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,7 ABSTRACT
We describe a powerful cross-correlation technique for the precise measurement of the proper motion of

tracers seen on successive images of a time series of solar granulation. The cross correlation is defined as a
function of position in the image, within a spatially localized apodization window .we use a Gaussian 1"-8" in
size). The time average of the spatially localized cross correlation gives a measure of the displacement that is
not biased by atinmospheric seeing. The window size and the seeing define the effective resolution of the vector
displacement determination. We use this cross-correlation technique to analyze an 80 minute run of white-
light observations made at the Sacramento Peak Vacuum Tower Telescope. Even though geometric distortion
due to atmospheric seeing is instantaneously at least 10-20 times larger than the observed scale of the large-
scale solar displacements, 100-1000 m/stL;its net contribution to the 80 minute average of proper motions is
RMS < 20 m/s 1 . The measured VcTor displacements clearly show solar mesogranulation and super-
granulation flows having spatial scales from WO" to 40" The measured amplitude of these flows is significantly
larger than the RMS 100 nw's "-i4noise which /ve attribute principally to solar granulation evolution. ,
Subject headings: Sun: atmospheric motione- Sun: granulation

I. INTRODUCTION

Proper-motion measurement predates Dopper spectroscopy for measuring velocities in astronomical objects. In astrometry,
proper-motion measurement is well defined when the identification of a star in two prates is unambiguous (Str6mberg 1946), star
catalogs list such measurements for most nearby stars. For the Sun, sunspots have been used as tracers to measure the solar rotation
rate (Newton and Nunn 1951; Ward 1965; Howard, Gilman, and Gilman 1984).

Proper-motion measurements for continuous objects or fields of stars is somewhat less well-defined since these objects evolve in
detail by changes in their constituent parts. Their proper motion can only be given as some form of average. Lindblad and Brahde
(1946) inferred the proper motions of nebular objects in nearby galaxies. Simon (1967), by following the motions of individual
granules within the time scale of their lifetimes, reported that granules tend to move in a systematic way and associated this
large-scale movement with the supergranular convective flows (Leighton, Noyes, and Simon 1962, Simon and Leighton 1964).
Duval (1980) applied cross-correlation analysis to Doppler velocity maps of the supergranulation flows to define the solar rotation
rate.

Quantified proper-motion measurements of solar granulation have recently been deduced from space-based observations with
the SOUP experiment on Spacelab 2 (Title et al. 1987; November et al. 1987). These results were obtained using the spatially
localized cross-correlation technique described by November (1986). The SOUP proper-motion maps have revealed many new
features in the quiet and active Sun: 600-1000 m s- ' outflow from the penumbra and photosphere surrounding a sunspot, greatly
reduced horizontal flow in a region containing numerous pores, quiet Sun mesogranulation and supergranulation horizontal
convective flow fields, and vortex flows. The proper motions are found to be highly correlated with the motion of magnetic features
both in direction and amplitude (Simon et al. 1988) and the technique promises to give insight into the foot-point evolution and
twisting of solar magnetic configurations. Proper-motion measurement of the large-scale horizontal flow field provides a unique
tool for the study of solar convection that has far greater potential than the conventional Doppler measurement. The line-of-sight
Doppler velocity measurement gives only one component of the velocity field whereas the proper-motion measurement gives all
three when one considers continuity of mass for a steady subsonic flow in a horizontally stratified compressible fluid (November et
al. 1987).

Fortunately, proper-motion measurement is not restricted just to such seeing-free space observations. In this paper we describe a
cross-correlation technique and its application to ground-based observations. The atmospheric geometric distortion adds an extra
noise component that is reduced by averaging methods. The basic technique is presented in 1 I and IV. The effect on the
displacement measurement caused by noise sources such as geometric distortion (atmospheric seeing and film base distortion) and
blurring (atmospheric seeing) is determined theoretically in § Ill. A sample time series of proper-motion maps made from ground-
based continuum images of solar granulation is analyzed in § V: The noise in the measurement is treated using Fourier power
spectrum analysis and determined as a function of various parameters in the measurement- -the time delay used for the cross

' Operated by the Associ;4tion of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. Partial support for the
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correlation, the cross-correlation averaging time, and the window size. This analysis permits us to identify the noise sources and
their amplitudes in the data. Some of the solar features that we identify in our sample proper-motion map are discussed in § VI
along with our conclusions. However, this paper is concerned mainly with the intrinsic usefulness and viability of the technique in
observations that are affected by atmospheric seeing. Thus most of the observational results and analysis relevant to the solar
physics will be discussed in subsequent publications.

It. SPATIALLY LOCALIZED CROSS CORRELATION

We define proper motion as the displacement that maximizes the spatially localized cross correlation between two images of a
scene separated by a sampling time delay T that is smaller than the lifetime of tracers in the scene. The two-dimensional cross-
correlation function is determined at each "locale" in the scene by multiplying an intensity product with an apodizing window
W(x). The spatially localized cross correlation C(6, x) is a function of four dimersions: the two-dimensional vector displacement 6
between the images, and the two-dimensional central location x of the window function. C(6, x) is defined in terms of the intensity
images J,(x) and J, +,(X) which sample the scene at the 2 times t and t + T:

Q(6, X) f {J(c - 6),( + ')W(X - wc~C I2 2

The integral is over the full area of the images, but effectively it is limited in extent by the size of the apodizing window function
W(x). The window size thus defines the spatial resolution of the vector displacement determination !n 01 the numerical examples
used for this work the window was taken to be a Gaussian.

The spatially localized cross correlation defined in equation (1) slides the two intensity images symmetrically in opposite
directions. Equation (1) has the symmetry that the sign of displacement 6 flips upon interchange of the images J, and J,. Shifting
the images equally and oppositely under the window ensures that the two image fields are similarly masked for each spatial
displacement 6: The maximum of this cross correlation is a most reasonable definition for the motion of a tracer which undergoes
evolutionary changes between successive image snapshots. This formulation is not affected adversely by contrast variations that
occur over the area of the window. The images are precisely compared with the same window attenuation in each displacement 6. In
Appendix A we show that our definition, equation (1), is simply related to the conventional definition for the cross correlation in
which each of the images is independently masked to select the area around one spatial locale.

Before forming the cross correlation, the images must be spatially filtered to remove any large-scale components. An intensity
gradient over the window biases the cross correlation to give a displacement that may not be precisely the displacement of the
desired tracer. Spatial filtering to remove scales larger than the window size is a simple technique that removes gradients over the
window function and can make the measurement most sensitive to the horizontal transport of a particular size of tracer. e.g., that of
the granulation field. We have previously used Fourier spatial filtering successfully to remove structures large compared to the
tracer (e.g., November et al. 1987), but a numerically simpler and equally adequate filter is the convolution of the intensity image I(C)
with the Laplacian of a Gaussian (LG). This yields the spatially filtered intensity J(C) : J(C) = Y[I(C)] = I(C) * [V2 exp (- .4/y,')].
This convolution can be written as a sum of separable components: J(C) = I(C) *f(4) * g( y) + 1(4) * f( Y) * g( .), where the
one-dimensionalf(C) = exp[-( /y,)2 ] and g( ) = 0a2/432[f()]. The direct numerical evaluation of this convolution requires fewer
calculations with increasing image size than the equivalent Fourier filter and is easily implemented by direct integration on an array
processor. In Figure 1 we show an intensity image and its Laplacian convolution for Gaussian full widths at half-maximum
(FWHM) 0'6, 170, 174 all plotted on the same scale of contrast. The spatial filter having FWHM of 170 satisfactorily removes all
scales except that of granulation and is the size that has been used throughout this paper. The Laplacian convolution also removes
power at scales smaller than the diffraction limit to reduce noise in the proper-motion measurement. The Laplacian convolution
does not bias the displacement determination; i.e., J(C + 6) = .9[I(C + 6)].

In order to reduce atmospheric seeing effects, it is favorable to average the cross correlation in time before locating its maximum
rather than adding individual displacement maps. The time-averaged spatially localized cross correlation <C(6, x)), is most affected
by images in the time series that have the highest contrast, and we will show in § III that such averaging is an optimum statistical
procedure for adding low-contrast contributions when the seeing is variable. An efficient numerical method to compute <C(6, x)>,,
including spatial filtering by convolution with the LG, J(x) = .Y[I(x)], is deduced by rewriting equation (1) as a spatial convolution.
The spatial convolution in the multidimensional x is written as the volume integral :f(x) * g(x) Jf()g(x - C)dC. We obtain:

<C6 )> .E{,x ).~[, -~ W(x). (2)

Each temporal sample 1,(x) is spatially filtered and then multiplied by the spatially filtered sample at the fixed time delay r at discrete
spatial displacements 6. Typically, 3 x 3 spatial displacement positions are used corresponding to 6, = 0, + 2 pixels and 6, = 0, + 2
pixels. (The smallest spatial displacement increment that can be easily represented is 2 pixels, corresponding to a shift of one image
by one pixel in one direction and a shift of the second image by one pixel in the opposite direction.) The image products are averaged
in time, denoted by < ),, and the result is smoothed by convolution with the sampling window W(x). We summarize schematically
in Figure 2 the procedure for calculating (C(6, x)>,.

Interpolation in the cross correlation <C(6, x)>, in 6 is then performed to define the displacement, A(x), that locally maximizes the
cross correlation in each component of 6:

(C(6, x), - 0. (3)
616AIx
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FIG. 2.-Schematic representation of the numerical method for the spatially localized cross correlation and displacement map. Two original granulation J(x)
images obtained at times t and t + T are spatially filtered using the convolution with an LG. The images are shifted oppositely and multiplied at nine spatial lags to
form nine cross product images which are averaged in time over the data set. The average cross product is smoothed by convolution with a Gaussian window W to
form the spatially localized cross correlation <C(J. x),. Using a method of interpolation the maximum of the cross correlation is then determined at each position x
to give the vector displacement map A(x).

Usually it is the case that the image displacements we wish to measure are much smaller than the distance betwoen pixels in our
digitization grid. To find an optimum interpolation method is not an insignificant task. We will discuss numerical procedures f:,r
interpolation in § IV and in Appendix C. The spatial average of displacements over the image field is taken to be zero since the exact
relative motion of the image in the frame of the object is unknown.

Ill. EFFECT OF ATMOSPHERIC SEEING

The effect of atmospheric seeing is large in a ground-based observation, so it is important that its contribution be minimized in
the average of many measurements. The instantaneous amplitude of the geometric distortion due to seeing may be as large as 072 for
solar images, even in periods of good seeing (von der Liihe 1985; November 1986), and this is at least 10-20 times larger than the
amplitude of the flows we wish to measure. The obvious process of temporally averaging the time series of displacement maps does
not add the contributions from the seeing noise in an optimum way when seeing conditions are variable. The local displacement is a
nonlinear function of the spatially localized cross correlation and is not well defined when the granulation contrast becomes small
Since all the displacement measurements receive equal weight in the time-average displacement map, this procedure is not very
satisfactory.

On the other hand, the temporal average of the spatially localized cross correlation is affected in a minimum way by the
poor-seeing contributions. When the seeing is poor and the granulation contrast low, the cross-correlation peak is broad and is a
nearly constant function of displacement. The poor-seeing contribution to the time-averaged cross correlation does not bias its
centroid strongly and so gives a natural method for weighting contributions taken during varying seeing conditions. We consider
the effect that seeing has upon the spatially localized cross correlation function in Appendix B. We summarize our conclusions from
Appendix B as follows: The time-averaged spatially localized cross correlation including seeing is the cross correlation function
without seeing convolved with an autocorrelation of the time-averaged seeing point-spread function. The time-averaged seeing
autocorrelation is a symmetric function of displacement 6, and thus seeing tends not to bias the cross-correlation centroid. A similar
cancellation of the seeing effect occurs in the displacement average when the seeing is not variable. Each image is used twice in the
average: the first time an image is used the displacement error due to seeing adds, and the second time it is used, the displacement
error subtracts, tending to offset the total effect. This tendency especially reduces the seeing effect in the time-averaged cross
correlation because the seeing displacements tend to cancel even with varying seeing conditions.

Nevertheless, we thought it wise to average the maximum number of seeing realizations in our observations. A simple observa-
tional technique that does this is to take long exposures of the granulation field. As long as the image averaging time is smaller than
the time delay T it represents a viable sampling. The seeing effect that enters the spatially localized cross correlation made from a
small number of long-exposure solar images must be the same as that made from a larger number of short-exposure images
spanning the same observation period. However, the long-exposure images have a reduced granulation contrast, and provide a
reduced number of independent contributions to the cross-correlation average, which further augments the loss of signal. In § V we
demonstrate the viability of this procedure in a sample data set taken with 12 s exposures during a moderately good but varying
seeing condition.

Another contributor to noise in the displacement determination is geometric distortion in the film base. Film-based distortion is
measured to be less than 2 pm (November 1984) which corresponds to 0'*020 in the data analyzed in § V. In a 30 minute observing
sequence, we take 108 photographic images at the 16.75 s rate. This gives RMS 0'0019 which is -30 m s' using a 45 s time delay T
for the cross correlation.

IV. INTERPOLATION OF <C(6, x)), IN 6

The cross correlation (C(6, x)>, is defined only coarsely in the variation in the displacement 6 since the product images from
equation (2) can be formed only for displacements that are in discrete units of the sampling interval. A precise definition for the
optimum displacement A(x) that maximizes thc cross correlation (C(6, x)>,, equation (3), requires interpolation in 6. How closely we
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are able to match interpolated (C(6, x)), to its actual functional form ultimately limits the precision of the displacement measure-
ment.

In Appendix C we summarize our extensive search of interpolation methods. We obtain this general result: Methods based upon
polynomials of degree less than 2 always tend to overestimate the shift for small displacements, and methods based upon poly-
nomials of degree greater than 2 always tend to underestimate the shift. The systematic error that occurs when the degree of
interpolation is other than 2 is quite large, - 50%. Only quadratic methods give displacements correct to a precision of - 10%.

V. NOISE ANALYSIS

We now dis,;uss a time series of solar granulation images taken with 12 s exposure at a 16.75 s rate in continuum (5175.0 A) at the
Sacramento Peak 70 cm Vacuum Tower Telescope using the Universal Birefringent Filter UBF (Stauffer et al. 1983). The observa-
tions were made at disk center under moderately good but varying seeing conditions for 80 minutes beginning at 1645 UT on 1985

FIG. 3.-Time-averaged proper motion map of solar granulation. Vector displacements are shown superposed on a sample of the solar granulation for an 80
minute time average of the spatially localized cross correlation. Images were spatially filtered using an LG with scale 1.0 arcsec and compared with the temporal
delay r = 67 s. A spatial Gaussian window of FWHM 3:3 was used as indicated by the size of the circle below the figure. The scale of the displacements is indicated
by the vector below Ihe figure.
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December 29. The images were then digitized with the Sacramento Peak flying laser-spot Fast Microdensitometer (FMS)
(Arrambide et al. 1983) in a spatial field 64" x 64" with a Gaussian spot of FWHM 0''33 with sampling resolution of 0"25. The
images were spatially filtered by convolution with an LG having FWHM 1 "0. We formed the spatially localized cross correlation
using the delay T = 67 s, summing over the 80 minute observation, with the Gaussian window of FWHM 3'3, following equation (2)
and the procedure shown in Figure 2. We used two-dimensional quadratic interpolation in <C(6, x)>, to determine the displace-
ments A(x). Figure 3 is the resulting proper-motion map. The displacements are plotted as vectors superposed on a sample
granulation image from the sequence. The effective resolution of the displacement map defined by the FWHM of the window
function is shown by the circle in the lower left of the figure. The scale of amplitude of the displacement vectors is shown below the
figure.

We study the time series of proper motion maps from the data used for Figure 3 in order to understand the stochastic noise in the
measurement. Proper-motion maps were formed from cross correlations of every third image (i.e., every 16.75 s x 3 50 s) of the
observations using a Gaussian window of FWHM 33 and two-dimensional quadratic interpolation. A power spectrum was made
at each point in the spatial domain and in each of its two vector components by Fourier transforming the displacement measure-
ment in the 80 minute time serics of 96 proper-motion maps. The average of these power spectra is shown in Figure 4. Most of the
power in the spectrum is in the DC component (frequency 0 Hz); it is off scale in the figure. For all frequencies other than DC, there
are two identifiable approximately spectrally constant components: one for frequencies less than 4 mHz, and one that is evident at
higher frequencies (above 7 mHz).

The standard deviation of a measurement is simply related to measurable features of its power spectrum. We discuss this
relationship in Appendix D and demonstrate that the noise from an incoherent component of the signal gives contribution to the
RMS according to its power. Assuming incoherence between the two spectrally constant components of Figure 4 we find thai the
low-frequency component, with normalized power - 1.9 x 104(m s -)2, contributes a noise of - 140 m s- ' to the measurement,
while the high-frequency component with normalized power 3.6 x 103(m s-t), contributes noise -60 m s '. The power is
normalized so that it represents oa2 according to equation (D3).

The low-frequency component must he due mainly to the granulation which is known to be evolving on a time scale of -, 400 s
(Title et al. 1987). Spatial filtering attenuates the 5 minute oscillation signal in its principal scale, and averaging over many wave
cycles attenuates its average signal in inverse proportion to the time, so the 5 minute oscillation will contribute much less to the
solar noise than the granulation. Evolution of the large-scale flows on the time scale of the observation should also contribute to the
solar noise; however, no additional component is evident in the power spectrum at the lowest frequencies. This indicates that the
large-scale flows are long-lived compared to the 80 minute time of our observations.

The high-frequency component appears to be spectrally white. We suspect that it is largely caused by seeing effects and
photographic granularity noise. However, a significant contribution may be solar in origin. In Figure 5 we plot the noise expressed
in distance on the Sun for the two spectral components as a function of the time delay r used in the cross-correlation determination.
For this we reanalyzed the data computing an 80 minute time series of 48 proper-motion maps each formed from averaging six
cross-correlation maps (100 s). This was done for different delay times r in units of the 16.75 s sampling interval. A Gaussian window

Spatially Averaged Temporal Power Spectrum
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FIG. 4.-Spatially averaged temporal power spectrum of displacements
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FIG. 5. -Displace.,fnt noise as a function of temporal delay. The 80 minute time series of displacement maps was formed by averaging each 50 s of cross
correlation maps using the spatial filter 1 0 and the resolution window of FWHM 5" for different temporal delay times T. The RMS power in the two identifiable
spectral components from the average temporal power spectrum of Fig. 4 is shown.

of FWH M 5"0 was used for all these tests. The RMS noise is defined as the square root of the averaged normalized power in each of
the two spectral components, the low-frequency ( < 5 mHz) and high-frequency (> 5 mHz).

Detection-noise contributions (seeing and photographic granularity) should not change in RMS with the temporal delay r, but
solar-noise contributions should since the detection-noise time scale is short and the solar-noise time scale long compared to the
delay time T. The detection-noise contribution will always be the same between time samples since the 16.75 s sampling time is much
greater than the time scale for the seeing. Thus the low-frequency component is not due principally to detection noise since it
increases approximately linearly with the time delay T and has zero intercept at T = 0. The high-frequency component shows a
smaller increase with r which then levels off for r > 100 s, and has a positive intercept at r = 0. A conservative estimate for the
detection-noise contribution is the noise at the smallest measured delay where the solar features are least changed by structure
evolution; this detection-noise contribution is 1000 m on the Sun (less than 2 milliarcsec), or 20 m s- I for the time delay r = 50 s.
The high-frequency component for time delays greater than 100 s must be mainly determined by those solar structures which are
rapidly c olving, such :!7 'poding granules (Title et al. 1987).

The displacement noise in the low-frequency component in Figure 5 increases approximately linearly with the time delay r,
indicating that the solar-noise contribution has an approximately constant signal-to-noise ratio independent of the time delay T.
Increasing the temporal baseline for the displacement measurement gives a proportional increase in the displacement signal and an
approximately proportional increase in the noise due to the evolution of the tracer. In Figure 6 we show the displacement noise
divided by the temporal delay. A time delay of - = 50 s appears to be the best compromise to maximize an increasing signal
relative to increasing noise due to tracer evolution.

The window size used for the samples in Figures 3 and 4 was 4"2 and in Figures 5 and 6 was 5"0. For a stochastic process the noise
should be inversely proportional to the window size for spatial scales larger than either that of the t,.acer or the seeing. We plot in
Figure 7 the measured velocity noise (solid line) in the low-frequency spectral component as a function of the window size for the 80
minute time series of displacement maps formed from each 100 s of data using the time delay T = 67 s. It is clear that this measured
noise approaches asymptotically the expected form for a stochastic process (dashed line) as the window size is increased.

We have shown theoretically in § Iil that time averaging the cross correlation is a more favorable procedure than time averaging
of displacement maps. Figure 8 shows the displacement RMS power of the low-frequency component from the temporal power
spectra for different cross-correlation averaging times in the 80 minute data set. For each averaging time a time series of displace-
ment maps was formed with the time delay r = 67 s and with the window size 0'.83 FWHM. The noise decreases with the averaging
time and must approach a constant value for a large averaging time when the nonlinear effect of noise in the displacement
determination is least. This figure indicates that little improvement can be expected from displacement maps formed from cross-
correlation maps time averaged over more than - 5 minutes.

In earlier work we used a technique for computing proper-motion maps which applies a sonic filter to white-light granulation
images before determining the displacements (Title et al. 1987; November et al. 1987). The sonic filter operates in the spatial and
temporal Fourier transform domains of the data to reduce to zero the contribution having phase velocity larger than 7 km s I. By
this method we eliminated this component which is due principally to the solar 5 minute oscillation. We 1. .e applied this technique
to the present data set and find only small differences between the sonic-filtered map and the time-averaged proper-motion map
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Fi(i. 8. Noise as a function ofcross-correlation averaging time. The low-frequency contribution to the noise is shown as a function of the averaging time used in
the spatially localized cross correlation for the displacement maps from the 80 minute time series. The spatial filter was 170, the temporal delay r - 67 s. and the
resolution window size FWHM 0.83.

(Fig. 3). The temporal power spectrum of the displacements is similar to the one we show in Figure 4 in its low frequencies but
significantly attenuated in its high frequencies. This is expected as the spatial filtering of the data by the convolution with an LG
selects a specific range of wavenumber. In this range a specific cutoff frequency is defined by the sonic filter. The sonic filter does not
change the 4ctual noise but only serves to extinguish all the temporal variations in the displacement map time series above the cutoff
frequency. In effect, sonic filtering is not different from simply time averaging the cross correlation, or time averaging the displace-
ment maps. It therefore serves no useful purpose in our analysis and will not be used in future investigations.

VI. CONCLUSIONS

We conclude that proper motions of large-scale solar features can be determined reliably from long-exposure-time ground-based
observations of solar granulation taken in moderately good but varying seeing conditions. The main effect that atmospheric seeing
has on the displacement measurement is to reduce the contrast in the time-averaged spatially localized cross correlation without
biasing its central displacement. The reduced contrast increases the detection noise in the measurement but is much smaller than the
noise introduced by granulation evolution. In an 80 minute average with 5" resolution and with the optimum delay of 50 s there is
- 75 m s ' noise due to tracer evolution compared to less than 20 m s - ' detection noise.

We are now obtaining 15 s exposure full-disk observations of the Sun in white light through a 6 inch aperture telescope. In times
of pcor seeing, even though the intergranular lanes are not resolved. - 1% granulation contrast is apparent everywhere on the disk.
We are optimistic that this experiment will be able to provide full-disk proper-motion maps of selected solar features or of the full
disk on a regular patrol basis.

A large-scale displacement map from our data is shown in Figure 9. The proper-motion map shown earlier (Fig. 3) lies within this
larger field, as shown by the interior box. The flows in the figure appear to be long-lived relative to the 80 minute averaging time,
based upon the power spectrum analysis of the time series. We identify the coordinates of a number of flow sources of amplitude
500-l1000 m s 1: Ix. y) = (70. 23). (15. 80), (55, 120), (125, 43), (100, 12), (100, 108). We asscciate these radial outflows with the 40"
supergranulation (Leighton et al. 1962).

In Figure 9 there is also much fine structure in the horizontal flows. This is particularly evident in the divergence of the
displacements V. A(x) which we plot in Figure 10. Note that positive and negative contours in Figure 10 correspond to regions of
outflow and inflow in Figure 9, respectively. The contour interval is 5 x 10- s '. and the zero contour is not shown. The fine
structure has a smaller scale of 10"-15" and appears superposed on the larger flows, we associate this with mesogranulation
(November etal. 1981). Figure II shows a corresponding contoiir plot of the vorticity of the flows. The amplitude of the vorticity is
roughly comparable to that of the divergence but the features are generally uncorrelated. The cyclonic flows we identify here must
be convective in origin. These data are fot Sun center: Coriolis-induced flows remain a possibility for high latitudes. The time scales
for the flows is longer than the 80 minute time average for the displacement map. We are now investigating the distribution of size
scales, the relation of these flows to Doppler velocity and longitudinal magnetic field observations of the Sun. the temporal
evolution of the flow morphology, the fluid vorticity and divergence relation for the Coriolis effect in the convection cells, and the
effective angular momentum transport over the Sun's surface in these scales of motion. We will discuss these issues in future
publications.
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FIG. I l-Vorticity of Flows. The vorticity is defined as 0Ay(x)/x - i4 A,(x)/y. Contours are plotted at intervals of 5 x 10- s - positive as solid line. negative
as dashed line for the 80 minute average from Fig. 9 (the zero contour is not shown). The typical size scale in the vorticity is also 10"-15".

We note in closing that two other high-resolution ground-based time series of solar granulation are currently being analyzed
using techniques similar to those described herein. One uses the Swedish Vacuum Solar Telescope at La Palma (Brandt et al. 1988),
and the other the Sacramento Peak Vacuum Tower Telescope (Title et al. 1988). One of their preliminary results, as in this work and
in the SOUP observations, is that mesogranulation is a dominant large-scale flow feature on the solar surface.

One of us (I. J. N.) initiated a study in techniques for proper-motion analysis of tracers in 1982 in collaboration with R. Dunn and
R. Petrov. The method was first applied successfully in a collaboration between us and T. Tarbell, S. Ferguson, and A. Title in the
analysis of Spacelab 2 SOUP observations in 1986. Tarbell also demonstrated to us the usefulness of Fourier techniques for noise
analysis of proper-motion measurements.

APPENDIX A

C(6,x) THE CONVENTIONAL CROSS CORRELATION

Our definition for the spatially localized cross correlation, C(6, x) from equation (1), when multiplied by an attenuation factor in 6,
W"(6/2), is algebraically equivalent to the conventional definition for the cross correlation of two images in which each is
independently masked to select one locale:

S J,( - , + )W(x - )aW"( ) fJ,()J,+ ( + )W'(x- )W'(x- -6)O . (Al)

If W'(x) is a Gaussian then W(x) and W"(x) are also Gaussians having width 21/2 the width of W'(x). For the general window
.unction W'(x) we find J(k,)W"(k2 ) = W,'[(k, + k,)]1W'[j(k, - k 2)] where W(k) us the Fourier transform of W'(x), W(k) =
I W'(x) exp (- ik'x)dx, and W(k) and W"(k) are the Fourier transforms of the window function W(x) and W"(x), respectively.
(Herein we always use the overbar to denote the Fourier transform.) This result is found by substituting Fourier integrals for the
window function W'(x) in equation (Al) and changing variables of integration. When the real window function W'(x) is chosen to
have unit area, then '(k) = W "(k) = W'(1k) 2 . The conventional definition for the cross correlation acting on images that are
separately masked, equation (Al), gives a slightly different measurement of the displacement than our spatially localized cross
correlation C6, x). The difference is a displacement bias caused by the finite extent of the window W"(6/2). Equation (1) gives a more
accurate displacement measure because the image fields are unbounded in x as they are shifted in opposite directions under the fixed
sampling window W(x).
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APPENDIX B

THE EFFECT OF SEEING ON <C(, x)>,

We demonstrate here that seeing represented by a slowly spatially varying point-spread function in the object O,(x) has the effect
of convolving the time-averaged spatially localized cross correlation (C(, x)>, with a symmetric function in &. The seeing function is
assumed to be uncorrelated with the seeing function displaced in time by the time delay T for the cross correlation, and uncorrelated
with the scene. We also assume that the time-averaged seeing function is spatially homogeneous and that the averaging time is long
compared to the time delay r.

Let the instantaneous effect of seeing on the solar-granulation intensity field O,(x) be represented by the following convolution:
lAx) = J SAC, x)O,(x - C)dC. The instantaneous seeing point-spread function S(C, x) is allowed to vary slowly in x over the image.
The associativity property of the normal convolution allows separation of the spatial filter: Y[I,(x)] = S S,(, x)- EO,(x - C)]dC.
The result is formally shown for the slowly spatial-varying seeing point-spread function by writing .[I,(x)] as an integral, making a
substitution of the variable of integration, and noting that the spatial scale of the Gaussian in the integral (in this case taken to be
the scale of the solar granulation) is small compared to the scale of spatial variation of the seeing point-spread function. Thus we
have for <C(#, x)>, from equation (2):

<0W, x)>, = K () (,)S,({ 2, x)S,+ 3, x d4, dCd 3, (B1)

where {CI, , and C3 are variables of integration.
The time average of a product of incoherent components is the product of the time averages of each of those components. Mutual

incoherence is a reasonable physical approximation between the seeing point-spread functions S, and S,+, and the correlation
function .Y[Og]."[Ot+,]. It is generally believed that the seeing cannot be correlated for time scales longer than I s, and in this
analysis the time delay T is much larger, of order 1 minute. Thus the seeing fluctuations and the image product must be uncorrelated,
and we may rewrite equation (B 1) as

<C(§, x)>, = f o, (, - - I d4 (112)

<S(C)>, denotes the time-averaged seeing point-spread function which must be the same in the time average <S t>, and in the
temporally displaced time average <S,+,>, in the limit that the averaging time is long compared to the temporal delay r. Also, we
assume that the time-averaged seeing point-spread function does not vary over the spatial domain of the image, which must always
be true in the long-time average.

The integral is reduced by substituting Fourier integrals for each of the functions: .9[O,(x)] = 5 0, exp (ik x)dk, W(x)=
W(k) exp (ik'x)dk, KS(C)>, = f (S(k)>, exp (ik')dk. Of course, the functions O(k), W(k), and <S(k)>, are defined as the negative-

signed-i Fourier integrals of the variables Y[O,(x)], W(x), <S(4)>,, respectively; <9(k)> is the temporally averaged s-eing
modulation-transfer function. After substitution and rearrangement of the terms in equation (B2), 6-function integrals occur 'A 'ich
simplify the integral and give the following Fourier integral for (C(, x)>, over the two wavenumber variables k6 and k.:

<C(8, x)>, = f <0,( k + k6)0,,(Jk. - k6 )>,W(k,)

<9( k. + k,)>,<K( k. - k,)>, eiA" e ,dk, dkx . (B.,

It is useful to write this Fourier transform as a convolution in the spatial variables 8 and x [i.e.,f(8, x) * g(8, x) = If(c, C)g(8 - C,
x - C)de df ] :

<C(8, x)>, = f <O,(k + k,)O,+,( k. - k,)>,W(k.) e" " e'*" dkdk,

• f <*( k. + k,)>,<S( k. - k,)>, e" ' a e'k. x dkdk . (B4)

The first integral in equation (B4) is the spatially localized cross correlation without seeing; it is convolved in (8, x) with the
seeing-function integral, an integral that is defined entirely by the time-averaged seeing point-spread function. The product
<S( k. + k,)>t(J( k. - k,)>, in the seeing-function integral is invariant with the change of sign of k6 so that the sine integral due to
exp (ik 6 " 8) is zero. Thus the seeing-function integral is a symmetric function of 8 for all k.. This proves that seeing has the effect of
smoothing the spatially localized cross correlation in 8 by convolution with a symmetric function, The convolution cannot change
the centroid of the cross correlation in 8 but may only change its shape; i.e., broaden the cross correlation.

In principle, seeing might introduce a location error for the displacement since the seeing-function integral in equation (B4) is not
necessarily symmetric in x. However, if (S(C)>, is a symmetric function, and real by definition, then <S(k)>, is r al and symmetric,
and the seeing-function integral is also symmetric in x. We note that the convolution of the spatially localized cross correlation in x
has the effect of changing the shape of the window function. Thus seeing can reduce the effective spatial resolution of the
displacement map.

If the time-averaged seeing point-spread function (S(C)>, is a Gaussian, then the spatial and displacement convolutions become
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separable in the seeing-function integral of equation (B4). If (S( )>, is a Gaussian then ((k)>, is also a Gaussian and the product
(S(fk. + k6)>,( k - kj)>\ is the product of a Gaussian in kx and a Gaussian in k6 . The spatially localized cross correlation from
equation (84) is the spatially localized cross correlation without seeing, convolved in 8 with a Gaussian, and then convolved in x
with the product of a Gaussian and a window function.

The result that the time-averaged seeing integral is a symmetric function of displacement 8 is a direct consequence of the fact that
each image is used twice in forming the average, once at time t and again at time t + T. The first time an image is used, the
displacement error due to seeing adds, and the second time the image is used, the displacement error subtracts, canceling its total
effect. The cancelation of the displacement error negates the effect of geometric distortion in the time-averaged cross correlation in
the limit that the averaging time is long compared to the time delay T for the cross correlation.

APPENDIX C

INTERPOLATION IN C(6, x)

The precision of a displacement measurement is limited by the accuracy of the spatial interpolation technique used. We were
surprised to learn, after trying several methods, that this accuracy varies widely with the method, and has a very significant effect on
the result. Thus we undertook an extensive investigation of interpolation techniques, which we describe here.

We base our empirical tests on interpolation techniques upon digital images made from one photographic sample of solar
granulation. The photograph was scanned with positional centers that were displaced by different fractions of a pixel. The images
were digitized with the Sacramento Peak FMS. The FMS has a spatial resolution of 0.025 in the scale of the photographic sample
with positional accuracy 0"003 mas (+ 0.1 pixel). Two digital images with centers displaced by 0.1 pixel were made from a field of
granulation 64" x 64" using a Gaussian spot of FWHM 075 with a sampling increment 0"25. The digital images were cleaned to
remove dust and other artifacts using a numerical method (November 1988).

One of the digital images was shifted by interpolation to a new image center and compared to the other image. Figure 12 shows
the RMS of the difference of the images as a function of the interpolation shift for different degrees of a polynomial interpolation.
We see that the degree 3 polynomial (cubic) gives by a slight margin the minimum RMS difference. For the smallest interpolation
degrees, there is best agreement with the offset digitized image when a displacement greater than the true shift is used for the
interpolation. We say that the lower degree methods systematically overestimate the actual shift by as much as 10% for small shifts.
The higher degree (greater than 5) methods systematically underestimate the actual shift by as much as 40% for small shifts.

Other methods of interpolation behave similarly: two-dimensional cubic splines through 9 x 9 points, one-dimensional cubic
convolution in 4 x 4 points, and two-dimensional quadratic interpolation in 3 x 3 points (six-point and nine-point formulas) all
tend to overestimate the actual shift by 10%-25%. The interpolation shift error is found to be fairly independent of the sample size
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Fi(. 12-Accuracy of images artificially shifted by five methods of interpolation. The normalized RMS difference between two images which were digitized with
their centers offset by 0.1 pixel is plotted as a function of the interpolation spatial shift that was applied to one of the images for various degrees of polynomial
interpolation. The scale of the RMS was normalized by the RMS image contrast.
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or the sampling interval as long as the solar granulation is properly resolved. However, the systematic error is noise sensitive: if we
use low-pass spatially filtered images, then the higher order methods less severely underestimate the shift than in the unfiltered
examples shown in Figure 12.

Fourier interpolation should give an exact result since, by the Fourier theorem, a function that is band-limited is exactly
represented by a finite number of Fourier sine and cosine terms. In practice, however, Fourier interpolation is most sensitive to
sampling effects. We find that when the image shift is near - pixel its RMS variance with the digitized offset image is several times
larger than errors typical of the local interpolation methods. Fourier interpolation methods have to be rejected as unsuitable for
accurate displacement measurements.

Our result, that interpolation may shift erroneously an image by a significant amount, warns of the danger in using interpolation
to estimate the extreme position of a function. To analyze these methods further, we digitized along the 45 diagonal the sample
granulation photograph at 12 evenly spaced offset positions separated by 0.1414 pixel. The digitized images were numerically
cleaned and spatially filtered. The spatially localized cross correlations C(6, x) was computed between each offset digitized image
and the undisplaced digitized image with a Gaussian window of FWHM 3'3 in 3 x 3 offsets 6 of6. = 0, + 2 and 6. = 0, + 2 pixels.
A solution for the extremum position, the displacement A(x), is given in the 3 x 3 array of C(, x) at each x by the least-squares fit in
a two-dimensional quadratic function with 6 degrees of freedom. In Figure 13 we show the spatial x average of displacements
normalized by the digitization offset as a function of the digitization offset for each offset digitized image compared to the
undisplaced digitized image. The spatial average of displacements is plotted as a point with error bars at + I a. The accuracy of the
method is - 10% for digitization offsets less than I pixel (the relevant range of offsets for this work). A similar test made of an image
field containing a large sunspot shows similar accuracy and noise; this demonstrates the viability of the method even in a field
containing large changes of structure and feature contrast.

We show in Figure 14 the spatially averaged displacement as a function of the digitization offset for three different methods of
interpolation. The solid line is for the quadratic interpolation from Figure 13. The dashed line gives the estimated displacement
using a method of linear interpolation in 3 x 3 points, while the dotted line is the estimated displacement using a polynomial of
degree 4 (quartic) fit through 5 spatial points in each direction in 6. We have tried other orders of polynomials in two-dimensional
and in one-dimensional separable forms fit through varying numbers of points, as well as other methods including two-dimensional
cubic splines and one-dimensional separable cubic convolution.

In summary, our investigation gives this general result: Methods based upon polynomials of degree less than 2 always tend to
overestimate the shift for small displacements, and methods based upon polynomials of degree greater than 2 always tend to
underestimate the shift. The systematic error that occurs when the degree of interpolation is other than 2 is quite large, - 50%. Only
quadratic methods give displacements correct to a precision of - 10%.
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FiG. 13-Precision of displacement measurement using quadratic interpolation. Images of a scene of solar granulation were digitized at 12 positions in
increments of 0.1 pixel and displacement maps formed by comparison with the unshifted image. Average of displacements over the area of each displacement map is
shown with error bars representing ± I a. The points are normalized by the digitization offset and plotted as a function of digitization offset,
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FiG. 14-Comparison of interpolation methods. The spatial average of displacements normalized by the digitization offset is shown as a function of the
digitization offset between image samples made of a common scene of solar granulation using three methods of interpolation in the spatially localized cross
correlation. Interpolation by two-dimensional quadratic (solid line) gives the most precise measurement. Interpolation by a two-dimensional linear function (dashed
line) in the 3 x 3 spatially localized cross correlation and interpolation by separable quartic polynomial (dotted line) in the 5 x 5 spatially localized cross correlation
are also shown.

APPENDIX D

NOISE ESTIMATION BY POWER-SPECTRUM ANALYSIS

The standard formula for the temporal RMS standard deviation a, of the signal A(t) is U2 = <A(t)2>, _ (A(t)>, , where <)
denotes the time-averaged quantity. This formula is valid in the special case when the samples are independent and randomly
distributed about the average signal.

A more general definition for the standard deviation that considers the possibility that samples may not be independent is given
from power spectral analysis of the signal A(t). Let A(co) be the Fourier transform of A(t). Then by the Fourier power theorem we
have for A(wo):

f A(cu) A(cu)* dw f A(t)2 dt . (DI1)

The integrals are over the two domains frequency co and time t. Let us write A(cu) as a superposition of mutually incoherent signal
components: A (c) = y Aljco); the summation is over the index j which counts individual signal components. We identify a special
DC component which is the signal integral, Ao =- T<(t)>,, where T is the length of the time domain. It is zero at all frequencies
co 9 0. The DC component is incoherent with respect to the fluctuating components if and only if the fluctuating components are
randomly distributed. This condition is usual for a noise signal which fluctuates about an average. This assumption of incoherence
between the DC component and the fluctuating element A,4w) is written: <Ao Ajco)>,o = 0. The assumption of incoherence among
all the other individual elements obeys the same rule: ACO)!k{CO)D, = 0 for all j 96 k. Substituting the summation of incoherent
components for A(wo) into equation (D1I) gives:

f Al(co),lw)* do = T(<A(t) ' _- <A(t)>,2) . (112)

We have subtracted the squared DC component written as a time average from both sides of equation (DI) and rewritten the
integral in time as an average to give equation (132). The summation counts n incoherent elements in addition to the DC that we
have identified for the system.

We recognize the difference of averages on the right side of equation (132) which is the usual formula for a' for special cases.
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Equation (D2) suggests the following as a more general definition for a':

A T j Ajo)Aw)* dw(13
Consider now the usual special case that the spectrum contains two incoherent components, the DC component Ao and a

spectrally white component At((a). The spectrally white component is constant in frequency for all frequencies up to the Nyquist
sampling frequency 0oN. The integral in frequency must be taken from -WN to +CON and the right side of equation (D3) becomes the
constant power IA, 12 divided by the number of samples, 2 TCON, using the definition for the Nyquist frequency. But from the power
theorem, the power in the white component is simply the integrated signal for discrete samples: IA, 12 = 1 [A(t) - (A(t)>,] s, where
the summation is over all the samples in t. Thus equation (D3) gives the usual formula for the standard deviation in this special case.

Next we consider another example, in which the spectrum again contains two incoherent components, the DC and a spectrally
white component, but now this white component has a cutoff at frequency w, that is less than the Nyquist sampling frequency. In
this case equation (D3) defines a' as the power in the white component, I 1 12, divided by the reduced number of measurements,
2Tw,. The usual formula for a' always gives a lesser estimate than equation (D3) in this special case, and the estimate decreases in
value as the sampling frequency increases while all other parameters remain fixed. On the other hand, a' from equation (D3)
remains constant for sampling that is greater than the cutoff frequency. The standard deviation given by equation (D3) thus
correctly represents the fluctuation in a signal which is oversampled. This special case is relevant in our discussions concerning the
effect of granulation evolution on the error in the determination of displacement, since it represents an oversampled fluctuating
component.
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