TIr FILE COPY o @

i 2
S | SOAR: AN ARCHITECTURE FOR
< | GENERAL INTELLIGENCE i
Lo Technical Report AIP-9
O John E. Laird, Allen Newell
N and Paul S. Rosenbleom |
< ;
I 1' University of Michigan :
D i Carnegie-Mellon University |Z
< ‘ Stanford University 4

|

3

’]
i

The Artificial Intelligence
and Psychology Project oTiC

% LEC 2 9 1088
;‘u

Departments of b
Computer Science and Psychology

Carnegie Mellon University

Learning Research and Development Center
University of Pittshurgh

Approved for public release; distribution unlimited.

88 12 28 138 |

SOAR: AN ARCHITECTURE FOR
GENERAL INTELLIGENCE

Technical Report AIP-9
John E. Laird, Allen Newell

and Paul S. Rosenbloom

University of Michigan
Carnegie-Mellon University
Stanford University

29 September 1987

ﬁ '\=

b

This research was supported by the Computer Sciences Division, Office of Naval Research
and DARPA under Contract Number N00014-86-K-0678: the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics
Laboratory under contracts F33615-81-K-1539 and N00039-83-C-0136 and by the
Personnel and Training Research Programs, Psychological Sciences Division, Office of
Naval Research, under Contract Number N00014-82C-0067, contract authority
identification number NR667-477, and by the Sloan Foundation. Computer facilities were
partially provided by NIH grant RR-00785 to Sumex-Aim. The views and conclusions
contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency, the U.S. Government, and the Sloan Foundation, or the National
Institutes of Health. Reproduction in whole or in part is permitted for purposes of the

United States Government. Approved for public release; distribution unlimited.

LY

12 REPORT SECURITY CLASSIFICATION

REPORT DOCUMENTATION PAGE

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY

1b. RESTRICTIVE MARKINGS

2b. DECLASSINCATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION/ AVAILABILITY OF REPQAT

Approved for public release;
Distributicn unlinited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
AIP - 9

S. MONITORING QRGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING QRGANIZATION
Carnegie-Mellon Urniversicty

6b. OFFICE SYMBOL
(1t applicadie)

Office of

7a. NAME OF MONITORING ORGANIZATION
Conputer Iciences Division

~Naval Research (Code 11.3)

AQORESS (City, Sun and 2IP Coge)
epdartient of Psychology

Pitcsburgn, P‘_nnsylvanla 13213

u s\.

Quinc

7b ADDRESS (City, State, and ZIP Code)
cy Street

arlingtorn, Virginia 22:17-5000

8a. NAME OF FUNDING / SPONSORING
QRGANIZATION

Sane as Mopitoring Orgzanicationq

8b OFFICE SYMBOL
(If applicadle)

NOOOLl4-8h-K=0678

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢. ADDRESS (City, State. and 2IP Code)

10 SOURCE OF FUNOING NUMBERS p40CG03ui 0Ly 7~b=30

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO. ACCESSION NO
w/A N/A N/A N/ A

11 TITLE (Inciude Security Classification)

Scar: An Architecture for General Intelligence

12 PERSONAL AUTHOR(S)

J.E. Laird, A. Newell and t'.S. Rosenbloom

133 TYPE QF REPORT
Tecnnical

13p. TIME COVEREQD

_/ 14 DATE OF REPORT (Year, Month, Day)
BoSepcl,Jxo9lSeptli

15, PASE COUNT
87 September 29

FROM

16 SUPPLEMENTARY NOTATION

/—-.-—-—.._.-—a.ﬁ_\
——

'7 COsSATI CODES 18 SuBLECT TERMS (Continue on re

ZELD GROuUP SUB-GROUP

rse if necessary and geftify by block number)
.’:Ar.tif;c,lal Intellizence, Machlne Learning x

Cognitive Architecture /L/ T N

19 ABSTRALT (Continue on reverse f necessary and identify by biock number) P\ ""».\
\

—2 The ultimate goal of work in cognmva architecture is to provide a foundation for a system capable of general .
intelligent behavior. That is, the goal is to provide the underlying structure that would enable a system to \
perform the full range of cognitive tasks, employ the full range of problem-solving methods and
representations appropriate for the tasks, and learn about all aspects of the task and its performance on them.

In this article we present Soar, a~ implemented proposal for such an architecture. We describe its
organizational principles, the sy.tem as currently implemented, and demonstrations of its capabilities.]Q,r A=

20 OISTRIBUT.ON/AVAILABILITY OF ABSTRACT

21 ABSTRACT SECURITY CLASSIFICATION
O uncLasSIFIEOUNLIMITED (K] SAME AS RPT

O omc usens

222 NAME OF RESPONSIBLE INDIVIDUAL

22b TELEPHO E(Ipdudo Area Code)
r. Alan L. Yeyvrowitz)

22¢, OFFICE SYMBOL
(202) 696- 500014

DO FORM 1473, 84 MAR

83 APR edition may De ysed until exnausted. SECURITY CLASSIFICATION OF THIS PAGE

All other eqit:ons are obsolate. Uncl fied
nclassifie

MU-Cs-86~171

Soar: An Architecture for General Intelligence .

John E. Laird
Department of Electrical Engineering and Computer Science
University of Michigan
(this work was done while at
Intelligent Systems Laboratory
Xerox Palo Alto Research Center)

Allen Newell
Department of Computer Scicnce
Carnegie-Mellon University

Dy

cory
INSPECTED

Accesion For

NTIS CRA&I \
OTIC TASB
Unannounced
Justificat.on

By
Paul S. Rosenbloom Dis‘t':"ibmion/
Knowledge Systems Laboratory,
Departments of Computer Science and Psychology Awvaitability Cod
Stanford University { Avail and/
* vatl an ot
Dist Special
1

3 December 1986

Al |

Abstract

The ultimate goal of work in cognitive architecture is 10 provide the foundation for a system
capable of general intelligent behavior. That is, the goal is to provide the underlying structure that
would enable a system to perform the full range of cognitive tasks. employ the rfull range of
problem-solving methods and representarions appropriatc for the tasks. and learn about all aspects
of the tasks and its performance on them. In this article we present Soar, an implcmented
proposal for such an architecture. We describe its organizational principles, the system as cur-
rently implemented, and demonstrations of its capabilities.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory under contracts F33615-81-K-1539 and N00039-83-
C-0136. and by the Personnel and Training Rescarch Programs. Psychological Scicnces Division, Office of
Naval Research, under contract number N00014-82C-0067. contract authority identification number
NR667-477. Additional partial support was provided by the Sloan Foundation and some computing support
was supplied by the SUMEX-AIM facility (NIH grant number RR-00785). The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official
policies. either expressed or implicd, of the Defense Advanced Research Projects Agency. the Office of Naval
Research, the Sloan Foundation, the National Institute of Health, or the US Government.

REFERENCES

Table of Contents
1. Preview
1.1. Uniform task representation by problem spaes
-1.2. Any decision can be an objeci of goal-oriented artention
1.3. Uniform representaucn of all long-term knowledge by a production system
1.4. K nowledge to control scarch expressed by preferences
1.5. A’ goals anise to cope with impasses
1.6. Continuous monitoring of goal termination
1.7. The basic problem-so!ving methods arise directly from knowledge of the task
1.8. Continuous learning by experience through chunking
2. The Soar Architecture
2.1. The Architecture for Problem Solving
2.2. The Working Memory
2.3. The Processing Structure
2.3.1. The elaboration phase
2.3.2. The decision procedure
2.3.3. Impiemenung the eight puzzle
4. Impasses and Subgoals
.5. Default Knowledge for Subgoals
.6. Chunking
2.6.1. The chunking mechanism
2.6.2. An example of chunk creation
3. Discussiou
1.1. Combining knowledge and problem solving
3.2. Weak Methods
3.3. Learning
3.3.1. Caching. within-trial transfer and across-trial transfer
3.3.2. Learning in an expert-system sk
3.3.3. Chunking, generality, and representation
4. Conclusion
References

O 00 00 0O N O\ & U

PAGE il SOAR: AN ARCHITECTURE FOR GENERAL INTELLIGENCE

: List of Figures
Figure 1. Summary of Soar performance scope.

3
Figure 1-1: The structure of problem-space search for the eight puzzle. p]
Figure 1-2: The tree of subgoals and thei: problem spaces. 7
‘Figure 2-1: Problem-space trace in the eight puzzle. (Task implementation steps are bracketed.) 11
Figure 2-2: Architectural structure of Soar. 12
Figure 2-3: Snapshot of fragment of working memory. 13
Figure 2-4: Working memory representation of the structure in Figure 2-2. 1§
Figure 2-3: Graphic representation of an eight puzzle state. 16
Figure 2-6: A sequence of decision cycles. 17
Figure 2-7: The encoding of preferences. 2
Figure 2-8: The semantics of preferences. 21
Figure 2-9: Producuons that set up the eight puzzle. 24
Figure 2-10: Production for creaung eight puzzle operator instantiations. 25
Figure 2-11: Producuons for applying eight puzzle operator instantiauons. 25
Figure 2-12: Search-control producuons for the eight puzzle. 25
Figure 2-13: Trace of inival eight puzzle problem solving. 2
Figure 2-14: The subgoal structure for the eight puzzle. 31
Figure 2-15: A trace of steepest ascent hill climbing. 33
Figure 2-16: Partial producuon trace of an eight-puzzie evaluation subgoal. 37
Figure 2-17: Production built by chunking the evaluation subgoal. 39
Figure 31: Task problem spaces for the extended version of R1-Soar {75]. 4] .
Figure 3-2: Task operators for the extended version of R1-Soar [75]. 42
Figure 3-3: Performance of the extended version of R1-Soar (without learning). 44
Figure 3-4: Wecak methods. as patterns of behavior. 47
Figure 3-3: Suructure of weak methods realized in Sozr (29). 48
Figure 36. Learning in the eight puzzle {33). 49
Figure 3-7: Across-task transfer in the eight puzzie [33]. 50
Figure *8: [eaming in R1-Soar. . 51
Figure 3-9: Perfurmance of the extended version of R1-Soar (with bottom-up learning) {75]. 52

Figure 3-10: Transfer possible with macro-operators in the eight puzzle. 36

PAGE i

Soar: An Architecture for General Intelligence!

Soar is an architecture for a slystem that 1s to be capable of general intelligence. Soar is (o be abie to: (1)
work on the full range of tasks, from highly routine to extremely difficult open-ended problems: (2) employ
the full range of problem-solving methods and representauons required for these tasks: and (3) learn about all
aspects of the tasks and its performance on them. Soar has existed since mid 1982 as an expenmental software
system (in OpsS and Lisp), initally as Scar 1 [31. 32}, then as Soar 2 [29. 35]. and currently as Soar 4[30]. Soar
realizes the capabiliues of a general intelligence only in part. with significant aspects sull missing. But enougn

has been attained t0 make worthwhile an exposition of the current system.

Soar is one of many aruficial intelligence (Al) systems that have auempted 10 provide an appropriate
organization for intetligent action. It 1s to be compared with other organizations that have been put forth,
especially recent ones: MRS {22]; Eunsko [38. 39]; blackboard architcctures (4. 16, 23, 56} Pam/Pandera
{79] and Nas!{40). Soar is also to be compared with machine learning systems that involve some form of
problem solving (10. 15, 37. 45. 46). Espccially unportant are exisung systems that engagc in some significant
form of both problem solving and learning, such as: ACT* (2]; and Repair theory {§]. embodied in a system
called Sierra [77]. ACT?® and Repair theory are both psychological theones of huinan cogniuon. Soar, whose
antecedents have layed a strong roie in cognitive theones. 1$ also intended as the basis for a psvchological

dieory. but this aspect is not yet well developed and 1s not discussed furnher.

Soar has its direct roots in a contintous line of research that starts back in 1956 with the Logic Theorist
[53] and list processing (the IPLs) [€5]. The line goes through GPS (17, S4]. the general theorv of human
problem solving {51] and the development of producuon systems. PSG [48]. Psanis [60] and the Ops senes [20.
21). s roots include the emergence of the concept of cognitive architecture {48]. the Instructabic Production
System project (67, 68] and the extension of the concept of problem spaces to rouune behavior [49]. They aiso
include research on cognitive skill and its acquisition [11. 35, 50. 63]. Scar s the current culminauon of all this

work along the dimension of architectures for intelligence.

Soar’'s behavior has sircady been studied over a range of tasks and methods (Figure 1), which sample its
in:"nded range, though unsystematically. Soar has been run on most of the standard Al toy probiems [29. 31).
These tasks clicit knowledge-lcan. goal-oriented behavior. Soar has been run on a small number of routine,
essenually algorithmuc, tasks, such as maiching forms to objects. doing elementary syllogisms, and searching
for a root of a quadratic cquation. Soar has been run on knowledge-intensive tasks that are typical of current

expert systems. The tactic has been to do the same sk as an ¢xisung Al 2xpert svstem, using the same

1We would ""ke to thank David Sicier and Danny Bobrow for their kelpful commenss on carher diafts of tus aniclc. and Randy
Gobbel for assistance 1n the final preparaiion of the ranusenpt.

PAGE D SOAR: AN ARCHITECTURE FOR GENERAL INTRLLIGENCE

knowledge. The main effort has beer R1-Soar [65], which showed how Soar would realize a classical expert
system, R1, which configures Vax and PDP-11 computers at Digital Equipment Corporation [3, 41]. Rlisa
large system and R1-Soar was only carried far cnough in its detailed coverage (about 25% cf the functionality
of R1) to make clear that it could be cxtended to full coverage if the cffort warranted {75]. In addition. Soar
versions of other substantial systems are operational although not complete: Neomycin {13), which itself is a
reworking of the classical expert tystem, Mycin [71]: and Designer [26], an Al system for designing al-
gorithms. Soar has also been given some tasks that have played important roles in the development of
artificial intelligence: natural-language parsing, concept leamning. and predicate-calculus theorem proving. In
each case the performance and knowledge of an cxisiing system has been adopted as a target in order to learn
as much as possible by comparison: Dypar [6]. Version Spaces {44] and Resolution [60]. These have so far

becn small demonstration systems: developing them to full-scale performance has not seemed profitable.

A variety of different representations for tasks and methods can be realized within Soar’s archicecturally
given procedural and declarative representations. Essentiaily all the familiar weak methods [47] have been
realized with Soar and used on several tasks [31]. In larger tasks, such as R1-Soar, different weak methods
occur in different subparts of the task. Alternative decompositions of a task into subtasks [75] and alternative
basic repre§emau‘ons of a task have also been explored [31], but not intensively.

Soar has a gencral mechanism for learning from-experience [33, 36] which applies to any task it performs.
Thus, it can improve its performance in all of the tasks listed. Detailed studies of its learning behavior have
been done on several tasks of varying characteristics of size and task-type (games, puzzles. expert-system
tasks). This single learning mechanism produces a range of learning phenomena. such as improvement in
related tasks (across-task transfer): improvement cven within the learning trial (within-trial transfer); and the

acquisition of new heuristics, operator implementations and macro-operators.

Several basic mechanisms of cognition have not yet been demonstrated with Soar. Potentially, each such
mechanism could force the modification of the architecture, although we expect most of them to be realized
without major cxtension. Some of the most important missing aspects are deliberate planning, as developed
in artificial-intelligence systems [69]; the automatic acquisition of new tasks [23]; the creation of new task
representations [1, 27]; extension to additional types of learning (c.g.. by analysis, instruction, example,
reading); and the ability to recover from errors in lcarning (which in Soar occurs by overgeneralization [34]).
It is useful to list these lacunae, not just to indicate present limitations on Soar, but to establish the intended

scope of the system. Soar is 10 operate throughout the entire spectrum of cognitive tasks.

The first scction of this paper gives a preview of the features of Soar. The second scction describes the Soar
architecture in detail. The third scction discusses some examples in order to make clear Soar's structure and

operation. The final section concludes with a list of the principal hypotheses underlying the design of Soar.

PAGE §

Small. knowledge-lean tasks (typical Al toy tasks):
Blocks world. eight puzzle, eight qucens, labeling line drawings (constraint satisfaction),
magic squares, missionarics and cannibals, monkey and bananas, picnic problem,
robot location-finding, three wizards problem, tic-tac-toe, Tower of Hanoi,
water-jug task

Small routine tasks:
Expression unification. root finding, sequence extrapolation, syllogisms. Wason verification task

Knowledge-intensive expert-system tasks:
R1-Soar: 3300 rule industrial expert system (25% coverage)
Neomycin: Revision of Mycin (initial version)
Designer: Designs algorithms (initial version)

Miscellancous Al tasks:
Dypar-Soar: Natural language parsing program (small demo)
Version-spaces: Concept formation (small demo)
Resolution theorem-prover (small demo)

Multiple weak methods with variations, most used in muitiple small tasks:
Generate and test. AND/OR search. hill climbing (simple and steepest-ascent), means-ends analysis,
operator subgoaling, hypothesize and match, breadth-first search, depth-first search,
heuristic search. best-first search. A*. progressive deepcning (simplc and modified),
B* (progressive deepening), minimax (simple and depth-bounded), alpha-beta, itcrative deepening, B*

Multipie organizations and task represcntations:
Eight puzzle, picnic problem, R1-Soar

Leaming:
Learns on all tasks it performs by a uniform method. (chunking)
Detailed studies on eight puzzle, R1-Soar. tic-tac-toe, Korf macro-operators
Types of learning:
Improvement with practice, within-task transfer, across-task transfer, strategy acquisition,
operator implementation, macro-operators, cxplanation-based generalization

Major aspects still missing:
Deliberate planning, automatic task acquisition. creating representations, varicties of learning,
recovering from overgeneralization, interaction with external task environment

Figure 1: Summmary of Soar performance scope.

1. Preview

In common with the mainstream of problem-solving and reasoning systems in Al. Soar has an explicit
symbolic representation of its tasks. which it manipulates by symbolic processes. It encodes its knowledge of
the task cnvironment in symbolic structures and attempts to usc this knowlcdge to guide its behavior. Ithas a
general scheme of goals and subgoals for representing what the system wants to achieve, and for controlling

its behavior.

SOAR: AN ARCHITECTURE FOR GENERAL INTELLIGENCE

Beyond these basic communalities, Soar embodics mechanisms and organizational principles that express
distinctive hypotheses about the nature of the architecture for intelligence. These hypotheses are shared by
other systems to varying extents, but taken together they determine Soar's unique position in the space of

possible architectures. We preview here these main distinctive characteristics of Soar. The full details of all
these features will be given in the next section on the architecture,

1.1. Uniform task representation by problem spaces

In Soar, every task of attaining a goal is formulated as finding a desired state in a problem space (a space
with a set of operators that apply to a current state to vield a new state) [49]. Hence, all tasks take the form of
heunstic search. Routine procedures arise. in this scheme. when enough knowledge is available to provide
complete search control, i.e., to determine the correct operator to be taken at each step. ln.AL problem spaces
are commonly used for genuine problem solving [18. S1, 57, 58, 59. 72]. but procedural representations are
commonly used fcr routine behavior. For instance, problem-space operators are typically realized by Lisp
code. In Soar, on the other hand. complex operators are implemented by problem spaces (though sufficiently
simple operators can be r2alized directly by rules). The adoption of the problem space as the fundamental

organization for a/l goal-oriented symbolic activity (called the Problem Space Hypothesis{[49]) is a principal
feature of Soar.

Figure 1-1 provides a schematic view of the important components of a problem-space search for the eight
puzzfe. The lower, triangular portion of the figure represents the search in the eight puzzle problem space.
whilc the upper, rectangular portion represents the knowledge involved in the definition and control of the
search, In the cight puzzle, there arc eight numbered tiles and one space on a thrcé-b_v-three board. The
states are different configurations of the tiles on the board. The operators are the movements of an adjacent
tile into the space (up. down, left and right). In the figure, the states are represcnted by schematic boards and

the operators arc represented by arTows.

Problem-space search occurs in the attempt to attain a goal. In the eight puzzle the goal is a desired state
representing a specific configuration of the tiles — the darkened board at the right of the figure. [n other
tasks. such as chess, where checkmate is the goal. there are many disparate desired states, which may then be
represented by a test procedure. Whenever a new goal is cncountered in solving a problem, the problem
solver begins at some initial state in the new problem space. For the eight puzzle. the initial state is just a
particular configuration of the tiles. The problem-space search results from the problem solver's application

of operators in an attempt to find a way of moving from its initial state to one of its desired states.

Only the current position (in Figure 1-1. it is the board pointed to by the downward arrow from the

knowledge box) exists on the physical board, and Soar can generate new states only by applying the operators.

1 PREVILW PAGE §

Task
implementation
+
Search-control
Knowledge

BT
515
3T Z787T) S8
T s
716TS 7I5lS
AT S pi s7
MISIES 174
14451 TI5LS
T S4
(-]
7
Eight Puzzie

Problem Space

Figure 1-1: The structure of problem-space search for the eight puzzle.
Likewsc. the states in a problem space, except the current state and possibly a few remembered states, do not
nreexist as data structures 1n the problem solver, so they must be gencraicd by Spplying Hperators o staies

that do exist.

PAGL S SOAR: AN ARCHITFCTURYE |'OR GENERAL INTULLIGENCE
1.2. Any decision can be an object of goal-criented attention

All decisions in Soar relate to searching a problem space (sclection of operators. selection of states, etc.).
The hox in Figure 1-1 represents the knowledge that can be immediately brought to bear to make the
decisions in a particular space. However, a subgoal can be set up to make any decision for which the
timmediate knowledge is insufficient. For instance. looking back to state Sl. thrce moves were possible:
moving a tile adjacént to the blank left. right or down. If the knowledge was not available to select which
move to try, then a subgoal to select the operator would have been set up. Or, if the operator to move a tile
left had been sclected. but it was not known immediateiy how to perform that operator, then a subgoal would
have been set up to do that. (The moves in the cight puzzle are too simple to require this, but many operators
arc more complex. e.g.. an operator to factor a polynomial in an algebraic task.) Or, if the lcft operator had
becn applied and Soar attempted to evaluate the result, but t'.e evaluation was too complicated to compute
directly. then a subgoal would have becn set up to obtain the evaluation. Or, to take just one more example. if
Soar had attempted to apply an operator that was illegal at state S1, say to move tile 1 to the position of dle 2.

then it could have set up a subgoal to satisfy the preconditions of the operator (that the position of tle 2 be
blank).

[n short. a subgoal can be set up for any problematic decision, a property we call universal subgoaiing.
Since setting up a goal means that a search can be conducted for whatever information is needed to make the
decision, Soar can be described as having no fixed bodies of knowledge to make any decision (as in writing a
specific Lisp function to evaluate a position or select among operators). The ability to search in subgoals also
implies that further subgoals can be set up within existing subgoals so that the behavior of Soar involves a tree
of subgoals and problem spaces (Figure 1-2). Because many of these subgoals address how to make control
decisions. this implies that Soar can reflect {73} on its own problem-solving behavior, and do this to arbitrary
levels [64].

1.3. Uniform representation of all long-term knowledge by a production system

There is only a single memory organization for all long-term knowledge. namcly, a production system (9.
14, 25, 42, 78]. Thus, the boxes in Figures 1-1 and 1-2 are filled in with a uniform production system.
Productions deliver control knowledge. as when a production action rejects an operator that leads back to the
prior position. Productions also provide procedural knowledge for simplc operators, such as the cight-puzzle
moves. which can be accomplished by two productions, one to create the new state and put the changes in
place and one to copy the unchanged tiles. (As noted above, more complex operators are realized by
operating in an implementation problem space.) The data structures cxaminable by productions — that is.
the pieces of knowledge in declarative form — are all in the production system'’s short-term working memory.
However, the long-term storage of this knowledge is in productions which have actions that generate the data

structurcs.

i. PROVICW PAGE 7

Long-term

Task-implementation and search-control knowledge

Task
operator

Kplememahon

Task
operator
selection

Task

operator

implem '”V
‘;()0—-‘-

I

|

‘ Subt.

EvaluJ,Jon SublaLk Evaiuahon o::rator

operatpr operajor ooeratbr selecfan
seiec§on

mpleTenlan

nmpleTenlatl

Figure 1-2: The tree of subgoals and their problem spaccs.

PAGE 8 SOAR: AN ARCIHITECTURIE I'OR GENERAL INTELLIGENCE

Soar employs a specialized production system (a modified version of OpsS (20]). All sausfied productions
are fired in parallel. without conflict resolution. Productions can only add data elements to working memory.

Ali modification and removal of data elements is accomplished by the architecture.

1.4. Knowiedge to control search expressed by prefereances

Scarch-controi knowledge is brought to bear by the additive accumulation (via production finngs) of data
elements in working memory. One type of data element the preference, represents knowledge about how
Svar should behave in its current situation (as defined by a current goal. problem space. state and operator).
For instance. the rejection of the move that simply returmns to the prior state (in the exampie apove) 1s encoded
as a rejection preference on the operator. The preferences admit only a few concepts: acceptability, rejection,
better (best. worse and worst). and indifferent. The architecture contains a fixed decision procedure fot
interpreting the set of accumulated preferences o determine the next action. This fixed procedure 15 simply
the embodiment of the semanucs of these basic preference concepts and contains no task-dependent

knowledge.

1.5. Ali goals arise to cope with impasses

Difficulues anse, ulumately, from a lack of knowledge about what to do next (including of course
knowledge that problems cannot be solved). [n the immediate context of behaving, difficulties arise when
problem solving cannot contunue — when it reaches an /mpasse. impasses are detectabie by the architecture.
becausz the fixed decision procedure concludes successfully only when the knowledge of how to proceed is
adequate, The procedure fails otherwise (i.c.. it detects an impasse). At this potnt the architecture creates a
goal for overcoming the unpasse. For example, ezch of the subgoals :n Figure i-2 1s evoked because some
impasse occurs: the lack of sufficient preferences between the thrze task operators creates a ue unpasse: the
fallure of the producuons in the task problem space (0 carry out the selected task operator lea’s to a

no-change impasse: and 50 on.

[n Soar. goals are created only in response (o impasses. Although there are only a small set of arch (2¢c-
wrally disunct unpasses (four), this suffices to generate all the types of subgoals. Thus, all goals anse from ..e
architecture. This principle of operation. cailed quiomatic subgouling, is the most novel feature of the Socar

architecture, and it provides the basis for many other features.

1.6. Continuous monitoring of goal termination
The architecture continuously monitors for the termination of all active goals in the goal hicrarchy. Upon

detection, Soar procecds immediately from the point of termination. For nstance, in trying to break a ue

between two operators in the eight puzzic, a subgoal will be set up to cvaluate the operators. If in examining

l. PREVIEW PAGE9

the first opcrator a preference is created that rejects it then the decision at the higher level can, and will, be
made immediately. The second operator will be selacted and applied. cutting off the rest of the evaluation
and comparison process. All of the working-memory elements local to the terminated goals are automatically

removed.

Immediate and automatic response to the termination of any active goal is rarely used in Al systems because

of its expense. Its (efficient) realization in Soar depends strongly on automatic subgoaling.

1.7. The basic problem-solving methods arise directly from knowledge of the task

Soar realizes the so-called weak methods. such as hill climbing, means-ends analysis. alpha-beta scarch, etc..
by adding search-control producuons that express. 1n isolation, knowledge about the task (i.e.. about the
problem space and the desired states). The suructure of Soar is such that there is no need for this knowledge
to be organized in separate procedural representations for each weak method (with a selection process (o
determine which one to apply). For example. if knowledge cxists abour how (o evaluate the states in a task.
and the consequences of evaluaticn functions are understood (prefer operators that lead to states with higher
evaluations). then Soar exhibits a form of hill climbing. This general capability is another novel feature of

Soar.

1.8. Continuous learning by experience through chunking

Soar learns continuously by automatically and permanently caching the results of its subgoals as produc-
vons. Thus. consider the ue-impasse between the three task operators in Figure 1-2. which leads to a subgoal
w0 break that te. The ulumate result of the problem solving in this suvgoal 1s a preference (or preferences)
that resolves the te impasse in the top space and terminates the subgoal. Then a production s automatically
created that will deliver that preference {or preferences) again in relevantly similar situations. If the system
cver again reaches a similar situation. no impasse will occur (hence no subgoal and nu problem solving 'n a

subspace) because the appropriate preferences will be generated immediately.

This mechanism is directly rclated to the phenomenon called chunking in huinan cognition [63), whence 1ts
name, Structurally, chuniing is a limited form of practice learming. Howe-cr, its cffects tum out to be
widc-ranging. Because lcaining is closcly tied to the goal scheme and universal subgoaling — which provide
an extremely fine-grained. vniformly structured. and comprehensive decomposition of tasks on which the
lecarning can wotk — Soar e ims both operator implementations and scarch control. In addiuon. the com-
bination of the fine-grained task dccomposition with an ability to abstract away all but the relevant features
allows Soar to exhibit significant transfer of learning to new situations, both within the same sk and between

similar tasks. This ability to combine Icarning and problem solving has produced the most suiking ex-

perimental results so far in Soar [33. 36, 62].

PAGE 10 - SOAR: AN ARCIHTECTURE [FOR GIINERAL INTFILLIGENCE

2. The Soar Architecture
in this section we describe the Soar architecture systematically from scratch. depending on the preview
primanly (o have cstablished the central roie of problem spaces and producuon systerrs. We will conunug to

use the eight puzzle as the example throughout.

2.1. The Architecture for Problem Solving
Soar is a problem-solving architecture, rather than just an architecture for symbolic manipulation within
which problem solving can be realized by appropnate control. This is possible because Soar accomplishes all

of its tasks in problem spaccs.

To realize a task as search in a problem space requires a fixed set of task-implemeniation functions, involv-
ing the retrieval or generation of: (1) problem spaces, {2) provlem-space operators. (3) an initial state
represenung the current situation. and (4) new states that result from applying operators to existing states. To
conuol the search requires a fixed set of search-control funcuons, involving the selection of: (1) a problem
space. (2) a state from those directly available, and (3) an operator o apply to the swaate. Together, the task
implcmentation and search-control functions are sufficient for problem-space search (o occur. The quality

and efficicncy of the problem solving will depend on the nature of the selection functions.

The wsk-implementaton and search-control functicns are usually interleaved. Task implementatdon
generates (or reaieves) new prablem spaces. states and operators: and then scarch contro! selects among the
alternatives generated. Together they completely determine problem-solving behavior 1n 4 problem space.
Thus. as Figure 2-1 shows, the behavior of Soar on the eight puzzle can be descnibed as a sequence of such
acts. Other impornant functions must be performed for a complete sysicm: goal creauon, goal selection, goal
termination, memory management and learning. None of these are included in Soar's search-control or
usk-implementation acts. Instead, they are handled automatically by the architecture, and hernce are not

objects of volition for Soar. They arc descnibed at the appropriate places below.

The deliberative acts of search-control together with the knowledge for implemenung the wsk arc the locus
of intelligence in Soar. As indicated carlier in Figure 1-1, search-control and wsk-impiementauon knowledge
is brought to bear on each siep of the scarch, Depending on how much scarch-control knowledge the
problem solver has and how effectively it is employed. the search in the problem space will be narrow and

focused. or broad and random. If focused cnough, the behavior is routine.

Figurc 2-2 shows a block diagram of the architecture that generates problem-space scarch behavior. There

is a working memory that holds the complete processing state for problem solving in Soar. This has three

components: (1) a context stack that specifics the hicrarchy of active goals. problem spaces, states and

2 {TIE SOAR ARCHITUCTURE PAGE i1

(Retrieve the eight-puzzle problem space)
Salect eight-puzzle as problem space
[Generate S1 as the initial state]

Select S1 as state

[Retrieva the operators Down, Left, Right)
Select Down as operator

[Apply cperator (genarate $52)]

Select Left as operator

{Apply operator (generate S3)]

Select Right as operator

[Apply cperator (genarate S4))

Select S2 as state

[Retrieve the operators Down., Left, Right]
Select Down as operator

[(Apply operator (generate $5)]

Select Left as operator

(Apply cperator (genarate $6)]

Select Right as operator

[(Apply operator (generate 57)]

Select S7 as state

Figure 2-1: Problem-space trace in the eight puzzie. (Task implementauon steps are bracketed.)

operators; (2) objects, such as goals and states (and their subobjects); and (3) prefercnces that encode the
procedural search-control knowledge. The processing structure has two pans. One is the production memory.
which is a set of productions that can cxamine any part of working memary, add new objects and preferences.
and augment existing objects. but cannot modify the context stack. The second is a fixed decision procedure
that examines the preferences and the context stack. and changes the context stack. The productions and the
decision procedure combine to implement the search-control functions. Two other fixed mechanisms are
shown in the figure: a working-memory manager that deletes elements from working memory. and a chunking

mechanism that adds new productions.

Soar is embedded within Lisp. It includes a modificd version of the Ops5 production system language plus
addidonal Lisp code for the decision procedure. chunking, the working-memory manager. and other Soar-
specific features. The OpsS maicher has been modified to significantly umprove the cfficiency detenmining
sausfied productions {70]). The towl amount of Lisp code involved. measured in terms of the size of the source
code. is approximately 255 kilobytes — 70 kilobytes of unmodificd OpsS code. 30 kilobytes of modified OpsS
code, and 155 kilobytes of Soar code. Soar runs in CommonLisp. FranzLisp. Interlisp and ZctaLisp on most
of the appropriate hardware (Unix Vax, VMS Vax, Xerox D-machincs, Symbolics 3600s. T1 Explorers, IBM
RTPCs, Apollo and Sun workstatuons).

PAGE 12 . - SOAR; AN ARCHITECTURE I'OR GUNLERA{. INTELLIGENCE

Chunking :
o / Mechanism

*»

Production Memory

—_—

l

Objects Working-Memory 1
Working Memory Manager :
Context Stack
* /-
O Decision
5 Pruocedure

Figure 2-2: Architectural structure of Soar.

2,2. The Working Memory

Working memory consists of a conrext stack. a sct of objecis linked to the context stack, and preferences. i

Figure 2-3 shows a graphic depiction of a small part of working memory dunng problem solving on the eight
puzzle. The context stack contains the hicrarchy of active contexts {the boxcd structures). Each context 1
contains four slors. onc for each of the different roles: goal. problem space. state and operator. Each slot can
be occupicd cither by an cbject or by the symbol undecided. the latter meaning that no object has been
selccted for that slot. The ubject playing the role of the goal in a context is the current goal for that context;

the object playing the role of the problem-space is the current probiem space for that context and so on. The

2. THE SOAR ARCHITECTURE PAGE 1}

top context contains the highest goal in the hierarchy. The goal in each context below the top context is a
subgoal of the context above it. [n the figure. Gl is the current goal of the top context. Pl is the current
- ‘problem space. Sl is the current state, and the current operator is undecided. In the lcwer context. G2 is the
current godl (and a subgoal of G1). Each context has only one goal for the durauon of its exisience, so the

context stack doubles as the goal stack.

bindi
operator desired /" binging
preferences Gt » O1 > .
o1 name
P —————— EIGHT-PUZZLE
02 = binding cell cell
S1 » B81 > C1 <€
a3 binding \mo \l name
undecided B2 > T1 —_— 1
83 c2
item
o1
item
2 02
item
Q3
role
~>» QOPERATOR
\ supergom
G2 — TIE .
ns-
Pe p— - -—> SELECTION
undecided
undecided

Figure 2-3: Snapshot of fragment of working memory.

N

The basic representation is object-centered. An object, such as a goal or a state, consists of a symbol, called
its identifier, and a set of augmentations. An augmentation is a labeled relation (the attribute) between the
object (the idenuifier) and another symbol (the value), i.e., an idenufier-atnbule-value triple. In the figure,
Gl is augmented with a desired state. D1, which is itself an object that has its own augmentauons
(augmentauons are directional, so G1 is not in an augmentation of D1, even though D1 is 1n an augmentation
of Gl). The attribute symbol may also be specified as the identfier of an object. Typically, however,
situauons are characterized by a small fixed sct of attribute symbols — here, impasse, name. operator,

binding, item. and role - that play no other role than to provide discriminating information. An object may

T K e Qe LN T T P R

PAGE 14 SOAR: AN ARCHITTCTURLE 'OR GENERAL INTELIIGENCE

have any number of augmentauons, and the set of augmentations may change over time.?

A preference is a more complex data structure with a specific collection of eight architecturally-defined
rclations between objects. Three preferences are shown in the figure, one each for objects Ol, 02, and O3.
The preferences in the figure do not show their full structure (shown later in Figure 2-7), only the context in

which they are applicable (any context containing problem space Pl and state S1).

The actual representation of objects in working memory is shown in Figure 2-4.3 Working memory is a set
— attempting t0 add an existing clement does not change working memory. Each element in working
memory represents a single augmentation. To simplify the description of objects. we group together all
augmentations of the same object into a single expression. For example. the first line of Figure 2-4 contains a
single expression for the four augmentations of goal G1. The first component of an object is a c/ass name that
distinguishes different types of objects. For example, goal. desired. problem-space. and state are the class
names of the first four objects in Figure 2-4. Class names do nét play a semantic role in Soar, although they
allow the underlying matcher to be more efficient. Following the class-name is the identifier of the object.
The goal has the current goal as its idendfier. Following the identifier is an unordered list of attribute-value
pairs. each attribute being prefaced by an up-arrow (t). An object may have more than one value for a single

auribute, as does state S1 in Figure 2-4, yiclding a simple representation of sets.

The basic attribute-value representation in Soar leaves open how to represent task states. As we shall see
later, the representation plays a key role in determining the generality of learning in Soar. The generality is
maximized when those aspects of a state that are functionally independcent are represcnted independendy. In
the eight puzzle, both the structure of the board and the actual tiles do not change from state to state in the
real world. Only the location of a tle on the board changes. so the representation should allow a tile’s location
to change without changing the structure of the board or the tiles. Figure 2-5 contains a detailed graphic
example of onc representation of a state in the eight puzzle that captures this structure, The state it represents
is shown in the lower left-hand corner. The board in the eight puzzle is represented by nine cells (the 3x3
square at the bottom of the figure), one for each of the possible locations for the tiles. Each cell is connected
via augmentations of type cell to its neighboring cclls (only a few labels in the center are actually filled in). In
addition, there are ninc riles (the horizontal sequence of objects just above the cells), named 1-8, and blank
(represcnted by a small box in the figure). The connections between the tiles and cells are specified by objects
called bindings. A given state, such as S1 at the top of the figure, consists of a set of ninc bindings (the

ZT‘hc extent of the memory structure is necessarily limited by the physical resources of the problem solver, but currently this is
assumed not to be a problem and mechanisms have not been created to deal with it

3Some basic notation and structure is inherited from OpsS.

I T SOAR ARCHITECTURE PAGE (5

(goal G1 tproblem-space P1 tstate S1 toperator undecided tdesired D1)
(desired D1 tbinding DB1 tbinding 0B2 ...)
(problem~-space P1 tname g@ight-puzzle)
(state S1 tbinding B1 B2 B3 ...)
~{binding B1 tcell Cl ttile T1)
(cell Cl tcell C2 ...)
(tile T1 tname 1)
(binding 82 *cell C2 ...)
(cell C2 +cell C1 ...)
(binding B3 ...)

(preference tobject Ol trole opaerator tvalue acceptable
tproblem-space Pl tstate S1)

(preference tobject C2 trole gperator tvalue acceptable
tproblem-space P1 tstate S1)

(preference tobject 03 trole operator *tvalue acceptable
tproblem-space Pl tstate S1)

(opsrator 01 ...)
(operator 02 ...)
(operator 03 ...)

(goal G2 tproblem-space P2 tstate undecided toperator undecided
tsupargoal G1 trole operator timpasse tie
titem 03 titem 02 titem O1)

(problem-space P2 tname selection)

Figure 2-4: Working memory represcntation of the structure in Figure 2-3.

horizontal sequence of objects above the ules). Each binding points to a tle and a cell: each ule points to its
value: and each cell points (0 its adjacent cells. Eight puzzle operators manipulate only the bindings. the

representauon of the cells and tles does not change.,

Working memory can be modified by: (1) productions. (2) the decision procedure, and (3) the working-
memory manager. Each of these components has a speciiic function. Productions only add augmentations
and preferences to working memory. The decision procedure only modifies the context stack. The working-

memory manager only removes irrelevant contexts and objects from working memory.

2.3. The Processing Structure

The processing structure implements the functions required for search in a problem space — bringing to
bear wsk-implementation knowledge (o generate objects. and bringing tc bear search-control knowledge to
select between alternative objects. The search-control functions are all realized by a single generic centrol act:
the replacement of an object in a slot by another object from the working memory. The representation of a
problem is changed by replacing the current problem space with a new problem space. Returning 1o a pnor
state1s accomplished hy replacing the current state with a preexisting one in working memory. An operator is
sclected by replacing the current operator (often undecided) with the new one. A step tn the problem space
occurs when the current operator is applicd to the current state (o produce a new state, which is then selected

to replace the current swie in the cuntext

PAGE 16 SOAR: AN ARCHIITCTURE 1'OR GUNERAL INTFLLIGENCT

(s1)
/ //

~~
81 182
H TILENYAL TILEN

(83) 36) B _Yee) ()
TILE TILE Tu_s\,\r’qi\ nLE\,\;’.L\g
T2 t? (T8) % T \TE’
7 6 2 8 3 4 5 O
Cx___ X
CELL CELL
CELL /" CELL
CELL
e G ,
~ _ f
A0E |

4
INE 5 O S,

Figure 2-5: Graphic representation of an eight puzzle state.

A replacement can take place anywhere in the context stack, e.g., a new state can replace the staie in any of
“he contex:s 1a the stack. not just the lowest or most immcdiate context but any higher one as well. When an
object in a slot is replaced, all of the slots below it in the context are reinitalized to undecided. Each iower
slot depends on the values of the higher slots for its validity® a protlem space is set up in response to a goal: a
state functions only as part of a problem space: and an operator is to be applied at a state. Each context below
the one where the replacement took place is terminated because 1t depends on the contents of the changed

context for its existence (recail that lower contexts contain subgoals of higher contexts).

The replacement of context objects is driven by the decision cycle. Figure 2-6 shows thrce cycles. with the
first one expanded out to reveal some of the inner structure. Each cycle involves two disunct parts. First
dunng the claboration phase. new objccts, new augmentations of old objccts. and preferences are added to
working memory. Then the decision procedure examines the accumulated preferences and the context stack,

and either it replaces an existing object in some slot. i.e., in one of the roles of a context in the context stack. or

it creates a subgoal in responsc 0 an umpasse.

2 T1ESOAR ARCHITECTURE PAGE 17
DECISION 1 DECISION 2 DECISION 3
Elaboration Decigion \L \1'
\L Phase \L Procgdure \L \L \L 7 \L ¢ \L ‘1,
b WPV BV
// Gather —>
Praferencas
Quiescence ¢ Replace
Interpret —» Context
Preferences Object
lmptsse -
V
Create
Subgoal

Figure 2-6: A sequence of decision cycles.

2.3.1. The elaboration phase

Rased on the current contents of working memory, the elaboration phase adds new objects, augmentauons
of existing objects. and preferences. Elaborations are generated in parallel (shown by the vertical columns of
arrows in Figure 2-6) but may sull require muluple steps for completion (shown by the honzontal sequences
of elaboradons in the figure) because informauon generated dunng one step may allow other elaborations to
be made on subscquent steps. This 1S a monoutonic process (working-memory eiements are not Jeleted or
modified) that continues until quiescence is reached because there are no more claborations (o be gencrated *
The monotonic nature of the claboration phase assures that no synchronizauon problems will occur during
the parailel generation of elaborauons. However, because this is only syntactic monotonicity — data suuc-

wures are not modified or deleted — it leaves open whether semantg conflicts or non-monctonicity will occur.

The claboration phase is encoded in Soar as productions of the form:
IfCl andC‘, and... ande then add Ap Ay A,

The C are conditivns that examine the context stack and the rest of the working memory. while the 4, are
acuens that 2add augmentations or prefcrences o memory. Condidon patterns are based on constants, van-
ables. negations, pattern-ands, and disjunctions of constants (according to the conventions of OpsS

productions). Any object in working memory can be accessed as long as there exists a chain of augmentations

s -
In pracuce. the claboration phase rcaches quicseence quickly (less than ten ovcles). however. if quicscence i not reached afler a
prespeciiied aumber of ucrations (Lypicaily 1) 1he ciaboratron phase termunatces and the deuision procedure 1s entered

PAGH |8 SOAR. AN ARCIUTICTURE FOR GUNTFRAL INTEFLLIGENCE

and preferences from the context stack to the object. An augmentation can be a link in the chain if its
identificr appears either in a context or in a previouslv linked augmentation or prefcrence. A preference can
be a link in the chain if all the identitiers in its context (i=lds (defined in Sectton 2.3.2% appear in the chain,
This property ot /inked access plays an important role in working-memory management subgoaj terminauon,
and chunking, by allowing the architecture to determine which augmentations and preferences are accessible

from a context. independent of the specific knowledge encoded in elaborauons.

A production is successtully instantiated 1f the conjunction of its conditions is satisfied with a consistent
pinding of vanables. There can be any number of concurrently successful instantiattons of a production. All
successful instanuiacions of all producuons fire concurrently (simulated) during the claboration phase. The
only conflict-resoluuon principle in Svar is refractory inhibiuon — an inswnuation of a producuon s fired
only once. Rather than having control excrted at '.r/\e ievel of producuons by conrlict resolution. contfoi s

exerted at the level of problem solving (by the decision procedure).

2.3.2. The decision procedure

The decision procedure is exccuted when the elaboration phase reaches quiescence. It determines which
slot 10 the context stack should have its content replaced. and by which object. This 1s accomplished by
processing the context stack from the oldest context to the newest (ie.. from the highest goal to the lowest
one). Within each context, the roles are considered in tum. starung with the problem space and coatinuing
through the state and operator in order. The process terminates when a slot is found for which action 1§
required. Making a change to a higher slot results in the lower slots being reinitialized to undecided. thus

making the processing of lower slots irrelevant.

This ordering on the sct of slots in the context stack defines a fixed desirability orderning between changes
for different slots: it is alwzys more desirabie to make a change higher up. Thec processing for each slot is
driven by the knowledge symbolized in the prefercnces in working memony at the end of the claboration
phase. Each preference is a satcment about the selection of an object for a slot (or set of slots). Three

primiuve concepts are available o make preference statements:

acceptability: A choice is to be considered.

rejection: A chotce is not to be made.

desirability: A choice is better than (worse than, indifferent to) a reference choice.

5I‘hcrc 1s an additonal preference ;pe dhat ailows the <Laiement that iwo choices for an operator slot can te explored in parailer This
s a special oplion 19 cxplore paralic] processing where muiuple slows are ecated for paraiic! operators For more detduis. see the Saar
manual 30)

2 T SOAR ARCHITECTURE PAGE 19

Together, the acceptability and rejection preferences determine the objects from which a selection will be
made. and the desirability prefercnces parually order these objects. The result of processing the slot of
succrsstul, is a single object that is: new (not currently selected for that slot): acceptable; not rejected: and

more desirable than any other choice that is likewise new, acceptable and not rejccted.

A preference encodes a statement about the selection of an object for a slot into a set of attnbutes and
values, as shown in Figure 2-7. The object is specified by the value of the object aunbute. The slot 1s
specified by the combinauon of a role and a context. The role is cither the problem space. the state or the
operator: a goal cannot be specified as a role in a preference because goals are determined by the architecture
and not by deliberate decisions. The context s specified by the contents of is tfour roles: godi. pretiem space.
state and voperator. A class of contexts can be specified by leaving unspecified the contents uf one or more of
the roles. For example, if only the problem space and state roles arc specified. the preterence wiil be reievant

for all goals wih the given problem space and state.

The desirability of the object for the slot is specified by the value attnbute of a preference. which wkes one
of seven alternatives. Acceptable and reject cover their corresponding concepts: the others — best, better,
indifferent. worse. and worst — cover the ordering by desirability. All asseruons about ordenng locate the
given object ralative 0 a reference object for the same slot. Since the reference object always concerns the
same siot, it 1s oniy necessary to specify the object. For better. worse, and some indifferent preferences. the
reference object is another object that is being considered for the slot, and it is given by the reference attnbute
of the preference. For best. worst and the remaining indifferent preferences, the reference object 1s an
abstract anchor point hence is implicit and need not be given. Consider an exampie where there are (wo
eight-puzzle operators, named up and left. being considered for stute S1 in goal Gl. If the idenuiler for the
eight-puzzle problem space s Pl, and the identfiers for up and ieft are Ol and O2. then the following

preference says that up is better than lefi:

(preferance tobject Ol trole operator tvalue better treference 02
tgoal Gl rproblem-space Pl tstate Si)

The decision procedure computes the best choice for a slot based on the preferences in working memorny
and the semantics of the preference concepts. as given in Figure 2-8. The preference scheme of Figure 2-8is a
modification of the staightforward appiication of the cuncepts of acceplability, rejecrion and desirability.
The modificauons anse from two sources. The first 1s imdependence. The elaboratton phase consisis of the
contributions of independently fining individual productions. each expressing an independent source of
knowledge. There is no joint constraint on what cach asserts. These separate expressions must be combined,
and the cnly way to do so 15 to conjoin them. Independence implies that une choice can be (and often is) both

acceptable and rejected. For a decision to be possibie with such preferences, rejection can not be

PAGL 0 SOAR: AN ARCHTITECTURE I'OR GENCRAL INTULLIGENCL

Attribyte
Object 7Tha object that is to occupy the slot

' Role The role the object is to occupy
(problem space, state, or operator)

I
I
I
Goal | |
| | Slot
Problem space | |
| Context in which the preference applies |
State | (A set of contexts can be specified) |
| |
Operator | I
Valuye acceptable The objest is a candidate for the given 10%e
reject The object 1s not to be selected
best The objact is as good as any objact can be
better The object is better than the reference object

ingifferent The object is indifferent to the reference object
if therae is one, otherwise the object is indiffarant
to all other indifferent objects

worse The object is worse than the reference object
(the inverse of bettar)

worst The object is as bad as any object can be
(the inverse of best)

Referenca The reference object for order comparison

Figure 2-7: The encoding ol preferences.

—acceplable. which would lead to a logical contradicton. Instead. rejection overndes acceptable by eliminat-
ing the choice from conside-ation. Independence also tnplies that one choice can be both tetter and worse
than another. This requires admiuing con/Ticts of desirability between choices. Thus. the desirability order s
quite weak, being transitiv2, but not irreflexive or anusymmetnc. and domunares must be disunguished from
simply betier — namely, dominauen implies better without conflict. The possibility of conrlicts modifies the
notion of the maximal subsct of a set 1o be those elements that no vther element dominates. For example, in

the setof {x. y} if (x > y) and (y > x) then thc maximal subsct contains both x and v.

The second source of modifications to the decision procedure is incompieteness. The claboration ghase will
deliver some collecuon of preferences. These can be silent on any parucular fact. ¢.2.. they may asseri that ©is
better than y. and that y is rcjected. but say nothing about whether x is accepldblic or not or rejected or not.

Indced. an unmenuoned object could be better than any that are menuoned. No constraint en coNpiciencss

2 ML SOAR ARCINTECTURE PAGE 21

Primitive predicates and functions on objects, x, y. 2,

current The aobject that currently cccupies tho slot
accaptable(x) X 1§ acceptable
_:reject(x) X 1S rejected
(x > y) x is better than y
(x <y) x 1s worse than y (same as y > x)
(x ~y) x is indifferent to y
(x > y) x dominates y = {(x > y) and ~(y > x)

Reference anchors
indifferent(x) = Yy [indifferent(y) = (x ~ y)]
best(x) = Yy [best(y) = (x ~y)] A [-best(y) A =(y > x) = (x > y)]
worst(x) = Vy [worst(y) = (x ~ y)] A [~worst(y) A =(y < x) = (x < y)]

Basic properties
"~ "Desirability (x > y) is transitive, but nQt complete or antisymmetric
Indifferance is an equivalence relationship and substitutes over O
(x > y) and (y ~ z) implies (x > z)
Indifference does not substitute in acceptable, reject, best, and worst.
acceptablie(x) and {x - y) does not imply acceptable(y),
rejact(x) and (x - y) does nof imply reject(y), etc.

Default assumption
A1l preference statements that are not explicitly mentioned and not
implied by transitivity or substitution are not assumed to be true

Intarmediate definitions
considered-choices 3 {xeobjects | acceptable(x) A —reject(x))
maximal(X) = {(xeXx | Vy =(y > x))
maximal-choices 3 maximal(considered-choices)
empty(X) = =~JxeX
mutually-indifferent(X) = ¥x,yeX (x ~ y)
random(X) = choose one element of X randcmly
select(X) = if currenteX then current else random(X)

Final choice
empty(maximal-choices) A -reject(current) = final-choicae(current)
mutually-indifferent(maximal-choices) A =—empty(maximal-choices)
= final-choice(select(maximal-choices))

Impasse
empty(maximal-choices) A reject(current) = impasse
-mutually-indifferent(masimal-choices) = impasse(maximal-choices)

Figure 2-8: The scmanucs of preferences.

i

PAGE 22 SOAR: AN ARCIUTICTURE FOR GENERAL INTELLIGENCE

can hold. since Soar can be in any state of incomplete knowledge. Thus. for the decision procedure 1o get a
resuit. assumptions must be made to close the world logically. The assumptions all flow from the principle
that positive knowledge 1s required to state a preference — (o state that an object 15 acceptatle. rejected or has
some desirabslity relaton. Hence. no such asseruon should be made by default. Thus. ubjects are not
acceptable unless explicidy accepuable; are not rejected unless explicidy rejected: and are not ordered in a
specific way unless explicidy ordered. To do otherwise without explicit support is o rob the explicit state:
ments of assertional power.

Note. however, that this assumpuon does allow for the existence of prefercnces implied by the explicit
prefcrences and their scmanucs. For example, two objects are indifferent 1f either there 1s a binary
indifferent-preference conwining them. there is a transitive sct of binary indifferent-preferences containing
both of them. they are hoth 1n unary indifferent-preferences. they are both in best-preferences, or they are

both in worst-preferences.

The first step in processing the preferences for a slot is to dztermine the set of choices to be considered.
These are objects that are acceptable (there are acceptable-preferences for them) and are not rejected (there
are no rcject-preferences for them). Dominance is then determined by the best beiter, worst, and worse
preferences. An object dominates another if it is better than the other (or the other is worse) and the latter
object is not betier than the former object. A oest choice dominates all other non-best choices, except those
that are explicidy better than it through a better-preference or worst-preference. A worst choice is dominated
by all other non-worst choices. except those that are explicitly worse than it through a better or worst

preference. The maximal-chotcces are those that are not dominated by any other objects.

Once the sct of maximal-choices is computed. the decision procedure determines the final cheice for the
slot. The current choice acts as a default so that a given slot will change only if the current choice is displaced
by another choice. Whenever there are no maximal-choices for aslot, the current choice 1s maintained. unless
the current choice is rejected. If the set of maximal-choices are mutually indifferent — that 1s, all pairs of
elements in the sct are mutually indifferent — then the final choice is one of the clements of the set. The
default is to not change the current choice. so if the current choice is an clement of the set then it is chosen:
otherwise, onc clement is chosen at random.® ‘Ihe random selection is justufied because there is posiuve
knowledge. in the form of preferences, that explicidy states that it does not maiter which of the mutually

indifferent objects is selected.

If he decision procedure determines that the value of the slot should be changed — that is, there 1s a final

6. ;
in place of 3 Andorm selection there 1s an opt.on i Soai (10 Yiow the user to xlect from tie et of indifTerent choices

3 ITIL 30AR ARCHITECTURE PAGFE 13

~ choice different from the current object in the slot — the change is instiled. all of the lower slots are
reinivalized to undecided. and the elaboration phase of the next decision cycle ensues. [f the current choice is
 maintained. then the cecision procedure corsiders the next slot lower i1n the hierarchy. [f cither there is nu
= final choice. or all of the slots have been exhausted. then the decision procedure fails and an 1‘mpasse7 occurs.
In Soar. four impasse situations are distinguished:

1. Tie: This impasse arises when there are multiple maximal-choices that are not mutually indif-

ferent and do not conflict. These are competitors for the same slot for which insufficient
knowledge (expressed as preferences) exists to discriminate among them.

(¥)

. Conflici: This impasse ariscs when there are conflicting choices in the set of maximal choices.

Lo

. No-change: This impasse anises when the current value of every slot is maintained.

$

. Rejecion: This impasse arises when the current choice s rcjected and there are no maximal
choices; that s, there are no viable choices for the siot. This sicuatuon typically occurs when all of
the ulternauves have buen tned and found wanung.

The rules at the bottom of Figure 2-8 cover all but the third of these, which involves cross-slot considerations
not currently dealt with by the preference semantcs. These four condiuons are mutually exclusive, so at most
one impasse will arse from executing the decision procedure. The response to an impasse in Soar is to set up

asubgoal in which the impasse can be resolved.

2.3.3. Imblementlng the eight puzzle

Making use of the processing structure so far described — and postponing the discussion of impasses and
subgoals unul Section 2.4 — it 15 possible to describe the implementauon of the eight puzzle in Soar. This
implementaton consists of both task-impiementation knowledge and scarch-control knowledge. Such
knowledge is eventually 1o be acquired by Soar from the external world in some representation and converted
to internal forms, but until such an acquisition mechanism is developed. knowledge 1s simply posited of Soar,

encoded into problem spaces and search control. and incorporated directly into the producuon memory.

Figures 2-9. 2-10. and 2-11 list the productions that encode the knowledge to implement the cight puzzle
task.® Figure 2-9 contains the productions that sct up things up su that problem solving can begin, and detect
when the goal has been achicved. For this cxample we assume that iniually the current goal is w0 be
augmcented with the name solve-cight-puzzle, a description of the inital state. and a description of the desired
sate. The problem space is sclected based on the descrption of the goal. In this case, producton

sclect-eight-puzzle-problem-space is scnsitive to the name of the goal and suggests cight-puzzle as the

“The term was first uscd in tis scnsc 1n Repair theory {8]; we had onginaily used the term difficulty [29]

&Thcse descriptions of the producuons are an abstracuon of the actual Saar producuons. which are given in the Soar manual {30]

PAGI: 24 SOAR: AN ARCHITECTURE FOR GUNERAL INTELLIGENCE

problem space. The iniual state is determined by the current gual and the problem space. Production
definc-initial-state translates the description of the initial state in the goal to be a state in the eight-puzzle
_problem space. Similarly. define-final-state translates the description of the desired s:ate to be a state in the
cight-puzzle problem space. By providing different inital or desired states, different cight puzzle problems
can be attempted. Production cetect-eight-puzzle-success compares the current state, tle by tile and cell by

cell to the desired swaate. [f they match. the goal has been achieved.

select-eight-puzzie-space:
If the current goal is solve-eight-puzle, then make an acceptable-preference for aight-puzzie as the current problem
Pace.

defineininal-state:
If the current probiem space 8 aghi-puzzle, then create a state (n this problem space based on the descnption tn the
g0a! and make an accepabl-prefcrence for this state.

define-final-state:
If the current problem spac: 1s eight-puzile. then augment the goal with a destred swate in tus problem space based
on the dusenpuon in the goal.

detect-eight-puzzie-success:
If the current problem space: s exght-puzzle and the current sate matche< i desired suate of e curment goa! \n
each cell, then mark the Kawe with sucress.

Figure 2-9: Productions that set up the eight puzzle,

The final aspect of the task definition is the implementation of the operators. For a giver problem, many
different realizations of essenually tic same problem space may be possible. For the eight puzzle. there could
be twenty-four operators, one for each pair of adjacent cells between which a tile couid be moved. In such an
implementauon. all operators could be made acceptable for each state. followed by the rejection of those that
cannot apply (because the blank is not in the appropnate place). Alternatively, only those operators that are
applicable to 2 state could bc made acceptable. Another implementation could have four operators, one for
each direction in which tles can be moved into the biank cell: up, down. left. and nght. Those operators that

do not apply to a state could be rejected.

In our implementauon of the eight puzzle. there is a single general operator for moving a tile adjacent to the
blank cell into the blank cell. For a given state, an instance of this operator is ¢created for cach of the adjacent
cells, We will refer to these instantiated operators by the direction they move their associaied tle: up, down,
left and night. To create the operator instantiations requires a single production, shown in Figure 2-10. Each
operator is represented in working memory as an object that is augmented with the cell containing the blank
and one of the cells adjacent to the blank. When an insuntiated operator is created. an acceptable-preference
1s also created for it in the context containing the eight-puzzie problem space and the state for which the
instantiated operator was created. Since opcerators are created only if they can apply. an addiuonal producton

that rejects inapplicable operators is not required.

An vperator is applicd when it is selected by the decision procedure for an operator role — selecting an

Y 11T SOAR ARCINTTCTURE PAGE 25

inglantiste-opetrator:
If the current problem space s aght-puzzie and the current state has 2 ule in 3 cell adjacent to the blank's cell. then
create 3n acceplable-preference (or a newly created operator Lthat will maove the Ule inlo the blank's ccll.

Figure 2-10: Production for creaung eight puzzic operator instantiations.

operator produces a context in which productions associated with the operator can execute (they contain a
condition that tests that the operator is selected). Whatever happens whilc a given operator occupies an
operator role comprises the attempt to apply that operator. Operator productions are just elaboration produc-
tions, used for operator application rather than for search control. They can create a new state by linking it 10
the current context (as the object of an acceptable-preference), and then augmenung it. To apply an instan-
tated operator in the eight puzzle requires the two productions shown in Figure 2-11. When the operator is
selected for an operator slot. production create-new-state will apply and create a new state with the ule and
blank in their swapped cells. The producuon copy-unchanged-binding copies pointers to the unchanged
bindings between tiles and ce!is.

create-new-state: _
Il the current problem space 18 eight-puzzle. then create an acceplable-preference for a newly created state. and
augment the new siate with bindings that have switched the ules from the current state that are changed by the
current operator.

copy-unchanged-bioding:
If the current problem space s e1ght-puzzie and there s an aceplabie-preference for a new state. then copy from
the current state each binding that s unchangcd by the current operator.

Figure 2-11: Productions for applying eight puzzle operator instantiations.

The seven productions so far described compnse the task-implementation knowledge for the cight puzzle.
With no addiuonal producuons. Soar will start 1o solve the problem, though in an unfocused manner. Given
enough ume 1t will search undl a soluticn 1s found.? To make the behavior a bit more focused. search-cortrol

knowledge can be added that guides the selection of operators. Two simple search-control productions are

shown ‘in Figure 2-12. Avoid-undo will avoid operators that move a tle back to its prior cell.

Mca-operator-select is 2 means-ends-analysis heuristic that prefers the selection of an operator if it moves a
ule into its desired cell. This is not a fool-proof heuristic rule, and will sometimes lead Svar 10 make an
incorrect move.

avoxd-updo:
If the current probiem space 18 eight-puzzie, then create a worst-preference for the operatcr that will move the nle
that was moved by the operator that created the current tate.

mea-operalor-selection:
If the current problem space s eight-puzzle and an operator will move a ule nto 1ts cell in the desired state, then
make a best-preference (or that operator.

Figure 2-12. Scarch-control productions for the eight puzzle.

9111: default search 1s depth-first where the choices beiween cumpeung operalors &¢ made randomly lniitute loops do not anse
because the choices ar¢ madce non-determinisucally.

PAGE 26 SOAR: AN ARCHITCCTURE FOR GENERAL INTELLIGENCE

Figure 2-13 contains a trace of the initial behavior using these nine productions (the top of the figure shows
the states and operator involved in this trace). The trace is divided up into the activity occurming during cach
of the first five decision cycles (plus an iritialization cycle). Within each cycle, the activity is marked
according to whether it took place within the elaboraton phase (E), or as a result of the decision procedure
procedure (D). The steps within the elaboration phase are also marked: for example, line 4.1E represents
activity occurring during the first step of the elaboration phase of the fourth decision cycle. Each line that is
part of the elaboration phase represents a single production firing. Included in these lines are the
production's name and a dcscription of what it does. When more than one production is marked the same, as
in 4.2E. 1t means that they fire in parallel during the single elaboration step.

S1 S2 D1
2{8|3 down 21813 11213
N
6|4 > 1 4 8 4
7 S 716|5 71615
Ccle Production Agtion
0) h ren 1 Gl 13 already augmented with solve-eight-puzzle
1€ select-eight-puzzle-space Make an acceptable-preference for eight-pu2zle
10 1 ignt-pyz22! rqblem
i3 define-final-state Augment goal with the desired stezte (O1)
2€ define-initial-state Make an acceptable-preference for S1
20 Select 31 as state
2.1E instantiate-operator Create 01 (down) and an acceptable-preference for tt
J.1E nstantiate-operator Create 02 (right) and an acceptable-prefarence for it
J.1€ 1nstantiate-operator Create 03 (left) and an acceptadble-preference for it
J.2E mea-ocperator-selection (01-down) Make a3 best-preference for down
30 3Select Q1 (down) a3 opecator

4. 1E create-new-state Make an acceptable-preference for S2, swap bindings
4.2 copy-unchanged-binding Copy over unmodifieg bindings

4.2€ copy-unchanged-binding

4 2t copy-unchanged-binding

4 2E copy-unchanged-binding

4.2€ cooy-unchanged-binding

4 2t cupy-unchanged-binding

4 2t copy-unchanged-binding

]

0 Setect S2 a3 3tate

SE instantiate-oparator Create 04 (down) and an acceptable-preference for 1t
5¢ 1nstantiate-operator Create 05 (right) and an acceptadbie-prefarence for it
St instantiste-operator Craate 06 (left) and an acceptable-preference for 't
14 instantiate-operator Create 07 (up) and an acceptable-prefarence for it

5E Avoi1d-undo (07-up) Make a worst-preference for up

50 Tie 'mpasse, create su]

Figure 2-13: Trace of initial cight puzzle problem solving.

The trace starts where the current goal (catled G1) is the only object defined. In the first cycle. the goal is

2 THC SOAR ARCHITECTURE PAGE 27

augmented with an acceptable-preference for eight-puzzle for the problem-space role. The dacision proce-
dure then sclects eight-puzzle as the current probiem space. In cycle 2. the initial state. S1. is created with an
acceplable-prefercnce for the state role, and the problem space is augmented with its coerators. At the end of
cycle 2, the decision procedure selects S1 as the current state. [n cycle 3, operator instances, with correspond-
ing acceptable-preferences. are created for all of the tiles that can move into the blank cell. Production
mea-operator-sciection makes operator Q1 (down) a best choice, resulting in its being selecied as the current
operator. In cycle 4, the operator is applied. First. production create-new-state creates the preference for a
new state (S2) and augments it with the swapped bindings. and then production copy-unchanged fills in the
rest of the structure of the new state. Next, state S2 is selected as the current state and operator instances are
created — with corresponding acceptable-prefercnces — for all of the tiles that can move into the cell that
now contains the blank. On the next decision cycle (cycle 5). none of the operators dominate the others. and

an umpasse occurs.

2.4. Impasses and Subgoals

When attempting (0 make progress in araining a goai, the knowledge direc’ly available in the problem
space (encoded in Soar as productons) may be inadequate to lead to a successful choice by the decision
procedure. Such a situation occurred in the last decision cycle of the eight puzzle example in Figure 2-13.
The knowledge directly available aboul the eight puzzle was incomplete — it did not specify which of the
operators under considerauon should be sclected. In general, impasses occur because of incomplete or
inconsistent information. [ncomplete information may yield a rejection, tie, or no-change impasse, while

inconsistent information yields a conflict impasse.

When an impasse occurs. returning to the elaboration phase cannot deliver additonal knowledge that might
remove the impasse, for elaboration has already run o quiescence. Instead. a subgoal and a new context is
crcated for each impasse. By responding to an impasse with the creation of a subgoal. Soar is able to
deliberately search for more information that can lead to the resolution of the impasse. All types of

knowledge, task-impiementation and search-contrul, can be enccded in the problem space for a subgoal.

If a tie impassce between objects for the same slot anses, the problem solving to select the best object will
usually result in the creation of one or more desirabilitv preferences. making the subgual a iocus of search-
control knowledge for selecting among those objects. A te umpasse ¢ “ween two objects can be resolved in a
number of ways: onc object is found to lead to the goal, so a best prefer...ce is created: one object is found tc
be better than the other, so a beiter preference is created: no difference is found between the objects, so an
indifferent preference is created: or one object 1s found to lead away from the goal. so a worst preference is
created. A number of different problem solving strategies can ba used (o generate these outcomes. including:

further elaborauon of the tied objects (or the other objects 1n the context) so that a detailed comparison can be

PAGE 28 SOAR: AN ARCHITFCTUREL FOR GENERAL INTELLIGENCE

' ‘made; look-ahead searches to determine the effects of choosing the competing'objects: and anaivgical map-

pings to other situations where the choice is clear.

If a no-change impasse arises with the operator slot filled. the problem solving in the resulting subgoal will
usually involve operator implementation. terminating when an accepiable-preference is generated for a new
state in the parent problem space. Similarly. subgoals can create problem spaces or initial states when the
required knowledge is more easily encoded as a goal to be achieved through problem-space search. rather

than as a sct of elaboration productions.

When the impasse occurs during the fifth decision cycle of the eight-puzzle example in Figure 2-13. the

-following goal and context are added to working memory.

(goal G2 rsupergoal Gl timpasse tie ftchoices multiple trole oparator
titem 04 05 06
tproblem-space undecided tstate undecided toperator undecided)

The subgoal is simply a new symbol augmented with: the supergoal (which links the new goal and context
into the context stack): the type of imposse: whether the unpasse arose because there were no choices or
muiuple choices in the maximal-choices set: the role where the impasse arose: the objects involved in conflicts
or tes (the items); and the problem-space, state, and operator slots (initialized o undecided). This infor-
mation provides an initial definition of the subgoal by defining the conditions that caused it to be generated
and the new context. In the following elaboration phase. the subgoal can be elaborated with a suggested
problem space. an initial state, a desired state or even path constraints. [f the situauon is not sufficiendy
elaborated so that a problem space *rd inital state can be selected. another impasse ensues and a further

subgoal is created to handle it.

Impasses are resolved by the addition of prefercnces that change the results of the decision procedure.
When an impasse is resolved. allowing problem solving to proceed in the context, the subgoal created for the
impassc has completed its task and can be terminated. For example, if there is a subgoal for a ue impasse at
the operator role. it will be (erminated when a new preference is added to working memory that either rejects
all but one of the competing operators, makes one a best choice, makes one better than all the others, etc. The
subgoal will also be terminated if new preferences change the state or problem-space roles in the context,
because the contents of the operator role depends on the values of these higher roles. [f there 1s a subgoal
created for a no-change impasse at the cperator role — usually because of an inability to implement the
operator girectly by rules in the problem space — it can be resolved by cstublishing a preference for a new

state. most likely the one gencrated from the application of the operator (o the current state.

In gencral, any change to the context at the affected role or above will Icad to the terminauon of the

1 YHESOAR ARCHITECTURE PAGE 29

subgoal. Likewise, a change-in any of the conrexts above 1 subgoal will lead to the termination of the subgoal
because its depends on the higher contexts for its existence. Resolution of an impasse terminates all goals

below it

When a subgoal is terminated. many working-memory clements are no longer of any use since they were
created solely for internal processing in the subgoal. The working-memory manager removes these useless
working-memory elements from terminated subgoals in essentially the same way that a garbage collector in
Lisp removes inaccessible CONS cells. Only the results of the subgoal are retained — those objects and
preferences in working memory that mcet the criteria of linked access to the unterminated contexts, as
defined in Section 2.3.1. The context of the subgoal is itself inaccessible from supergoals — its supergoai link

- 1S one-way — s0 it is removed.

The architecture defines the concept of goal terminauon, not the concept of goal success or failure. There
are many reasons why a goal should disappear and many ways in which this can be reflected in the
preferences. For instance, the ordinary (successful) way for a subgoal implementing an operator to terminate
is to create the new result state and preferences that cnable it to be selected (hence teading to the operator role
becoming undecided). But sometimes it is appropriate to terminate the subgoal (with failure) by rejecting the

operator or selecting a prior suate, so that the operator is never successfully applied.

Automatc subgoal termination at any level of the hicrarchy is a highly desirable, but generally expensive,
feature of goal systems. [n Soar, the implementation of this feature is not expensive. Because the architecture
creates all goals, it has both the knowledge and the organization necessary to terminate them. The decision
procedure iterates through all contexts from the top. and within each context, through the different roles:
problem space, state and operator. Almost always, no new preferences are available to challenge the current
choices. If new preferences do exist. then the standard analysis of the preferences ensues. possibly deter-
mining a new choice. If everything remains the same. the procedurce continues with the next lower siot: if the
value of a slot changes then all lower goais are terminated. The housckeeping costs of termination, which s
the removal of irrelevant objects from the working memory. is independent of how subgoal termination

occurs.

2.5. Default Knowibkdge for Subgoals

An architecture provides a frame within which goal-oriented action takes place. What action occurs
depends on the knowledge that the systerm has. Soar has a basic complemcnt of wask-independent knowledge
about its own operation and about the attatnment of goals within it that may be taken as an adjunct to the
architecture. A total of fifty-two productions embody this knowledge. With it. Soar cxhibiis reasonable

default behavior: without it (ur other task knowledge). Soar can flounder and fall 1nto an infinitely deep series

PAGE 30 . SOAR: AN ARCINTECTURE FOR SUNFRAL INTULIIGENCE

of impasses. W¢ descrive here the default knowledge and how it is represented. All of this knowledge can be
over-ridden by additional knowledge that adds other preferences.

Common search-control knowledge. During the problem solving in a problem space, scarch-control ruies

are available for three common situations that require the creation of preferences.

1. Backup om a failed stace. [f there is a reject-preference for the current state, an acceptable-
preference is created for the previous state. This umplements an elementary form of backtracking.

2. Make all opcrators acceptable. If there are a fixed set of operators that can apply in a problem
space. they should be candidates for every state. This is accomplished by creaung acceptabie-
preferences for those operators that are directly linked to the problem space.

3. No operator retry. Given the deterministic nature of Soar. an operator will create the same result
‘whenever it is applied to the same state. Therefore, once an operator ha- created a result for a state
in somc context, a preference i1s ¢reated to reject that operator whenever that state is the current
state for a context with the same problem space and goal.

Diagnose impasses. When an impasse occurs. the architecture creates a new goal and context that provide
some specific information about the nature of the inpasse. From there, the situauon must be diagnosed by
search-control knowledge to initate the appropriate preblem-solving behavior. In general this will be task-
dependent conditonal on the knowledge embedded in the entire stack of acuve conwexts. For situations in

which such task-dependent knowledge does not exist, default knowledge exists to determine what to do.

1. Tie impasse. Assurne that additional knowledge or reasoning is required to discriminate the items
that caused the ue. ‘The selection problem space (described below) is made accepuable to work on
this problem. A worst-preference is also generated for the problem space. so that any other
proposed prceblem space will be preferred.

1. Conflict impasse. Assume that addiuonal knowledge cr reasoning is required o resolve the
conflict and reject some of the items that caused the conflict. The selcction problem space s also
the appropnate space and it is made acceptable (and worst) for the problem space role. 0

3. No*change impasse.

a. For goal, problem space and state roles. Assume that the next higher object in the context 1s
responsible for the impasse. and that a new path can be aucmpted if the higher object is
rejected. Thus. the default action is to create a reject-preference for the next higher object in
the context or supercontext. The default action 1s taken only (f a problem space is not
selected fur the subgoal that was generated because of the impasse. This allows the default
action to be overnden through problem solving in a problem spacce sclected for the no-
changce umpasse. If there is a no-change impasse for the top goal, problem solving is haited
because therce is no higher object to reject and no further progress is possible.

loﬂhere has beer htUe expencace with conflict subguals so far. Thus. httle confidence can be placed in the reaunent of conflicts and
they will nok be discussed further

% TUE SOAR ARCHITECTURE PAGE 31

b. For operator role. Such an impasse can occur for multiple reasons. The operator could be
too compiex to be performed directly by productions. thus needing a subspace (o implement
it. or 1t cuuld be incompletely specified. thus needing to be nstantiatcd. Both of these
require wask-specific problem spz:es and no appropriate default action bascd on them is
available. A third possibility is that the operator is inapplicable to the given state, but that it
would apply to some other state. This does admit a domain-independent response. namely
attempung to find a state in the same problem space to which the operator will apply
(operator subgoaling). This is taken as the appropniate default response.

4. Rejection impasse. The assumption is the same as for (nonoperator) no~changé subgoals: the
higher object is rcsponsible and progress can be made by rejecting it. If there is a rejection
impasse for the top problem space, problem solving is halted becausc there is no higher object

The sclection problem space. This space is used to resolve ties and conflicts. The states of the selectuon
space contain the candidate objects from the supercontext (the wems associated with the subgoal). Figure 2-14
shows the subgoal structure that arises in the eight puzzle when there is no direct search-control knowledge ©
select between operators (such as the mea-operator-selection production). Initally, the problem solver is at
the upper-left state and inust select an operator. [f search control is unable to uniquely determine the next
operator to apply. a tie impasse arises and a subgoal is created o do the selection. In that subgoal, the

sclecuon problem space is used.

initial desired
-] state sown state
ask goa w
S 2]8]3 \ 2183 /4\ 1B
11614 A tF 4] > |

-eight puzzle

protlem space 3 ! A&\\\J - \/. -

down>left
down>right
left=right
operator tie gvaluate-objecet evaluate-object evaluate-object
subgoal s (down) - (left) (rigst) ™~ —
T N AR ~~ - L
Se‘lection - p——— M.. hen e ——— —_ gy 4
problem space 1\\
lafts-1 / right=-1
/ \
[\
luati ; left w o Pight Y\
evaluation
subgoal 2 3 813 218]1)3 218133 2181]3
Qight pUZZ]e 1 4 { 4 1 4 o 1 1 4 11614
problem spacey}? 5 71615 7 5 7 7 5 7158

Figure 2-14; The subgoal structure for the eight puzzle.

PAGE 2 SOAR: AN ARCHITECTURE FOR GENERAL INTELLIGENCE

The one operator in the sclection space, cvaluate-object, is a genecral operator that is instantiated with each
tying (or conflicting) object: that is. a unique evaluate-object operator is created for each instantiaton. Each
state in the selection space is a set of evaluations produced by cvaluate-object operators (the contents of these
states is not shown in the figurc). In the figure. an evaluate-ovject operator is created for each of the tied
operators: down, left, and right. Each evaluate-object operator produces an evaluaton that allows the crea-
don of preferences invoiving the objects being evaluated. This requires wask-specific knowledge, so either
productions must exist that evaluate the contending objects. or a subgoal will be created to perform this
evaluauion (see below for a default strategy for sucii an evaluaton). Indiffercnt-preferences are created for all
of the evaluate-object operators so that a selecion between them can be made without an infinite regression
of ue impasses. If all of the evaluate-object operators are rejected. but suil no selection can be made, problem
solving 1n the selection problem space will have failed to achieve the goal of resolving the impasse. When this
happens, default knowledge (encoded as productions) exists that makes ail of the ted alternatives indifferent

(or. correspondingly, rejects all of the conflicting alternauves). This allows problem solving to continue.

The evaluation subgoal. [n the selecton problem space, each evaluate-object operator must evaiuate the
item with which it is instantiated. Task-dependent knowledge may be available to do this. If not. a no-change
impasse will occur, leading to a subgoal to implement the operator. One task-independent evaluation tech-
nique is lookahead — ry out the item temporanly to gather information. This scrves as the default. For this.
productions reconstruct the task context (i.e.. the supercontext that lead to the tie), making acceptabie-
preferences for the objects selected in the context and augmenting the new goal with information from the
onginal goal. In Figure 2-14, the original task problem space and state are selected for the evaluation
subgeals. Once the task context has been reconstructed. the item being evaluated ~ the down operator — is
selected (it receives a best-preference in the evaluauon subgoal). This allows the object to be tned out and

possibly an evaluation to be produced based on progress made toward the goal.

When knowledge is available to evaluatc Uic swaley in the wsk >pace, the new state produced in the cvalua-
uon subgoal will receive an evaluation, and that value can be backed up t0 serve as the evaluation for the
down uperator in this sicuation. One simple eight-puzzle evaluation s to compute the number of tles that are
changed relatve to the locations in the desired state. A value of 1 is assigned 1f the moved dle 1s out of
position in the anginal state and in position 1n the result state. A value of 0 1s assigned if the moved ule 1s out
of position in both states. A value of -] is assigned if the moved ule is in position in the onginal swate and out
of posiuon in the result state. When an evaluation has been computed for down, the evaluauon subgoal
terminates, and then the whole process s repeated for the other two opcerators (left and right). These

cvaluations can bc used fo gencrate prefcrences among the competing operators. Since down creates a state

with a better evaluation than the other operators. better-preferences (signified by > n the figure) are created

1 THE SOAR ARCIUTECTURE PAGE 13

for down. An indifferent-preference (signified by = in the figure) is also created for left and night because
they have equal cvaluations. The preferences for down lead to its selection in the onginal task goal and
problem space. terminating the ue subgoal. At this point down is reapplied to the initial state, the result is

sciccted and the process continues.

Figure 2-15 shows, in a state-space representation. two steps of the search that occurs within the eight puzzle
problem space. The distinctive pattern of moves in Figure 2-15 is that of steepest-ascent hill climbing, where
the state being selected at each step is the best at that level according to the cvaluation function. These states
were generated in the attempt to solve many different supgoals. rather than from the adoption of a coor-
dinated method of hiil climbing in the original task space. Other types of search anse in a simiar way. If no
knowledge to evaluate states is available except when the goal is achieved. a depth-first search arises. [f it 1§
known that avery other move 1s made by an opponent in a two-plaver game. a mini-max search emerges. The

emergence of methods directly from knowledge in Soar 1s discussed further in Section 3.2,

21813
11614
7 S
down Y l#ﬁ right
/ \l/ \
8(3 2(8|3 2|83
1 4(=+1 [116(4]| =-1 116]4] =-1
6|5 718 715
cdown lgft right
2 3 21813 2|83
1{8]4]=0 114] =0 1]4] =1
716|8 71615 71615

Figure 2-15: A wace of steepe:: asceni hill climbing.

2.6. Chunking

Chunking is a learning scheme for orgamzing and remembenng ongoing expenence automatically on a
conunuing basis. [t has been much studied in psycholegy {7, 12, 43, 50] and 1t was developed into an explicit
learntng mechanism within a producuon-system architecture in pnor work (35. 61, 63]. The current chunking

scheme in Soar is directly adapted from this latter work. As defined there. 1t was a process that acquired

chunks that generated the results of a goal, given the goal and its parameters. The parameters of a goal were

PAGE M SOAR: AN ARCIHUTLCTURE FOR GENFRAL INTFI LUGENCE

defined to be thosc aspects of the system existing prior to the goal's creation that were examined during the
processing of the goal. Each chunk was represented as a sct of three producuons. one that encoded the
~ parameters of a goal, one that connected thic encoding in the presence of the geal o (chunked) results. and
one that decoded the results. Leamning was bottom-up: chunks were butlt only for terminal goals — goals for
which there were no subgoals that had not already been chunked. These chunks improved task performance
by subsututing efficient productions for complex goal processing. This mechanism was shown to work for a
set of simple perceptual-maotor skills based on fixed goal hierarchies {61] and it exhibited the power-law specd
improvement charactenstic of human practice [S0}. Currently. Soar does away with one feature of tiis
chunking scheme. the three-producuon chunks, and allows greater flexibility on a second. the bottom-up
nawre of chunking. In Soar. single-production chunks are built for either temminal subgoals or for every

subgoal. depending on the user’s option,

The power of chunking in Soar siems from Soar's ability to generate goals automatically for problems n
any aspect of its probiem-solving behavior: a goal to select among altermatives leads to the creauon of a
chunk-preduction that will later control search; a goal to apply an operator to a state leads to the creation of a
chunk-production that directly implements the operator. The occasions of subgoals are exacty the conditions
where Soar requires leaming, since a subgoal is created if and only if the avatlable knowledge is insufficient
for the next step in problem soiving. The subgoal 1s created to find the necessary knowledge and the
chunking mechanism stores away the knowledge so that under similar circumstances in the future, the
knowledge will be available. Actually, Soar learns what is necessary to avold the impasse that led to the
subgoal. so that henceforth a subgoal wiil be unnecessary, as opposed to learning to supply results after the
subgoal has been created. As search-contro! knowledge is added through chunking, performance improves
via a reducuon in the amount of search, [f enough knowledge is added. there 1s no search: what 15 ieft 1s an
efficient algorithm for a task. In addidon w reducing search within a single problem space. chunks can
completely eliminate the search of enure subspaces whose function is o make a search-control decision or
perform a task-implementation function (such as applying an operator or detcrmining the iniual state of the
task).

2.6.1. The chunking mechanism

A chunk production summanzes the processing in a subgoal. The actions gencrate those working-memoery
eiements that climinated the umpasse responsible for the subgoai (and thus terminated the subgoal). The
conditions test those aspects of the current task that were relevant to those actions being perforrned. The
chunk is oreated when the subgoal terminates — that it when ail of the requisite information is svailable. The
chunk's actions are based on the results of the subgoal — those working-memory ciements created in the

subgoal (or 1ts subguals) that are accessibie from a supergoal. An augmentation s a result if s identfier

¢ither existed before the subgoal was created, or 1s in another result. A preference is a resuit of ail of its

2 INESOAR ARCIHITECTLRE PAGE 35

“specified context objects (goal. problem space, state and operator) either existed before the subgoal was

created, or are in another result.

The chunk's conditions are based on a dependency analysis of traces of the producuons that fired during the
subgoal. The traces are accumulated during the processing of the subygoal. and then used for condiuon
determination at subgoal termination time. Each trace contains the working-memory elements that the

)1 Only productions that

producton matched (condition elemenis) and those it generated (action elements
actually add something to working memory have their traces saved. Productions that just monitor the state
(that is. only do output) do not affect what is learned. nor do productuons wat attempt to add working-

memory elements that already exist (recall that working mcmory Is a set).

Once a trace is created it needs (o be stored on a list associated with the goal in which the production fired.
However, determining the appropnate goal is problematic in Soar because elaborations can execute in parailei
‘for any of the goals in the stack. The solution comes from examining the contexts tested by the prcduction.
The lowest goal in the hierarchy that is matched by conditions of the production is taken to be the one
affected by the production fining. The production will affect the chunke< created for that goal and possibly, as
we shall see shortly, the higher goals, Because the production firing is independent of the lower goals — it

would have fired whether they existed or not — it will have no effect on the chunks built for those goals.

When the subgoal lerminates, the results of the subgoal are factored into independent subgroups. where
two results are considered dependent if they are linked together or they both have links to a third result
object. Each subgroup forms the basis for the actions of one production, and the condiuons of each produc-
uon are determined by an independent dependency analysis. The effect of factonng the result 1s to produce
more productons, with fewer conditions and actions in each. and thus more generality than if a single
production was created that had all of the actions together. For cach set of results. the dependency-analysis
procedure starts by finding those traces that have une of the results as an action element. The cordition
elecments of these traccs arc then divided up into those that existed pnor to the creauon of the subgoal and
those that were created in the subgoal. Those created prior tn the subgual become conditions of the chunk.
The others are then recursively analyzed as if they were results, to determine the pre-subgoal elernents that

were responstble for their creation,

Earlier versions of chunking n Soar [36] implicitly cmbodied the assumption that problem soiving was

perfect — if a rule fired in a subgoal, then that rule must be relevant to the generation of the subgoal’s results.

11

If there s a conditon that tests for the absence of 3 working-mzmory clement a copy of that ncgated condiuon s saved in the trace
wAth its varables instanuaicd from the values bound clsewhere 1n the producuon

PAGE 36 SOAR: AN ARCHITECTURE ['OR GENERAL INTELLIGENCE

The conditions of a chunk werc based on the working-memory clements maiched by all of the productions
that fired in the subgoai. When the assumption was violated. as it was when the proccssing involved searches
down paths that led to failure, overly specific churks were created. By working backward from the results,
the dcbendency analysis includes only those working-memory elements that were matched by the productions
that actually led to the creation of the results. Working-memory elements that are examined by producuons.

but that tum out to be irrelevant. are not included.

A generalization process ailows the chunk to apply in a future situation in which there are objects with the
same descriptions. but possibly different identifiers. Once the set of chunk-productions is determined, they
are generalized by replacing the identfiers in the working-memory elements with vanables. Each idenufier
serves (o ue together the augmentations of an object and serves as a pointer (o the object. but carties no
meaning of its own — 1n fact. a new identfier is generated each ume an object is created. Constant symbols
— those that are not used as the identifiers of objects — are not modified by this vanablizauon process. only
the identfiers. All instances of the same 1dentfier are replaced by the same vanable. Different idendifiers are
replaced by different vanables which are forced to maich distinct identifiers. This scheme may sometimes be
in error. creating producuons that will not match when two elements just happen to have the same (or

different) identifiers, but it always errs by being too constraining.

The final step in the chunk creation process is to perform a pair of optimizations on the chunk producuohs.
The first optimization simplifics productions learned for the implementauon of a complex c~erator. As pan
of creaung the new state. much of the substructure of the pnor state may he copied over (o the new state, The
chunk for this subgoal will have a separate condition, with an associated action, for each of the substructures
copied. The chunk thus ends up with many condition-acuion pairs that are idenucal except for the names of
the vanables. If such a production were used in Soar during a new situation, a huge number of instantiations
would be created, one for every permutatuon of the objects to be copied. The optimizauon eliminates this
problem by removing the conditions that copy substructure from the original productuon. For cach type of
substructure being copied. a new production is created which includes a singlc condition-action pair that will
copy substructures of that type. Since all of the actions are additive, no ordercring of Uie actons has o be
maintained and the resulting sct of rules will copy all of the substructure in parallel.

The second opumization is to order the productuon conditions in an attempt to make the matcher faster.
Each condition acts like a query — returning all of the working-memory clements that match the condition —
and the overall match process retums all of the producton instantiations that match the conjunctive quenes
specified by the condition sides of the producuons. The efficiency of such a match process 1s heavily

dependent on the order of the quenes [74). By automatically ordering the conditons in Svar, the number of

2 TIE SOAR ARCHITECTURE PAGE 37

intcrmediate instantiations of a production is greatly reduced and the overall cfficiency impmved.12

2.6.2. An example of chunk creation
Figure 2-16 shows a trace of the productions that contribute to a chunk built for the evaluation subgoal in
the eight-puzzle example discussed in Section 2.5. The first six decision ¢ycles lcad up to the subgoal that "
implements evaluate-object(down) (evaluate the eight-puzzle operator down). G1 is the iniual goal, G2 is the |
subgoal to eliminate a tie between operators. and G is the subgoal o implement evaluate-object(down).
Included in this trace are the names of those productions fired dunng subgoal G3J that provide traces used by
~ the dependency analysis. Listed for each of these rule firings are the condiuon elements that existed prior to
the goal. and which therefore become the basis of the chunk's conditions; and the «ction elements that are

linked to preexisting structure. and which therefore become the basis of the actions of the chunk.

eval®select-role-operstor
(goal G2 roperator 04)
(operator 04 *name evaluate-object rdesired 01
: +role operator tsupercperator 01
rsuperprodblem-space P1
==

8 P: P1 (Eight-Puzzle)
9 S: S1
10 0: 01 [down)

create-new-state
{problem-space Pl rname¢ eight-puzzle)
(operator Ol tname move-tile rtadjacent-cell (1)
(state S1 tbinding 81 +binding B2)
(binding B1 rtile T1 7cel) C2)
(tile T1 *name blank)
(binding B2 *ti1e T2 tcell C1)
e

11 S: S2

eval®state-plus-one
(problem-space Pl rname eight-puzzle)
(operstor 04 *name evaluste-object

rtdesired D1 revaluation E1I)

(desired D1 rbinding OH1)
(bindtng OB1 *ce)l C2 *tile T2)
(cell C2 rcoll C1)
)
(evaluation €1 *value 1)

12 0. 05 [evaluate-object{02[ert])

Cicle

0 G: G! [Solve the sight puzzle]

1 P: P1 (Erght-Puz2le]

2 S: §1

3 G: G2 (T{w impasse, operstors {O1(down] Q2[left] 03[right]})
4 P: P2 (Selection]

8 S: Ss1

8 0: 04 (evaluate-object[01[down]])

7 G: GJ (No-change impasse. operstor)

.wm elements tested to
;establish the context

;10 which operator Ql1(down)
.can be evaluated

rsyperstate S1)

cwm @laments tested to
.apply operator that moves
;the tile 'n C1 into the
;col) with the blank (C2)
.71 i3 the blank

;T2 13 the tile in cell C1

.wm elements tasted to
.create evaluation for
;state based on detecting
;that the operator

.has moved & tile into
.1ts gesirea position

.the result/action

Figure 2-16: Parual producuon trace of an cight-puzzic evaluation subgoal.

”’n{e details of the rcordenng agonthm are not unponant here, cacept that the most recent version (Scpt. 86). by Dan Saaies and
John Laird. s almost as cffcctive as ordenng by band.

PAGE 18 SOAR: AN ARCIITUECTURL FOR GENERAL INTELLIGENCE

Once the cvaluation rubgoal is generated, the production eval®sclect-role-operator fires and creates
acceptable-preferences for the oniginal task problem space (P1), the original task state (S1). and the operator
being evaluated (O1). The production also augments goal G3 with the task goal's desir~d state (D1). Many of
the producton’s conditions match working-memory elements that are a part of the definition of the
evaluate-object operator. and thus existed prior to the creation of subgoal G3. These test that the subgoal is to
implement the évaluate-object operator, and they access identifiers of super-objects so that the identifiers can
be included in the preferences generated by the actions of the production. Following the selection of Pl and
S1. a production instantiation fires to generate a best-preference for operator Ol for this specific goal.
problem space, and state. This production firing is not shown because it does not add new conditions to the

chunk.

The problem solving continues with the selection of Ol and the generation of a new state (S2). The
unchanged bindings are copied by a rule that is not shown because it does not affect the subgoal's result. 32 1s
selected and then evaluated by producuon eval®state-plus-one. which augments object E1 with the value of
the evaluation. This augmentation is a result of the subgoal because object El is linked (o the state in the
parent coniext. Immediately afterwards. in the same elaboration phase, a production generates a reject-
prefercnce for operator O4, the evaluate-object operator. This production has no effect on the chunk built for
subgoal G3 because it looks only at higher contexts. Once the reject-preference is created. operator 04 1s
rejected, another operator is selected. the no-change impasse is eliminated. subgoal G3J is terminated, and a
chunk is built

Only certain of tne augmentations of the objects are included in the chunk: namely. those that played an
explicit role in attaining the result. For instance, only portions of the state (S1) and the desired state (D1) are
inctuded. Even in the substruc.ure of the state, such as binding B2. its ule (T2) has only its identifier saved,
and niot its value (6), because the actual vaiue was never tested. The critical aspect to be tested in the chunk s
that the ule appears as a tlc-augmentation of both bindings B2 and DBI (a binding in the desired state, D1).
The exact valuc of the tle is never tested in the subgoal. so it is not included 1n the chunk. The conditions
created from these working-memory elements will test: that a ule {in Uus casc T2) in the current state (S1) is
in a cell adjacent to the cell containing the blank: and that the ceil contuining the blank is the cell in which the
tule appears in the desirved state. [n other words, the chunk fires whenever the cvaluate-object operator is

selected in the selection problemn space and the vperator being evaluated will move a tile into place.

The action of the chunk s to create an evaluauon of 1. This value is used to create preferences by compar-
ing it to the values produced by evaluating other operators. The other exaluation vaiues arise when a ule is
neither moved into nor out of its desired cell (0). or when a ule is move out of its desired cell (-1). Symbolic

values could have been used in place cf the numeric onges. as long as there are addiuonal productions to

comparce the values and create appropriate preferences.

2 ME SOAR ARCHITECTURE PAGF 39

Figurc 2-17 contains the one-production chunk built for this example in the format used as input to Soar.
which is similar 10 that used for OpsS§ productions. Each production is a list consisting of a name, the
cunditions. the symbol "-->", and the actions. Each condition is a template to be matched against working-
memory elements. Symbols in a production of the form “<..>" (¢.g.. <G1>) are vanables. all others are
constants. The acuons are templates for the generation of working-memory elements. [n building the chunk.
all identifiers from the original working-memory elements have been replaced by variabies. The constants in
the working-memory elements. those symbols that have no further augmentauons (evaluate-object
eight-puzzie, blank), remain as constants in the conditions. [dentifier variablization is also responsible for the
addiuonal negation predicates in the specification of objects <51> and <B2>. such as { <> <BI> <B2> } in
object <S1>. This is a conjunctve test that succeeds only if <B2> can be bound to a vaiue that is not equal 0
the valuc bound to ¢(B1>. thus forcing the objects that are bound to the two variables o be different.

(sp p0038

(goal <G2> toperator <04>)

(operator <04> tname evaluate-object *role operator
tsuperproblem-space <P1> tsuperstate <S1>
tsyperoperator <01> revaluation <E1> *desired <D1>)

(probiem=-space <P1> tname eight-puzzle)

{(operator (01> radjacent-cell <C1>)

(state <S1> rbinding <B1> tbinding { <> <B1> <B2> })

(binding <B1> ttile <T1> tcell <(2>)

(tile <T1> tname blank)

(binding <B2> rcall { <> <C2> <C1> } ttile { <O KT1> KT2> })

{call <C2> tcell <CLY)

(desired <D1> tbinding <DB1>)

(binding <DB1> tcell <C2> *tile <T2>)

-->
(evaluation <E1> tvalue 1))

Figure 2-17: Production built by chunking the evaluation subgoal.

PAGL 0 SOAR: AN ARCHITECTURC I'OR GENERAL INTELLIGENCE

3. Discussion

The Soar architecture has been fully described in the previous section. However, the consequences of an
architecture are hardly apparent on surface examination. The collection of tasks that Soar has accomplished,
exhibited in Figure 1. provides some useful information abbut viability and scope. However, simply that Soar
can perform these tasks — that the requisite additional knowledge can be added — is not enurely surprising.
The mechanisms in Soar are vanants of mcchanisms that have emerged as successful over the history of Al
research. Soar's accomplishing these tasks does provide answers (o other questions as well. We take up some
of these here. This discussion also attempts to ensure that Soar's mechanisms and their operation are clear.
We limit ourselves 10 aspects that will shed light on the architecture. The details of Soar’s behavior on specific

tasks can be found in the references.

The first questuon we take up is what Soar is like when it runs a real task consisting of muluple aspects with
varying degrees of knowledge. The second question is how Soar embodies the weak methods, which form the
foundaucn of intelligent action. The third question involves learning by chunking.

3.1. Combining knowledge and problem solving

R1 is a well-known large knowledge-intensive expert system — consisting of 3300 ruies plus a datw base of
over 7000 component descriptions, circa 1984 — used at Digial Equipment Corporauon to configure Vax and
PDP-11 computers {3, 41}. R1-Soar is an implementation in Soar of a system that exhibits about 23% of the
functionality of R1, using the same knowledge as obtained from R1's OpsS rules {65, 75]. Thisis a big enough
fraction of R1 to assure that extension to a complete version would be straightforward, if desired.’* The part
covered includes the most involved activity of the system. namely, the assignment of modules to backpianes.

taking 1nto account requirements for power, cabling, etc.

R1-Soar was created by designing a sct of problem spaces for the appropriate subpart of the configuration
task. The problem spaces were added to the basic Soar system (the architecture plus the default knowledge,
as descnibed in the previous section). No tsk-dependent search-control knowledge was included. The
resulting system was capable of accomplishing the configuration subtask. although with substantial search.
R1-Soar’s behavior was initially explored by adding various amounts of scarch control and by turning chunk-
ing on and off. Later experiments were run with vanations in the problem spaces and their organization.

Thus, R1-Soar is a family of systems, used to explore how to combine knowledge and problem solving.

In the eight puzzle there was a single operator which was realized cntirely by productions within a single

problem space. However. the configuration sk is considerably more complicated. In an cxtended version of

13

Indced. a revision of R11s underway at DEC that draws on the probiem structur¢ developed for R1-Soar {76]

3. DISCUSSION PAGE 41

R1-Soar {75), which covered about 25% of R1 (compared to about 16% in the initial version [65]), there were
thirty-four operators. Twenty-six of the operators could be realized directly by productions, but eight were
complex enough to require implementation in additional problem spaces. Figure 3-! shows the nine task
spaccs used in the extended version of R1-Soar. This structure, which looks like a typical task-subtask
hierarchy. is generated by the implementation of complex operators. In operation, of course, specific in-
stances of these problem spaces were created, along with instances of the selection problem space. Thus,
Figure 3-1 represents the logical structure, not the dynamic subgoal hierarchy.

Initialize Order » Unibus Priarity

~» Configure Cabinet

. Contigure CPU >
Configure System —hﬂ —=1 Configure Box

Contigure
= Backplane

Configure Unibus >

- Configure Module

Figure 2-1: Task problem spaces for the extended version of R1-Soar (75].

The total set of task operators is given in Figure 3-2. Many operators are generic and have instantiatons, a
feature of the operator in the eight-puzzle task as well. However. in R1-Soar. some of the instantiations of the
same operator nave quite distinct character. Two problem spaces. configure-cpu and configure-unibus, make
use of the same generic operators (although they instantiate them differently), such as configured-cabinet.
This acccunts for Figure 3-1 not being a pure hierarchy, with both configurc-cpu and <onfigurc-unibus

linking to the same four subspaces.

The sk decomposition used by R1-Soar is very different than the one used by R1. Soar is a problem
solver capable of working in lcan spaces by extensive search. R1 is a knowledge-intensive shallow expert

systemn. in which as much direct recognition and as lirtle scarch as possible is done. Itis built around a very

large pre-cstablished subtask hicrarchy (some 321 subtasks, circa 1984) plus a databasc containing templates

PAGE 41

PROBLEM-SPACE

conf igure-system

initialize-order

unibus-priority

conf igure-cpu

configure-unibuys

conf igure-cabinet

conf igure-box

configure-backplane

conf igure-module

SOAR: AN ARCHITECTURE FOR GFNFRAL INTELLIGENCE

OPERATOR ' ']

initialize order

configure CPY

configure unibus b
instance * place modules in sequence =
instance = maximum module placement f%

show output b

yget component data from database
assign unibus-module priority numbers

sequence unibus modules

configure cabinet
instance = cpu cabirer
configure dox
instance * cpu box
configure dackplane
instance *» cpu dbackplane
configure module
tnstance = maximum module placement
unused component
go to previous slot

confiqure cabinet
instance * unibus cabinet
nstance = empty cabinet
configure box
instance ® unibus Dox
instance s ampty box
configure dackplane
instance = unibus backplane

instance
instance
instance
configure module
instance
instance
unused component
remove backplane
instance
instance

configure cabinet
add component to

configure dox
next cabinet

= ampty backplane
* ynidbus repeater
» special backplane

= place modules in sequence
t maximum module placement

= replace backplare with repeater
s put backplane n next box

order

install unibus repeatar

a4da component to

order

configure backplane

next section
next box

fnstall unibus repeater

add component to

configure module
configure module
configure module

order

in special backplane
with one board
with mora than one board

next slot

Figure 3-2: Task operators for the extended version of R1-Soar [751.

for the variety of componcnts available. R1-Soar was given a set of basic spaces that corresponded closely to
the physical manipulations used in configuring computers. The component templates are encoded as rules
that raplement the operator that adds components to the order. It thus has an appropnate physical model in

terms of which to do basic rcasoning about the task.

The use of basic spaces in the imiual version of R1-Svar was deliberate, to demonstrate that a general

3. DISCUSSION PAGE 43

problem solver (Soar) could operate in knowledge-intensive modc: and could also mix search-intensive and
knowledge-intensive modes as appropnate. dropping back to search whencver the task demanded it (and not
by predesign). To do this. Soar was given >nly the task-implementation knowledge — the basic spacss,
desired states. and path constraints — without heurisuc search control. Expertise was then to be given by
adding search control. Thus, in one small configuration task the base system (no domain-dependent search
control at all) took 1731 decision cycles to solve the task: a version with a small amount of search control took
243 cycles: and a version with a large amount of search control (equal to that in the original R1) took 150

J.1* One surprise in this experiment was how Litue search control was involved in moving to the

cycles 65
knowledge-intensive versions. Thus. the base system contained a total of 232 rules (for basic Soar plus the
configuration task): only two productons were added for the small amount of search control: and only 8
more productons for the large arnount of search control (for a total of 242). Thus, there is no correspondence

at all between the number of producuons of R1 and the producuons of R1-Soar.

The version of R1-Soar described in Figures 3-1 and 3-2 extended the coverage of. the system beyond the
inital version and modified the problem spaces to allow it to run larger orders more efficiently. The
previously separate rules for proposing and checking the legality of an operator (using acceptable and reject
preferences) were combined into a single rule that only made the operator acceptable when it was legal. Also,
additional domain-dependent search-control productions were added (a totl of 27 productions for the nine
spaces). These changes converted R1-Soar ©0 a system somewhat more like the oniginal R1. Figure 3-3 shows
the performance of this system on a set of 15 typical orders. This figure ¢..es a brief description of the size of
the order (Components) and the nu;ber of decision cycles taken to complete the order (Decisions). From

the performann» figures we see that the times range from one o three minutes and reflect the amount of work

that has to be done 0 process the order, rather than any search (approximately 60 decisions + 7
decisions/component). The extended version of R1-Soar pretty much knows what needs (o be done. These
times are somewhat slower than the current version of R1 (about a factor of 1.5, taking inio account the speced
differences of the Ops5 systems involved). This is encouraging for an experimental system. and more recent

improvements to Soar have improved its performance by a factor of 3 [70).

3.2. Weak Methods
Viewed as behavior, problem-solving methods are coordinated patterns of operator applications that attempt
to attain a goal. Viewed as behavioral specifications, they arc typically given as bodies of code that can control

behavior for the duration of the method, where a sclection process determines which mcthod to use for a

4

! Thexe runs took aboul 29. 4 and 2.5 minutes respectively on 3 Symbolics 3600 running at approumately one decasion cvcle per
second. Each deasion cycle compnses about 8 producuon firtngs spread over two cycles of the elaboration phase (because ol ihe parailel
finng of ruics)

PAGE & SOAR: AN ARCINTLCTURE FOR GENERAL INTELLIGENCE

Tasks
T T2 T3 T4 AL T8 17 T8 T9 T10 Ti1 T12 Ti13 T4 T15

Components 5 5 P4 7 5 8 2 3 L]) 15 2 11 7 9

Decisions 8s 78 78 1986 94 100 70 74 88 90 1713 78 124 123 129

Figure 33: Performance of the extended version of R1-Soar (without learning).

given atempt. In Soar, methods arc specified as a collection of search-control productions within a set of
related problem spaces — a given task problem space and its subspaces. Analogously t0 a code body. such a
collection can be coordinated bv making the search-control productions conditional on the method name
(plus perhaps other names for rclevant subparts), where method selection occurs by establishing the method
name in working memory as part of a goal or state. Thus, methods in Soar can be handled according to the

standard scheme of seiecting among pre-established specificauons.

Method behavior may also emerge as the result of problem solving being guided by the appropnate
knowledge. even though that knowledge has not been fashioned into a deliberate method (however specified).
Behind every useful method is knowledge about the task that justfies the method as a good (or at least
possible) way to autain the goal. As bodies of code, methods are sumply the result of utlizing that ki.owledge
at some pnor design tme, in an act of program synthesis. The act of program synthesis brings together the
relevant knowledge and packages it in such a way that it can be directly applied to produce behavior. What
nomally prevents going directly from knowledge to action at behavior ume is the difficulty of program
synthesis. However. under special conditions direct action may be possibie. hence avoiding the task of
program synthesis nto a stored method, and avoiding the pre-choice of which knowlcdge is relevant for the
task. Instead. whatever knowledge s relevant at the ume of behavior i1s brought to bear to control behavior.
Although no prepackaged method is being used, the behavior of he system follows the pattern of actions that

characterize the method.

This is the situation with Soar in respect to the weak methods!® — methods such as depth-first search, hill
climbing, and means-ends analysis. This situation anses both because of the nature of the weak methods and
because of the nature of Soar. First, the weak methods invoive rclauvely little knowledge about the task [47).
Thus. the generation of behavior is correspondingly simple. Second. all the standard weak methods are built
on heuristic search. Thus. realizing their behavior within Soar. which is based on problem spaces. is relatvely
straightforward. In addiuon. search control in Soar is realized in a producuon system with an addiuve
elaboration phase and no built-in conflict resolution. Thus, new search control can be added without regard

to the existing scarch control. with the guarantee that it will get considered. Of course. the relevant total

1SWe have callcd this a universal weak mcthod. on the andlogy that Soar behaves according 1o any weak method. given Lhe appropnate

know!edge about the wask (31)

3 DISCUSSION PAGE 4%

search-control knowledge does interact in the denision procedure, but according (o a rclatively cican sernan-
tics that permits clear establishment of the role of each bit of added knowledge.

Our previous example of steepest ascent hill climbing in Figure 2-15 provides an illustration of these u.ree
factors. First, the central knowledge for hill climbing is simply that newly gencrated states can be comparcd
to each other. The comparison may itself be complex to compute, but its role in the method is simple.
Second. the other aspects of hill climbing, such as the existence of operators, the neced (o select one, etc., are
gnplicit in the problem-space structure of Soar. They do not need to be specificd. Third. the knowledge to
climb the htll can be incorporated simply by search-control productions that add preferences for the « verators
that produce beuer states. No other control is necessary and hence complex program synthesis is not re-
quired. In short Soar can be induced to hill climb simply by providing it the knowledge of a specific funcuon
that permits states to be compared plus the knowledge that an operator that gencratcs a better state s to be

preferred.

Methods require two types of knowledge. The first is about aspects of objects or behavior. Examples are
the position of the blank square in the eight puzzle or the number of moves taken since the blank was in the
center. Such knowledge says nothing about how a system should behave. The second type of knowledge
provides the linkage from such objective descriptions to appropriate action of the system. For the weak
methods in Soar this takes the especially simple form of single producuons that have objective task descnp-
uons as conditions and produce preferences for behavior as actions. No other coordinauve productions are
required. such as cuing off the name of the method or expinfidy asserung that one action should follow
another as in a sequential program. Sometimes several conircl ~roductions are involved in producing the
behavior of 3 weak method. but each are independent providing links between some aspect of sk SUuvidie
and preferences for action. For instance a depth-limited lookahead has one producuon that deals with the
evaluation preferences and one that deals with enforcing the depth constraint. Soar would produce ap-
propriate (though different) behavior with any combination of these productions. Another imporant deter-
miner of a mcthod may be sperialized rask structure, rather than any deliberate responses encoded in search
control. As a simple instance, if a problem space has only one operator. which gencrates new states that are
candidates for antaining the task, then generate-and-test behavior is produced. without any search control in

additon to that defining the task.

The methods listed in Figure 3-4 constitute the aggregate that have been rezlized in the various versions of
Soar. mostly in Soar 1 [31] and Soar 2 [29], where deliberate explorations of the universal weak mcthod were
conducted. The purpose of these explorations was to demonstrate that cach of the weak methods could be

realized in Soar. Most of the weak mcthods were realized 1n a gencral form so that it was clear that the

method could be uscd for ary task for which the appropnatc knowledge was avaiiable. For a few weak

PAGE 46 SOAR: AN ARCHITECTURF FOR GENERAL INTELLIGENCE

methods, such as analogy by implicit generalization and simple abstraction planning, the method was realized

for a single task, and more general forms are currenly under investigation.

The descriptions of the weak methods in ™igure 3-4 are extremely abbreviated, dispensing with the operat-
ing environment initial and terminaung conditons, side constraints, and degenerate cases. All these things
are part of a full specification and sometimes require additonal (independent) control producuons. Figure
3-5 shows graphically the structural relationships among the weak methods implemented in Soar 2 (29]. The
common task stucture and knowledge forms the trunk of a tree. with branches occurring when there is
different task structure or knowlcdge available, making each leaf in the tree a different weak method. Each of

the addiuons as one goes down the uree are independent control productions.

These simple schemes are more than just a neat way to specify some methods. The weak methods play a
central role in attatning intelligence, being used whenever the situation becomes knowledge lean. This occurs
in all situations of last resort, where the prnor knowledge, however great, has finally been used up without
attaining the task. This also occurs in all new problem spaces, which are necessarily knowledge lean. The
weak methods are also the essential drivers of knowledge acquisition. Chunking necessarily implies that there
exists some way O attain goals before the knowledge has been successfully assimilated (i.e., before it has becn
chunked). The weak methods provide this way. Finally, there is no need to /earn the weak methods
themselves as packaged specifications of behavior. The task descnpuons involved must be acquired and the
linkage of the task descriptions to actions. But these linkages are single isolated producuons. Once this
happens. behavior follows automatically. Thus, this is a particularly simple acquisiuon framework that avoids

any independent stage of program synthesis.

3.3. Learning

The operation of the chunking mechanism was described in detail in the previcus secuon. W2 present here
a picture of the sort of learmning that chunking provides, as it has emerged in the explorauons to date. We
have no indication yet about where the limits of chunking lie 11 terms of s being 4 gencral learning

mechanism (36].

3.3.1. Caching, within-trial transfer and across-trial transfer

Figure 3-6 provides a demonstration of the basic effects of chunking, using the cight puzzle (33]. The
left-hand column (no learning) show the moves made in solving the eight puzzie without leaming, using the
representation and heunsucs described in the prior section (the evaluauon function was uscd rather than the
mca-operator-selccion heunsuc). As described in Figures 2-14 and 2-15 Soar repeatedly gets a te impasse

between the available moves. goes into the selection problem space, evaiuates cach move 1n an incarmnaton of

the task space, chooscs the best alternative, and moves forward. Figure 3-6 shows only the moves made in the

3 DISCUSSION PAGE 47

" Heuristic search. Select and/or reject candidale operators and/of states.
Avoid Duplication. Produce only one vernion of a tate. (Extend: an essentially dentcal State.)
Operator Subgoaliag. If ap operator does not apply ‘0 the current sale. find a state where 1t does.
) Maich. Put lwo patterns containing vanables into correspondence and bind vanables to their correspondents.
Hypotbesize and Match. Generate posnble hypothesis (orms and match them (0 the exemplars.
And-Or heunstic seurch. Maikes alf moves at and-swates and selects moves at or-states unul goal s attaned

Waitz Constraiat Propsgation. Repeaiedly propagate the restnicuons i range produced by applying constraints in vanables with finite
ranges.

Means-Ends Analysis. Make 3 move that reduces the difference between the current state and the desired state.

Generate and Test. Generate candidate solutions and test each for success: terminate when found.

Breadth-First Search Make 32 move (Tom 2 stale with ununed operators at the least Jepth

DepthrFirst Search. Make a move rom a state with unined operators at the greatest deplh.

Lookahead. Consider ail terminal states to max-depth.

Simple Hill Climbing. Make 3 move that increases 3 given value. »
Steepest Asceat Hill Climbiog. Make 2 move that increases 3 gven value most from the state.

Progressive Deepening. Repeatedly move depth-first unul new informauon 1s obtained. then return o imuial state {or repeat
Modified Progressive Deepening. Progressive Deepening with considerauon of all moves at each state before extension.

B® (Progressive Deepening). Progressive Decpenirg with opuimistic and pessimisuc vajues at each state (not a proof procedure)
Mini-Max. Make moves of each player unt) can seiect the best move for each player.

DepthrBounded MinrMax. Min-Max with max-depth bound.

Alpha-Beta Depth-Bounded Mim-Max. without lines of piay that cannot be bener than already examined moves.

QOrdered Alpha-Beta. Alpha-Beta wath the moves tnzd 1n 3 heunsuc order.

Iterative Deepemng. Repeat ordered Aipha-Beta with increasing depth bound (from | to max-depth). with each ordenng umproved
B* (Mini-Max). Anaiogous :0 Aipha-Beta. with each state having opumisuc and pessymisuc values (5] .

Branch and Bound Heunsuc search. without haes of search that cannot be better than aiready examined moves.

Best-First Search. Move rom the state produced so far that has the highest value.

Moadified Best-First Search. Besi-First Search with one-sicp lookahead for each move.

A® Best-First Search on the mumimum depth (or weighted depth).

Exhgustive Maximization. Generate all candidate solutions and pick the best one.

_Exhaustive Maximication with Cutoffs. Exhausuve Maximizauon without going down paths 10 candidale soluuons that @nnot be herter
than the current best candidate.

Macro-Operators for Seriallv-Decomposable Goals (28] Learn and use macro-operators that span regions where sausfied goais are
violated and feinstated.

Analogy by Lmplicit Generalization. Find a related problem, solve the related problem. and wansfer the generalized solution path (o the
onginal problem.

Simple Abstraction Planning. Analogy by Implec Generalizaucn 1n which the related problem s an absuact version of the onginal
problem.

Figure 3-4: Weak methods. as patterns of behavior.

PAGE 48 SOAR: AN ARCHITECTURE FOR GENERAL INTELLIGENCE

Soar
) Macro-operators Hypothesize)
o ang Matech =
Means-Ends Anaiysis Constraint
Satisfaction
Operator Subgoaling Dapth-First Generate Breadth-First
and Yest
Unification
4
Progressive Steepest Ascent Simple Hill Climbing
Deepening Hill Climbing
v
8° (Progressive Deepening) Mini-Max
P,
\ Depth-Bounded
Mini-Max
| 2
Alpha-B8eta
\ iterative Deepening
v
B* (Mini-Max)

Figure 35: Suructurc of weak methods realized in Soar (29].

task space. coalescing the vanous incarnations of it. Each state, except for the initial and dcsired states, is
shown as a black square. The move made to reach the state is shown as a single letter (either Left. Right. Up,
or Down). Soar explores 20 states in all to solve this problem.

The second column (with learning) has chunking turned on. Although Soar starts out examining the same
states as in the run without leamning (L, U and R in each of the first two levels). it soon deviates. The
chunking that occurs in the early part of the task alreadv becomes ctfective in the later part. This is

within-tral ransfer. It answers one b asic queston about chunking — whether it wiil provide any transfer at
all to new situauons. or only simple practice cffects. Not only 1s there transfer, but 1t occurs on the niual
performance — a total of 15 states is examined, compared to 20 without lcarming. Thus. with Soar. no ngid

behavioral separauon 1s possible between performance and learning — learning becomes integral o every

performance.

3. DISCUSSION PAGE 49

1163 1163 163
2i{714 21714 21714
8 5 8 5 8 5
R [»] L R [») L D‘
R (] L R D L D
]]
R L R R
B = " »
) U U
[|
1) L U L U
. n
]] J
[| |
D L D 0
| |
R o] L D D
|
R L R R
213 2[3 213
4 114 4
7/615 716 |58 7161(5
No Learning With Learning After Learning

Figure 36: Leaming in the cight puzzle (33).

If Soar is run again after it has completed its with-learning trial. column 3 (after learning) results. All of the
chunks to be learned in this task have heen leamed dunng the one with-learning trial. so Soar alwayvs knows
which move w make. This is the girect effect of practice — the use of resuits cached Guring earher tnals. The
number of states examined (10) now reflects the demands of the task. not the demands of finding the solution.
This improvement depends on the original evaluation function betng an accurate measure of progress (o the
goal. Chunking eliminates the necessity for the look-ahead search, but the path Svar takes o the goal will sull

be determined by the ¢valuation function cached in the chunks.

Figure 3-7 shows across-task transfer in the Eight Puzzie. The first column (task 1. no leaming) is the same

SOAR: AN ARCHITECTURF FOR GENERAL INTELLIGENCE

race as the first column in Figure 3-6. In the second column (task 2. during learning) Soar has been started
over from scratch and run on an entirely different eight-puzzle task — the initial and final posiuons are
different from those of task 1. as are ali the intermediate positions. This is preparation for the third column
(task 1, after lcarming about task 2 but without any leaming durning task 1). where Svar shows across-task
wransfer. [t the leamning on task 2 had no effect, then this column would have been idenucal (o the original
onc on task 1 (first column), whereas it takes only 16 states rather than 20.

8
8

3
8 8{1(4
7 71818

No Learning With Lear 'ng After Learning
Task 1 Tasx 2 Task 1

Figure 3-7: Across-task transfer in the eight puzzle [33].

What Soar has lecarned in thesc runs is scarch control to choose moves, and rules which implement the
evaluate-object operators. The companson based on th2 evaluation function is cached into productions that

create preferences based on direct comparnisons between the current and desired states. In this example,

. DISCUSSION PAGE 51

chunking does not improve the evaluation function. [f the cvaluation function is imperfect, as it is 1n this
case. the imperfecuons are included in the chunks. Also in this example, no eight-puzzie operatoss have been
learned because the operator was already rzalized directly by productions in the wsk spacc. But if the
operator had required subspaces for implementauon (as the evaluate-object operator in the selection problem

space did). it would have been learned as well,

3.3.2. Learning in an expert-system task

A striking feature of chunking is that it applies automatically to every task Soar performs, without modifica-
tion of Soar or any special addiuons. For example, the investigations that used R1-Soar to show that general
problem-solving capability can be combined with domain expertise (by adding domain-cependent search
control (0 a hasic task representation) became immediately a demonstration that the domain expertise can be
acquired automatucally. Figure 3-8 shows that on the task menuoned above that took 173! decision cycles
with no domain-dependent search control. a pattern of results ecmerged that followed exactly the pattern on
the eight puzzle {65).

R1-Soar Decisions with Decisions Decisions
Version no leaming with learming after learning
Base 1731 485 72% [+59) 7

Parual [+2] 243 111 54% (- 14) 7

Full [+8] 150 %0 40% [+12) 7

Figure 3-8: Learning in R1-Soar.

The first column of Figure 3-8 shows the effects of the manual addition of search control from none for the
basic version. to 2 productions for the partial version, to 8§ more producuons (for a total of 10 search controi
producrtions) for the full version. This was the basic investigauon. and no learning was involved. The second
column shows the effect on performance of running with chunking turned on — the number of decision
cycles. the percent ymprovement over the trial without learmming and the number of chunks learned. There is
within-task transfer, just as in the eight puzzle. "As the system starts with more inival knowledge. the effect
diminishes (from 72% to 54% to 40%) but the effect is appreciable in all cases. Finally, the resuit of rerunning
the task after learning is compicte is to reduce the task (0 its nccessary processing steps (namecly, 7). The
automatic acquisition of knowledge does involve the additicn of many more producuons than was involved in
the manual ac-juisition (shown 1n brackets in the sc.und columrn). because the chunks are more specific than

the manually encoded rules.

The extensive icst on the extended version of R1-Soar vieided additional dat on learning, as shown in the

PAGEC 52 SOAR: AN ARCHITECTURE FOR GENERAL INTELLIGENCE

four right-hand columns of Figure 3-9. [n thesc runs. chunking occurred from the bottom up, that is, chunks
were butilt for a goal only if nu subgoals occurred. Enough runs with bottom-up chunking will yield the same
results as all-at-once chunking (which was used in both the cight puzzle and initial R1-Snar cases). Bottom-up
chunking has the advantage of tending to crcate only the chunks that have a grcater chance of being
repeatedly used. The higher up in the subgoal hierarchy (measured from the bottom. not the top), the more
specific a chunk oecomes — it performs a larger proportion of the task — and the less chance it has to be
used [S0]. Thus, in R1-Soar all-at-once chunking will create many productions that will never be evoked
again in any but identical reruns of the same task. Figure 3-9 shows two passes of bottom-up chunking (Pass
2 and Pass 4). embedded in three passes with chunking turned off (o assess the effects (Pass 1, Pass 3. and Pass
%). giving a towal of 30 trials with chunking. The test mimics what ‘vould be expected in the real situation with

an cxpert system, namely that the chunk-productions accumulate throughout the entire scries of 30 chunking

runs (and remain fixed dunng the leaming-off pass»es).16
Pass 1 Pass 2 Pass) Pass 4 Pass §
Before Buring After During Aftar

TASY. (learn off) (learn on) - (learn off) (12arn on) (leain off)
T1 88 88 [o) 4 44 [1) 9
T2 78 68 [4} 40 40 [3] 9
T3 78 78 [&) a8 s [3) 9
T4 198 174 (14] 113 113 [6] 58
T8 g4 84 [8) 48 48 [3) 9
Té 100 88 [3} 48 48 [3) 9
17 70 48 ([) kI3 s [3] 9
T8 74 59 [3] 40 a0 [3) 9
T9 as 73 [3] 42 42 ([3) 9
T10 90 75 [3] a8 48 [3) 9
T11 173 158 [10] 86 a6 [2) 48
T12 78 52 | 3) as g [))
T13 124 102 (7] 58 §8 [3] 9
T14 123 108 [7] 87 87 { 4) 28
T15 129 100 [8] 64 64 [2) 28
Productions ---- “eee

Total: 14 397 [83] 397 444 [47) 444

Figure 39: Performance of the extended version of R1-Soar (with bottom-up learning) (75].

The figure reveals scveral interesung features. First there is a 14% average mprovement during the first
learming pass. This is primarily due to within-tnal transfer in each of the 15 tasks. There 1s only a small effect
due to across-task transfer, both positive and negative. Negative tansfer comes about from overly-general

scarch-control chunks that guide the problem solving down the incorrect path. Recovery from the misguided

16 Mhus. the abic s not to b= read as 1f it were 1S independent ittle icarning expenments

3. DISCUSSION PAGE 53

scarch occurs, but it takes time. On Pass 3. the asscssment pass aficr the first leaming pass. there is a
substanual mprovement retlecting the full force of the cached chunks: an additional drop of 35% from the
oniginal times, for a total savings of 49% of the original umes. The second leaming pass (Pass 4) leads o no
further witun-task or across-task transfer — the umes on this pass are identical (o the times on the prior
assessment pass. But after this second learming pass is completed. the final assessment pass (Pass 5) shows
another large drop of 35% from the original times, yielding a towl drop of 84% from the original times. Al
but four large tasks have reached their minimum (all at 9 steps). Thus the contribution of this second pass has

been entirely to cache results that then do not have to be performed on a rerun.

The details of this version of R1-Soar and the tast must be taken with caution. vet it confirms some
expectauons. This extended version has substantial domain-dependent know!ledge, so we would not expect as
much improvement as in the earlier version, even beyond the effect of using bottom-up chunking. I[nves-
ugation of the given productions in the light of the transfer results reveals that many of them test numencal
constants where they could have tested for inequality of two values, and the constant tests restncted therr
cross-situauonal applicability. But even so, we see clearly that the wansfer action comes from the lowest level
chunks (the first pass). which confirms theoretical expectadons that they have the most generality. And, more

globally. learning and performance always go together in Soar in accomplishing any task.

3.3.3. Chunking, generalily, and representation

Chunking is a leaming scheme that integrates lcaming and performance. Fundamecnully, it simply records
problem-solving expenence. Viewed as knowledge acquisition, it ccmbines the existing knowledge available
for problem sotving with knowledge of results 1n a given problem space, and converts it into new knowledge
available for future problem solving. Thus it is strongly shaped by the knowledge available. This integrauon
is cspecially significant with rcspect to generaiization — to the wansfer of chunks (o new situations (e.g.. as
documented above). Generalization occurs in two ways in Soar chunking. One is variablization (replacing
idenufiers with variables), which makes Soar respond identically to any objects with the same description
(attnbute-value augmentations). This generzlization mechanism i1s the minimum necessary to get lcarmning at
all from chunking, for most identifiers will never occur again outside of the particular context in which they

were created (e.g.. goals. states, operator instanuations).

The second way in which gencralization occurs is implicit generalizanion. The conditions that enter into a
new chunk-production are bascd only on those working-memory clemcents that both existed prior (0 the
creation of the gual and affected the goal's results. This is simple abstraction — ignonng everything about a
situation except what has been determined at chunk-creation ume to he relevant. It s enabled by the natural
abstraction of productions — that the conditiuns only respond 0 sclected aspects of the objects available in
the working memory. If the conditions of a chunk do not test for a given aspect of a situatton, then the chunk

will ignore whateser that aspect might be in some new situation,

PAGE 54 SOAR: AN ARCHITECTURF FOR GENFRAL INTELLIGENCE

A good example s provided by the implementation in Soar of Korf's technique for learning and using
macro-operators [28]. Korf showed that any problem that is senally decomposable — that is. when some
ordering of the subgoals exists in which each subgoal is dependent only on the preceding subgoals, and not on
the succeeding ones — can have a macro (able defined for it. Each entry in the table 1s a macro-operator — a
sequence of operators that can be treated as a single operator [19]. For the eight puzzle, a macro table can be
created if the goals are. in order; (1) placc the space in its correct position: (2) place the space and the first ule
in their correct positions: (3) place the space. the first tile. and the second tile in their correct positions; ec.
Each goal depends only on the locations of the tiles already in position and on the location of the one new tile.
The macro wble is a simple two dimensional structure in which each row represents a goal, and each column
represents the positon of the new ule. Each macro-operator specifies a sequence of moves that can be made
to sausfy the goal, given the current position of the new tile (the positions of the previously placed ules are
fixed). The macro table enables efficient solutions from any iniual state of the probiem to a parucular goal

state.

Implementing this in Soar requires two problem spaces, one containing the normal eight-puzzle operators
(up. down, left. right), and one containing operators corresponding to the senally-deccomposable goals, such as
place the space and the first tile in their correct positions [36). Problem solving stans ir: this latter problem
space with the attempt 1o apply a senes of the high-level operators. However, because these operators are too
complex to encode directly 1n productions, they are implemented by problem solving in the normal eight-

puzzie problem space.

Based on this problem solving, macro-operators are learned. Each of these macro-operators specifies the
sequence of eight-puzzle operators that need to be zpplied 0 solve a partcuiar nigher-level goal for a
parucular posiuon of the new tle. These macro-operators then lead to efficient solutions for a large class of
eight-puzzle problems. demonstrating how choosing the right problem solving decomposition can allow a
simple caching scheme to achieve a large degree of generality. The generality, which comcs from using a
single goal in many different situations. is possible only becausc of the implicit generalizauon that allows the
macro-operators o ignore the positions of all tiles not yct in place. [f the identities of the not-yet-placed tles
are not cxaminced dunng problem solving, as they need not be, then the chunks will also not examine them.
The subgoal structure by itself does not tap all of the possible sources of generality in the cight puzzle. One
addidonal source of generality comes from transfer between macro-operators. Rather than a macro-operator
being encoded as a monolithic data structure that specifies each of the moves. it is represented in Soar as a set
of scarch-control rules that sclect the approprniate eight-puzzle operator at cach state. These rules are general

enough to transfer across different macro-operators. BRecause of this tansfer. only 112 productions are

required to encode all 35 of the macro-opcerators, rather than the 170 that would otherwise be required.

3 DISCUSSION PAGE $5

Onc of the most important sources of éenerality is the represeniation used for the task states, Stated
generally. if the representation is organized so that aspects that are relevant are factored cleanly from the parts
that are not (i.¢.. are noise) then chunking can learn highly general concepts. Factonng implies both that the
-aspects are encoded as distinct attributes and that the operators are sensitive only to the relevant attributes
and not to the urelevant atributes. One representational possibility for the eight-puzzle state is a two-
cimensional array, where each array cell would contain the number of the tile that is located at the position on
the board spec.iﬁcd by the array indices. Though this representation is logicaliy adequatc, it provides poor
support for leamning general rules in Soar. For example, it is impossible to find out which tles are next to the
blank cell without looking at the numbers on the tiles and the absolute positions of the ules. [t ts thus
impossible, using just implicit generalizauon, to abstract away these irrelevant details. Though this is not a
good representation for the eight puzzle, the results presented in the previous paragraphs. which were based
on this representation, show that even it provides significant transfer.

By adopting a better representaton that explicitly represents the relative orientauon of the tiles and the
relationship between where the tile is and where it should be — the representation presented in Section 2.2 —
and adding an incremental goal test, the amount of sharing is increased to the point where only 61 produc-
uons are required to represent the entire macro table. Because the important relationships are represented
directly, and the absolute tile position and name are represented independently of this information. the
chunks are invanant over tile identity as well as translation. rotation. and refleczion of groups of tles. The
chunks also wransfer to different desired states and between macro-operators for different starting positions,
neither of which were possible in Korf's original implementation.

Figure 3-10 shows the most complex case of transfer. The top two boards are intermediate sutgoals to be
achieved on the path to getting all eight tiles in place. Below them are possible iniuai states that the relevant
tiles might be in (all others are X's). A series of moves must be made to ransform the initial state to the
corresponding desired intermediate subgoal. The arrow shows the path that the blank takes to move the next
tile into position. The paths for both problems are the same, except for a rotation. In Soar. the chunks

learned for the first subgoal wransfer to the second subgoal. allowing it to be solved directly, without any

additional search.

PAGE $6 SOAR: AN ARCHITECTURE FOR GENERAL INTELLIGENCE

Ditferent Intermediate Subgoals

-~ PlaceTile3 Place Tile §
o 2 3 1 2 3
X X |e—>] X 4
X X X X X S

Symmetric Initial States

1 — 1 2 3
]

X 4 «—> | X 3 i
nl Al 3
] - el

X | X3 5 | 5

Figure >10: Transfer possible with macro-operators in the eight puzzle.

o

"
§
|
4
]
%
%

J. DISCUSSION PAGE 7

4. Conclusion
Soar embodies eleven basic hypotheses about the structure of an architecture for gencral intelligence:

1. Physicul symbol-system hypothesis: A general intelligence must be realized with a symbolic system
[52).

2. Goal-structure hypothesis: Conuol in a general intelligence is maintained by a symbolic goal
system.

3. Uniform clementary-representation hypothesis: There is a single elementary representation for
declarative knowledge.

4. Problem-space hypothesis: Problem spaces are the fundamental orgarizational unit of all goal-
directed behavior [49].

S. Production-system hypothesis: Production systems are the approprate organization for encoding
all long-term knowiedge.

6. Universal-subgoaling hypothesis: Any decision can be an object of goal-oriented attention.

7. Automatic-subgoaling hypothesis: All goals arise dynamically in response 10 impasses and are
generated automatically by the architecture.

8. Control-knowledge hypothesis: Any decision can be controlled by indefinite amounts of
xnowledge, both domain dependent and independent.

9. Weak-method hypothesis: The weak methods form the basic methods of intclligence [47).

10. Weak-method emergence hypothesis: The weak methods anise directly from the system respond-
ing based on 1ts knowledge of the task.

11. Uniform-lcarning hypothesis: Goal-based chunking is the general learning mechanism.

These hypotheses have varying standing in current research in artificial intelligence. The first two. about
symbols and goals. are almost universally accepted for current Al systems of any scope. At the opposite end,
the weak-method emergence hypothesis is unique to Soar. The remaining hypotheses are familiar in Al or at
least components of them arc, but are rarcly, if ever, taken to the limit as they are in Soar. Soar uses a
problem-space representation for afl tasks. a goal-based chunking mechanism for 4i/ learming. and a produc-
ton system for all long-tcrm memory. Many systems use production svstems exclusively, but they are all pure

performance systzms without learning. which does not test the use of productions for declarative memory.

Many aspcects of the Soar architecture arc rot reflected in these eleven hypotheses. Some examples are:
automatic goal termination anywhere in the goai hierarchy: the structure of the decision cycle, with its parallel
cluborauon phase: the language of preferences; the limitation of produciion actions to additiun of working-

memory clements; the removal of working-memory elements by the architecture: the restriction of produc-

PAGE 58 SOAR: AN ARCHITECTURE FOR GENERAL INTELLIGENCE

tion conditions to test only memory elements accessible through the context stack. There are also details of
the mechanisms mentoned in the hypotheses — attribute-value triples, the form of conditions of productions,
etc. Soute of these are quite impornant. but we do not yet know in Al how (o descmibe architectures com-
pietely in functional terms or which features should be supulated independently.

Much is stll missing in the current version of Soar. Figure 1 pointed out several aspects that are under
active investigation. But others are not recorded there — the acquisition of declarative knowledge from the
external environment and the use of complex analogies to name a couple. Until Soar has acquired the

capabilities w0 do all of these aspects. there will be no assurance that the Soar architecture 1s complete or

stable.

4+ CONCLUSION PAGE 59

References

1. Amarel. S. On the representation of problems of reasoning about actions. In Machine [ntelligence 3.
Michie. D.. Ed.. American Elsevier, New York, 1968. ch. 10, pp. 131-171.

2 Anderson. J. R.. The Archuecture of Cogni:on. Harvard University Press. Cambndge. MA, 1983,
3. Bachant, J. & McDermott, J. “R1 revisited: Four years in the wenches”. A/ Magazine 5(1984).

4. Balzer,R., Emman. L. D,, London, R. & Williams. C. HEARSAY-III: A domain-independent framework
for expert systems. Proceedings of AAAIL, Los Altos, CA. 1980.

% Berliner, H. J. "The B*® tree search algorithm: A best-first proof procedure”. Artificial Intelligence 12
(1979). 201-214.

6. Boggs. M. & Carbonell, J. A Tutonal Introduction to DYPAR-1. Computer Science Deparunent,
Camegie-Mellon University.

7. Bower. G. H. & Winzenz, D. “Group structrure. coding and memory for digit series”. Journal of Ex-
penimental Psychology Monograph 80 (1969). 1-17. (May, Pr 2).

8. Brown.J. S. & VanLehn, K. “Repair theory: A generative theory of bugs in procedural skills”™. Cognitive
Science 4(1980), 379-426.

9. Buchanan. B. G. & Shortliffe. E. H.. Rule-Based Expert Systems: The Mycin experiments of the Sianford
Heunstic Programming Project. Addison-Wesley, Reading, MA, 1984.

10. Carbonell, J. G. Leaming by analogy: Formulaung and generalizing plans from past experience. In
Machine Learning: An Aruficial Intelligence Approach. R. S. Michalski. J. G. Carbonell, & T. M. Mitchell,
Eds.. Tioga. Palo Alto. CA, 1983,

1. Card. S. K., Moran, T. P. & Newell, A. "Computer text editing: An information-processing analysis of a
routine cogniuve skill”. Cognitve Psychology 12,1 (1980), 32-74.

12. Chase. W. G. & Simon, H. A. "Perception in chess”., Cognitive Psychology 4(1973). 55-81.

13. Clancey, W.J. "The epistemology of a rule-based expert system: A framework for explanadon”.
Artficial Intelligence 20 (1983), 215-251.

14. Davis, R. “Meta-rules: Reasoning about control”. Ariificial Intelligence 15 (1580). 179-222.

15. DeJong, G.. & Mooney, R. "Explanation-based leaming: An alternative view"”. Machine Learning [, 2
(1986), 145-176. In press.

16. Erman. L., Hayes-Roth, F., Lesser, V., & Reddy. D. R. “The Hearsay-Il speech-understanding system:
Integrating knowlcdge o resolve uncerainty”. Compuiting Surveys [2 (June 1980), 213-253.

17. Emnst. G. W. & Newell, A.. GPS: A Case Swdy in Generality and Problem Solving. Academic Press, New
York. 1969.

18. Feigenbaum. E. A. & Feldman. J. (Eds.). Compuiers and Thought. MzGraw-Hill. New York. 1963.

19. Fikes.R. E., Hart. P. E.. & Nilsson, N. J. “Learning and cxccuting generalized robot plans”. Artificial
Intelligence 3 (1972), 251-288.

PAGE 60 SOAR: AN ARCHITECTULRE FTOR GENCRAL INTELLIGENCE

20, Forgy, C. L. OPSS User’s Manual. Computer Science Department, Carnegie-Mellon University, July,
1981.

21. Forgy. C. L. & McDermott J. OPS, a domain-independent nroduction system language. Proceedings
Fifth International Joint Computer Confcrence, MIT Al Laboratory. Cambridge MA, 1977.

22, Genesereth, M. An overview of meta-level architecture. Proceedings of the Third Annual National
Conference on Artificial Intelligence, Los Altos, CA, 1983.

23. Hayes. J. R. & Simon, H. A. Understanding written problem instructions. Knowledge and Cognition,
Potomac. MD, 1974.

4. Hayes-Roth, B. "A btlackboard architecture for control™. Artificial Intelligence 26 (1985), 251-321.

25, Hayes-Roth. F.. Waterman, D. A. & Lenat D. B. (Eds.). Building Expert Sysitems. Addison-Wesley,
Reading, MA, 1983.

26. Kant E. & Newell. A. An automatg algorithm designer: An iniual implementauon. Proceedings of
AAAIS3. Menlo Park, CA, 1983.

27. Korf R. E. "Towards a model of representauon changes”. Aruficial [ntelligence 14 {1980). 41-78.
28. Korf. R. E. "Macro-operators: A weak method for learning”. Artificial Intelligence 26 (1985), 35-77.
29. Laird. J. E. Unuversal Subgoaling. Ph.D. Th,, Carnegie-Mellon University, 1984.

30. Laird. J. E. Soar User's Manual: Version 4.0. Xerox Palo Alto Research Center, 1986.

3. Laird. J. & Newell, A, A Universal Weak Method. Computer Science Department, Carnegie-Melion
University, June, 1983.

32. Laird, J. & Newell, A, A universal weak method: Summary of results. Prccecdings of (JCAL-33, Los
Altos, CA, 1983. :

33. Laird, J. E.. Rosenbloom, P. S, & Newell. A. Towards chunking as a general learnir.g mechanism.
Proceedings of AAAI-84. Nauonal Conference on Artificial Intelligence, Amencan Associauon for Aruficial
Intelligence, 1984.

3. Laird.). E.. Rosenbloom, P.S. & Newell, A. Overgeneralization during knowledge compilauon in Soar.
Proceedings of the Workshop on Knowledge Compilauon, Otter Crest, OR, 1986.

35. Laird. J. E.. Rosenbloom, P. S. & Newell, A.. Universal Subgoaling and Chunking: The Automaiic
Geneiation and Learning of Goal Hierarchies. Kluwer Academic Publishers, Hingham, MA, 1986.

36. Laird. J. E.. Rosenbloom, P. S. & Newell, A. "Chunking in Soar: The anatomy of a gencral learning
mechanism™. Machine Learning I (1986), 11-46.

37. Langley, P. “Leaming to Search: From weak methods to dumain-specific
heunstcs™. Cognitive Science 9(19895), 217-260.

38. Lenac D. B. "EURISKO: A program that learns new hcuristics and domain concepts. The nawre of
heuristics 131: program design and results”. Ar:ificial [ntelligence 20 (1983), 61-98.

39, Lenat D. B. & Brown, J.S. "Why AM and Furisko appear to work™. Artificial Inteiiigence 23 (1984).
269-294.

REFERENCES PAGE 61

40. McDermott. D. “Planning and acting”. Cognitive Science 2(1978). 71-109.

41, McDermott, J. "R1: A rule based configurer of computer systems”. Arnifictal /ntelligence 19 (1982),
39-88.

42. McDermott. I. & Forgy. C. L. Production system conflict resolution strategies. In Paitern-directed
Inference Sysiems, Watermnan, D. A, & Hayes-Roth, F., Eds.. Academic Press, New York, 1978.

43. Miller. G. A. "The magic number seven, plus or minus two: Some limits on our capacity for processing
information”. Psychological Review 63 (1956), 81-97.

. Miwchell. T. M. Version Spaces: An approach to concept learnirg. Ph.D. Th., Stanford University. 1978.

45. Mitchell. T. M.. Ugoff. P. E., & Banerji. R. Leaming by expenmentauon: Acquinng and refining
problem-solving heunstcs. In Machine Learning: An Artificial Intelligence Approach, R. S. MichaiskL,
J.G. Carbonell, T. M. Mitchell, Eds.. Tioga Publishing Co.. Palo Alto. CA. 1983.

46. Mostow, D. J. Machine ransformauon of advice inta a heunsuc search procedure. In Machine Learning:
An Aruficial Inteiligence Approach, R. S. Michaiski, J. G. Carbonell, & T. M. Mitchell. Eds., Tioga Publishing
Company. Palo Alto, CA, 1983, ch. 12.

47. Newell, A. Heunstic programming: [ll-structured problems. In Progress in Operations Research [11,
Aronofskv. J., Ed.. Wiley, New York 1969, np. 360-414.

48, Newell, A. Production systems: Models of control structures. In Visual/ /nformation Processing, Chase,
W._C., Ed., Academic Press, New York, 1973, pp. 463-526. '

49. Newell, A. Reasoning, problem solving and decision processes: The probicm space as a fundamental
category. In Autention and Performance VIII, R. Nickerson, Ed., Erlbaum, Hillsdale, NJ, 1980.

80. Newell. A. & Rosenbloom. P. Mechanisms of skill acquisition and the law of practice. In /.earning and
Cogniion, Anderson, J. A., Ed.. Erlbaum, Hillsdale, NJ, 1981.

SI. Newell. A, & Simon, H. A.. Human Problem Solving. Prentice-Hall, Englewood Cliffs, 1972.

52, Newell, A. & Simon, H. A. "Computer science as empincal inquiry: Symbcls and search™,
Communications of the ACM 19, 3 (1976), 113-126.

53. Newell, A.. Shaw. J. C. & Simon. H. A. Empincal exploratons of the Logic Theory Machine: A case
study in heunstics, Proceedings of the 1957 Western Joint Computer Conference, Western Joint Computer
Conference, 1957, pp. 218-230. (Reprinted in Feigenbaum, E. & Feldman, J. (Eds.) Computers and Thought,
New York: McGraw-Hill, 1963).

M. Newell. A.. Shaw, J. C.. & Simon. H. A. Report on a general probiem-solving program for a computer.
In /nformation Processing: Proceedings of the International Conference on Information Processing,
UNESCO. Panis, 1960, pp. 256-264,

35. Newcell, A.. Tonge, F. M.. Feigenbaum. E. A.. Green. B., & Mcaly, G.. [nformation Processing Language
V Manuat. Prentice-Hall, Englewood Cliffs, 1964. 2nd Edition.

36. Nii. H. P. & Aicllo. N. AGE (Aucmpt o Generalize): A knowledge-bascd program for building
knowledge-based programs. Procecdings of the Sixth International Joint Conference on Artficial Intel-
higence, [JCAL 1979

PAGE &2 SOAR: AN ARCHITECTURE FOR GENERAL INTELLIGENCE

§7. Nilsson, N.. Problem-solving Methods in Aruificial Intelligence. McGraw-Hill. New York. 1971.
§8. Nilsson, N.. Principles of Artificial Intelligence. Tioga, Palo Alto, CA, 1980.
39. Rich. E.. Arnficial lntelligence. McGraw-Hill, New York, 1983,

60. Robinson, J. A. "A machine-oriented logic based on the resolution principle”. Journal of the ACM 12
(1965), 23-41.

61. Rosenbloom, P.S. The Chunking of Goal Hierarchies: A model of practice and stimulus-response
compatibility. Ph.D. Th., Camegie-Mellon University, 1983. (available as Tech Rep #83-148, Computer
Science Department). .

62. Rosenbloom. P.S. & Laird. J. E. Mapping explanation-based generalizauon onto Soar. Proceedings of
AAAI-86. Nauonal Confcrence on Artificial Intelligence, Amencan Associauon for Aruficial Intelligence,
Philadelphia. 1986.

63. Rosenbloom, P. S., & Newell. A, The chunking of goal hierarchies: A generaiized model of pracuce. In
Machine Learming: An Aruficial [nielligence Approach. Volume I, R.S. Michalski. J. G. Carbonell, &
T. M. Mitchell. Eds.. Morgan Kaufmann Publishers, Inc., Los Altos. CA, 1986.

64. Rosenbloom, P.S., Laird, J. E. & Newell, A. Meta-levels in Soar. Preprints of the Workshop on
Meta-level Architectures and Reflection, Sardinia, 1986.

65. Rosenbloom. P. 8., Laird, J. E.. McDermott. J.. Neweil. A., & Orciuch, E. "R1-Scar: An experiment in
knowledge-intensive programming in a problem-solving architecture”. /EEE Transacuons on Paitern
Analysis and Machine [ntelligence 7, S (1985_), 561-569,

66. Rychener, M. D. Production systems as a programrming langauge for aruficial intelligence applicauons.
Computer Science Deparument, Carnegie-Mellon University, 1976.

67. Nychener, M. D. The instructable production systemn: A rerospectve analysis. In Machine Learning: An
artificiai tnuelligence approacn, Michaiski. R. S.. Catbonell, J. G. & Mitcheil, T. M., Eds., Tioga, Palo Alto,
CA. 1983.

68. Rychener. M. D. & Newell, A. An instructable production system: Basic design issues. [n
Patiern-Directed [nferenice Systems. Waterman, D. A. & Hayes-Roth, F., Eds., Academic Press, New York,
1978, pp. 135-153.

69. Saccrdod, E. D.. A Structure for Plans and Behavior. Elsevier, New York, 1977,

70. Scales. D. Efficient Matching Algorithms for the Soar/Qps$ Producuon System. Computer Science
Deparument, Stanford University, 1986.

71. Shortliffe, E. H.. Computerbased Medical Consultations: MYCIN. American Elsevicr, New York, 1976.
72. Simon, H. A. “Search and reasoning in problem solving”. Arnficial Inielligence 21 (1983), 7-30.

73. Smith. B. C. Reflection and Semantics in a Procedural Langauge., MIT/LCS/TR-272, Laboratory for
Computer Science, MIT, 1982,

74. Smiuth, D. E. & Genescereth, M. R. "Ordering Conjunctive Quenes”. Arificial [ntelligence 2¢ (1985),
171-216.

REFERENCES PAGE 63

75. van de Brug. A.. Rosenbloom. P S., & Newell. A. Some Experiments with R1-Soar. Computer Science
Deparunent. Carnegie-Mellon University, 1986. (in preparation).

~76. van de Brug. A.. Bachant, J.. & McDemou. J. "The taming of R1". /EEE Experr / (1986), 33-39.

77. VanLehn, K. Felicity Conditions for Human Skill Acquisition: Validating an Al-Based Theory. Xerox
Palo Alto Reserch Center, November, 1983,

78. Waterman. D. A. & Hayes-Roth. F., (Eds.). Pattern Directed Inference Systems. Academic Press, Mew
York. 1978.

79. Wilensky, R.. Planning and Understanding: A computational approach (o human reasoning. Addison-
Wesley. Reading, MA, 1983,

A

