K € =i
';,7;.‘_” JAN 23 198q;?
| $7 ‘

MODIFYING AFOTEC'S SOFTWARE

MAINTAINABILITY EVALUATION GUIDELINES

THESIS

Stephen K. Johnson, B.S.
Captain, USAF

AFIT/GCS/ENG/88D~10

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

CISTAISUTION STATEMENT A
Approvad for public relacmsa;

rored o e mie Qo 1 17 142

———

|

AFIT/GCS/ENG/88D-10

MODIFYING AFOTEC'S SOFTWARE

MAINTAINABILITY EVALUATION GUIDELINES
THESIS

Stephen K. Johnson, B.S.
Captain, USAF

AFIT/GCS/ENG/88D-10

DTIC

ELECTE
. JAN 2 31909 7

<n

H

Approved for public release; distribution unlimited

AFIT/GCS/ENG/88D-10

MODIFYING AFOTEC'S SOFTWARE MAINTAINABILITY EVALUATION GUIDELINES

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the LCegree of

Master of Science in Computer Engineering

Stephen K. Johnson, B.S.

Captalin, USAF

December 1988

Approved for public release: distribution unlimited

Preface

The purpose of this study was to develop a complexity metric or set of
metrics that would be useful! in measuring software maintainability. A set of
Interesting metrics was assembled from current literature, and a series of
cr:teria was developed to measure how well each metric measures
maintainability. Applying the criteria to the metrics, a pair of metrics that will
best measure maintainability was determined.

Once the maintainability metrics were declded, rules for their
implementation were given. A method to determine a threshold value was
explained so that valid ranges of values could be recommended. A metric
valldation process was proposed to gather data that will reveal if the metrics
actually reflect maintainability.

I would like to thank several people who have given me support and
guidance throughout this thesis effort. 1 am very grateful to my advisor, Major
James Howatt for his guidance in helping me narrow down my goals when I
began research, his assistance throughout the development of this thesis, and
his patience when | missed deadlines. | also wish to thank Captain Wade Shaw
for explaining how important the metric threshold and validation analysis
process is. A debt of gratitude is owed Captain David Umphress, whose editorial
comments greatly enhanced the readability of thls thesis. 1 would also like to
thank my sponsor, Captain Mike McPherson, and Mr. Jim Baca of the Air Force
Cperational Test and Evaluation Center for their support and direction. Finally,
I would like to thank all nf my fellow students in the Computer Engineering
section, who made the "AFIT Experience” unforgettable.

Stephen K. Johnson

[Liiotorantyon/

it

AYor Lo

Diat | Lpecin

’\,\l

'r

Avatlaobtlity Jodus

ol

Preface

Table of Contents

- . - . - - . . > - . . . - . - . - - . . . -

List of Figures v ¢ v v v v v e e

Abstract

. . . - . . - - ° - - S . . - ° - - -

I. Introduction ¢ . . v e e e e e e e e e e e

Background . . e e e e o e e e e s .
Summary of the AFOTEC Software Malntalnablllty
Guidelines i v e e e e e e e e
Problem e e e e e e e e e e e e e e e e e e
ASSUMPLIONS . v & « & v ¢ ¢ 4 e 4 e e e e e e .
Scope e
Sequence of Presentation

II. Literature Review +v ¢ v v v v v v « o o 4

Introduction . . . ¢ ¢ & ¢ ¢ e e e . e 0 .
Size Metrics . . . & & v v v b e e e e e ..

Lines of Code . . . e e . e e e e e .

Halstead's Software Science (N) e e e .

Structure Metrics . . . ¢ ¢ ¢ ¢« 4 « ¢ e e o o s

Data Structure Metrics

3« - o

Information Flow

Control Structure Metrics

McCabe's Cyclomatic Complexity . . .

Knot Count

MEBOW (MEasure Based on He1qhts) . .

Composite (Hybrid) Metrics . . . e e e .

Halstead's Software Science (E) - e e e

Hansen's Pair (Cyclomatic Number, Operator

Oviedo's model of program complexity . . .

SUBRMETXY « . & & &t © 4 4 4 e e e e e e e e e e

IIT. Metric Selection Criteria v « v « « .

Introduction e s e e e e e e
Criteria for the Selection of a Maintainability
Clear and Unambiguous
Intuitive
Language Independent
Prescriptive
Robustness
Accurately Reflect Control Flow . e e .
Ranking Basic Control Structures .
Nesting and Compound Conditions . . .

1ii

Page

ii

vi

30

ic
30
31
32
32
33
33
34
34
35

Accurately Reflect Data Flow 35

Indicates Data Amount 35

Shows Data Use 36

Reflects Inter-HModule Data Links 36

Comparison of Metrics by Selection Criteria 36

SUMMATY & - & v v v e v e e e e e e e e e e e e e 39

Iv. Maintainability Metrics Proposed for AFOTEC Use 41
Introduction . . . & v & v v vt e e e e e e e e e e 41

Proposed Maintainability Metrics 42
Justification of Metrics Selected 43

Hybrid Metric Benefits and Detriments 43

MEBOW . . L . & & i e et e e e e e e e e e e 48

Evidence Supporting the Use of v{(G) 5C

Evidence Supporting the Use of KNOT 54

Information Flow v v v v v « v . . 57

Metric Implementation Considerations 61
Calculation of Metric Value, 61

Threshold Value ¢« o v v v v v v . 67

Validation of Metrics v v v v v e o o . . 68

SUMMATY & v 4 ¢ o o o o ¢ o o o o o = o s o « = o o « 73

V. Conclusions and Recommendations « « + o o « o . . 74
Introduction v vt e e e e e e e e e 74
Conclusions e e e e e e e e e e e e e e e e e e 74

How the Problem was Solved 75

The Limitations and Bencfits of Metrics 76

Recommendations ¢ v v v e v e 4 e e e e e 78

SUBIAYY & v« v vt e e e e e e e e e e e e e e e e 80

Appendix A: Justification for Metric Complexity Criteria Ratings 81
Appendix B: Algorithms for Metric Value Computation 89
Appendix C: Empirical Support for Hybrid Metrics 95
Appendix D: Calculation of Metric Value for an Ada Procedure . . 99
Bibliography o . . e e e e e e e e e e e e e 109
VITR . . o L L L o e e e e e e e e e e e e e e e e e e, 112

iv

List of Figures

Figure Page
1. Differing Statement Counts for the Same Function 8
2. Halstead's N Example « ¢ ¢« « ¢ . v v v v v o« o W 11
3. Span Example i i o e s e e e e e e e e e e e e 13
4. Information Flow Example ¢ . ¢« & + « ¢ « « « o « . 15
5. Example Program . . . + ¢ ¢ v v o 4 v c e v e e e e e . 18
6. Example Directed Graph Representation of Figure 5 19
7. Knot Example & & & & h i e e e e e e e e e e e e e 22
8. Program Complexity Example ¢« ¢ « & v « v v o & . 28
9. Metrics vs. Metric Selection Criteria 38

10. More Structured Knot Example 56

il. A Comparison of Three Metrics v v ¢ v o « o o . 57

12. Example MEBOE Calculation . . ¢ + ¢ ¢ v 4 ¢ ¢ ¢ o o o o o & 63

13. Example Validation Method Milestomes 72

14. Identification of Extreme Outlier Error Components 96

15. Results of Harrison and Cook's Study 96

16. MEBROW Basic Control Constructs « .« o « ¢ « « « . 100

AFIT/GCS/ENG/88D-10

| . Abstract

“The purpose of this ;tudv was to survey automatable software
maintainability metrics for inclusion in the Alr Force Operational Test and
Evaluation Center's (AFCTEC's) software maintainability evaluations. This
research was looking fcr metrics that would measure maintainability, could be
automated, and would fit into existing guidelines. First, a set of software
complexity metrics was investigated. Then, a set of criteria to determine if a
complexity meiric measures maintainability was developed. After comparing the
metrics to the criteria, a subset of two metrics that met the criteria better than
any other metrics was derived.

The software complexity metrics evaluated were placed into three
categories: size metrics, structure metrics, and hybrid metrics. The structure
metrics include both data structure and control structure metrics. The hybrid
metrics include metrics blended from two of the other groups, such as a
combination of size and structure metrics.

The metric selection criteria included three categories: general
applicability criteriz, control fiow complexity criteria, and data flow complexity
criteria. An assumption was made that the metric or combination of metrics
that met the most of these criteria would best reflect software maintainability.
A combination of a data structure metric, information flow, and a control
structure metric, MEasurement Based on Welghts (MEBOW), was determined to

meet more criteria than any other metric or combination of metrics. This hybrid

metric was suggested for AFOTEC use.

vi

BN

Further information explaining theoretical and empirical justification for
the use of these metrics was given. A description of techniques to determine
metric threshold values was discussed, along with a procedure for metric
validation. Finally, a theme of the limitations inherent in measuring

maintainability with automated metrics was elaborated.

vil

MODIFYING AFOTEC'S SOFTWARE MAINTAINABILITY EVALUATION GUIDELINES
I. Introduction

Scftware metrics are tools to measure the intrinsic complexity of software
systems in order to gauge the software design's "quality and effectiveness"”

(Prather, 1984:340). The quality of software should be measured to determine if

it is both testable and maintainabie (McCabe, 1983:3). These issues are
important because testing requires a large amount of software development time,
and software maintenance requires between 50 and 7% percent (Henry and
Kafura, 1981:510) of the software life-cycle costs.

The Air Force Operational Test and Evaiuation Center (AFOTEC) is
responsible for testing software being developed for the Air Force. It uses
software metrics to determine if software is maintainable. This thesis describes
additional metrics that AFOTEC should use to measure maintainability. The use
of these additional metrics will complement the current scftware evaluation

guidelines.

Background

AFOTEC evaluates source code and documentation for the presence of
seven maintainability characteristics. These characleristics are modularity,
descriptiveness, consistency, simplicity, expandabllity, testability, and
traceability. Each will be described later. Standardized questionnalres are
filled out by software engineers whoe are "knowledgeable in software procedures,
techiniques, and malntenance, but need not have a detalled knowledge of the
functional area of the prograin” (Peercy, 1981:340). The evaluaturs answer the
questions within the questionnalre with respect to the software. Responses are

analyzed dand averaged to yield a maintatnability rating.

Appraising software by this technique provides several advantages. This
evaluation method can be used on any type of softwar~, regardiess of the
implementation language. Weaknesses and strengths can be highlighted at any
level, between subsystems within the -oftware, or in comparison among systems.
As both source code and documentatjon are constdered, any discrepancies
between how the specification says the software is constructed and how it is
actually implemented can be discovered. AFOTEC's analysis of historical data
suggests that their evaluation results correlate well with how difficult the
software was to maintain. This implies that the current process does measure
software maintainability.

This evaluation methoc¢ has the disadvantage of being labor intensive. It
requires that evaluators perform time-consuming activities such as counting the
numbers of operands and operators in the source cocde. This means that it is
expensive to assess software using this method. Because this evaluation is
done manually, typically only about ten percent of the source code in large
programs is examined. If this process were automated, all of the code could be
measured, and the procedures that are shown to be more complex could later be
evaluated in more detall using AFOTEC's current guldelines. The methodology
used does not cunsider the overall software deslgn, which Is another drawback.
Instead of judging design lssues such as the connections between modules and
how well the software has been modularized, the evaluation method looks at
each module as a separate entity. If metrics that measure design complexity
are used, the complexity of the inter—-module data passing and the program
calling structure can be considered. To ellminate these problems, additional
sostware metrics should be used by AFOTEC to grade software, and they should

be automated to reduce the ewvaluators' workload.

Summary of the AFOTEC Software Maintainability Guidelines

The following definitions describe what AFOTEC's guidelines are trying to
measure. Then the criteria that used to measure maintainability are detailed.
ANSI/IEEE Standard 729 (Schneidewind, 1987:303) states:

Maintenance: Modification of a software product after
delivery to correct faults, to improve performance or other
attributes, or to adapt the product to a changed environment.

Maintainability: The ease with which a software system can
be corrected when errors or deficiencies c¢ccur, and can be expanded
or contracted to satisfy new requirements.

The AFOTEC pamphlet 800-2, Vol. 3 (referred to as the Vol. 3 from now
on), "Software Maintainability - Evaluation Guide", standardized questionnaire
assesses maintainability with respect to software source code and documentation.
Quoting from the Vol. 3 itself, "These questionnaires [the Vol. 3] are designed to
determine the presence or absence of certain desirable attributes in a given
software product" (AFOTEC, 1988:1). These desirable attributes are the seven
characteristics:

Modularity : "Software possesses the characteristic of modularity to the
extent a logical partitioning of software Into parts, components, and/or modules
has occurred" (AFOTEC, 1988:5). The documentation is evaluated to determine If
It is partitioned into separate parts or volumes that each has a distinct
purpose Similarly, source code Is evaluated to determine the level of use of
structured programming techniques.

Descriptiveness © "Software possesses the characteristic of descriptiveness
to the extent that It contalns information regarding its objectlves, assumptions,
inputs, processing, outputs, components, revision status, ete” (AFOTEC, 1988:5).
Thys characteristic s used to measure how well described the software's design
and operation 6. Self-descriptive source language constructs and accompanylng

comments can facilitate efforts to understand program operation

Consistency : "Software possesses the characteristic of consistency to the

extent the scftware products correlate and contain uniform notation, terminology,
and symbology" (AFOTEC, 1988:5). This characteristic is used t¢ measure how
well the software designers followed standards in creating documentation and
how well coding conventions were followed. The use of a naming convention for
global data and a standard indentation convention fall under this characteristic.

Simplicity : "Software possesses the characteristic of simplicity to the
extent that it reflects the use of singular concepts and fundamental structures
in organization, langvage, and implementation techniques" (AFOTEC, 1988:6).
Simplicity is the overall guideline that size and control flow are measured
against.

Expandability : "Software possesses the characteristic of expandability to
the extent that a2 physical change to informatinn, computational functions, data
storage or exXecution time can be easily accomplished once the nature of what is
to be changed is understood" (AFOTEC, 1988:6). Measuring expandability shows
how much room for growth has been designed into a program in relation to its
storage space, timing requirements, etc.

Testability : "Software possesses the characteristic of testability to the
extent it contains aids which enhance testing” (AFOTEC, 1988:6). It is
Important that the software be instrumented for testing after modification, so
that correct program execution can be verified and validated.

Traceability . "Software possesses the characteristic of traceabillty to the
extent that information regarding all program elements, and their
implementation, can be traced between all levels of lesser and greater detall”

(AFOTEC, 1988:7;. This characteristic measures how easily a malntalner can

trace the operation of & module to its documentation and can follow functions in
the documentation to the modules that perform the functions.

These characteristics forin the criteria for analysis of what makes
software more maintainable. While these characteristics are not the only ones
that can be measured to assess software maintainability {(others inciude
reliability, modifiability, etc.), they appear to be a representative sample of
software quality characteristics (Boehri and others, 1980:229-231 and Peercy,

1981:343-344).

Problem

The AFOTEC evaluation guidelines are labor intensive and expensive to
implement. These guidelines dc not evaluate the overall software design. While
the evaluation of different types of systems may require a different emphasis,
no procedures exist to weigh the seven characteristics. Also, only a fraction of

the delivered code is fully assessed.

Approach

Specific additional software maintainability metrics will be identified for
incorporation into the Vol. 3. These metrics will measure aspects of
muintainability that are presently not adequately covered. They will be
automatable so that more labor will not be added to the evaluators' workload.
Algorithms to develop a program to measure these metrics will be developed,

although the actual measurement tool will not be built.

Assumptions

Two assumptions were made about the researched software metrics. First,
the metrics must enhance the measurement of software maintainability. There

are many different types of scftware metrics. Some measure other factors than

those related to maintainability. Second, the metrics must fit into the scope of
the deslirable attributes being measured. These desirable atiributes were
described in a previous section.
Scope

From the constraints explained in the previous section, the software
metrics that will be suggested to AFOTEC will be limited to metrics that.

Y. Will fit into the Vol. 3 process

2. Can be automated.

3. AFOTEC can be convinced to use and acquire a tool to automate the
calculation of these metrics.

A plan to validate these new metrics will be proposed. Algorithms to

show how these metrics should measure source code will te developed.

Sequence of Presentation

Chapter Two presents a review of classic and newer software metrics.
Chapter Three discusses criteria to determmine which metrics measure
maintalnability. Chapter Four describes in detail which metrics will be
suggested to AFOTEC and how these metrics should be Incorporated within the
existing guidelines of the Vol. 3, along with a method to vaiildate the metrics'
use. Chapter Five includes my conclusions and recommendations for further

research.

II. Literature Feview

Introduction

Research to date has not found metrics that specifically measure program
maintainability; most metrics measure program complexity. Complexity can be
defined as "a characteristic of the software interface which influences the
resources another system will expend or commit while interacting with the
software” (Conte and others, 1986:17). According to Harrison, "maintenance is
most affected by program complexity” (Harrison and others, 1982:65). As
program complexity greatly contributes to maintainability, I will use these
complexity metrics to measure maintainability.

This chapter presents a review of classic and newer scoftware metrics.
Classic metrics are plon=2ering work such as as Lines of Code, Halstead's
Software Science, and McCabe's cycliomatic complexity which have been
extensively examined in the literature (Co6té and others, 1988:121). The metrics
are presented in three sections, as size metrics, as data and control structure
metrics, and as composite or .ybrid metrics. This list of metrics is not intended

to be inclusive, but to show what factors of program complexity are measured

and the metrics that attempt to measure these factors.

Size Metrics

Size metrics measure program size and reflect that the volume of
information to be studied to understand the program concributes to its
compiexity (Harrison and others, 1982:66). Because the effort needed to develop
a4 program largely depends on the amount of code written, size measures have
been used to assess the amount of effort required. The prograim size is

important for three reasons (Conte and others, 1986:32}):

1. It is easy to compute after the program is completed.

2. It is the most Important factor for many models of
software development.

3. It is the basis of most productivity measures.

Lines of Code. The earliest and most familiar software size measure is

the number of lines of source code (lLevitin, 1986:314). This measure is labeled
S and Is measured in lines of code (LOC) or thousands of lines of code (KLOC)
While this may seem to be a very simple and easily—calculated metric, much
debate has centered around how LOC should be counted.

While this measure is natural for some languages such as various assembly
languages and FORTRAN which have very close to a one-to—one correspondence
between the number of statements and the lines of a program, newer languages
that allow a more free format cannot be counted quite so easily. For example,
Figure 1 shows two code fragments which are functionally equivalent, but have

apparently different counts for LOC.

1 while V > 0 do while V <> 0 do begin

2 begin T:=Unod V; U 5= V; V := T
3 T := U mod V; end;

4 U :=V; GCD := 1J;

5 V :=T;

6 end;

7 GCD := U;

Figure L. Differing Statement Counts for the Same Function
(Levitin, 1986:315)

These examples have LOC counts of seven and four. As they are
semantically the same program, the LOC count must be measuring the size of the

program's representaticn, instead of the actual asize of the program (Levitin,

1986:315). Another problem with the LOC count ls that it is possible to pad
the program with blank lines and comments to give artificially high LOC counts.

Many languages require descriptive non-cxecutable statements, such as
COBOL's ENVIRONMENT dlivision or Pascal's Var section (Conte and others,
1986:35). Some researchers have suggested that since these are not executable
statements they should not be counted in the LOC. Others have said that since
understanding a program's data is critical to understanding the operation of the
program, the variable declarations and program headers should be included in
the LOC count. A simple solution to this problem is to have a consistent
counting scheme and always use it to count LOCC. An example of a counting
strategy comes from Conte: "A line of code Is any line of program text that is
not a comment or blank line, regardless of the number of statements or
fragments of statements on the iine. This specifically includes all lines
containing program headers, declarations, and executable and non-executable
statements” (Conte and others, 1986:35).

LOC is not a context sensitive software metric. As an example, twenty
tnes of conditional statements that control manipulating dynamic memory
constructs will be inherently more complex than twenty lines of simple variable
assignment statements. But with the LOC measure, each program will have the
same count.

Halstead's Software Science (N). Dr. Maurice Halstead developed a

measure of program slze within hls Software Science software metrics. This
metriz measures the number of operators and operands in & program (Levitin,
1986:216). Operators include arithmetic and logic symbols, functions, and
delimiters such as + and -. Operands include variazbles, constants, and labels,

and any other symbol that represents data.

From two basic quantities Halstead's program length metric, N, is

calculated {Conte and others, 1986:37)

N = N1 + N2 (1)
where

N1 = the total number of operators

N2 = the total number of operands

As with LOC, there Is some difficulty determining what should be counted
as an operator and what should be counted as an operand. In some languages,
suich as LISP, the difference between operators and operands is not clear. In a
procedural language like Pascal or Ada, a functlon that is embedded in another
function, such as "WRITE(C0S(25))", can be considered both an operater and an
operand. The COS[INE] function is an operator because it operates on the data
that is input, but it is an operand also because its resulting value is used as
data for the WRITE function.

Halstead originally stated in his counting rules that input/output
statements and program declarations should not be counted. Also, the statement
labels used as branching addresses for GOTO sta‘ements were not considered
operands, but as an integral part of the GOTO's that branched to the label.
Currently, research suggests Software Science counting rules should inciude
counting the symbols in the declaration and input/output statements, as well as
counting each d4istinct label as another operand (Shen and others, 1983:1£7)

Figure 2 shows Ramamurthy and Melton's example of counting operands
and operators (Ramamurthy and Melton, 1986:309). The guideline of counting
operators within the declaration statement is not followed in this example. The
eleven operators are "BEGIN END", "readin", "()", ",", "', "=, "4n", v e

"writeln”, and ".". These operators are used 23 times. The flve operands are

10

PROGRAMI1 (input, output);

VAR
a,b,¢c,d,m : integer;
BEGIN

2 avove
PI- ¢80 o3 e e
(L LI

*y

Figure 2. Halstead's N Example
(Ramamurthy and Melton, 1985:309)

listed after the VAR statement. These operands are used 18 times. This gives
values of 23 for N1, 18 for N2, and 41 for N.

While Halstead's overall theory of Software Science has been criticized as
having no valid theoretical basis (Hamer and Frewin, 1982:198), the N measure
has not been faulted as some other metrics have been. Shen states "there is a
large amount of empirical evidence to suggest [N's] validity, although it appears
te work best in the range of N between 2000 and 4000 for programs written in
Fortran, Cobol, and PL/S" (Shen and others, 1983:163). But like LOC, this
measure is not context sensitive in that it does not welght some operators as

being inherently more complex than other operators.

Structure Metrics

This category Investigates the system design structure, and constitutes
the data relationships among system components and the control flow within
system components. Some structure metrics have an advantage over size metrics

because they can be applied early In the system lifecycle since they are based

11

on higher-level design features, not the actual source code (Kafura and
Canning, 1985:379). Some control structure metrics can evaluate the complexity
of a program's structure using its Program Design Language (PDL), which is
available before the source code. Some data structure metrics can evaluate a
program's complexity if the program's data flows are known before coding.

Data Structure Metrics. One factor that effects the complexity of a

program is the amount of data the program uses, how it is used, and its
configuration within the program.

Span. Span ls a measure of the "number of statements between two
successive references to the same variable" (Conte and others, 1986:56). A
large span Increases the difficulty of determining the value of the wvariable at
any point. A iarge span could require a maintenance programmer to search
through many lines of source rode to understand a variable's usage (Harrison
and others, 1982:67).

According to Harrison (Harrison and others, 1982:67), span is not
supported by empirical evidence that it represents the complexity, and,
therefore, maintainability of a program. But he does state ihat span lis
Intuitively appealing, because a variable with a large span is inherently
difficult to keep track of. Figure 3 shows Harrison's erample of span between

data references.

Information Flow. Previous metrics measure complexity within a

single module. Because many programs contain more than one module, some way
to measure the connections among modules Is needed. information flow is a
method to measure the sharing of data among modules. The information flow
metric captures properties of module connections that are more detailed than
Just "calling” relations. Information flow measures the amount of data that

flows into & module and is modified by the module.

12

X-SPAN Y-~-SPAN
X :=Y; —— [
Z:=Y; —_—t
X :=Y; — S T

Figure 3. Span Example
{Harrison and others, 1982:66)

Harrison and Coock describe information flow as a "macrolevel” metric
(Harrison and Cook, 1987:215). A macrolevel metric determines the
interrelationships of the subprograms to each other in order to understand the
behavior of the overall system. These metrics "concentrate on the
communication links betweenr subprograms—-the more links, the more complex the
macrolevel understanding" (Harrison and Cook, 1987:215). A potential problem
with each link is that it may introduce "side effects" into other system
subprograms (Harrison and Cook, 1987:215).

The information flow complexity value for a module is determined by two
factors: the complexity of the mecdule's code and the complexity of the
connections to its environment (Henry and Kafura, 1981:513). The complexity of
the connecticns is evaluated by the module's fan-in and fan-out. The fan-in
l1s the number of iocal (parameter) data flows into the module and the number of

global data structures that the module gets information from. The fan-out is

13

the number of data flows from the module and the number of global data
structures that the module modifies.

It is interesting to note that while the complexity of the module's code is
mentioned as a factor within information flow, It is dlsregarded in later
calculations. Henry and Kafura state that "code length is only a weak factor in
the complexity measure...this factor may be omitted without significant loss of
accuracy” (Henry and Kafura, 1981:514). But other empirical validations of this
metric (Kafura and Canning, and Harrison and Cook) use length 8s a facter in
the information flow calculations. Kafura and Canning refer to the use of
length (LOC) with infcrmation flow as "weighted information flow"” and consider
it a hybrid (Kafura and Canning, 1885: 380).

Henry and Kafura evaluated different formulas to czlculate the complexity

of the modules in the Unix kernel. The formulas included:

{length ** 2) (2)
(fan-in * fan-out) (3)
(fan-in * fan-out) ** 2 (4)
{length) * (fan-in * fan-out) ** 2 (5)

where !ength is the number of lines of text in a procedure, including embedded
comments but not including the comments in the procedure's "header block"
{Henry and Kafura, 1981:513).

They found "the connections of a procedure to {ts environment, nainely
(fan-in * fan-out) *'* 2, Is an extremely good indicator of complexity" (Henry
and Kafura, 1981:516). Figure 4 shows an example information flow count using
this formula. This Is a correlatlon to the number of changes made to each
module. They state that studics have shown a high correlation between program
changes and error occurrences, which relates to maintainabllity (Henry and

Kafura, 1981:515). Kafura also uses information flow tc detect outllers in the

14

number of errors and amount of coding time required for large NASA Fortran
projects, as further validation of the metric (Kafura and Canning, 1985:382).
Outlliers are those components that are more than one standard deviation above
the mean for coding time required or in the number of errors they contain.
Harrison states that his data "suggests that the metrics (information flow] work

quite well in identifying 'extraordinary cases'" (Harrison and Cook, 1987:218).

procedure EXAMPLEL (Inputl : integer:;
Input2 : integer;

var Outputl : integer;

var Output2 : integer);:

tegin
Qutput2 := 10;
Globall := Inputl;
Outputl := Inputl + Input2 + Global2;
Global2 := Outputl * OQutput2;
end;

Figure 4. Information Flow Example

Figure 4 shows an example of source code in a Pascal-like language. The
procedure EXAMPLE] has two loca)l data flows and one global data flow into the
procedure, for a total fan-in of three. This procedure has two local data flows
and two global data flows out of the procedure, for a total fan-out of four.
Note that the global variable Global2 Is used as both an input and an output

flow of information. The Information flow complexity for this module = (3 * 4)

** 2, which is 144.

15

Coupling is "the degree of interdependence between two modules" (Page-
Jones, 1980:101). Minimal coupling reflects that each module is as independent
as possible from other modules. This indicates that a system has Dbeen
partitioned appropriately (Page-Jones, 1980:101). The information flow metric
can indicate the degree of coupling between procedures via the fan-in and fan-
out terms. According to Henry and Kafura, this can reveal the existence of
three types of problems for a procedure (Henry and Kafura, 1981:514). High
fan-in or fan-out suggests that a procedure may perform more than one
function, which is contrary to structured decomposition rules (Page-Jones,
198C:119). Related to this point is that information flow measurements may
indicate a procedure that was inadequately refined and needs to be divided into
two or more separate procedures. A procedure having high complexity may be a
"stress point"” that has a large amount of information traffic. Because of the
large number of potential effects on the entire system, the procedure may be

difficult to modify.

Henry and Kafura state that one of the benefits of information flow is
that the data necessary to compute the metric Is available during the design
phase of software development (Henry and Kafura, 1981:511). This is a
significant advantage over many of the metrics explained here, which cannot be
measured until the scurce code has been dellvered. Information flow is not
related to the source language used, which means that 1t ls widely applicable.

Structure Metrics. These metrics measure how easlly

control
understandable the control structures are in a program. These metrics measure
the number of control transfers within a program, or how the control transfers

are interrelated.
McCabe's Cyclomatic Complexity. Another classic metric s McCabe's

cyclomatic complexity measure. Kearney notes that “"McCabe consliders the

16

program as a directed graph in which the edges are lines of control flow and
the nodes are straight line segments of code. The cyclomatic number represents
the number of linearly independent execution paths through the program"
(Kearney, 1986:1045). The metric measures the number of basic paths through a
program using graph theory to represent the paths instead of actually counting
them, which may be impractical (McCabe, 1983:3).

To calculate a module's cyclomatic complexity, a directed graph "G" is
generated, reflecting the control structure of the moduie. A node corresponds to
a block of sequential code. An edge corresponds to a control transfer between
nodes. The number of connected components is the number of distinct
procedures, which is typically 1. The formula for calculating the cyclomatic

complexity of a weakly connected flow graph is given in (McCabe, 1983:4) as:

v(G) = e - n + 2p (6)
where

e = the number of edges

n = the number of nodes

p = the number of connected components

and v(G) 18 equal to the number of basic paths in the measured program.
Figure 5 presernis an example of code from Ramamurthy and Figure 6 shows its
directed graph representation.

Construction of a directed graph can be time-consuming. Fortunately,
Harlan D. Mills proved that the cyclomatic complexity of a structured program lis
one more than the number of decisions (McCabe, 1983:9). This means that v(G)
can "be readily calculated by simply inspecting the program”" (Myers, 1977:62)
and automated program scanners have been bullt to calculate the complexity of

programs.

17

From Figure 6 the number of nodes is n = 1i. The number of edges
connecting these nodes is e = 13, with an extra arc from the exit node to the

entry node added to create i strongly connected graph. This extra arc adds

one to the cyclomatic number, so the number c¢f connected components p is used
instead of 2p. The number ¢ connecici components is p = 1. Therefore, v(G)
= 13 - 11 + 1 = 3, Note that this number can be easily calculated by

inspecting the program. Adding one to the number of decisions (IF statements)

equals 3.

PROGRAM2 (input, output);

VAR
a,b,c,d,m : integer;
BEGIN
readln(a,b,c,d);
IF a > b then
IF b > ¢ then

ELSE
m:=b+ ¢
ELSE
m:=c+d+ a;
writeln(m)
END.

Figure 5. Example Program
(Ramawurthy and Melton, 1986:309)

Empirical evidence supports the cyclomatic number as a complexity
measure. Curtls stated that cyclomatic complexity is "related to the difficuity
programmers experience in locating errors in code" (Curtis and others, 1980:307).
Henry sald the cyclomatic complexity metric is a "useful Indicator of the

occurrence of errors" {Henry and others, 1983:130)

18

Type of nesting:
IF THEN ELSE within DO
WHILE L2, C=3

Figure 6. Example Directed Graph Representation of Figure 5
(Ramamurthy and Melton, 1986:310)

Shepperd, to the contrary, states that the high correlations obtained
between cyclomatic compliexity and errors is invalld because "the fundamental
problem remains that without &an explicit underlying model the empirical
'validation' is meaningless and there is no hypothesis to be refuted" (Shepperd,
1988:35). He points out that researchers have also tried to measure inter-—
module complexity with cyclomatic complexity, and that cyclomatic complexity
can only measure intra-module complexity. MrCabe suggests to messure the
compiexity of a program, the cyclomatic complexity of each module should be
added to the number of modules, and an overalli complexity score will be given.
This does not take into account that an astute partitioning of a »program into
mcdules makes each smaller module's control flow easier to understand. Also,

the data flow among mcdules is ignored completely.

19

A weakness of cyclomatic complexity is that it cannot measure the
complexity of software that is due to size (Ramamurthy and Melton, 1986:310).
A 10000-line program with only £ decision points is intuitively complex, but its
cyclomatic complexity is not high enough to attract attention, as McCabe states
that 10 is & "reasonable" upper !imit for cyclomatic complexity (McCabe, 1983:9).
This example is somewhat far-fetched, but it illustrates the problerm. Because
cyclomatic complexity looks at a graphic representation of the program, and not
the program fitself, cyclomatic complexity will not be able to reveal a more
structured version of the program because the same number of conditional
statements will exist in each version (Woodward and others, 1983:103).

A problem that many researchers have had with cyclomatic complexity 1is
that it does not take the nesting levels of branch statements into account
(Myers, 1977:62). According to Harrison, "predicates with compound conditions
are more complex than predicates with a single condition" (Harriscn and others,
1982:70). Myers suggests calculating complexity as a range, with the lower
bound as the number of deciszion statements plus one, and the upper bound as
the number of individual conditions plus one (Myers, 1977:63). This modification
of cyclomatic complexity apparently allows a finer distinction hetween programa
with nes‘uedl conditional statements, but no experiments have been published
supporting this viewpolnt.

Knet Count. Knot count was derived from two simple measures of

complexity. In 1968, the Communications of the ACM published the now famous

letter by Dr. Edsger W. Dijkstra entitled "Goto Statemen: Considered Harmful.”
In this letter, Dijkstra stated that the "quality of programmers {8 a decreasing
function of the density of GOTO statements” (Woodward and others, 1983:101)
This letter suggested that the number of GOTU statements in & program is 4

simpie measure of unstruciuredness. Discussing the theoretical basis of the

20

knot count metric, Woocdward points out that in the becok Software Metrics Cllb

states that "loglcal complexity is a measure of the degree of decision making
within a8 system and that the number of IF statements is a rough measure of
this complexity" (Woodward and others, 1983:101).

Knot count measures the "relations between the physical locations of
control transfers rather than slieply their numbers" (Harrison and others,
1982:71). Knot count is a measure of program “"unstructuredness"”, as it looks at
the number of GOTO statementis to count the number of crossing controel
transfers. These contrcl transfer crossings are knots, and the greater the
number of knots, the more complex the program is. Kncts represent the
"unstructuredness" of the source code text, but does not represent the program's
underlying control flow (Howatt, 1988).

Woodward defines a knot as:

If a jump from line a te line b is represented by the
ordered palr of integers (a,b), then jump (p,q) gives rise to a "knot"

or crossing point with respect to jump (a,b) if either

1) min(a,b) < min(p,q) < max(a,bh)
and max(p,q) > max(a,b)
o 2) min(a,b) < max(p,q) < max(a,b)
and min{(p,q) < min(a,b) [Woodward and others 1983:102]

An example trom Woodward with nlne knots is illustrated in Figure 7. An
advantage that the knot count has over cyclomatic complexity is that a program
that 1is wunstructured and has a high knot count can be rewritten in a more
structured fashion and have fewer knots. This is because the number of Kknots
in a program depends on the order of the statements (Woodward and others,
1983:103). Harrlson 8ays the knot count is an interesting metri¢c, but no

research has spplied [t to the maintenance of preograms (Harrison and others,

1982:71).

CALL TPR
IF (ZR) 500, 500, 100
L 100 cALL TED
»150 IF (Z3) 200 200 550
L)200 26 = 26 + 1
2C = 0
CALL TCO
»360 CALL TRA
GOTO 2600
»500 CONTINUE
23 = 1
GOTO 150
550 CONTINUE
CALL TEC
ZB = ZB + 1
2C = 2C + 1
GOTO 300
52000 RETURN
END

§ = RNOT

Figure 7. Knot Examnple
(Woodward and others, 1983:104)

MEBOW (MEasure Based On Weights). MEBOW was developed as a

contro! flow metric that measures complexity as well as the three metrics
eyclomatic complexity, knot count, and Harrison's SCOPE ratio, but does not have
thzir deficiencies (Jayaprakash and others, 1987:238). MEBOW is & modification
of the cyclomatic complexity with the knot count added, and with different
weights for control structures.

The developers of MEBOW state that the program complexity 1is best
measured by coairol fiow metrics, but that factors other than control flow
metrics raust also be considered (Jayaprakash and others, 1987:238). This is
why they rcount knots and welgh different types of branch statements

differently. Following Woodward's argument that Kknots create unstructured

22

programs, they state “"the identification of knots helps in assigning higher
control flow complexity to programs containing unstructured forms" (Jayaprakash
and cthers, 1987:240).

MEBOW weighs a backward branch or knot higher than a forward branch or
knot under the principle that while a backward branch may not necessarily lead
to a loop, it does make a top—down reading of a program more difficult, and
therefore more complex. Explicit branch statements such as a GOTO also have a
higher weight than an implicit branch that is associated with a structured
programming construct such as a FOR loop.

To determine the MEBOW value for a mocdule, the sum of the weights of all
branches and knots is calculated. Branches and knots are the only two basic
programming elements that are assigned weights in MEBOW. This process is
extended in the same manner as cyclomatic complexity is across modules, as the
MEBOW value for more than one procedure within a program is the sum of each
procedure's MEBOW value (Jayaprakash and others, 1987:241).

As with the knot count, there is no research that shows MEBOW
effectively measures the maintainability of programs. Also, MEBOW's authors
state that it can be used to measure inter-procedure complexity, but it ignores

the data flow between procedures.

Composite (Hybrid) Metrics

A composite or hybrid metric is one that does not just measure a single
factor to determine the complexity of software. As suggested by Kafura, Conte,
and Hansen, different types of metrics measure significantly different aspects of
software. For example, size metrics alone cannot reflect which of two 1000-line
procedures is more complex. Control structure metrics cannct differentiate

between one program that uses a global pointer structure and another program

23

that performs the same function that operates on an array passed as a

parameter through a well-defined interface.

Since most metrics capture only one factor of complexity, it makes sense
to use different metrics and to combine the results into a vector. Harrison, and
LI and Cheung, all assert in different articles that using a hybrid metric to
measure complexity is "the most sensible approach. Software complexity |is
caused by so many different factors that measuring only one of them cannot
help but give unreliable results for a general case" (Harrison and others,
1982:78; LI and Cheung, 1987:708).

As empirical evidence that this type of composite metric does work,
Kafura used a combination of the LOC and information flow metrics to determine
procedures that had higher error and coding time rates in three 1large NASA
Fortran projects. The composite metric determined the error and coding time
outliers more often than any other code or structure metric he tested.

Two other composite metrics that have some data supporting their use are
Ramamurthy and Melton's synthesis of Software Science metrics and the
cyclomatic number, and Li and Cheung's NEW_1. The Software Science and
cyclomatic complexity metric weighs the operator and operand count by the
nesting level, s0 that an operator in a purely sequential program s not
counted, while the same cperator nested three levels deep would count as three
operators. Ramamurthy and Melton have evidence that welighted length and
effort deitect differences in complexity between programs better than non-
welghted length and effort do (Ramamurthy and Melton, 1986:312). NEW_1 Is a
composite of SCOPE, which Is a control graph metric, and the Software Science

effort metric. This netric is a combination of a graph metric with a size metric

24

in an attempt to recelve the benefits of both types of metric (LI and Cheung,
1967:702).

When using two or more metrics, some difficulties interpreting data may
arise. As an example, a and b are metrics. If with two procedures 1 and 2, al
> a2 and bl > b2, then procedure 1 is apparently more complex than procedure
2. But if the metrics are used to measure the same two procedures and resuits
of ai > a2 but bl < b2 occur, it is not clear which procedure is more complex.
According to Conte (Conte and others, 1986:80), this problem is why more
researchers do not use composite metrics.

Halstead's Software Science (E). Another Software Science metric is Effort

"E", which is used to measure the number of "eiementary mental discriminations”
(Shen and others, 1983:156) that & programmer will have to make to produce the
desired program. This is termed & hybrid because it caiculated based on
estimations of the number of "mental comparisons” needed to write a program of
a certain length, and an estimation of the "program level", which represents a
program written with minimum size (Conte and others, 1986:83). E can be

approximated by (Conte &nd others, 1986:84):

E=(nl * N2 *N * leg2 n) / (2 * n2) (7)
where

nl = the number of unique operators

n2 = the number of unique operands

n=nl+n2 (8;

N = N1 + N2 (1)

Using the example source code from Figure 2, the number of unique
operators I8 ni = 11. The number of unique operands is n2 = 6. N1 was 23,

and N2 was 18. From these values, the estimated value of Effort is E = 3247,

25

The E metric was originally used to relate the actual time a programmer
would take to implement a program. ‘This was questioned by other researchers
when they realized that this suggests an arbitrary limit on the mental capacity
of all programmers (Shen and others, 1983:156). While there is little evidence
supporting the claim that E can predict the time to implement a program, there
is empirical evidence that this metric correctiy estimates maintenance effort and
the number of errors in modules (Shen and others, 1983:162 and Henry and
others, 1983:130). Discussing studies conducted at Purdue and at General
Electric, Shen claims "these two studies tentatively support the conclusion that
a program with a lower E measure is easlier to comprebend that an equivalent
program with a higher E value" {Shen and others, 1983:162).

Hansen's Pair (Cyclomatic Number, Operator Count). Shortly after Myers

suggested his extension to the cyclomatic complexity metric, Hansen came up
with a different way to modify cyclomatic complexity to get be*ter data. He
wrote that while Myers was correct about the differences in complexity between
multiple conditions in the same branch statement and a branch statement with
only one condition, he stated that the difference was not relevant because no
matter how many conditions the branch has, it is going to one location or the
other (Hansen, 1978:30).

Hansen decided to not extend cyciomatic complexity, but to use a size
metric also. After experimenting, he decided that the unique operator count was
the best in combirnation with cyclomatic complexity (Hansen, 1978:33). He did

not include any empirical evidence that he had validaied the method, though.

Ovliedo's model of program complexity. Oviedo developed a composite
metric that measures both control flow complexity and data flow complexity, and
reports total program complexity as the sum of the two. Control flow "cf"

complexity Is calculated as the number of edges in & control flow graph (Oviedo,

26

1980:148). Data flow "df" complexity will be explained in a following paragraph.
The program complexity (C) is csglculated as (Harrison and others, 1982:76):

C = acf + pdf (9)
where a and B are weighting factors, which are set to one (Oviedo, 1980:151).

To understand "df", two terms must be defined. A variable is "locally
available" for a block if the variable has been defined within the block. A
variable 1is "locally exposed" if it is referenced in a block but it has not been
defined yet in the block. The "df" of a node or block Nj is defined as "the
number of prior definitions of focally exposed variables in Nl that can reach Ni"
(Harrison and others, 1982:76). Figure 8 from Harrison shows code that will e
used for an example "df" calculation, along with its program flow graph
(Harrison and others, 1982:76).

The "df" of No is always 0, because no prior definitions can reach this
block. The 1{wo nodes N; and N, each have "df" of 0, because they are
assignment statements that use constants, and no variables are locally exposed.
The node Ng has three locally exposed variables, x, J, ard k. Each of these
exposed variables has been defined twice before node N3, so node Nq has a "df"
ol 6. Adding the cumulative "df" of all nodes gives an overall "df" of six, as
dfO = df; = df, = 0. As the control flow graph has four edges, "cf" s four.
The overall program complexity "C" = 10.

The Oviedo program complexity has the same limitations as other control
flow graph metrics. The size complexity of any node will not be measured, and
establishing a weighting factor for a will be difficult (Harrison and others,
1982:78). No empirical evidence has been reported to show how well this

combinatlion of control structure and data structure metrics work together.

21

READ n, x, k
Node 0 — If n = 1 then
x =1
Node 1 j o= 2
R =5
ELSE
k:=1
Node 2 j =3
L. ENDIF

Node 3 - d :=x+ 3+ Kk

nQ

of
\

()
n3

Figure 8. Program Complexii{y Example
(Harrison and others, 1982:76)

Summary

This chapter has presented examples of size, structure, and composite
metrics. The metrics shown are representative of the three different types of
metric.

The slze metrics are easy to calculate from source c¢ode, but measure
complexity by considering that what constructs the programs are developed from

are irrelevant, only the number of these constructe {8 important. These metrics

28

cannot be wused until far into the software development cycle, as they need
actual source code. This means that they are not good as design tools, but
they can show which procedures will have the greatest number of changes and
errors during software test and maintenance.

Some data structure metrics can be used earlier in the design cycle, which
can give early feedback to the quality of the software. The structure metrics
are better able tc test the structure of algorithms and data structures, which
are the basic framework of all programs, as Niklaus Wirth suggests by the title

of his classic book Algorithms + Data Structures = Programs.

Composite metrics are apparently not in common use. But a careful
selection of different types of metrics that can complement each others'
weaknesses can glve a software engineer an insight into the program structure

and possible problem areas that no single metric can.

29

II1. Metric Selection Criteria

Introduction

This chapter describes a set of guiding properties that were used to
evaluate software complexity metrics. These properties are presented as
guidelines to determine how well individual metrics measure complexity, and
therefore measure maintainability. Two benefits are derived from comparing the
metrics to these criteria: the metrics that more completely measure complexity
are identifted, and the characteristics each metric best reflects are indicated.

The utility of the first benefit is obvious, but the need for the second
requires explanation. If no single metric meets all criteria, metrics that
complement each other can be used instead. Using these criteria to screen the
metrics shows how each metric can best be applied. As Kearney says, "the
properties of a metric determine the ways in which it can be used" (Kearney
and others, 1986:1046). If, for example, a single metric that measures ccntrel
flow compliexity does net measure data flow complexity, it can be combined with
another metric that meets the data flow complexity criteria and more complete
coverage will result.

After the presentation of these criteria, a comparison shows which metrics
meet each criterion. The metrics that best fit all of the criteria are discussed.
Following that section, a summary of the selection guldelines and the metrics is

presented.

Criteria for the Selection of a Maintainability Metric
These criteria are basic guldelines to determine how well a metric
measures complexity. These guldelines are loosely arranged into three overall

groups. The first five criteria are generic and could be used to evaluate other

30

types of metrics, such as productivity metrics. They do not determine how well
a metric refiects complexity; they verify that the metric is generally applicable
across different software. Three criteria are presented to rate how well metrics
measure a program's control flow complexity. The last four criteria indicate a
metric's measurement of a mndule's data flow complexity.

These guidelines are not equally important in the measuring of a
complexity metric. For example, the two criteria "Ranking Basic Control
Structures” and "Nesting and Compound Conditions" are both contained in the
criterion "Accurately Reflect Control Flow". They are explicitly enumerated
because each criterion is Important, but neither is as weighty a consideration as
overall control flow.

Although the criteria are not equaliy important, a definitive weighting of
the criteria's relative importance is not given, except for the implied
subordination within the control flow and data flow complexity sectlions.
Research to date does not suggest any obvious ranking of criteria. Therefore,
the criteria are arbitrarily being considered equally. With this constraint, any
metric that satisfies more criteria than another will be judged to better measure
complexity.

Clear and Unambiguous. This criteria determines how easily the metric

can be evaluated and how easlily the result of the evaluation can be vompared
to results of other evaluations. As Conte expresses, "does the metric lcad to a
simple result that is easily interpreted” (Conte and others, 1986:22)? The
metric should be clear and unambiguous so it can be calculated from just the
source code (Levitin, 1986:314).

Lines of code (LOC) is an example of a metric that is not clear and

unambiguous. While it may appear to be very easy to count, many researchers

31

have different counting strategies. This can lead to different LOC values from

the same source code.

Halstead's N metric is another metric that appears to be simple to
calculate, but presents some difficulty in its calculation. Determination of
which tokens should be counted as operators and which tokens should be
counted as operands is not always clear. Even after a counting strategy has
been defined and adhered to, some function calls defy analysis because they act
as both operators and operands.

Intuitive. A metric should be intuitively appealing. it should correspond
to a user's innate perception of a program's cor.plexity. The complexity value
determined for a less compiex module should be less ithar that of an obviously
more complex module. It must always te positive and additive (Levitin,
1986:314; Jayaprakash and others, 1987:241).

For example, If two distinct pleces of code are combtined, the complexity
value for the joined code should be greater thzn the complexity value for either
plece. An optimum solution occurs when the complexity wvalue for the joined
code equals the sum of the complexity values for the sepuarate pleces.

Language Independent. A meiric that is based on a single language is not

generally applicable. A metric should be as universally appliczble as possible
so that it can be used to evaluate software written in any programming
language (Jayaprakash and others, 1987:241),

A metric that estlmates complexity based on the number of GOTO
statements in a poogram may be a veluable quality measurement tool when used
with the FORTRAN language. This metric would be worthless when used with
the Prolog language, as Prolog does not have any GOTO statements. This metric
would alsc be of limited utility - measuring the complexity of modules written

in Pascal or Ada. While botn of these languages allcw a wOTO statement, suc

32

use is heavily discouraged. Therefore, the lik¢lihood of determining a
reasonable value for a Pascal module's complexity using this metric is negligible.

The FORTRAN language allows only a single statement to be placed on a
line. This simplifies the calculation of LCC. Other langvages such as JOVIAL,
Pascal, and C have special characters that delimit the end of a statement. With
these languages, several statements can be placed on one line. This can
complicate calculaticn of LOC for modules written in these languages. For this
reason, LOC is not a language independent metric.

Prescriptive. A complexity metric should not only measure the software's
complexity, it should also reveal how the software should be modified to
minimize complexity (Kearney and others, 1986:1047). The metric's results
should direct the software's maintainers to the modules that need to be
changed, and it should ~2veal to the maintainers what changes need to be made.

If a module has a large value for information flow (INFO), that should
suggest to a developer or maintainer that the module needs to be further
decomposed into more manageable modules, and the inter-module communications
should be simplified. A possible complicatio. is if a software developer wants
to attain the smallest value for INFO, he can write # program as a single
module with no interconnections between modules. This programming practice
would increase the complexity of the program, not decrease it as the INFO value
would lead us to belleve.

Robusiness. A trivial reordering of the program's statements should not
lessen the complexity the metric reflects. A reduction in a metric's
measurement should result from an Improvement in the program measured
(Kearney and others, 1986:1047). Adherence to this criterla forces any

programming practice that reduces the metric value to also reduce the program's

33

complexity. As Conte asked, "is the metric sensitive to the artificial
manipulation ¢f some factors that do not affect the performance of the software"”
(Conte and others, 1986:22)?

As an example, a program that scored high on McCabe's cyclomatic
complexity measure because of the number of lcops could be rewritten with the
loops as in--iine code. This would lessen the cyclomatic complexity score, but
might significantly increase the complexity of the module.

Accurately Reflect Control Flow. The control flow in a program is the

path through a program that is followed during execution. By measuring the
number of paths through a module, a determination can be made if the module is
becoming difficult to understand a2nd should be partitioned into separate, smaller
modules (McCabe, 1983:3). A satisfactory contrel flow metric should measure
lL.ow sasily understandable the control structures are in a progran.

Ranking Basic Control Structures. Structured programming

methodology recognizes three basic copntrol constructs: sequential, selection, and
repetition constructs (Prather, 1984:241). The sequential statements have the
lowest control complexity, as the flow of control is always to the immediately
foliowing statement. Selection statements can branch to one or more other
statements. 1n a selection statement's btasic form, elther one section of code or
another is executed. Whichever section compietes execution, control flow
continues from the same point. A repetitlon statement also has two locations
from which i1 can continuve execution. Either control goes to the statement
following the bottom of the loop, or contro! passes back to the top of the loop
and the statements within the loop are executed repeatediy.

Jayaprakash recommends that any confrol flow metric should show that
sequerntial statements are less complex than single-selection sejection

statements, which are less complex than repetition statementis (Jayaprakash and

34

others, 1987:241). Repetition statements should bs counted as more complex
than selection siatements because they cause backwards branches in the code,
and "it is well known that these {backwards branches] cause the most difficulty
in practice" (Prather, 1984:345),

Nesting and Compound Conditions. A complexity measure should be

sensitive to nesting in branch statements. Several researchers have stated that
one module that contains two selection statements with one nested inside the
other is more complex than a different module that has the identical two
conditions occurring In sequence (Jayaprakash and others, 1987:242; Myers,
1977:62). A selection statement that has a compound condition is slightly more
complex than a selcction statement with only a single condition; this added
complexity should be reflected by a complexity metric.

Accurately Reflect Pata Flow. Another factor that impacts

complexity is the data flow into, within, and out of the module. To better
understand the module's complexity, the complexity of this data flow should be
measured in addition to the module's control flow complexity. According to
Harrison, "another factor that influences software complesxity is the corfiguration
and use of data within the program. Several methods can be used tc measure
complexity by the way program data are used, organized, or allocated" (Harrison
and others, 1982:67).

Indicates Data Amount. A baslc factor that determines the

commplexity of the data fiows within a module is the zmecount of dzata that a
maintalner has to comprehend. A large number of variables that must be
understood can make the maintailner's assignment very difficult. These include

the number »f varilable parameters and glebal data flowing into and out of a

module, and the variables declared and used locally te the module.

Shows Data Use. How the variables are actually used in a module

:s another lmportant determiner of module complexity. Determining which
variable is modified and where it is modified can be arduous in a long module.
If a variable is used and modified within a small portion of a module, the
variable will be less challenging to remember. If, conversely, a variable is set
once at the beginning c¢f a module and not used for 100 lines, the maintainer
mav have a problem remembering the variable's value.

Reflects Inter-Module Data Links. The coupling of the module is

rerflected by the number of data links into and out of the module. Measuring
the dats links is important because "by observing the patterns of communication
among the system components we are in a position to define measurements for
complexity, module coupling, level interactions, and stress points" (Henry and

Kafura, 1981:511).

Comparison of Metrics by Selection Criteria.

Figure 9 shows relationships betwe¢en metrics described in Chapter Two
and the selection criteria developed previously. This Is presented in a table to
better show the relationships between size metrics and general complexity, data
structure metrics and data complexity, control structure metrics and control
complexity, and the hybrid metrics.

The metric selection criteria are shown across the top of the grid, In the
same order as they were described previously in this chapter. They are
separated into three groups Jjust as thelr descriptions were. ‘The metrics are
presented in the order they were described in Chapter Two. They are shown in
the same groups that were established In Chapter Two: size metrics, data

structure metrics, contiol structure metrics, and then hybrid metrics.

36

To show that a metric satisfies a criterion, a mark is placed in the box
at the intersection of the criterion's column and the metric's row. No mark
Implies that the metric either does not satisfy the criterion at all, or it does so
poorly. An indication of partial agreement (*) reflects that the metric does not
fully meet the criterion, but it does help measure it. An indication of
substantial agreement (!) suggests that the metric fully satisfies the criterion.
Justification for the Indications is given in Appendix A, Justification for Metric
Complexity Criteria Ratings.

Figure 9 shows that size measures reflect neither control structure
compiexity nor data structure complexity. Neither data structure metric can
measure control structure complexity, nor can any control structure metric
measure data structure complexity. Ovledo's "C" hybrid metric, which measures
both controi structure complexity and data structure complexity, measures the
best across the whole spectrum. If a single metric from the above list had to
be chosen, this metric fits the criteria better than any other.

The most complete control flow complexity measure is MEBOW, which has
more agreement indications than "C". The most complete data flow complexity
measure is INFO, which has more substantially—-agree indications than "C" does
within the data flow criteria. A combination of MEBOW and INFO has
substantially—agree marks in eight categorles and partial-agree marks in three
of the other four criteria. The only criteria that neither MEBOW nor INFO meet
Is the "Shows Data Use"” criteria. Because of the large coverage of metric
selection criteria, a hybrid metric using both MEBOW and INFO in & 2-
dimensional vector is suggested.

A strong case can be made for using a combination of the "C" metric and
INFO. The control flow complexity would be measured nearly as well, and the

data flow complexity would be measured by all criteria. But the "C" metric

37

C I L P R (o R N D A [§) L
1 n a r V] o] a e a m s i
e t n e b n n S t o) e n
a u g S u t k t a u k
r i u c s r n
t a r t o t
i g i 1
v e P
e t
i
v
e
Size Metrics
LOC ¢ ® ®
N ' % *
Data Metrics
Span ! !] * ® *
INFO ! ! ! * * * 1 ‘
Contrcl Metrics
v(G) LRI ! * x| %
Knot * * * ® ! ® "
MEBOW * * ! ! ! * 1 *
Hybrid Metrics
E * % x
v(G), ni ! LI ' x x| %
C] x A ! n x] * * i
(!) indicates substantial agreerent (*) indicates partial agreement

Figure 9. Metrics vs. Metric Selection Criteria

38

lacks empirical evidence to show it actually measures complexity. MEBOW itself
has not been tested, but it has a substantial weight of evidence supporting the
use of v{(G), which is a component of MEBOW. Knot count also has empirical
evidence that it measures program complexity (Woodward and others, 1983:105),
although no studies have shown a correlation between knot count and program
mainainability. Because of the amount of evidence supporting MEBOW's

components, It Is being recommended instead of "C".

Summary

The purpose of this chapter was to define a set of criteria that would
help determine which metrics are more useful than others. These criteria were
grouped into three categories, the general appilicability criteria, the control flow
complexity criteria, and the data flow complexity criteria. Each of these
criteria was explained, and justifications why each is important were given.

This list of metric selection guidelines is not a complete set of possible
properties that a metric might have. As Kearney stated, "although the
preceding list of properties may be flawed, it is essential that the designers and
users of software complexity measures recognize that the properties of measures
constrain thelr usefulness and applicability" (Kearney and others, 1986:1048).
Overall, It must be remembered that the selection of a metric to measure
maintainability and complexity was the desired end result. The guidelines were
chosen with that in mind.

Once a set of criteria for determining how well a8 metric measures
complexity was defined, they were used to gauge the metrics. By comparing
each metric with each criterta, the metrice that had the most complete coverage
in each criteria pgroup were uncovered. A simple comparison of the maximum

number of criteria successfully matched by the metrics brought the candidate

39

metrics down to two pairs. "C" was disqualified because of its lack cof empirical

support.

1V. Maintainability Metrics Froposed for AFOTEC Use

Introduction

In the previous chapter, two metrics were selected for use in measuring
maintainablility. These metrics measure different aspects of software complexity,
s» a combination of these two metrics will be more comprehensive than either.
This chapter explains these metrics in greater detail than they were discussed
in Chapter Two.

This explanation includes data that researchers have obtained during
various studies. Further empirical data that supports the use of a hybrid
metric for the measurement of complexity by comparing the metric value to a
module's error count is given in Appendix C, Empirical Support for Hybrid
Metrics. Further discussion of the theoretical support for MEBOW and
information flow follows. The data both support and repudiate the use of
MEBOW, in the form of cyclomatic complexity, and information flow. Both sides
of the issue are presented, and justification why the evidence supports the
metrics' use more than the evidence against the ietrics precludes their use is
given.

ATter considering the empirical support for hybrid metrics in general, and
MEBOW with information flow in particular, metric implementation considerations
are presented. The problems associated with parsing source code for various
languages will be considered. Then rules for calculating the metrics will be
given. An example of this calculation is given in Appendix D, Calculation of
Metric Value for an Ada Procedure.

The next discussion centers around the determinaticn of a threshocld

value, and the valldation of the metrics. A method wusing test cases to

41

determine threshold ranges is given. A plan to determine how well the metrics
measure maintainability is presented for AFOTEC's use.

Proposed Maintainability Metrics

As the last chapter explained, the two metrics MEBOW and information
flow (INFO) were selected. MEBOW met as many control flow and general
complexity criteria as any other metric presented. No research has been located
that provides empirical evidence that MEBOW measures either complexity or
maintainability. This metric was proposed in 1987 and no known studies have
been completed to determine the worth of this metric. Fortunately, MEBOW's
component metrics, cyclomatic complexity (v{G)) and knot count (KNOT), each
have empirical support as complexity measures. The authors of MEBOW
analytically argue why the combination of v(G) and KNOT is a better measure of
complexity than either metric is by itself.

INFO met as many data flow and general complexity criteria as any other
metriv presented. INFO also has empirical support as a measure of complexily.
Henry and Kafura also argue that INFO wcould describe complexity better if it
were combined with another complexity metric, such as Halstead's length or v(G)
(Henry and Kafura, 1981:513),

The main point of this thesis is that both of these metrics should be
calculated for each module of a program. These resulting scores should be
compared to determine which modules are more complex than others, and the
scores should be compared to a threshold to Judge which modules are difficult
to maintain. This evaluation of each module separately, instead of the program
as a whole, follows the guidelines given in the Vol. 3. That this module-by-
module examination is useful and has ample support. Henry and Kafura state
that "the complexity of a module is defined to be the sum of the complexities of

the procedures within the module. It is interesting to note that the majority of

42

a module's complexity is due to a few very complex procedures" (Henry and
Kafura, 1981:514). Basili and Perricone have evidence that errors are usually
confined to a single module, so maintenance efforts will only have to modify a
single module. They assert:

It was found that 89 percent of the errors could be corrected by
changing only one module. This is a2 good argument for the
modularity of the software. It also shows that there is not a large
amount of interdependence among the modules with respect to an
error {Basili and Perricone, 1984:45].

Justification of Metrics Selected

This section will explain why the MEBOW and INFO metrics should be
combined into a hybrid metric. First, a discussion of why a hybrid metric
should be used is presented. This discussion is followed by evidence that shows
how hybrid metrics were better able to measure complexity and maintainability
than other metrics.

The following section expresses arguments given to explain why MEBOW
will pe better than either v(G)} or KNOT. This section presents empirical
evidence that the two metrics measure complexity. Research that supports the
use of INFO is examined in the next section.

Hybrid Metric Benefits and Detriments. Chapter Two included a discussion

about what a hybrid or composite metric is. Some evidence was presented that
supported the use of a hybrid metric. The suggestion made that the use of
metrics from different metric classes tcgether can provide a greater insight into
a mcdule's complexity was a main topic of the chapter.

This section expands upon the previous discussion of hybrid metrics.
Four studies are presented that conclude that hybrid metrics can better measure
complexity than metrics from a single class. These studies were accomplished

by Kafura and Canning (198%), Harrisor and Cook (1987), Ramamurthy and Melton

43

(1986), and Li and Cheung (1987). The metrics tested and the conclusions
drawn from the studies are examined in this section. In the next section, data

from the four studies is presented.

Kafura and Canning prepared a study of three production software systems
written in FORTRAN. These software systems were from NASA and an extensive
database of development information was kept for each system for use at the
Software Engineering Laboratory. The Software Engineering Laboratory 1is an
organization composed of three members: NASA/Goddard Space Flight Center, the
University of Maryland, and Computer Sciences Corporation. This association
monitors the details of software development for later examination. The
information that Kafura and Canning used were the counts of component errors
and component coding time for each module (Kafura and Canning, 1985:380).
These data were used in an attemp! to validate the use of ten metrics.

The ten metrics that were used to analyze the software systems were
placed into three groups: code metrics, structure metrics, and hybrid metrics.
The three metrics they considered to be code metrics were LOC, Halstead's effort
(E), and v(G). Three of the four metrics in the structure metrics category were
not explained in Chapter Two, and as they did not greatly affect the study,
they will not be conslidered here. The fourth structure metric used was INFO.
The hybrid metrics were a combination of LOC and three of the structure
metrics, including INFO-LOC.

They first obtained results to see {if "significant differences in software
metric values are related to corresponding differences in errors and/or effort”
(1bid'380}. These results showed some correlation between the metric values and
the errors and coding times. Then the combined ceding time and error factors

were compared to the metrics, and better correlations resulted. This prompted

44

the researchers to assert "the observations made above lead us to conclude that
growth in the metric values corresponds te increases individually in error
proneness and coding time requirements and that this trend becomes more
sharply defined when the combination of error and coding time is taken into
account. This is both a wvalidation of the metrics and a motivation to use
multiple resource [error and coding time data] variables in further wvalidations"
(ibid:381).

They accomplished the measurement of combined errors and coding time by
separating their components (modules) into categories of higher and lower errors
and coding time. Those components that were high in both error count and
coding time were termed "difficult,” and those with low error counts and coding
time were termed "easy" components. With these categories, they explained their
higher correlations with "it is important to consider the combination of these
factors because ... a component with a high metric value may result in few
errors because a large amount of time was invested in the coding of this
component” (ibid:381).

These “difficult” components were then separated into categories by order
of difficulty. These catepgories were those components that were one or laore
standard deviations above the mean for nuinber of errors and coding time. An
outlier is a component more than one standard deviation above the mean, and
an extreme outlier is a component more than two above. The ten metrics were
used to determine how many outlier error components they could ldentify. Their
results indicate that the metric that best identified the outliers and extreme
outliers was the hybrid metric INFO-LOC. This led to thelr conclusion that
"this observation is slgnificant because it supports the need to use metrics from
all classes, conflirms again that structure and code metrics are measuring

different properties of software components” (ibid:382). They also sugyested the

vse of 4 "mininum netric count of 4", which increases the number of outlier
error components tinat can be identified (ibid:384).

This research supports the use of a hybrid metric. Soine icsues other
than the use of a hyorid metric were introduced. Their outliers were for total
error and total coding timc, Coding time has not been presented within this
thesis as a factor within maintairnability, but a careful consideration of
maintainability would support its use.

Harrison and Cook were developing a metric that would measure an entire
software system's complexity. They c¢ounsidered metrics in two categories,
macroleve]l mearures and microlevel measures. The macrolevel measures consider
how the function of each module fits into the overall system. The micrelevel
measures consider ithe detailed operution of a single module. They described a
new metric that would embrace both macrolevel and microlevel complexity
(Harrison and Cook, 1687:213).

They called their new metric MMC, for Macro/Micro Complexity. This
metric includes both a macrolevel and & microlevel component. The macrolevel
measure uses the number of global and parameter variables that are used witinin
a module, much like INFO does. It also includes a calculation of "gquality of the
subpregram's documentation" (ibid:21¢), which is simply a ratio of the rumber of
comments to the number of source lines within each module. The microlevel
measure they used was v(G). The sum of the microcumnplexity of each module
and the amount it contributes to the overall complexity through its use of data
is the MMC.

This hybrid measure was compared to six other metrics, using error data

from a 30,000-line compiler project written in ¢. MMC had a hlgher correlation

with the number of errors that occurred within each module than any other

metric (ibid:217). One of the other metrics was v(G). Their results show that
adding a data flow component to v(G) will creats a metric that can better detect
modules that will have the greatest number of errors. This also supports the
use of a hybrid metric to measure softwar> complexity.

~amamurthy and Melton looked at Hansen's ordered pair of v(G) and
operator count and decided that a combination of Halstead's and McCabe's
meirics would make a good metric. They combined the two metrics into a single
metric to prevent the probleim that occurs when the two metrics give conflictirg
reports about the relative compiexities of two modules. They weighted the
count of certain operators and operands by the level of nesting. They defined
a value "C", which is one greater than the current structure's level of nesting.
They "call C the cyclomatic complexity of thz control structure” {Ramamurth;y
and Meiton, 1986:310}. In addition to counting all of the operands and
operators, they cownted those that were part of 2 control structure and added
the value of the nesting level to the count of that operator or operand. This
gave certain operators greater weight than others.

To test ..iese weighted metrics, they calculated the value of the
unweighted and ths welghted metrics for 8 number of test programs. These test
programs were in three groups: programs with the same Software Science values
but different v(G), programs with the same v(G) but different Software Science
values, and a general collection of programs. Their resuits showed that "the
weighted metrics do detect the complexities which the software science metrics
detect and the complexities which the cyclomatic number detects" (ibid:313).
These results also support the use of a hybrid metric from two different classes
ol metric.

Li and Cheuns compared 31 metrics to see iIf generalizations could be

made about different classes of metrics. These metrics were calculated for 285

41

studenrt assignments in TORTRAN. No attempt was made to compare any of ihe
metrics to any "external validation," such as 2 comparison of the metrics to the
numbers of errors or the amount of time required to code each assignment (Lt
and Cheung, 1987:707). This study was just to consider the general
relationships among the different metrics and determine the !nternal consistency
among different measures within the same metric (Software Science).

They considered the correlaticns amonce many different metrics, within the
<ame classes and between cilasses. One of their conclusions was that a hybrid
metric would be very useful. They said:

In general, the control flow metrics fail to be comprehensive and do

not consider the cuntribution of any factor except contro! flow

complexity. However, these metrics can differentiate between two

programs of similar VOLUME metrics and certalnly are related to the
software quality. Hence, a useful approach is to use VOLUME
metrics for prior classification and then to use CONTROL

ORGANIZATION measures to evaluate the programs in detail [Li ana

Cheung, 1987:707].

In a different study, Kafura and Reddy came to the sarme csnclusion.
They stated their study "has also confirmed vhe results obtained in p.evious
werk with respect to the distinctionn betw2en the code and structure metrics.
This distinction was evident in that the maintenance changes to components
might dramatically alter the values of metrics in one class of metsics without
changing materially the values of metrics in the other class" (Kafura and Reddy,
1987:342).

The results of these four studies suggest that the use of a hybrid metric
is a useful technique for measuring complexity. Appendix C, Empirical Support
for Hybrid Metrics, presents the data that three of these studies generated to
support thelr conclusions.

MEBOW. MEBOW was designed as a comprehensive control flow complexity

metric that did not have the deficiercies of other popular metrics. No empirical

438

evidence or examples were shown Lo suppory that this proposed metric measured
coreplexity better than the measures it was supposed to supplant. Instead, this
metric was shown to rue2t twelve “precisely-—-stated intuitive properties expec-ed
of any control flow vomplexity metric" (Jayaprakash and others, 1987:238).
These properties included such factors as language independency, ranking of
basic control constructs, and sensitivity to nesting which were presented in the
previous chap.er as metric selection criteria. None of the other control flow
complexity retrics presented (v(G), KNOT, and SCOPE ratio) was able to satisfy
all twelve properties. Jayaprakash, Lakshmanan, and Sinha explained that these
properties were important by stating "the idea is that if a control flow
complexity metric fails to satis{fy these intuitive properties, any extent cf
empirical evidence supporting its use in estimating the maintenance cost of
software, or predicting the number of errors in the program, etc., cannot really

They consider v(G) to be cnly a special case of MEBOW, where each
branch ig counted as c¢ne, and a "constant bias” of 2 (for 2p) is added to
calculate the value (ibid:240). KNOT is also considered as a special case of
MEBOW, where krcts are given a weight ¢f one, and all other control flow
factors are ignored. Because these two metrics are encompassed by MEBOW, they
believe that MEBOW will better measure complexity than either metric could
alone. They state, "it appears, therefcre, that by suitably assigning the
relative weights to the factors stated above, it is possible to arrive at a
cosnplexity metric which combines the strengths of the existing measures"
(ibid:240).

After using Jayaprakash, Lakshinanan, and Sinha's arguments that MEBOW

is better than elther v(G) or KNQOT, some evidence of how well these Lwo metrics

measure complexity is given for compariso:. Many studies have attempted to
measure how well v(G) measures complexity. some of the conclusions and
resulls of these studies are presented. KNOT has not beenn studied in as much
detiuil, but some results for KNOT are shown.

Evidenc

ce Supporting the Use of v(G). In a pair of experiments,

Curtis attempted to measure the psychological complexity of software
maintenance tasks by comparing Halstead's effort (E) and v(G) to the actual
performance of programmers on two software maintenance tasks. The
programmer's performance was measured in two ways. The first was based on
the premise that a good measure of a programmer's understanding of a program
is his ability to learn its function and reproduce an equivalent program without
notes. This performance was measured by the "functional correctness of each
separately reconstructed statement" (Curtis, and others, 1980a:297). The second
performance criterion was measured by how correctly a requested change was
implemented and che time to perform the modification. Measurements of the
accuracy of implementation and time to completion were correlated between
modules and their E and v(G) values. The correlations were not high, but the
study's cenclusions were "the two experiments comprising this study produced
empirical evidence that software complexity metrics were related to difficulty
programmers experienced in understanding and modifying software" (ibid:301).
These conclusions were questionable, as the correlaticns for v(G) ranged from
-.55 to —-.21 in the first experiment, and from .38 to —-.36 in the second
experiment.

In a later experiment, Curtis found v(G) to be a better predictor of
programmer performance. This experiment measured how long each of 54
prorfessional programmers took to find and correct a singl'e error in three

separate FORTRAN programs. The correlaticns between v(G) and the average

50

performance were given to be .63 for single subroutines, and .65 for total
programs. These correlations were much stronger than in the previous
experiments. These results "demonstrated that far stronger results could be
obtained when the limitations in our earlier experimental procedures were
overcome. For instance, our previecus research was conducted exclusively on
small-sized (85--55 lines of code) programs, which seems to have limiied those

results...” (Curtis and cthers, 1980b:307).

McCabe stated that a v(G) of ten is a reasonable upper limit for a single
procedure, and if complexity exceeds ten, the procedure should be decomposed
into smaller procedures. Walsh studied scfiware developed for the AEGIS Naval
Weapon System radar to determine if procedures with higher v{(G) had a higher
rumber of errors. He quickly determined a correlation between those procedures
with a high v{(G) and the occurrence of errors in those procedures. But he saw
that those were also the largest procedures in terms of lines of code. To
determine if the number of decisions within a procedure had an impact, and that
v(G) was not just measuring size, Walsh separated those modules with v(G) ef
ten or more and those with a lower v(G) to compare their relative error count.
He feound that the procedures with v(G) of ten or more had 21 percent more
errors per 100 lines of code than those with a smaller v(G). Those procedures
with higher v(G) averaged 5.60 errors per 100 source statements, while the
others averaged 4.59 errors (Walsh, 1983:95). This suggests that v(G) is
measuring something more than Just the size of a procedure, and that it is
valuable in predicting the error rate for software. Walsh explained his numbers
by stating:

As the number of detected errors in a piece of software increases,

the probability of the existence of more undetected errors also

increases. Put simply, errors come in clusters. Thus, it can be
confidently predicted that when the procedures In the study enier

51

the maintenance phase of their existence, the procedures with a
complexity greater than or equal to ten will continue to experience
higher error rates than those procedures with complexity below ten
{Walsh, 1983:95-96].

Harrison and Cook's macrocompiexity and microcomplexity metrics were
described earlier. Their correlations for v(G) with error occurrence and other
metrics are presented in Figure 15 within Appendix C. They aiso compared how
well each metric was able to identify the most error prone and least error prone
modules. The modules were listed from most errors discovered to least, and a
comparison was made to how well the metrics were able to rank order the
twenty modules. The correlation for how well v(G)'s ranking of all the modules
matched their actual error ranking was only .50, but a ranking of just the most
error prone six and least error prone six modules was .81. Both numbers were
the middle scores for the seven metrics measured. A conclusion that Harrison
and Cook drew from that data is "this suggests that the metrics work quite well
in identifying the 'extraordinary cases,' but do a relatively poor job of
distinguishing among modules which do not fit into one of these 'extraordinary'
categories (l.e., either few errors or many}" (Harrison and Cook, 1987:218). If a
scftware manager had this type of error prediction data from v(G), he couid
spend more resources testing the more complex modules, reducing resources on
those modules that are determined to be less complex.

Shepperd studied v(G) and the results of other research and came to a
different conclusion about the metric than other researchers. He felt the metric
is based on "poor theoretical grounds and an inadequate mcdel of software
development” (Shepperd, 1980:30). He disputes the metric's empirical validation

results, also. He disagrees that an intuitive appeal should be part of a metric's

validation and sneeringly discards intuition as a factor in the consideration of

the metric. While it may be understood that a metric's intuitive appeal should

not be its only justification for use, this factor should not be offhandedly
dismissed.

A list of theoretical objections was presented by Shepperd. One is that
"the treatment of case slatemenls has also been subject to disagreement"
(ibid:32). He discusses that different researchers have used different counting
strategies tc number the decisions in a case statement. This is one reason that
a counting strategy should be rigorously defined and adhered to. Shepperd
points out that v(G) cannot measure the complexity of sequential statements.
This is certainly a wvalid criticism and is why others have added a silze
complexity metric to v(G).

According to some researchers mentioned by Shepperd, "applying generally
accepted techniques to imrrove program structure” can actually increase v{G)
(ibid:32). This is because the metric is insensitive to the unstructuredness of a
program, as it only counts decisions and does not reflect if a decision causes
jumping out of loops or into ancther decision, which are generally considered to
be unstructured techniques. This is a reason why KNOT should be added to
v(G), so that less structured techniques will cause higher complexity values.
This is one of the justifications for MEBOW. As was m2ntioned in Chapter Two,
Shepperd believes that v{G) does not measure inter—-module complexity well.
Since this appears to be a correct appraisal, this criticism is one reason why
MEBOW calculation is being suggested for intra-module use only.

Shepperd refers to some data that Evangelist reported showing "the
application of only 2 out of 26 of Kernighan and Plauger's rules of good
programming style invariably results in a decrease In cyclomatic complexity"
(ibid:32). This contradicts Myers' results comparing the v(G) of more and less

structured code from Kernigharn and Plauger's The Elements of Programming Stvle.

According to Myers' calculations, v(G) was always lower for what was

53

subjectively considered the more structured code from their examples (Myers,
1977:64).

Shepperd reasoned that even though he did not agree with the theoretical
justifications for v(G), it would still be a useful metric if it can be shown to
accurately measure complexity. "The theoretical objections to thz metric, that it
ignores other aspects of software such as data and functional complexity, are
not necessarily fatal. [t is easy to construct certain pathological examples, but
this need not invalidate the metric if it is possible to demonsctrate that in
practice it provides a useful engineering predictor of factors that are asscciated
with complexity" (ibid:38). He then proceeded to condemn other researchers'
experimental metnods, statistical correlation techniques, and results, ending with
a sweeping statement that "to summarize, many of the empirical validations of
McCabe's metric need to be interpreted with caution" (itid:34). His points were
well made, but he did not refute all of the results he presented that suggest
that v{(G) could determine error-prone modules. His contention that a problem
with this metric is that it does not measure data flow complexity is a further
argument that v(G) should be combined with a data flow complexity metric such
as INFO.

Evidence Supporting the Use of KMOT. Woodward, Hennel, and

ledley did not show any data that compared KNOT to any error data or the time
it took programmers fo modify a module. Instead, they showed examples of two
code fragments that rperfornied the same function and stated the source code
with the smaller KNOT count was more structured. These same examples showed
that v{G) did not change. While the source code with fewer knots was typically

shorter and had fewer branches than the example with more knots, one example

54

they showed had a lower KNOT count for unstructured code, while the structured
version had a higher KNOT count (Howatt, 1:88;.

One qifference between KNOT count and v(G) is that the KNOT count does
not measure the structure of the program's control flow. Insiead, it measures
the structure of the source code. This can be considered a benefit because a
program's maintainer will worlk with the scurce code and neot a flow graph
(Howatt, 1983).

Considering that a more structured version of a progr2uw is bettes than a
less structured version, adding KNOT to v(G) seems to be a better way to
measure a program's structuredness than v(G) aione, in addition te determining
how difficult it will be to rest. Figure 10 shows a more structured versinn of
the code fragment from Figure 7 (in Chapter Two). These code fragments Aare
identical in function, but this fragmenti is more structured than the other. The
v(G) of both is three, but the second version has only three knots and nas no
backwards jumps. Discussing the benefits of KNOT, they state "we feel that the
knot count prevides a much clearer indication of program readability... The high
knot counts for these [two other] routines confirm not only the visual
impression of high complexity but aiso the difficulty actually encountered in
translating them to other languages" (Woodward and others, 1983:105).

In Li and Cheung's comparison with 17 other metrics, they assert v(G)
"correlates well with Halstead's, Gilb's, Knot Counts, SCOPE, EDGES, and NODES
metrics. So, the cyclomatic complexity metric seems to bridge the gap between
the two categories: VOLUME and CONTROL ORGANIZATION metrics" (Li and Cheung,
1987:7058). Their data shows v(G) correlations in the range of .971 to .796
with the 17 other metrics (ibid:704). Knot count has correlations in the
range of .948 to .799 with the same metrics. These correlations suggest that

these two metrics measure complexity as well as any other established metrics.

55

CALL TPR
IF (ZR) 500, 500, 100

5100 CALL TED
IF (23) 200 200 550
L_»200 26 = 26 + 1
2C = 0
CALL TCO
. GOTO 600
»500 Z3 = 1
L 550 CALL TEC
ZB = ZB + 1
ZC = 2C + 1
>600 CALL TRA
RETURN
END

* = KNOT

Figure 10. HMnre Structured Knot Example
(Woodward and others, 1983:104)

In this section, much conflicting data and data interpretations have been
presented. While the use of McCabe's cyclomatic complexity metric is now
popular, the metric has some obvious limitations. 1t appears that many of the
theoretical ubjections that Shepperd has against v{G), such as it not being able
1, measure structuredness or data flow, would be remedied by adding KNOT
count with the use of MEBOW, and using INFO to measure data flow. A well-
defirea counting strategy will lessen the problem of researchers measuring the
same moduies differentiy because they are not counting MEBOW in the same
fashion Overall, it appears tbhat v{G) lays a good ioundation for the
measurement of contr~! complexity. and MIEBOW improves upon this foundation.
In conclusion, "several varlations |for measuring] the cy.lomatic complexity

metriv have shown very encouraging potential yor usefulness as measures of

software product qual.ty" (Basili and Relter, 1980:287).

Information Flow. Information flow was described in Chapter Two, and an

example was given for INFO calculation. This section presents further evidence
that INFO reliably exhibits complexity, in the form of data flow complexity.
Basili and Perricone explain why this data complexity is an important factor to
measure when they state "interfaces appear to be the major problem, regardless
of the module type" when referring to where errors occur most often in a
program (Basili and Perricone, 1984:47).

One of the earliest experiments with INFO was done by Henry, Kafura, and
Harris (Henry and others, 1983:125). Values for INFO, v(G), and Halstead's E
were calculated for source code modules from the Unix operating system and
were then compared to a list of errors found during the system's development.
The three metrics were also compared against each other to see if they appeared
to measure the same factors. Their results are summarized in Figure 11. The

formula used tc calculate INFO is shown as (5) in Chapter Two.

E v(C) INFO
Errors .89 .96 .95
E .8411 .3830
v (G} .3459

Figure 11. A Comparison of Three Metrics
{Henry and others, 1983:130)

These results suggest two conclusions. The first is that INFO is a useful
measure of complexity, as a high correlation was found with detected errors,

The second Is that INFO measures different factors than Halstead's E and v(G),

57

as the correlations between INFO and the other two metrics were small. Henry
explained this result as "the information flow complexity measurement is
orthogonal to the other two metrics since it has a low correlation to both
Halstead's and McCabe's metrics. The independence of the information flow
metric is explained by its greater concentration on the manner on which system
components are interconnected" (ibid:130).

Harrison and Cook's comparison of INFO (they called it HNK) with other
metrics and errors appear in Figure 15 in Appendix C. The correlaticn between
INFO and errors is not as high as F:nry's results were, with a .62 correiation.
An obvious cause of this discrepancy’ is that they did not have access to all of
the information normally used to calculate IMNFO. Instead, they used the
formuia:

(fan-in + fan-out) ** 2 * lengt’ (11)
Apparently, summing the data factors instead of using their product weakened
their influence in the metric caiculation. Therefore, a greater correlation with
E and v(G) were encountered tha: be¢fore, but a worse correlation with the error
count was the result.

INFO, like v(G), was used in an attempt to rank order tnhe most and least
error-prone modules used in Harrison and Cook's study. INFO had a .55
correlation with the ranking of all twenty modules used. This is slightly
greater than the .50 correlation received by v(G). Measuring Just the most
error-prone six modules and least errcr-prone six modules, INFO had a .77
correlation, which is somcwhat smaller than the v(G) result of .81 (Harrison and
Cook, 1987:218).

Recalling Kafura and Canning's work with INFO, Figure 14 in Appendix C

shows that INFO was able to identify extreme outller error components better

than any non—hybrid metric used. INFO also measured the number of resource
outliers better than any other metric except LOC. INFO correctly identified
38/85 error and coding time outliers (Kafura and Canning, 1985:383).

Rodriguez and Tsai used four metrics to determine the complexity of two
medium--sized "system implementation packages" (Rodriguez and Tsai, 1986:369).
The metrics used were INFO, LOC, v(G), and Halstead's volume metric, which is
defined as (Conte and others, 1986:42):

V =N * logyn (12)

Just as with the Harrison and Cook experiment, INFO was not calculated
as Henry, Kafura, and Harris suggest it should. Rodriguez and Tsai explain, "as
a result of our approach, the definition of fan-in and fan-out given by Henry
and Kafura has to be revised” (Rodriguez and Tsai, 19856:370). They show that
if global variables are modified within a local procedure, they are not counted
in the data fiow of the overall procedure.

Using this (Henry and olhers'] formula, no good correlations of the

metrics are found against modifications and errors. However, using

Halstead's ideas, an adaptation leads us to formulate the complexity

of a procedure as:

length * In{(fan-in * fan-out)

Using this definition of complexity, the correlations found are
improved considerably {ibid:370}.

These four melrive were compared to the number of modifications reported
for each module throughout the development and maintenance of the two
prograis. These modifications were adaptive and perfective, rather than
corrective in nature. Rather than calculating If each metric can identify the
most—-modifled modules, the study showed how the metrics added together
expiained the wvariation in the number of modifications. Their results showed
that INFO explalned 80.297% of the variation in modifications, while INFO with

LOC could explain 84.994% of the variation. with all four metrics combined,

59

87.257% of the variation of modification could be explained. They concluded
"we have to keep in mind that the high regression ~oefficient (0.87257) shows
that meaningful relationships exist between each metric taken individually or
jointly and the index of errors of modifications to the software" (lbid:371).

Further analysis was performed to see if they could determine some
moduie size threshuld that the four metrics would not correlate weli with errors
or modifications. Their final conclusions were "all four metrics are useful
indicators of the occurrence of errors or future modifications of software units,
when the uniit size exceeds some threshcld. For our study cases, that threshold
is 75 lines of code" (ibid:374).

Kitchenham per‘ormed a study that compares v{G), LOC, and an INFO-like
metric called Information Linkage (IL) with tlie 226 modules of a communications
program. As INFQ does, IL considers the number of data flows into and out of a
procedure. The numter of procedures that call the current procedure are added,
as is the number of procedures the current procedure calls. These factors are
added, instead of multiplied as INFO does. Kitchenham compares the three
metrics with the number of perfective changes and the number of corrective
changes made to the communications system. The percentage of error—prone and
change-prone procedures that IL identified was lower than the percentages
ldentified by the LOC and v(G) metrics. She suggests that these results irectly
contradict Kafura and Canning's results, although tiey calculated INFO much
¢ifferently thar she did (Kitchenhsm, 1988:374).

Although these resuits do not support the use of INFQ to the exient that
other studles do, some Interesting conclusinns were given:

The results of this study suggest that It might be a cosi-effective

procedure to apply more stringent development pincedures to

programs with high fan-out values. Ex*'ra time spent on 12% of the
programs would have been 63% efficlent (since 63% of the programs

60

identified warranted additional development time), but would have
only been 24% effective (since only 24% of the programs which
warranted additional Jdevelopment time wcuild have been identified).
Extra time spent on a randomly selected 13% of programs would
have been 33% efficieni and 13% effeciive [Kitchenham, 1988:375].

Metric Implementation Consideraticns

The previcus section explained in some detail why hybrid metrics are
useful, and presented the results of studies that show how hybrid metrics can
measure complexity well. Then MEBOW was dcscribed and evidence supporting
the use of v(G) and KNOT was given. Finally, study results favoring INFO's use
was presented. This section explains some isstues of metri¢c implementation such
as counting strategies, and determining threshold values.

Caiculation of Metric Value. Figure 12 shows a sample FORTRAN program

that reads three numbers and writes the greatest of the three numbers. Basic
blocks, which are the straight line segments of code, are numbered and
separated by lines within the figure. A flowgraph of the program s presented
next to the program. Following Jayas "<ash's terminology, blocks that have
only one source statement are represented In the flowgraph as horizontal lines,
and blocks that contain more than one statement are represented as circles.
The implicit branches are dotted lines, and explicit branches are solid lines.
According to the definition in Chapter Two, MEBOW is calculated by

counting branches and KNOTS and adding their respective weights. The raw
weights of the branch types are:

1. Implicit forward branch = 1

2. lmplicit backward branch = 3

3. Explicit forward branch = 2

4. Explicit backward branch = 6
These values represent the MEBOW developer's contention that an exolicit

branch is twice as harmful as an implicit branch, and a backwards branch {is

three times as harmful as a forward branch. According to the developers, "it is

61

important to note that the welghts associated with each of these entities are
only relative to each other and their actual values are of no significance"
(ibid:240-241). They also stated that "it also seems meaningful to assign a
relatively high weight to each knot since it rnormally represents an
unstructuredness in the program” (ibid:24!). Becsause each KNOT involves two
branches, the weight of the KNOT is calculated as the sum of the branches’
weights. If two implicit branches intersect, as in an 1F...THEN...ELSE statement,
it is not considered a KNOT by MEBCOW.

To each branch is added its scupe weight. According to yaprakash, this
"provides a means for recognizing branches with remote targets which when
suftably accounted for, can help the complexity metric satisfy properties reiating
to nesting" (ibid:239). This scope weight is the weight of the subparagraph
that is branched around. For a forward branch from bleck A to block B, the
scope is the subgraph from node A + 1 to node B - 1. This represents the
nodes between A and B and the branches "whose both end points are within the
same set of nodes" (ibid:239). For a bhackwards branch from B to A, any
branches that include the nodes A or B are alsu counted. An example from
Figure 12 with a forward branch is the branch from node 4 to node 10,
represented as (4,10). The scope of the branch encompasses cthe four branches
(6,7), (6.8), (7,9), and (8,5, and the two KNOTS [(6,8), (7.9)] and [(7,9), (8,5)].
Therefore, the weight of (4,10) is equal to its raw weight plus the weight of its
interior branches and KNOTS.

Figure 12 shows a prograrn with eleven blocks, thirteen branches, and ten

KNOTS. The MEBOW calculation for Figure 12 is as follows:

INTEGER A,B,C
READ 100, A,B,C
100 FORMAT (314)
i¥ (R .GT. B)
1
GO TO 10
- 2
I¥ (B .GT. C}
3
GO TO 20
- 4
40 PRINT 206,C
200 FORMAT (15;
GOT0 50
5
10 IF (4 .GT. C)
6
GO TO 30
1
GO TO 40
8
30 PRINT 200.A
GO TO 50
9
20 PRINT 200,B
10
50 STOP
END
11
:

Figure 12. Example MEBOW Calculation
(Jayaprakash and others, 1987:239)

Branches:
(1,2) =1 (implicit forwards branch)
{1,3) =] {implicit forwards branch)
(2,6) = 4 (explicit forwards branch = 2,
scope covers (3,4) and (3,5) = 2)
(3.4) =1 (implicit forwards branch)
(3,5) =1 (implicit forwards branch)

63

(4,10) = 27 (explicit forwards branch = 2,
gcope covers (6,7), (6.8), (7,9), {8,5) = 12 and
KNOTS [(6.8). (7,9)] and [(7,9), (8,5)] =13

{5,11) =9 (explicit forwards branch = 2,
scope covers (6,7}, (6,8), (7,9) = 4 and
KNoT [(6,8), (7,9)] = 3)

(6,7) = 1 {implicit forwards branch)

(€.8) =] (implicit forwards branch)

(7,9) = 2 {explicit forwards branch)

(8,5) = 8 {explicit backwards branch = 6,
scope covers (6,7) and (6,8) = 2}

(9,11} = 2 (explicit forwards branch)

(10,11) = 1 (implicit forwards branch)

Knots:

[(1,3), {2¢,6)} =5

[i2,6), (4,10)] = 31

((2,6), (5,11)1 = 13

[(2,6), (8,5)] =12

f(3.5), (4,10})] = 28

[(4,10), (5,11}]1 = 36

[(4,10), 3,11)] = 29

[(5,11), (8,5)} = 17

[{6,8), (7,9)] = 3

[(7,9), (8,5)] = 10

KMEBOW = 243

This example shows MEBOW calculation, but because the program has no
external interconnections, it has an INFO value of 0. An example for both
MEBOW and INFO is shown in Appendix D, Calculation of Metric Value for Ada
Procedure.

Some issues that have not yet been addressed are how to count compound
conditions and how to count a multiway branch or CASE statement. McCabe
suggests that each condition in a compound condition be counted separately
(McCabe, 1983:10). For example, the statement "IF Cl1 AND C2 THEN" would add
two to v(G) because it is equivalent to "IF C1 THEN IF C2 THEN". Critics say
that this is not realistic because no matter how many conditions are considered,
only one of two branches will be followed. Following this logic, the calculation

of MEBOW disregards the number of conditions in a compound condition.

64

The CASE statement was developed to simplify multiway branch statements
so that a series of nested IF...THEN...ELSE structures would not have to be
created. Therefore, "it Is natural to expect that a good complexity metric
should assign a lower complexity value to a t—-way CASE structure than its
equivalent nested 1F...THEN...ELSE structure" (Jayaprakash and others, 1987:242).
For MEBOW, an N-way CASE statement's complexity is calculated as 2*N, instead
of the N**2 complexity that would otherwise be calculated by following the
MEBOW branch counting rules.

The definition of INFO states that the "fan-in of procedure A is the
number of local flows into procedure A plius the number of data structures from
which procedure A retrieves information" and the "fan-out of procedure A is the
number of local flows from prccedure A plus the number of data structures
which procedure A updates" (Henry and Kafura, 1981:513). AR exact description
of what constitutes fan-in or fan-out is not given. For examvle, is an array
passed into a procedure counted as 1, or as } for each element in the array?
Is a record counted as 1, or as 1 for each field in the record that is modified
in the procedure? Following the counting examples given by Kitchenham, the
fan—in is considered "the number of data structures (not individual elements)
the program reads from" (Kitchenham, 1988:370). The fan-out ls calculated the
same way. Therefore, a pointer variable or array that ls input or output adds
just one to fan-in or fan-out.

In languages such as Ada, it is easy to determine which procedure
parameters are counted as input data flows, which are counted as output data
flows, and which are counted for both. These parameters are designated "in",
“out”, and "“in out" in the procedure declaration. This determination is more
difficult in a language such as FO"TRAN. In FORTRAN, a parameter or global

variable is consldered an output data flow if it is used on the left side (left of

65

the assignment operator "=") of an assignment statement, and it is considered
an input data flow if it is used anywhere else. If it is used for both purposes,
it is counted in both fan-in and fan-out.

To determine if a variable is global, thke procedure must be parsed and
each token found compared to a list of the tokens for the language being used.
If the token is not & reserved word, it should be compared to the local symbol
table, which is a list of those variables declared within the procedure, or
compared to the procedure's parameter list. If the token is not in either of
these lists, then it should be assumed that the token is a global variable. This
definition may not be correct when using a language such as FORTRAN, which
allows the programmer to declare variables at any point in the procedure by the
use of implicit variable type declarations. Using this counting strategy, these
variables would be counted incorrectly as globals which will increase the INFO
value. This is incorrect, but any module that has such declarations should be
monitored closely anyway because this type of deciaration may be confusing to a
maintainer. In Ada, a loop parameter within a FOR loop also appears to have
this behavior, but this loop parameter can be easily found and added to the
local symbol table during parsing because of its relation within the FOR loop
parameter specification.

There can also he some difficulty in determining if a parsed token is an
array or a function while counting globals. This is because In some languages
such as FORTRAN, both arrays and function calls delineate their indexes and
parameters with parenthesis. For example, the statement "RATE =
TAXRATE(EMPLOYEE)" could either use EMPLOYEE as an index to the array
TAXRATE, or EMPLOYEE could be a parameter to the function TAXRATE. If

TAXRATE is not declared as a parameter or described in a COMMON biock as an

66

array, the statement is ambiguous. The onLly way to determine the semantics of
this statement is to parse the entire pregram and determine where TAXRATE is
deciared. Fortunately, this problem will not occur in imost modern structured
languages.

Following the above reasoning, one must conclude that it is not possible
to make a detailed counting strategy to cover all cases. Instead, a separate
counting strategy is needed for each language. This is the only way to account
for the differences inherent in each language.

Threshoild Value. According to Kearney, any complexity metric should

have the property of normativeness (Kearney and others, 1986:1047). This
means that the metric should provide an acceptable norm, or standard that
specifies an allowable degree of complexity. A suitable threshold can not be
determined within the scope of this research. A decision was made not to
create a tool to generate the metrics, insiead algorithms to implement such a
tool are given in Appendix B, Algorithms for Metric Value Computation.
Threshold ranges can be calculated by creating test cases and using then
with a program that calculates the metric values for programs. Taking examples
of two different programs that perform the same function from sources such as

the classic book The Elements of Programming Style by Kernighan and Plauger,

researchers can compare the metric values to see how well they relate to the
subjective opinions of structuredness and complexity offered about the programs.
Another source of equivalent programs is software maintained for the Air Force
in the Air Logistics Centers {(ALC's). Different versions of programs that have
been improved by the maintainers should be available, and the metric values
can be determined for these programms and compared to the subjective judgments
of the maintainability of each program. This method for obtaining programs te¢

establish a useful thresnold is preferred, as AFOTEC's task of determining

67

prcgram maintainability is the primary purpose for this thesis effort. Using
these programs is preferred because they will typlically be larger and more
complex than the academic examples, and a judgment has been made to the
program’'s maintainability, not just If it more or less complex than another
program.

Comparing the metric values to more and less maintainable programs will
show more than a practical threshold value. This will also show if the two
metrics should be weighted equally in the consideration of program
maintainability. If one metric consistently agrees with the decisions which
programs are more maintainable, ther it can be weighed more than the other.
Another consideration for these welghts is that the test cases might suggest a
change as a function of the program's characteristics. For example, programs
written in one language might require different weights to better refiect
maintainability than those programs written in a different language. Evaluating
different classes of programs, such as avionics systems and database systems,
may warrant the use of different weights for the metrics. Also, extraneous code
can be added to programs, and the differences in the metric values will show
the sensitivity of the indexes.

Validation of Metrics

Given this proposed method to measure maintainability, a procedure to
determine how well the metrics actually measure malintainability must be
developed. This is a very important conslderation; it is possible to create an
Intultively appealing metric that does not measure what it was intended to
measure. AFOTEC 1s aware of the importance of validation, as is evidenced by

their efforts to validate their Vol. 3 process (Lynn, 1985). An interesting

discussion of validation is given in Conte:

1t is far too easy to create an attractive, intuitive model without
previding data that shows that the model actually does explain the
software phenomenon of interest. Attempts to validate programming
models have involved collecting data via software analyzers, report
forms, and interviews. Statistics have been employed to show
relationships among metrics and to try to produce functions of those
relationships for explanatory and predictive purposes" [Conte and

others, 1986:22-23].

The validation technique suggested is for the maintaining organization to
track a pilot project's history using a survey instrument. This survey
instrument will record various system parameters that influence maintalnability.
After a certain prescribed period of maintenance has occurred, the results of
surveys would be returned to AFOTEC and compared to the predicted
maintainability of each program. This period of maintenance should include the
first or second maintenance block changes, because by then the maintainers will
have a good understanding of the system and which portions of the program are
the most difficult to understand and modify. At this time, they will have
enough knowledge about the software to make subjective judgments about the
maintainability of each module, and 2 reasonable database of changed modules
will be available.

Within this survey instrument a parameter of interest is the occurrence of
errors. "An accepted validation technique for complexity metrics is to show the
correjation of the metric to the occurrence of errors" (Henry and others,
1981:130). This is certainly a factor that drives maintenance and many
experiments described in this thesis have used the occurrence of errors to
reflect a program's complexity.

Another factor that should be included is the time required to modify
each module, however a module may be defined. Kafura and Canning descrirad

their use of mewrics to identify outliers with respect to number of errorr and

the amount of coding time required. In addition to time, other factors :ulght be

69

considered. Other information that AFOTEC has coilected In the past while
validating the Vol. 3 include: program size, software language, frequency of
software updates, percentage of code that changes with each update, subjective
ratings of maintainability from the maintenance teams, and training time
required for both new programmere and more experienced programmers {Lynn,
1985). As the following passage explains, the proposed survey tool should
include all of this information, in addition to the error occurrences and the
modification times for each module.

While this extra informaticn might not be used in a correlation with
metric values for the system, it may help to draw conclusions about the data
receijved. For example, if the metrics identify one system to be more easily
maintainable than a second systeri, yet the number of errors reported and the
amount of time required to make cnanges on the first system is greater than the
second, several factors might be involved. 1f the first system ic maintained by
novice programmers, while thz second system is maintained by experienced
programmers, the differences from the predicted maintainability can be explained
by the exjerience level. Conversely, if both maintenance teams are equlvalent
but have differences for the error rates and time required to implement a
change, then a good case can be made that the metrics are not measuring
maintainability and should be modified. This extra information can be used to
determine if external factors have unduly infiuenced the ease of program
maintenance and should be taken into account during the validation process.

This type of measurement is an effort to enforce socme engineering
discipline on the collection and interprecation of data AFOTEC s effort to
validate the Vol. 3 retied upon estimations of these factors by the project
managers and senior maintenance personnel because elther no detailed project

data was Kept by the maintenance stafi, or this data was not released to

70

AFOTEC. A decision to collect this data must be made by both AFOTEC and the
maintaining organization if a pilot study is to be made to validate these
metrics.

Figure 13 shows a flow diagram of what should happen during the
validation process. The left side of the diagram defines significant development
rilestones from the earliest point that AFOTEC is able to perform software
evaluations. These development milestones are not meant ¢ reflect the
software development phases as represented in MIL-STD--2167A, but to show the
major managerial changes as the program goes along.

The Operational Test and Evaluation phase occurs during the integration
and test phases of software development. This phase includes two different
blocks in the flow diagram. The first block depicte a baseline of the software
as it is first delivered to AFOTEC for evalu:.tion. The second block represents
future evaluations of the software during the development process. which might
take several years on a large system. These w©valuations can be compared with
the baseline to determine if the software i{s being made more or less
maintainable because of the many changes made during the integration and test.
Currently, multiple maintainability evaluations are performed on software in
order to detect any problems so the developer can be directed to fix them.

The Program Management Kesponsibility Turnover (PMRT) represents the
final version of software delivered by the developer. After PMRT the
maintaining organization has maintenance control of the software. This block
suggests a final post-development baseline to determine how maintainable the
system that was delivered is.

The System Maintenance/Operational Support phase encompasses two blocks

within the flow diagram. The first is daia collection. These data reflect those

71

Software Development

Milestones
Begin measuring
developing software

Operational Test

and Evaluation

Measure software
throughout test phase

Program Management
Responsibility —> Measure delivered
Turnover version

Gather data about
where errors occur and
which modules have
taken “he most time to
modify

System Malntenance/
Operational Support

Compare data to system
measurements, correlate
and veigh metrics

Figure 13. Example Validation Method Hilestones

72

factors expressed above, error count and time to modify, with other factors as
extra information. Once an acceptable amount of data is collected, a comparison
is made with the metric values associated with the moduies, and their actual
error counts and modification times.

Summary

This chapter is the culmination of the work described in the previous two
chapters. The use of hybrid metrics was introduced in Chapter Two, but little
documentation was given to support their use. MEBOW and INFO were explained
in some detail in Chapter Two, but the experiments that showed their
effectiveness were not described. Chapter Three demonstrated how to determine
if a metric measures maintainability and two metrics were exhibited as being
able to measure maintainability effectively if paired together.

This chapter provided a lengthy description of the usefulness of hybrid
metyrics, along with descriptions of experiments indicating the use of hybrid
metrics as a valuable measurement technique. Then supporting evidence was
given that MEBOW and INFO are both useful metrics and have been used to
measure complexity successfully. Metric calculation issues were discussed and
examples were given showing the application of the described counting
strategies.

While the use of hybrid metrics and the two metrics described have been
documented, It is understood that they have not been used together. Therefore,
important information about the metrics such as thelr sensitivity, useful
threshold values, and if one metric better reflects maintainability for the types
of programs these will be used to measure, have not been determined. This Is a

reason to emphasize the importance of metric valildation.

73

~-

V. Conclusions and Recommendations

Introduction

This research has involved a survey of metrics, a definition of criteria to
determine which metrics measure maintainability, and an in-depth look at two
metrics which meet the most of these criteria. A determinstion will be made
now whether using these metrics will actually solve he problems that were
given in Chapter One to be resolved. This chapter explains what was
accomplished and how the problem was met. Then the limitations of the
solution will be elaborated. Finally, some recommendations for further research

are examined.

Conclusions

A framework for the automated evaluation of software maintainability was
developed. A set of criteria to determine which automatable complexity metrics
better reflect maintainability than others was defined. The metrics discussed
were compared with each criteria and the metrics that had the most compvlete
coverage in each of the three criteria groups was determined. A combination of
the two metrics MEBOW and INFO was determined to have the best coverage
overall of the criteria.

After these two metrics were selected for use, their implementation was
studied. Algorithms to calculate the two metrics were developed, although a
tool to generate the metrics was not created. A method to determine useful
threshold values for these metrics was explained. Sources for test cases to
determine these thresholds were given. A procedure to validate the use of
these metrics to mezsure maintainability was developed. This procedure

specified what data must be collected, and when it should be collected.

74

The following section examines two issues: how the given problem was
solved, and the limitations and benefits of automated metrics are presented (or
how metrics can be helpful once the limited information they yield is
understood).

How the Preblem was Solved. The problem was to develop software

maintainability metrics to be incorporated into the AFOTEC Vol. 3. Constraints
on the metrics researched were that they had to fit into the scope of the seven
characteristics of maintainability explained in Chapter Cne. These metrics were
to measure aspects of maintainability that the Vol. 3 does not, and they must
be automatable. The following discussion presents each of these issues.

These metrics were to be incorporated into the Vol. 3, and applied within
tne seven maintainability characteristics. This was only partially fulfilled.
When this research began, the metrics were to be incorporated into the Vol. 3 as
questions, with equal weight as the other questions. As more information about
metrics was acquired, though, a decision was made not to include these metrics
within the overview of the Vol. 3, but to use them in a separate maintainability
evaluation whose results could support the Vol. 3. Also, separate metrics to
reflect each of the seven maintainability characteristics were not discovered.
Simplicity is the only characteristic that is measured by the proposed metrics.

These metrics were to measure aspects of maintainability that the Vol. 3
does not. MEBOW reflects complexity issues such as the levels of nesting in
control structures, and the scope of branches. These are addressed within the
Vol. 3, but are not measured in the same way that MEBOW does. The Vol. 3
asks the evaluator for a subjective estimate of how complex is a module's
nesting, while MEBOW objectively calculates the complexity caused by nesting.
INFO reflects the complexity of the data connections between modules, while the

Vol. 3 subjectively measures the number of global variables used, and hcew well

75

the input and output parameters to a module are described. Therefore, MEBOW
and INFO measure some different aspects of maintainability than the Vol. 3
does. These metrics can be automated and used to evaluate all of a program's
source code, instead of just a fraction of it.

Each aspect of the problem has been considered, and the constraints have
been met. This use of an automated tool that calculates MEBOW and INFO to
measure Lhé maintainability of software is a solution for the problem given.
The aspect of this problem that was not sufficiently answered is the automated
use of metrics that measure qualities supporting the six characteristics other
than simplicity.

The Limitations and Benefits of Metrics. The metrics presented can be

used to reflect maintainability, if they are used correctly and their limitations
are understood. These metrics can be used to gather data, but the
interpretation of this data must e made with a clear understanding of what the
data mean. Rodriguez and Tsai state in their conclusion, "The final conjecture
states that the metrics shauld not be accepted as axioms. They give
information, but that information has to be interpreted in the context of the
particular system being measured" (Rodriguez and Tsai, 1986:368).

Metric analyses are useful only to compare "apples with apples", whick is
a reason that a well-defined counting strategy is needed (Conte and others,
1986:27). Someone comparing two different sets of data should have confidence
that they were both counted in a consistent manner. These software metrics
require calibration from historical data gathered in a specific environment to
establish appropriate welghts and threshold values (ibid). The suggested metrics
have been shown to reflect the complexity of modules written in procedural

languages, but no evidence supports their use with different paradigms. An

76

application of MEBOW to modules written in languages such as LISP, PROLOG, or
Smalltalk might not be practical. Any comparison of measured values from
modules written in one of these languages and other modules written in a
procedural language such as Ada might not reflect their relative complexity.

While software metric results can assist the decision-making process of
software development and tlesting perscnnel, they cannot replace this process
(ibid). A module that rates below the threshold value may still be more
difficult t¢ maintain than one that scores above the threshold, depending on
maintainability factors that are not measured by the proposed metrics. For
example, a4 well-commented module that is complex may be more easirly
maintained than a less complex module that has no comments. This factor is
not reflected by the automated metrics. That is why the metrics should be used
in an advisory capacity, as Harrison and Cook suggest, "On thz practical side,
our study suggests that software project managers can use software complexity
measures as a tool in identifying the few subprograms most likely to contain the
majority of errors, and hence can allocate their testing resources more
efficiently” (Harrison and Cook, 1987:214).

Along these same lines, how the software development managers use the
metrics should be limited. According to Conte, "software metrics and models are
intended to be used to manage products, not for evaluating the performance of
technical staff" (Conte and others, 1986:27-28). If the programmers understand
that their rerformance is being measured, they will quickly find ways to realjze
improved metric results, even if this does not improve the maintainability of the
program.

Another limitation is that the difficulty and cost of computing metrics

may be high (ibid). This is a problem with the use of the Vol. 38 evaluation

11

technique. The automation of MEBOW and INFO should lessen the cost of
measuring these metrics.

Several benefits of using these automated metrics have been briefly
described. Cnre2 benefit is that modules that are most likely to contain errors
will be identified, and greater testing resources can be allocated to those
modules. Also, those modules that are too complicated are recognized, and they
can be further decomposed to less complex, more maintainable modules. Coté
expresses an interesting analogy for the use of metrics by asserting, "metrics
can greatly help in depicting the features and layouts embedded in thousands of.
lines of code, in much the same way that gauges and dials give a nuclear plant
operator an idea of what is going on inside a reactor" (Coété and others, .
1988:121).

These sections have shown that the automated calculation of MEBOW and
INFO will re«solve the problems this research has attempted to solve. The
limitations inherént with the use of automated metrics have been described,
along with the benefits from their use. Metrics have an important application,

but should not be used out of their limited context.

Recommendations

The use of a hybrid control and data structure metric appears to answer
AFOTEC's needs. Before these metrics should be used, though, certain issues
must be considered. Recommendations to resolve these issues are explained.

The first recommendation is that a tool that measures both MEBOW and
INFO must be built. Although either metric value can be computed manual_ly,
this process is difficult and time-consuming. This manual computation would

also violate one of the constraints given, that no extra work be given to the

78

evaluators. An implementation of these metrics in an automated tool is a
necessary first step for the use of these metrics.

Until some type of study has shown that this hybrid metric reliably
reflects maintainability, its use should be considered advisory. A pilot sfcudy
following the wvalidation method presented in Chapter Four will relate the meiric
values Lo maintainers' subjective ideas of which modules were more maintainable.
Once this study has been accomplished, a determination can be made if the
metrics actually reflect maintainability. If the study suggests they do reflect
maintainability, the metrics' results can be used in the same manner as the Vol.
3 evaluation results, If the study suggests the metrics do not measure
maintainability, perhaps some weighting of the metrics can be used that will
better reflect maintainability, or a different class of metric can be included.
While data for this study is being accumulated, these metrics can be compared
to the Vol. 3 results and other subjective measurements of maintainability.

The amount of data that will have to be collected by maintainers for this
pilot study may cause objections from the maintainers. They may iesent the
amount of time and effort required for a study that will not immediately support
their office. The importance of collecting this data must be emphasized to the
maintainers, as well as the positive impact to the evaluation of maintainability
of future software systems.

A recommendation for further study is for someone to complete the
validation pilot study. This is most likely an effort that AFOTEC will have to
provide for itself, as the data collection may take some time. Once this data
collection has been accomplished, following the guidelines presented in the

previous chapter, a comparison should be made with the metrics' maintainability

predictions and the collected maintainability data.

Another important area is to discover software metrics that reflect
characteristics other than just complexity. For example, Harrison and Cook
presented 2 measure of "documentation" thal they use to reflect how self-
descriptive a module is (Harrison and Cock, 1987:215). This measure is just a
ratioc of the number of comments to the number of total lines of the module.
But perhaps other descriptiveness metrics are available which cannot be so0
easily thwarted. Possibly some metric that reflects how modular the software is
can be developed. These types of metrics could be used along with the
complexity metrics already suggested and would broaden the metric coverage to

determine software maintainability.

Summnary

The use of metrics to measure software's complexity and maintainability
shows much promise, even if the initial fascinaticn with some metrics such as
Halstead's Software Science and McCabe's cyclomatic complexity has worn off.
This is well described by the conclusions of Kafura and Canning:

Evein if software metrics had no other use their proven ability to
identify the most error—-prone components wouid be of tangible
value o software developers. This tangible value is particularly
evident if the structure metrics can be used to identify the rmost
error prone components since this would permit the system to be
regesigned so as to avoid componenis of this type altogether.
Furthermore, information on error-prone components would allow the
testing or code review processes ¢ be concentra’' d on these
components (Kafura and Canning, 1985:381).

80

Appendix A: Justification for Metric Complexity Criteria Ratings

In Chapter Three, Figure 9 shows a matrix of metrics vs. the metric
selection criteria developed in that chapter. Within the matrix, marks are
shown that indicate if the metric meets the metric seiection criteria, and the
level of agreement if it does so. ThLis appendix explains the reasoning behind
the agreement indications. The metrics are listed in the same order as they
are shown in Figure 9, and remarks are given for each criteria.

LoC

Clear and Unambiguous: As the example in Figure 1 shows, LOC calculation is
ambiguous without a definite counting strategy.

Intuitive: A longer program is likely to be more difficult to maintain than a
shorter one.

Language Independent: Each language needs a different counting strategy.
Prescriptive: If a module is significantly longer than others in the same
program, it is a candidate for further decomposition. This does not give any
indication how the module should be broken up, though.

Robustness: Making a program shorter by breaking it up into modules should
lessen its complexity. This will be reflected by the metric. But as a
counter-exanple, 1f all the comments are taken out of the module, it will be
shorter, but more complex.

Aczurately Reflect Control Fiow: NA

Ranking Basic Control Structures: NA

Nesting and Compound Conditions: NA

Accurately Reflect Data Flow: NA

Indicates Data Amount: NA

Shows Data ".;e: NA

Reflects Inter-Module Data Links: NA

N

Clear and Unambiguous: Chapter Two explains that some tokens can be both
operators and ojperands, which complicates the metric calculation.

81

Intuitive: As programs are composed of operands and operators, a program with
more operators and operands is likely to be more difficult to understand than
one with fewer operators and operands.

Language Independent: In languages such as LISP, the difference between
operators and operands is not clear.

Prescriptive: A module that has a larger .umber of operators and operands
should be decomposed into shorter modules, but this gives no suggestion how to
accomplish the decomposition.

Robustness: If a module i1s changed, operators will either be added or
deleted. This will reflect that a change occurred.

Accurately Reflect Control Flow: NA

Ranking Basic Control Structures: KA

Nesting and Compound Conditions: NA

Accurately Reflect Data Flow: NA

Indicates Data Amount: While the total number of operands might be considered
a reflection of the amount of data used in a program, N includes both
operators and operands and does not show just the data.

Shows Data Use: NA

Reflects Inter-Module Pata Links: NA

Span

Clear and Unambiguous: The number of lines between two variable references is
not difficult to count.

Intuitive: The fewer the number of lines between variable rerfererces, the
more likely a maintainer will be able to understand a variable's usage.

Language Independent: This czn be used with any language that has variables
and lines between them.

Prescriptive: If a variable has a large span, 1t 1is possible that the module
18 too large and should b»e decomposed.

Robustress: A change in the number of lines between two references will be
reflected, as well as any addel variable reierences will change the span for
tha. variable.

Accurately Reflect Control Flow: NA

Ranking Basic Control Structures: NA

Nesting and Compound Conditions: NA
Accurately Reflect Data Flow: NA
Indicates Data Amount: NA

Shows Data Use: This reflects how data is used within a module to the extent
that it shows locality of variable references.

Reflects Inter-Module Data Links: NA

INFO

Clear and Unambiguous: The definition presented by Henry {Henry and Kafura,
1981) is straightforward. Others have not been able to calculate these
values. For example, Harrison and Cook did not use (fan-in * fan-out) "2 in
their calculations (Harrison and Covok, 1987). This does not suggest that the
INFO calculation is ambiguous, instead, it reflects their inability to
separate their data into fan-in and fan-out. This i1s not a problem in the
interpretation of a counting strategy, such as LOC.

Intuitive: The greater the number of connections to other modules, the
greater the possible impact of any change and the higher the complexity.

Language Independent: Any language that can be broken into modules can have
the data links measured.

Prescriptive: Henry and Kafura used INFQ to show which modules in the Unix
kernel were data "choke-points'" (Henry and Kafura, 1981:517). This gives an
indication of the effect that modifying a module will have on the other
modules in a systenm.

Robustness: If a change to the nuamber of data items referenced or modified is
made, this will reflect the change. This will not reflect a change to 'ow *he
data is used, or any chaage in the module control flow.

Accurately Reflect Control Flow: NA

Ranking Dasic Control Structures: NA

Nesting and Compound Conditions: NA

Accurately Reflect Data Flow: This will reflect the inter-module data flow,
but not the intra-module data flow.

Indicates Data Amount: This reflects the parameter and global data flows into
and out of a module.

Shows Data Use: This shows the amount of data. but not its use, in a module.

83

Reflects Inter-Module Data Links: This reflects the parameter and global data
flows into and out oI a module.

vi6)

Clear and Unambiguous: Different counting strategies have been introduced for
control structures such as case statements.

Intuitive: The greater the number of branches in a module, the more difficult
it will be to understand.

Language Independent: This operates on a directed graph representation of a
program, so it i1s independent.

Prescriptive: This tells when a program has become too complex. By viewing
the control flow graph, a determination can be made how sections of code can
be separated into a different module without adversely affecting the structure
of the original module.

Robustness: A change in a control structure may cr may not be reflected. A
rearrangement of a module that contaius the sw22 number of branches will not
have a different v{(G) value. Any change to sequential statements will not be
reflected, nor will any change to the data flows.

Accurately Reflect Control Flow: This does represent the controcl flow of a
module.

Ranking Basic Control Structures: A series of sequential statements 1is
presented as less complex than a branch. An IF...THEN...ELSE branch is shown
as more complex than an IF...THEN branch. An iteration construct is more
complex than a sequential statement.

Nesting and Compound Conditicns: Argu .nts were given in Chapter Two saying
that this does not reflect nesting or compound conditions.

Accurately Reflect Data Flow: NA
Indicates Data Amount: NA
Shows Data Use: NA

Reflects Inter-Module Data Links: NA

Keot

Clear and Unambiguous: A crossing of control paths 1s easily understandable.
It the language in use allows multiple statements on one line, though, some
difficulty in determining if a Xnot occurs may arise.

Intuitive: If structured programming 1s considered to be & useful paradigm,
then any reflection of unstructuredness will show added complexity.

84

Language Independent: The problem of calculating the knot count with a
language that allows multiple statements on a line arises.

Prescriptive: According te Woodward, (Woodward and others, 1983) if a module
with knots is rewritten to have fewer knots, it will be less complex. The
proklem is how to rearrange the code to have fewer knots.

Robustness: A change in a module's control structure will be reflected. But
any change to sequential code or data flow will not be reflected.

hccurately Reflect Control Flow: This does not represent the program's
underlying control flow, instead, it reflects the unstructuredness of the
source code text.

Ranking Basic Control Structures: No ranking is given.

Nesting and Compound Conditions: This does reflect nesting and any branches
out of nested control structures.

Accurately Reflect Data Flow: NA
Indicates Lata Amount: NA
Shows Data Use: NA

Reflects Inter-Module Data Links: NA

MEBOW

Clear and Unambiguous: This is slightly more complex to understand than
either v(G) or Xnot, but is precisely defined.

Intuitive: The more complex the contrul structures are in a module, the more
complex the module 1s.

Language Independent: This operates on a directed graph representation of a
program.

Prescriptive: This telis when a program has becore too complex. By viewing
the centrnl flow graph, a determination can be made how sections of code can
be separated into a different module without adversely affectiry the structure
of the original module.

Robustness: To a greater extent than either v(G) or Knot, this will ieflect
any changes in a module's control flow. But this has their same limitation
that 1t dces not reflect data flow or the amocunt of segquentizl code.

Rccurately Retlect Control Flow: This reflects the control flow as well as
v{G), and shows unstructuredness ar well as Knot.

85

Ranking Basic Control Structures: This reflects the ordering: sequential
statements ¢ condition statements < iteration statements.

Nesting and Compound Conditions: This reflects nesting becaunse of the scope
component in each branch's value.

Accurately Reflect Data Flow: NA
Indicates Data Amounvt: NA
Shows Data Use: NA

Reflects Inter-Moduie Data Links: NA

E
Clear and Unambiguous: This has the same counting ambiguities as N.

Intuitive: Studying the total and unique operators and operands is
understandable. The weighting factors in the E value lessen its easy
understanding.

Language Independent: This has the same problem as N.

Prescriptive: A higher value will suggest that the program needs to be
decomposed, but does not give any guidelines how to implement this
decomposition.

Robustness: Changing the number of operators or operands will make a
difference in the metric value, especially 1f the operator or operand has not
been used yet 1n the module.

Accurately Reflect Control Flow: NA

Ranking Basic Control Structures: NA

Nesting and Compound Conditions: NA

Accurately Reflect Data Flow: NRNA

Indicates Data Amount: NA

Shows Data Use: NRA

Reflects Inter-Module Data Links: NA

v(G), nl

Clear and Urambiguous: The caiculation of vi{G) was explained abcve. Counting
the number of unique operators may ke difficult, as the N section reflects.

86

Intuitive: Adding operators to the branches should show more about the
modules's complexity than either will separately.

Language Independent: While v(G) 1s language independent, the operator count
is not.

Prescriptive: This comes from the description of v{G) prescriptiveness.

Robustriess: A change in either the number of branchnes or the number of unigue
operators will be reflected by the metric. Any change in data will not be
reflected.

Accurately Reflect Control Flow: This will reflect control flow as well as
v{G).

Ranking Rasic Control Structures: This ranks structures as well as v(G).

Nesting and Compound Conditions: This has v{G)'s limitations in reflecting
nesting.

Accurately Reflect Data Flow: NA
Indicates Data Amount: NA
Shews Data Use: NA

Reflects Inter-Module Data Links: NA

C
Clear and Unambiguous: This s a vecry complex metric to calculate.

Intultive: Using both a data structure metric with a controil flow metric
gains the benefits explained for a hybrid metric.

Language Independent: This does n t reflect any particular language, as long
as a procedural language 1s used.

Prescriptive: A high data flow or control flow companent will suggest that
the module needs to be decomposed, but doesn't explain auw to best decompose
the module.

Robustness: Any change of "locally exposed” data references will be
reflected, and changes 1n the coutrol flow will be reflected.

Accurately Reflect Control Flow. This reflects the number of branches 1in a
nodule.
Ranking Basic Control Structures: This ranks sequential statements as less

complex than conditions.

g7

Nesting and Compound Conditions: This reflects nesting, and reflects the use
of data within nested statements.

Accurately Reflect Data Flow: This shows the use of data aud the amount of
data that are "locally exposed".

Indicates Data Amount: The data flow factor reflects the number of variables
used.

Shows Data lUse: The use of data within a module 1s reflected within each node
of the module.

Reflects Inter-¥ 1ule Data Links: This is an intra-module metric.

13
o=

Appendix B: Algorithms for setric Value Computation
This sectiou explains algorithms for calculating the metric values for
both MEBOW and INFO. The INFO calculations are given first, then the MEBROW
algorithms are explained. Fach sectiocn will have an explanation, followed by
a pseudocode representation of the algorithm.

Information Flow Calculation. This calculation requires a list of the

reserved words for the languaqe the module under evaluation is written in.
This algorithm assumes that a parsev is available that can return tokens for
the language being used, 2long with a list of parameters from the module
calling statement. The algurithm goes through the module, looking for valid
identifiers, and compares each identifier to this list of reserved werds. If
the identifier is in the list, it is Aiscarded and the next identifier 1is
evaluated. When the module's parameter declaraticns are evaluated, any
identifier used as an input variable is added to the input list and any
identifler used as an cutput variable is added to the output list. Any
variables declared locally are placed in the reserved word list so they will
not be cournted as input or output data flows.

Tf the i1dentifier 1s not in the list, depending on how the identifier is
used, 1%t is compaved to either a list of input identiriers or a list of output
identifiers. If the identifier is on the left side of an assignment, it 1is
compared teo the output identifiers. If 1t is used 1in any other expression, it
15 vompared to the ilist of input identiiiers. If the identifier is not in the
appropriave list, 1t 1s sdded to tuat list. This operation continues until

the end of the module 1s reached.

- This section adds the wodule's parameters to the input and output
identifier lasts.

REPEAT

IF the identifier is an input parameter
THEN

ADD the identifier to the list of input identifiers
ELSE
ADD the i1dentifier to the list of output identifiers
ENDIF
UNTIL no more parameters are found

-~ This section adds the module's locally declared variables to the list
-- of reserved wcrds so they will not be counted for the INFO value

REPEAT

IF a valid variable declaration is found
THEN

ADD the identifier to the list of reserved words

ENDIF
UNTIL the beginning of the program body is found
-- This section looks for identifiers within tihe body of the module and
-~ adds these identifiers to the input and output identifier lists.
REPEAT

INPUT an identifier

COMPARE the identifier to a list of reserved words

IF the identifier is not in chis iist

THEN

IF the identifier is on the left side of an assignment
THEN
CONFARE the identifier to a list of ocutput identifiers
TF the 1dentifier 15 not an this list

THENR

ADD the 1dentaifrer to the list of output 1dentifiers

ENDIF
ELSE (the identifier 1s not being assigned a value)
COHPARE the identifier to a lict of ipput identifiers
IF the 1dentifier 1s not in this list
THEN
ADD the identifier to the list of input identifiers
ENDIF
ENDIF
ENDIF
UNTIL the end cof module 15 reached
CALCULLATE INFU as (the number of input identifiers =

the number of output identifiers) ~ 2

MEBOW Calculation. Each statement within the module that is either a

branch or the target of a branch is kept track of by its line unumber. A list
of btranch/target rpairs is kept, along with a determination of the type of
branch. The types of branches are implicit or explicit, and backwards or
forvards, each having a different value for MEBOW calculations. Once all of
the branch/target pairs have been determined for the module, each branch's
value 1s calculated.

Each branch is assigned the weight of its type. For example, if a
branch from line 13 to line 17 1is implicit, the branch (13,17) is assigned 1,
ot the explicit branch (15,8) is assigned 6. Then, the scope of each branch
1s calculated. A list of branches that are within the scope of each branch is
determined, along with any knots within that scope. If a branch has no other
branches or kuots withiu its scope, 1t 1s flagged as completed. This list
that contains the branches and knots within the scope of a branch 1s a 1list of

those values the branch depends on, or its dependency list.

31

The value for each branch is calculated as the sum of its weight and the
sum of the values for the branches and knots in its dependency list. If each
of these branches and knots has 1ts completed flag set., then the current
branch's value can be calculated and its completed flag set. If any of these
branches or knots 1s not completed, the current branch is bypassed for later
calculation. This 1s an iterative process, which continues through the list
of branches until all dependencies have been completed. The sum of all the
branch's values 1is the returned MEBOW value.

A case statement will be treated somewhat differently. A list of the
line numbers for its selections will be kept, along with their number. The
calculation of its value is 2 * the number of selections, added to the value
of each selection. These values are calculated the same as any other
statements, and dependency lists are kept for case statements, also. once
each selection's dependencies have been evaluated, the case statement's value

can be calculated.

~- This creates the list of branches

REPEAT

IF the statement 1s a branch
THEN

ADD the line number to the list of branches, along with a
determination of what type of branch it is

EL:SE
IF the statement 1s the target of a branch
THEN
ADD the line number to 1ts corresponding braach, to
create a (TO, FROM) representation
ENDIF
ENDIF

UNTIL the last statement 1s 1input

-- This generates the list of dependencies for each branch and determines
-- 1f any knots have occurred. Any knots are kept in ~ separate li.t,
-- and their dependencies are also generated.

REPEAT

COMPARE the line numbers for a branch to each other branch
IF overlap of line numbers exists
THEN

IF the criterion for a knot exists
THEN

ADD the knot to the list of knots
ENDIF

ADD the dependency to the current branch
SET the completion flag to false

SET the completion flag to true
ENDIF

UNTIL all branches and knots have had their dependencies evaluated

-- This goes through the lists of branches and knots and determines
-- which have enough information available to calculate their value.
-- 1f they depend on the value of a branch or knot that is not yet
-- known, then pass to the next branch or knot and try to calculate
~- its value.

REFEAT

IF the completion flag of a branch or knot is false
THEN

CHECK the completion flags for each branch and knot in its
dependency list
IF all of the completion flags are true
THEN

ADD the values for each branch and knot in che
depecdency list

SET the completion flag to true

ENDIF

ENDIF
UNTIL ail completion flags are set
-~ The MEBOW wvalue is the sum of the values Ior the branches aud the knots
REPEAT

ADD the value of the current branch or knot to the SUM

UNTIL all branches and knots have been added

-- The MEBOW wvalue 1is now known.

4

kppendix C: Empirical Support for Hybrid Metrics
Empirical Evidence.

In Chapter Four, descriptions of four studies that use uybrid meirics
were given. The data and results that came from these studies are presen ed
nere 1n more detail. This section shows the data for three of the four
studies.

Kafura and Canning's Study. Kafura and Canning's research identified 32

components that were extrcme outliers, or the most error-prone components,
from within the 170 components they studied. They anaiyzed these 32
comporents with their ten metrics. They found that 28/32 extreme outliers
were identified by at least one of the ten metrics (Kafura and Canning,
1965:382). The best result that any single metric had was 20/32. This metric
was the INFO-LOC hybrid measure. Figure 14 shows a matrix of the mecrics a.d
the extreme outlier components they identified.

Thi, analysis was also performed on all the outliers, not just the
extreme outliers. The number of components in this category totaled 85.
INFO-LOC identified 42/3% outliers. This the best result of any metric used.
This metric also 1dentified the second fewest number of non-outliers as
cutliers. All of +he metrics incorrectly identified some components as
outliers, but INFO-LOC's percentage of correctly identified outliers to total
outliers presented was 42/63, which 1is only beaten by LOC's yield of 41/59.
¥hile other metrics i1dentified fewer ncpn-outliers as outliers, they also did
not recegnize as many of the correct outliers.

Harrison and Cook's Study. Harrison and Cook's results showed that
their hybrid metric was able to 1dentity the most error-prone modules bettey

than aoy otiaer metric used. The results jip Figure 1% show that MhMC as a

[| R
Software 12 345678911111113111222222222233 3Hetric
Metric 0123456789012345678901 2| Total
jre e XX X X XX X X X X XX XXX XX X 13
EFFCRT X X X X X 5
CYC1O X X X X X XX X X 10
INFO XX XX XXX XXXXX XX X XXX X 19
INVOKE XX XXX XX XXXX X X X XXX 17
REVIEW XX XX X X X¥ 8
STABILITY X X XXX XXX XX XX 12
INFO-LOC XX ¥XXXXX XXXXX XX X XXX X 20
REV-LOC XX X X X X X XX XXX 12
STAB-LOC X X X XX XXX X XX X 13

Component Totalsi810455475144746002754520886104323

Figure 14. Identification of Extreme Outlier Error Components
(Kafura and Canning, 1985:382)

r —
Metric BUGS MHC ENP HXK DSL VG E PRC
MNC .82 ~--- .90 17 .67 .91 .80 .19
HNP L1590 - .84 .10 .95 .87 .92
HNK .62 .1 .84 R 17 .89 .98 .91
DSL RN Y .70 17 - 7T .81 .10
VG L1300 .91 .95 .89 .1 - .93 .92
E .69 .80 .87 .98 .81 .93 = .93
PRC .64 .79 .92 .91 .10 .92 .93 -

Pearson Product Moment coefficients of correlation for each of the metrics vs.
the number of errors and the other metrics. MMC: the new metric; HNP: Hall
and Preilser's Metric; HNK: Henry and Kafura's Metric; DSL: Delivered Source
Lines; VG:r MeCabe's Metric; E: Halstead's Sffort; PRC: number of procodures.

Figure 1%, Results of Harraison and Cook’'s Study
{Harrison and Cook, 19%7:217)

G

1[)

r

1.

" hybrid of different types of metrics outperforms its component parts. They

wrote, "as can be seen, the MMC metric performed significantly better than any
of the other metrics exarined” (Harrison and Cook, 1987:217). The MMC metric
had a .82 correlation with the number of errors found in the modules tested.
This metric was "based loosely”™ on the Hall and Preiser Combined Network
Cozplexity metric and Henry and Kafura's INFO, with a microcomplexity metric
of vI(G) (1bid:215-216).

Pararur+hy and Melton's Study. Ramamurthy and Melton did not perform a
statistical analysis of the quality of their weighted metrics. Instead, they
shovwed cozparisons of the unvweighted and weighted Software Science and v(GY
retrics against 24 pairs of test prograns and progran segments. In three
tatles, each pair is shown with the first program as the more complex of the
two., Nc justification how the first program was identified as more complex
was given.

Their first table showed six programs with the same Software Science
values but different v{(G). Their weighted metrics identified the first
progran of the test pair as more complex in all cases. Their second table
showed eight programs with the same v(G) but different Software Science
values. In all cases, the weighted effort showed the first program in the
test pair as more complex. In one case, the weighted length and volume
measures incorrectly identified the less complex program, although the
weighted effort for the same program was correct. Their third table showed
ten programs with different Software Science and v(G) values. The weighted
length and volume metrics correctly identified all ten programs. The weighted
effort metric incorrectly identified one program. Overall, the weighted
metrics correctly identified 23/24 programs as being more complex than the

less complex of the test pair. The Software Science metrics correctly

87

identified 16/24, and v(G) correctly identified 15/24. This suggests that a
hybrid measure identifies complexity better than a single metric can

{(Ramamurthy and Melton, 1986:312).

Appendix D: Calculation of Metric Value for an Ada Procedure

This appendix shows the calculation of both metrics for an Ada procedure.
This procedure was taken from a program that calculates v(G) for Ada programAs,
and is in the public domain. First the MEBOW calculation is presented, then a
list of the input and output variables will be given with a calculation of
information flow.

The MEBOW calculation for this procedure will not be presented in the
same format as Figure 12. The flow graph for this example is complicated and
will not add to the comprehensibility of the example. Instead, Figure 16 shows
MEBOW values for five basic control structures. These structures are labeled in
the example. Their MEBOW values, which are their basic values added to their
scope, are presented after the example.

The first line of 2 control structure branch used in the MEBOW calculation
is labeled with a designator for reference during the MEBOW value calculation.
This designation is "C" for a case statement, "I" for an if statement, and "W"
for a while loop. These designators are numbered sequentially, so "I3" refers to
‘the third occurrence of an if statement.

Figure 16 shows the MEBOW values for the if statements and while
statements used, but does not refer to the case statements. Each case
statement's MEBOW value is twice the number of branches, which are its
enclosed "when" statements. To this value the scope of each enclosed branch is
added, to give the MEBOW value for the branch. For example, the case
statement C4 has three branches, and encloses C5, C6, and 15 within its scope.

Therefore, its value is (2 * 3) + C5 + C6 + 15 = 29.

99

sl

Os,

(a) Sequence

MEBOW = O

sl

1F <cl>
THEN s2;

s)

(b) Selection
1F...TREN
MEBOW = 3

sl
REPEAT

s

UNTIL <el>;
s3

(d) Repetition

9

{
1?53
\

Cs,

sl

IF <2
THEN s2
ELSE s3;

sb

(c) Selection

IF...THEN..

MEBOW = &

sl

WHILE <cl> DO
§2;

sl

{e) Repetition

wn
—

< 0-20

\

655

.ELSE

'
65352
t)sz

REPEAT...UNTIL WHILE el
MEBOW = 5 MEBOW = ?
Figure 16.

MEBOW Basic Control Constructs

(Jayaprakash and others, 1987:240)

100

procedure Scan_Numevic_Literal; --, Scans numbers
Requires

]
t
{
~-1 This subprogram requires an opened source file, and the
! Universal Arithmetic package to handle conversions.

]

]

Effects

)
1
:
~-1 This subprogrim scans the rest of the numeric literal and converts
{ 1t to internal universal number format.

'

\

Moditfies

CST

procedure Scan_Numeric_Literal is

--1 Overview

-~ Note the following LRM Sections:

-1 LRM Secticn 2.4 - Numeric lLiterals
-=1 LRM 3Section 2.4.1 -~ Decimal Literals
- LRM Section 2.4.1 - Notes
-1 LRM Section 2.4.2 - Based Literals
2.10 - Allowed Replacements of Chararcters

]
- LRM Section

-- Declarations for Scan_MNumeric _Literal

Based_Literal_Delimiter : character:
--1 holds value ot firs* based_literal delimster:
-=-1 ASCIT.COLON (':') or ASCIT.SHARP ("#'};
i so the second one can be checked to be identical.

Base PBeing_Used : GC.Parserinteger:
-! base value to be passed to Scan_Based_Literal.

begin
CST.gram sym val := PT.NumericTokenValue:

Work String lLength = 0;
also used by sub-scanners called from this subprogram.

101

~= Scan first field
Scvan_Integer;

-~ Wow, scan res: of literal dependent on what Next char is
Cl case Next Chav is

~~ have a decimal_literal
when FLTo=
11 if (Look_Ahead(l) = ',') then
-~ next token is o range double deiimitey.
-~ finished with numeric_literal.
Seen_Radix_Point := false; ~-- have an integer literal
-- already set_up for next scanner,
-- no call to Get_ Next_Char.
else
= true;

Seen_Radix_Point r
ce_Rep;

Add_Next Char_To_Sou
Get _Next_Char;
C2 case Next Char is
when Digit =
Scan_Integer;
-- check and flag multiple radix points
Wi while (Next_Char = '.') and then
(Look_Ahead(l) in digit) loop
LEM.Output_Message
{ Current _Line
, Current Column
. LEM.Too Many_Radix_Points);
Add_Next Char_To_Source Rep;
Get Next_Char;
Scan_Integer;
end loop;
when ASCII.UNDERLINE = -
-- flag 1llegal leading under line
LEM.Output Message(
Current Line
. Current_Colunn
, LE¥ Leading_Underline);
Scan _Integer;
net flagging an integer consisting of a
-~ single underline as a trailing radix
point case. Check and flag multiple radix
points.
w2 while {Next Char = '.') and then
{Look_Ahead{l}! in digit) loop
LEM.Output Message
Current_Line
. Curvent Column
. LEM . Too Many Raduix _FPoimds);
Add Next Char To Source Fep:
Get Hext Char;
Sean Tateger;
end loop;

&
-
r

g

when others =

-~ flag trailing radix point as an error
LEM.Output_Message (

Current_Line

. Current_Column

, LEM.Digit Needed_After_Radix_Point);
end case;

Scan_Exponent; -~ check for and process exponent

end 1f;

-- have a based_literal

when ASCII.SHARP | R
ASCITI.COLON => -— '
12 if (Next_Char = ASCII.COLON) and (Look_Ahead(l) = '=') then

-~ next token is an assignment compound delimiter
-~ finished with numeric literal.
Seen_Radix_Point := false; -- have an integer literal
-~ already set up for next scanner, no call to
-- Get_Next Char.
else
Based_Literal Deliiiter := Next_ Char;
Base Being_Used := GC.ParserlInteger'VALUE
{(Work_String(l..Work_String Length));
if {Base_Being Used not in Vvalid_Base_Range) then
-- flag illegal bases as errors
LEM.Quiput_Hessage
Current_Line
. Current_Coclumn
, Work_String(1..Work_String_Length)
, LEM.Base Out_0Of Legal Range lse_16);
Base_Being _Used := 16;
-~ Wwe use the maximum oase to pass all the
-~ extended_digits as legal.
end 1f;

I3

Add_Next _Char_To_Source_Rep; -~ save the base delimiter
Get _Next_Char;

€3 case Next Char is
when 'A' .. 'F' | ‘'a® .. "f' | Digit =
Scan_Pased_Integer{Base_ Being Used):
when ASCTI.UNDERLINE = e
>>>>>> flag 1llegal leading under line
EM . Qutput Message (
Current_Line
Current _Cclumn
LEM . Leadivg Underline):
pot flaggyng an integer consisting of 4 single
under 'ine as a irailing radix point case.
Scan_Based Integer{Base Being Used);
when 0 =)

e

~~ $lag leading radix point as an error
LEM.Output_Message (
Current_ line
. Current_Celumn
. LEM.Digit Needed_Before_Radix_Point);
when ASCII.SHARP | -- §
ASCIT.COLON = - '
-~ flag missing field as an error
LEM.Output Message(
Current_Line
. Current_Column
, LEM.No_Integer_In_Based Number);

== based_literal _delimiter mismatch handled in
~- next case statement.
when others =
~-- flag missing field as an error
LEM.Output_Message
Current_Line
. Current _Columrn

. LEM.No_Integer_In Based_Number);
end case;

case Next_Char is
when '.' =)
Seen_Radix_Point := true; -- have a real_literal
Add_Next_Char_To_Scurce_Rep;

Get_Next_lhar;
case Next Char is
when "R' .. 'F'" | 'a' .. "f' | Digit =
Scan_Based Integer(Base Being Used);
-~ check and flag multiple radix points
while (Next Char = '.") and then
{{Look_Ahead{l} in digit) or
{Look_Bhead (1} in *R* .. "F'} or
{Loox_Ahead{l) in 'a' .. "f')) 1
LEM. Qutput Hessage !
Current _Line
, Cuvrent Column
Add Next Char To Source_ Rep:
Newnt Char;

Based Tnteger {(Base Being Ueed):

Get

end loop;
when ASCIT.UNDERLIKE = et
flag illegal leading under lined
LEM.Output Hessags
Cmvyent bLine
Current Colunn
. LEM. Leading Underlainel;
not flagging an intuege:

a sangle anderiine as o a

1od

-~ radix point case.
Scan_Based_Integer(Base Being_Used);
when others =»
-- flag trailing radix point as an error
LEM.Output_Message
Current_Line
, Current_Column
, LEM.Digit_Needed After Radix_PFoint);
end case;

cé case Next Char is
ahen RASCIT.SHARP | RIS
ASCIT.CCLON = -- !

Add_Next Char_To_Source_Rep;
-~ save the base delimiter

14 if (Next_Char /= Based_Literal Delimiter)
then
-- flag based literal delimiter
-- mismatch as an error
LEM.Output_Message(
Current lLine
, Current_Column
. “"Opener:
& Based_Literal Delimiter
& " Closer: " & Next_Char,
LEM.Based literal Delimiter_ Mismatch);
end if;

Get _Newt_Char; -- after base delimiter
check for and process exponent
scan_Exponent;

when others =
- flag wmissing second
based literal delimiter as an error
LEM.OQutput Message
Current_bine
Current_Column,
LFM.Missing_Se¢cond_Based lLiteral Delimiter);
end case;

whew RSCIT.SHARP | --
ASCIT.COLON =» - T

have an integer literal
Seen_Radix Point := false;

save the base delimiter
Rdd Next Char_To_Source_Rep;

14 1f {Next Char /= Based Literal Delimiter) then

LEM. Output Message |

109

Current_Line

. Current_Column

p "Opener: " & Based_Literal Delimiter
& " Closer: " & Next_Char

. LEM.Based_Literal_Delimiter Mismatch);

end if;
Get_Next Char; -- get character after base
-- delimiter
Scan_Exponent; -- check for and process exponent

when others =)
~-- assumbe an integer_literal
Seen_Radix_Point := false;
~~ flag missing second
-- based_literal delimiter as an error
LEM.Qutput_Message (
Current_Line
. Current_Column
. LEM.Missing_Second_Based_Literal Delimiter);
end case;

end if;

~--we have an integer_literal
when cthers =)

Seen_Radix_Point := false; -~ have an integer_literal
Scan_Exponent; -- check for and process exponent
end case;

-- one last error check
16 1f (Next Char in Upper Case Letter) or
(Next_Char in Lower_Case_Letter) then
-— flag missing space between numeric_literal and
-~ identifier (including RW) as an error.
LEM.Output_Message
{ Current_Line
, Current Column
. LEM.Space_Must Separate Num And 1Ids):
end 1f;

-- now store the source representation of the {oken found.
Set _CST_Source_Rep(Work_String(l..Work_String_Length));

end Scan_Numeric_literal;
This example has six case statements, six if statements, and three while
statements. Each statement {s calculated as 1ts basic valuv plus Its scove. No

kpots exist in this example to be counted,

106

Branches:

Cl = (2 % 3) + 11+ 12 =76
C2 = (2 * 3) + Wl + W2 =20
Cy = (2 *5) =10

C4 = (2 * 3) +C5 + L6 + 15 = 29
Ch = (2 * 3) + W3 =13

C6 = (2 * 2) + 14 =1

Il = 4 + C2 = 24

I2 =4 +C3 + C4 + I3 =46
I3 =3

I4 =3

I5 = 3

I6 =3

Wl =7

W2 =17

W3 =17

MEBOW = 258

It 1s interesting to note that this MEBOW value is only slightly larger
than the value for the much shorter exampie given in Figure 12. The reason is
that this example shows well-structured code. This code has no explicit
backwards branches, and no knots exist. This procedure's execution will always
proceed from the top to the bottom, except for the implicit backwards branches
because of the while statements.

The information flow calculation for this procedure is quite simple. All of
the wvariables used other than the three locally-declared variables are global.
if these wvariables are on the left side of an assigninent, they are counted for
fan-out. I they are used in any other location, thev are counted for fan-in.
One variable, "Work_String_Length,” is used for voth and ls counted as both
fan-out and fan-in.

Variables counted for fan-out:

CST.gram_sym_val

Work String Length
Seen_Radix_Point

107

Variables counted for fan-in:

PT.NumericTokenValue;

Next_Char

Look_Ahead

Digit

Current _Line

Current_Column
LEM.Too_Many_Radix_Points
LEM.Leading_Underline
LEM.Digit_Needed_ After_Radix_Point
¢C.ParserInteger 'VALUE

Work_String

Work_String_Length

Valid_Base_Range
LEM.Base_Cut_Of_Legal_Range_Use_16
LEM.Leading_Underline
LEM.Digit_Needed Before_Radix_Point
LEM.No_Integer In_Based_ Number
LEM.Based_Literal Delimiter Mismatch
LEM.M1issing_Seccnd_PBased_Literal Delimiter
Upper_Case_Letter

Lower_Case_Letter
LEM.Space_Must_Separate_Num_And_Ids

INFO is defined in equation 4 as (fan-in * fan-out) *° 2. The number of
variables counted for fan-in is 22. The number of varianles counted for fan-
out is three.

INFO = (22 * 8) ** 2 = 43506

108

Bibliography

Basili, Victor R. and Barry T. Perricone. "Software Errors and Complexity: An
Empirical Investigation," Communications of the ACM, 27:1: 42-52
(January 1984).

Basili, Victor R. "Data Collection, Validation, and Analysis," Tutorial on Models
and Metrics for Software Management aiid Engineering, edited by Victor R.
Basili. New York: IEEE Computer Society Press, 1980.

Basili, Victor K. and KRobert W. Reiter, Jr. "Evaluating Automatable Measures of
Software Development,” Tutorial on Models and Metrics for Software
Manapement and Enpineering, edited by Victor kK. Basili. New York: IEEE
Computer Society Press, 1980,

Boehm, B, W. and others. "Quantitative Evaluation of Software Quality," Tutorial
on Models and Metrics for Software Management and Engineering, edited by
Victor R. Basili. New York: IEEE Computer Society Press, 1980.

Conte. s 1. and others. Software Engineering Melrics and Models. Menlo Park
CA: The Benjamin/Cummings Publishing Company, Inc, 1986.

Coutle, V. and others, "software Metrics: An Overview of Recent Results,” The
Journal of Systems and Software, 8: 121-131 (1988).

Curtis, Bill and others, "Measuring the Psychological Complexity of Software
Maintenance Tasks with the Halstead and McCabe Metrics,” Tutorial on
Models and Metrics for Software Management and Engineering, edited by
Victor R. Basili. Silver Spring MD: IEEE Computer Society Press, 1980.

Curtis, Bill and others, "Third Time Charm: Stronger Prediction of Programmer
Performance by Software Complexity Metrics,” Tutorial on Models and
Melrics for Software Management and Engineering, edited by Victor K.
Basili. Silver Spring MD: IEEE Computer Society Press, 1980.

Department of the Air Force. Software Maintainability - Evaluation Guide.
AFOTEC Pamphlet 800-2, Vol. 3. Albuquerque: HQ AFOTEC, 28 January
19885,

Hamer, Peter G. and Gillian D. Frewin, “M. H. Halstead's Software Science - A
Critical Examination.” Proceedings 6th International Conference on
Software Engineering. 197-205. New York: IEEE Computer Society Press,
1982,

Hansen, Wilfred J., "Measurement of Program Complexity by the Pair (Cyclomatic
Number, Operator Count),” ACM SIGPLAN Notices, 13:3: 29-33 (March
1978).

Harrison, Warren and Curtis Cook, "A Micro/Macro Measure of Software
Complexity,” The Jcurnal of Systems and Software, 7:3: 213-219
(September 1987).

109

‘ Harrison, Warren and others, "Applying Software Complexity Metrics to Program
Maintenance," IEEE Computer, 15:9: 65--79 (September 1982).

Henry, Sallie and Dennis Kafura, "Software Structure Metrics Based on
Information Flow", IEEE Transactions on Software Engineering, SE-7:5:
510-518 (September 1981).

Henry, Sallie and others, "On the Relationships Among Three Software Metrics,"
Structured Testing, edited by Thomas J. McCabe. Silver Spring MD: IEEE
Computer Society Press, 1983.

Howatt, Major James W., Professor, School of Engineering. Personal
Correspondence. Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, 4 Nov 1988.

Howatt, Major James W., Professor, School of Engineering. Personal
Correspondence. Air Force Institute of Technology (AU), Wright—Patterson
AFB OH, 17 July 1988.

Jayaprakash, S. and others, "MEBOW: A Comprehensive Measure of Control Flow
Complexity," Proceedings of the |EEE Computer Software and Applications
Conference. 238-244. New York: IEEE Press, 1987,

Kafura, Dennis and James Canning, “A Validation of Software Metrics Using Many

Metrics and Two Resources,” Proceedings 8th International Conference on
Software Engineering. 378-385. New York: IEEE Computer Society Press,
1985.

Kafura, Dennis and Geereddy R. Reddy, "The Use of Software Complexity Metrics
in Software Maintenance,”]EEE Transactions on Software Engineering,
SE-14:3: 335-343 (March 1987).

Kearney, Joseph K. and others, "Software Complexity Measurement,"
Communications of the ACM, 29:11: 1044-1050 (November 1986).

Kitchenham, Barbara A., "An Evaluation of Software Structure Metrics,"
Proceedings of the IEEE Computer Software and Applications Conference:
369-376. Washington, D.C.: Computer Society Press of the lEEE, 1988.

Levitin, Anany V., "How to Measure Software Size, and How Not To," Proceedings
of the IEEE Computer Software and Applications Conference. 314-318.
New York: IEEE Press, 1986.

Li, H. F., and W. K. Cheung, "An Empirical Study of Software Metrics," l1EEE
Transactions on Software Engineering, SE-13:6: 697-708 (June 1987).

Lynn, Capt. Bernle. "Verification Study Results on the Software Maintainability
Questionnaire (AFOTECP 800-2, Volume 3) and Evaluation Threshold (3.3)."
HQ AFOTEC/LGS, Kirtland AFB, NM, 17 April 1985.

McCabe, Thomas J. "A Complexity Measure," Structured Testing, edited by
Thomas J. McCabe. Silver Spring MD: IEEE Computer Society Press, 1983.

110

Myers, Glenford J., "An Extension to the Cyclomatic Measure of Program
Complexity,” ACM SIGPLAN Notices, 12:10: 61-64 (October 1977).

Oviedo, Enrique I., "Control Flow, Data Flow and Program Complexity,"
Proceedings of the IEEE Computer Software and Appiications Conference:
146-152. New York: IEEE Press, 1980.

Page-Jones, Meilir. The Practical Guide to Structured Systems Design. New
York: Yourdon Press, 1980.

Peercy, David E., "A Software Maintainability Evaluation Methodology," IEEE
Transactions on Software Engineering, SE-7:4: 343-351 (July 1981).

Prather, Ronuald E., "An Axiomatic Theory of Software Complexity Measure," The .
Computer Journal 27:4: 340-347 (1984). N

Ramamurthy, Bina and Austin Melton, "A Synthesis of Software Science Metrics
and the Cyclomatic Number,” Proceedings of the IEEE Computer Software
and Applications Conference. 308-313. New York: IEEE Press, 1986,

Rodriguez, Volney, and Wei-Tek Tsai, "Software Metrics Interpretation Through
Experimentation,” Proceedings of the IEEE Computer Software and
Applications Conference: 368-374. New York: lIEEE Press, 1986.

Schneidewind, Norman F., “The State of Software Maintenance,” JEEE Transactions
on Software Engineering, SE-13:3; 303~310 (March 1987).

Shen, Vincent Y, and others, "Software Science Revisited: A Critical Analysis of
the Theory and Its Empirical Support,”, 1EEE Transactions on Software
Engineering, SE-9:2: 155-165 (March 1983).

Shepperd, Martin, "A Critique of Cyclomatic Complexity as a Software Metric,”
Software Engineering Journal: 30-36 (March 1988).

Walsh, Thomas J. "A Software Reliability Study Using a Complexity Measure.”
Structured Testing, edited by Thomas J. McCabe. Silver Spring MD: I[EEE
Computer Society Press, 19343.

Woodward, Martin R., "A Measure of Control Flow Complexity in Program Text,"
Structured Tesling. edited by Thomas J. McCabe. Silver Spring MD: IEEE
Computer Society Press, 1983.

111

VITA

Captain Stephen K. Johnsen was born on 22 April 1962. His birth was
recorded in Corvallis, Oregon, although he rarely admits that in public. After
moving to California as a child, he graduated from Soquel High School in 1980,
and accepted an appointment to the United States Air Force Academy. He
received a Bachelor of Science degree in Computer Science and a regular
commission _into the Air Force.

Captain Johnson's first assignment was with the Strategic Air Command at
Edwards AFB, California, in support of the B-1B Combined Test Force. He was
responsible for measuring the maintainability of the B-1B's Defensive Avionics
System's software and developed an appreciation for AFOTEC's maintainability
evaluation guidelines. Captain Johnson entered the School of Engineering at the

Air Force Institute of Technology in June 1987.

Permanent address: None

112

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECORITY ‘CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

ARPTT/GCS/ENG/88D-10

S. MONITORING QRGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

_Schnnl of Fneinearine ARTT/ENG

7a. NAME OF MONITORING QRGANIZATION

6¢. ADDRESS (City, State, and ZiP Code)

Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER i
ORGANIZATION (If applicable) 5
MO AFATEC 1G5 1

8c. ADDRESS (City, State, and ZIP Code)

Kirtland AFR MM 87117-7001

10. SOURCE OF FUNDING NUMBERS

TASK WORK UNIT

NO.

PROGRAM PROJECT
ELEMENT NO. NO.

ACCESSION NO.

11, TITLE (Include Secursty Classification)

See Box 19

12. PERSONAL AUTROR(S)
Stephen K. Johnson, B.S., Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED
MS Thesis FROM TO

1S. PAGE COUNT
122

14, DATE OF REPORT (Year, Month, Day)
1988 December

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GRQUP
12 05

Maintainability, Measurement
Computer Programming

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

S

-

Thesis Chairman: James W. Howatt, Major, USAF
Assistant Professor of Electrical and Computer Engineering

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: MODIFYING AFOTEC'S SOFTWARE MAINTAINABILITY EVALUATION GUIDELINES

JAPIAPUSURII

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
O UNCLASSIFIED/UNUMITED [SAME AS RPT.

0 pTiC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Inciude Area Code) | 22¢. QFFICE SYMBOL

James W, Howatt, Major, USAF (513) 255-0913 ARTT/ENG
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

’{,_

by

UNCLASSIFIED

The purpose of this study was to survey automatable software
maintainability metrics for inclusion in the Air Force Operational Test and
Evaluation Center's (AFOTEC'S) software maintainability evaiuations. This
research was looking for metrics that would measure maintain~bility, could be
automated, and would fit into existing guidelines. First, a set of software
complexity metrics was investigated. Then, a set of criteria to determine if
a complexity metric measures maintainability wzs developed. After comparing
the metrics to the criteria, a subset of two metrics that met the criteria
better than any other metrics was derived

The software complexity metrics evaluatea were piaced into three
categories: size metrics, structure metrics, and hybrid metrics. The
structure metrics include both data structure and control structure metrics.
The hycrid metrics include metrics blended from two of the other groups,
such as a combination of size and structure metrics.

The metric selection criteria included three categories: general
applicability criteria, control flow complexity criteria, and data flow
complexity criteria. An assumption was made that the metric or combination
of metrics that met the most of these criteria would best reflect software
maintainability. A combination of a data structure metric, information flow,
and a control structure metric, MEasurement Based on Weights (MEBOW), was
determined to meet more criteria than any other metric or combination of
metrics. This hybrid metric was suggested for AFOTEC use.

Further information exnlaining theoretical and empirical justification
for the use of these metrics was given. A description of techniques to
determine metric threshold values was discussed, along with a procedure for

metric validation. Finally, a theme of the limitations inherent in measuring

maintainability with automatic metrics was elaborated.

MICLASCIFTED

