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L7-*
THERMODYNAMICS OF FRICTIONAL MATERIALS

A CONSTITUTIVE THEORY OF SOILS WITH DILATANT CAPABILITY

PART I: INTRODUCTION

1. The main task of this work is to use the concepts of endochronic plasticity to de-

rive, from thermodynamic principles, a constitutive equation for soils with dilatant capability.

The aim has been to set the theory in a three dimensional framework and endow the resulting

constitutive relations with the capability for accounting for the effects of complex deformation

histories. The result is a domain of applicability broad enough to capture sufficiently complex

phenomena to make the constitutive equations useful in applications to realistic deformation

histories encountered in practice.

Overview of Endochronic Plasticity

2. The endochronic theory (Valanis, 1971; Valanis, 1980; Valanis and Read, 1980; Valanis

and Lee, 1982; and Valanis, 1986) deals with the plastic response of materials by means of memory

integrals expressed in terms of memory kernels which contain the essence of the material behavior.

The kernels are invariably fast decaying functions indicating a material memory which fades at

a high rate. In the specific case where these kernels are approximated by Dirac delta functions

(which decay at an infinite rate) one recovers a theory with yield surfaces. Thus yield surface

plasticity is a subset of the endochronic theory.

3. The material memory is specified with respect to an intrinsic time which is the path

traversed by the plastic strain in a plastic strain space. If the material is isotropic in its reference

configuration the path length is given in terms of one material parameter. See Equation (5), Part

11.

4. The application of endochronic plasticity to soils, insofar as work that has appeared

in the literature is concerned, has been limited either to one dimensional histories (shear and

hydrostatic response) under cyclic and other loading-unloading conditions or to two dimensional

histories (shear-volume interaction) under densifying conditions. The question of dilatant behav-

ior had hitherto remained unresolved. The reasoning that led to the present treatment is broadly

as follows:

The coupling between deviatoric and hydrostatic behavior that will ultimately lead to

dilatant deformation must come from three sources:



a. The intrinsic time through the parameter k in Equation (5);

b. The expression for the free energy;

c. The rate equations for the internal variables.

5. Source a alone, will always give rise to densification as the application of the relevant

equations to concrete by Valanis and Read (1986) actually showed. Source b is not physically

viable because given a soil with a certain porosity the onset of dilatancy under monotonic shearing

is governed by the prevailing hydrostatic stress. If b is to be the source, then a change in the form

of the free energy must take place upon varying the hydrostatic stress which is not physically

plausible. In other words, one would expect the form of the free energy to remain invariant with

a change in the hydrostatic stress. The remaining plausible cause is source c and this is the one

that we developed in the present work.

Overview of Report

6. In Part II, a simple model is developed to illustrate basic principles. The point of

departure is the critical state theory (Schofield and Wroth, 1968) which gives physically valid

predictions in stress states near equilibrium. The ideas of critical state are developed beginning

on page 6 where a simple constitutive equation is given which exhibits the salient features of den-

sifying and dilatant behavior. In particular, the groundwork is laid with regard to the physical

properties of the coupling coefficients that allow for prediction of dilatancy. The simple constitu-

tive equation developed Part II is limited in a number of ways, not the least of which is the fact

that it is constrained to obey an isotropic hardening law.

7. An isotropic hardening law may do a reasonable job if no unloadings or sharp kinks

are encountered in the deformation path, but otherwise it will give poor results. What does not

seem to have been realized in the community of practitioners and other plasticians is that the

essence of plastic behavior in materials (almost without exception) insofar as the shear response is

concerned is kinematic hardening. In practical thermodynamic terms this means more than one

internal variable (in fact a large number or spectrum) is needed if one is to obtain a realistic shear

response. This possibility is explored in Part III where the foundations are laid for two distinct

approaches, Theory I on page 20 and Theory 11 on page 28, where two different hydrostatic

constitutive equations are derived. Theory II is found to be preferable in the sense that it is not

subject to analytical difficulties and approximations and is physically more appealing. In Part

IV a specific application is presented using a special form of Theory II.

8. In conclusion, the analytical, physical and thermodynamic foundations are laid for

2



the derivation of constitutive equations that can account for densifying or dilatant behavior of

soils depending on the prevailing density, hydrostatic stress and deformation history. Specifically,

it is believed that Equations (152) and (153) have the proper foundation and appropriate ana-

lytical form to deal with complex forms of soil behavior. The application of these equations to

deformation histories encountered in practice will be the subject of further research.

3



PART II: FRAMEWORK OF A SIMPLE MODEL

9. This work begins with the simplest model of coupled linear relations between stress

and strain-rates. The rates are with respect to the intrinsic time scale z and the coupling is

between the hydrostatic and deviatoric strain rates on one hand and corresponding stress states

on the other. Specifically, we begin with the Equations (1) and (2) as follows:

deP dcPs all -- + al2-()
dz dzp

o= a21 - + a22- - (2)
dz dz

in the usual notation where bold symbols denote tensor quantities and a dot between two tensors

denotes their scalar product. The superscript p implies that the strain rates are plastic as defined

in terms of the total shear and hydrostatic components as

deP  = de--1ds (3)

1
dcP = d--1do, (4)

K

where I and K are the elastic shear and bulk moduli respectively. The intrinsic time measure dz

is given by Equation (5)

dz2 = lidep1 2 + k2IdS'l 2  (5)

where denotes the norm of the tensor and k is the coupling parameter between the deviatoric

and hydrostatic deformation. Equations (1) and (2) are the classical thermodynamic rate equa-

tions where the "forces" s and a on one hand and the "fluxes" deP/dz and deP/dz on the other

are related by the matrix of 'Onsager" coefficients

all a 12
(

a21  a22J

which traditionally have obeyed the symmetry condition

ar= aar (7)

4



However, as will be discussed presently, the symmetry condition is not essential so long as the

positive dissipation inequality (8) is satisfied. Thus, no prior assumptions are made about the

symmetry of a,, with respect to r and s and the possibility that a 12 : a2 l will be considered.

Note that both of these are deviatoric because of Equations (1) and (2). In effect a 12 is deviatoric

because s is likewise, and only the deviatoric part of a2l plays a role in the inner product on the

right hand side of Equation (2). However, the positive rate of dissipation must be observed in

which case:

de" del'
P W -Z+0 (8)

dz + 0 Z>

for IfdePII > 0 and/or (dcPI > 0. It follows from inequality (8) and Equations (1) and (2) that

all d + 1 - (a 1 2 + a21) d dz + a 2 2  dz > 0 (9)

10. Consider the constraints on the matrix [A] where

[A] [all a12 ] (10)
a21 a22J

which result from inequality (9). To this end set

a12 + a21 = 2B (11)

and let

del' del'
de= PO(12)
dz-z

where = JIBII and deP = IjdePl1.
11. It follows that inequality (9) will not be violated if the discriminant of the quadratic

form Q given by Equation (13).

Q=all d- +2,Ocos4j I Idz +a2 2  (13)
Q i Idz I dz I dz dz)(3

is negative and all and a22 are positive. Thus the necessary and sufficient condition is

all >0, a22 >0, #2 cosS2  alla 22 <0 (14)

for all 0. The worst possible case is when = 0. Thus the necessary and sufficient condition that

inequality (9) be observed is that

5
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Actual hydrostatic
response

Equation (18)

Figure 1: Hydrostatic response depicted by Equation (18).

all > 0, a22 > 0, a11a22 - 1 Ifa12 + a21112 > 0 (15)

since

#2= JIB112 = 11I(a12 + a2)112 (16)

Physical Identification of Matrix [A]

12. In this section connections are established between the proposed simple constitutive

theory specified by Equations (1) and (2), and other existing theories which have proved physically

sound in describing qualitatively the constitutive response of soils under monotonic loading. One

such theory is that of the critical state developed by Roscoe et. al. (1958). The fundamental

assumption that underlies this theory is that the rate of plastic work is proportional to the

hydrostatic stress. This statement is given analytically in incremental form by Equation (17).

s . deP + adcP = o'MdeP (17)

One observes that under purely hydrostatic conditions Equation (17) leads to the result

adeP = 0 (18)

6



which implies that either u 0 or de' = 0, that is, either a = 0 or the response is elastic.

Equation (18), therefore, leads to the hydrostatic response depicted in Figure 1 when the elastic

part of the response is linear. Also depicted in that figure is the actual response which qualitatively

looks like the critical state model. In presentation of the critical state theory (e.g. Schofield and

Wroth, 1968), Equation (17) is usually restricted to the case where deP : 0. However, one would

rather have the response for all loading conditions to be contained within the theory without

additional stipulations. 1 Since, otherwise, the critical state theory gives physically sound results,

Equations (1) and (2) must contain Equation (17) in some sense. Specifically Equation (2) could,

in fact, contain Equation (17) if

a21 = a ls, a22 = a 2 0 (19)

where a2 and a22 are constants. In this specific instance Equation (28) would have the following

incremental form:

odz = als . deP + a2 odeP (20)

In the very particular case where a21 = a2 Equation (20) would read

odz = a22 (s deP + od') (21)

which is a statement to the fact that the increment in plastic work is proportional to the hydro-

static stress, except that dz is not equal to de" as it would be in the case of the critical state

theory. However, one would like to retain the greater freedom of Equation (20) rather than bound

by the Equation (21). Again observe that under purely hydrostatic conditions and in view of

Equations (8) and (20) one finds that

o'dcP(k - a2*) = 0 (22)

Now if k - a*2 one again obtains the hydrostatic response in accordance with the critical state

theory, given by Equation (18) and depicted in Figure 1. However, there is another choice. By

setting

1The indeterminate nature of the response for purely hydrostatic loading was the motivation of introducing the

elliptical surface into the critical state theory by Burland (1965) through the introduction of an alternative form

of the right-hand side to Equation (17). Equation (17), which is based on the Taylor energy relationship, typically

fits experimental data well and rightly held an axiomatic position in the original theory. Here, the necessity for

stipulating deP $ 0 will be removed. The more general problem of indeterminate response under hydrostatic loading

will be addressed beginning on page 15.

7
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22= k (23)

Equation (22) is satisfied identically so that nothing can be said about either 0 or dcP and any

purely hydrostatic response is admissible (such as the one found in experiment).

13. In view of the above discussion set:

a 12 = a12s (24)

a 21 = a0is (25)

a22 = a202, (26)

in which case Equations (1) and (2) become

deP + dcP (27)
s= ai-z Z+a2 s--(

o = a2*deP + 022 AP (28)

Constitutive Response for Case of a02 - 0

14. This section examines the role of the coefficient a*2 in Equation (27). It follows from

this equation that

de
P

s a z (29)a0o 
d cP

1 -a1z

dz
Whatever the sign of a12 a case can be made that the shear response depicted by Equation (29)

is unrealistic. For instance in the light of the convention that cP is positive in compression let a2.

be positive. One can then envision a situation, where the hydrostatic deformation is densifying,

in which case the shear response will become unstable if

0 derPa12- - 1 (30)

Since such possibilities are not physically realistic set a*2 = 0.

8
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Existence of a Yield Surface

15. In this section Equations (27) and (28) are used in conjunction with Equation (23)

and the definition of the intrinsic time scale, given by Equations (5) and (8), to derive a yield

surface. Substitution of the former into the latter leads to the following result:

a2 - 2ali*aa + 11a*asl1 2 = 0 (31)

The geometry of the yield surface will depend on the nature of the functional dependence of all

on or and z. To examine various forms of its geometry let JIsII be denoted by q in which event

Equation (31) becomes

a2 -2alla*1, + (a1 )
2 q2 = 0 (32)

16. First examine the specific case where

all = a*llof(z) (33)

In view of Equation (27) and the fact that a*2 = 0, Equation (33) implies that the shear stress is

directly proportional to the hydrostatic pressure, in accordance with the classical law of friction.

In this case, Equation (32) becomes

12(2aIa*If(z) - 1) = (a*1 )2 q2  (34)

or

q=V(2a-1AiAifZ) - 1) (5a12 ,,. (35) a

Thus the yield locus becomes a straight line, the slope of which increases as the material hardens,

. e. as f(z) increases with deformation. When f(z) becomes a constant then a "failure line"

(surface) is reached.

17. Another case worth investigation is the one where all is independent of or. This is

not realistic in the case of soils but is of academic interest none-the-less. In this case

al = allf(Z) (36)

and the yield equation given by Equation (32) now becomes

9



q

0*

-.--af()

Figure 2: Special types of yield surfaces.

or2 - 2a*lalf (z)o, + (a*1 )2 q 2 = 0 (37)

or

(or - aiaoIfCz))2 + (a 1) 2 q2 = (a*la 1 f(Z)) 2  (38)

which is the equation of an ellipse with center (ala~f(z),0). These two simple cases are illus-

trated in Figure 2.

18. In reality the dependence of all on a is likely to lie between these two extremes.

Thus with reference to Equation (32), all is likely to be of a form such as:

all = oA(r)a'lf(z) (39)

where A(a) is decreasing function of o,, A(0) = 1, and a*,f(z) is a monotonically increasing func-

tion of z, becoming constant as z -- oo. To examine the effect of Equation (39) on the geometry

of the yield surface one can choose, typically, A(or) to be the following decaying exponential,

A(a) = ca, (40)

in which case Equation (32) becomes

or2(2a'lf(z)ale- aG - 1) = (a'1 )2 q2  (41)

10
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q

qo
.5

M = 3.0

m = .0

m=1.25

.5 1.0 G
e"

Figure 3: Yield surfaces for various values of m.

Now observe that q is zero at o = 0 but also at a limiting hydrostatic stress or = 4e such that

2alf(z)ale "  = 1 (42)

or

ao. = log m(z) (43)

where we have set 2a~lalf(z) m(z). Thus in terms of these parameters, where m(z) is a

monotonically increasing function of z with the property

lim m(z) = M. (44)

Equation (41) becomes

q = io m-1 (45)

where a21 = 'e/qo. Equation (45) gives a family of yield surfaces each corresponding to an

increasing value of m(z). In Figure 3, a subset of these surfaces is shown for various values of

m(z). The situation is more complex when all is also a function of density.

11



Strain Response Given the Stress History

19. Recall Equations (27) and (28) which, in light of the stipulation that a*2 = 0, become

deP (46)
dz

a = a*1 s -deP + a 2 2 a-- (47)

Use of Equation (46) in (47) gives the relation

( a- al dz =a22adS' (48)

Equation (48) is central in determining whether the volumetric response will be contractive or

dilatant. Adopting the convention that or and cP are both positive in compression, then dgP > 0

implies contraction and dcP < 0 implies dilantancy. Thus if

a201 q2 > 01 (49)

all

then the current deformation is dilatant. From Equation (32) it is apparent that o and q are

related since they both have to lie on the yield surface. Specifically, if Equation (39) is substituted

into Equation (32) the yield relationship is given by the following:

0 - 2a'2A(u)alf(z)al + (a'l)2 q2 = 0 (50)

or

= ( [2A(a)a~l1f(z)al - 1] (51)

Now define quantity A such that

A = a*2alf(z)A(a) - 1 (52)

By substitution of Equation (52) into (51) and combining the result with inequality (49), the

inequality can be written as:

2A+1 > (53)
A+I

12



Thus the following situations arise:

A > 0 = dilatancy

A< 0 = contraction

A = 0 ==o constant-volume deformation.

It is noteworthy that in deriving the above result, Equation (51) was written in the form of

Equation (54).

2A = a;, - 1 (54)

Thus the sign of A is also determined by Equation (54). In other words, in q - or space there

exists a straight line given by the relation

aq= o (55)

such that stress points (always on or below the failure envelope) above the straight line give rise

to dilatancy but stress points below the line give rise to contraction. Points on the straight line

give rise to deformation at constant volume. The situation is illustrated in Figure 4.

Calculation of the Volumetric Response

20. In this section, the volumetric response during shear and its consequences are con-

sidered in more detail beginning with an explicit calculation of the intrinsic time by making use

of Equations (46) and (47). Substitution of the former in the latter gives the relation

or := dll o "2  de (56)1=1 , 1 ' + ': "

where use was made of Equation (23). Use of Equations (39) and (52) gives the additional relation

a1 1a*1 = a(1 + A) (57)

At this point, Equations (56) and (5) combine to give the following quadratic relation for dcP/dz.

+-A) (k58) -k d0(
\dz/ dz-

13
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Diltio FailureJ

envelope

U
Figure 4: Separation between contractive and dilative states.

which gives two solutions for kdeP/dz. The one is given by Equation (59)

deP Akd- - +A (59)
dz 1+A

The second is equal to unity which must be rejected since it gives rise to the consequence that

dz 0

for all histories (in view of Equation (56)), with the implication that the shear response is always

elastic. This, of course is not admissible, except in situations where the deformation is purely

hydrostatic. Equation (59) gives rise to the conclusion arrived at earlier that if A > 0, then

deP < 0 and the deformation is dilatant, while if A < 0 the material response will be contractive.

It follows from Equation (56), in the light of Equation (59) that

de[ 2 1 +2A
dP I + 2 (60)
dz (I +&) 2  (0

thus

dz - + a 1deP11 (61)

Since dz is real we require that the radical should be positive, whereby the following inequality

must apply:

14



A > - 1 (62)

Recalling Equations (39) and (52) the implication of inequality (62) is that, for a > 0 (compres-

sion)

2aula 2 > a (63)

Of particular importance is the situation where the equality (64) applies:

2alla 1 = a (64)

in this case and in view of the yield condition given by Equation (31), it follows that q = 0. Thus

deP is also zero and since 1 + 2A = 0, dz is indeterminate from Equation (61). Thus the second

root of the quadratic Equation (58) must be chosen, i.e., under purely compressive hydrostatic

conditions

dz = 1 (65)

as it should be in view of Equation (5). Thus, the theory is internally consistent.

Coupling Mechanisms Re-examined

21. This section deals in greater detail with the coupling mechanisms that underlie the

deviatoric and hydrostatic stress responses. From a thermodynamic viewpoint the coefficient a22

in the rate Equation (2) accounts for the frictional dissipation associated with volumetric plastic

deformation. The indeterminate hydrostatic response, given by the simple model under purely

hydrostatic conditions, is a consequence of Equation (19) in which a22 is proportional to o. The

model thus describes an ideal locking material which displays no plastic volumetric deformation

in response to an increase in hydrostatic stress. Although Equation (23) permits the introduction

of an independent hydrostatic constitutive equation there is no apparent physical motivation to

guide the choice of such an equation.

22. In reality, the coefficient a22 in a frictional material will depend very strongly on

the prevailing hydrostatic stress because the interparticle frictional forces depend on the normal

forces, which are represented in an average sense by a. In addition, however, a significant part

of the dissipation under hydrostatic conditions is due to particle crushing. It is reasonable to

suppose that the degree of crushing will increase with the number of contact points associated
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with an increase in the density of a soil. These two mechanisms are essentially independent since

the number of friction points will not affect the total frictional force (Amonton's Law).

23. Therefore, from a physical standpoint, a2 2 will depend on a as well as the porosity

(or equivalently the density or plastic volumetric strain) and the dependence is likely to be

substantially additive. Thus set

a22 0 ( - i)4o(n) + 041o (66)

where 0. is a function of the porosity n, and 40l is a constant such at 0 < 1 1. For purely

hydrostatic conditions

= ((1 - 401)0o(n) + 01a) z (67)

which, in view of the definition of intrinsic time, gives the following hydrostatic stress-plastic

volumetric strain relation, under monotonic conditions of continuous compression:

1- 0. (n) (68)
k - 1

Note that in the case where k is equal to 01, the hydrostatic stress becomes infinite. This behavior

is that of an ideal locking material discussed previously. However, it is essential that k > 4'1 to

ensure a positive (compressive) volumetric strain.

24. It is useful at this point to introduce a porosity-dependent function 0,(n) such that

00-- k -1 O.,(n) (69)

The meaning of 0e(n) becomes evident in a purely hydrostatic monotonically compressive test

whereby Equations (68) and (69) give

o = n (70)

Thus, 0e(n) is the hydrostatic response function under purely hydrostatic conditions of increasing

compressive stress. It is mentioned in passing that Equation (70) allows a connection with

Hvorslev's (1937) equivalent pressure concept wherein 0e is identical to the limiting hydrostatic

stress introduced in Equation (42). As in Hvorslev's theory the shear strength of the soil becomes

a function of the ratio a/e.

25. By substitution of Equation (66) into Equation (2) and use of Equation (5) the yield

condition can be written in the form shown below.
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(a q )2 _______) 2 (1
q 1)o+ al l  (71)

It can be readily shown that, if 4o = 0 and k - 41 Equation (32) is recovered. In view of Equation

(68), it is possible to make Equation (71) approzimate the ideal frictional response of Equation

(SI) as closely as desired and still retain the hydrostatic response of Equation (68). Specifically,

we make use of Equation (69) and define the coupling parameter c as

C= k (72)

to rewrite the yield relationship as

2 ,.:,1 2o .

2 2 a2  1 q 1_____ l. (73)all o, (c - 1 + r a, l  (

Regardless of the magnitude of 4., Equation (73) may be made as close to Equation (32) as

desired by setting c as close to unity as necessary. Thus Equation (73) encompasses the behavior

of idealized granular material while eliminating the indeterminacy of the response for purely

hydrostatic conditions.

26. It may be shown by direct substitution that, for q = 0, Equation (73) reduces to

Equation (68). On the other hand, the complete yield equation which is analogous to Equation

(45), can be written as

-- = bV-'\m 1 B(74)

where

C= 1 + 1 +2B 2 (I- B 2 ) (m(1/m)/4- )(75)

and

B = - Cal (76)
(c - 1)q5e + (6

It is readily verified that Equation (74) is identical to Equation (45) when c = 1.

27. Thus far, the parameter c has been treated as a device to formally introduce a

hydrostatic yield stress into the theory; in fact, c has an important physical interpretation. By

combining Equations (27), (28), (39) and (72) and noting q*2 = 0 the relationship for the rate of

volume change is found to be
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de 2
d%-= 1 77(q)

W ~al 1A(o)f(z) a(7
dz - (c- 01) + 0i]

The effect of c > 1 is to reduce the volume change induced by shear-volume coupling at small

values of a. In view of the assumed dependence of 0be on density, the degree that volume change

is suppressed by c depends on the compactness of the soil. There is experimental justification for

both the reduced shear-normal coupling at low stress and the influence of density as depicted in

Equation (77) although quantitative comparison with data remain for future research.

Summary of Simple Model

28. The simple model presented in this part is limited to isotropic hardening. However,

several important principles outlined in its development will have application to the more general

theory that is presented in the next part:

a. The coupling between volume change and shear is derived from both the definition
of endochronic time and the coupling terms in the rate equation.

b. The indeterminate response to purely hydrostatic loading, typical of models for

ideally frictional materials, is removed by introducing a hydrostatic yield stress.
Physically, the hydrostatic yield stress is a measure of energy dissipated as a result
of particle crushing.

c. A yield surface was derived from the definition of endochronic time and the rate
equations. By making the resistance coefficient proportional to mean stress a
model for an ideal Coulomb material is derived. An elliptical yield surface results
from the unrealistic assumption that the shear stress at yield is independent of
normal stress (as a result of Equations (27) and (36)) even though the rate of
energy dissipation is proportional to a (as a result of Equation (28)).

29. Finally, it is important to point out one further tie to conventional theory of plasticity

for frictional materials. Owing to the presence of stress terms in the resistance coefficients [A],

the plastic strain increment vectors are not normal to the derived yield surface. Thus, the theory

developed is similar to a plasticity theory using a non-associated flow rule. To impose normality

within the context of the theory, it would be necessary to propose a purely cohesive mechanism

of resistance whereby [A] would not be functions of stress, in which case the frictional nature of

the behavior would be lost.
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PART III: GENERALIZATION OF THE SIMPLE THEORY

30. The question that poses itself is how to generalize the simple model presented in the

previous sections. Though other possibilities may exist, it is apparent that two choices present

themselves at the present juncture. One is an internal variable generalization of Equations (1)

and (2) whereby the plastic strains eP and eP are replaced by r internal variables q(r) and q(r)
respectively. The r'th set of the corresponding equations reads:

a'I + () dq(r) + ,()qr) (78)
aq(r) +a 1 d-- =0 (8

aqh +, () .dq (r) I () ) 0(9
caq(r) 21 dz 22 a dZ(9

and 'Pd and 401, are given by the following expressions respectively:

N

e'Jd I Ar lep - q(r)l12  (80)

NTh __ Br Jc -,€ q(r)[12 (81)

r= 1

This approach will be developed in detail beginning on page 20.

31. The other choice presents itself in the light of the stipulation that a12 = 0 in

Equation (1) and the relation

a21 = a21s (82)

in the light of which Equation (2) becomes:

0 ~s deP dcP
d = - (83)

32. Equation (83) may now be interpreted as meaning that there are two causes of

plastic volumetric strain. One is the hydrostatic stress and the other the rate of deviatoric plastic
work. However, from a physical point of view, the deviatoric plastic work is external to the

hydrostatic process, as far as isotropic materials are concerned at least, and therefore it qualifies

as a thermodynamic force of the first kind in the sense of Valanis (1983). The concept was

discussed in great detail by Valanis in that reference. The thermodynamic formal structure of

Equation (83) then becomes
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dcP

or + R = a22- (84)
dz

where R is a thermodynamic (external) force of the "first kind" such that

dezR = -a 1 s- dez (85)

The generalization of Equation (84) to the case of N internal variables is given by Equations (86)

and (87):

a ah (86)

aP h a(r) dq(r) =aq( ) + a25 T R (87)
8q(r) dz

where

R,=-a21 S (88)dz

33. In other words, insofar as the shear-induced volumetric strain is concerned, the effect

of the deviatoric plastic work is to apportion itself among the N hydrostatic internal mechanisms,

through the coefficients a2(1. This second approach will be developed in greater detail beginning

on page 28.

Generalized Theory I

34. Equations (1) and (2) are a particular case of the more general set of equations

derived from linear thermodynamics of internal variables. To show this, begin with the relations:

a %Fd (89)- OeP

o alph (90)

acp
where %Yd is a quadratic function of eP and q(r), %kh is a quadratic function of cP and q(r); q(r) and
q(r) are respectively the deviatoric and hydrostatic component of an internal variable a(r) such

that

a(r) = q(r) + Iq(r) (91)

where I is the identity tensor and
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*I(a(p),EP) = *d (eP, q(')) + &I,(c, q(")) (92)

The decompositions into deviatoric and hydrostatic components inherent in Equations (89) to

(92) apply only to the case where the material in question is isotropic in its initial state and in

the case of Equation (92) which is also quadratic in its arguments. For details see Valanis and

Read (1980).

35. The condition of positive internal dissipation is given by inequality (93)

a~ a . (" a~ ph () <

aq(r) a ( (93)

whenever

II,(r)ll > 0, I,'i)l _ 0 (94)

or

I4()l > 0, Ili(')ll > 0 (95)

In the event that q(r) and q(r) are independent, inequality (93) reduces to the two separate

relations

aip , (,) <0, II0 (')11 > 0 (96)

aq(r)

and

a-q < , > 0 (97)

In linear thermodynamics of isotropic materials the deviatoric and hydrostatic evolutions equa-

tions are not coupled. This does not preclude shear-hydrostatic coupling which is brought about

by the definition of intrinsic time as shown in Valanis and Read (1980 and 1986). When the

coupling is brought about only through intrinsic time the material under pressure will always

densify when shear is applied. In Part II, it was shown that the presence of the coupling coeffi-

cient a21 in Equation (2) gave rise to both dilation and contraction, with dilation occurring when

the inequality

a1211911 > 0 (98)
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is satisfied (see Equation (49)). Evidently dilatancy cannot occur when a*, = 0.

36. In the spirit of Part II, therefore, and in reference to Equations (1) and (2) express

the evolution equations for the internal variables in the form:

4 4d (r) dq() + a) dq() (99)
aq() ' 1dz 1 dz

aq+a (r) dq + d(r)d = 0 (100)

aq(') 2+ dz 22 dz

Notable by their presence are the coupling terms a1 r) and a( ) . However in what follows the

possibility of ar) - 0 for all r will be considered, thus abandoning the Onsager symmetry

condition. This was discussed in Part II. For the purpose of integrating Equations (99) and (100)

we express *d and *h in the usual quadratic form:

N 2

'PiI'~ > A, 11e - q~r) 11 (101)

N 2
'h= IZ B, c - q(r)' (102)

r= 1

and following Part II, write the coefficients all,a22 , and a2 l in the form:

a ) = Fdao() (103)

a2) Fhao(r) (104)

and

a(r) o(r) (105)

a 21  a 2 1 s

where Fd is the deviatoric hardening function (in shear) and depends on the hydrostatic stress,

Fh is the hydrostatic hardening function which depends on the hydrostatic stress and density

(or porosity n). Both Fd and Fh are also likely to depend on z. Equations (99) and (100) in

conjunction with Equations (89) and (90) and in light of Equations (101) and (102) give after

standard analysis the following constitutive equations
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Od = (zd - z)d'z (106)

jf z z r,-(zh- z) (- dzi (107)

where

dz
dzd = (108)

and
dz, = z (109)

kFh

The kernel functions Od , P4, and r. are given in the usual fashion by sums of positive decaying

exponential terms according to Equations (110), (111) and (112)

N

:= Ae - 'z (110)

N

rr = Cre- PIXA (112)

where

o(r)
_ A, Br a21

r aoPr), = o(ar), Cr = B 7 O(r) o(r) (113)
a11  a2  11 a22

The second integral of Equation (107) arises from the coupling terms in Equation (100).

37. In deriving Equations (106) and (107) it was assumed that all internal forces were

zero, that is

8qtp' 0-0 (114)aq~r) L=

a* i =0 (115)

aq(l=

for all r. Whilc it is necessary that a = 0 and o = 0 at z = 0, Equations (114) and (115) need

not be satisfied initially. In fact, it is readily shown from Equations (89), (90), (101) and (102)

that
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aq('d (116)
r- a q(r)

alph (117)

Therefore while the sum of the internal forces must be zero in the initial condition, they may be

individually non-zero. This is a fact of some importance as it allows for the possibility of an initial

apparent shear stress history for a sample subjected to a purely hydrostatic stress history. Such

an apparent shear history could result, for example, from hydrostatically stressing an assemblage

of particles that have preferred contact orientations created during deposition. This possibility

is consistent with the experimental observation by Arthur and Menzies (1972) that the mode of

deposition influences subsequent response to loading. The possibility of treating depositionally-

induced anisotropy by a non-zero initial state,however, will not be pursued hence but remains a

topic for future research. The same remarks apply to the development of Theory II in the section

that follows.

38. Equation (107) is too complex for practical applications. To simplify the second

integral on the right hand side of this equation, first consider what conditions must apply for the

relation

-krs (118)
aqr

to hold, where kr are constants. An analysis using Equations (99) and (101) show that this is

possible only if

al = 2 = N = (119)

In this event

'kd -- eazd (120)

that is, the heredity function in shear is given by a single exponential term. While this is not

always, if ever, true, it is a reasonable approximation (to 4 d) which allows a significant reduction in

the complexity of the right hand side of Equation (107). Thus assuming (119) to be approximately

true then it follows from Equations (99) and (101) that

N 1  '' N Zd Z)deP
s- - ) Z A e(dz') dz' (121)

r=1 r =1
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But

a~ld _A, C a e- ( Zd-
X' ) d e P dz'(12

aq(r) 1A d(1

Thus, in view of Equations (118), (121) and (122)

A,
k, = N (123)

Now use of Equation (118) in Equation (107) gives the following simplified constitutive equation

for the hydrostatic response:

f j O(zh - Z#) Edz' +10 r(zh - F) dz (124)

where

N
r(zh) = kCe-P" (125)

r=1

Thus to summarize, the constitutive description of potentially dilatant behavior in soils is given

by Equations (106) and (124) in terms of two heredity functions Od and Oh, the coupling ker-

nel function r(zh) and the hardening functions Fd and Fh in addition to the elastic shear and

bulk stiffness constants ju and K. The remainder of this section considers the conditions where

Equation (124) does indeed give rise to dilatant behavior in soils.

39. The dilatant behavior of Equation (124) is studied most easily (and in closed form)

in the particular case where both 40h and r are given in terms of a single exponential function,

that is, when

Oh= #heOA (126)

and

r = roe - O'h (127)
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The multiplier on the right hand side of Equations (126) and (127) is not put there artificially

but it serves a useful purpose in that, in the limiting case of very high 6 , both Oh and r

tend asymptotically to Dirac delta functions, which are useful approximations to OPh and r for

non-cohesive materials such as sands.

40. Using Laplace Transforms one may, in the light of Equations (126) and (127), solve

Equation (124) in terms of cP to obtain the following relation:

C=_ a+ (o+ W) f Zh 1 H Fdz (128)

Now let o be equal to o, the constant hydrostatic stress at which shearing begins, and let

dR be the increment in volumetric strain due to shear at constant hydrostatic stress. Then,

differentiating Equation (128) we obtain the following relation for ded:

= ( o - ril) dzh (129)

where the following relation was used:

i = C1 + C (130)

eo being the plastic volumetric strain induced by the initial hydrostatic stress o. Thus in this

more general approach the criterion for dilatant behavior is given by inequality (131):

11sill Fd (131)

41. The case of a cylindrical triaxial test at constant lateral pressure is more complex

since a does not remain constant during the test. Thus upon differentiation of Equation (128)

one does not obtain Equation (129).

42. Given that for cohesionless soils Fd is substantially proportional to a , then in this

particular case and for o > 0 (or positive in compression):

Fd = Fd* (132)

In view of Equation (132) the criterion for dilatancy in non-cohesive soils is given by inequality

(133)

[Isl> F (133)
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Note that condition (131) and its corollary (133) are identical in form to condition (49) and (54)

which was obtained in the case of the simpler theory of Part II.

43. In shear experiments on soils under constant hydrostatic stress what is actually mea-

sured is the resulting volumetric (plastic) strain as a function of the shear strain (or shear stress).

Thus what one obtains eventually is a relation between the shear induced plastic volumetric strain
and the applied plastic shear strain. To obtain such a theoretical relation from Equation (129)

use Equations (5) and (109) to obtain the following result on the basis that deP > 0:

010 - roiii- -

deFd (134)

(F )2 
- ( ro Fj,/)

For soils the hardening function Fh is adequately represented by the form

Ph = (1 - ) + - (135)

where fl and 1 are material properties and 4 has the same definition as when introduced before.

44. Equation (134) may be integrated numerically to determine f as a function of eP

provided that the material constants ro, 0S%, Fdf, 0' and k are known. Actually five material

constants are necessary to determine theoretically the shear-induced volumetric response since

Equations (132) and (134) dictate that ro and Fd appear in the ratio rO/Fd.

Further Simplification of Theory I

45. The hydrostatic stress-strain curve of soil (obtained under monotonic conditions

of increasing hydrostatic stress) consists of an initially convex part which quickly gives way to a

concave part which prevails over the remainder of the curve. The concave part of the stress-strain

curve is obtained readily by setting Oh(zh) proportional to a Dirac delta function, i.e. , by setting

in Equations (126) and (127) = oo. In this event AN

Oh= O 6 (zh) (136)

r = r05(zh) (137)

46. With reference to the purely hydrostatic response (s = 0) and in view of Equations

(5), (107), (124), and (135), it follows that:
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ff Oohe "  (138)

an expression which agrees remarkably well with experiment in the concave region of the hydro-

static stress-strain curve. Thus

Oro = 00 CPCP°  (139)

Thus in view of Equations (132), (135) and (139) Equation (134) becomes:

de = 1 (140)
deP D L F \ o /

where

( 1-Cp+ )0(1°(2)) (141)

This equation may now be integrated numerically provided that the constants k , /3, o and

ro/FO are known.

Generalized Theory II

47. In this section the position is considered that whereas the deviatoric plastic work is

a cause of hydrostatic plastic strain, it is external to the hydrostatic process in the sense that

it is not a hydrostatic mechanism. Therefore, it qualifies as a thermodynamic internal force of

the first kind in the sense of Valanis (1983). In the presence of such forces the thermodynamic

equations appropriate to the rigid plastic solid that represents the plastic behavior of the soil are

the following:

N

d F Z Ar7 je" - q(r) 12 (142)
r=1

r---- 12N

'P h = EBr[CP - q) (143)

B qsd (144)
=- 8eP

h (145)

d +a ) dq(r) 0(146)
aq(r) + dz 0
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8'1 .. (,.) dq(r) _
(r) (147)

where

R, = -a,)s . deP (148)21 dz

In addition, the resistance coefficients a1
) and a2

) are not constant but are related to the hard-

ening functions Fd and Ph respectively by the relations

a(r) = o(r) a(r) = _o(r) (149)

11  11, a22  h 22

where

Fd = Fd(0,z), Fh = Fh(0, ) (150)

48. The dependence of Fd on z is weak so that for deformations other than cyclic histories

z plays a minor role in Fd and may be ignored. Also the dependence of Fh on o and cP is additive,

a fact that was discussed at some length on page 15. A straightforward analysis using Equations

(142) to (148) in the light of the initial conditions

q(r)(o) = 0, q(C)(0) = 0 (151)

gives rise to the following set of two constitutive equations:

5 = Jo ., - z') z, dz' (152)

Oh(Zh , de+.. - dePdz (153)
=Z 'dzh-z'-~,a r(zh --Z')S. -dz'

(I Jz o dzt

where

dz
dzd = - (154)

dz
dzh = - (155)

Fh

N

Od = Z Are - zd (156)
r=1
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N

= B e - # , li (157)

N (i)
r L e (158)

r=1 h

Cr = A, (159)
-O(r)a1 1

- B,7  (160)
a 22

49. The determination of the form of the functions 4Od, Oh and r from appropriate

experiments is a subject for future research. Some simplifications do occur when the effect of the

deviatoric plastic work rate is distributed uniformly among the hydrostatic mechanisms, in which

case

a2  = a (for all r) (161)

50. In this event, and in view of Equations (157) and (158)

r(zh) = a l1h(zh) (162)

so that once 4Oh(zh) is known, from a simple monotonic hydrostatic test, then r(zh) is also

determined to within a multiplicative constant.

Simple Example of Theory II

51. As an illustration, the theory is applied to the simple case of a cylindrical triaxial

test when the soil is sheared under constant hydrostatic stress. Specifically the soil is stressed

initially under purely hydrostatic conditions until o is equal to oo. With o held at this value the

soil is then compressed axially and the shear stress, the shear strain and the volumetric strain

are measured. Also it is assumed that oro is sufficiently large to lie on the concave part of the

P_ hydrostatic stress-strain curve, so that Oh(zh) can then be represented by delta function. See

Valanis and Read (1980).

52. The mathematical consequences of this representation are of interest in view of

Equations (157) and (160)
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N

7=(

The limiting process by which Oh tends to a delta function is the one whereby ] - co, in which

event

N

Oh = (zh)Z~~ L a')= *6zO (164)
r=1 

2

Of importance is the fact that when 0', tends to a delta function, so does r(zh) by virtue of

Equation (158). In effect

i m z( =)1 Ni,-im "-Zh) 1 a 21, ( Zh )  (165)

In this event

r(zh) = Pr6(Zh)/Fh (166)

where

N

ro = L a2' )  (167)

The constitutive Equation (153) now reduces the simple form

= d eP + rs (168)
dh dz

where Equation (155) was also used. This last equation is used to investigate the dilatant behavior

of soils under constant hydrostatic stress.

53. Following the deliberations on page 18 we set

h = (1 - ) + (169)

so that Equation (168) becomes

=((1 - 01)00efP +1 -deW deP (170)

An analysis of the cylindrical triaxial test shows that if one sets

S xV/jkoI - o3) (171)
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ep A,/i(C - es) (172)

where "1" denotes the axial direction and "3" one of the lateral directions, then

dep .de p = (dep) 2  (173)

s. deP = sdeP  (174)

Thus the equation that defines the intrinsic time z, on one hand, and Equation (170) on the other

become

dz2 = (deP) 2 + k2 (del') 2  (175)

=k((I - 4,)4,ofeP + O he)l- + rodel (176)
k((1 , o , 1 -z de

The ultimate goal is to solve Equations (175) and (176) simultaneously and thus obtain a relation

between el and eP.

54. To this end note that under purely hydrostatic conditions (s = 0, eP = 0) for

monotonic loading

Oo = 00hel'- (177)

for all ao. Therefore define, as before, a deviatorically induced hydrostatic strain Ad such that

-d'- e (178)

Equations (175) and (176) may now be solved simultaneously under conditions of monotonically

increasing eP to give the following result: 1

k d _ 1 - 2s 2  (179)
del hros* + Vh 2 + rOs'2 - 1

where

(1 - 0'l)e f~ + 0'[ (180) -

'Equation (179) corresponds to the case where s is increasing. A second solution exists for Equations (175) and

(176) which corresponds to unloading. The solution procedure leading to Equation (179) is discussed in detail in

Appendix A.
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and

* 8

8 -(181)
0'o

Comparison of Theories

55. The theories presented in the two previous sections differ as a result of the interpre-

tation of the coupling terms in Equations (78) and (79). Theory I results from assuming that

coupling occurs for each mechanism whereas Theory II results from assuming that the coupling

occurs through some averaging mechanism represented by the external force R. Theory II is quite

amenable to simplification without loss of physical relevance whereas Theory I leads to relation-

ships that are virtually intractable except for a limited physically unrealistic case in which the

shear response is modeled by one internal variable. It is worth considering, therefore, how the

theories differ on physical grounds.

56. Both theories predict a contractive-dilatant response for monotonic loading, while

for unloading some important differences arise. Consider an experiment whereby a cylindrical

specimen is first loaded axially until dilation is observed then unloaded along the same path.

In accordance with Equation (129) Theory I predicts that the volumetric strain upon unloading

would be dilative arid would remain so provided inequality (131) was satisfied. This result is, in

fact, easily extended to the general case described by Equation (107) by noting that the coupling

described by the second integral is a function of the internal state and independent of the loading

direction.

57. By contrast Theory II predicts that the sign of the volumetric strain increment

caused by coupling is controlled by the product s • deP as seen from either Equation (153) or

(170). Thus, Theory II predicts that upon unloading the volumetric rate should change from

dilation to contraction (see Appendix A). One of the most important features of the response of

frictional materials to cyclic loading is their tendency to densify upon load reversal. Therefore,

Theory I appears to be physically inadmissible on this particular basis.

Yield Surface

58. A feature of the simple theory presented in Part II was the existence of a yield surface

which provided a means for comparison with models developed from the theory of plasticity. For

multiple internal variable formulations, such as those presented in this Part, the boundary in

stress space between elastic and plastic response is not necessarily marke by a yield surface. As
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shown by Valanis (1980) for metals, a yield surface is a mathematical consequence of representing

at least one of the exponential terms of the memory kernel with a delta function. The situation

for the models presented here is similar as will be illustrated for Theory II. To begin, the first

terms in the series given in Equations (156) to (158) are approximated by delta functions or

alternatively by letting A,, ci, B1 , and 01 become infinite while keeping the ratios Ai/ai and

B 1/ 1 finite. In this case the integrals in Equations (152) and (153) become Equations (182) and

(183):

dep P t dePs d!- + f ¢(zd -O (Zd-- ),dz' (182)

or = o0 d cP  deP

dz dz- $=Cd-z, zr)-dS. + rr(h- -z

/ p - deP dz (183)

0 dz' fo z')s • dz

which give rise to a theory with a yield surface.

59. Equations (182) and (183) may be used to obtain explicit relationships for the plastic

strain rates in terms of the stresses and history integrals. Relationships analogous to Equations

(46) and (47) (with a 2 = 0) can be now derived as:

Qs - = -dFd-dZ (184)
d dz

and
0 dP de(185)a a m d z -- °Fs"dz

where fdep dzI (186)

and

dcP Z de(
QO= 1o /(zh z')-dz' + j '(zh - z')s--az (187)

60. Through an analysis similar to that on page 15 whereby the plastic strain rates are

substituted into the expression for endochronic time the following yield condition is obtained:

I-Q11 l+ (k-Fh) ( Q) -odFd 1(s- -d F= (188)

61. Equation (188) describes a yield behavior that includes both kinematic and isotropic

hardening. If Fd and Fh are constant the behavior is purely kinematic hardening. In the case
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of an incompressible material where OFh -- oo the deviatoric projection is circular as for the

case of metals derived by Valanis(1980). For compressible materials with r, 0 0 the projection

is non-circular as a result of the product s. (s - Qa).

62. This is a historical development of some relevance. Note that the constitutive relations

(182) and (183) in conjunction with the yield equation (188) contain a kinematic-cum-isotropic

hardening rule in the co-joint hydrostatic-deviatoric stress space. This comes about naturally

through the vehicle of thermodynamics which has not been available to treatments that begin

with the concept of the yield surfaces.
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PART IV: EXAMPLE APPLICATION TO SAND

63. In this part the theory described on page 28 will be used to model the response of

Sacramento River sand in the triaxial compression test. This test is performed by increasing the

axial stress al while keeping the lateral stress os constant. Thus the average stress a increases

during the test which complicates the analysis of the constitutive equations. Therefore, an im-

portant goal of the analysis in this Part is to demonstrate how the theory can be applied to the

more common triaxial test, an essential step in use of the model for practical applications. The

data used for the analysis is taken from Lee and Seed (1967). These data are presented in Figures

5 and 6.

Hydrostatic Response

64. The hydrostatic response is described by the one-term approximation presented by

Equation (168). To simplify the determination of parameters a form of Fh is used to yield a

relationship equivalent to Equation (169) given by1 :

EOFh = (1 - 0 1 )0e(n) + 01o , (189)

Note that 41 and 0e(n) were previously defined with regard to the simple model described in

Part II (see page 15) where 0 > 0i _ 1 and 0e(n) is a density-dependent hydrostatic limit stress.

Also note that because 0o, always appears as a multiplier to Fh, we can set 4o - 1 without loss

of generality. For purely hydrostatic loading Equation (168) reduces to:

o,= 0.(n) (190)

65. For consistency with the data presentation in Figure 5 the specific volume will be

used which is related to the porosity by:

1V 1 (191)
1 -- n

Also, for purposes of computation it is desirable to express a,(v) in terms of plastic hydrostatic

strain. The change in hydrostatic strain can be related to the change in void ratio using the well

known relationship:

'Note that these relationships differ from those in Equations (66) to (70) because of the appearance of k in the

definition of dzh.
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Figure 6: Stress-strain-volume change data for Sacramento River sand with v,, 1.87 and

a= 2kg/cm2
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W~ 1
-v (192)dv V

It will be assumed that the initial unstressed state of the sand corresponds to the loosest state.

The limiting pressure, 0, can be expressed as a function of specific volume as

= 20es 6 1(1 -i/v °) (193)

where vto is the loosest state obtainable by the soil. This state is taken as the so-called maximum

void ratio (eiaz) which defines the loosest packing that can be achieved by a standardized test.

Lee and Seed reported e,,. for Sacramento River sand to be 1.003. Thus vo = 2.003.

66. Equation (193) implies that the initial state does not depend on details of hydrostatic

loading history. For example, a loose sand and dense sand, if loaded to sufficiently high stress,

can be brought to the same v, even though the two specimens have significantly different stress

histories; as far as mechanical response to subsequent loading is concerned, the two samples would

be identical. For purely hydrostatic histories this simplistic interpretation of the sample behavior

can be justified based on the use of Equation (166) and indeed the assumed equivalence between

plastic strain and void ratio is implied in many soil mechanics models based on normalized

behavior (e. g. Ladd and Foott, 1974). In practice this approach may introduce significant error

because it ignores the apparent shear history introduced through sample densification. The role

of sample preparation in the context of the initial condition was discussed in Part Ill, page 23.

Nevertheless, it will be assumed here that all specimens are initially at a state that can be

described by an equivalent purely hydrostatic loading history that is specified by the scalar v.

Shear-Volume Coupling

67. Evaluation of the coupling between shear and volume change begins with Equa-

tion (168) which can be written for the triaxial compression test conditions through substitution

of Equations (109) and (171) as:

dE' dep

a = kFh- + ros- P (194)
dz d

By combination of Equations (175) into (194) the following relationship for rate of volume change

is derived in Appendix A:
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82

d1- (195)

deP h , +2 2

ro--+ 2 -- 1
0 0,2 0 02

Equation (195) is valid for increasing a and in contrast to Equation (179) is not restricted to

shear histories with constant hydrostatic stress. Note that the condition for dilatancy is identical

to that derived on page 28 for constant a.

68. The two constants r and k can be determined from the slope of the a plot of cP

versus eP. The constant r. is the ratio s/ at the point in the test where dWp = 0 (initiation

of dilation). The coupling constant k is computed by substitution of measured dilatancy rates

deP/deP into Equation (195). From Figure 6, deP/deP = 0 at 8/0 = 1.05 which gives r. = 0.95.

At s/0. = 1.14,dP/deP = -0.056 and Fh/o = 2.97. By trial computation 01 = .8 was found to

give a good fit to the data. Substitution of these values into Equation (195) gives k = 0.492.

Shear Response

69. The shear response for the triaxial compression test, obtained by substitution of

Equations (171) and (172) into Equation (152), is given as follows:

8 =, d(zd - de P ' (196)

The above equation can be written as:

8 = J Od(Zd - z')G(z')dz' (197)

where

G(Zd) = Fd(zd) deP(z d )  (198)

Owing to the small values of k and noting deP/deP < I it is readily determined from Equation

(175) that deP/dz ; 1. Therefore, evaluation of G(zd) amounts to determining Fd.

70. Equation (198) is complicated by the fact that G(zd) is proportional to a which,

in contrast to the simple examples of Part III, varies over the history of the test. A simpler

relationship can be derived by noting that the history of o is tied to the history of s through the

following linear relationship:

a = ao + bs (199)
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where o, is the hydrostatic stress before shearing and b is a constant equal to zero for constant

hydrostatic stress and .408... in the case of constant lateral stress. Upon substitution of Equation

(199) into Equation (197) a linear integral equation in s is obtained which can be solved through

a straight-forward application of Laplace transforms once the kernel function is defined. For

the example considered here the kernel function will be expressed as a delta function and one

exponential term given by Equation (200):

Od(Zd) = °d6 (zd) + AIe - alzd (200)

which, upon substitution into Equation (197) gives:

=Oo '+ A1 f Xd ese Zdz') + b '+ A1 f z- -sdzI) (201)

Solving for a gives:

8 = Soo + (so - Soo)e - a zd (202)

where

so = -- o 0 (203)
1 - b Od

Ogo
s0C = (odcl + Al) (1 - bo) (204)

and
bAl

a = l -bAi (205)

71. Based on the peak stress value shown in Figure 6, so = 4.28 kg/cm2. The two

constants so - soo, and a can be obtained from the test data as illustrated in Figure 7. Using

the data from this figure it is found that a = 88.5. These data along with the elastic constants

are sufficient to compute the response of the triaxial compression test with constant Os. The

parameters needed for analysis under general loading conditions can be computed from:

o + bso (206)

a o + b s o (2 0 7 )Oo + bso

Oro + b 0 Ci1  (208)
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Figure 7: Semi-logarithmic plot of data for determination of constants.

Comparison to Experiment

72. A comparison between the theory and test data are shown in Figure 8. The shear

strain e was computed from the definition of plastic strain given by Equation (209):

eP = e - s/ 2p (209)

where 21A = 1700kg/cm 2 and e is found by integrating deP = Fddzd in view of Equations (202)

and (199), and Fd = a to get:

b
--= (oo + bsoo)zd - b(so - so)(l - e- *Sd) (210)

Thus the shear response can be expressed as two parametric equations in zd. The volumetric

response is obtained by numerically integrating Equations (189), (192), (193) and (195) to obtain
cP. The elastic volumetric strains during shear are computed using an elastic bulk modulus

K = 1133 kg/cm2 .

73. The comparison shown in Figure 8 is reasonably good for larger strains. At small

strains, the error created by the one-term approximation is evident, especially in the initial shear-

induced volume change where the plastic component of strain is underestimated. Note that by

use of more exponential terms in Equation (200) the initial elastic response can be made as small

as required to fit the data.
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Figure 8: Comparison of one-exponential approximation with data.
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PART V: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

74. The work described in this report was intended to provide a theoretical framework

on which to derive constitutive models for frictional materials based on linear thermodynamic

relationships. The principal goal of this work was to develop a fundamentally sound model which

correctly predicted both contraction and dilation caused by shearing. Two results drawn from

this work are as follows:
a. The contractive-dilative response of soil is captured through a straight-forward

application of the theory of endochronic plasticity. In particular, dilatancy results
from coupling terms in the rate equations. A significant finding is that coupling
among internal mechanisms is through an averaging process that can be treated as
an thermodynamic force which acts external to the hydrostatic mechanism. This
is in contrast to the equally plausible hypothesis that there is an independent
coupling between the shear and normal components of each mechanism.

b. The model correctly predicts that contraction occurs immediately upon unloading
even for the case where dilation occurs in the loading segment of a stress path.
This is in direct agreement with experiments.

75. Future research should be directed as follows:

a. The model should be extended to the case of undrained behavior. Procedurally,
this could be done quite simply by applying the constraint de = nC.du where C
is the compressibility of pore fluid and du is the increment of pore pressure. The
resulting relationships could then be used for analysis of undrained tests. Among
the goals of this study would be

* determination of properties from undrained tests

e prediction of liquefaction

* comparison of soil response for both drained and undrained conditions.

b. A detailed study on property determination is needed. In particular, the determi-
nation of the shear-kernel function 0,j from data for complicated stress paths and
generalized forms of Fd requires investigation.

c. The dependence of elastic constants p and K on stress and plastic strain requires
investigation.

d. The response of the model to non-proportional stress paths in deviatoric stress
space and for loading under rotating principal stress axes requires investigation.
The kinematic hardening behavior described by Equations (182) to (188) appears
to be consistent with experimental data, reported by Alawaji et. al. (1986). That
data, documented in detail by Sture, Alawi and Ko (1988), should be used to
investigate the kinematic hardening mechanism further.
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e. The analysis needs to be extended to consider the effects of the third stress in-
variant.

E The model should be implemented in two and three dimensional numerical analysis
codes for practical boundary value problems.

g. The problem of uniqueness of solutions to boundary-value problems formulated
from the model (already initiated by Valanis (1989)) should be studied further.
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APPENDIX A: DERIVATION OF STRESS-DILATANCY RELATIONSHIP

1. In this Appendix, the derivation of Equation (195) from (175) and (194) is described

in detail. Relationships such as Equations (134), (140), (179), and (195) which express the

dilatancy rate deP/deP to the shear-normal stress ratio 8/ are referred to as stress-dilatancy

relationships in soil mechanics literature. The derivation of these relationships in the present

analysis is based on combining the rate equations with the definition of endochronic time and

solving the resulting simultaneous equations for deP/deP. Whereas deP/deP appears as a quadratic

term in the equations, two solutions are possible. Therefore, the main task of this appendix is to

describe how the appropriate solution is chosen.

2. To reduce the complexity of the relevant equations, define the following:

dx = kdeP  (Al)

dy = de" (A2)

Fh (A3)
01

8

b-= r,- (A4)

Write Equations (194) and (175) respectively as

a~5+bd - 1 (AS)
dz dz

(d) + = 1 (A)

where the solution is sought in terms of dx/dy. These equations may be interpreted geometrically

as the intersection of a unit circle (Equation (A6)) by a line (Equation (A6)) as plotted on the

cartesian axes dy/dz and dx/dz in Figure Al. The two solution points are S1 and S2 . The

lines connecting the origin with these points,L1 and L 2 , have slopes dy/dx which in view of

Equations (Al) and (A2) are the two possible dilatancy rates.

3. The solutions to (AS) and (A6) can be determined upon substitution of Equation (175)

to be

dx 1 - b2  (A7)

dy ab ± -fa2 + b2 -1

With reference to Figure Al, S1 corresponds to the positive solution whereas S2 corresponds to

the negative solution, that is
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dx V for S1 (A8)
= ab+ va 2 + b 1

dx 6 for S2 (A9)

dy ab- /a 2 +b 2 -

4. The line given by Equation (Al) crosses the dy/dz and dx/dz axes respectively at

points P1 and P 2 . The ordinate value of PI is 1/b and is a measure of the shear-normal stress

ratio; at a = 0, 1/b is infinite. The demarcation between contraction and dilation (e.g. inequality

(98)) lies on the circle at b = 1; thus for the loading condition dilatancy occurs when PI lies inside

the circle.

5. Point P 2 crosses the abscissa at 1/a, which is a measure of the ratio between the pre-

vailing hydrostatic stress and the hydrostatic yield stress. Under hydrostatic loading conditions,

plastic yielding begins on the circle at a = 1. In general, a < 1. Therefore, P2 lies on or within

the circle. 1

6. When Px lies above the origin, the axial stress is greater than the lateral (confining)

stress (commonly referred to as a triaxial compression test) and 0 > 0-2 = 0-3 > 0. When P

lies below the origin, the axial stress is less than the confining stress (triaxial extension) and -

01 = 0"2 > 0 3 > 0. Points S1 or S2 falling above the absci~sa correspond to solutions with

increasing eP whereas points falling below the abscissa correspond to decreasing values of eP. A

load reversal in a triaxial compression test will be characterized by solutions dy < 0 with 1/b > 0;

that is, a load reversal is depicted by P above the origin and a solution point falling on the circle

below the abscissa.

7. The solution for the initial condition (s = 0) in a triaxial test with o : is shown in

Figure A2. In this case, Equation (A5) describes a vertical line which is tangent to the circle at

(1/a,0) giving as the only solution deP/dz = 1 (or equivalently dM/deP = oo). Two solutions are

possible for the initial state when a < 1 as shown in Figure A3. The positive solution S would be

chosen for a triaxial compression test (eP increasing) while the negative solution S2 corresponds

to the triaxial extension test (eP decreasing).

8. Figures A4 and A5 illustrate the solution as s is increased in the triaxial compression

test. For 1/b > 1, both the positive and negative solutions correspond to contraction as both

'In soil mechanics terminology, a = 1 corresponds to the normally consolidated state while a < 1 corresponds

to an over consolidated state. A dense sand under low confining pressure or a highly over consolidated clay would

have a 4 1.
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dy

L4 dz

dy_

-SI

P,

points of intersection (S91 and S92 ) fall to the right of the origin. The positive solution corresponds

to loading while the negative solution applies upon unloading (when dep changes sign). As s is

increased such that 1b < , the positive (loading) solution falls to the left of the origin which

corresponds to dilation. Here again, the negative (unloading) case corresponds to contraction.

The extension test is similarly analyzed leading to the conclusion that dilation is the result of

loading beyond l/bi < 1, with contraction resulting otherwise. The various cases that may occur

in a cyclic load history are illustrated by the sequence of sketches shown in Figure A6._

9. Finally, note that by writing the product s .de" as IIde~llII fsh cos s, where cos ¢' 1- for

loading and cos i¢ - -1 for unloading, that all cases can be expressed in the form of the solution

given by Equation (Al0).

1-r (A1 (0)

kz dz d

2 cos + -1
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dy 1
d7 b

-=1 dx

Figure A2: Solution for initial condition where a = 1 and b = 0 (normally consolidated case).

dy
dz

(triaxial compression)

1
<_ Idx

(triaxial extension)

Figure A3: Solution for initial condition when a < 0 and b 0 (over consolidated case).
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e" increasing (loading)
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Solution for

epdecreasing (unloading)

Figure A4: Solutions for contractive case for triaxial compression test.

dy
dz

Solution for
ep increasing (loading)

dx

Solution for

e Pdecreasing (unloading)

Figure A5: Solutions for dilative case in triaxial compression test.
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Figure A6& Correct solution (shown as solid point) for various points in compression-extension

experiment of triaxial test.
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