
LABORATORY FOR MASSACHUSETTSLABOATOR FORINSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

Ln MIT/LCS/TM-353Cn
0)

N
0
N SEMANTICAL PARADIGMS:

NOTES FOR AN INVITED
LECTURE

Albert R. Meyer
with Two Appendices by

Stavros S. Cosmadakis

DTICS ELECTE

01E0 07 1988 U
July 1988 c'-E

545 TECHNOLC(;Y SQUARE. CAMBRIDGE, MASSACHUSETTS 02139

=0 W ,88 12 0 9
&WWQM1n In ma"mma-



SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified _

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAILABILITY OF REPORT

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE Approved for public release; distribution

is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM-353 N00014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Laboratory for Computer (If applicable) Office of N'aval Research/Department of Navy

Science

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

a. NAME OF FUNDING ' SPONSORING r8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

DARPA/DOD

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

Semantical Paradigms: Notes for an Invited Lecture

12. PERSONAL AUTHOR(S)
Meyer, Albert R. and Cosmadakis, Stavros S. (author of two appendices)

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Technical FROM TO July 1988 20

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Programming Languages, Semantics, Logic, Correctness

denotational semantics, cpo's, lattices, continuity,

functors, observational equivalence, lambda calculus,(cont

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

It took me quite a few years to understand the point of continuity in denotational seman-

tics. I'm happy to report below on some recent results which justify my muddle-headedness

and help explain the point too. What follows are some global comments on denotational

semantics of the kind invited lecturers sometimes indulge themselves in, highlighting
"goodness of fit" criteria between semantic domains and symbolic evaluators. For readers

impatient with sketchy overviews, two appendices mostly by Cosmadakis provide the key

parts of a long proof that Scott domains give a computationally adequate and fully abstract

semantics for lambda calculus with simple recursive types.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

3UNCLASSIFIEDt'UNLIMITED [] SAME AS RPT. 0 DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Judy Little. Publications Coordinator (617) 253-5894

DO FORM 1473, 84 MAR 83 APR editfon may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All otner edition% ar? ohsceto

u.. GQw -- ftw"u Mw S -4746

Unclassified



18. full abstraction



~pCT

LAooesslon For

NTI71S JGRA,1,

71I TABSemantical Paradigms: Unam:

Justtif batton

Notes for an Invited Lecture* Dstib-to-

Albert R. Meyer t  Distibutiod

MIT Lab. for Computer Science Ava-,, a Cdes

with Two Appendices by Dist Speo r

Stavros S. Cosmadakis I

IBM Watson Research Center

Abstract. It took me quite a few years to understand the point of continuity in
denotational semantics. -I'm happy to report below on some recent results which jus-
tify my muddle-headedness and help explain the point too. What follows are some global
comments on denotat onal semantics of he kind invited lecturers sometimes indulge them-
selves in, highlighting 'goodness of fitvcriteria between semantic domains and symbolic
evaluators. For readers impatient with sketchy overviews, two appendices mostly by Cos-
madakis provide the key parts of a long proof that Scott domains give a computationally
adequate and fully abstract semantics for lambda calculus with simple recursive types.

CR Categories and Subject Descriptors: D.3.1 [Programming Languages): Formal Defini-
tions and Theory-syntax, semantics; F.3. [Logics and Meanings of Programs]: F.3.1: Specifying
and Verifying and Reasoning about Programs-program equivalence; F.3.2: Semantics of Program-
ming Languages-operational semantics, denotational scmantics; F.3.3: Studies of Program Con-
structs.

General Terms: Programming Languages, Semantics, Logic, Correctness

Additional Key Words and Phrases: denotational semantics, cpo's, lattices, continuity,
functors, observational equivalence, lambda calculus, full abstraction

*This Technical Memorandum is a slightly revised version of a paper in the Proceedings 3rd IEEE Symposium on
Logic in Computer Science, Edinburgh, Scotland, July, 1988.

tSupported in part by NSF Grant No. DCR-8511190 and by ONR Grant No. N00014-83-K-0125.



1 Introduction maticians with foundational concerns may study
Dedekind's cuts to confirm the correctness of the

It was Strachey's imaginative insight to identify logic, but engineers can skip them.

common phrase-types such as identifiers, left- Lambda calculus and lambda reduction. and
and right-expressions, declarations, and corn- general reasoning principles like least fixed point
mands, and to realize how much about a pro- induction, offer similar insulation of the program
gramming language could be understood by de- engineer from 1he foundational concepts of do-
scribing the domains of "values" which these main theory. One can prove a fair amount about
phrases may have [39,20]. This is an insight program semantics using the kind of axiom svs-
in comparative programming linguistics; Stra- tems supported by LCF [8.22] without mastering
chey's notions resemble those of natural lan- the intricacies of information systems (Scott's
guage, and they can be understood and used version of "Dedekind" cuts) [32], though domain
in the same intuitive but precise way we recog- theory is far from providing the pragmatically
nize nouns and verbs-a good thing, since under- powerful and technically complete logical theory
standing Strachey's "values" with mathematical of the kind we have for the complex field.
rigor involves an armamentarium of mathemat- On the other hand, domain theory remains
ical weapons otherwise unfamiliar in Computer an active area, as researchers continue to ex-
Science. plore a surprisingly varied crop of possibilities:

My consistent observation is that among even Scott's original continuous lattice domains [31]
that minority of programming language experts gave way to complete partial orders (cpo's) with
and compiler developers who make use o.7 Stra- continuous morphisms [24,26]; more significant,
chey's insights, few have a technical understand- Scott's domains did not support the kind of
ing of Scott's signal contribution of a mathe- "power-domain" type construction desirable for
matically sound foundation for denotational se- explaining the meaning of nondeterministic pro-
mantics. These very capable people typically grams, and Plotkin offered the richer category
have the good judgment to let their minds wan- of SFP domains [24]; variant SFP's have been
der when subjected to lectures about directed further elaborated into profinite domains [11],
limits, continuous functions, retractions, or the 2/3-SFP's, and more. Meanwhile, it appeared
Pw model of untyped lambda calculus. This from the independent solutions of Sazonov [30]
is not meant as a criticism of the relevance of and Plotkin [25] to a question raised by Scott
Scott's work. An analogy I heard from Scott that there was something inherently parallel in
himself helps explain why no criticism need be in- domains based on Scott's notion of continuity-
ferred: electrical engineers are not taught how to more about this below-and the stable and dI-
construct complex numbers from ordered pairs domains of Berry, et al. were proposed [2] to cap-
of downward closed sets of rational numbers, ture sequential interpreters (they don't quite).
whereas mathematicians typically are taught, Stable domains then found an unexpected inde-
about them (Dedekind's cuts). flow come? Be- pendent application as models of polymorphic
cause there is a robust geometric intuition which types in Girard's qualitative domains [7]. Re-
can be conveyed about the complex plane, and cently. ,-domains have been offered [12,40,41] as
there is an elegant calculus for, and axiomati- an improvement on dl and SFP domains. I'll
zation of. the complex field which gives a reli- say more in the next section about the domains
able way to verify geometric intuitions. Mathe- of monotonic functions; they are pedagogically

2



much simpler and serve surprisingly well for a tices best model computation by nondeterminis-
widely studied case. All these domains based on tic interpreters. There remains a lot of fuzziness
functions on cpo's seem limited in their ability to in these ideas of "kinds" of computation and how
model block-structure in ALGOL-like languages they are modeled by different domains. I'm not
(13,421, leading Oles [23], and me and Sieber confident that these speculations can be precisely
[19] to obtain improved, but still imperfect mod- formulated, let alone that they will hold up. But
els using functor-categories on cpo's. Other I've found, and hope the results sketched below
kinds of domains whose theory has a more alge- will persuade at least a few readers, that pursu-
braic/categorical, as opposed to order-theoretic, ing them has been worthwhile.
flavor are presented in [6,9,10]

Too many different domains of course; I hope 2 Some "Good Fit" Criteria
the best ones will emerge in time. One theme
hinted at in the litany above is that each of these Denotational semantics allows clean mathemati-
domains was developed to model some kind of cal concepts like partial orders, least fixed l int-.
computation or computational logic. But why continuity, and higher-order functions, to be
are there so many? Doesn't Church's thesis in- brought to bear in reasoning about programming
dicate that there is only one kind of computa- languages. But the relevance of the mathernati-
tion? Alan Perlis calls this the "Turing tarpit": cal facts to the computational situation depends
some of the most crucial distinctions in comput- on the nature of the fit between mathematical
ing methodology, such as sequeni ial versus par- meaning and computational behavior, as well as
allel, determinate versus multivalued, iterative the reasonableness of both the domains of mean-
versus recursive, local versus distributed, call- ing and the computational systems. Examining
by-name versus call-by-value, get mired together the fit provides guidance in analyzing and de-
if all you see in computation is symbol-pushing. signing languages and their semantics.
(Note that none of these 9tinctions correlates Let me review some fundamental fitness and
much with computational complexity. I've al- reasonableness criteria:
ways thought "complexity theory" was a mis-
nomer, since a very simple computation carried 1. Computational adequacy: a term means 3 iff
out for a large number of repetitions is desig- it evaluates computationally to the numeral
nated as complex, while a sophisticated fast al- for 3. This is the essential connection be-
gorithm with elaborate data structures is not tween computation and meaning. Without
called complex. "Efficiency theory" would be il, semantics is not much use in explaining
more accurate.) So Computer Scientists clearly computational behavior.
make distinctions ignored in elementary Recur- 2. Full abstraction: two terms are semantically
sion Theory and Complexity Theory. equal iff they denote the integer 3 in exactly

My speculation is that the proliferation of do- the same contexts.
mains may be reflecting this multiplicity of com- 3 Unversaliy: every computable value of any
putational distinctions. For example, besides the
Plotkin/Sazonov results which I inierpret as con-
necting cpo's with determinate parallel compu- 4. Structured operational semantics (SOS)-in
tation, the paper by Bard Bloormi in the 1988 the style of [27]: having one is a "reasonable-
LICS symposium suggests that continuous lat- ness" criterion for a symbolic interpreter.

3



The classic study connecting these criteria is preserving optimizatioi, was to speed things up.

Plotkin's "LCF Considered as a Programming For mainstream Computer Scientists who

Language" [25]. I've found it well worth using think operationally and require a pithy explaina-

as the basis of an introductory graduate lecture tion of how deiotational semantics helps theiii

course in semantics. with their own concerns, we caii sav that seman-

There is a purely symbol-pushing computa- tics provides a whole new set of ways to prove

tional notion that programmers appreciate as observational congruences:

fundamental: two pieces of program are "equiva-

lent" if they can always be' interchanged without If a semantics is adequate (and compo-

affecting the visiblp results of the computation. sitional. but let's not be picky), then

More precisely, semantic equality implies observational
congruence.

Definition 1 Two terms Al, N ar' observation-alistinuh iTwo teris A'am osevation- C]For example. try proving front purely opera-
ally distinguishable iff there is a context C[.) such tional definitions that
that C[M] evaluates to the numeral 3 and C[N]
does not, or vice versa. Al and N are observa- (Y Ax' . x) =-,bs ((Y Afint' r f) 3).

tionally congruent. written AEobN, iff thcy arc It can be done. but the proof is not easy. On

not observationally distinguishable. the other hand, it follows trivially that these

terms have the same meaning in models where

How come the numeral 3 is an important ou,- Y denotes a least fixed point operator since the

put? Well of course it isn't: if you prefer 7, least fixed point of the identity function is the

then the context C[.] + 4 will distinguish M and constant I function. Since we have many such
N wrt to observing 7 whenever C[.] does the models which are adequate, we can conclude the
job wrt 3. In particular, the relation - re- terms are =,b,.
mains unchanged whether we regard 3, 7, or any This is not to say that semantical proofs
nonempty subset of numerals to be visible re- are shorter or simpler-after all, the triv-

suits. For the simply typed lambda calculus we ial argument above rests on a nontrivial ad-

also get the same -,b, if we distinguish terms equacy proof-hut they certainly have an at-

solely on the basis of whether or not their eval- tractive flavor of their own compared to reason-

uation produces a numeral at all, that is M and ing about step-by-step transformations by SECD

N are observationaly distinguishable iff there is machines.

a closing context C[.] of integer type such that The main theorems culminating most pa-

evaluation of exactly one of C[M] and C[N] ter- pers and texts on semantics are just adequacy

minates. theorems. To some degree this achieves the

So optimizations by a compiler are "correct" task of capturing semantically what matters

providing the compiler replaces program texts computationally because any adequate seman-

by observationally congruent texts. This ina- tics uniquely determines =0bs without having to

plies that although =b, is invariant over many mention the evaluator: Al-obN iff
choices of what observable outcomes of computa- VC-.. [C[M11 X Lit iff EC[N]l i -Lit

tion are taken to be. we don't expect to allow ob-

servers with clocks who can time computations, So it's nice that adequacy is cheap, c.g..

since the point of carrying out the observation- Plotkin demonstrates that continuous lattice

4



models. cpo's with extra, infinite integers $ T, extension with a "continuous-existential" combi-
as well as Scott cpo's, each provide an ade- nator yields universality for continuous cpo's.
quate computational setup for the simply typed Thinking along the lines in the Introduction,
lambda calculus with recursion and conditional I asked whether there was some other language
combinators and call-by-name evaluation. In extension than parallel-conditional for which
fact, in joint work with D. Velleman of Amherst continuous lattices are fully abstract. Bloom
College, I observe that even the category of cpo's makes the sophisticated observation in this LICS
with monotone--as opposed to continuous- that lattices are fully abstract when certain
functions is adequate for the simply typed cal- computable combinators enrich the language of
culus. (The proof is easy using Statman's logical terms; but he then proves that all such combina-
relations [35,34] to relate the monotone and con- tors are necessarily unreasonable; they cannot fit
tinuous cpo categories.) So if all that matters is a certain kind of SOS format among other prob-
adequacy, continuity in cpo's can be ignored in lems. Universality necessarily fails for lattices
favor of the pedagogically simpler, familiar no- on recursion theoretic grounds unless we admit
tion of monotonicity. Moreover, the basic prin- some rather odd nondeterministic evaluators.
ciple of fixed point induction on admissible pred- I also asked whether the monotone cpo models
icates is sound in the monotone case., This may were fully abstract, and Plotkin first came up
explain why in my early reading about semantics with a counter-example. Velleman went on to
I had some trouble seeing the role of continuity, show that full abstraction fails irreparably for the

The problem is that even though adequate monotone cpo model-no matter what language
meanings determine congruence in a mathemat- extensions are added to PCF so long as terms
ical sense, and equal meanings implies congru- have an effective, adequate symbolic evaluator.
ence, an adequate semantics may make more dis- So we have a good rationale for continuous
tinctions than those definable by contexts, so ob- reasoning in the simply typed case. But doubts
servationally congruent terms may not be seman- about the point of continuity are clarified by the
tically equal. Full abstraction ensures that the observation that the monotone model is fully
only semantical distinctions made are observa- abstract for the language of first-order recur-
tional ones: sive function schemes (with parallel-or). So the

use of continuous functions in standard refer-
A semantics is fully abstract iff ences which consider only such schemes, e.g.,
semantic equality coincides with =ob,. [15,16,28], is a red herring-everything works un-

der the simpler monotone interpretation. There
In the simply typed case, the -,ignificance of is no point in continuous reasoning without

continuity only begins to emerge from Plotkin's higher-order (at least third-order) types.
result that. at least once a "parallel-conditional" I keep saying "simply typed" for good reason.
is added to the simply typed calculus, the cpo's Another key purpose of continuity is to justify
with continuous functions provide a fully ab- the rules for reasoning about recursive types and
stract semantics. Plotkin observes that this fails domain equations. For example, Abramsky and
for continuous lattices, which explains part of the Stoughton have recently strengthened an earlier
reason why in the current Computer Science lit- observation of Plotkin: in the monotone frame-
eraturp lattices have been largely abandoned in work there is no model of the untyped lambda-/3
favor of cpo's. Finally, he shows that a further calculus, namely, a nontrivial solution of the re-



traction (D -- D) i D does not exist ii, the straction" is m,- full abstraction. 3

category of cpo's with monotone functioiis as

morphisms' 2 3 Observing Termination
I hope to spell out this whole neat story about

monotonicity in a joint paper with Plotkin and Now if we are ,'illing to observe termination at
Velleman sometime soon. integer or othe" printable-value types, why not

Another story along these lines that I will be observe termination at all types? For that mat-

telling in more detail elsewhere [18], concerns ter, there may ,yen be no obvious alternative to
continuations. I still don't understand them, but observing termiination everywhere in many inter-

1 have a better idea why. The basic theorems in esting situatiotir of "pure" untyped, recursively

the literature about continuations are all congru- typed, or deperdently typed calculi where there
ence theorems which are the recursively typed are no built-in integer types with numerals to ob-
versions of logical relations, e.g., [37,38,29]. The serve. And afte," all, even if, say, a LISP expres-
gist of these results is that a term means 3 in "di- sion evaluates lo a closure rather than a print-
rect" functional semantics iff it means 3 in con- able value, the fact that we get a prompt at the
tinuation semantics. These are essentially ade- terminal when evaluation completes is a rather
quacy results. And in fact, once I proposed look- significant observable outcome--one we ought to
ing, it was not very hard to find examples where be able to reason about semantically.
full abstraction fails: there are simple functional So we arrive at the final fitness criterion I want
terms which are equal in direct semantics but not to consider:

in continuation semantics. To my amazement,
only a couple of experts on the subject seemed 5. Complete adequacy: the meaning of an arbi-
aware of this phenomenon, and none seemed to trary term is bottom (or undefined) iff eval-
appreciate the consequence: reasoning which is uation of it does not terminate.
sound for programs under direct semantics may
be unsound for the same programs under contin- Plotkin, in a series of unpublished notes over
uation semantics. I wish the advocates of contin- the past three years, has established complete
uatioi, stle had ,,,-,cd me abou this pmollem adequacy using domains of bottomless cpo's and
and would offer more help in reasoning about continuous partial functions to assign meaning to

continuations (and don't call my attention to the standard recursively typed lambda calculus
[4,5], which, despite a titular claim, don't fill the with a standard call-by-value evaluation. As of
hill.) our last discussion, full abstraction and univer-

I recommend Stoughton's recent monograph sality remained uncxamincd foz this setup. This
[36] for a wel)-written, thorough examination of earlier work stimulated my own questions about
full abstraction, as well as a balanced discussion complete adequacy for Scott domains.
of the nature of the somewhat oversold "solu- Now it is a folk theorem-which is to say
tion" to the full abstraction problem for seq'ien- that Scott, Gunter, and Abramsky said "of
tial PCF offered in [22]. One warning though: course" when I mentioned it, but I know of no

Stoughton follows what I consider the unfortu- reference--that on general principles of Scott do-
nate terminology of [14] and calls "full abstrac- mains, the set of terms in the recursively typed
tion" a property that is actually equivalent to lambda calculus which are not identically bot-
what I call adequacy -his "contextual full ab- tom is a recursively enumerable collection of

6



syntactic objects. Thus, recursion theoretically ization of Plotkin's LCF study to the recursively
speaking, there is some effective "evaluator" of typed lambda calculus. We do this by defining
recursively typed terms for which Scott domains a very general class of observed types which in-
are completely adequate. cludes the recursively definable versions of such

The problem is that this evaluator is weird. printable values as integers, booleans, and lists

Standard interpreters, whether for call-by-name and streams over observable atoms. Sticking
or call-by-value style semantics, stop at formal with termination at observed type as the ob-
abstractions. For example, let M be a closed servation used to define =-ob, we exhibit an in-
term whose evaluation diverges. It should be terpreter which looks intuitively reasonable, and
a familiar fact that "hiding" M under a A as then we prove complete adequacy, full abstrac-
in Ax.Mx yields a term which terminates im- tion, and universality. But the reader should
mediately at itself. Of course, Ax.Afx is se- look at the reduction rules and judge for him-

mantically equal to M, and indeed is observa- self whether he likes them, since we don't know
tionally congruent to M (under call-by-name) if exactly what makes an SOS discipline reasonable
the only "printable values" or "computational (cf. [3] and Bloom's LICS '88 paper for some SOS
observables" are numerals (or termination at metatheory). In particular, our interpreter uses
ground type-note that M above has functional some deterministic context-free pattern match-
type since it applies to x). So if we allow ter- ing to control applicability of reduction rules,
mination behavior of the standard interpreters and we're not sure whether this control mech-
to be observable for terms of all types, then fa- anism might be too powerful-enough to stick
miliar reasoning like the (rq)-axiom at functional us in the Turing tarpit again.
types is unsound, and all the models in which An odd behavior of our interpreter arises from
it is sound are computationally inadequate! So the fact that it has been optimized to stop as
complete adequacy certainly fails for the setup of soon as it can, once a term is discovered to be of
Scott domains and simply typed lambda calculus a canonically nonbottom form. In particular, the
using the familiar evaluators, interpreter may stop on an integer term denoting

There is a solid clue in Wadsworth's classic 0 before evaluating to the numeral 0 if it discov-
study [43] of the pure lambda calculus of how a ers earlier that the term is nonbottom. This is
"reasonable" interpreter should work to be com- probably reparable.
pletely adequate for Scott domains. Wadsworth A criticism of our interpreter which would
shows that an interpreter which stops reducing not be fair is that on terms which mean the
precisely at head-normal forms is fully abstract pair (3,3), it does not terminate with a stan-
for pure untyped Af-calculus. So if Cosmadakis dard printable representation of (3,3). This is
and I could figure out how to generalize head- irreparable on recursion-theoretic grounds: an
normal forms to the recursively typed lambda evaluator that is required to print (3,3) would
calculus, we might be able to exhibit reasonable, in general have to diverge on terms which meant
though nonstandard, interpreters for this calcu- (3, 1). so that . and divergence could no longer
is such that Scott domains are completely ad- match at type int x int.

equate and fully abstract. But so far we can't The hard part of designing an evaluator for
find an interpreter which has some kind of SOS which Scott domains are completely adequate
that does the job. involves sum types. In Appendix B we exhibit

So in Appendix A we work out the general- another interpreter for which Scott domains are

7



complet,)l adequate at all recursive types, not ings, D and D - 1) may have tile same car
involhing sums. dinality in the monotone frame-letting 1)

The theorems we have obtained, though in be the real numbers is an example.
several respects only partial results, are not easy.
There is a long way to go if we take these fit- y cetic prvctimarks h hae
ness criteria seriously and ask about the many already succeeded in stimulating a useful
other kinds of domains. These criteria also make cf. [17], which has led me to moderate nV
sense for languages with richer types support- vi. a bit. As l e t mod e r e
ing power-domains and polymorphism. Work on views a bit. Among other things. we are
thesetrying to rach agreement on common er-minology for concepts like contextual and

Acknowledgment. full abstraction.

Thanks to Bard Bloom, Steve Brookes, Irene A Adequacy at Observed
Greif, and Jon Riecke for late itight
proof-reading, to Samson Abramsky, Mallhias Types
Felleisen. Yuri Gurevich, John Mitchell, Gordon
Plotkin, Vaughan Pratt, Dana Scott. and Allen y
Stoughton for comments and corrrections. and Let I stand for a type variable, r for a tvpe ex-
to Sally Benis for an intense LATEXing effort. pression, and a for an observed type:

4 Notes ::= tTI TXTITx 7 Ir±I/jt.r

?T ::=t e7x aj j t 1  .t a _Lt

1. But different syntactic criteria for det ,ct-
ing admissible formulas are required in the Definition 2 .A type is a closed type crpression.
monotone and continuous cases, e.g., the
predicate of x Comments:

The symbol x denotes Cartesian (separated)
(xAz.z) U_ __ product; we cannot handle strict (coalesced)

is admissible in the continuous model, but product (0) for reasons explained at the end of
not in the monotone model. The formal this appendix.

system LCF, which recognizes as admissible Function types are not observed.
any predicate of the form M N, conse- The "'lifted" type r is observed for any type

(luent'v allows proofs by fixed point induc- r.
tion of equations which hold in the continu- The symbol , denotes coalesced (smash) sum.
ois. but not in the monotone model. Dana Separated sum (+) can be treated as "syn-
Scott pointed this out to me. correcting an tactic sugar" since it is definable by 7 1 + 7

,earlier remark to the contrary in the 088 (ri)i,. (r 2 )±.
LT'S proceedings version of this paper. We don't have any purely semantical charac-

tr-.a ion of what makes a type observed.
2. However, Abramsky has pointed out to me

that, contrary to a retnark in the earlier ver-
sion of this paper in the 1988 LI(S Proceed-



Examples of types: allows branching on whether a term, M 1 , of ob-
served sum type is in the left or right side of
the sum, returning the glb of its remaining argu-

ments, M2 and A 3 , if Al 1 is bottom.
triv ::- it.t The constructor up? tests whether M 1 of lifted

1 triv± type is nonbottom, and if so returns its second

bool ::= 1 e 1 argument; otherwise it returns bottom.

nt M D tSome Constants:

antyp ::= Pt.1 e (t - t) yfr--A-- ::= f"Tas(a/)
where Af :: AxPtt.f(rp(x) x),

Comment: The type untyp is a model for the Q' y(r-. (Axr.x),
untyped A3-calculus. a 1  :: lift(Q trtit),

tbo° t ::= inL(a),

A.2 Terms and Typing Rules ff0ool ::= inR(a),0in" :: abs(inL(a~~n)

Let AI and N stand for terms, C for a canonical (.-) i -  ::= Axmt.abs(inR(x)?jint).
term. and D for a noncanonical term.

Canonical Terms:

x r  
7 C ::= pair(C,M) I pair(M,C) I inL(C)

Ax T ' .M 2 : r*i r2 inR(C) I lift(M) I abs(C)

Definition 3 Let p± be the valuation of vari-

pair( M rl , N 7 2 ) : Tl x 72  ables (i.e., environment) that assigns I of ap-
fst(MTIX2) : r propriate type to each variable.

snd(M2X7 2) : r2

inL(Mf) : ED r2 Comments:

outL( M " E' ) :r, For M an arbitrary term, [M]p 0 1 for every
L(M '2) r, DT2valuation p iff [MJpj_ y _.
inR(M '2 ) : r r2  For C a canonical term, [C]p.L $ I.

outR( M 'i@2) : r

condir M tO12 MI MJ : r A.3 Operational Rules

lift(MT ) r± A "reduces in one step" relation, , on terms is

drop(M-') : r defined inductively by the rules below. Let

up? M (T) " NT 2  r2  denote syntactic identity of terms.

abs(M[u t ' /tlr) : pt.r
rep(Ml"):[tr/r

Comments:
Tho parallel case statement constructor, condlr,

9q



(condli M N, N2)N3 -. condir Ml (N1 N3 ) (N2 N3)

MAN -~M'N

M Al', N - N'--
pair(M, N) -* pair(M', N')

fst(pair(M,N)) M~A

snd(pair(M,N)) -+N

fst(condlr AlN 1 N2) condir Alfst(Nj) fst(N 2)
snd(condlr.Al N1 N2 ) -~condir Alsnd(Nj) snd(N2 )

Ml , M', M 0 pair(... .), M.A condlr(...)
fst(M) -*fst(M'), snd(M) -*snd(MI')

Ml -+ M

inL(M) -*inL(MA'), inR(M) -*inR(MA')

outL(inL(M)) - M
outR(inR(M)) - N

outL(condlr M N, N 2 ) - condir M ouIL(ANli) outL(N2)
outR(condlr M N1 N2 ) - condir M outR(NI) outR(N2 )

M M' M -utL( .), M~ $outL(') ..

outR(M) --* outR(A I')

drop(Iift(Al)) - Ml

drop(condlr M N, N 2 ) -~ condir Al drop(N1I) drop(N2)
M - M', Al lift(... .), M 0- condlr(...)

drop(Al) -*drop(Mf')

up? lift(M) N -*N

Al 0- lift(... .), Ml -*,l

up? M N -+up? M' N

abs(M) -*abs(M')

rep(obs(A'f)) -*M

I0



rep(condlr Al N, N) --* condlr M rep(N1 ) rep(N 2 )

M - M', M $ abs(... ), l 0 condlr(...)
rep(M) - rep(M')

condlr inL(C) N1 A 2 --. N1

condlr inR(C) N1 N 2 -+ N2

condlr D pair(M,N) pair(M',N') - pair(condlr D M M', condlr D N N')
condlr D inL(Af) inL(N) -* inL(condlr D M N)
condlr D inR(AM) inR(N) - inR(condlr D M N)

condlr D lift(M) lift(N) - lift(condlr D Al N)
condir D abs(AM) abs(N) - abs(condlr D M N)

(if no condlr rule above applies)
Mi - M,' for i E $ 4 0, and M. - Ali is canonical for j E {1,2,3} - I

condlr M1 A1 2 M3 - condlr M1 M2 M3

(if no rule above applies to D)
D -D

Lemma I A term M is canonical iff there is no term M' such that M --+ M'. The relation -f is
a partial computable function on terms, whose domain is thus the noncanonical terms.

Definition 4 Let Eval(M) be thc necessarily unique term C, if any, such that M -* C.

Comments:
Eval is a partial computable function on terms whose range is the set of canonical terms.

If M -- N, then [M] = [NJ. Hence, [Eval(M)] = [M], and [Mlp.L : -L whenever Eval(M) is
defined.

A.4 The Adequacy Theorem

Inclusive Predicate Specification

Let [71 be the semantic domain (cpo) corresponding to type r, and let A, be the set of (possibly
open) terms of type r.

Definition 5 Let -,+ be a binary relation relation between canonical terms, defined (by structural
induction) as follows:

11



pair(C, D) -'. pair((", ') iff C, (" and ti/h r D I' r I) , i)'
pair( D, C) - pair(D', C') iff (' -- (' and tithr D -D' or 1) -- D'

pair(Cl,C2 )- pair(C',C') iff C1 C,,C> - C,

inL(C) - inL(C') iff C ,- C'
inR(C) - inR(C') iff C- C'
abs(C) -, abs(C') iff C ",- C'

lift(AM) ,, lift(Ml)

Definition 6 Let the set of fully canonical terms be defined as follows:

F ::= pair(F, M) I pair( A, F) I mir(F, F) I inL(F) I inl?(F) I lift(N) I abS(F)

where [MAp± = I.

Observe that every fully canonical term is canonical.
Inclusive binary predicates , on [r x Ar will be defined below to satisfy the properties (A).

(B) below. We first define auxiliary binary predicates H7 .
Definition 7 Let II, be a binary predicate on [7] x A, defined to be identically true for types r

that are not observed, and

c IM iff c E: [M]p± and (e j iL implies 3F. Eval(M) -.-* F).

Property (A) (of a relation -,):

c , M only if cl, M. If cl1, M, then

c - M iff e "i N implies c(e) ,, MN
c ,- Al iff fst(c) ,, fst(M) and .nd(c) ,, snd(M)
c -,j@7 M iff outL(c) -s, outL(M) and outR(c) - outR(M)

c " Tl M iff drop(c) , drop(M)
c "-t., M iff rep(c) -[,t.,/t]7 rep(M).

Now to define Property (B), call a pair (u, U) ok, where u is a function between domains and U
is a function between correspondingly typed terms, if u and U are related in one of the following
ways:

u = Ad E [7 - 7 21. d(e) and U = AM ' - 2. MN for some e, N, or
u = Ad E 1r1 x T21. fst(d) and U = AM" "2. fst(M), or
u = Ad E [r1 x 72 .snd(d) and U = AM I" 2. snd(M), or
u = Ad E [r1 1 T2 1. outL(d) and U = AM " 

1T2. oulL(M), or
u = Ad E [r 1 Or 2J. outR(d) and U = AMTIeD2. outR(M) or
u = AdE [±J. drop(d) and U = A,1M". drop(M) or
u = Ad E [lt.r]. rep(d) and U = AAPf t ' . rep(M).

12



A sequence (ul, UI),.. ., (u,, Uf) is ok if each pair is ok, and ui o ui+1 is type-correct for i < in.

Now property (B) is that:

if (U1 (''ttm(C)'") I.rm(Ul(. Um(lV)") for all m > 0 and ok sequences

(ul, UI),... ,(U,Um), then c -', M.

Summary of Proof: Using properties (A), (B), show by indution on the structure of M:

Lemma 2 Let x, : rl,. , Xk : rk for some k > 0 be the free variables of M'r . If ei ", Ni for

1 < i < k, then [Mi(p[x, := eil) -, [N,/xziM.

From property (B) of ~' it follows that -L, -, M, for every Al. Thus, applying Lemma 2 with

ei = -L,,, N. = x,, we obtain

Corollary 1 [M"lp± -. Mr.

Theorem 1 (Adequacy) For all observed types a, Eval(MW) is defined iff [M]p. 5 Io.

A.5 Construction of the Inclusive Predicates

Let r be a type expression with free type variables tl,...,tk. Interpret r as a function [r] of k
arguments from cpo's to cpo's; if r is closed, i.e., a type, then interpret [r] to be a cpo as usual.

We will define a function P(r) of k arguments, where the iA argument is a binary predicate pi
on [ri] x A,,, and P(r)(pl ... ,Pk) is a binary predicate on ( (I ,..., [rk)) x A,,/,,.

The definition is by induction on the structure of r. We write p as an abbreviation of P1,... ,Pk;
also, we abbreviate I[,,/t,], as IT. Now dP(r)(p)M only if dIIM. If dli.M, then

d P(ri - r2)(p) M iff e P(ri)(p) N implies d(e) P(r 2 )(p) MN
d P(ri x r2)(p) M iff fst(d)P(r1 )(p)fst(M) and snd(d)P(r2 )(p)snd(M)
d P(ri e r2)(p) M iff outL(d)P(ri)(p)outL(M) and outR(d)P(r2 )(p) outR(M)

d P(r±)(p) M iff drop(d) P(r)(p) drop(M)
dP(ti)(p)M iff dpiM.

To complete the inductive definition of P(r), we have to describe the remaining case pt.r. Let
the free variables of r be ttl, .. , tk. We will use the following notation:

[tft.r] = LI,> 0 [r, (c. (26,33,21]) where [rJ0 (A 1,... ,Ak) = -, and

fIrJ,+(A1,...,Ak) = ITJ(1TJ,(A,.-.,Ak), A,...,Ak).

Also, for d E [pt.r(Ai, ... ,Ak), let ([rJ(A 1 ,...,Ak) d) be the projection of d on
[rL,(A1,... ,Ak).

13



We will now describe the case ut.r of the inductive definition (f P(r).

d P(jt.r)(p) M iff ([r],([r],. .. ,[rkJ) I d) P(pt.T),(p) M, for all n > 0,

where the predicates P(pt.T), are defined (by induction on n) as follows:
do P(jt.7)o(p) M iff do IIt. rM,

d,+i P(itt.r)n+1(p) M iff d,+l ITl,t.M and dn+1 P(r)(P(Jit.r),(p),p) rep(M).

Lemma 3 If pl,.... ,pk satisfy (A), (B), then P(T)(pI.,. . ,pk) satisfies (A), (B).

Theorem 2 (Inclusive Predicate Existence) For every type T, P(r) satisfies (A), (B).

A.6 Full Abstraction and Universality

Lemma 4 For every type r, every finite (i.e,, isolated) element in IT] equals [A! ,± for some
closed term AM.

Corollary 2 Suppose [Mo]p $ IMip, for some valuation p. Then there is a context C[.] such
that C[Al0 ] and C[Al] are closed terms of observed type, and exactly one of [C[M 1 ]) and [C[M 2]1
equals I.

Theorem 3 (Full Abstraction) Semantic equality of terms coincides with observational congru-
ence.

Theorem 4 (Universality) Augment the language by adding 3(in t - bool ) - boo (the continuous ver-
sion of the existential quantifier). If 6 E [r] is the lub of a recursively enumerable sequence of finite
elements, then there is a closed term MT such that [M] = 6.

The proofs of full abstraction and universality are simple extensions of Plotkin's [25].
Comment: We cannot have strict pairing in the Adequacy Theorem 1 without committing our-
selves to observing nonbottomness at all types: a term MT, where r is arbitrary, is nonbottom iff
the term stfst(stpair(a1 , M)) of (observed) type 1 is nonbottom.

B Complete Adequacy without Sums

B.1 Syntax of Types

Let t stand for a type variable, r a type expression, and v for a nontrivial type expression:

7 ::= t1T--- rrX7r r®1IT±1pt.r

V := 1rir-,VI Vxr1rx VI V t,® It.V

Comment: Strict pairing (0) has been included this time.
Example: The type triv = litt. t is not nontrivial.

14



Lemma 5 An arbitrary type, -r, is nontrivial if [ {}

B.2 Terms and Typing Rules

The rules are as in Section A.2, with the omission of typing rules for ff, and the addition of:

stpair(MIT , N2) : r, ® r2, Stfst(M'I13) :r stsnd(M2®0"2) : r2.

Canonical Terms:

V x: I VM' I fst(V) I snd(V) Istfst(V) I stmnd(V) I drop(V) I rep(V)
C := Vt' I x.C pair(C,M) pair(M,C) stpair(C,C) stfst(stpair(C,C))I

stsnd(stpair(C, C)) lift(M) I abs(C)

where V"' must be of nontrivial type.
Comment: If C is canonical, then [C~p 96 1, for some valuation p.

B.3 Operational Rules

Ax.M -~Ax.M'

stfst(stpair(Mi, M2 ))N -*stfst(stpair(MIN, M2))
stsnd(stpair( M,M 2 ))N -*stsnd(stpair(M 1 , M 2N))

Ml- M', M 0 A... .), M 0 stfst(stpair... .), M $ stsnd(st pair ... )
MN --* M'N

pair(M, N) -*pair(M', N')

fst(pair(M, N)) -. M
snd(pair(M, N)) -~N

fst(stfst(.stpair(M, N))) -*stfst(stpair(fist(M), N))
snd(stfst(stpair(M, N))) -~stfst(stpair(snd(M), N))
fst(stsnd(stpxair(M, N))) -*stsrad(stpair(M,fst(N)))

snd(stsnd(stipair( M, N))) -*stsnd(stpair(M, snd( N)))

M - M', M 0 pair(... .), M # stfst(.stpair. .. .), M $ stsnd(st pair.)
fst(AM) --* fst(M'), snd(M) - snd(M')

Ml -- Al', N --+N

stpair(M, N) -~ stpair(M', N')

15



Al -~ Al'
stpair(M, C) - stpair(AJ', C), stpair(C, M) - stpair(C, M')

stfst(stfst(stpair(AI,N))) - stfst(stpair(stfst(Al),N))
stsnd(stfst(stpair(M,N))) -~ stfst(stpair(stsrd(W), N))
stfst(stsnd(stpair(AI, N))) -~ stsrd(spair(M, stfst(N)))

stsnd(stsnd( stpaIr(M, N))) - stsnd(stpair(.Al, stsnd(N)))
Ml -~ Al', M 0- stfst(stpair. .. .), M 0- stsnd(st pair ..

stfst(M) -. stfst(M'), stsad(Ml) - stsnid(M')

drop(lift(M)) MfA

drop(stfst(stpair(M, N))) stfst(stpair(drop(M), N))
drop(stsnd( stpair( Al, N))) -~stsnd(stpaiT( Al, drop(N)))

Ml -~ M', Ml 0 fift(... .), Al 0 stfst(st pair... .), AI 0- ststid(stpair.)
drop(M) -drop(AI')

up? lift(AI) N - N

up? Al N -*up? Ml' N

M MAl

abs(Ml) abs(Ml)

rep(abs(Al)) M~A

rep(stfst(stpair(AI,N))) -*stfst(stpair(rep(Ai),N))

rep(stsnd(s-tpair(I, N))) -~stsnd(stpair(M, rep(N)))

Ml M~h', Al 0 abs( ... ), Al 0- stfst(stpair - .), M $ stsnd(st pair.)
rep(M) - rcp(m')

(if no rule above applies to Al and hi not canonical)

Definition 8 Eval(M) as in Appendix A.

16



8.4 The Complete Adequacy Theo- term Ax.stpair(outL(xM), outR(xN)) is nonbot-
rem torn iff there is a valuation p such that [AMlp and

For every valuation p, define binary predicates [NIp are inconsistent.
Fo everylAtin py efnle biHParyI ei cae The sum type-constructor over cpo's intro-

duces types with inconsistent elements; more-

c C_ [M]p and over, even in the absence of strict pairs, sum

(c 5 1., implies Eval(M) is defined), types involve similar connections between non-
bottomness and inconsistency. We conjecture

As in Appendix A, the binary predicates P that our complete adequacy result can be ex-

on [r] x A, satisfy corresponding properties (A), tended to the language with sum types with a

(B) expressed in terms of the predicates IIP). parallel conditional, if our semantic domains are

Using properties (A), (B) of the predicates -, lattices. We're still wond, ing about sums in th

we show by induction on the structure of M: cpo case.
Since we do not have a conditional in the lan-

Lemma 6 For variables x: r1 ,... , Xk : Tk, guage of this appendix, the isolated elements are

where k > 0, if ei P, Ni for I < i < k, then not all definable and we cannot prove full ab-
,M](p[x : straction following Plotkin. However, different

e 7) methods (based on Bohm trees) have been used

Corollary 3 -P M for all M, r, to prove such result., for the untyped lambda cal-
j 7 culus, cf. [1], and we expect such methods are

Theorem 5 (Complete Adequacy) ELal(M) is also applicable in our case.

defined iff 3p. [M]p 6 -.
References

Remark: For any term M, the meaning of

the lambda closure of M is nonbottom iff the [1] H. P. Barendregt. The Lambda Calculus:
meaning of M is nonbottom in some valuation. Its Syntax and Semantics. Volume 103 of

The construction of the inclusive predicates Studies in Logic, North-Holland, 1981. Re-
- is as in Appendix A, simply replacing fl, by vised Edition, 1.984.

[21 G. Berry, P. Curien, and J. Levy. Full ab-

B.5 Discussion straction for sequential languages: the state
of the art. In M. Nivat and J. C. Reynolds,

Observe that, without sum types, every pair editors, Algebraic Methods in Semantics,
of values is consistent (i.e., they have a corn- chapter 3, pages 89-132, Cambridge Univ.
mon upper bound), and consequently all defin- Press, 1985.
able types happen to be lattices even under the 13] B. Bloom, S. Istrail, and A. R. Meyer.
cpo interpretation. This is crucial for our corn- Bisimulation can't be traced: preliminary
plete adequacy theorem. The presence of incon- report. In 1 5 th Symp. Principles of Pro-
sistent pairs in the semantic domains together rmmit. n pg 2 9

with a strict pairing operator complicates the 1988.

problem of observing nonbottomness at function

types. For example, in the cpo semantics, the [4] M. Felleisen, D. Friedman, E. Kohlbecker,

17



and B. Duba. Reasoning with continua- B. A. Trakhtenbrot. The semantics of local
tions. In Symp. Logic in Computer Sci., storage, or what makes the free-list free? In
pages 131-141, IEEE, 1986. 1 1 th Symp. on Principles of Programming

[5] M. Felleisen, D. Friedman, E. Kohlbecker, Languages. pages 245-257. ACM, i984.

and B. Duba. A syntactic theory of sequen- [14] M. C. Heitnessy and G. D. Plotkin. Full
tial control. Theoretical Computer Sci., abstraction for a simple parallel program-
52:205-237, 1987. ming language. In Math. Found. Computer

[6) J. H. Gallier. The semantics of recursive Science, Proc., pages 108-120, Volume 74[6] . H Galie. Te seantcs f rcurive of Leet. Notes in Computer Sci., Springer-
programs with function parameters of finite veg 1979.

types: n-rational algebras and logic of in- Verlag, 1979.

equalities. In M. Nivat and J. C. Reynolds, [15] J. Loeckx and K. Sieber. The Foundations
editors, Algebraic Methods in Semantics, of Program Verification. IVilet- Teubner Se-
chapter 9, pages 313-362. Cambridge Univ. ries in Computer Science, John Wiley and
Press, 1985. Sons, 1984.

[7] J. Girard. The system F of variable types. [16] Z. Manna. Wathematical Theory of Compu-
fifiteen years later. Theoretical Computer tation. McGraw Hill, 1974.
Sci., 45:152-192. 1986. [17] A. R. Meyer. 313 lines about full

[] NI. J. Gordon, R. Mil- abstraction from Stoughton and Meyer.
ner, and C. P. Wadsworth. Edinburgh LCF. 1988. 14 May. Communication from meyer
Volume 78 of Lect. Notes in Computer Sci., Otheory. ics.mit .edu to the TYPES elec-
Springer- Verlag, 1979. tronic forum, internet: types-request-

[9] I. Guessarian. Algebraic Semantics. Vol- Qtheory.lcs.mit.edu.
ume 99 of Lect. Notes in Computer Sci., [18] A. R. Meyer and J. G. Riecke. Continu-
Springer-Verlag, 1981. ations may be unreasonable. In Proc. of

[10] I. Guessarian. Survey on some classes of in- Conf. LISP and Functional Programming,
terpretations and some of their applications. ACM, July 1988. To appear.

SIGACT News, 15(3):45-71, 1983. [19] A. R. Meyer and K. Sieber. Towards filly
abstract semantics for local variables: pre-[11] C. Gunter. A Universal Domain Tech- liminary report. In 1 5th Symp. Principlcs

nique for Profinite Posets. Technical of Programming Languages, pages 191-203,
Report CMU-CS-85-142, Carnegie-Mellon ACM, 1988.
Univ., 1985.

[12] C. A. Gunter and A. Jung. Coherence and [201 R. Milne and C. Strachey. A Theory of Pro-
Consistency in Domains (Extended Out- gramming Language Semantics. Chapman
line). Technical Report MS-CIS-88-20, and Hall, 1976.
Dept. of Computer and Information Sci- [21] P. D. Mosses and G. D. Plotkin. On proving
ence, Univ. Pennsylvania, 1988. iimiting completeness. SIAMJ. Computio,

[13] J. Y. Halpern, A. It. Meyer, and 16:179-194, 1987.

18



[22] K. Mulmuley. Full Abstraction and Seman- Programming, pages 577-613, Volume 1-10
tic Equivalence. ACM Doctoral Disserta. of Lect. Notes in Computer Sci., Springer-

tion Award 1986, MIT Press, 1987. Verlag, 1982.

[23] F. J. Oles. Type algebras, functor cate- [33] M. Smyth and G. D. Plotkin. The category-

gories, and block structure. In M. Nivat and theoretic solution of recursive domain equa-

J. C. Reynolds, editors, Algebraic Methods tions. SIAM J. Computing, 11:761-783,

in Semantics, chapter 15, pages 544-573, 1982.
Cambridge Univ. Press, 19M. (34] R. Statman. Equality between functionals

[24] G. D. Plotkin. A powerdomain construc- revisited. In L. A. Harrington, et al., editor,
tion. SIAM J. Computing, 5:452-487, 1976. I1arvey Fi'iedman's Research on the Founda-

tions of Mathematics, pages 331-338, Vol-
[25] G. D. Plotkin. LCF considered as a pro- umens of tue s n ic, Nort- H ol

gramming language. Theoretical Computer 1985.

Sci., 5:223-256, 1977.

r26] G. D. Plotkin. T as a universal domain. [35] R. Statman. Logical relations in the typed

J. C-calculus. Information and Control, 65:86-
J. Computer and System Sci., 17:209-236, 97, 1985.
1978.

[27] G. D. Plotkin. A structural approach [36] A. Stoughton. Fully Abstract Models of

Progamming Languages. Research Notes
to operational semantics. Technical Re- in Theoretical Computer Science, Pit-
port DAIMI FN-19, Aarhus Univ., Corn- man/Wiley, 1988. Revision of Ph.D the-
puter Science Dept., Denmark, 1981. sis, Dept. of Computer Science, Univ. Ed-

[28] J. Raoult and J. Vuillemin. Operational and inburgh, Report No. CST-40-86, 1986.
semantic equivalence between recursive pro- [37] J. E. Stoy. Denotational Semantics: The
grams. J. ACM, 27:772-796, 1980. Scott-Strachey Approach to Programming

[29] J. C. Reynolds. On the relation between di- Language Theory. MIT Press, 1977.
rect and continuation semantics. In Proc.

2 nd Coll. on Automata, Languages. and [38 J. E. Stoy. The congruence of two pro-

Programming, pages 141-156, Volume 14 gramming language definitions. Theoretical

of Lect. Notes in Computer Sci., Springer- Computer Sci., 13:151-174, 198i.

Verlag, 1974. [39] C. Strachey. Fundamental concepts in pro-

[30] V. Sazonov. Expressibility of functions in gramming languages. 1967. Lecture Notes,

D. Scott's LCF language. Algebra i Logika, Int'l. Summer School in Computer Pro-
15:308-330, 1976. (Russian). gramming, Copenhagen.

[31] D. Scott. Data types as lattices. SIAM J. [40 1 P. Taylor. Recursive Domains, Indexed Cat-
Computing, 5:522-587, 1976. egory Theory, and Polymorphism. Ph.D.

thesis, Trinity College, Cambridge, Aug.

[32] D. Scott. Domains for denotational seman- 1986.
tics. In M. Nielson and E. Schmidt, editors, [41] P. Taylor. L-domains. 1988. 20 January.
9,h Int'l. Coll. on Automata, Languages and

19



Communication from
mcvax!doc.ic.ac.uk!ptu unet.uu.net
to the TYPES electronic forum, internet:
types-requestttheory .lcs. m.it.edu.

[42] B. A. Trakhtenbrot, J. Y. Halpern, and
A. R. Meyer. From denotational to opera-
tional and axiomatic semantics for ALGOL-
like languages: an overview. In E. Clarke
and D. Kozen, editors, Logic of Pro-
grams, Proceedings 1983, pages 474-500,
Volume 164 of Lect. Notes in Computer Sci.,
Springer-Verlag, 1984.

(43] C. Wadsworth. The relation between com-
putational and denotational properties for
Scott's D. models. SIAM J. Computing,
5:488-521, 1976.

Cambridge, Massachusetts
June 30, 1988

20



OFFICIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy
Head, Research Depirtment
Naval Weapons Center
China Lake, CA 93555


