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Abstract

For special model problems, Fourier analysis gives exact convergence rates for the

two-grid multigrid cycle and, for more general problems, provides estimates of the two-

grid convergence rates via local mode analysis. A method is presented for obtaining

multigrid convergence rate estimates for cycles involving more than two grids - using

essentially the same analysis as for the two-grid cycle.

For the simple case of the V-cycle used as a fast Laplace solver on the unit square, the

k-grid convergence rate bounds obtained by this method are sharper than the bounds

predicted by the variational theory. Both theoretical justification and experimental

evidence are presented.
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1. Introduction

Although the heuristic arguments which indicate that multigrid iterative methods lead to fast ellip-

tic solvers are easy to understand, they cannot predict convergence rates or guarantee convergence.

There exist methods which provide a means to calculate theoretical mu!tigrid convergence rate

bounds for a large class of multigrid solvers for positive definite elliptic problems. Unfortunately,

the motivation and proofs of these bounds are relatively difficult. For special model problems, a

simpler calculation, based on Fourier analysis, provides exact convergence rates for the two-grid

algorithm, but the exact analysis becomes too complicated to carry out for more than two or three

grids.

In this paper we present a technique for obtaining convergence estimates for any number of grid

levels, thereby providing an easy method to verify that multigrid is a fast solver (i.e., only a fixed

number of iterations will solve the problem). Although the method is strictly valid for only a few

model problems and for only symmetric V-cycles, it provides a general insight into the details of

the basic interaction between the coarse grid correction and the relaxation. These new estimates

of the convergence rates for the k-grid problem are no more difficult to calculate than the exact

convergence rates for the two-grid problem.

In Section 2 we define a simple multigrid V-cycle and derive a formula for the iteration matrix

associated with a multigrid cycle. A brief introduction to the grid independent convergence rate

bounds given by the variational theory is given in Section 3. In Section 4 it is shown that bounds

on the k grid convergence rate can be found in terms of the k - 1 grid convergence rate, using the

same type of calculation as for obtaining the exact two grid convergence rates. Moreover, since the

two grid convergence rate can be found exactly, we obtain convergence rate bounds recursively for

any number of grid levels. It is shown that these bounds are sharper than those obtained by the

variational theory. In Section 5 we show the details of how the results of Section 4 can be used to

obtain convergence rates for a model problem. Finally, in Section 6, we compare the convergence

rate bounds predicted by our theory and the convergence rate bounds given by the variational

theory. The exact three grid convergence rates are compared to our three grid convergence rate

bounds.
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2. Notation

2.1 Multigrid Cycle

A sequence of uniform grids is given with mesh sizes hk (k = 1,2,3,...), where hk+1 = hk/2.

Consider the discrete equations on the hk grid of the form

AkUk = Fk (1)

(0)
where Ak is symmetric, positive definite. Given u. , an approximate solution to (1), the multigrid

'y^'' MG for producing an improved approximation u 0()

(1) (0)
uM *-MG(k, uk, (2)

is recursively defined as follows:

If k = 1 solve (1) by any direct or iterative method, yielding the final result u(' ) . Otherwise do

(A) through (E).

(A) Perform ri relaxation sweeps on (1), resulting in a new approximation Uik-

(B) Transfer ("restrict") residual from grid hk to grid hk-1.

-- / k(Fk- Akfik). (3)

(C) Starting with u(°_k1 = 0, update coarse grid approximation.

(1) k-iu 4)_ MG(k - 1, . k F k - Ak ik)). (4)

(D) Calculate iit fik + Ik u(- where Ik_ is a suitable interpolation ("prolongation") from

grid hkl- to grid hk.

(E) Perform r2 relaxation sweeps on (1), starting with ak and yielding the final result u(I )

This cycle is called V- cycle or V(rl, r2).

Note: The relaxations done in steps (A) and (D) need not be the same.

2.2 ' Error Analysis

As in the analysis of the classical fixed point linear iterative solvers, we are interested in analyzing

the "iteration matrix" associated with the multigrid process. If the error after the i-th iteration

can be written in terms of the error before the i-th iteration as:

U- U()- Bt(Uk - u('-)) (5)
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then B, is the iteration matrix. We are interested in the convergence factor of the V- cycle, Ck,

given by

Ck = inf{E : Uk - MG(k,vk, Fk)II < eIU,, - Vkjlj VVk E Hk} (6)

= inf{: IIBkWkll < Cf" Wjj Vwk Hk)
= JjB k11

where 11 is some norm defined on Hk, the space of all vectors defined on the grid hk.

To find an expression for the iteration matrix corresponding to a V- cycle, the steps (A)-(E)

are rewritten in terms of the errors (true solution - current approximation). Given an initial

error, e_ - U - u0), the iteration matrix is defined recursively as follows:

If k = 1, then Bi = 0 (the error is eliminated completely on the coarsest grid). Otherwise

e = B (7)

where e( 1 , the error of the improved approximation u(1) , is given by steps (A')-(E'):

(A') After relaxation:

-(G t)"'e~
1,

where Gk is the iteration matrix of the (pre-)relaxation.

(B') After residual transfer:
= A 1 T~-I

k- rk '
Uk-1 =A '-k kek.~lt

(C') After computing coarse grid correction, since e(0)

e(1) (0)
k(1 = Bklek-_'

(D') After interpolating correction to fine grid:

i(l)= 4 I-(ekl - ek1)

(E') After relaxation:

w(1) = (E) 2ea(i)

where E,, is the iteration matrix of the (post-) relaxation.
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Therefore for 1 < k < m

Bk (Ek)r2(Ik- I-(I - Bk-)AklIk-lAk)(Gk)r1 (8)

and

B 1 =0.

3. Variational Theory

3.1 Notation

Consider the Euclidean spaces Hk = Jnk, k = 1, 2, ... , m and two types of inner products on

these spaces, one type is the usual discrete L2 inner product in d-dimensions defined as

(uk, vk k = hd (uk)(v),

i

and the other is the "energy" or "operator" inner product (associated with an operator Lk) defined

as

(Uk, k)k = (Uk,LkVk)k. (9)

The norms induced by these inner products are denoted by:

!luhllk = (uk,Uk)k/ 2

and

IjIlkI: (UkUk)1/2

Adjoints relative to the (-,.) inner products are denoted by (.)T and adjoints relative to the (.,.)

inner products are denoted by (.)*.

3.2 Bounds Independent of the Number of Levels

The best available multi-level convergence rate bounds come from the analysis in the "variational"

setting, i.e., where it is assumed that:

a. The intergrid transfer operators are related by:

ik-i (Ik)T

and
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b. the "Galerkin" choice of the coarse grid operators is assumed:

Ak-1 = k4'A k-l

For the complete theory for general domains and W- as well as V-cycles, see [3]. For positive

definite symmetric elliptic p.d.e.'s in the unit square, typical V-cycle convergence rate bounds

which are independent of the number of coarse grids are summarized below. For a more complete

discussion of the types of convergence proofs, see [6].

As in the standard variational multigrid analysis, see e.g., [4], [5] and [1], define two operators,

Sk and Tk:

Sk = 1 0k-)

and

Tk = S . (ll)

Then Sk and Tk are orthogonal projections in the (.,.) inner product. Specifically:

1. SkSk = Sk, TkTk = Tk and TkSk = SkTk 0.

2. For any uk,

Uk = Tkuk + SkUk

and since S* = Sh and TZ = Tk (but S T  # Sk and TT 0 Tk, in general), we also have

IIUkII' =IISkukIl + IfTkUkIIk. (12)

Note: If uk = Sktk, then tk e range(I,), i.e. it is representable on the hk-1 grid. If

Vk = Tkvk, then t-jAkvk = 0, i.e. Vk E nullspace(Ik- Ak) and if vk corresponds to an error, its

residual cannot be distinguished from the null vector on the hk-1 grid.

Let Ck be the operator norm convergence factor of the k grid V-cycle, see equation (6).

Theorem 1 If there exist P1, 82 > 0, independent of k, such that for every Uk in Ht and for all

k = 2,3,.,

I(Gk)'ukI1 + i#lITk(Gk)"ukIIJ < IIuk112 (13)

and

JI(Ek)Ukk5r21 + #211Tk(Ek)2u kI --< 12fIl (14)

then for every k =2,3,..-,

k <- (1 + )-1 / 2 (1 + f2) - I/. (15)
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Proof. See [3].

In [3], Theorem 1 is proved using recursive formulas of the form:

Cj= SUP ( t) (16)

where j > 2.

Although these formulas appear to give grid dependent bounds, notice that j = 1/(l + A),

independent of j. Therefore these formulas give the same convergence rate bound for the two grid

cycle as for an arbitrary number of grids. They cannot give sharper intermediate estimates for a

specific number of grids. In the next section we show that, under special assumptions, one can do

better than this.

4. Multi-Level Analysis

From equations (8) and (11), the two grid iteration matrix, B 2, is:

B 2 = (E2 )' 2 T'2 (G 2 )"'. (17)

Under certain assumptions about E2 , 21, 11 and G2, it is feasible to explicitly calculate the

spectral radius of B 2 and hence find exact asymptotic convergence rates for the two grid algorithm.

Section 5 contains the details of the calculation of the spectral radius of operators of the slightly

more general form (Ek)r2(Tk - otSk)(Gk) r' where a is a scalar. Notice that the two grid operator

is of this form with a = 0. In general, the k-grid V-cycle iteration matrix is given by

Bk = (Ek) 7 2(Tk + I I k - k- _ Ak)(Gt) (18)

and is not of this form unless, for instance, Bk-I is a constant multiple of the identity (i.e., all error

components on the k - 1st grid are uniformly reduced). It is possible, however, to obtain estimates

of the k grid convergence rates by replacing Bk-i by the constant IIBk-ljjk-i times the identity.

For convenience, fix the number of relaxations, rl, and define

We assume the Ai's are symmetric and that Aj, G, and Ej commute.

Theorem 2 If rl = r2 and for every j = 1,2,.. , k, Ei = G*, then B, is positive semi-definite

and

Ij0!Ti~itli !5 IIjnilli !5 I1}(Yi + IIIBi-llli-lS )Oij- (19)



Proof.

Since I- ( 1 ), Tj = (Tj)* and S, = (S,)*, each By is symmetric with respect to the

energy inner product (Bj = (Bj)*). Each B, is also positive semi-definite. This is most easily

seen by induction. B 2 is positive semi-definite since (B 2 w 2 , w2 ) 2 = IIT2G 2w2 11 for every w2 E H2.

Assume Bi- 1 is positive semi-definite for some j > 2. From formula (18),

(B ,w,,uw) i = (0 Tijdoi,j) j +(G!; IB;-iAj Aij' ;, w3 ) .

Since (Tj) 2  Tj for arbitrary wj E H,, we can write

and, similarly, since i - (Ij__)T,
Bi A - 1 ,I ij ' - - " -1 i- - -1 i-

( 3; - --1 ; 3 iiiwj B-(A-I iii' -1I j 1Ajiwi))j-1"

The right hand side of the previous equation is non-negative by the inductive assumption and thus

(Bjwi, w)i= (Tdjwj, Ti'jwi)i + (Bi-,(A- 1 I"1 AjGiwj),(A,1' 1 A1 G wj))j-I

> IITiiwAII > 0. (20)

Therefore Bi is posili e semi-definite.

We can also use equation (20) to obtain the lower bound for the IjBilly's in equation (19).

To prove the upper bound in equation (19), let wj be an arbitrary vector in H,. By the definition

of ! -iii,- 1 and Si,

(GI 1j Bj_1 A- 1 Ij-'Aw, w,) = (B_1AIf-AjGjwj, A_-I 1j-AQ0wj)j_,

<IlBj_j Ili-, (A7'llq -AjGjwj, A1 j-A~w~

=IlBj_j Ili-, (GiSjjwj, wj) j .

Therefore,

(Biwj, wi)j !5 ((OTi~j + IBi_lIlij0!Sjj)w. , wj) i . (21)

This proves the upper bound in equation (19) since, for any symmetric matrix, D i ,

ID, sup (Diwi, wi)j

Wj Hi  (Wj' Wj)j
IlWIlI A: 0
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Let y1 = 0 and define -k recursively as

=Y = IItG0(Tk + -Yk-1'")GlkIk. (22)

The next theorem asserts that each -yk is a bound on the k-grid convergence rate.

Theorem 3 For every k > 2,

IlBkllk < yk.

Proof.

From the definition of the y's, we see that

11 B2112 = 72

If IlBj-,IlIj-! < -j-1, then for each u3 E Hj,

(Bjuj, ui), j_ (G;(Ti + IlB,-llI-,S,)GCuj, ui)j

= lITiGuIll + jjjBi-, li-, lsjiu ll

= (j (T; + 7- I-I ,,,A

and L'erefore !! RIli, < -1j.

In order to compare these bounds with the theoretical bounds of Theorem 3.1, we define a

constant, f, independent of the number of rrid levels, such that

~=inf inf (i0 k
k>1 E HkT k

From this definition we see that, for every j> 1,

IIcuAIll + IIT, ,u < IIull! (23)

or equivalently,

+ 1 + + (24)
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Note: The constant /6 is given for some common relaxation methods and for piecewise (bi)linear

finite elements (i.e., (bi)linear interpolation for finite differences) in [3). Equation (23) holds for

/3 0 whenever the iteration matrix of the relaxation, 0j, is a contraction. The convergence rate

of the V-cycle can be shown to be bounded away from one only when equation (23) holds for a

positive /3.

Theorem 4 For all k > 1,

_Y 1/(1 + /6). (25)

Proof.

Equation (25) holds for -11 since 71 = 0 and / is non-negative.

Assume "yi !< 1/(1 + /) for j > 2. For any wj E Hj, equation (24) implies that

(G(T + -j-iS,)w, w,),= (TG w, w,), + -ww),

1
< 1+ (w,,w,), "

Since G;(Tj + "yj_1S-)Oj is symmetric, then -Ij < i/(1 +/6) by definition (22).

Finally, we note that this new technique has another useful feature. If the k-grid convergence

rate is known, then the k + 1-grid rate can be estimated. Thus, if the convergence rate of a V-cycle

for a certain number of grids is known, it is possible to predict the effect of adding one additional

grid.

In the next section we show how to calculate the convergence rate bounds, -1k.

5. Details of the Fourier Analysis

For certain model problems, it is possible to calculate exact convergence rates of the two grid

V-cycle. The same techniques can be used to compute the k-grid convergence rate bounds of

Theorem 4 for the symmetric V-cycle.

The Fourier mode ezp(-, xjhk) on level k appears as the mode exp(i20- -_.hk 1) on level k - 1

since hk - .5hk_ 1 . Therefore, on level k - 1 it coincideq with every Fourier mode ezp(0-G. x/hk) for

which 0' = 0(mod~r). Thus restriction operators introduce coupling between each lower mode 0 and

its (2d - 1) high-frequency harmonics {-': 7r/2 < 10,1 - 7,0 = 0(modr)}. Interpolation introduces

coupling among the same modes. This is summarized in the following two formulas

I 1 ezpf,0Jh) = I I_(')exp(iO..Jh) (26)

9



and

I -lexp(iO'. -h) = !k-d(f_')exp(iO - -/h). = O(modir). (27)

-'(e_) and il(_) are called the symbols of Ik - 1 and Itk- 1 respectively.

Since the fine and coarse grid operators, as well as the relaxation, do not introduce coupling of

more Fourier modes we conclude that the two level cycle has the 2d harmonic modes as its invariant

subspace. Hence the convergence properties of the multigrid cycle can be studied by looking only

at the interactions of each set of 2 d Fourier components.

Interpolation and restriction can be represented in matrix form as

^ l 1)

k ) = : (28)

and

S[-(k-1(02d) (29)

The fine grid operator is represented as

A,(o) [ -.. , (30)
Ak (E2d) 2d.2,

the coarse grid operator as

Ak-(20) [Ak1(201)], (31)

and the relaxation matrix as

G,.(O - (32)

g(-2') 2d.2(

In terms of these matrices the two level cycle is represented by the following 2 d x 2 d matrix

Bk(E.) =[6(E12 [I - -" [dQ)]r1.

Take the simple case of the V-cycle used as a fast Laplace solver on the unit square. A few

simple relaxation methods (such as Richardson or damped Jacobi) can be easily analyzed for this

10



particular problem simply because the Fourier modes are eigenvectors of the relaxation. For this

2 dimensional problem, the two grid convergence rates are obtained by computing the largest (in

absolute value) eigenvalue over all the 4 x 4 matrices given by formula (33). The bounds for the

convergence rates for more than two grids are computed in exactly the same manner, inserting a

constant in formula (33), preceding the interpolation symbol, in order to obtain the "yk of Section 4.

For completeness we include some examples of some operators and the elements in their symbols.

If -A( s ) corresponds to the five point Laplacian, given by the stencil

-1 hA~)~[1 4 (34)

then

) = 4(sin(01/2) + sin2 (02 /2)) (35)

where 0 = (01,02).

For bi-linear interpolation and the residual restriction operator which is its adjoint (usually

called full weighting), the elements of the symbol matrices are given by

k 1 + cosei 1 +COS 02r;_lA ) = (1-CO1)1+co0, (36)
2 2

and
1+ cos01 1+ cos0 2

2 (1 2 )"(37)

A simple relaxation, damped Richardson (which is the same as damped Jacobi in simple cases

we consider), the elements of Gk(g) are given by

g(P -- 1 - 2wcAk(_) (38)

where c- 1 = supe Ak(g) and 0 < w < 1.

When the coarse grid operators are determined "variationally", i.e., Ak-1 = I"-IA Ik_, then

4
a~-(2E_) = ;I-_(O!r)A4t(Oj)Ik-~~ (39)

=1

If A(9) is a nine point discrete Laplacian, given by the stencil

A11 8 1 (40)
-1 -1 -1hk'



then

A 91(9) - 8 - 2 cos(01) - 2 cos(02) - 4 cos(01) cos(02 )
k ~3h2 41

If A9)If Ak 1 is given by the corresponding stencil on the hk-1 grid:

= 1 -1 -1 (2
(9)k- 1  8 -1] , (42)

then
AM 8- 2 cos(201) - 2 cos(202) - 4cos(201) cos(20 2 )

k-IM 2(43)
3hk-

1

This coarse grid operator, though corresponding to the same stencil as the fine grid operator, is in

fact also the "variational" coarse grid operator when using bi-linear interpolation and full weighting.

This is convenient when trying to use the variational theory but trying to keep the symbols of the

discrete operators simple.

6. Results and Comparisons

In [2], it is observed that the variationally derived bounds are too pessimistic, at least for typical

parameters in a multigrid V-cycle when using a modest number of grids. Although in Section 4

we prove that the k-grid bounds are smaller than the grid independent bounds of the variational

thceory, it is not known, in general, how much better the new bounds are. The limit of the bounds,

-1k, as k goes to infinity, does not always degrade to the theoretical rate of 1/(1 + ,). For a modest

number of grids, the new estimates are much closer to the actual convergence rates.

Moreover, we note that this new technique has another useful feature. If the k-grid convergence

rate is known, then the k + 1-grid rate can be estimated. Thus it is easy to predict the effect of

adding an extra grid to a given multigrid cycle.

Consider the simplest case of a one dimensional problem given by

d2 u
- f on (0, 1) (44)

u() = a; u(1) = b

12
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Figure 1: The convergence rate bounds for the one dimensional model problem

Define a V-cycle using the standard three point discretization of the second derivative, linear

interpolation and damped Jacobi (with w = 2/3) for the relaxation. The convergence rate bounds

predicted in Section 4 for a V(1, 1) cycle (one pre- and one post-relaxation) are given in Figure 1.

The "yk are shown as a function of the number of grid levels, k. In contrast, the variational theory

gives a convergence rate bound equal to 0.408, see [2].
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Tables 1 and 2 compare the exact three grid convergence rates (computed with a three grid

Fourier analysis) to the bounds predicted by our theory. For the optimal W, W = 2/3, the bounds

stay close for r, = r2 1,... ,4.

W =1/2 w= 2/3 w = 3/4
ri r2

1 1 .2665 .1655 .2499

2 2 .1086 .0826 .0903

3 3 .0743 .0562 .0539

4 4 .0570 .0430 .0392

Table 1: One-dimensional exact three grid convergence rates of V(rl, r2) using damped Jacobi with
damping parameter w

W = 1/2 w = 2/3 w = 3/4

rl r2

1 1 .2667 .1667 .2499

2 2 .1161 .0887 .0984

3 3 .0804 .0610 .0582

4 4 .0617 .0466 .0425

Table 2: One-dimensional estimated three grid convergence rates of V(rl, r2) using damped Jacobi
with damping parameter w

14



Finally, for Poisson's equation with Dirichlet boundary conditions on the unit square, we com-

pare our bounds to the asymptotic convergence rates seen experimentally. Using the grid sizes

indicated in the first column of table 3, we ran experiments using a damped Jacobi relaxation, the

nine-point discretization of the Laplacian, A( 9) as given in Section 5 and bilinear interpolation and

full weighting. Starting with a random initial error, the V(1, 1) multigrid cycle was used, rescaling

the error after every cycle in order to see the asymptotic convergence rate. The center column

contains the bounds given by our method. The grid independent bound given by the variational

theory is 0.40, see [3].

our worst case-
grid sizes bounds experimental

h (1/4,1/2) .110 .110

h = (1/8,1/4,1/2) .217 .211

h= (1/16,1/8,1/4,1/2) .258 .241

h (1/32,1/16,1/8,1/4,1/2) .286 .246

h = (1/8,1/4) .206 .206

h = (1/16,1/8,1/4) .254 .239

h = (1/32,1/16,1/8,1/4) .284 .245

h = (1/16,1/8) .238 .238

h = (1/32,1/16,1/8) .275 .244

Table 3: Comparison of bounds with actual rates for two-dimensional Laplacian (9 pt. stencil)
using damped Jacobi with damping parameter .75 and r = 1. The grid independent bound is 0.40.
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