowledge is in productions which have actions that generate the data

suuctures.

.I'Rrvifcw PAGE 7

Long-term

Task- implementation and search-control knowledge

rask rTask

Opetr pera to0r / p~ator operator
selection mpem 7',tatlorl 34 tion xmpiemnentation

EvaluabJon ut Eaaln
ovisr operalor ooratbr operaor

S4J~4kEvaua*onseletl
rImple lntati Ae'ni~e ett

Figure 1-2: The trcc of subgoals and Lheir problem spaces.

PGE8 SOAR: AN:W1iil*IC1tRF [ORGFNERAL INHAI IGiNCt

Soar employs a specialized prnducbon system (a modified versin of OpsS [20]). All satisfied productions

are fired in parallel, without conflict resolution. Productions can only add data elerncnts; to w~orking memory.

-\I modification and removal of data elements is accomplished by die architecture.

1.4. Knowledge to control search expressed by preferences

Search-control knowledge is brought to bear by the addiuive accumulation (via production finngs) of data

element, in working memory. One type of data element, the preference. represcnts knowledge about how

Soar should behave in its current situation (as defined by a current goal. problem space. state and operator).

For instance, the rejection of the move that simply returns to the prior state (in the example above) is encoJed

as a rejection preference on the operator. The preferences admit only a few concepts: acceptability. rejection.

better (best. worse and worst), and indifferent. The architecture contains a fixed decision procedure for

interpreting the set of accumulated preferences co determine the next action. This fixed procedure is simply

the embodiment of the semantics of these basic preference concepts and contains no task-dependenc

knowledge.

1.5. All goals arise to cope with impasses

Difficulties arise, ultimately, from a lack of knowledge about what to do next (including of course

knowledge that problems cannot be solved). In the unmediate context of behaving, difficulties arise when

problem solving cannot conunue - when it reaches an impasse. Impasses are detectabie by the architecture.

because the fixed decision procedure concludes successfully only when the knowledge of how to proceed is

adequate. T'he procedure fails otherwise (i.e.. it detects an impasse). At this point the architecture creates a

goal for overcoming the tmpasse. For example. each of the subgoals m Figure 1-2 is evoked because some

impasse occurs: the lack of sufficient preferences between the three task operators creates a ue impasse: the

failue of the productions in the task problem space to carry out the selected task operator lea, , to a

no-change impasse: and so on.

In Soar. goals are created only in response to impasses. Although there are only a small set of arch Lec-

turally distinct impasses (four), this suffices to generate all the types of subgoals. Thus, all goals arise from ..e

architecture. This principle of operation. called autorntic subguuling, is the most novel feature of the Soar

architecture, and it provides the basis for many other features.

1.6. Continuous monitoring of goal termination

The architccture continuously monitors for the termination of all active goals in .he goal hierarchy. Upon

detection. Soar proceeds immediately from the point of termination. For instance, in trying to break a ue

between two operators in the eight puzzle, a subgoal will be set up to evaluate thc operators. If in cxamining

1 PREVIEW P\GE9

the first operator a prvfcrcnce is created that rejects it. then the decision at the higher level can, and will. be

made immediately. The second operator will be selcted and applied, cutting off the rest of the evaluation

and comparison process. All of the working-memory elements local to the terminated goals are automatically

removed.

Immediate and automatic response to the termination of any active goal is rarely used in Al systems because

of its expense. Its (efficient) realization in Soar depends strongly on automatic subgoaling.

1.7. The basic problem-solving methods arise directly from knowledge of the task

Soar realizes the so-called weak methods, such as hill climbing. means-ends analysis. alpha-beta search, etc..

by adding search-control productions that express. in isolation, knowledge about the task (i.e.. about the

problem space and the desired states). The structure of Soar is such that there is no need for this knowledge

to be organized in separate procedural representations for each weak method (with a selection process to

determine which one to apply). For example, if knowledge exists abocr how to evaluate the states n a task.

and the consequences of evaluatien functions are understood (prefer operators that lead to states with higher

evaluations), then Soar exhibits a form of hill climbing. This general capability is another novel feature of

Soar.

1.8. Continuous learning by experience through chunking

Soar learns conunuously by automatically and permanently caching the results of its subgoals as produc-

uons. Thus. consider the tie-impasse between the three task operators in Figure 1-2. which leads to a subgoal

to break that tie. The ulumatec result of the problem solving in this suOgoal is a prcference (or preferences)

that resohes the tie impasse in the top space and terminates the subgoal. Then a production is automatically

created that will deliver that preference (or preferences) again in relevantly similar situations. If die system

ever again reaches a similar situation. no impasse will occur (hence no subgoal and no problem solving !n a

subspacc) because the appropriate preferences will be generated immediately.

This mechanism is directly related to the phenomenon called chunking in human cognition [63]. whence its

name. Structurally, chunflng is a limited form of practice learning. Howe'.cr. its effects turn out to be

wide-ranging. Because Icainiig is closely tied to the goai scheme and universal subgoaling - which provide

an extremely fine-grained, Lniforrnly structured. and comprehensive decumpositon of tasks on which the

learning can work - Soar 'eirns both operator implemcntatons and search control. In addition, the :om-

bination of the fine-grained task decomposition wth an ability to abstract away all but the rclcvant features

allows Soar to exhibit significant transfcr of learning to new situations. both within the same task and between

similar tasks. This ability to combine learning and problem solving has produced the most suiking ex-

perimental results so far in Soar [33. 36. 62].

P.GF 10 SOAR: AN ARCIIITECTLRE [OR GIVN[RAL INTil LIGENCF

2. The Soar Architecture

In this section we describe the Soar architecture systematically from scratch. depending on the preview

primanly to have establishcd the central role of problem spaces and producuon systerrs. We will continue to

use the eight puzzle as the example throughouL

2.1. The Architecture for Problem Solving

Soar is a problem-solving architecture. rather than just an architecture for symbolic manipulation within

which problem solving can be realized by appropriate control. This is possible because Soar accomplishes all

of its tasks in problem spaces,

To realize a task as search in a problem space requires a fixed set of task-implemcnateion Functions. involv-

ng the retrieval or generation of: (1) problem spaces. (2) proolem-space operators. (3) an initial state

representing the current situation. and (4) new states that result from applying operators to existing states. To

control the search requires a fixed set of search-control Funcuons. involving the selection of: (1) a problem

space. (2) a state from those directly available, and (3) a- operator to apply to the state. Together. the task

implementation and search-control Functions are sufficient for problem-space search to occur. The quality

and efficcncy of the p'oblem solving will depend on the nature of the selection functions.

The task-implementation and search-control functions are usually interleaved. Task implementation

generates (or re:rieves) new problem spaces, states and operators: and then search control selects among the

altcmati'es generated. Together they completely determine problem-solving behavior in a problem space.

Thus. as Figure 2-1 shows, the behavior of Soar on the eight puzzle can be described as a sequence of such

acts. Other important functions must be performed for a complete system: goal creation, goal selection, goal

termination, memory management and learning. None of these are included in Soar's search-control or
tusk-implementation acts. Instead. they are handled automatically by the architecture, and hence are not

objects of volition for Soar. They are described at the appropriate places below.

The deliberative acts of search-control together with the knowledge for implementing the task arc the locus

of intelligence in Soar. As indicated earlier in Figure 1-1, search-control and task-implementation knowledge

is brought to bear on each step of the search. Depending on how much search-control knowledge the

problem solver has and how effectively it is employed. the search in the problem space will be narrow and

focused. or broad and random. If focused enough, the behavior is routine.

Figure 2-2 shows a block diagram of the architecture that gcncrates problem-space search behavior. There

is a working "lemory that holds the cumplcte processing state for problem solving in Soar. This has three

components: (1) a context stack that specifies the hicrarchy of active goals. problem spaces, states and

f IlF SO.R ARCHITIECILRE PAGE iI

[Retrieve the eight-puzzle problem space]
Select eight-puzzle as problem space
[Generate Si as the initial state]
Select S1 as state
[Retrieve the operators Down, Left, Right]
Select Down as operator
[Apply operator (generate S2)]
Select Left as operator
[Apply operator (generate S3)]
Select Right as operator
[Apply operator (generate S4)]
Select S2 as state
[Retrieve the operators Down. Left. Right]
Select Down as operator
[Apply operator (generate S5)]
Select Left as operator
[Apply operator (generate S6)]
Select Right as operator
[Apply operator (generate S7)]
Select S7 as state

Figure 2-1: Problem-space trace in the eight puzzle. (Task implementation steps are bracketed.)

operators- (2) objects, such as goals and states (and their subobjects): and (3) prefercnces that encode the

procedural search-control knowledge. The processing structure has two parts. One is the production memory,

which is a set of productions that can examine an,' part of working meAr.y, dd new objects and preferences.

and augment existing objects, but cannot modify the context stack. The second is a fixed decision procedure

that examines the preferences and the context stack. and changes the context stack. The productions and the

decision procedure combine to implement the search-control functions. Two other fixed mechanisms are

shown in the figure: a working-memory manager that dcletes elements from working memory, and a chunk:ng

mechanism that adds new productions.

Soar is embedded within Lisp. It includes a modified version of the Ops5 production system language plus

additional Lisp code for the decision procedure. chunking. the workine-mcmory manager. and other Soar-

specific features. The Ops5 matcher has been modified to significantly tmpro'e the efficiency dctermining

satisfied productions (70). The total amount of Lisp code involved, measured in terms of the size of the source

code, is approximately 255 kilobytes - 70 kilobytes of unmodified Ops5 code. 30 kilobytcs of modified Ops 5

code. and 155 kilobytes of Soar code. Soar runs in CommonLisp. FranLLisp, !nwrlisp and ZetaList on most

of the appropriate hardware (Unix Vax, VMS Vax. Xerox D-machincs, S mbolics 3600s. TI Explorers, IBM

RTPCs, Apollo and Sun workstations).

PAGE 12 SOAR: AIN \RCIIITI:CTURE UOR Gi~lsERAi. IN F1 IOENCE

Chunking
Mechanism(1 I

Production Memory

P figurces 2 Arhtcrl stctur ofrknSoar.r

2..TeWorking MemoryMage

Working memory consists of a context stock. a sct of objecis linked to thc context stack, and preferences.

Figure 2-3 shows a graphic depiction of a small part of working memory during problcm solving on the eight.

puzzle. The context stack contains the hierarchy of active contexts (the boxcd structures). Each context

contains four Slots. onc for each of the different, roles: goal. problem space. sutc and operator. Each slot can

be occupied eithcr by an objcct or by the symbol undecided. thc latter meaning that no object has been

selected for that slot. The object playing thc role of the goal in a context is the current goal for that context:

the object playing thc role of the problcm-spacc is the current problem spacc for that context and so on. The

THlE SOAR ARCIITECRLRE P&GE 11

top context contains the highest goal in thc hierarchy. T'he goal in each context beclow the top context is a

subgoal of the context above It. In the figure. G1 is the current goal of the top context. P1 is the current

problem space. Si is the current state, and the current operator is undecided. In the lcwer context. G2 is the

current goal (and a subgoal of 01). Each context has only one goal for the duration of :ts existence. so the

context stack doubles as the goal suack.

P1 EIGH4T-PUZZLE
02binding Coll cell

btidng \ti1 nm
83 C2

itemf

02

03

->OPERATOR
sluoefgeaJipa I

Figure 2-3: Snapshot of fragment of working memory.

T'hc basic reprersentauion is objcct-ccnitercd. An object. such as a goal or a state, consists of a symbol, called

its identifier. and a set of augmentations. An augmentation is a labeled relation (the attribute) between the

object (the identifier) and adnother symbol (the value), i.e.. an idenuifier-attnibute-value triple. In the figure.

G1 is augmented wit~h 3 dcsircd statc. DI, which is itself' an object that has its own augrncntations

(augmentations arc directional, so 01 is not in an augmentation of D1. even though D1 is in an augmentation

of GI). The attribute symbol mnay also be specified as the idcnudfier of an objcct. Typically, however,

situations are characterized by a small fixcd set of attribute symbols - here. Impasse, name. operator,

binding. item. and role - that play no other role than to provide discriminating Information. An object may

P\Gfr 14 SOAR: ,N \RCHIlTCrUR: FOR GI;NiPRAj IN'rtI.I.IG:.C

have any number of augmentations, and the set of augmentations may change over rime. 2

* preference is a more complex data structure with a specific collection of eight architecturally-defined

relations between objects. Three preferences are shown in the figure, one each for objects 01. 02. and 03.

The preferences in the figure do not show their full structure (shown later in Figure 2-7). only the context in

which they are applicable (any context containing problem space PI and state Si).

The actual representation of objects in working memory is shown in Figure 2-4.3 Working memory is a set

- attempting to add an existing element does not change working memory. Each element in working

memory represents a single augmentation. To simplify the description of objects. we group together all

augmentations of the same object into a single expression. For example, the first line of Figure 2-4 contains a

single expression for the four augmentations of goal Gi. The first component of an object is a class name that

distinguishes different types of objects. For example, goal. desired, problem-space. and state are the class

names of the first four objects in Figure 2-4. Class names do not play a semantic role in Soar, although they

allow the underlying matcher to be more efficient. Following the class-name is the identifier of the object.

The goal has the current goal as its identifier. Following the identifier is an unordered list of attribute-value

pairs, each attribute being prefaced by an up-arrow (,r). An object may have more than one value for a single

attribute, as does state Si in Figure 2-4. yielding a simple representation of sets.

The basic attribute-value representation in Soar leaves open how to represent task states. As we shall see

later, the representation plays a key role in determining the generality of learning in Soar. The generality is

maximized when those aspects of a state that are functionally independent are represented independently. In

the eight puzzle, both the suucture of the board and the actual tiles do not change from state to state in the

real world. Only the location of a dle on the board changes. so the representation should allow a tile's location

to change without changing the structure of the board or the tiles. Figure 2-5 contains a detailed graphic

example of one representation of a state in the eight puzzle that captures this structure. The state it represents

is shown in the lower left-hand corner. The board in the eight puzzle is represented by nine cells (the 3x3

square at the bottom of the figure), one for each of the possible locations for the dles. Each cell is connected

via augmentations of type cell to its neighboring cells (only a few labels in the center are actually filled in). In

addition, there are nine tiles (the horizontal sequence of objects just above the cells), named 1-8. and blank

(represented by a small box in the figure). The connections between the tiles and cells are specified by objects

called bindings. A given state, such as Si at the top of the figure, consists of a set of nine bindings (the

2The extent of the memory structure is nccessarily limited by the physical resources of the problem solver. but currcntly this is

assumcd not to be a problem and mechanisms have not been created to deal with it.

3Some basic noazion and structure is inhented trom OpS5.

: 1Fi1 SOAR ARCIITFCTURE PAGE tS

(goal G1 'problem-space P1 'state Si toperator undecided 'desired 01)
(desired 01 tbinding 081 tbinding 062

(problem-space PI 'name eight-puzzle)
(state S1 tbinding 81 82 83 ...)
(binding 81 tcell C1 'tile T1)
(cell C1 'cell C2 .
(tile T1 tname 1)

(binding 82 tcell C2 ...)
(cell CZ 'cell C1 ...

(binding 83 ...

(preference 'object 01 'role operator 'value acceptable
'problem-space P1 'state SI)

(preference 'object 02 'role operator Tvalue acceptable
'problem-space P1 'state Si)

(preference 'object 03 'role operator 'value acceptable
'problem-space P1 'state Si)

(operator 01 ...)
(operator 02 ...)
(operator 03 ...)

(goal G2 tproblem-space P2 'state undecided toperator undecided
'supergoal G1 trole operator 'impasse tie
'item 03 'item 02 'item 01)

(problem-space P2 'name selection)

Figure 2-4: Working memory represcntauon of the structure in Figure 2-3.

horizontal sequence of objects above the ules). Each binding points to a tile and a cell: each tile points to its

value: and each cell points to its adjacent cells. Eight puzzle operators manipulate only the bindings. the

representauon of the cells and tiles does not change.

Working memory can be modified by: (1) productions (2) the decision procedure, and (3) the workin3-

memory manager. Each of these components has a speciric function. Productions only add augmentations

and preferences to working memory. The decision procedure only modifies the context stack. The working-

memory manager only removes irrelevant contexts and objects from working memory.

2.3. The Processing Structure

The processing structure implements the functions required for search in a problem space - bnnging to

bear task-implemntation knowledge to generate objects. and bringing to bear search-control knowledge to

select between alternative objects. The search-control functions are all realized by a single generic control act:

the replacement of an object in a slot by another object from the working memory. The representation of a

problem is changed by replacing the current problem space with a new problem space. Rcturning to a prior

state is accomplished by replacing .he current state with a preexisting one in working memory. An operator is

selected by replacing the current operator (often undecided) with the new one. A step in the problem space

occur when the current operator is applied to the current state to produce a new statc, which is then selected

to replace thc current sute in the cuntCXL

PAGE 16 SOAR: \N .\R.IIrIFc-RF IOR GINI:RAI IN FI I IG FiN(-[-

SNING

B6 18 8 41a (87 ~'8 (99)
TILE TIL TIL TILE TILE TILE T IL E-, TL E TILE

7 628 3 4 5 J

~CEL

Figure -5: Graphic representaoon of an eight puzzle state.

A replacement can take place anywhere in the context stack. e.g., a new state can replace the state in any of

the contexts in the stack. not just the lowest or most immediate context but any higher one as well. When an

object in a slot is replaced, all of the slots telow it in the context are rcinitualized to undecided. Each lower

slot depends on the values of the higher slots for its validity, a problem space is set up in response to a goal: a

state functions only as part of a problem space: and an operator is to be applied at a state. Each context below

the one where the replacement took place is terminated because It depends on the contents of the changed

context for its existecnce (recall that lower contexts contain subgoals of higher contexts).

The replacement of context objects is driven by the decision cycle. Figure 2-6 shows thrce cycles. with the

first one expanded out to reveal some of the inner structure. Each cycle involves two disunct parts. First.

dunng the elaboration phase, new objects. new augxnentations of old objects. and preferences are added to

working memory. Then the decision procedure examines the accumulated preferences and the context stack,

and either it replaces an existing object in some slot. i.e., in one of the roles of a context in the context stack. or

it creates a subgoal in response to an impasse.

2. 1IEt SOAR ARCHIITECTURE PAGE I?

DECISION 1 DECISION 2 DECISION 3

Elaboration Deciiion 4,/,/
4,Phase 4, Procedure 44 ,~ , 444
4,,,44 I ,,44' ,,444

Gather
Z_ Preferences

Quiescence
Interpret - Context

Preferences Object

Impasse

Create
SubgoaJ

Figure 2-6: A sequence of decision cycles.

2.3.1. The elaboration phase

Rased on the cu.rcnt contents of working memor, he elaboration phase adds new objects. dugmcntauons

of existing objects and preferences. Elaborations are generated in parallel (shown by the vertical columns of

arrows in Figure 2-6) but may still require multiple steps for completion (shown by the honzontal sequences

of elaborations in the figure) because information generated dunng one step may allow other elaborations to

be made on subsequent steps. This is a monotonic process (worKin-memor elements are not deleted or

modified) that continues until quiescence is reached because there are no more claborations to be generated_"

The monotonic nature of the elaboration phase assures that no synchronizauon problems will occur during

the paraile generation of elaborations. However, because this is only s)ntactic monotonicity - data struc-

cures are not modified or deleted - it leaves open whether semantic conflicts or non-monctonicity will occur.

The elaboration phase is encoded in Soar as productions of the form:
If C and C 2 and... and Cm then add A A ... A

The C, arc conditions that examine the context stack and the rest of the working memory. whi!e the A are

acttwns that add augmentations or preferences to memory. Condition patterns arc based on constants, van-

ables, negatons. patern-ands, and disjunctions of constants (according to the conventions of Ops5

producuons). Any object in working memory can be accessed as long as there cxists a chain of augmcntations

4In practice. the c!aboration phase reaclies quiescencc qu:ckl (less Utan ten c ccs). howccr if quicscence Ls noi reached aflicr a
prcspccificd number of iicraitiins It) p lcai , M). the ciaboraion phase icrmmnaic and hc dcc'%on proccdurc is enlercd_

LMI

PA ~G 1 18 SOAR AN A R(itiri'C7- RI FOR CutNFRA I. I NTFlLLGFNCF

and preferences from thc context stack to thc object. An augmcnhation can be a link In the chain if ;C~S

identifier appears either in a context or in a previously linked augmentation or preference. A preference can

be a link in the chain if all the identifiers in its context R-flds (defined in Section 2.3.:' appear in the chain.

iThis property of linked access plays an important: role in working-mcmrrory mana~eme flL subguai termination.

and chunking. by allowing the architecture to determine which augmenaions and preferences are accessible

from a context. independent of the specific knowledge encoded in elaborations.

A production is successtiully instartitaied if the conjunction of its conditions is satisified with a consistent

b~flding of vanables. There can be any numher ofconcurrcntly successful instantiations of a production. All

successful insanilacions of all productions fire concurrently (simulated) during the claboration phase. The

only conrlict-rcsoluuon pninciple in Soar is refractory inhibitin - an inswrntiation of a production is Fired

only once. Rather than having control exerted at Lhe level of productions biy conflict. resolution. controi ;s

ev'erted at the level of problem solving (by the decision procedure).

2.3.2. The decision procedure

T'he decision procedure is executed when the elaboration phase reaches quiescence. It determines which

slot im the context stack should have its content replaced, and by which object. This is accomplished by

processing the context stack from the oldest context to the newest (ie.. from the highest goal to the lowest

one). Within each context, the roles are considered in turn, starti with the problem space and continuing

through the state and operator in order. The process terminates when a SOl is found ror whith action is

required. Making a change to a higher slot results in the lower slots being reinitialized to unde,:ided. thus

making the processiog of lower slots irrelevant.

T'his ordenng on the set of slots in the contCe stack defines a Fixed desirabilit) ordenng between changes

for different slots: it is alw,-ys more desirable to make a change higher up. The processing for each slot is

drivcn by Lhe knowledge symbolized in the preferences in working memorn at the end of the elaboration

phase. Each preference is a statement about the selection of an object f-or a slot (or set of slots). Three

pirimitive concepts are available to make preference statcentrs:5

acceptability: A choice is to be considered.

rejection: A choicc is not to be made.

desirability: A choice is better than (worse than. indifferent to) a reference choice.

1'hrc is in additioniai prcfcrencc tr pc -hat, ai lows uie t~atement.i~ that 1~oc 0 0CSFor an operator siot an bc cpiurL din naraic1 Ths
Ls a specldi option I,) explore paraiicl promsirn6 -where muiUpic slots arc crcaitcj for paaile! opcraiors For more ,cwIs. scc hic Soar
rnjnual 1301

2 l 1IIt. SOAR ARCIIrIECTU'RE P.GF D

Together, the acceptability and rejection preferences determine the objects flrom which a selection will be

made. and the desirability preferences partially order these objects. Thc result of proccssing the slot. if

succ,,ssful. is a single object that is: new (not currently selected foi ,hat slot): acccptabic not rejected: and

more desirable than any other chuicc that is likewise new, acceptable and not rejected.

A preference encodes a statement about the selection of an object for a slot into a set of attnbutes and

values, as shown in Figure 2-7. The object is specified by the value of the object atrhute. The slot is

specified by the combination of a role and a context. The role is either the problem space. the state or the

operator: a goal cannot be specified as a role in a preference because goals are determined by the architecture

and not bN deliberate decisions. The context is specified b., the contents of its four roles: goaj. pro'biem space.

state and operator. A class of contexts can be specified by leaving unspecified the contents of one Or more of

the roles. For example, if only the problem space and state roles arc specified. the prefcerence wll be reie\ ant

for all goals w h the given problem space and state.

The desirability of the object for the slot is specified by the value attnbute of a preference. which takes one

of seven alternatives. Acceptable and reject cover their corresponding concepts: the others - best, better.

indifferent. worse, and worst - cover the ordering by desirability. All assertions about ordenng locate the

given object relative to a reference object for the same silo Since the reference object always conc,.rns the

same slot, it is only necessary to specify the object. For better. worse, and some indifferent preferences, the

reference object is another object that is being considered for the slot, and it is given b% the reference attribute

of the preference. For best. worst. and the remaining indifferent preferences. the reference object is an
abstract anchor point. hence is implicit and need not be given. Consider an example where there are two

eight-puzzle operators, named up and left, being considered for state Si in goal G1. If the idenur'ier for the

eight-puzzle problem space is P1, and the identifiers for up and ieft are 01 and 02. then the following

preference says that up is better than left:
(preference tobject 01 trole operator tvalue better treference 02

tgoal Gi tproblem-space P1 tstate SI)

The decision procedure computes the best choice for a slot based on the preferences in working memor

and the semantics of the preference concepts. as given in Figure 2-8. The preference scheme of Figure 2-8 is a

modification of the straightforward application of the concepts of acceptability, rejection and desirability.

The modifications arise from two sources. The first is independence. The elaboration phase consists of Lhe

contributions of independently firing individual productions. each expressing an independent source of

knowledge. There is no joint constraint on what each asserts. These separate expressions must be combined,

and the only way to do so is to conjoin them. Independence implies that one :hoice cin be (and often is) both
acceptable and rejected. For a decision to bc possible with such preferences, rejection can not be

PAG L 20 SOAR. . ..\R I I ECI'URE FOR GEN ERAL IN rLLLII:NCLI

AttribUte

Object Tie object that is to occupy the Slot

Role The role the object is to occupy
(problem space, state, or operator)

Goal

Slot
Problem space

Context in which the preference applies
State (A set of contexts can be specified)

Operator

Value acceptable The obje:t is a candidate for the given tole

reject The object is not to be selected

best The object is as good as any object can be

better The object is better than the reference object

indifferent The object is indifferent to the reference object
if there is one. otherwise the object is indifferent

to all other indifferent objects

worse The object is worse than the reference object
(the inverse of better)

worst The object is as bad as any object can be

(the inverse of best)

Reference The reference object for order comparison

Figure 2-7: The encoding ot preferences.

-acceptable. which would lead to a logical contradiction. Instead. rejection ovemdes acceptable by eiminat-

ing the choice from consideation. Independence also irplies that one choice can be both better and worse

than another. This requires adrniuing conflicts of desirability between choices. Thus. the desirability order is

quite weak, being ransiLuv-., but not irrcflcxivc or antisymmetnc. and dominaies must be disunguishcd from

simply better - namely, dominaton implies better without conflicL Thc possibility of conrlicts modifies the

notion of the mraximal subset of a SE .o be those elcmcnts that no other elcemen duminate.. For example. in

the swt of {x. y) if(x > y) and (y > x) then the maximal subset contains both x and y.

The second source of modifications to the decision procedure is :ncom.pIctenesa. The claboration phase will

dcliver some collecuon of preferences. Thcsc can be silent on an) particular fact. hc. ma. asscrt Lhat x is

better than y. and that y is rejected. but say nothing about whether x is accepuible or noL or rcjcced or not.

lndccd. an unmentioned object could h bettcer than an-, that arc mcnuoncd. No ,)nstraint on conip'ctcncss

-2 IL SOAR ,\RCIIIECTRE PAGE 1

Primitive predicates and functions on objects, x, y, z.
current The object that currently occupies the slot
acceptable(x) x is acceptable
_reject(x) x is rejected
(x > y) x is better than y
(x < y) x is worse than y (same as y > x)
(x - y) x is indifferent to y
(x >) y) x dominates y a (x > y) and -'(y > x)

Reference anchors
indifferent(x) - Vy [indifferent(y) =o (x - y)]
best(x) - Vy [best(y) - (x - y)] A -best(y) A -'(y > x) = (x > y)]
worst(x) = Vy 'worst(y) - (x - y)] A [-worst(y) A -(y (x) - (x < y)]

Basic p,operties
Desirability (x > y) is transitive. but not complete or antisymmetric
Indifference is an equivalence relationship and substitutes over >

(x > y) and (y - z) implies (x > z)
Indifference does ntQ substitute in acceptable, reject, best, and worst.

acceptable(x) and (x - y) does nDt imply acceptable(y).
reject(x) and (x - y) does not imply reject(y), etc.

Default assumption
All preference statements that are not explicitly mentioned and not

implied by transitivity or substitution are not assumed to be true

Intermediate definitions
considered-choices ({xEobjects I acceptable(x) A -reject(x))
maximal(X) a (x(X J Vy -(y >> x))
maximal-choices a maximal(considered-choices)
empty(X) = -3x{X
mutually-indifferent(X) a Vx.yEX (x - y)
random(X) = Choose one element of X randomly

select(X) z if currentCX then current else ranaom(X)

Findl choice
empty(maximal-choices) A -reject(current) = final-choice(current)

mutually-indifferent(maximal -choices) A -empty(maximal-choices)

final-choicg(select(maximal-choices))

Impasse
empty(maximal-choices) A reject(current) - impasse
-mutually-indifferent(maAimal-choices) = impasse(maximal-choices)

Figure 2-8: The scmanucs of preferences.

PAGE 2Z SOAR: AN ,\RCIIIII C'LrRF i:OR GI:NVRAI IN IILI.IGFNCL

can hold, since Soar can be in any state of incomplete knowledge. Thus. for the dccisiont proccdure to get a

result. assumptions must be made to close the world logically. The assumptions all flow from t.he principle

that positive knowledge is required to state a preference - to state that an object is acceptable. rejected or has

some desirability relation. Hence. no such assertion should be made by defaultI Thus. objects are not

acceptable unless explicitly acceptable; ;re not rejected unless explicitly rejected: and are not ordered in a

specific way unless explicidy ordered. To do otherwise without explicit support is to rob the explicit state-

mens of asseruonal power.

Note, however, that this assumption does allow for the existence of preferences implied by the explicit

preferences and their scmanucs. For example. two objects are indifferent if either there is a binary

indifferent-preference containing them. there is a transitive set of binary indifferent-prefercnces containing

both of them. they are both in unary indifferent-preferences. they are both in best-preferences, or they are

both in worst-preferences.

The first step in processing the preferences for a slot is to determine the set of choices to be considered.

These are objects that are acceptable (there are acceptable-preferences for them) and are not rejected (there

are no reject-preferences for them). Dominance is then determined by the best. beaer. worst, and worse

preferences. An objett dominates another if it is better than the other (or the other is worse) and the latter

object is not better than the former object. A best choice dominates all other non-best choices, except those

that are explicitly better than it through a better-preference or worst-preference. A worst choice is dominated

by all other non-worst choices. except those that are explicitly worse than it through a better or worst

preference. The maximai-choiccs are those that are not dominated by any othcr objects.

Once the set of maximal-choices is computed. the decision procedure dcternincs the final choice for the

slot. The current choice acts as a default so that a givcn slot will change only if the current choice is displaced

by another choice. Whenever there are no maximal-choices for a slot, the current choice is maintained, unless

the current choice is rejected. If the set of maximal-choices are mutually indifferent - that is. all pairs of

elements in the set are mutually indiffcrent - then the final choice is one of the elements of the seL The

default is to not change the current choice. so if the current choice is an element of the SCL then it is chosen:

otherwise, one clement is chosen at random.6 "he random selection is 'usufled because therc is posiuve

knowledge, in the form of preferences, that explicitly states that it does not matter ,hich of the mutually

;ndiffercnt objects is selected.

If the decision proccdure dctcrrmincs that the value of the slut should be changed - that is, there is a final

6;n placc of a randor, '% ecl on therC is an opt,on 'n Snai (o alVow the uscr to clct from oie s, of ..ndirr, rcnt choices

2. nIE cSOAR ARCIIITECT.RE PAGE 23

choice different from thc current object in the slot - the change is installed. all of the lower slots are

reinitialized to undecided, and the elaboration phase of the next decision cycle ensues. If the current choice is

maintained. then the cXision procedure corsiders the next slot lower in the hierarchy. If either there is nu

final choice, or all of the slots have been exhauscd, then the decision procedure fails and an inpasse7 occurs.

In Soar. four impasse situations are distinguished:

1. Tie: This impasse arises when there are multiple maximal-choices that are not mutually indif-
ferent and do not conflict. These are competitors for the same slot for which insufficient
knowledge (expressed as preferences) exists to discriminate among them.

2. Conflict: This impasse arises when there are conflicting choices in the set of maximal choices.

3. No-change: This impasse arises when the current value of every slot is maintained.

4. Rejecuon: This tmpasse arises when the current choice is rejected and there are no maximal
choices: that is. there are no viable choices for the slot. This situation typically occurs when all of
the adternauves have b%,'i reed and found waning.

The rules at the bottom of Figure 2-8 cover all but the third of these, which involves cross-slot considerations

not currently dealt with by the preference semantics. These four conditions are mutually exclusive, so at most

one impasse will arse from executing the decision procedure. The response to an impasse in Soar is to set up

a subgoal in which the impasse can be resolved.

2.3.3. Implementing the eight puzzle

Making use of the processing structure so far described - and postponing the discussion of impasses and

sublgoals until Section 2.4 - it is possible to describe the implemcntaion of the eight puzzle in Soar. This

implementation consists of both task-impiementation knowledge and search-control knowledge. Such

knowledge is eventually to be acquired by Soar from the external world in some representation and convert(d

to internal forms, but until such an acquisition mechanism is developed. knowledge is simply posited of Soar.

encoded into problem spaces and search control, and incorporated directly into the production memory.

Figures 2-9, 2-10. and 2-11 list the productions that encode the knowledge to implement the eight puzzle

tak.8 Figure 2-9 contains the productions that set up things up so that problem solving can begin, and detect

when the goal has been achieved. For this example we assume that initally the current goal is to be

augmcnted with the name solve-eight-puzzle, a description of the initial state. and a description of the desired

state. The problem space is selected based on the description of the goal. In this case, production

select-eight-puzzle-problem-space is sensitive to the name of the goal and suggests eight-puzzle as the

Thc (cnn .as first ucd in tis scnic in Rcpair hcory 19). wc had onginally uscd hc tcrm difficult 1291

8Thcse demcnptions of Jhe producuons arc an abstracuon of the actual Soar producuois. .which we ivcn in the Soar manual :301

PAGE: 24 SOAR: AN ARCIIII FCrLRF FOR GiLNERAL INTELLIGETNCE

problem space. The iniLial sriate is determined by thc current goal drnd the problem space. Production

deriiic-initial-state translates the description of the initia! state in the goal to be a state in the eight-puzzle

-problem space. Similarly, define-final-state translates the description of the desired svate to be a state in the

eight-puz.le problem spacc. By' providing different iniual or desired staes, different eight puzzle problems

can be attempted. Productioin i'eect-eight-puzzle-success compares the current state. tile by tilc and cell by

cell to the desired state. If they match. the goal has been achieved.

select-ihiit-sW~e:
I r the curmen gal is soi-eIiht-puuile. then make an acceptabic-preference for eiglfl-puzzie as the current problem
Spame.

define-ia, nal-siate:
If' the current problem space is cighe-puuie. then crete a state in this problem space based on the description in the
goal and make an acccpctabl:-prcl~crence tor this suame

dtflne-firi,2-state:
if the current problem spao! is eight-puzzle. then augment the goal with a desired~ suit in Lts problem space based
on the diaipoon in thc goaL.

detict-eighi-puzxe-success:
If the current problem space is eight-puzzle and the current state matche - ; desired state of the current goal in
each ctlL then mark the st with st~oew

Figure 2-9: Productions that set up the eight puzzle.

The final aspect of the task dlefinlidon is thc implemcntation of the operators. For a given problem, many

different realizations of essentially thc same problem space may be possible. For the eight puzzle. there could

be twenty- four operators. one for each pair of adjacent cells between which a tile could be moved. In such an

implementation. all operators could be made acceptable for each state. followed by the rejection of those that

cannot apply (because the blank is not in the appropriate place). Alternatively, only those operators that are

applicable to a state could be made aicceptable. Another implementation could have four operators, one for

each direction in which Liles can be moved into the blank cell: up. down, left. and right. Those operators that

do not apply to a state could be rejected.

In our LmplcmenitaUon of the eight puzzle. there is a single general operator for moving a tile adjacent to the

blank cell into the blank cell. For a given state, an instance of this operator is created for each of the adjacent

cells. We will refer to these insuntiated operators by the direction they move their associated tile: up, down.

left and righL To create the operator instantiations requires a single production, shown in Figure 2-10. Each

operator is represented in working memory as an objec that is augmented with the cell containing the blank

and one of the cells adjacent to the blank. When an instantiated operator is created. an acccptablc-prefcrence

is also created for it in the context containing the eight-puzzle problem space and the state for which the

instantiated operator was created. Since operators arc crcated only if the), can apply. an additional production

that rejccts inapplicable operators is not required.

An operator is applied when it is selected by the decision prcexdure for an operator role - sc!ccting an

2. nirt SOAR ARCIIfTr-CitRE PAGE L5

insliaalwe-opmnior
ir the curret probemspaceis eight-puzzle and cte current state has a ule in a cell adjacent to the blank's cell. then
create an a-ceptabte-preferenc for&a newly created opemitor that will movc the ule into cte blank's cell

Figure 2-t10: Production for creating eight puzzle operator instantiauons.

operator produces a context in which productions associated with the operator can execute (they contain a

condition that tests that the operator is selected). Whatever happens while a given operator occupies an

operator role comprises the attempt tw apply that operator. Operator productions are just elaboration produc-

uion-s. used for operator application rather than for search control. They can create a new state by linking Ut to

thc current context (as the object of an acceptable-prefercnce). and then augmenting IL To apply an instan-

tiated operator in the eight puzzle requires the two productions shown in Figure 2- 11. When the operator is

seleCcd for an operator slot, production create-new-state will apply and create a new state with the tie and

blank in their swapped cells. The production copy-unchanged-binding copies pointers to the unchanged

bindings between tiles and ce!'&.

creae w-state:
If the current problem space ts eight-puzzle. then create an acceptable- preference for a newly created state. and
augment the new state with bindtngs that have switched the tiles from the current st~ate that are changed by the
current operawor.

copy- unc haiapd-bieding:
If the current problem spac as eight-puzzle and there i an acceptable-preference for a new stt.then copy from
the current state each wtniung that is unchangeda by the current opertitor

Figure 2-11: Productions for applying eight puzzle operator inscanuations.

The seven productions so far described comprise the task-implemnentation knowledge for the eight puzzle.

With no additional productions. Soar will start to solve the problem, though in an unfocused manner. Given

enough time it will search until a solution is found.9 To make the behavior a bit more focused, search-control

knowledge can be added that guides the selection of operators. Two simple search-control productions are

shown in Figure 2-12. Avoid-undo will avoid operators that move a tile back to its prior cell.

Mea-opvrator-select is 3 means-ends- analysis hcuristic that prefe-rs the selection of an operator if it moves a

tile into its desired cell. This is not a foul-proof heuristic rule, and will sometimes lead Soar to make an

incorrect move.

aidl- usdo:
If the current problem space is eight-puzzle. then create a worst- p ieference for the operatcr that will m~ove the ale
that was moved by Uie operator that created the currTent state.

mea-operalor-sleciom:
If the current problem space is eight-puzzie and an operator will move a ule into is ceii ;n the desiredI suatr. then
make a test-preference fot that opotrator.

Figure 2- 12: Search-control productions for the eight puzzle.

9 The default search is depth-first %6here the choices between cumpeting operators arc rude randomnly Intiniitc loops do not arise
bccausc the choices are mnade non-dccrminiSLiealiy

PAGE 26 SOAR: AN ARCHIITECTURE FOR GENERAL INI rLI.IGLNCE

Figure 2-13 concains a Erace of the initial behavior using these nine productions (the top of the figure shots

the states and operator involved in this trace). The trace is divided up into the activity occurring during each

of the first five decision cycles (plus an iritialization cycle). Within each cycle, the activity is marked

according to whether it took place within the elaboration phase (E), or as a result of the decision procedure

procedure (D). The steps within the elaboration phase are also marked, for example, line 4.1E represent-

activity occurring during the first step of the elaboration phase of the fourth decision cycle. Each line that is

part of the elaboration phase represents a single production firing. Included in these lines are the

production's name and a description of what it does. When more than one production is marked the same, as

in 4.2E. it means that they fire in parallel during the single elaboration step.
S1 S2 0l

2 8 3 down 2 83 1 2 3
1 6 4 1 4 8 4
7 T 7 6 5 7 6 5

0 GI is the current oal G1 is already augmented with solve-eight-puzzle

I select-Sight-puzzle-space Make in acceptable-preference for eight-puzzle

ID Select aiant-Duzzlp as problem space

ZE define-final-state Augment goal with the desired state (01)
ZE define-inltial-state Make an acceptable-preference for Si
20 Select SI as state

2.lE instantlate-operator Create 01 (down) and an acceptable-preference for it
3.1E instantiate-operator Create 02 (right) and an acceptaole-preference for It
3.1E instantiate-operator Create 03 (left) and an acceptaoie-preference for it
3.2E mea-operator-selection (01-down) make a beSt-preference for down
30 Select Ol (down) as operator

4.1E create-new-state Make an accepta&ble-preference for SZ. swap bindings
4.ZE copy-unchanged-binding Copy over unmodified bindings
4.ZE copy-unchanged-binding
4 ZE Copy-unChanged-binding
4 ZE copy-unchanged-binding
4AZE cooy-unchangod-binding
4.ZE cuopy-uncfanged-binding
4.ZE copy-unchenged-binding
40 Select SZ as state

5E Instantiate-operator Create 04 (down) and an acceptable-preference for it
5E instantiate-operator Create 05 (right) and an acceptaole-prefarence for it
SE instantiate-operator Create 06 (left) and an acceptable-preference for it
SE instantiate-operator Create 07 (up) and an acceptacle-preference for it
5E Avoid-undo (07-up) Hake a worst-preference for up
50 Tie impasse. create subgoal

Figurc 2-13: Trace of inidal eight puzzle problem solving.

The trace starts where the current goal (called G1) is the only object defined. In the first cyclc. the goal is

2. 1llE SOAR .\RCIITECTURE PAGE 27

dugmCntcd with an acccptablc-prcfcrcnec for eight-puzzle for the problem-space role. The decision proce-

dure then selcets eight-puzzle as the current problem space. In cycle 2. the initial state. SL. is created with an

acceptable-preference for the state role, and the problem space is augmented with its c¢erators. At the end of

cycle 2. the decision procedure selects S1 as the current state. In cycle 3. operator instances, with correspond-

ing acceptable-preferences. are created for all of the tiles that can move into the blank cell. Production

iea-operator-selection makes operator 01 (down) a best choice, resulting in its being selected as the current

operator. In cycle 4, the operator is applied. First. production create-new-state creates the preference for a

new state (S2) and augments it with the swapped bindings, and then production copy-unchanged fills in the

rest of the structure of the new state. Next, state S2 is selected as the current state and operator instances are

created - with corresponding acccptable-prefercnces - for all of the tiles that can move into the cell that

now contains the blank. On the next decision cycle (cycle 5). none of the operators dominate the others, and

an impasse occurs.

2.4. Impasses and Subgoals

When attempting to make progress in attmaning a goal, the knowledge direcly available in the problem

space (encoded in Soar as productions) may be inadequate to lead to a successful choice by the decision

procedure. Such a situation occurred in the last decision cycle of the eight puzzle example in Figure 2-13.

The knowledge directly available about the eight puzzle was incomplete - it did not specify which of the

operators under consideration should be selected. In general. impasses occur because of incomplete or

inconsistent informaton. Incomplete information may yield a rejection, tie, or no-change impasse, while

inconsistent information yields a conflict impasse.

When an impasse occurs. returning to the elaboration phase cannot deliver additional knowledge that might

remove the impasse, for elaboration has already run to quiescence. Instead. a subgoal and a new context is

crcated for each impasse. By responding to an impasse with the creation of a subgoal. Soar is able to

deliberately search for more information that can lead to the resolution of the impasse. All types of

knowledge. task-implementation and search-control, can be encoded in the problem space for a subgoal.

If a tie impasse between objects for the same slot arises, the problem solving to select the best object will

usually result in the creation of one or more dcsirabilitv preferences. making the subgoa a ;ocus of search-

control knowledge for selecting among those objects. A tie impabst c wcer two objects can be resolved in a

number of ways: one object is found to lead to the goal, so a best prcfci..cc is created: one object is found to

be better than the other, so a better preference is created: no difference is found between the objects. so an

indifferent preference is created, or one object is found to lead away from the goal. so a worst preference is

created. A number of different problem solving strategies can be used to gencrte these outcomes. including:

.jrther elaboration of the ucd objects (or the other objects in the context) so that a dcuiled comparison can be

PAGE 28 SOAR: AN ARCIIIIFCTURL FOR GI:\LRAI. INTEI.1 IGENCE

made: look-ahead searches,to determine the effects of choosing the competing objects: and dnaiogical map-

pings to other situatons where the choice is clear.

If a no-change impasse arises with the operator slot filled, the problem solving in the resulting subgoal will

usually involve operator implementation. terminating when an acceptable-preference is generated for a new

state in the parent problem space. Similarly, subgoals can create problem spaces or initial states when the

required knowledge is more easily encoded as a goal to be achieved through problem-space search. rather

than as a set of elaboration productions.

When the impasse occurs during the fifth decision cycle of the eight-puzzle example in Figure 2-13. the

following goal and context are added to working memory.
(goal G2 tsupergoal Gi timpasse tie tchoices multiple 'role operator

titem 04 05 06
+problem-space undecided 'state undecided toperator undecided)

The subgoal is simply a new symbol augmented with: the supergoal (which links the new goal and context

into the context stack): the type of imposse: whether the impasse arose because there were no choices or

muliple choices in the maximal-choices set: the role where the impasse arose: the objects involved in conflicts

or ties (the items): and the problem-space, state, and operator slots (initialized to undecided). This infor-

mation provides an initial definition of the subgoal by defining the conditions that caused it to be generated

and the new context. In the following elaboration phase. the subgoal can be elaborated with a suggested

problem space. an initial state, a desired state or even path constraints. If the situauon is not sufficiendy

e!aborated so that a problem space ird inial state can be selected. another impasse ensues and a further

subgoal is created to handle it.

Impasses are resolved by the addition of preferences that change the results of the decision procedure.

When an impasse is resolcd. allowing problem solving to proceed in the context. the subgoal created for the

impasse has completed its task and can be terminated. For example, if there is a subgoal for a ue impasse at

the operator role. it will be terminated when a new preference is added to working memory that either rejects

all but one of the competing operators, makes one a best choice, makes one better than all the others, etc. The

subgoal will also be terminated if new preferences change the state or problem-space roles in the context,

because the contents of the operator role depends on the values of these higher roles. If there is a subgoal

created for a no-change impasse at the operator role - usually because of an inability to implement the

operator directly by rules in the problem space - it can be resolved by establishing a preference for a new

state, most likely the one generated from the application of the opcrator to the current state.

In gencral, any change to the context at the affected role or above will lead to the terminaion of the

2 HIIESOAR ARCIlIrCThR1 PAGE 29

subgoal. Likewise. a changcin any of the contexts above a subgoal will lead to the termination of the subgoal

because its depends on the higher contexts for its existence. Resolution of an impasse terminates all goals

below iL

When a subgoal is terminated, many working-memory elements are no longer of any use since they were

created solely for internal processing in the subgoal. The working-memory manager removes these useless

working-memory elements from terminated subgoals in essentially the same way that a garbage collector in

Lisp removes inaccessible CONS cells. Only the results of the subgoal are retained - those objects and

preferences in working memory that meet the criteria of linked access to the unterminated contexts, as

defined in Section 2.3.1. The context of the subgoal is itself inaccessible from supergoals - its supergoai link

is one-way - so it is removed.

The architecture defines the concept of goal terminauon. not the concept of goal success or failure. There

are many reasons why a goal should disappear and many ways in which this can be reflected in the

preferences. For instance, the ordinary (successful) way for a subgoal implementing an operator to terminate

is to create the new result state and preferences that enable it to be selected (hence leading to the operator role

becoming undecided). But sometimes it is appropriate to terminate the subgoal (with failure) by rejecung the

operator or selecting a prior state, so that the operator is never successfully applied.

Automatc subgoal termination at any level of the hierarchy is a highly desirable, but generally expensive,

feature of goal systems. In Soar. the implementation of this feature is not expensive. Because the architecture

creates all goals. it has both the knowledge and the organizaion necessary to terminate them. The decision

procedure iterates through all contexts from the top. and within each context, through the different roles:

problem space, state and operator. Almost always, no new preferences are available to challenge the current

choices. If new preferences do exist, then the standard analysis of the preferences ensues, possibly deter-

mining a new choice. If everything remains the same, the procedure continues with the next lower slot: if ,he

value of a slot changes then all lower goals are terminated. The housekeepirg costs of termination, which is

the removal of irrelevant objects from the working memory, is independent of how subgoal termination

occurs.

2.5. Default Knowlbdge for Subgoals

An architecture provides a frame within which goal-oriented action takes place. What action occurs

depends on the knowledge that the system has. Soar has a basic complement of task-indcpcndcnt knowledge

about its own operaton and about the attainment of goals within it that may be takcn as an adjunct to the

architecture. A total of fifty-two productions embody this knowledge. With it, Soar cxhibits reasonable

default behavior: without it (or other task knowledge). Soar can floundcr and fill into an infinitely dccp series

PAGE 30 SOAR: AN -,RCIIIrECTL, 1:OR GUNrR,AI. INTlI..GP.NCF.

of impasses. We dcscribe here the default knowledge and how it is represented. All of this knowledge can be

over-ridden by additional knowledge that adds other preferences.

Common search-control knowledge. During the problem solving in a problem space, search-control rules

are available for three common siruations that require the creation of preferences.

1. Backup ,-om a failed state. If there is a reject-preference for the current state, an acceptable-
preference is created for the previous state. This implements an elementary form of backtracking.

2. Make all operators acceptable. If there are a fixed set of operators that can apply in a problem
space, they should be candidates for every state. This is accomplished by creating acceptable-
preferences for those opcrators that are direcdy linked to the problem space.

3. No operator retry. Given the deterministic nature of Soar. an operator will create the same result
whenever it is applied to the same state. Therefore. once an operator ha" created a result for a state
in some context, a preference is created to reject that operator whenever that state is the current
state for a context with the same problem space and goal.

Diagnose impasses. When an impasse occurs. the architecture creates a new goal and context that provide

some specific information about the nature of the impasse. From :here, the situation must be diagnosed by

search-control knowledge to initiate the appropriate problem-solving behavior. In general this will be task-

dependent. conditional on the knowledge embedded in the entire stack of active COFiiexts. For situations in

which such task-dependent knowledge does not exist, default knowledge eXIStS to determine what to do.

1. Tie impasse. Assume that additional knowledge or reasoning is required to discriminate the items
that caused the uc. '17he selection problem space (described below) is made acceptable to work on
this problem. A worst-preference is also generated for the problem space. so that any other
proposed prcblem space will be preferred.

2. Conflict impasse. Assume that additional knowledge or reasoning is required to resolve the
conflict and reject some of the items that caused the conflict. Ihe selection problem space is also
the appropriate space and it is made acceptable (and worst) for the problem space role.

3. No-change impasse.

a. For goal, problem space and state roles. Assume that the next higher object in the context is
responsible for the impasse. and that a new path can be attempted if the higher object is
rejected. Thus. the default action is to create a reject-preference for the next higher object in
the context or supcrcontcx " The default action is taken only if a problem space is not
selected for the subgoal that was generated because of the impasse. This allows the default
action to be ovemdcn through problem solving in a problem space sele:tcd for the no-
change impasse. If there is a no-change impasse for the top goal. problem solving is halted
because there is no higher object to reject and no further progress is possible.

10There has been Iide experincce A.Ih conflict subltoals so far Thus. htde confidence can be placed in the tLreiuens of conflicLs and
thc *ill noi be discussed lunher

. riIE SOAR ARCIIITECTLRE PAGE 31

b. For opemtor role. Such an inpasse can occur for multiple reasons, The operator could be

too complex to be performed directly by productions. thus needing a subspace to implement
it, or it could be incompletely specified, thus needing to be iscantiaccd. Both of these
require task-specific problem spzzes and no appropriate default action bascd on them is

available. A third possibility is that the operator is inapplicable to the given state, but [hat it

would apply to some other state. This does admit a domain-independent response, namely

attempting to find a state in the same problem space to which the operator will apply

(operator subgoaling). This is taken as the appropriate default response.

4. Rejection impasse. The assumption is the same as for (nonoperator) no-change subgoals: the

higher object is responsible ind progress can be made by rejecting it. If there is a rejection

impasse for the top problem space, problem solving is halted because there is no higher object.

The selection problem space. This space is used to resolve ties and conflicts. The states of the selection

space contain the candidate objects from the supercontCxt (the items associated with the subgoal). Figure 2-14

shows the subgoal structure that arises in the eight puzzle when there is no direct search-control knowledge to

select between operators (such as the mea-operator-selection production). Initially, the problem solver is at

the upper-left state and must select an operator. If search control is unable to uniquely determine the next

operator to apply. a tie impasse arises and a subgoal is created to do the selecdon. In that subgoal. the

selection problem space is used.
initial des i red
state state

task goalow

eight puzzle1 41 48

Lprotlem space7 576 57

~down>left
down~right

left-right

operator tie ovalute-object evaluate-object eva'uate-object
subgoal (down) (left) ri ht

select ion

downl let--Irighta-I

downleftright \

evualtion 2 2 8 3 2 8 3 7 8 - 7 8 3

eight puzzle 1 64 1 4 1 6 4 1 6 4 1 64--w1 6 4

problem space 7 7 5 7 5 75

Figure 2-14: The subgoal su"ucture for the eight pu/.zle.

LM

P.GF 32 SOAR: AN ARCIIITFCTURE FOR GEN[R,\L iNrELLIGFNCE

The one operator in the selection hpace. evaluate-objectE is a general operator that is instantiated with each

tying (or conflicting) object: that is. a unique evaluate-object operator is created for each instantiation. Each

state in the selection space is a set of evaluations produced by evaluate-object operators (the contents of .hese

states is not shown in the figure). In the figure. an evaluate-ooject operator is created for each of the tied

operators: down. left, and right. Each evaluate-object operator produces an evaluation that allows the crea-

Lion of preferences involving the objects being evaluated. This requires task-specific knowledge, so either

productions must exist that evaluate the contending objects, or a subgoal will be created to perform this

ealuauon (see below for a default strategy for sucil an evaluation). Indiffercnrt-preferences are created for all

of the evaluate-object operators so that a selection between them can be made without an infinite regression

of te impasses. If all of the evaluate-object operators are rejected. but still no selection can be made. problem

solving in the selection problem space will have failed to achieve the goal of resolving the impasse. When this

happens, default knowledge (encoded as productions) exists that makes ail of the tied alternatives indifferent

(or. correspondingly, rejects all of the conflicting alternatives). This allows problem solving to continue.

The evaluation subgoal. In the selection problem space. each evaluate-object operator must evaluate the

item with which it is instantiated. Task-dependent knowledge may be available to do this. If not. a no-change

impasse will occur, leading to a subgoal to implement the operator. One task-independent evaluation tech-

nique is lookahead- try out the item temporarily to gather information. This serves as the default. For this,

productions reconstruct the task context (i.e.. the supercontext that lead to the te). making acceptable-

preferences for the objects selected in the context and augmenting the new goal with information from the

original goal. In Figure 2-14, the original task problem space and state are selected for the evaluation

subgoals. Once the task context has been reconst.ructed. the item being evaluated - the down operator - is

selected (it receive- a best-preference in the evaluation subgoal). This allows the object to be mned out and

possibly an evaluation to be produced based on progress made toward the goal.

When knowledge is available to evaluate th statc in the L .k 3pd.ve, the new state produced in the evalua-

tion subgoal will receive an evaluation, and that value can be backed up to serve as the evaluation for the

down operator in this situation. One simple eight-puzzle evaluation is to compute the number of ules that are

changed relative to the locations in the desired state. A value of I is assigned if the moved Ole is out of

position in the original state and in position in the result state. A value of 0 is assigned if the moved Ole is out

of position in both states. A value of-I is assigned if the moved tle is in position in the original state and out

of position in the result state. When an evaluation has becn computed for down. the evaluation subgoal

terminates. and then the whole process is repeated for the other two operators (left and right). These

evaluations can be used re generate preferences among the competing operators. Since down crcates a state

with a better evaluation than the other operators. better-prcferences (signified b:, > in the figure) are created

T ill: SOAR ARChIITECTURE PAGE 33

for down. An indiffercnt-prefecrnce (significd by = in the figure) is alsu created for Icft and right because

they have equal cvaluations. The preferences for down lead to its selection in the onginal task goal and

prol-lem space. terminating the tie subgoai. At this point down is reapplied to the initial state, the result is

sciccted and the process continues.

Figure 2-15 shows, in a state-space representation. two steps of the search that occurs within the eight puz.zle

problem space. The distinctive pattern of moves in Figure 2-15 is that of steepest-ascent hill climbing, where

the state being selected at each step is the best at that level according to the cvaluation function. These states

were generated in the attempt to solve many different subgoals. rather than from the adoption of a coor-

dinated method of hill climbing in the original task space. Other types of search arise in a similar way. If no

knowledge to evaluate states is available except when the goal is achieved, a depth-first search arises. If it is

known that ever-y oLher move is made by an opponent in a two-player game. a mini-max search emerges. The

emergence of methods directly from knowledgc in Soar is discussed further in Section 3.2.

283
164
7 5

town rihright

2 3 2 3 28 3283

1-4-+ 1 1 6 4 1 1 6 4 =--1

1 8 4=0 =0 1 4 ='1
7 6 5 7 ~

Figure 2-15: A trace ofstcepc:i asccnt hill climbing.

2.6. Chunking

Chiunking is a learning scheme for organizing and remembering ongoing experience automatically on a

continuing basis. It has been much studied in psychology [7, 12. 43. 50] and it was dc~clopcd into an explicit

learning mechanism within a producuon-systern architecture in prior work [35. 61. 631. The current chunking

scheme in Soar is directly adapted from this latter work. As defined there, it was a process that acquired

chunks that generated t.he results of a goal. gi-en the goal and its parameters. The parameters of a oal were

P\GE 34 SOAR: AN ARCIiiTiC1'URIL 'OR GEN|RAL. INTri UGF.NC E

defined to be those aspects of the system existing prior to the goal's creation that were examincd during (he

processing of the goal. Each chunk was represented as a set of three productions. one that encoded the

parameters of a goal, one that connected thir encoding in the presence of the goal to (chunked) results. and

one that decoded the results. Learning was bottom-up: chunks were built only for terminal goals - goals for

which there were no subgoals that had not already been chunked. These chunks mnproved task performance

by subsututing efficient productions for complex goal processing. This mechanism was shown to work for a

set of simple perceptual-motor skills based on fixed goal hierarchies [61] and it exhibited the power-law speed

improvement characteristic of human practice 1501. Currently. Soar does away with one feature of Ehis

chunking scheme. the three-production chunks, and allows greater flexibility on a second, the bottom-up

nature of chunking. In Soar, single-production chunks are built for either terminal subgoals or for every

subgoal. depending on the user's option.

The power of chunking in Soar stems from Soar's abilil to generate goals automaticalh for problems in

any aspect of its problem-solving behavior: a goal to select among alternatives leads to the creation of a

chunk-production that will later control search: a goal to apply an operator to a state leads to the creation of a

chunk-production that directly implements the operator. The occasions of subgoals are exactly the conditions

where Soar requires learning, since a subgoal is created if and only if the available knowledge is insufficient

for the next step in problem solving. The subgoal is created to find the necessary knowledge and the

chunking mechanism stores away the knowledge so that under similar circumstances in the future, the

knowledge will be available. Actually. Soar learns what is necessary to avoid the impasse that led to the

subgoal. so that henceforth a subgoal will be unnecessary, as opposed to learning to supply results after the

subgoal has been created. As search-control knowledge is added through chunking, performance improves

via a reduction in the amount of search. If enough knowledge is added. there is no search: what is ieft is an

efficient algorithm for a task. In addition to reducing search within a single problem space. chunks can

completely eliminate the search of entire subspaces whose function is io make a search-control decision or

perform a task-implementation function (such as applying an operator or determining the initial state of the

task).

2.6.,1. The chunking mechanism

A chunk production summarizes the processing in a subgoal. The actions generate those working-memory

elements that eliminated the Impassc responsible for the subgoai (and thus terminated the subgoal). The

conditions test those aspects of the current task that were relevant to those actions being performed. The

chunk is ,;.raied when rhe subgoal terminates - hat ir when all of the requisitc information is vailablc. 1'he

chunk's actions are based on the results of the subgoal - those working-mcmor einments created in the

subgoal (or its subguals) that are accessible from a supergoal. .\n augmentation is a result if its Identifier

eiL.her existed before the subgoal was created. or is in another result. A prcfcrcnce is a resuit if all of its

2 IIIFSOAR .\RCIIITE('TLRE PAGE 35

specified contcxt objcct, (goal. problem space. state and operator) either existed before the subgoal was

created. or are in another result.

The chunk's conditions are based on a dependency analysis of traces of the productions that fired during the

subgoal. The traces are accumulated during the processing of the subgoal. and then used for condition

determination at subgoal termination time. Each trace contains the working-memory elements that the

producton matched (condition elements) and those it generated (action elements),-" Only productions that

actually add something to working memory have their traces saved. Productions that just monitor the state

(that is. only do output) do not affect what is learned, nor do productions Lhat attempt to add working-

memory elements that already exist (recall that working memory is a set).

Once a trace is created it needs to be stored on a Ust associated with the goal in which the production fired.

However. determining the appropnatc goal is problematic in Soar because elaborations can execute in parailei

for any of the goals in the stack. The solution comes from examining the contexts tested by the prcducton.

The lowest goal in the hierarchy that is matched by conditions of the production is taken to be the one

affected by the production finng. The production will affect the chunk! created for that goal and possibly, as

we shall see shortly, the higher goals, Because the production firing is independent of the lower goals - it

would have fired whether they existed or not - it will have no effect on the chunks built for those goals.

When the subgoal terminates, the iesults of the subgoal are factored into independent subgroups. where

two results are considered dependent if rhey are linked together or they both have links to a third result

object. Each subgroup forms the basis for the actions of one production. and the conditions of each produc-

tion are determined by an independent dependency analysis. The effect of factoring the result is to produce

more productions. with fewer conditions and actions in each. and thus more generality than if a single

production was created that had all of the actions together. For each set of results. the dependency-analysis

procedure starts by finding those traces that have one of the results as an action element. The condition

elcmcnts of these traces are then divided up into those that existed prior to the creation of the subgoal and

those that were created in the subgoal. rhose created prior tn the subgoal become conditions of the chunk.

The others are then recursively analyzed as if they were results, to determine the pre-subgoal elcrnents that

were responsible for their creation.

Earlier 'ersions of chunking in Soar [36] inplicitly cmbodied the assumption that problem soing was

perfect - if a rule fired in a subgoal, then that rule must be relevant tr, the generation of the subgoal's results.

]If Lhere Ls a condiuon that ILcs for the ab,,cnce ofta workine-m:n-or) clmcnt a copy of thai nc.atcd ,ondioon is s ',ed in ,h.P "race
with it3 vanaolcs insLanualcd from ,he %aluc, .jourid e1sewhcrc in the producuon

PAGF 36 SOAR: AN ARCIIITICTLR[I OR GIFNE3RAI INVI':L.LIGFNCE

The conditions of a chunk were based on the working-memory elements matched by all of the productions

that fired in the subgoal. When the assumption was violated, as it was when the processing involved searches

down paths that led to failure, overly specific chunks were created. By working backward from the results.

the dependency analysis includes only those working-memory elements that were matched by the productions

that actually led to the creation of the results. Working-memory elements that are examined by productions.

but that tum out to be irrelevanL are not included.

A generalization process allows the chunk to apply in a future situation in which there arc objects with the

same descnptions. but possibly different identifiers. Once the set of chunk-productions is determined, they

are generalized by replacing the identifiers in the working-memory elements with vanables. Each idenufier

serves to tie together the augmentations of an objctL and serves as a pointer to the object. but carries no

meaning of its own - in facL a new identifier is generated each time an object is created. Constant symbols

- those that art not used as the identifiers of objects - are not modified by this vanablizaton process. only

the identifiers. All instances of the same identifier are replaced by the same vanable. Different identifiers are

replaced by different variables which are forced to match distinct identifiers. This scheme may sometimes be

in error, creating productions that will not match when two elements just happen to have the same (or

different) identifiers, but it always errs by being too constraining.

The final step in the chunk creaion process is to pcrforrn a pair of optimizadons on the chunk productions.

The first optimization simplifies productions learned for the implementation of a complex cerator. As pan

of creating the .1ew state. much of the subsruceture of the pnor state may be copied over to the new state. The

chunk for this subgoal will have a separate condition, with an associated action. for each of the substructures

copied. The chunk thus ends up with many condition-action pairs that are idenucal except for the names of

the variables. If such a production were used in Soar dunng a new situation, a huge number of instantiations

would be created, one for every permutation of the objects to be copied. The optimizauon eliminates this

problem by removing the conditions that copy substructure from the original production. For each type of

substructure being copied. a new production is created which includes a single condition-action pair that will

copy substructures of that type. Since all of the actions are additive, no ordercring of the actions has to be

mainaned and the resulting set of rules will copy all of the substructure in parallel.

The second optimization is to order the production conditions in an attempt to makc the matcher faste:.

Each condition acts like a query - returning all of the working-memory elements that match the condition -

and the overall match process returns all of the production instantiations that match the conjuncive queries

specified by the condition sides of the productions. [he efficiency of such a match process is heavily

dependent on the order of the qucnes [74). By automatically ordering the cunditions II Soar. the number of

2. 711E SOAR ARCIIITECMtRE PAGE 37

intermediate instantiacions of a production is greatly reduced and the overall cfflkcncy improved."2

2.63.2. An example of chunk creation

Figure 2-16 shows a Uwrae of the productions that contribute to a chunk built for the evaluation subgoal in

the eigha-puzzle example discussed in Section 2.5. The first six decision cycles lead up to the subgoal that
* implements evaluate-object(down) (evaluate the eighE-puzzle operator down). G01 is the iniual goal. G2 is the

subgoal to eliminate a tie berw:en operators. and (G3 is the subgoal to implement evaluate-object(down).
* Included in this trace are the names of those productions fired during subgoal G3 that provide traces used by

the dependency analysis. Listed for each of these rule firings are the condition elements that existed PdOr to

the goal. and which therefore become the basis of the chunk's conditions: and the ection elements that are

linked to preexisting structure, and which therefore become the basis of the actions of the chunk.

o G: 61 (Solve the eight puzzle]
1 P: PI (Eight-Puzzle]
2 S: SI

3 : 62 (Tia impasse, operators (01[down] OZ[left) 03(right))
4 P: P2 (Selection)
6 S: SS1
5 0: 04 (evaluate-object[01(down)))
7 G: G3 (No-cnange impasse. operator)

*valselect-role-oporstor ;win elements tested to
(goal G2 'operator 04) ;establish the context
(operator 04 'name evaluate-object tdesired 01 ;in which operator Ol[down)

+role operator 'supereperator 01 ;Can be evaluated
tsuperproblem-space P1 'superstate SI)

8P: PI (Eight-Puzzle)
g S: Si

10 0: 01 [down]
create-new-state

(problem-space Pt ?nme eight-puzzle) :wi elements tested to
(operator 01 'niame move-tile 'adjacent-cell Cl) .apply operator that moves
(state Si binding 81 'binding 82) ;the tile in CI into the
(binding 01 tIle TI ?cell C2) ;cell with the blank (CZ)
(tile Ti 'name blank) ji is the blank
(binding 82 'tile T2 'cell CI) ;TZ is the tile in cell CI

It S; S2
evalstate-plus-ons

(problem-space Pt 'name eight-puzzle) ;wm elements tested to
(operstor 04 'name evailuate-object :create evaluation for

'deisired DI 'evaluation El) ;State based on detecting
(desired 01 'binding 091 I) ;that the operator
(binding 081 'cell CZ 'tile TZ) :has moved a tile into
(cell CZ 'cell CI) ;its desired position

(evaluation El 'value 1) ;the result/action

12 0. 06 (eivaluate-object(02cleft)]

Figure 26-16: Partial production trzice of an cight-puulic e%aluadon subigoal.

12Th'e details of the reordering aJgonUhm are not unpolanl. here. ciccpi that the most reccnt version (Sept. 86). by N~n Scaies and
John Laird. is aimosi as efrctic as ordernng by hand.

PAGE 38 SOAR: AN ,RCiIIIrECTLRLE FOR GENERAL INTELLIGENCE

Once the evaluation fubgoal is generated, the production eval~sClect-role-operaor fires and creates

acceptable-preferences for the original task problem space (P1), the original task state (S.). and the operator

being evaluated (01). The production also augments goal G3 with the task goal's desir'd state (D). Many of

the production's conditions match working-memory elements that are a part of the definition of the

evaluate-object operator. and hus existed prior to the creation of subgoal G3. These test that the subgoal is to

implement the evaluate-object operator, and they access identifiers of super-objects so that the identifiers can

be included in the preferences generated by the actions of the production. Following the selection of P1 and

Si. a production instantiation fires to generate a best-preference for operator 01 for this specific goal.

problem space, and state. This production firing is not shown because it does not add new conditions to the

chunk.

The problem solving continues with the selection of 01 and the generation of a new state (S2). The

unchanged bindings are copied by a rule that is not shown because it does not affect the subgoal's resulL S2 Is

selected and then evaluated by production eval"state-plus-one. which augments object El with the value of

the evaluation. This augmentation is a result of the subgoal because object El is linked to the state in the

parent context. Immediately afterwards, in the same elaboration phase. a production generates a reject-

preference for operator 04. the evaluate-object operator. This production has no effect on the chunk built for

subtoal G3 because it looks only at higher contexts. Once the reject-preference is created. operator 04 is

rejected, another operator is selected, the no-change unpase is eliminated, subgoal G3 is terminated, and a

chunk is built.

Only certain of" me augmentations of the objects are included in the chunk: namely. those that played an
explicit role in attaining the resulL For instance, only portions of the state (SI) and the desired state (DI) are

included. Even in the substructure of the state, such as binding B2. its tle (T) has only is identifier saved

and riot its value (6). because the actual value was never tested. The critical aspect to be tcsted in the chunk is

that the ule appears as a ilc-augmentaton of both bindings B2 and DBI (a binding in the desired state. D).

The exact value of the tile is never tested in the subgoal, so it is not included in the chunk. The conditions

created from these working-memory elements will test: that a ule (in this case T2) in the current state (SI) ib

in a cell adjacent to the cell contwining the blank: and that the ceil containing the blank is the cell in which the

tile appears in the desired state. In other words, the chunk fires whenever the cvaluate-object operator is

selected in the selection problem space and the operator being evaluated will move a tile into place.

The action of the chunk is to create an evaluation of 1. This value is used to create preferences by compar-

irg it to the values produccd by evaluating other operators. The other caluation vaiues arise when a ule is

neither moved into nor out of its desircd cell (0). or when a ulc is move out of its desired cell (-1). Symbolic

values could have been used in place cf the numeric ones. as long as there arc addiuonal productions to

compare the alucs and create appropnatc preferences.

:. nISOAR ARCHIITECTURE PAGF 39

Figure 2-17 contains t~he one-production chunk built for this example in the format used as input to Soar.

which is similar to thaE used for OpsS productions. Each production is a list. consisting of a name. the

condi'tions. the symbol-), and the actions. Each condition is a template to be matched against working-

memory elements. Symbols in a production of the form 'X...Y' (c.g.. <GI>) are variables, all others are

constants. The actions are templates for the generation of working-memory elements. In building the chunk.

all idenriers from the original working-memory elements have been replaced by variables. The constants in

the working-memory elements. those symbols that have no furt~her augmentations (evaluate-objec.

eight-puzzle, blank), remain as constats in the conditions. Identifier vanablization is also responsible for thc

additional negation predicates in the specification of objects (SI> and (82>. such as J 0> <Bi) <B2> I in

object <SI>. This is a conjunctive test that succeeds only if <B2> can be bound to a value that is not equal to

the valuc bound to (131> thus forcing the objects that are bound to the two variables to be different.

(sp p0038
(goal (GZ> toperator (04>)
(operator (04> tname evaluate-object frole operator

?supo rp rob lem- space (P1> tsuperstate (Si>
tsuperoperator (01> levaluation (El> ',desired (01>)

(problem-space (P1) rname eight-puzzle)
(operator (01> radjacent-call (Cl>)
(state (Si> tbinding <81> tbinding (0<) 81> <82>)
(binding (81> tile (0I) tcell <C2>)
(tile <TI) tname blank)
(binding <82> tcell (0) (CZ) (C>) ttile (0) (Ti) <T2>)
(call <CZ> tcell (Cl>)
(desired (01> tbinding <081>)
(binding icell <C2> ttile (TZ)

(evaluation (El> tvalue 1))

Figure 2-17: Production built by chunking Che evaluation subgoal.

PAGE 40 SOAR: AN ARCHIITECTURE I-OR GENFRAL INTELLIGENCE

3. Discussion
The Soar architecture has been fully described in the previous section. However. the consequences of an

architecture are hardly apparent on surface eaxninauon. The collection of tasks that Soar has accomplished,

exhibited in Figure L provides some useful information about viability and scope. However. simply that Soar

can perform these tasks - that the requisite additional knowledge can be added - is not enurely surprising.

The mechanisms in Soar are variants of mechanisms that have emerged as successful over the history of Al

research. Soar's accomplishing these tasks does provide answers to other questions as well. We take up some

of these here. This discussion also attempts to ensure that Soar's mechanisms and their operation are clear.

We limit ourselves to aspects that will shed light on the architecture. The details of Soars behavior on specific

tasks can be found in the references.

The first question we take up is what Soar is like when it runs a real task consisting of muluple aspects with

varying degrees of knowledge. The second quesdon is how Soar embodies the weak methods, which form the

foundation of intelligent action. The third question involves learning by chunking.

3.1. Combining knowledge and problem solving

RI is a well-known large knowledge-intensive expert system - consisting of 3300 rules plus a data base of

over 7000 component descriptions, circa 1984 - used at Digital Equipment Corporation to configure Vax and

PDP-1i computers [3. 41]. Ri-Soar is an implementation in Soar of a system that exhibits about 25% of the

functionality of R1. using the same knowledge as obtained from RI's Ops5 rules (65. 75]. This is a big enough

fraction of RI to assure that extension to a complete version would be straightforward, if desired. 3 The part

covered inc!udes the most involved activity of the system. namely. the assignment of modules to backpianes.

taking into account requirements for power, cabling, etc.

Ri-Soar was created by designing a set of problem spaces for the appropriate subpart of the configuration

task. The problem spaces were added to the basic Soar system (the architecture plus the default knowledge,

as described in the previous section). No cAsk-dependent search-control knowledge was included. The

resulting system was capable of accomplishing the configuration subtask. although with substantial search.

Ri-Soar's behavior was intially explored by adding various anounLs of scarch control and by turning chunk-

ing on and off. Later experiments were run with variations in the problem space; and their organizauon.

Thus. RI-Soar is a family of systems. used to explore how to combine knowledge and problem solving.

In the eight puzzle there was a single operator which was realized cnurcly by productions within a single

problem space. However. the configuration task is considerably more complicated. In an cxtcnded vesion of

3lIndced. a revision of R I iS underway ai DEC (hat draws on he problcm siructuic dcvclopcd for R l-Soar j76]

3. DISCUSSION PAGE 41

R1-Soar [751. which covered about 25% of RI (compared to about 16% in the initial version [65]), there were

thirty-four operators. Twenty-six of the operators could be realized directly by productions. but eight were

complex enough to require implementation in additional problem spaces. Figure 3-' shows the nine task

spaces used in the extended version of Ri-Soar. This structure, which looks like a typical task-subtask

hierarchy, is generated by the implementation of complex operators. In operation. of course, specific in-

stances of these problem spaces were created, along with instances of the selection problem space. Thus.

Figure 3-1 represents the logical structure, not the dynamic subgoal hierarchy.

Initialize Order Unibus Priority

Configure Cabinet

Configure System . Configure CPU --o. ConfigureBox

Configure

Backplane

-j Configure Unibus

-)w Configure Module

Figure 0-1: Task problem spaces for the extended version of R1-Soar (75].

The total set of task operators is given in Figure 3-2. Many operators are generic and have instanuatons. a

feature of the operator in the eight-puzzle task as well. However. in RI-Soar. some of the instanuations of the

same operator have quite distinct character. Two problem spaces. configure-cpu and configure-unibus, make

use of the same generic operators (although they instantiate them diffcrently), such as configurcd-cabineL

This accounts, for Figure 3-1 not being a pure hierarchy, with both configure-cpu and configurc-unibus

linking to the same four subspaces.

The task decomposition used by Ri-Soar is very different than the one used by Ri. Soar is a problem

solver capable of working in lean spaces by extensive search. RI is a knowledge-intensive shallow expert

system. in which as much direct recognition and as little search as possible is done. It is built around a very

large pre-established subtask hierarchy (some 321 subtasks. circa 1984) plus a database containing tcmplates

PAGE42 SOAR: AN AkClITFCTLRE FOR GFNFRAL INTELLIGENCE

PROBLL -SPACE OPERA TOR

configure-system initialize order
configure CPU

configure unibus
instance , place modules in sequence
instance a maximum module placement

snow output

initialize-order get component data from database

assign unlbus-module priority numbers

unibus-priority sequence unibus modules

configure-cpu configure cabinet
Instance a Cpu cabifat -4

configure box
instance * cpu box

configure backplane
instance - Cpu backplane

configure module
instance • maximum module placement

unused component
go to previous slot

configure-unibus configure cabinet
instance - unibus cabinet
instance - empty cabinet

configure box
instance a unibus box
Instance a empty box

configure backplane
instance - unibus backplane
instance - ampty backplane
instance - unibus repeater
instance • special bacKplane

configure module
instance * place modules in sequence
instance x maximum module placement

unused component
remove backplane

instance - replace backplace with repeater
instance - put backplane in next box

configure-cabinet configure cabinet
add component to order

configure-box configure box
next cabinet
install unibus repeater
add component to order

configure-backplane configure backplane
next section
next box
install unibus repeater
add component to order

configure-module configure module in special backplane
configure module with one board
configure module with more than one board
next slot

Figure 3-2: Task operators for the extended version of Rl-Soar [75].

for the variety of components available. Ri-Soar was given a set of basic spaces that corresponded closely to

the physical manipulauons used in configuring computers. "Thc component templates are encoded as rules

that irmplement the operator that adds components to the order. It thus has an appropriate physical model m

terms of which to do basi: rcasoning about the task.

The use of basic spaces in the initial ecrion of RI-Soar was deliberate. to demonstrate that a gcreral

3 DISCUSSION PAGE 43

problem solver (Soar) could operate in knowledge-intensive mode: and could also mix search-intensive and

knowledge-intensive modes as appropriate. dropping back to search whenever the task demanded it (and not

by predesign). To do this. Soar was given only the task-implementation knowledge - the basic spaces,

desired states. and path constraints - without heuristic search c.ontrol. Expertise was then to be given by

adding search control. Thus, in one small configuration task the base system (no domain-dependent search

control at all) took 1731 decision cycles to solve the task: a version with a small amount of search control took

243 cycles: and a version with a large amount of search control (equal to that in the original RI) took 150

cycles [65].14 One surprise in this experiment was how litrie search control was involved in moving to the

knowledge-intensive versions. Thus. the base system contained a total of 232 rules (for basic Soar plus the

configuration task): only two productions were added for the small amount of search control: and only 8

more productions for the large amount of search control (for a total of 242). Thus. thcre is no coriespondence

at all between the number of productions of Ri and the producuons of Rl-Soar.

The version of R1-Soar described in Figures 3-1 and 3-2 extended the coverage of the system beyond the

initial version and modified the problem spaces to allow it to run larger orders more efficiently. The

previously separate rules for proposing and checking the legality of an operator (using acceptable and reject

preferences) were combined into a single rule that only made the operator acceptable when it was legal. Also.

additional domain-dependent search-control productions were added (a total of 27 productions for the nine

spaces). These changes converted RI-Soar to a system somewhat more like the onginal Rl. Figure 3-3 shows

the performance of this system on a set of 15 typical orders. This figure g .-es a brief dcscripuon of the size of

the ordcr (Components) and the number of decision cycles taken to complete the order (Decisions). From

the pcrforrnanc . figures we see that the times range from one to three minutes and reflect the amount of work

that has to be done to process the order, rather than any search (approximately 60 decisions -t 7

decisions/component). The extended version of Ri-Soar pretty much knows what needs to be done. These

times are somewhat slower than the current version of RI (about a factor of 1.5. taking into account the speed

diffcrences of the Ops5 systems involved). This is encouraging for an experimental system. and more recent

improvements to Soar have improved its performance by a factor of 3 [70].

3.2. Weak Methods

Viewed as behavior, problem-solving methods are coordinated patterns of operator applications that attempt

to auain a goal. Viewed as behavioral specifications, they arc typically given as bodies of Qode that can control

behavior for the duration of the method, where a selection process determines which method to use for a

4 The.b runs took about :9. 4 and 2.5 minutCS respmiccl. on a S)mboiics 3600 running at appromirratcl, one dccsion c,cle per
second Each derision cycle compnscs about 8 producuon fir.ns sprcad over two cycic of the elaboration phase (because o he parallel
finng of rules)

PAGE44 SOAR- AN ARCIIITLCTLRE FOR GENERAL IN rELLIGENCE

Tasks
TI TZ T3 T4 T5 T6 T7 T8 T9 TI0 Til T12 T13 T14 T15

Components 5 5 2 7 5 8 2 3 5 5 15 2 11 7 9

Oec6slons 88 78 78 196 94 100 70 74 88 90 173 78 124 123 129

Figure 3-3: Performance of the extended version of RI-Soar (without learning).

given attempt. In Soar. methods are specified as a collection of search-control producuons within a set of

related problem spaces - a given iask problem space and its subspaces. Analogously to a code body, such a

collection can be coordinated by making the search-control productions conditional on the method name

(plus perhaps other names for relevant subparts). where method selection occurs by establishing the method

name in working memory as part of a goal or state. Thus, methods in Soar can be handled according to the

standard scheme of seicung among prc-established specifications.

Method behavior may also emerge as the result of problem solving being guided by the appropnate

knowledge. even though that knowledge has not been fashioned into a deliberate method (however specified).

Behind every useful method is knowledge about the task that justfies the method as a good (or at least

possible) way to attain the goal. As bodies of code. methods are simply the result of utilizing that kiowledge

at some prior design time, in an act of program synthesis. The act of program synthesis brings together the

relevant knowledge and packages it in such a wvay that it can be directly applied to produce behavior. What

normally prevents going directly from knowledge to action at behavior Lime is the difficulty of program

synthesis. However. under special conditions direct action may be possible. hence avoiding the task of

program synthesis into a stored method, and avoiding the pre-choice of which knowledge is relevant for the

task. Instead. whatever knowledge is relevant at the time of behavior is brought to bear to control behavior.

Although no prepackaged method is being used, the behavior of .he system follows the pattern of actions that

characterize the method.

This is the situation with Soar in rebpect to the weak methods 15 - methods such as depth-first search, hill

climbing, and means-ends analysis. This siuauon arises both because of the nature of the weak methods and

because of the nature of Soar. First, the weak methods involve relauvely litde knowledge about the task [47j.

Thus. the generation of behavior is correspondingly simple. Second. all the standard weak methods are built

on heuristic search. Thus. realizing their behavior within Soar. which is based on problem spaces. is re!atvely

straightforward. In addiuon. search control in Soar is realized in a production system with an addiuie

elaboraton phase and no built-in conflict resolution. Thus, new search control can be added without regard

to the existing scarch control, with the guarantee that it will get considered. Of course. the relevant total

15We have illcd Lhis a universalw veak mcthod. on ihe anaugv Lhat Soar bchaves according to any wcak mctL.hod. giv.en Lhe appropriate
knowlcdge about dhe LaSk (311

3 DISCUSSION PAGE 45

search-control knowledge does interact in the decfision procedure, but according to a rclatively clean seman-

tics that permits clear establishment of the role of each bit of added knowledge.

Our previous example of steepest ascent hill climbing in Figure 2-15 provides an illusurauon of these u,.ree

factors. First., the central knowledge for hill climbing is simply that newly generated states can be compared

to each other. The comparison may itself be complex to compute, but its role in the method is simple.

Second. the other aspects of hill climbing, such as the existence of operators, the need to select one. etc., are

iinplicit in th; pr,.,blem-spacc structure or Soar. They do not need to be specified. Third. the knowledge to

climb the hill can be incorporated simply by search-control productions that add preferences for the (,.erators

that produce better states. No other control is necessary and hence complex program synthesis is not re-

quircd. In short. Soar can be induced to hill climb simply by providing it the know ledge of a specific function

that permits states to be compared plus the knowledge that an operator that generates a better state is to be

preferred.

Methods require two types of knowledge. The first is about aspects of objects or behavior. Examples are

the position of the blank square in the eight puzzle or the number of moves taken since the blank was in the

center. Such knowledge says nothing about how a system should behave. The second type of knowledge

provides the linkage from such objective descriptions to appropriate action of the system. For the weak

methods in Soar this takes the especially simple form of single productions that have objective task descnp-

tions as condit!ons and produce preferences for behavior as actions. No other coordinative productions are

required, such as cuing off the name of the method or expihidCy asserting that one action should follow

another as in a sequential program. Sometimes several con.r.l 2roductions are in.olhed in producing the

behavior of a weak method, but each are independent. providing links between 'omC aspect of A Sib1A,4Uo

and prcferences for action. For instance a depth-limited lookahead has one production that deals with the

evaluation preferences and one that deals with enforcing the depth constraint. Soar would produce ap-

propriate (though different) behavior with any combination of these productions. Another imiportant deter-

miner of a method may be specialized task structure rather than any deliberate responses encoded in search

control. As a simple instance, if a problem space has only one operator. which generates new states that are

candidates for attaining the task. then generate-and-test behavior is produced. -,'.hout any search control in

addition to that defining the cask.

The methods listed in Figure 3-4 constitute the aggregate that have been realized n the various versions of

Soar. mostly in Soar 1 [31] and Soar 2 (291, where deliberate explorations of the universal weak method were

conducted. The purpose of these explorations was to demonstrate that each of the weak methods could be

rcalizcd in Soar. Most of the weak methods were realized in a gencral form so that it was clear that the

method could be used for ary task for which the appropriate knowlcdgc was a adhlc. For a few weak

PAGE46 SOAR. AN ARCIIITECTURF FOR GENERAL INTELLIGENCE

methods, such as analogy by implicit generalization and simple abstraction planning, the method was realized

for a single task, and more general forms are currenly under investigation.

The descriptions of the weak methods in '7gure 3-4 are extremely abbreviated, dispensing with the operat-

ing environment, initial and terminaung conditions, side constraints, and degenerate cases. All these things

are part of a full specification and sometimes require additional (independent) control productions. Figure

3-5 shows graphically the structural relationships among the weak methods implemented in Soar 2 (29]. The

common task st-uc.-ure and knowledge forms the trunk of a tree. with branches occurring when there is

different task structure or knowledge available, making each leaf in the tree a different weak method. Each of

the additions as one goes down the tree are independent control productions.

These simple schemes are more than just a neat way to specify some methods. The weak methods play a

central role in attaining intelligence, being used whenever the sitauon becomes knowledge lean. This occurs

in all situations of last resort, where the prior knowledge, however great, has finally been used up without

attaining the task. This also occurs Ln all new problem spaces, which are necessarily knowledge lean. The

weak methods are also the essential drivers of knowledge acquisition. Chunking necessarily implies that there

exists some way to attain goals before the knowledge has been successfully assimilated ki.e.. before it has been

chunked). The weak methods provide this way. Finally, there is no need to learn the weak methods

themselves as packaged specifications of behavior. The task descriptions involved must be acquired and the

linkage of the task descripuions to actions. But these linkages are single isolated productions. Once this

happens, behavior follows automatically. "'hus, this is a particularly simple acquisition fTramework that avoids

any independent stage of program synthesis.

3.. Learning

The operation of the chunking mechanism was described in detail in the previous section. Wz present here

a picture of the sort of learning that chunking provides, as it has emerged in the explorations to date. We

have no indication yet about where the limits of chunking lie Ln terms of its being d general learning

mechanism [36).

3.3.1. Caching, within-trial transfer and across-trial transfer

Figure 3-6 provides a demonstration of the basic effects of chunking. using the eight puzzle [33]. The

left-hand column (no learning) show the moves made in solving the eight puzzle without learning, using the

representation and heunstics described in the prior s-ection (the evaluation function was used rather than the

mea-operator-selccuon heuristic). As dvscribed in Figures 2-14 and 2-15 Soar rcpcatedly gets a luc impasse

betwecn the available moves. ecs into the sclection problem space. evaluates each moe in an inc.rnation of

the task space. chooses the best alternative, and moves forward. Figure 3-6 shows only the moves made in the

3 DISCUSSION PAGE 47

lleuriattc wairch. Seect and/or reject cantdidate operators and/or 9Ates

Avoid Duplicahos. Produce only one version of a state (Extend: ani essentially (deieal stata.)

Operator Sablosalg If an opmrtor does not apply to the current state. Aind a state where it does.

-Match. Put two patterns containing variables into correspondence and bind variables wo their correspondents,

Hypothesize and Match. G~ene-rate possible hiwpothesi forms and match them to the exemplars.

And-Or hesnsuc suurch. Make all moves at and-sumts and seects movts at or-states unul goal i.s attained.

Waltz Constmat Proation Repeatedly propagate the resmrctzons itt range prodiuced by applying constraints in variables wAth finite
ranges.

Means-End.5 Ansilysts. Make a move that redue the difference between the current state and the desired state.

Generate and Test. Generate candidate solutionis and test each for success: terminate when round.

Breadt-First Search Make a move fronm a state wimr unted operators at the least depth

Depth- First Search. Make a move from a state w1i u nule operators at the greatest depth.

Lookahead. Conder all terminal states to rrmz depth.

Simple Hill Climnbing. Make a move tha, increases a givenl value.

Steepest kscent Hill Clirnbiotg Make a move that increases a given value most from the sumt.

Progressive Deepening. Repeatedly move depth-first unul new informauton is obtaned. then return tonal state for repeat

Modified Progressive Deepening. Progressive Deepening with consideration of all moves at each state before extension.

B* (Progremsve Deepening). Progressive Deepenirg with optimistic and peSSIMistc values at each state (not a proof procedure).

Mini-Max, Make moves of each player until Can select the best move for each player.

Depth-Bounded Mint-Max Mtni-MAax with max-depth bound.

0lph-Beta C-pth-IBounded Mini-Max. without lines cf piay that cannot be better than aliread,, exanrimed moves.

Ordered Alpha-Sets. Alpha- Beta vith the moves tn,--d in a heuristic order.

Iterative Deepening. Repeat ordered Aipha-BeLa with increasing depth bound (fromn 1to max-deptlh). with each ordering improved.

11"Cvlii-i-az). AnalogouS Zo Alpha- Bema with each state having opwnmisuc and pessuiiitc values (51

Branch andJ Bound Heunistic search. *-.thout lines of search that cannot be better than already esxamined. moves.

Best-First Search. Move f1rom the state produced so far that has the highest value.

Mvndified Best-Firsit Search. Ber-t-First Search with one-step lookahead for each move-

A* Best- First Search on the minimum depth (or weighted depth).

Exaustive Mtaximiamion. Generate all candidate solutions and pick the best one.

.Exhaustive Maiximisauion wvith Cutoffs. Ex haustive.Maximiration without going do%*n paths to candidate soluuons that cannot Ile ,erer
thatn the current best =adidate.

-NIaC!oOperators for Serially- Decomvposable G02ls (281. Learn and use mnacro-operators that span regions where satisfied sciais are
violated and retnistatd.

Aknaloty by Implicit Generalization. Find a related problem. solve the related problem. anid transfer Lhe generafized soluLion path to the
original problem.

Simple Abstraction Planning. Analogy by Implicit Generaiizaucn in which Lie related problem is an abstract version of Lie original
problem

Figure 3-4: Weak mcr~hods. as pactcrs of behavior.

PAGE 48 SOAR: AN ARCHITECTURE FOR kiENERAL INTELLIGE.NCE

So(

Macro-oporators Hypothesiz*
and Match

Meana-Ends Analysis Constrtaint
Satisfaction

operator Subgoaling Dapth~-Fl rst Gene rate Breadth-First

I and Test

Unification

Progressive Steepeitst Ascent Simple Hill Climbing
Deepening Hill Climbing

13 (Prtog rossive Oeepening) Mini-Max

OiDepth-BoundedI Mini-Max
Alpha Se6ta

Iterative Deepening

B0 (Mini-Max)

Figure 3-5: Su-ucturc of weak methods realized in Soar ('49].

task space. coalescing the various incarnations Of iL Each state, except for the initial and dcsired states, is

shown as a black square. T1he move made to reach the state is shown as a s~nglc letter (either Left. aight, JLp,

or Down). Soar explores 20 states i all to solve this problem.

The second column (with learning) has chunking turned on. Although Soar starts out examining the same

states as in the run without learming (L, U and R in each of the first two le~els). it soon dcviates. The

chunking that occurs in the early part of the task already becomes effective in the later part. This Ls

wiihin-trial transfer. It answers one t asic qucsuon about churiking - whether it wii] providc any transfer at

all to new siwac~jons. or only simple practice effects. Not only is there transfcr. but it occurs or the initial

performance - a total of 15 states is examined, comparcd to 20 without learning. Thus. with Soar. no nizid

behavioral separain is possible between performance and leamning - learning becomes intcgral to ever-y

performance.

3. DISCUSSION PAGE 49

16131 16131 16131

2 7 4 2 7 4 2 7 141

T a 5 a is5

R D L R 0 L D

R D L R D L D

R L R R

U U U

U L U L U

L L L

D L D D

R 0 L 0 0

R L R R

23 23 2 3
81 81 4 81 4

[76 7 65 76 5

No Learning With Learning A fte r Lea rning

Figure 3-6: Learning in the cight puzzJe [33).

If Soat is run again after it has completed its wi~h-leam-ing trial, column 3 (after learning) results. All of the

chunks to be learned in this task have been learned dunng thc one with-learning trial. so Soar always knows

which move to make. This is the aircct effect of practice - the use of resuLs cached during earlier trials. The

number of states examined (10) now reflects thc demands of the task. not the demands of finding the solution.

T'his improvement dcpends on rhc original evaluation function being an accurate measure of progress to the

goal. Chunking eliminates the neccssity for thc look-ahead search, but thc path Soar takcs to the goal will sull

be determined by the evaluation fuinction cached in the chunks.

Figure 3-7 shows across-iask t-anis/er ini the Eight Puzzle. The First column (task 1. no lcarng) is the same

PAG 50SOAR: AN ARCIIITTECrURF F-OR G[VNERAL INTIILUGENCE

trace as the first column in Figure 3-6. In the second column (La. k 2. durnng learning) Soar has been started

over from scratch and run on an entirely different eight-puzzle task - the initial and final positions are

different from those of task 1. as are all the intermediate positions. This is preparation for the third column

(task 1. after learning about task 2 but without any learning during uask 1). where Soar shows across-task

transfer. If the learning on task 2 had no effect. then this column would have been identical to the original

onc on task 1 (first column). whereas it takes only 16 states rather than 20.

1 631 2-8 311113
2 74 1 64 274

R D L R 0 L R D

R L R L R

U U U

U L U L UL

123
L L

a 4

D L 0

R L R 0 L

R LR

3~23
8 14 814

No Learning With Lear 'ng After Learning
Task 1 Ta" 2 Task 1

Figure 3-7: Across-task transferin the eight puzzle [33).

What Soar has learned in these runs is search control to choose moves. and rulcs which implement the

cvaluatc-objcct operators. Tbce comparison based oin the evaluation function is cachcd into producuo0nS that

create preferences based on direct comparisons bctwccn the current and dcsired states. In this example.

3. DISCUSSION PAGE 51

chunking does not improve the evaluation function. If the evaluation function is tmperfect. as it is in this

case. the imperfections are included in the chunks. Also in this example. no eight-puzzle operators have been

learned because the operator was already rzalized directly by productions in the cask space. But if the

operator had required subspaces for inplementauon (as the evaluate-object operator in the selection problem

space did). it would have been learned as well.

3.3.2. Learning in an expert-system task

A stking feature of chunking is that it applies automatically to every task Soar performs. without modifica-

tion of Soar or any special additions. For example. the investigauons that used RI-Soar to show diat general

problem-solving capability can be combined with domain expertise (by adding domain-dependcnt search

control to a basic task representation) became immediately a demonstration that the domain expertise can be

acquired automatically. Figure 3-8 shows that on the task mentioned above that took 173! decision cycles

with no domain-dependent search control, a pattern of results emerged that followed exact1y -he pattern on

the eight puzzle [651.

Ri-Soar Decisions with Decisions Decisions
Version no learning with learrung after learning

Base 1731 485 72% [+59] 7

Parual [+2] 243 111 54% [+14] 7

Full [-4-8] 150 90 40% [+12] 7

Figure 3-8: Learning in Ri-Soar.

The first column of Figure 3-8 shows the effects of the manual addition of search control from none for the

basic version. to 2 productions for the partial version, to 8 more producuons (for a total of 10 search control

productions) for the full version. This was the basic investigauon, and no learning was involved. The second

column shows the effect on performance of running with chunking turned on - the number of decision

cycles, the percent unprovement over the trial without learning and the number of chunks learned. There is

within-task transfer, just as in the eight puzzle. As the system starts with more iniual knowledge. the effect

diminishes (from 72% to 54% to 40%) but the effect is appreciable in all cases. Finally. the result of rerunning

the task after learning is complete is to reduce the task to its necessary processing tcps (namely, 7). The

auiomauc acquisition of knowledge does involve the additon Of many more producuons than was inol ed in

the manual ac.4uisitmon (shown in brackets in the .-nd columi) ,'cause the chunks arc more speczfic than

the manually encoded rules.

The extensive .est on the extended version of RI.Soar yielded additonal daw on learning, as shown in the

PAG[E 52 SOAR: AN ARCHIITECTURE FOR GENTiRAL INTELLIGENCCCE

four nighit-hand columns of Figure 3-9. In these runs. chunking occurred from the bottom up, that is, chunks

were built for a goal only if flu subgoals occurred. Enough runs with bottom-up chunking will yield the same

results as all-at-once chunking (which was used in both the eight puzzle and initial R1-S'ar cases). Botctom-up

chunking has the advantage of tending to create only the chunks that have a greater chance of being

repeatedly used. The higher up in the subgoal hierarchy (measured from the bottom. not the cop). the more

specific a chunk oecomes - it performs a larger proportion of the task - and the less chance it has to be

used [501. Thus. in Ri-Soar all-at-once chunking wiU create many productions that will never be evoked

again in any but identical reruns of the same task. Figure 3-9 shows two passes of bottom-up chunking (Pass

2 and Pass 4). embedded in three passes with chunking curnied off to assess the effects (Pass 1. Pass 3. and Pa-s

5). giving a total of 30 trials with chunking. The test Mimics what would be expected in the real situation with

an cxpcrt system, namely that the chunk-proiductions accumulate throughout the entire scries of 30 chunking

runs (and remain fixed during the learnng-off passe). 16

Pass I Pass 2 Pass 3 Pass 4 Pass 5

Before During After During After

TASK. (learn off) (learn on) (learn off) (learn on) (ivain off)

T1 a8 88 E 6) A 44 44 3) g
T2 78 68 4) 40 40 C3) 9
T3 78 78 C6) 38 38 C3) 9
T4 198 174 Cl4] 113 113 l6) 58
TB 94 84 C6] 48 48 C 3) 9
TO 100 885 3) 48 48 3] 3)
T7 70 48 (3] 38 38 C3) 9
TO 74 5g 3] 40 40 (3] 9
T9 88 73 C3) 42 A42 3).
r1o go 75C 3) 48 48 C 3)

Tl173 158 £10) 86 868 2) 48
T12 78 52 3) 38 38 C3) 9
T13 124 102 (7) 58 $8a 3) 9
T14 123 108 [7) 67 67 (4) 28
715 129 109 C5] 84 84 C 2) 28

Pt oduct ions---..

Total: 314 397 [83] 397 44 (47]J 4

Figure 3-9: Performance of the extendcd version of RI-Soar (with bottom-up learning) [75].

The fi-ure reveals scvcral iteresting features. First, there is a 14%c averagc improvement during the first

learning pass. This is primarily due to within-trial transfer in each of the 15 casks. There is only a small effect
due to across-task transfcr. both positive and negative. Negative transfer comes abouc from overly-general

search-control chunks that guide the problem solving down the incorrect path. Recovery from dic misguided

t6 Thus. iic tabic is not to m' ad as if it wcrc 15 indcpendcnht iltlc icarning ex~periments

3. DISCUSSION PAGE 53

search occurs, but it takes time. On Pass 3. the assessment pass after the first learning pass. there is a

substantial improvement. reflecting the full force of the cached chunks: an additional drop of 35% from the
onginal times. for a total savings of 49% of the original times. The second learning pass (Pass 4) leads to no

further within-task or across-task transfer - the Limes on this pass arc identical to the times on the prior

assessment pass. But after this second learning pass is completed, the final assessment pass (Pass 5) shows

another large drop of 35% from the original times, yielding a total drop of 8416 from the original Limes. All

but four large tasks have reached their minimum (all at 9 steps). Thus the contribution of this second pass has

been entirely to cache results that then do not have to be performed on a rerun.

The details of this version of RI-Soar and the test must be taken with caution, yet it confirms some

expectations. This extended version has substantial domain-dependent knowledge, so we would not expect as

much improvement as in the earlier version. even beyond the effect of using bottom-up chunking. Inves-

ugation of the given productions in the light of the transfer results reveals that many of them test numerical

constants where they could have tested for inequality of two values, and the constant tests restricted their

cross-sitcauonal applicability. But even so, we see clearly that the transfer action comes from the lowest level

chunks (the first pass), which confirms theoretical expectations that they have the most generality. And, more

globally. leaming ind performance always go together in Soar in accomplishing any task.

3.3.3. Chunking, generality, and representation

Chunking is a leaming scheme that integrates learning and performance. Fundamentally, it simply records

problem-solving experience. Viewed as knowledge acquisition, it ccmbines the existing knowledge available

for problem solving with knowledge of results in a given problem space, and converts t into new knowledge

available for future problem solving. Thus it is strongly shaped by the knowledge available. This integration

is especially significant with respect to generaization - to the transfer of chunks to new situations (e.g., as

documented above). Generalization occurs in two ways in Soar chunking. One is variabiizatton (replacing

identifiers with variables), which makes Soar respond identically to any objects with the same description

(attbute-value augmentations). This generalization mechanism is the minimum necessary to get learning at

all from chunking, for most idcntifier! wi!l never occur again outside of the paricular context in which they

were created (e.g., goals. states, operator instanuations).

The second way in which generalization occurs is implcit generalizatton. The conditions that enter into a

new chunk-production are based only on those working-memory elements that both existed prior to the

creation of the goal and affected the goal's results. This is simple abstraction - ignoring cver, thing about a

situation except what has been determined at chunk-crcation ume to be relevant. It is cnablcd by the natural

abstraction of producuons - that the conditions only respond :o selected aspects of the objects available in

the working memory. If the conditions of a chunk do not test for a given aspect of a situation, then the chunk

will ignore whatccr hat aspect might be in some new ituation,

PAGE 54 SOAR: AN ARCIIITrCTLRF FOR GFNFR,\L INTELLIGENCE

A good example is provided by the implcmentauon in Soar of Korfs technique for learning and using

macro-operators[281. Korf showed that any problem that is senally decomposable - that is. when some

ordering of the subgoals exists in which each subgoal is dependent only on the preceding subgoals, and not on

the succeeding ones - can have a macro table defined for iL Each entry in the table is a macro-operator - a

sequence of operators that can be created as a single operator[191. For the eight puzzle. a macro table can be

created if the goals are. in order: (1) place the space in its correct position: (2) place the space and the first tile

in their correct positions: (3) place the space. the first tile. and the second tile in their correct positions: etc.

Each goal depends only on the locations of the tiles already in position and on the location of the one new tile.

The macro table is a simple two dimensional structure in which each row represents a goal, and each column

represents the position of the new tile. Each macro-operator specifies a sequence of moves that can be made

to satisfy the goal. given the current position of the new tile (the positions of the previously placed tiles are

fixed). The macro table enables efficient solutions from any initial state of the problem to a particular goal

state.

Implementing this in Soar requires two problem spaces, one containing the normal eight-puzzle operators

(up, down. left. right). and one containing operators corresponding to the senally-decomposable goals, such as

place the space and the first tile in their correct positions [361. Problem solving starts in this latter problem

space with the attempt to apply a senes of the high-level operators. However, because these operators are too

complex to encode direcdy in productions. they are implemented by problem solving in the normal eight-

puzzle problem space.

Based on this problcm solving, macro-operators are learned. Each of these macro-operators specifies the

sequence of eight-puzzle operators that need to be applied to solve a particuiar higher-lcvel goal for a

particular position of the new tile. These macro-operators then lead to efficient solutions for a large ciass of

eight-puzzle problems. demonstrating how choosing the right problem solving dec1omposition can allow a

simple caching scheme to achieve a large degree of generality. The generality, which comes from using a

single goal in many different situations. is possible only because of the implicit generalizauon that allows the

macro-operators to ignore the positions of all tiles not yet in place. If the identities of the not-yet-placed tiles

are not examined during problem solving, as they need not be. then the chunks will also not examine them.

The subgoal structure by itself does not tap all of the possible sources of generality in the eight puzzle. One

additional source of generality comes from transfer between macro-operators. Rather than a macro-operator

being encoded as a monolithic data structure that specifies each of the moves, it is rcprescnrcd in Soar as a set

of scarch-control rules that sclect the appropriate eight-puzzle operator at each state. Thcse rules are general

enough to transfer across diffcrcnt macro-operators. Because of this transfer, only 112 productions are

required to encode all 35 of the macro-opcrators. rather than the 170 that would otherwise be required.

3 DISCUSSION PAGE 55

One of the most important sources of generality is the represeniaion used for the task states. Stated

generally, if the representation is organized so that aspects that are relevant are factored cleanly from the parts

that are not (i.e.. are noise) then chunking can learn highly general concepts. Factorin; implies both that the

-aspects are encoded as distinct atmibutes and that the operators are sensitive only to the relevant attributes

and not to the irelevant atibut. One representauonal possibility for the eight-puzzle state is a two-

c;imensional array, where each array cell would contain the number of the tile that is located at the position on

the board specified by the array indices. Though this representation is logicalty adequate. it provides poor

support for learning general rules in Soar. For example. it is impossible to find out which dles are next to the

blank cell without looking at the numbers on the tiles ana the absolute positions of the iles. It is thus

impossible. using just implicit generalization, to abstract away these irrelevant details. Though this is not a

good representation for the eight puzzle, the results presented in the previous paragraphs. which were based

on this representation, show that even it provides significant transfer.

By adopting a better representation that explicitly represents the relative orientauon of the tiles and the

relationship between where the tile is and where it should be - the representation presented in Section 2.2 -

and adding an incremental goal test, the amount of sharing is increased to the point where only 61 produc-

tions are required to represent the entire macro table. Because the important relationships are represented

directly, and the absolute tile position and name are represented independently of this information, the

chunks are invariant over tile idendty as well as translation. rotation, and reflecton of groups of tiles. The

chunks also transfer to different desired states and between macro-operators for different starting positions,

neither of which were possible in Korfs original implementation.

Figure 3-10 shows the most complex case of transfer. The top two boards are intermediate subgoals to be

achieved on the path to getting Al eight tiles in place. Below them are possible initial states that the relevant

tiles might be in (all others are X's). A series of moves must be made to transform the initial state to the

corresponding desired intermediate subgoal. The arrow shows the path that the blank takes to move the next

tile into position. The paths for both problems are the same, except for a rotation. In Soar. the chunks

learned for the first subgoal transfer to the second subgoal. allowing it to be solved directly, without any

additional search.

PAGE 56 SOAR: AN ARCIHITECfT.RE FOR GENERAL INTELLIGENCE

Different Intermediate Subgoals
Place Tile 3 Place Tile 5

1 2 3 1 2 3

X X X 4

x x x x Ix 5
Symmetric Initial States

1 1 2 3
- --

X X 3 5

Figure 3-10. Transfer possible with macro-operators in the eight puzzle.

3. DISCUSSION PAGE 57

4. Conclusion
Soar embodies eleven basic hypotheses about the structure of an architecture for general intelligence:

1. Physic-al symbol-system hypothesis: A general intelligence must be realized with a symbolic system
[52).

2. Goal-structure hypothesis: Control in a general intelligence is maintained by a symbolic goal
system.

3. Uniform elementary-representatioo hypothesis: There is a single elementary representation for
declarative knowledge.

4. Problem-space hypothesis: Problem spaces are the fundamental orgarizational unit of all goal-
directed behavior [49].

5. Production-system hypothesis: Production systems are the appropnate organization for encoding
all long-term knowledge.

6. Universal-subgoaling hypothesis: Any decision can be an object of goal-oriented attention.

7. Automatic-subgoaling hypothesis: All goals arise dynamically i, response to impasses and are
generated automatically by the architecture.

8. Control-knowledge hypothesis: Any decision can be controlled by indefnite amounts of
knowledge, both domain dependent and independent.

9. Weak-method hypothesis: The weak methods form the basic methods of intelligence [47].

10, Weak-method emergence hypothesis: The weak methods arise directly from the system respond-
ing based on its knowledge of the task.

11. Uniform-learning hypothesis: Goal-based chunking is the general learning mechanism.

These hypotheses have varying standing in current research in artificial intelligence. The first two. about

symbols and goals. are almost universally accepted for current Al systems of any scope. At the opposite end.

the weak-method emergence hypothesis is unique to Soar. The remaining hypotheses are familiar in Al, or at

least components of them arc. but are rarely, if ever, taken to the limit as they are in Soar. Soar uses a

problcm-spacc rcpresentadion for all tasks, a goal-bascd chunking mcchanism for aid learning, and a produc-

tion system for all long-term memory. Many systems use production systems exc!usivcly. but they arc all pure

performance systems without learning, which does not test the use of productons for dcclarative memory.

Many aspects of the Soar architecture arc rot reflected in these eleven hypotheses. Some examples are:

automatic goal tcrmination anywhere in the goal hierarchy: the structure of the decision cycle, with its parallel

claborauon phase: the language of prefercnccs: the iimitation of production ,cuuns to ,ddiuun of working-

memory elements: the removal of working-memory elements by d-c architcecture: the restriction of produc-

PAGE 58 SOAR: AN ARCIIlECrU'RE FOR GENERAL INTELLIGENCE

tion conditions to test only memory elements accessible through the context stack. There are also details of

the mechanisms mentioned in the hypotheses - auribute-value triples, the form of conditions of productions.

etc. Some of these are quite importan but we do not yet know in Al how to desc-be architectures com-

pletely in Functional terms or which features should be supulated independendy.

Much is still missing in the current version of Soar. Figure 1 pointed out several aspects that are under

active investigation. But others are not recorded there - the acquisition of declarative knowledge from the

external environment and the use of complex analogies to name a couple. Until Soar has acquired the

capabilities to do all of these aspects. there will bc no assurance that the Soar architecture is complete or

stable.

4 CONCLUSION PAGE 59

References

1. Amarel, S. On the representation of problems of reasoning about actions. In Machine Intelligence 3.
Nichie. D_ Ed.. American Elsevier. New York, 1968. ch. 10, pp. 131-171.

2. Anderson. J. R.. The Architecture f Cognion. Harvard University Press. Canbindge, MA. 1983.

3. Bachant. J. & McDermott. J. "R1 revisited: Four years in the trenches". Al Magazine 5(1984).

4. Balzer. R_ Errnan. L. D., London. R. & Williams. C. HEARSAY-Ill: A domain-independent framework
for expert systerns. Proceedirn;s of AAAll. Los Altos. CA. 1980.

5. Berliner. H. J. "The B' tree search algorithm: A best-first proof procedure". Artifcial Intelligence 12
(1979). 201-214.

6. Boggs M. & Carbonell. J. A Tutorial Introduction to DYPAR-1. Computer Science Department.
Carnegie-Mellon University.

7. Bower. G. H. & Winzenz. D. "Group structure. coding and memory for digit series". Journal of Ex-
perrmental Psychology Monograph 80 (1969). 1-17. (May, Pt. 2).

8. Brown, J. S. & VanLehn. K. "Repair theory: A generative theory of bugs in procedural skills". Cognitive
Science 4 (1980). 379-426.

9. Buchanan. B. G. & Shortliffi, E. H.. Rule-Based Expert Systems: The Mycin experiments of the Stanford
Heuristic Programming Project. Addison-Wesley, Reading. MA, 1984.

10. Carbonell. J. G. Learning by analogy: Formulating and generalizing plans from past experience. In
Machine Learning: An Artificial Intelligence Approach. R. S. Michalski. J. G. Carbonell, & T. M. Mitchell,
Eds.. Tioga. Palo Alto. CA, 1983.

11. Card. S. K.. Moran, T. P. & Newell, A. "Computer text editing: An information-processing analysis of a
routine cogniuve skill". Cognitive Psychology 2. 1 (1980), 32-74.

12. Chase. W. G. & Simon. H. A. "Perception in chess". Cognitive Psychology 4(1973). 55-81.

13. Clancey, W. J. "The epistemology of a rule-based expert system: A framework for explanaion".
Artificial Intelligence 20 (1983). 215-251.

14. Davis, R. "Meta-rules: Reasoning about control". Artificial Intelligence 15 (1980). 179-222.

15. Dciong. G.. & Mooney, R. "Explanation-based learning: An alternative view". Machine Learning 1, 2
(1986), 145-176. In press

16. Erman. L.. Hayes-Roth. F.. Lesser, V.. & Reddy. D. R. "The Hearsa -Il speech-understanding system:
Integrating knowledge ,o resolve unccrmanty". Computing Surieys 12 (June 1980). 213-253.
17. Ernst. G. W. & Newell. A.. GPS: A Case Study in Generality and Problem Solvin& Academic Press. Nw

York. 1969.

18. Feigenbaum. E. A. & Feldman. J. (Eds.). Computer-sand Thought. M:Graw-Hill. New York. 1963.

19. Fikem. R. E.. Hart. P. E.. & Nilsson, N. J. "Learning and cxccuting gcneralized robot plans". Artificial
Intelligence 3 (1972). 251-288.

PAGE 60 SOAR:.kN ARCII1ETILRC FOR GFNIRAL INTELLIGENCE

2.0. Porgy, C. L. OPS5 U-;r's Manual. Computer Science Depart~ment- Carnegie-Mellon University. July.
1981.

21. Forgy. C. L. & McDermott. J. OPS. a domain- independent production systemn language. Proceedings
Fifth International Joint Computer Conference. MIT Al Laboratory, Cambridge MA. 1977.

2_ Genesereth. M. An over-view of meta-level architecture. Proceedings of the [Third Annual National
Conference on Artificial Intelligence. Los Altos. CA. 1983.

23. Hayes. J. R. & Simon, H. A. Understanding written problem instructions. Knowledge and Cognition,
Potomac, MD. 1974.

24. Hayes-Roth. B. "A blackboard architecture for control"'. Artificial Intelligence 16 (1985). 251-321.

2.5. Hayes-Roth. F.. Waterman. D. A. & Lenat. 0. B. (Eds.). Building Expert Systens. Addison-Wesley.
Reading. MA, 1983.

26. Kant. E. & Newell. A. An automatic algorith~m designer: An initial implementatin. Proceedings of
AAA 183. Menlo Park, CA. 1983.

2.7.. Korf, R. E. 'Towards a model of representation changes'. Artificial Intelligence 14(1980). 41-78.

2.8. Korf. R. F.. "Macro-operators: A weak method for learning". Artificial Intelligence -26 (1985). 35-77.

29. Laird. J. E. Universal Subgoaling. Ph.D. Th.. Carnegie- Mellon University, 1984.

30. Laird. J. E. Soar User's Manual:- Version 4.0. Xerox Palo Alto Research Center. 1986.

31. Laird. J. & Newell, A. A Universal Weak Method. Computer Science Department- Carnegie-Me llon
University. June. 1983.

32. Laird. J. & NcwelL A. A universal weak method: Summary of results. Prccecdings or LJCAI-83, Los
Altos, CA\. 1983.

33. Laird, J. E... Rosenbloom, P. S. & Newell. A. Towards chunking as a gcncrdl !earning mechanism.
Proceedings of AAA 1-84. National Conforrence on Artificial Intelligence. Amercan A\ssociation tor Artificial
Intelligence, 1984.

34. Laird, J. E.. Rosenbloom, P. S. & Newell, A. Overgeneraliiation during knowledge compilation in Soar.
Proceedings of the Workshop on KnowlerIgc Compilation, Otter Crc5t. OR. 1986.

35. Laird. J. E.. Rosenbloom. P. S. & Newell. A.. Universal Subgoaling and Chunking: The Automnatc
Genetaauon and Learning of Goal Hierarchies. Kluwei Academic Publishers. Hingham. MA. 1986.

36. Laird. J. E., Rosenbloom. P. S. & Newell. A. "Chunking in Soar: The anatomy of a gencral learning
mechanism'. Miachine Learning / (1986), 11-46.

37. Langley. P. "Learning to Search: From weak methods to domain-specific
heuristics". Cognitve Scienice 9(1985). 217-260.

38. Lenat. D. B. "EURISKO: A program that learns new hcurics and domain concepts. The nature of
hcuristics Ill: program design and results'. Anr'ificial Intelligence 20(1983), 61-98.

39. Lenat. D. B. & Brown, J. S. "Why AM and Furisko appear to work'. A4rtifical Intelligence 23(1984).
269-294.

REFEiRENCES PAGE 61

40. McDermott. D. "Planning and acting". Cogitive Science 2 (1978). 71-109.

41. McDermott, .1. "111: A rule based configurer of computer systems". Artificial Intelligence 19 41982),
39-R8.

4L. McDermott. 1. & Forgy, C. L. Production system conflict resolution strategies. In Pat tern- directed
Inference Systems. Waterman. D. A. & Hayes-Roth. F., Eds.. Academic Press. New York. 1978.

43. Miller. G. A. "The magic number seven. plus or minus two: Some limits on our capacity for processing

information"'. Psychological Review 63 (1956). 81-97.

44. Mitchell. T. M. Version Spaces: An approach to concept learnirg. Ph.D. Th.. Stanford University. 197 8.

45. Mitchell. T. M.. Utgoff. P. E., & Baneiji. R. Learning by experimentation: Acquiring and refining
problem-solving heuristics. In Machine Learning.- An Artificial Intelligence Approach, R. S.Slichaiski,
J. G. Carbonell. T. M. Mitchell. Eds.. Tioga Publishing Co.. Palo Alto. CA. 1983.

46. M'vostow. D. J. Machine transformation of advice inca a heuristic search procedure. In Machine Learning:
An Aritticial Intelligence Approach. R. S. Michalski. 1. G. Carbonell. & T. M. Mitchell. Eds.. Tioga Publishing
Company. Palo Alto. CA. 1983. ch. 12.

47. Newell. A. Heuristic programming: Ill-structured problems. In Progress; in Operations Research III,
Aronofskv. J., Ed.. Wiley, ;New York 1969, pp. 360-414.

48. Newell. A. Production systems: Models of control structures. In Visual Information Processing, Chase
W. C.. Ed., Academic Press. New York. 1973, pp. 463-526.

49. Newell. -k. Rea.;oning, problem solving and decision processes: The problem space as a FundamenWa
catEgory. In Attention and Performance VIII, R. Nickerson. Ed.. Eribaum. Hillsdale, NJ, 1980.

-9. Newell. A. & Rosenbloom. P. Mechanisms of skill acquisition and the law of practice. In Learning and
Cognition. Anderson, 1. A.. Ed.. Erlbaum. Hillsdale. NJ, 1981.

51. Newell.,.A. & Simon. H. A.. Human Problem Solving Prentice-Hall. Englewood Cliffs. 1972.

52. Newcll. A. & Simon. H. A. "Computer science as empirical inquiry: Symbols and search".
Communications of the ACAI 19, 3 (1976). 113-126.

53. Newell. A.. Shaw. J. C. & Simon. H. A. Empirical explorations of the Logic T'heory Machine: A case
study in heuristics. Proceedings of t~hc 1957 Western Joint Computer Conference, Wcstern Joint Computer
Co~nference, 1957, pp. 218-230. (Reprinted in Feigenbaum. E. & Feldman. J. (Eds.) Computers and Thought,
New York: McGrawl-Hill, 1963).

5 4. Newell. A.. Shaw, 1. C.. & Simon. H. A. Report on a general problem-solving program for a computer.
In Information Processing: Proceedings of the International Conference on Informanon Processing,
UNF.CO. Paris. 19(j0. pp. 256-264.

55. Newell, A.. Tonge, F. Feigenbaum, E. .Oreen. B.. & Meialy. G.. Information Processing Language
['ManuaL Prcnticc-Hall1. Englewood Cliffs. 1964. 2nd Edition.

56. Nii. H. P. & Aiello. N. AGE (Atempt o Generalizc): A know lcdgc-bascd program for building
knowledge-based programs. Proceedings of the Sixth lntcrnational Joint Con ference on Artificial Intel-
ligcncc. 11CAI. 1979.

PAGE 62 SOAR: AN ARCHIMTU~lRE FOR GEiNERAL INTELUGENCE

57. Nilsson. N.. Problem-solving Methods in A4rtificial Intelligence. McGraw-Hill. New York- 1971.

58. Nilsson. N.. Principles of Artificial Intelligence. Tioga. Palo Alto, CA, 1980.

59. Rich. E. Artificial Intelligence. McGraw-H ill, New York, 1983.

60. Robinson, 1. A. "A machine-oriented logic based on the resolution principle". Journal of ihe ACM 12

(1965). 23-41.

61. Rosenbloom. P. S. Thae Chunking of Goal Hierarchies: A model of practice and stimulus- response
compatibility. Ph.D. T'h.. Carnegie-Mellon University. 1983. (available as Tech Rep 083-148. Computer
Science Department).

62. Rosenbloom. P. S. & Laird. J. E. Mapping explanation-based generalization onto Soar. Proceedings of
AAAI-86. National Conference on Artificial Intelligence. American Association for Artificial Intelligence.
Philadclphia. 1986.

63. Rosenbloom, P. S.. & Newell. A. The chunking of goal hierarchies: A generalized model of practice. In
Mfachine Learning: An Artificial Intelligence Approach. Volume 11, R. S. .Michalski. J. G. Carbonell, &
T. NI. Mitchell. Eds...Morgan Kaufmann Publishers. Inc.. Los Altos. CA, 1986.

64. Rosenbloom. P. S.. Laird. J. E. & Newell. A. Meta-levels in Soar. Prepftnts of the Workshop on
Meta-level Architectures and Reflection. Sardinia, 1986.

65. Rosenbloom,. P. S.. Laird. J. E-.. McDermnot. J.. Newell. A.. & Orciuch. E. "Ri-Soar: An experiment in
know ledge-intensive programming in a problem-solving architecture". IEEE Transactions on Pattern
Analysis and Machine Intelligence 7,5 5(1985), 561-569.

66. Rvchener. M. D. Production systems as a programming langauge for artificial intelligence applications.
Computer Science Departmient- Carnegie-Mellon University, 1976.

67. 'Wckener. M.. D. 1 he insti-uctable production systc-n: A retrospective analysis. In Machine Learning: AIn
arui ciai ,nte,;i'gence approacn. Nfichalski. R. S.. Carbonell. I. G. & Mitchell. T. Eds., T ioga. Palo Alto.
CA. 1983.

68. Rychener. M. D. & Ncwell. A. An instructable production system: Basic design issues. In
Pattern- Directed Inference Systems. Waterman. D. A. & Hayes-Roth. F.. Eds.. Academic Press. New York.
1978, pp. 135-153.

69. Saccrdoti. E. D.. A Structure/or Plans and Behavior. Elsevier. New York. 1977.

70. Scales. D. FPfflicient Matching Algorithms for the Soar/OpsS Production System. Computer Science
Departmvent. Stanford University, 1986.

71. Shortliffe, E. H.. Computer- based.VMedical Consultations: MfYCIMV Amencan Elsevicr, New York, 1976.

72. Simon. H. A. "Search and reasoning in problem solvng". -lrtificial Int'elligence 21 (1983), 7-30.

73. Smith. B. C. Reflection and Scmantics in a Procedural Lingauge. 1v1IT/LCS/7R-2 2, Laborator' for
Computer Science. MIT, 1982.

74. Smith. D. E. & Cenescrcth. N1. R. "Ordering Conjunccj.e Queries'. ArttJiciai Intelligence .1 (1985),
171-216.

REFERENCES PAGE 63

75. van de Brug. A.. Rosenbloom. P S., & Newell. A. Some Expenments with Rl-Soar. Computer Science
Deparunent. Carnegie-Mellon University. 1986. (in preparation).

76. van de Brug. A.. Bachant. J.. & McDermot.. J. 'The taming of RI". IEEE Expert 1 (1986), 33-39.

77. VanLehn. K. Felicity Condidons for Human Skill Acquisiton: Validating an A-Based Theory. Xerox
Palo Alto Reserch Center, November, 1983.

78. Waterman. D. A. & Hayes-Roth. F., (Eds.). Pattern Directed Inference Systems. Academic Press. New
York. 1978.

79. .Wilensky. R.. P!anning and Understanding: A computational approach to human reasoning. Addison-
Wesley. Reading. MA. 1983.

