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Abstract

One goal of this thesis is to develop analytic expressions which model the equilibrium

requirements of a grasp by two robotic fingers on a nominally-loaded cylindrical object

confined to planar motion. Another goal is to derive analytic expressions which can be

used to evaluate the ability of a grasp to tolerate changes in the external load magnitude,

direction, and moment without loss of equilibrium. The gripper fingers are each assumed

to be two-link serial mechanisms with revolute joints. The contact of each finger on the

object is taken as a point contact with friction. The resulting analytic expressions are

based on the static equilibrium requirements and include consideration of constraints on:

Coulomb friction forces, unisense normal forces, object crush limits, and finger joint torque

limits. Plotting the expressions yields new graphical insight into the consequences of

employing various fingertip spacings and 'squeeze' force levels when grasping cylindrical

objects in planar motion. In addition, the analytic equations indicate the range of variation

in external load configuration which can be tolerated by a selected grasp without violating

any of the aforementioned grasp constraints. Variations in the magnitude, direction, and

moment of the external load configuration are considered. The derived analytic expressions

can be used as the foundation for developing simplified grasping algorithms under the

stated conditions.

xiv



TWO-FINGERED GRASP OF

CYLINDRICAL OBJECTS IN PLANAR MOTION

I. INTRODUCTION

Robotic grasping is an area of research which has received increased research attention

in recent years. Despite this attention, the current state-of-the-art industrial gripper is little

more than a parallel-jaw gripper or a specialty gripper which employs suction, magnetism,

or adhesives to secure an object. Such grippers are usually limited in the types and sizes

of materials and objects they can handle. They also lack the ability to manipulate an

object within the hand after it has been grasped. The successful future of robotics will

depend on the ability of robots to be diverse in the scope of tasks they are able to perform

without human intervention or a high-degree of structure, i.e. fixturing, in the working

* environment.

1.1 MOTIVATION AND GOAL

Methods of analyzing multifingered hands grasping three-dimensional objects in spa-

tial motion exist in literature. However, the optimal strategy for selecting the grasping

forces for overconstrained grasps is still undeveloped. The purpose of this thesis is to iden-

tify criteria for selecting the optimal grasp and to develop analytic equations which can

be used to evaluate the quality of two-fingered grasps of objects which can be modeled as

circular cylinders in planar motion.

1.2 ASSUMPTIONS AND LIMITATIONS

The scope of this thesis is limited to the analysis of objects which can be modeled

as circular cylinders constrained to planar motion. The center of mass is assumed to

coincide with the geometric centroid of the object for the nominal external load analysis.

The analysis for external load variations includes non-zero external load moments that

can be used to model an object whose center of mass does not coincide with its geometric

1-1
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centroid. Limiting the analysis to circular cylinders does not exclude such objects as

square, hexagonal, or octagonal objects which are grasped such that the contact points

are at the centers of the facets. However, instead of being able to choose the grasp at any

angle from a continuous set of values, one is left with discrete choices corresponding to the

angles which result in the surface normals passing through the center of the object.

Only one point is assumed to contact the cylinder at each of the two fingertips re-

gardless of the finger orientation relative to the cylinder. For a point contact, the fingertips

must have a radius equal to zero. No other contact between the finger links and the object

is allowed.

This thesis does not address the dynamics of impacting the object during the 'capture'

phase of grasping an object, nor does it deal with manipulation of the object once it has

been grasped. Consequently, it is a static analysis of the forces present due to hand/object

contact and due to forces and moments applied to the object by something external to

the hand. Viscous damping in the finger joints are neglected when computing the finger

joint torques. In addition, the finger links are approximated as massless links, thereby

eliminating concern for the influence of gravity on the fingers.

To facilitate the inverse kinematic solution so that the techniques developed in this

thesis could be demonstrated, a nominal hand structure was assumed. The nominal struc-

ture is specified as a two-fingered gripper with two links per finger. The fingers are assumed

to be serially actuated mechanisms with rigid links. The finger links are all assumed to

have equal lengths of unity and the distance between the base joints of the two fingers, a,

is also unity. The inverse kinematic solution makes no attempt to account for interferences

between the object and the fingers or between the fingers themselves.

1.3 CONTRIBUTIONS

The analytic expressions derived in this thesis can be used to provide a new graphical

insight into the consequences of using various fingertip configurations and internal grasp

force levels when grasping cylindrical objects in planar motion. In addition, the basic

expressions have been extended to forms which can be used to evaluate the ability of

1-2
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a candidate grasp configuration to tolerate variations in the magnitude, direction, and

moment of the external load on the object. The analytic equations derived within this

thesis can serve as the basis for developing a simplified grasping algorithm for the class of

grasping tasks within the scope of the assumptions and limitations set forth above.

The following is a list of the specific contributions set forth by this thesis. - -

" Derived the analytic expressions which model the grasp of a cylindrical object with

two, two-link robotic fingers when:

- The object is subjected to a nominal external load.

- The external load on the object has a variation in magnitude, direction, or mo-

ment from the nominal load configuration.

" Identified a systematic method of selecting the fingertip spacing and internal grasp

force for grasping a cylindrical object with two, two-link robotic fingers when the

object is subjected to a nominal external load.

" Identified trends in the equilibrium requirements for friction forces, normal forces,

and finger joint torques as functions of:

- the fingertip spacing around the perimeter of the object

- the internal grasp force level

- variations in the magnitude, direction, and moment of the external load on the

object.

* Identified a systematic method of evaluating the ability of a candidate grasp configu-

ration to tolerate variations in the magnitude, direction, and moment of the external

load on the object.

" Extended the analysis done by Kumar and Waldron (KW87] to include internal grasp-

ing forces acting through points other than the center of the cylinder.

1-3



1.4 THESIS OVERVIEW
0m

Chapter B is a brief review of the pertinent literary works in the area of grasping

theory. The remainder of this thesis is structured to start with established concepts and

methods and then apply them towards the goal in a step-by-step fashion. Consequently,

Chapter III is intended to take the reader from ground level using analysis tools which have

been published in literature. In Chapter I, methods of determining the contact forces,

global hand Jacobian matrix, finger joint torques, and inverse kinematics are applied to

analyze the prescribed hand and object geometries.

Chapter IV furthers the analysis by applying the results of Chapter III to generate

analytic inequality expressions which model the equilibrium grasp requirements for the

grasp of an object subjected to a nominal external load in terms of three types of grasp

constraints. The analytic inequality expressions are plotted as functions of the grasp angle

to characterize various grasp configurations.

Chapter V examines the effects of load variations or load measurement errors on a

candidate grasp configuration which may have been selected via the nominal external load

analysis in Chapter IV. Changes in the nominal external load magnitude and direction, as

well as variations in the external load moment are considered.

Chapter VI presents a summary of the results obtained from the analyses performed

in Chapters IV and V, the conclusions, and recommendations for future research. Finally,

Appendix A contains a review of screw theory for readers who are unfamiliar with it and

Appendix B presents geometric derivations for several of the relations developed in Chapter

C IV that made use of screw theory.

C
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II. LITERATURE REVIEW

The historical measuring-stick for evaluating the versatility and performance of robotic

grippers has been the human hand. Although the versatility of the human hand promises

to remain unequaled by robotic grippers for many years to come, several research grip-

pers have been built which have kinematic abilities that are nearly identical to that of the

human hand {JIkJ86] [NHF84 [CS84].

The quest to understand the human hand began in the medical community which

sought to improve prosthetic devices for amputees. Early research attempted to classify

all of the possible human grasps into a small set which could be emulated with mechanical

hardware. In 1919 Schlesinger defined 6 basic grasps which were later summarized in 1955

by Taylor and Schars [CW86: 1534]. Their classification was based on the possible geo-

metric configurations of the human hand. The six grasps they identified were: cylindrical,

tip, hook, palmar, spherical, and lateral grasps. These grasp categories were useful for

describing the ranges of motion for the individual fingers and the shapes that the hand

could assume but they lacked information about the suitability of a grasp for a specific

task. With that in mind, Napier identified two major categories in 1955 which were the

first task-oriented categories identified. Napier's two categories were power grasps and

precision grasps. Power grasps were characterized by grasps with a high degree of stability

and a low degree of mobility between the object and the hand. Precision grasps, on the

other hand, were characterized by a high degree of mobility and a low degree of stability.

Napier's work was later furthered by Cutkosky and Wright [CW86] who subdivided

Napier's two categories based on the types of grasps used by a machinist in a machine

shop. The additional criteria for their categorization were object size, object shape, and

the details of the task to be accomplished. The result of their classification was a hierar-

chical tree of 16 grasps. Their tree depicted trends in object-directed versus task-directed

requirements, increasing-power versus increasing-dexterity requirements, and object size

limitations.

Iberall [ibe871 describes human prehension in terms of three types of oppositions and

relates them to the postures of standard prehensile classifications. His three oppositions
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ae pad, palm, and side opposition. These terms describe the parts of the hand used

to apply opposing forces around the object to constrain it. Pad opposition involves the

fingertip pads, palm opposition involves the palm and the fingers, and side opposition

involves the sides of two adjacent fingers or the thumb pad and the side of the index finger.

He simplifies the categorization by introducing the concept of a virtual finger which is one

or more digits operating in harmony as one appendage.

Becker et. al. [BTG86] discussed a mathematical model relating the displacement

of tendons in the hand to the joint angles of the fingers and presented a finger design.

Their finger used shape memory alloy (SMA) material in the form of a coil spring as joint

actuators. In this way, the spring actuators simulated the properties of both tendons and

muscles within the hand. Others have used SMA materials in the form of simple wires as

joint actuators [NHF84]. In wire form, the SMA actuator only simulates the characteristics

of human tendons and typically they must be complemented by coil springs.

In 1980 Ohwovoriole [Ohw8O] extended basic screw theory for application to assembly

processes. Screw theory has existed for over a century but has only recently has it been

applied to grasping theory. Ohwovoriole's extensions to screw theory included defining

repelling, reciprocal, and contrary screw pairs which, when they represent constraining

wrenches, can be used to characterize the conditions of a contact. In this context, a

repelling screw pair characterizes loss of contact between two bodies, a reciprocal screw

pair maintains a contact, and a contrary screw pair would require that the two bodies

penetrate each other. Ohwovoriole applies extended screw theory to examine the force and

motion requirements of mating a cylindrical peg in a hole.

In 1982 Mason's dissertation [Mas82] explored grasping and pushing operations in

reasonable detail. He develops a method of dealing with the uncertainty in the position

and orientation of the object to be grasped without sensory feedback or adaptive motion

of the manipulator. His treatment of pushing operations is cast in the form of the analogy

between pushing an object and partially constraining it with a grasp. He terms these

'kinematic identities'. He demonstrates a method of automatic planning of grasping with

uncertainty in the initial orientation of the object. Application to assembly processes was

emphasized.
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Also in 1982, Salisbury's dissertation [Sa1821 presented a systematic and generalized

method of analyzing the grasp of an arbitrary object by a multifingered hand. His analysis

was based on simple linear algebra relationships and assumed that the characteristics of

the object (size, shape, mass) and the forces on the object are known. He also assumed

that the hand consists of an open-loop kinematic chain of rigid links and that there is

only one contact allowed per finger which occurs at the most distal tip of each finger.

Salisbury investigated grasping forces, methods of manipulating objects, deterniuing hand

workspaces, and issues in hand programming. He classified the contact between two rigid

bodies as one of three types: point, line, or planar. The number and types of degrees of

freedom for each of these types of contacts, both with and without friction, are given.

In 1986, two papers by Kerr and Roth presented extensions of Salisbury's work which

consisted of well-defined methods of analyzing multifingered hands grasping 3-dimensional

objects in spatial motion. Both of those papers are distinctly similar to sections of Kerr's

doctoral dissertation. In their first paper (KR86a], Kerr and Roth discuss a linear pro-

gramming method of determining the internal grasp force magnitude. The internal grasp

force is an indication of how hard one is 'squeezing' the object. Their formulation includes

consideration of friction and joint torque limit constraints. They also formulate a set of

differential equations which describe the motion of the finger joints required to impart a

desired motion on the object. Their formulation assumes the motion between the object

and the fingertips is pure rolling motion with no slipping. In addition to motion analysis,

they show how to develop the boundary for the total hand workspace of a simple set of

fingers. The hand workspace is the range of possible manipulations with a given hand.

In their second paper (KR86b], Kerr and Roth closely examined the global hand

Jacobian matrix to reveal the special configurations of general dexterous hands. The

global hand Jacobian matrix relates the finger joint torques to the externally applied forces

on the object. It also relates the finger joint velocities to the velocity of the object. By

examining the global hand Jacobian matrix one can determine if a grasp is overconstrained,

underconstrained, or singular. The global hand Jacobian matrix can also reveal the possible

velocity directions that the hand may give the object and whether there are too few or too

many finger joints for controlling all of the possible velocity components.
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Waldron [KW871 addresses the problem of solving for the fnrce systc'm acting on a six-

legged vehicle traversing the ground. The high degree of static-indeterminacy is similar to

the problem of grasping an object with a multi-fingered dexterous hand. The basic premise

to his solution is that one should maintain a zero force interaction between the feet that

are in contact with the ground. Zero force interaction means that the leg actuators should

not expend excess energy 'fighting' one another or causing excessive stress in the legs (or

fingers for a dexterous hand.) Zero force interaction is equivalent to solving for the contact

force system corresponding to an internal grasp force magnitude of zero using the linear

algebra techniques given by Salisbury. Since the interaction forces are the indeterminate

forces, enforcing zero force interaction allows a determinate solution to be computed for

the modified system.

In 1985, Abel, Holzmann, and McCarthy [AHM85 analyzed the planar grasp of

an arbitrary object by two opposing articulated fingers. They examined the equilibrium

equations for point contacts with Coulomb friction and presented the set of all possible

equilibrium grasps in the form of graphical curves in friction angle space.

Also in 1985, Holzmann and McCarthy (HM85] analyzed a three-fingered grasp of

an arbitrary object to determine if some set of given normal contact forces could satisfy

static equilibrium under the sole constraint of a Coulomb friction model for the tangential

contact forces. They modeled the contact types as point contacts with friction. Using

screw theory, their analysis is applicable to general spatial motion. However, the solution

results in six nonlinear equations which must be solved iteratively.

Fearing [Fea86] analyzes the conditions of grasping a two-dimensional polygon with

two fingers. He presents a simple method of stably grasping the polygon which depends

on limited slip between the object and the fingers. The grasp attained by this passive

adaptation is not claimed to be optimal but is shown to be feasible.

Trinkle et. al. [TAP87] developed an off-line system that plans and simulates the

grasping of convex polygons by a gripper consisting of a palm and two single-link fingers.

The system assumes that the dynamic effects of the capture of the object are negligible

and the contact between the fingers and the object are frictionless. In addition, the exact
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physical properties of the object and the support from which the object is taken, are known.

Tomovic et. al. ITBK87) advocate that in order to synthesize grasp strategies for

multifingered robotic hands, one should use an expert system whose knowledge base is

derived from study of grasping by the human hand. They present an entire hierarchy of

control and specify the basic elements required in the knowledge base. In developing the

expert system they break the grasping task into two phases: target approach and grasp

execution. The target approach phase includes target identification, approach trajectory

selection and preshaping of the hand. The grasp execution phase begins when the hand

touches the object and it includes adapting the hand shape and grasp forces to secure the

object. The autonomy required in the grasp execution phase is termed reflex control.
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III. SUPPORTING THEOkY AND DERIVATIONS

The purpose :f this chapter is to present the theoretical foundation for subsequent

chapters. The theory is taken from published literature and applied, with some explana-

tion, to the specific problem of this thesis to yield intermediate results. Those intermediate -

results are then the springboard for the further derivations and developments in subsequent

chapters.

3.1 THE NUTS AND BOLTS OF SCREW THEORY

This review of screw theory is only intended to highlight the facets of screw theory

which are to be used within this thesis. It is by no means a complete presentation. Re-

fer to Hunt [Hun78] or Ball [BalOO] for more thorough treatments of screw theory and

Ohwovoriole IOhw80] or Salisbury [Sa82] for discussions of robotic applications. Much of

the following review information was taken from Ohwovoriole.

3.1.1 SCREWS AND SCREW COORDINATES. Ball [BalO] defined a screw as

being a straight line in space called the screw axis, and an associated scalar value called

the pitch. The pitch is the ratio of the magnitudes of two vector quantities which act along

the screw axis. The two vector quantities are usually a linear component and an angular

component, such as a linear velocity along an axis and an angular velocity about an axis.

If the two vectors are in the same direction then the pitch is considered to be positive;

otherwise it is negative.

Screw coordinates can consist of any set of six quantities, five of which are indepen-

dent. Four of the independent quantities specify the screw axis while the other one specifies

the pitch. If one chooses to define a screw, 8, by the coordinates

S= (8 1, 8218s, 84, as,86) (3.1)

then al, j2, and J3 are proportional to the direction cosines of the screw axis and s4, s5,

and s are related to the moment of the screw axis about the origin of the coordinate
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system. The pitch, ', of the screw defined in Eq (3.1) is given by

0 = S184 + S2$5 + S86 (3.2)

(,2 + 4 + 2)1/2

when it has been normalized by the screw magnitude (S2 + S2 + S)1/2. However, if the

pitch given in Eq (3.2) is infinite then the magnitude of the screw is given by (02 + 82 + S2)/2.

3.1.2 TWISTS AND TWIST COORDINATES. Even the most general spatial dis-

placement of a rigid body can be described by a rotation about a unique axis and a

simultaneous translation along that same axis which is called the twist axis. When a dis-

placement is represented in this fashion, it is known as a twist. For more detail on how to

form a twist representation for a given displacement see Appendix A.

The angular displacement is called the twist amplitude and the ratio of the translation

to the amplitude is called the twist pitch, Pt. A twist can be completely specified by six

independent quantities; four to specify the twist axis, one to specify the amplitude, and

one to specify the pitch. Any six independent quantities which are used to specify a twist

• can be regarded as twist coordinates. If one defines a twist, T, by the twist coordinates

T = (tlt 2,t, t 4 , ts,t) (3.3)

then (tl, t 2 , t) are the components of the angular velocity of the body and (t4 , ts, tr) are

* the components of the velocity of a point fixed on the body and lying at the origin of the

coordinate system. The twist pitch, Pt , is given by

P t t4 + t~ts + tsts (3.4)

(t2 + t2 + t2) 1
/2

A twist with zero-pitch is a pure rotation about the twist axis while a twist with an infinite

pitch is a pure translation parallel to the twist axis. The pitch is positive for a right-handed

twist and negative for a left-handed twist.

The amplitude of the twist is given by
( 2 + t2 + t2)1/2 (3.5)

unless it has an infinite-pitch, in which case the amplitude is

4(t + t 6 + t2) 1 /2  (3.6)
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It is important to note that a twist can represent several types of displacements.

When a twist represents an infinitesimally small displacement (i.e. it has an infinitesimal

amplitude) it can be called an infinitesimal twist. This is in contrast with a finite twist

which has a finite amplitude and must be manipulated differently (see Section 3.1.4). A

third type of twist is one which represents a differential displacement over a differential

length of time. Such a twist is called an instantaneous twist velocity. The components of

an instantaneous twist velocity represent the instantaneous linear and angular rates of a

body in motion.

3.1.3 WRENCHES AND WRENCH COORDINATES. Any system of forces and

moments can be resolved into a single force vector along a unique line and a single moment

vector along that same unique line which is called the wrench ais. When a force system

is expressed in this fashion, it is called a xm!h. For more detail on forming a wrench

representation for a force system see Hunt [Hun78: 47] or Appendix A.

A wrench is regarded as the most general 'force' because it contains both translational

forces and rotational moments. The ratio of the moment to the translational force magni-

tude is called the wrench pitch. A wrench can be specified by six independent parameters;

four to specify the wrench axis, one to specify the pitch, and one to specify the magnitude.

Any six independent quantities which are used to represent a wrench can be regarded as

the wrench coordinates. If one represents a wrench, W, with the six independent wrench

coordinates

W = (w, W, W3, ws, wW6) (3.7)

then (W], w2, w3) are the components of the net force exerted on the body and (w4 , WS, w6)

are the components of the net moment resolved at the origin of the coordinate system.

The wrench pitch, P., is given by

WW4+ W2 W + W3 W6  (3.8)
(W2? + W2 + W2)1/2

A zero-pitch wrench is a pure translational force along the wrench axis while an infinite-

pitch wrench is a pure moment about the axis.
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The magnitude of a wrench is called its intensity and it is given by

+ 2 + 33.9)

unless it has an infinite-pitch in which case the intensity is

(w4 + w, +we (3.10)

3.1.4 MANIPULATING TWISTS AND WRENCHES. If twists are of infinitesimal

amplitude then they can be mathematically treated the same as any other vectors. This

is not true for finite twists, however, because, in general, the resultant of two finite twists

depends on the ordez in which the twists were performed. Wrenches and instantaneous

twist velocities, on the other hand, always obey the rules of vector algebra with the one

precaution that they must be written in the same coordinate system. The same precaution

is true for infinitesimal twists. For example, if one rigid body is moving with a twist

velocity of (al, a2, a3 , a 4 , a , Ce) and another rigid body is moving with a twist velocity

of (/01,/02,/ 3,0/4,/3,/6) then the two-body system is moving with a twist velocity of

[(al + 01),(0 2 + P2), (S + 03s), (04 + 0), (ars + s), (06 + 06)]

3.2 EXTERNAL LOAD CONFIGURATIONS

The external wrench on the object can be categorized as either symmetric or asym-

metric depending on the direction of the zero pitch component of the wrench and whether

or not there is an infinite pitch component.

3.2.1 SYMMETRIC LOAD CONFIGURATION. Figure 3.1 shows the configura-

tion of the finger contact forces and the external force on the object for the symmetric

case. The origin of the coordinate system is taken at the center of the cylindrical object

and the positive y-axis is directed upward through the centroid of the two finger contact

points, point A, which is located at the midpoint of the line connecting the two contact

points.

There are two angles which are formed by the two radial lines drawn from the center

of the cylinder to the two contact points. One angle is greater than or equal to 180 degrees
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Figure 3.1. Force configuration and coordinate system for symmetric load

while the other is less than or equo to 180 degrees. One may choose to define the grasp

angFe, 8, as one-half of either the smaller or the larger of the two angles. Probably the most

practical method of computing the grasp angle is to measure the straight-line distance, d,
between the two fingertips and compute 0 fromar~n(- )(.1

Using this method, requires one to choose the smaller of the two aforementioned angles s

the grasp angle.

The angle ftrm the positive y-axis counterclockwise to P.,t is defined as the load

angle, a. For the symmetric load case, a is limited to being equal to either zero degrees

or 180 degrees so that P..t must lie along the y-axis.

For a symmetric load configuration, any given fingertip spacing on the object can be

categ orized as one of three grasp types: palming, pinching, or cradling. A palming grasp

is characterized by the centroid of the fingertip contacts being displaced from the center
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Figure 3.2. Fingertip and I.t configuration for a palming grasp on a
symmetrically loaded object

of the object and P..t being directed from the object center and away from the contact

point centroid as shown in Figure 3.2.

A pinching grasp is one in which the centroid of the fingertip contacts is coincident

with the center of the object as shown in Figure 3.3. A cradling grasp has its fingertip

contact centroid not coincident with the object center and P..t is directed from the CG

and through the contact point centroid as shown in Figure 3.4.

Considering symmetry, it is apparent that one can cover the full range of possible

configurations in either of two ways. First, by letting a = 180 degrees and considering

e E (00 : 1800) one can transition smoothly from palming through pinching and into

cradling as e increases. The second option is to consider only 0 E (00 : 900) and let a = 0

degrees for palming grips and a = 180 degrees for cradling grips. To enhance the graphical

presentation of the data, the first option will be used.

3.2.2 ASYMMETRIC LOAD CONFIGURATION. An symmetric load can be caused

by either one of two conditions. The first condition is that the resultant external wrench

has zero pitch but it is not directed normal to the line connecting the contact points. This

3-6



Cit C2t

Finger 1 Fne

Figure 3.3. Fingertip and A~configuration for a pinching grasp on a
symmetrically loaded object

Figure 3.4. Fingertip'and A configuration for a cradling grasp on a
symmetrically loaded object
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0
corresponds to having a 6 1800 in Figure 3.1. The second condition is that the resultant

external wrench has a non-zero-pitch, consequently it induces a moment on the object

about the object center.

To study the full range of possible grasps of an asymmetrically loaded object, a will

be allowed to range from 0 to 360 degrees while 0 will be considered from 0 to 180 degrees.

A symmetric load configuration can be considered as a degenerate form of an asym-

metric load configuration in which a = 180' and M,,t = 0. Therefore, the resulting

equations from the asymmetric configuration analysis must reduce to those of the sym-

metric configuration when a is assigned the values of 180 degrees and Meat is taken as

zero. The classification of grasps into palming, pinching, and cradling that was discussed

in Section 3.2.1 does not apply to asymmetric load configurations.
6

3.3 FORM AND FORCE CLOSURE

A grasp is said to have form closure when it is able to completely constrain the object

* under the influence of any ezternal force magnitude and/or direction as long as the fingertip

positions are held fized (Lak78: 11.

Consider a rectangular block resting on a frictionless table. If the block is restricted

to remain in contact with the table top, it can only slide across the table or spin about a

vertical axis. Consequently, it is constrained to planar motion. One could obtain a form

closure 'grasp' of the object by driving four nails into the table such that they just touched

each side of the block. With a nail on each side, the block can no' longer translate or

rotate; it is completely constrained. One doesn't have to apply a certain contact force to

the object to maintain equilibrium when form closure exists, one has only to maintain the

positions of the contacts. Reuleaux (SR83: 38] showed that at least four point contacts

without friction are required to obtain form closure on an object in planar motion. Indeed,

if any one of the nails are removed, the object is no longer completely constrained. Because

of its symmetry, a circular cylinder is an exception to this statement [Lak78: 41. No matter

how many nails were driven into the table around the perimeter of a cylinder, it would

still be free to rotate. Therefore, form closure on a cylindrical object is not possible. Since
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a form closure grasp can be thought of as the most secure grasp, this is an unfortunate

result. However, all is not lost because one can obtain equilibrium without having form

closure.

A grsp is said to have force closure when the contact forces can be made to completely

constrain the object irregardless of the magnitude and/or direction of the ezternal load

wrench [Ngu86: 1368]. When evaluating a grasp's potential for force closure, any existing

frictional forces must obey the applicable friction force model (usually a Coulomb friction

model). Otherwise, there is no restriction on the magnitudes of the contact forces.

If one examines the case of a circular cylinder in planar motion, one finds that force

closure can be attained by proper placement of two point contacts with friction. The

proper placement of the contacts depends on the level of friction available. For a Coulomb

friction model, the tangential contact force, Ct, is related to the normal contact force, C",

by

C, < p.C.

where I, is the static coefficient of friction. The static coefficient of friction defines a

friction cone at each contact according to

- = ± arctan p. (3.12)

where -( is the maximum angle allowed between the surface normal and the resultant con-

tact force vector. The friction cone depicts the allowable resultant contact force directions

as an angular range about the normal to the surface at the contact point. For example,

Figure 3.5 depicts the friction cones at two points of contact on the surface of a circular

cylindrical object. In order for the grasp to have force closure, the line segment connecting

the two contact points, as shown by the dashed line in Figure 3.5, must fall within the

friction cones at both contact points [Ngu86: 1372]. Therefore, the larger the static coef-

ficient of friction, the larger the range of proper finger placements on a cylindrical object

to attain force closure. A range of angular spacings between the contact points can be

specified for a force closure grasp via a knowledge of the static friction coefficient. If the

acute angle subtended by the contact points is 9 and the static coefficient of friction is p.,
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Figure 3.5. Friction cones at two points of contact on the surface of a circular
cylindrical object

then in order for force closure to exist

> 1800 - 2arctan p. (3.13)

Hence, the smaller the p. the closer the fingertip contacts must be to the diameter of the

cylinder. On the other hand, for the limiting case when p. = oo, one could theoretically

obtain force closure even when the fingertips contacted the object at the same point.

Note, however, that although force closure is a sufficient condition for the existence of an

equilibrium grasp solution, it is not a necessary condition. In other words, an equilibrium

grasp may exist without the grasp having force closure.

3.4 SOLVING FOR CONTACT FORCES

An object is said to be completely constrained when its motion has zero degrees

of freedom. Any grasp can be categorized as either underconstrained, constrained, over-

constrained, or singular [Ker84: 34]. An underconstrained grasp occurs when there are

not enough independent contact forces to allow complete constraint of the object. A

constrained grasp is one in which there are just enough independent contact forces to

completely constrain the object. An overconstrained grasp, on the other hand, has more

contact forces than are necessary to completely constrain the object. When a grasp has
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enough contact forces to completely constrain the object but they are not linearly inde-

pendent, a singular grasp results.

For planar motion, a cylindrical object grasped by two point contacts with friction

creates an overconstrained grasp condition. The major implication of an overconstrained

grasp is that the solution is statically indeterminate. However, matrix methods have been

presented which allow the solution of the overconstrained grasp problem [Ker84] [Sa1821.

These methods are used here to determine the vector of contact forces for a given grasp

and object load configuration.

The relationship that expresses the static equilibrium condition between the external

wrench applied to the body, At, and the vector of contact wrench intensities, 0, is given

by

- A.t-- we (3.14)

where W is known as the gusp matrix. Each contact between a fingertip and the object

exerts a system of wrenches on the object. When multiple fingertips simultaneously contact

the object, the net wrench system is the union of the individual wrench systems for each

contact. Therefore, for two contacts the net wrench system will be the concatenation of

the wrench system at contact one with the system at contact two.

Because they are taken to be point contacts with friction, the contacts of fingertips

I and 2 with the object cannot exert any moment on the object about the contact points.

Therefore, the contact wrenches consist of zero-pitch wrenches along some arbitrary axes.

If the contact wrench at fingertip one is resolved into component directions in an orthogonal

coordinate system, it could be written as

(1 = Cinln + C1t 1ht + C1 filt (3.15)

where fl., klt, and 61, are unit vectors in the normal-, tangential-, and s-directions,

respectively, at contact point 1 and C1 ,, Clt, and CI, are the contact wrench intensities

along the respective directions. The unit vectors ul,, ilt, and i61, define the local contact

coordinate system at contact 1.

A similar equation can be written for the contact wrench at fingertip two expressed

in a local contact coordinate system at fingertip 2 as shown in Figure 3.6. Therefore, the

3-11



Figur- .6. Noialetenl ocecn ]iurto and coord it sytm o

C1. ¢i, y Cs ,

Finger I o annobjec

A

entire vector of contact wrench intensities in the local contact coordinate space is

For planr motion, C1 , and C, are not allowed. However they will be carried as place-

holders and their magnitudes will be set to zero. This will allow use of the matrix methods

in their fullest generality.

Under the constraint of plaar motion, the applicable object coordinate system forces

and moments consist of forces along n ad Vo ad moments abot Zo. Therefore, .ezt i l

Eq (3.14) is given by { IC- F,,,. F.~,, M..ot C T (3.17)

where s and F are the magnitudes of zero-pitch external wrenches on the object

in the x- and y-directions of the object frame, respectively, and Mt.yo is the magitude

of an infinite-pitch wrench (moment) on the object about the -axis of the object frame.
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Equation (3.14) is essentially a force and moment equilibrium expression with the

grasp matrix transforming a set of unit wrenches from the local contact coordinate frame

to the object frame. This transformation is necessary because Fet is expressed in the

object coordinate frame and equilibrium between two wrenches is only meaningful if they

are expressed in the same coordinate frame. Such a transformation of wrenches is termed

a wrench transformation as opposed to a simple coordinate transformation.

Each column of W transforms a unit wrench along a local contact coordinate axis into

an equivalent wrench system in the object coordinate system. For example, column one

of W transforms a zero-pitch wrench along fIn into a zero-pitch wrench with components

along the z,, and y. axes with magnitudes sin0 and - cos 0, respectively. Column two

transforms a unit zero-pitch wrench along uilt into a wrench with translational components

along the z and y. axes having magnitudes cos 0 and sin 0, respectively, and an angular

component (moment) about the -z. axis having magnitude r.. Finally, a unit zero-pitch

wrench along 61, is mapped by a zero column vector in W because it has no components

in the z-y plane or about the z. axis. When the contact wrench at fingertip 2 is similarly

transformed, the resulting W matrix is

sinG cosG 0 -sinG cosG 0]

W -cosG sin0 0 -cos -sinG 0 (3.18)

0 -to 0 0 - oJ

Examining Eq (3.18) reveals that the W matrix is invariant with changing !.=t,

therefore it will be the same for both the symmetric and asymmetric external load cases.

Since the grasp is overconstrained W has more columns than rows and the system is

statically indeterminate. To solve for in Eq (3.14), two orthogonal vector components

are introduced which make up 6:

-- , + (3.19)

where 4p is the particular solution and ljh is the homogeneous solution. Due to the or-

thogonality of the homogeneous and particular solutions, they can be found independently

and then summed according to Eq (3.19).
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3.4.1 DETERMINING THE HOMOGENEOUS SOLUTION CONTACT FORCE

VECTOR. The homogeneous solution component of Eq (3.19) lies in the null space of W

and can be found from

Clh = x X (3.20)

where A( is a matrix whose columns are a set of orthonormal basis vectors which span the

null space of W and X is a vector which will contain the arbitrarily selected magnitudes

of the internal grasp forces.

To determine A/ such that WA" = 0 , W must first be augmented to make it a

square matrix so that it can be put into the modified Hermite normal form [DH81: 133].

When W is augmented, the new matrix, W. appears as

sine cosG 0 -sine cose 0

-cos9 sinG 0 -cosO -sinO 0

0 -r. 0 0 -'* 0W= = (3.21)

0 0 0 0 0 0

0 00 0 0 0

0 0 0 0 0 0

When the proper row operations are performed, the resulting modified Hermite nor-

mal form is
1 0 0 0 tan 00

01 0 0 1 0

0 0 0 0 0 0
HNF (W.) = (3.22)

*0 0 0 1 tane00

0 0 0 0 0 0

0 0 0 0 0 0

Consequently, there are three basis vectors which span the null space of W so A' is given
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by

0 tan6 0 

0 1 0

A - span - (3.23)

0 tanG 0

o -1 0

0 0 -1

For planar motion, the first and the third basis vectors are invalid because they are not

in the x-y plane. Therefore, the second basis vector is selected to represent the null space

of the grasp matrix under the restriction of planar motion. Therefore, the homogeneous

solution is
sin 0

Cos 0

CO0
Ch = 0 A (3.24)

sin 8

- cos 0

0

where A is the scalar magnitude of the homogeneous contact force solution.

When Eq (3.24) is examined in light of the coordinate system defined in Figure 3.6 it

is apparent that the direction of the internal grasp force is parallel to the x-axis for all 6.

This is true for both synmetric and asymmetric loads since the grasp matrix is invariant

with changes in fe-t-

Simple geometry can confirm that if eh always acts along the zo-axis of the defined

object coordinate system, then it always acts along the line connecting the two contact

points. Thus, for a two-fingered grasp, the internal grasp force is identical to the interaction

force defined by Waldron [Wa86] [KW87].

Because this planar grasp is overconstrained by one excess contact force component,

the arbitrary vector of internal grasp force magnitudes, A, is a single element vector (scalar)

which represents an independent variable in the solution of the contact force vector. In the
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case of this grasp, A corresponds exactly to the magnitude of the interaction force between

the two finger contact points.

3.4.2 DETERMINING THE PARTICULAR SOLUTION CONTACT FORCE

VECTOR. The particular solution can be found from

lff= -w (3.25)

where W+ is the right generalized (Moore-Penrose) inverse of Wand can be found from

JBG74] to be given by

- WT WWT (3.26)

The first step in determining W+ is to find WWT which turns out to be

2 0 -2rocose]

WWT = 0 2 0 (3.27)

-2ro cosO0 0 2r2

When Eq (3.27) is inverted, the result is

1 0 cos 0/r.
(WWT)- 1  1]

= 2sin2 e 0 sin'O 0 (3.28)

cos 0/r. 0 1/r2

When this is multiplied by WT the right generalized inverse is found to be

I -c6 C080
2Z41 2

0 9-
0 2 2r.

W+= 0 0 0
Cos os 0(329)

0 2 2r.

0 0 0

The right generalized inverse given in Eq (3.29) is valid for the particular solution of grasps

with both symmetric and asymmetric loads. However, the particular solution vector, p,

will be somewhat different for the two categories of grasps because the external wrench,
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X..h, will be different. For a symmetric load configuration and no external moment as

defined in the coordinate system of Figure 3.1, the external wrench applied to the body is

?ezt{ 0 -F..t 0 (3.30)

Inserting Eq (3.30) and Eq (3.29) into Eq (3.25) yields the following for the symmetric

load configuration:

- cos 0

sin 0

F si 0

0

One can easily see from Eq (3.31) that, for a symmetric load, (6P corresponds to

having a contact force at each of the two contact points which is parallel to the y.-axis. In

addition, the magnitudes of the particular solution component of each of the two contact

forces are equal so each of them equilibrates half of F

For an asymmetric load configuration having no external moment applied to the

object as defined in the coordinate system of Figure 3.1, the external wrench applied to

the body can be written as

fet= {-Fftsina Fetcosa 0 (3.32)

Inserting Eq (3.32) and Eq (3.29) into Eq (3.25) yields the following for the asymmetric

load configuration:
cos a cos B + R.4

- sin e cos a
- ~ 0

C,, 2 Fs o -(3.33)CP-21Cos ct os 0 -

sin 0 cos a

0

Note that Eq (3.33) is a more general form of Eq (3.31) and the two equations are

equal when a = 180 degrees. Finally, the most general expression for the particular
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solution contact force vector is one where the txternal wrench includes an asymmetric

translational load and a non-zero moment. For such a load configuration, the external

wrench applied to the object can be written as

f..t-{ -F..,tsino F.tcosa M..t (3.34)

Solving for ep yields

-M,.t coso + F,.et r sinc + F,.t r cos 8 sin cosa

M,.t sin 0 - F,.tr sin2 9 cos a

- 1 0 (3.35)
= 2r sinG M,.t cosO - F,.tr sin a + F.,tr cos 0sin0cos a

M..t sin O + F.1tr sin 2 0 cos a

0

Equation (3.35) reduces to Eq (3.33) when M..t is zero and it reduces to Eq (3.31) when

a is 180 degrees and M..t is zero.

3.4.3 TOTAL CONTACT FORCE VECTOR SOLUTION. The entire contact force

vector can now be written in its most general form using Eqs (3.24) and (3.35) to get

Va'sin 0 + cos a cos 0 + 51 - r

2A' cos 9 - cos a sin 0 +

F._t 0 (3.36)
2 2A'sin 0 + cos a coS 6- " +

-2A'cos + c o si +

where
A' 

(3.37)

and
Meet

M' - . (3.38)
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Equation (3.36) can be algebraically rearranged to give

2rX'sin2 2 + rlcoscx sing cosO + rsina - M'cos9

2PA'sin 0 cos 0 - r cos a sin2 0 + M'sin 0
_ F..t 0 ( .9

C 2r sin 0 2r.\ 'sin 2 a + r cosa sin 0 cos e - r sina + M'cos 0(3.39)

- 2rA' si cos 0 + r cos a sin' 0 + M'sin 0

0

Equation (3.39) is the most general expression for the contact force vector. By substi-

tution of a = 180 degrees and/or M' = 0, it can be reduced to symmetric and asymmetric

loads with no external moment.

3.5 DEVELOPMENT OF THE HAND JACOBIAN MATRIX

The first step in forming the global Jacobian matrix for the entire hand, J, is to form

the Jacobian matrices for each of the individual fingers, Ji, as if they were manipulators.

The hand Jacobian is then just the J, in block diagonal form.

A hand structure must be defined before the Jacobian matrix of a gripper can be

developed. For this thesis, the assumed hand structure is a two-fingered hand with planar

three-link fingers. The finger links and finger joints are sequentially numbered starting

with the link or joint closest to the palm as the lowest number. The length of the jth

link from the base on the ith finger is denoted by Iii. The angles of the finger joints

are sequentially numbered starting with the angle of the base joint on finger I as 01 and

proceeding outward to the angle of the last joint on finger 1 denoted by 03. The sequential

numbering continues with the angle of the base joint on finger 2 as .04 and the angle of the

last joint on finger 2 as 0ie. The structure of the hand and the nomenclature are depicted

in Figure 3.7.

There are four coordinate frames of interest in the analysis of this two-fingered grasp.

The first is termed the palm fvame which has its origin, Op, centered halfway between the

base joints of the two fingers. Its e,-axis is directed through the base joint pin of finger
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Figure 3.8. Local contact coordinate frame for contact point 1

2, its yp-axis is directed outward from the palm, and its zp-axis completes a right-handed

coordinate system.

A second frame is the object frame which has it origin, 00, at the center of the object

a height h above Op. Its z.-axis is parallel with the line connecting the contact points

of fingertips 1 and 2 and directed towards contact point 2. Its zo-axis is aligned with the

z,-axis of the palm coordinate system and its y,-axis completes a right-handed coordinate

system. The scope of this analysis is limited to configurations with 0. on the yp-axis of

the palm coordinate frame.

The third and fourth frames of interest are the local contact coordinate frames which

have their origins at contact points 1 and 2. They each have a normal axis, il,,, which

points inward towards the object center, a z-axis, fi,, which is parallel to the z-axes of the

palm and object systems, and a tangential axis, fijt, that completes the right-hand system

according to fii, X fi t =/f, . The local contact coordinate frame for contact point 1 is

shown in Figure 3.8, while that of contact point 2 is shown in Figure 3.9.

The j are the first partial derivatives, with respect to the joint angles, of the finger-
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Figure 3.9. Local contact coordinate frame for contact point 2

tip positions expressed in the local contact coordinate systems. Therefore, the fingertip

positions must be expressed as vectors given in the local contact coordinate frames and

functions of the finger joint angles. To make the derivation more explicit the fingertip

position vectors are first expressed in terms of the palm frame, then transformed into the

object frame, and finally transformed into the local contact coordinate frames before the

derivatives are taken. This step-by-step derivation should be more tractable than stepping

right into the local contact coordinate frame, although the result may seem obvious in the

end.

Begin by writing expressions for the positions of the endpoints of interest (the contact

of the fingertips with the object) expressed in the palm coordinate frame as functions of

the joint variables:

P11P = II1 cos 4 + 11 cosS 012 + 113 COS 0123 - a/2 (3.40)

P1W = I11sin 01 + i12sin4012 + l1ssin' 123  (3.41)

PI, = 0 (3.42)
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where

012--01+ 02 and 0)123=- 1+ 02+ 3

The orientation of the centerline of link 3 on finger 1 can be described by

71 = 0 (3.43)

71 = 0 (3.44)

7Vz, = 0)123 (3.45)

Similarly, the coordinates of the contact of fingertip 2 with the object expressed in

the palm frame are

P2V = 121 cos 04 + 122 cos 4045 + 123 cos 0456 + a/2 (3.46)

PV, = 121 sin 4 + 122 sin 04 + 123 sin 046 (3.47)

P2,p = 0 (3.48)

where

4s = 04 + 0s and 4s6 = 04 + 's + 06

The orientation of the centerline of link 3 on finger 2 is given by

72c, = 0 (3.49)

'2y,, = 0 (3.50)

V2z, = 4456 (3.51)

Now transform Eqs (3.40) through (3.51) from the palm frame to the object frame.

The transformations between those frames are

Pi, = P., cosb t+ (Pi,, - h) sin 0 (3.52)

Piyo = -Pi., sin, 0+ (Piv, - h) cosO (3.53)

Pi.. = A., (3.54)

Ne. = 7iz, (3.55)

Ny. = 7i,, (3.56)

7'i-, = Nz' - 0 (3.57)
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Applying Eqs (3.52) through (3.57) to the finger 1 position equations yields

= (III cos 01 + 112 cos 4012 + 113 cos 40123 - a/2)cos t +

(I11 sin 0i + 112 sin 4)12 + 113 sin 0123 - h) sin 4 (3.58)

P1,. = - (IlII cos i + 112 COS '12 + 113 COS 0123 - a/2) sin 0 +

(111 sin 11 + 112 sin 012 + 113 sin 4 123 - h) cos4 (3.59)

Pi., = 0 (3.60)

71=o = 0 (3.61)

= 0 (3.62)

1'Yls = 0123- 0' (3.63)

Applying Eqs (3.52) through (3.57) to the finger 2 position equations yields

P2= = (121 COS 04 + 122 COS 04s + 123 COS 4)456 + a/2) cos 4b +

(121 sin 0 4 + 122 sin 4s + 123 sin b4 6 - h) sin i (3.64)

P21, = - (121 COS 04 + 122 COS 4s + 123 COS 045s + a/2) sin +

(121 sin 04 + 122 sin 0 4s + 123 sin 0 4s8 - h) cos 4 (3,65)

P2 ,. = 0 (3.66)

Y2.. = 0 (3.67)

'/2yo = 0 (3.68)

72.o =  
0456 - 4 (3.69)

Equations (3.58) through (3.69) must now be transformed from the object coordinate

frame to the local contact coordinate frames. This transformation will be different for each

of the two fingers. The transformations for finger I are

P1. = P6. sin#- PVo COS0 + r (3.70)

PIt = PI.. COS9 + PI.. sin9 (3.71)

P1  = P.. (3.72)

3'Y- = 0 (3.73)
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'ft " 0 (3.74)

7Z= fi- (3.75)

Applying Eqs (3.70) through (3.75) to transform the position Eqs (3.58) through (3.63)

from the object frame to the contact 1 coordinate frame results in

P1  = (111 COS 1 + 1 2cos012 + l13 cosS 123 - a/2)sin(0 + 4)-

(111 sin 01 + 112 Sin 12 + 113 sin 0123 - h) COS (8 + 4') + r (3.76)

P = (III cos 61 + 112 cos 912 + 113 cos 0123 - a/2) cos (0 + 4') +

(111 sin4 1 +112 sin 02 + 113 sin 1 23 - h) sin (0 + 4') (3.77)

PI. = 0 (3.78)

71. = 0 (3.79)

fit = 0 (3.80)

11-= 1123- (8 + 0) (3.81)

Transforming Eqs (3.64) to (3.69) from the object frame to the contact 2 coordinate

frame requires the following equations:

P2. = -P 2.. sin0 - P2,. cos 0 + r (3.82)

P2, = P2.. COS O - P2, sin O (3.83)

P2. =  P2 , (3.84)

12n = 0 (3.85)

72t = 0 (3.86)

72z = /2z. +9 (3.87)

Applying these transformations to Eqs (3.64) through (3.69) yields

Pn = - (1, Cos 4 + 122 cos 046 + 123 cosS 48s + a/2)sin(9 -4') -

(121 Sin 14 + 122 sin 048 + 123 sin 4 s6 - h) cos(0 - 4) + r (3.88)

t= (121 cos 04 + 122 cos 045 + 123 COS 446 + a/2) cos (9 - 4') -

(121 sin 4 + 122 Sin 45 + 123 sin 0416 - h) sin (9 - 4) (3.89) a
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P2. = 0 (3.90)

n.= 0 (3.91)

Y2t =  0 (3.92)

72. = 046e - 0(--k) (3.93)

With the position information now in the local contact coordinate frames, the deriva-

tives of Eqs (3.76) through (3.81) can be taken to get the following velocity relations for

finger 1:

V. = [-(II sin 01 + 112sin 012 + 113sin 012 3) 1-

(112 sin 012 + 113 sin 0123) 2 - (113 sin 4 12 3 ) 4's] sin (8 + k) -

[(ll cos 41 + 11 COS 012 + 13 cos 0123) 4 +

(112 COS 012 + 113 Co S0123) 2 + (113 COS 0123) 3] cos (0 + ,k) (3.94)

Vit = [- (ll sin 01 + 112 sin4,02 + 113 sin 0123) l4-

(112 sin )12 + 11 sin 0123) 2 - (113 sin 0123) 3 ] cos (0 + ) +

[(/1 1 cos 01 + 11 cosk02 + I coS 4 123) 4' +

(112 cos 012 + 1lscosS012 3 ) 2 + (1l cos 0123) 4)3] sin(0+ k) (3.95)

V1. = 0 (3.96)

Wln = 0 (3.97)

Wlt = 0 (3.98)

W,2 = 4, + 42 + 3 (3.99)

Note that 0, 0,, r, h, and the lj are all considered as constants.

Likewise, the derivatives of Eqs (3.88) through (3.93) give the velocities of fingertip

2 in the contact 2 coordinate system as functions of the joint angles and their derivatives:

V2. = [(12i sin '4 + 122 sin )46 + l23sin4$)4s)4)4+

(122 Sin ,4s + 123Sin 0466) 0s + (123Sin 0456) 06] sin(o - 0) -

[(021 cos 04 + 122 cos 04s + 123 cos 40466) 44+

(122 coS 4 + 123 COS 4se) 4,s + (123 COS 45) $,] coS (0 - ,') (3.100)
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V/t = [- (121 sin 4 + 122 sin 4 + l23 sin 046)4-

(122 sin 0#r + 123 sin #4,) 4,s - (123 sin 4)5) 4).] cos (6 - -

[(121 COS 04 + 122 cos #45 + 123 COS 0466) #4 +

(l22 cos 046 + 23 COS $4 ) 46 + (123 cos 4r,) ) 4 1 sin(0 - tP) (3.101)

V, = 0 (3.102)

W2n = 0 (3.103)

W2t = 0 (3.104)

W2. = #4 + 6+ )6 (3.105)

Equations (3.94) through (3.99) can be put into the matrix form given by

V1 = J1 1 (3.106)

where the vector IV, is the velocity of fingertip 1 in the contact 1 coordinate frame given

by

J= V . i V 1 .V l Wn Wit wIT (3.107)

the vector $1 is the vector of joint velocities of finger 1 given by

It, =} , 2 (3.108)

and the matrix J, is the Jacobian matrix for finger 1 which relates the finger 1 joint

velocities to the fingertip 1 velocity in the contact 1 coordinate frame. The matrix J, is

given by

J111 J112 J113

3m i122 2123

0 0 0
J.= (3.109)

0 0 0

0 0 0

1 1 1

where

j111 = (lm sin0I + 1: inOI2 + lmssin 0123)sin(0 + 0/) -
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(I11 cos 02 + 112 cos 012 + l1s cos 0 123) cos (8 + ) (3.110)

i112 = - (I12 sin -012 + l13 sin 0 123) sin (0 + 1b) -

(112 cos 0 12 + 113 cos 0 12 3 ) cos (0 + 0) (3.111)

il13 = -l 1 s sin 01 23 sin (0 + 0) - 113 cos 0 123 cos (0 + ) (3.112)

r 2l = - (11, sin4) + 112sin012 + 113sin0123)cos(9 + ) +

(111 cos 0i + 112 cos 4012 + 113 cos 10123) sin (0 + p) (3.113)

3122 = - (112 sin 012 + l13 sin0123 ) cos (8 + )+

(112 cos 012 +113 cos 0 123 )sin(0 + t) (3.114)

i123 = -113 sin ' 123 cos (0 + 0) + l1s cos 1012 3 sin (0 +) (3,115)

Similarly, Eqs (3.100) through (3.105) can be put into the matrix form given by

f'2 = J2 42 (3.116) -

where the vector V2 is the velocity of fingertip 2 in the contact 2 coordinate frame given

by

V2 V2, V2t V2 W2, W2t W2z (3.117)

the vector t2 is the vector of joint velocities of finger 2 given by

(318

and the matrix J2 is the Jacobian matrix for finger 2 which relates the finger 2 joint

velocities to the fingertip 2 velocity in the contact 2 coordinate frame. The matrix J2 is

given by

3211 j212 J213

3221 j222 3223

0 0 0i
J2 = (3.119)

0 0 0

0 0 0

1 1 1
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where

i211 = (121 sin 014 + 122 sin 014s + 123 sin O4s6) sin (9 - -

(121 COS 04 + 122 COS 045 + 123 COS 0456) COS (0 -T) (3.120)

3212 = (122 sin 4s + 123 sin 0456) sin(0 - 0)-

(122 cos 0 45 + 12 3 cos 0 4 s6) cos (8 - 1P) (3.121)

i213 = 123 sin 04s6 sin (1 - 0t) - 123 COS 10466 cos (6 -0 b) (3.122)

J221 = - (121 sin 014 + 122 sin 045 + 123 sin 0456) cos (6 -0 I) -

(121 COS 014 + 122 COS 4145 + 123 COS 41456) sin (0 - (3.123)

i222 = - ( 22sin 04s + 123 sin 04s) cos(O - -

(122 cos 45 + 123 cos 4145) sin (0 - (3.124)

J223 = -1 2ssin 041scos(6 -(0 ) - 12 cos 4 s6 sin (0 - 1P) (3.125)

To get the Jacobian matrices in their final form, the contact constraint information

must be incorporated. That is, information about which contact forces can be applied by

the given type of finger contact. For instance, a frictionless point contact cannot impart

any force on the object in the plane tangent to the object surface. Nor can it impart any

moments about the point of contact. It is constrained to impart only a normal contact

force component on the object because of the type of contact. An efficient method of

incorporating this information is by defining a matrix, Bi, for each contact whose columns

are the vectors in the wrench basis of the contact type [MS85: 21). For the two point

contacts with friction
100

010

001
B1 = B2 = (3.126)

0 0 0

0 0 0

0 0 0

The Bi matrices are then used in the relationship

f = BiT J. (3.127)

3-29

: ; i I i i I i I 0 0 0I



to select only the portions of the Ji which are supported by the contact type. Performing

the operations in Eq (3.127) results in

Jll J11 2 J 113

$1 = 1 122 i123 (3.128)

0 0 0

and

J 211 3 212 3213

J2 j=221 i222 J22s (3.129)

0 o 0 0

where the definitions of the elements were given previously in Eqs (3.110) through (3.115)

and Eqs (3.120) through (3.125).

The matrices in Eqs (3.128) and (3.129) can be used to calculate the vector of torques

required to apply a given contact force vector on the object. The relationship to give such

a solution is presented in the next section and requires the transposes of the J. Therefore,

with forethought, the required transposes are found to be

* .zz i121 0 [211 J221 0 1
17-T 311? 122 0 2T= i212 i222 0 (3.130)

i113 i123 0 i213 i223 0

When the JT are assembled into block diagonal form, the transpose of the global

hand Jacobian matrix, jT is formed. The resulting matrix is given by

Jill J121 0 0 0 0

.112 i122 0 0 0 0

jT ils J123 0 0 0 0 (3.131)
0 0 0 i211 i221 0

0 0 0 i212 i222 0

0 0 0 j213 j223 0

3.6 COMPUTING TORQUES FROM CONTACT FORCES

The number of fingers in contact with the object, the number of links on each finger,

and the dimensions of the hand influence the required vector of joint torques for a given
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set of contact forces. Therefore, in order to determine the finger joint torques required to

apply a given set of contact forces, one must first assume a hand structure. For this thesis

a planar two-fingered hand with three links per finger as shown in Figure 3.7 is assumed.

The lengths of the finger links will be carried through the analysis symbolically so as to

maximize the generality of the results.

The relationship which relates the contact force vector, e, to the vector of finger joint

torques, ', is given by Kerr [Ker84: 24] as

! = jT e:(3.132)

where jT is the transpose of the global hand Jacobian matrix given by Eq (3.131) in

Section 3.5 for the hand structure assumed above. For two point' contacts with friction,

the contact force vector is given by Eq (3.16) as

= Ct C1. C2, C2t C2. }T (3.133)

For an overconstrained grasp, such as one having two point contacts with friction on

an object constrained to planar motion, the contact force vector is not unique. It can be

separated into two orthogonal components; one for the unique particular solution, 04, and

one for the indeterminate homogeneous solution, eh. These two components are linearly

related to er by Eq (3.19). The homogeneous solution component is termed the internal

grasp force by Salisbury [Sal82: 41].

When Eq (3.19) is substituted into Eq (3.132), the following expression results:

¥ T = p + J T l (3.134)

The linearity of Eq (3.134) allows the vector of joint torques, f, to be separated into two

orthogonal components, f. and A, in the same way that e was separated into 4p and

(e . Therefore,

=, + h (3.135)

where
wereyp! _ (1p (3.136)
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and

fk = T dh(3.137)

The torque vector in Eq (3.136) is called the particular solution torque vectorbecause it gen-

erates the particular contact force components. Similarly, the torque vector in Eq (3.137)

is called the internal grasp torque vector because it is the set of finger joint torques which

generate the internal grasp forces.

3.6.1 DETERMINING THE PARTICULAR SOLUTION TORQUE VECTOR. The

vector fp is unique for a grasp configuration and externally applied load, P.t. The grasp

configuration information is contained in the global hand Jacobian matrix, 5. In general,

the externally applied load may be either symmetric or asymmetric depending on the value

of a. The symmetry or asymmetry of the load affects the particular solution torque vector

via the particular solution contact force vector, C.. Section 3.4.2 derives Op for the cases

of nominal, asymmetric with no external moment, and asymmetric with an external mo-

ment. For a nominal load the vector given in Eq (3.31) is used in Eq (3.136) while for an

asymmetric load with no external moment, the vector in Eq (3.33) is used in Eq (3.136).

Finally, if the load is asymmetric and has a nonzero external moment, then the vector in

Eq (3.39) is substituted into Eq (3.136). As an example, the case of a nominal load will be

analyzed here to illustrate the method which can also be applied to the asymmetric cases.

When Eq (3.31) is substituted into Eq (3.136), the result is

- cos 0

sin 0

, = -" 0 F___ (3.138) -4

-cos 8 2

-sin0

0

where JT is given in Eq (3.131).
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When the operations in Eq (3.138) are carried out, it yields

li cos (01 - 1) + 112 cos (012 - 4') + Ls cos (0123 - 0)

112 COS (012 - 1) + 113 cos ('123 - 1P)

F..t 113 cos (012s - 4')
2 121 cos (0 4 - 4) + 122 COS (0 4s - ') + 12s cos (04s16 - fp) (3.139)

122 cos (04s - 4) + 123 cos (4se - 4)

123 cos (04s6 - 0)

The torques given in Eq (3.139) are the joint torques required to maintain equilibrium

of the object with no internal grasp force present. Recall, however, that the contact forces

represented by the particular solution torque vectors may not provide positive normal

forces which are required to activate frictional forces. Therefore, fp may not in reality be

able to equilibrate the externally applied force because of the unisense constraint on the

normal contact forces.

3.6.2 DETERMINING THE HOMOGENEOUS TORQUE VECTOR. The vector

fh is indeterminate and depends on the arbitrary internal grasping force magnitude, A, as

well as the configuration of the hand and the object. When Eq (3.24) is substituted into

Eq (3.137) the following relationship results:

sin 0

cos 0

0 A (3.140)
sinO 0

- cos 6

0
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Now if Eq (3.131) is substituted into Eq (3.140) the result is

-111 sin (0,1 - 0) - 112 sin (, - 0) - 113 sin (0123 - 0)

-112 sin (0,12 - 4) - 113 sin (012s -)

= 11 Sin (10123 - 4) (3.141)

121 sin (04 - ,) + 122 sin (144 - 4) + 123 1in (0456 - ,)

122 gin (045 - 1) + 123 Sin (04515 - 4)

123 sin (1,450 - 4)

Equation (3.141) is the portion of the torque vector which creates an internal grasp force

when the external load on the object is characterized as a nominal or symmetric load.

The total joint torque vector is assembled by substituting Eqs (3.139) and (3.141)

into Eq (3.135). Examining Eqs (3.139) and (3.141), reveals that the torque vector is not

an explicit function of the object geometry parameters (r, 0, h) but instead is a function

of the hand geometry parameters (4,i,, 4, 4ii, a) . However, through the use of inverse

kinematics, the solution can be conditioned to make the torque vector a function of the

object geometry parameters.

3.7 INVERSE KINEMATIC SOLUTION

In general, there are an infinite number of hand structures and finger positions which

can correspond to the grasp of an object in a particular geometry. Therefore, several

parameters must be specified to reduce the complexity of the problem so a unique solution

will result.

For planar motion and three links per finger, the inverse kinematic solution of the

fingers will be indeterminate. For simplicity the number of degrees of freedom per finger

will be reduced from three to two for the remainder of this analysis. The expressions for the

torque vectors in Eqs (3.139) and (3.141) can be adapted to two-link fingers by requiring

that 1L = 123 = 0 and eliminating the third and sixth row elements. The resulting torque
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expressions are

II COS (I + 112 COS (122

-. F, 112 cos C 2  (3.142)2 =121i cos 4 + 122 cos C45

122 cos SC45

and -
- 11, sin (I - 112 sin (12

A - 12 sin (12  (3.143)
121 sin C4 + 122 sin ( 45

122 sin (4-

where

CI = (.01 - VI) (3.144)

(12 = (412 - 0) (3.145)

C4 = (04 - 0) (3.146)

(4s = (46 - 0) (3.147)

With the problem simplified to enable a unique inverse kinematic solution, appropri-

ate parameters must be selected as fixed values for the object and hand geometries. Since

the previous analysis was conducted using the grasp angle, 0, as a variable, it will remain

as a variable for this analysis. The fixed values will then be r, h, a, l,, and 0. The task

then is to determine the inverse kinematic solutions for the finger joint angles as a function

of 9 when given r, h, a, Iij, and 0.

Figure 3.10 depicts the geometry and nomenclature for the planar grasp of a cylindri-

cal object with two fingers having two-links per finger. From Figure 3.10 the positions of

the contact points between the fingertips and the object can be written in the palm frame

using the finger parameters:

PUPr = III COS 01 + 112 cosb -01 (3.148)

a

P2-, = 121 cos 0 4 + 122 cos 04 + 2 (3.150)

P2 y, = lsin4 + 22sin04s (3.151)
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The fingertip positions can also be written is the palm frame using the object parameters:

P,,, = -r sin(1+ b) (3.152)

PIV, = h+rcos(0+tfi) (3.153)

P = r sin(9-t) (3.154)

=P = h+rcos(O-b) (3.155)

Equating the expressions in Eqs (3.148) through (3.151) with the corresponding expressions

in Eqs (3.152) through (3.155) yields the following expressions:

a

I11 cos0 1 + 11 2 cos 0 12 - a = -r sin(O+,') (3.156)
2

III sin 01 + 112 sin 012 = h+r cos(O+v) (3.157)
121COS 44 + 122aCOS 045 + a r - ) (3.158)

121 sin04 + 122 Sin484 5 h= +rcos(6-p) (3.159)

To solve these equations, begin by rearranging them so that all of the hand geometry

parameters are on one side of the equality and the object geometry parameters are on the

other:

a
Ill cos 1 + l2cosS 12 = - - r sin(0 + ,) (3.160)

2

IllSin 11+12 sin 022 = h+r cos(0+ ) (3.161)

121 COS 04 + 122COS 048 = --- + r sin(0 - i,) (3.162)
2

121 sin 04 + 1221Sin0 45 = h+ r cos(8-0) (3.163)

Squaring both sides of Eqs (3.160) and (3.161) and adding them together results in

lII + 112 + 2111122 (cos 41 cos 012 + sin 01 sin 012)

= - r sin (9 + P)] + [h + rcos (8 + V)12 (3.164)

while squaring both sides of Eqs (3.162) and (3.163) and adding them together results in

2+ + 2121122 (cos 04 cos 45 + sin 4 sin 4s)

- + r sin (6 - 0) + [h + rcos (0 _ 0)]2 (3.165)
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Applying several trigonometric identities to the parenthetical expression on the left hand

side of Eq (3.164) reveals that it is equal to simply cos 02 while that of Eq (3.165) is equal

to cos q5 . Making these substitutions into Eqs (3.164) and (3.165) yields

l1 12 + 2111 112 cos 02 = - rsin (0 + ) + [h + rcos( + )] (3.166)

4 22 + + 212,1 cos Os = + r sin (0 -4) + [h + rcos(9 -C,)1S (3.167)

Solving Eq (3.166) for 02 yields
02 = S arccos{ -r (+1211[1112 1+2- "(3.168)

while solving Eq (3.167) for 05 yields

05 = -S arccos [= + rsin(9- 4 7]2 + [h ' rcO(G- 1 - '21 - £22212,122 (3.169)

where S is +1 for knuckle-in configuration and -1 for knuckle-out configuration.

To solve for &1 and 04 begin by using the following trigonometric identities:

cos(a +P) = cosacos - sinasin # (3.170)

sin(a +S) = sin acos3+ cosasinf3 (3.171)

When these identities are substituted into Eqs (3.160) and (3.161) and rearranged slightly,

the result is

a
-I1 2 sin0 2sinuI +(l1+1 2 cosS 2 )cosOI = -_r sin(0+ tP) (3.172)

(III+112 cos 02)sin 01+l2sin02 cos 01 = h+r cos(6+) (3.173)

while substituting them into Eqs (3.162) and (3.163) yields

-12 sin 05 sin 0 4 + (121 + 122 cos4S5 ) cos 0 4 = - + r sin( - (3.174)

(121 + 122 cosos)sin0 4 + 122 sin s COS 04 = h + r cos(6 - 4') (3.175)

To solve Eqs (3.172) and (3.173) simultaneously for sin 0 and cos 01 they can be

put in the matrix form of Ax = b and Cramer's method [Kre83: 3191 can be used. The

matrix form of Eqs (3.172) and (3.173) is

[ -1 1 2 sin 2  (111+l1cos2) 1 in 01  _ 2 -r sin(9 +4') (3.176)
I (l + I cos h) It12n 0cos2 1  h + r cos(0+ )

3-38



The determinant of the coefficient matrix in Eq (3.176) is

detA = - (l? + 112 + 21,1112 COS )2 (3.177)

To solve for sin 01 requires the determinant of the coefficient matrix with its first column

replaced by the vector b. That determinant is found to be

- Ii (h+rcos(+i1)1+l2 hCosm02 - asin42+ rcos(80 -m02 ) (3.178)

Dividing Eq (3.178) by Eq (3.177) gives the solution for sin 01 as

sin 1 = {1I, 1h + r cos (6 + 0)] + 112 [h cos 02 - 9 sin 02 + r cos (8 + 0 - 2 )) } (3.179)
f(1 + 12 + 21,1112 cos 4)2)

Similarly, the solution for cos m1 requires the determinant of the coefficient matrix

with its second column replaced by the vector b. This determinant is found to be

1,1,n [a - r sin (0+ P')] + 112 [h sin4)2 + a COS 0, - r Sin (0 + 0' - 0)]) (3.180)

The solution for cos 01 then yields

costa (11 , ( - rsin ( + )] + 112 [hsinm g2 cos 0 2 -rsin (8 + - 0 2 )]} (3.181)
(,, + 22 + 21,1112 cos 02)

To find 4)1 divide Eq (3.179) by Eq (3.181) to form tan m1 and then use the ATAN2

function which is an inverse tangent function that places m1 in the proper quadrant

depending on the signs of the numerator and denominator. Although the denominators

of Eqs (3.179) and (3.181) are common, it is important that they are not canceled when

forming tanm01 because they may affect the signs of Eqs (3.179) and (3.181) and thereby

affect the resulting quadrant of the solution.

Using the same solution method for determining 04 yields

sin 04 (121 [h + r COs (0 - 0)] + 122 (h cOs Or + P2 sin 0S + r COS (O - + 0S)]} (3.182)(12, + 122 + 2121122 cos 40)

and

osd (121 -2 + rsin(0 - 0)] + 122 [hsin 05 - Pcosm)s + rsin(9 - ' + 0s)]) (3.183)
(os4 + 122 + 2121122 COS 0)

To find 4 Eq (3.182) is divided by Eq (3.183) to form tan 0 4 which is then solved for 04

using the ATAN2 function.
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3.8 SUMMARY

In this chapter the underlying theory for further derivations has been presented.

The basics of screw theory has been explained and used to solve for the contact forces

required to equilibrate an external force system on the grasped object. The configuration

of the external force system has been categorized as either symmetric or asymmetric, and

a discussion of force closure and form closure was presented. In order to compute the

finger joint torques of the gripper, the global hand Jacobian matrix was derived for a

gripper structure consisting of two, three-link fingers having serially-actuated, revolute

joints. Since the global hand Jacobian matrix is a function of the gripper configuration,

the inverse kinematic solution is required. The gripper structure was redefined as having

two, two-link fingers to reduce the complexity of the inverse kinematics so that a unique

'knuckle-out' configuration resulted.

The derivations of this chapter serve as the starting point for the developments un-

dertaken in the following chapter.
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IV. EQUILIBRIUM ANALYSIS OF

NOMINALL Y-L OADED OBJECTS

The magnitude and orientation of the external load vector has a direct influence on

the grasp angle, 0, and the internal grasp force, A', required for an equilibrium grasp. The

magnitude of the external load is characterized by Fet while its orientation is characterized

by the load angle, a. In most cases the grasp angle is not unique and may be selected

from a range of allowable values. Often the range of allowable values for 6 is limited by the

value of A' chosen and one or more constraints which must be simultaneously satisfied. In

general, there are three types of constraints which must be considered when configuring a

grasp. They are:

* Frictional force magnitude is constrained by a Coulomb friction model.

* For contacts characterized by point contacts with friction, normal contact forces can-

not 'pull' on the object surface. Nor should they crush the object being grasped.

" The contact forces that can be applied by the gripper fingers are limited in magnitude

by the capabilities of the actuators.

The first constraint requires that the tangential contact force magnitude be less than

or equal to the product of the normal contact force and some coefficient of static friction,

,,. Any grasp requiring a tangential force larger than this product will slip. In order to

have active friction the normal contact force must be directed inward towards the object

center.

This leads to the second constraint which is termed the crush limit constraint. This

constraint limits the range of magnitudes of the normal components of the contact forces.

Because one cannot 'pull' on a surface without the aide of some adhesive, only a positive

sense normal is considered feasible. In addition, there are practical limits on the allowable

magnitudes of the normal forces if one is concerned about crushing the object. This effec-

tively limits the magnitudes to a range from zero to a maximum value which is determined

by the object structure.
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The final constraint concerns the physical limitations of the finger actuators. Since

the hand configuration under analysis is limited to revolute joints, the actuator limits can

be characterized in terms of joint motor torque limits. In general a joint motor will have

a maximum torque rating, T, z, which is considered here to be a symmetric rating with

respect to the direction of shaft rotation.

The goal of this chapter is to present a graphical method for selecting the grasp angle

and the internal force level for two-fingered grasps of cylindrical ubjects under a nominal

load. A nominal load is considered to be one with the load orientation angle, a, equal

to 180 degrees and the external moment on the object, M..t, equal to zero. The method

is based on the static equilibrium analysis of the grasping forces presented in Chapter III

and will include consideration of the three types of constraints mentioned above.

In order to illustrate how the derived analytic expressions might be used to select grasp

parameters, an example grasp analysis will be presented. In the process of this example, it

will be necessary at times to specify limiting values for several of the contraining variables

or to specify the dimensions of the gripper and its relationship to the object. Each of

the constraints will require a different number of variables to be specified. The example

values for the required specified variables are presented as needed in the discussion and

summarized in Table 4.1 at the end of this chapter.

4.1 COULOMB FRICTION LIMIT CONSTRAINT

For a point contact with friction the Coulomb friction model relating the normal con-

tact force component magnitude, C,,, to the tangential contact force component magnitude,

Cj, is given by

Ct _ p.C, (4.1)

where p, is the static friction coefficient. Equation (4.1) defines a Coulomb friction limit

constraint for the allowable magnitudes of the normal and tangential contact force com-

ponents. The friction angle of a contact, 0, is defined as

/ arctan ( C ,) (4.2)
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It is easily shown that p, = tan 13. The static friction coefficient can be used to define

maximum and minimum limits on the allowable friction angle. Doing so yields

- arctanMo it 5 < arctanu° (4.3)

In order to keep from slipping, the friction angle must remain within the allowable limits

defined by Eq (4.3). If only positive values of p are physically possible, then even for

the generous case where p. = oo , the range of allowable#j would only be from -900 to

+90'. This point will be further examined shortly.

Expressions for 0 as functions of the known grasp configuration variables will enable

an investigate of the regions of feasibility based on the friction limit constraint. It is clear

from Eq (4.2) that the friction angle may, in general, be different for each of the two

fingertip contacts under consideration. Therefore, the friction angles at the contacts are

individually defined as

01 = arctan 4)

102 = arctan(1 \ (45)

Recalling the components C., and C~t from the total contact force vector given in Eq (3.39),

one can express the friction angle for the contact between fingertip one and the object as

( 2rA'sin 8 cos 8- r cos a sin2
9 + M'sine0 (4.6)

1 1= arctan 2rAsin2 
g + r cos a sin 0 cos 0 + r sin a - M'cos 0(

Similarly, the friction angle for the contact between fingertip two and the object is

( -2rA'sin cosO+rcoso sin2O+M'sinO (4.7)
c 2rA'sin2 

2 + r cos a sin 0 cos 0 - r sin a + M'cos 0

Since the quantity Fe.t/(2r sin0) is always positive, one need not be concerned about

changing the quadrant of 1 or 12 by canceling this common factor when the ratio in

Eqs (4.4) and (4.5) are formed from the components given in Eq (3.39).

Equations (4.6) and (4.7) are the most general expressions for the friction angles.

Under the nominal load conditions mentioned above, Eq (4.6) reduces to

2arctan A'cose+sinO) (4.8)
(2A'sin8 - cos0
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Figure 4.1. Friction angle at fingertip 1 versus grasp angle for a nominal external load on
the object

while Eq (4.7) reduces to

02=arctan (-2A' cos 6 - sin 6) (4.9)
( -2 sin 0 - cos 0

Examining Eqs (4.8) and (4.9) reveals that, for a nominal load, 01 = -,82. As will

be shown in Section 4.2 the sign difference between #I and 32 is due to a difference in the

signs of the tangential contact force components rather than the normal force components.

If 31 and 02 are plotted versus the grasp angle, 0, and let the normalized magnitude of the

internal grasp force, A', remain as a parameter, one can explore the friction requirements

for grasping the object at different symmetric fingertip positions and internal grasp force

levels.

Figure 4.1 depicts such a plot for the contact of fingertip 1 with the object using

several different values of A' while Figure 4.2 depicts such a plot for fingertip 2. One

immediately notes that there appears to be a linear relationship between 0 and 0 for

constant A'. Examining and manipulating the expressions in Eqs (4.8) and (4.9), however,

revealed no obvious linearity to the author.
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Figure 4.2. Friction angle at fingertip 2 versus grasp angle for a nominal external load on
the object

If one maintains that the friction angle is measured from the positive normal unit vec-

tor, then the friction angle for a contact force vector having a negative normal component

will be greater than +900 or less than 900, depending on the direction of the tangential

component. For positive coefficients of friction, however, a negative normal contact force

component is not allowable. Because only a positive-sense normal force is allowed, this con-

straint is called a unense normal force constraint. The unisense normal force constraint

represents an upper bound on 03 corresponding to p. = 00. In general, pu. << and the

grasp slips due to violation of the friction limit constraint long before the unisense normal

force constraint becomes a factor. The unisense normal force constraint does, however,

quickly identify regions where no grasp is possible unless an adhesive is used to interface

between the object and the fingertips.

Based on the unisense normal force constraint, the regions in Figures 4.1 and 4.2

which reire to i+9io o th frc90o are excluded from consideration as fease gra
wh0 ,rquire 6 _> +90* or # < - 0 ar exl d d ro c ns er t n asfeasible grasp

regions. In Figure 4.1 this means that it is not feasible to grasp the object at 6 < 900 if one

wanted to maintain '= 0. Similarly, Figure 4.2 indicates that one cannot grasp the object
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at 9 < 900 for A'= 0. Therefore, by simultaneously considering 61 and 82 it is concluded

that one cannot obtain an equilibrium grasp of the object with 0 < 900 if A'= 0. However,

if A' is increased to 1 then the unisense normal force constraint relaxes somewhat to allow

grasps at 0 E (270 < 0 < 1800).

Using Eq (4.3) as criteria for defining a range of allowable friction angles reveals

that the regions of feasible grasps in Figures 4.1 and 4.2 are bounded above and below by

straight lines at Oi = ± arctan p,. As an example, assume p. = 1 for the contact of the

object with the material used for the finger pads. Equation (4.3) gives the corresponding

limits on/3 as ±45 degrees. So from Figure 4.1, if A' = 0 one cannot achieve an equilibrium

grasp for 0 less than 135 degrees if it. = 1. The same condition holds true for fingertip 2

as shown in Figure 4.2. However, if A' = 1 and both 31 and 62are considered, the range of

allowable 0 includes all angles given by

9 E (720 < < 1620)

It is interesting to note in Figure 4.1 that as V increases, the lines of constant in-

ternal grasp force quickly approach the line running from (0,/31) = (00,900) to (0, 01) =

(1800, -90 ° ) which represents '= oo. Figure 4.2 shows an identical trend as one would

expect since /2 = -01 .

Examining the effect on the friction angle of changing A' for a constant 9, can yield

several physical insights about the grasp. For p, = 1 and 9 in the neighborhood of 1800,

as A' increases from 0 towards oo the grasp is driven unstable. The object is essentially

ejected from the grasp in a fashion similar to pinching a watermelon seed until it 'shoots'

from one's grasp. Therefore, in this region one would want to hold the object gently so as

not to lose stability.

By contrast, for p. = 1 and 6 in the neighborhood of 900, as A' increases the grasp

goes from unstable to stable. In this region one would want to hold the object as firmly

as the other constraints would allow.

Kumar and Waldron [KW87: 253] proposed a two-step suboptimal grasping strategy

for a two-fingered grasp of a circular cylinder with 0 = 900. Step A of the strategy

corresponds to beginning the grasp at A'=O. Step B proposes to increase A' until the

4-6

4.



friction limit constraint is just met and stop. Although this might conserve actuator

energy, it leaves the grasp very near the boundary of failure due to slip. Also, based

on the observations mentioned just above, this strategy will only work in the immediate

neighborhood of e = 900.

4.2 CRUSH LIMIT CONSTRAINT -A

In order for frictional forces to be active, the normal contact forces must be directed

inward towards the object center. This corresponds to positive normal forces in the coordi-

nate system defined by Figure 3.6. Since only one sense (positive sense) of the normal force

is allowable, this is termed the unisense normal force constraint. In addition, there may

be a limit on the magnitude of the normal force which can be tolerated by the structure

of the object. If such a limit exists it is termed the crush limit of the object. This section

presents a simple graphical way of selecting the grasp angle and internal grasp force level

based on the unisense normal and crush limit constraints.

The total contact force vector in Eq (3.39) includes generalized expressions for the

normal contact force components at fingertips 1 and 2. For convenience they are repeated

here:

C1. = F" {2r A ' sin2 e + r cos a c + r s in a - M ' 5c s  (4.10)
1 sin cos - snt 'o

C2. = Ft {2rA'sin2  + rcos a sin G c s - r sin a + M  5 C s 0 (4.11)

It may be beneficial to define normalized normal forces as the normal force magnitudes

divided by the magnitude of the external force, F.t Doing so, yields

C', = n_, 2rA'sin2 + rcosa sinO cosO + rsino - M'cosO0 (4.12)

_t r sincs 0 sn_
Cn {2rA'sin2 G + rcosa sin0 cos0-rsina + Mcos} (4.13)¢ =2r sin 0

The expressions in Eqs (4.12) and (4.13) are for any general external wrench on the

object. If the conditions which constitute a nominal external load as defined in Section IV

are substituted into Eqs (4.12) and (4.13), they reduce to

C/ - 2' sin 0 - cos 0
in = C - 2 (4.14)-
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Figure 4.3. Normalized contact normal forces 1 and 2 versus grasp angle for a nominal
external load on the object

The magnitudes of the normal forces at the two contacts are equal in sign and magnitude

for a nominal load as one would expect from the symmetry of the grasp.

Plotting Eq (4.14) as a function of 0 and parameterized by A' will give insight into the

range of 0 for feasible grasps based on the crush limit constraint. Figure 4.3 depicts such

a plot for three different values of A'. For a uniform object structure, a crush limit would

be characterized by a straight horizontal line on the plot in Figure 4.3 at the magnitude

given by

C/ = C.!_. (4.15) -n,,e, Fe~t

where C,_.. is the maximum allowable normal force which can be tolerated by the struc-

ture of the object. In general, however, the crush limit may be a function of the angle 0.

In such a case, that function would have to be evaluated over the range of 8 from 0 to 180

degrees.

For a given A', then, all values of 0 corresponding to CA between zero and C ° , are

feasible values for the grasp angle. For example, assume that C' .. , is found to be 1.5
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from a knowledge of the object structure and a measurement of F.t and it is desired to

grasp the object with A'=1. Based on the crush limit constraint, the feasible grasp region A

in Figure 4.3 would be defined by

1 E (00 5 9 5 1800)

If ' had been found to be 1, then the feasible grasp regions in Figure 4.3 would have

been defined by

0 E (00 < 0 < 800 U 1530 S 9 < 1800)

As A' increases the peak value rises and the slope steepens near 9 = 00 and 9 = 180c'

until eventually, for A'=oo the curve rises with infinite slope at 9 = 00 and essentially

remains at oo until it falls with infinite slope at 0 = 1800. For all A', however, the

endpoints of the curve are the same because the normal forces do not contribute anything

to the internal grasp force when 9 = 0* or 0 = 1800. As one might expect, for large A' the

band of allowable 9 corresponding to positive C, increases unless there exists a low C ...

in which case the band becomes smaller.

4.3 TORQUE LIMIT CONSTRAINT

The final constraint that shall be examined concerns the torque output limitations

of the finger joint motors. Given that the contact force solution vector for a grasp con-

figuration meets the constraints on friction angle, unisense normal force, and crush limit

discussed previously, the torque limits must still be considered. If one bases the optimality

of a grasp on minimizing the dependence on friction forces and ignores the limits on real-

izable torques, the 'optimal' solution to many overconstrained grasps will demand infinite

torques from the finger joint actuators. In general a joint motor will have a maximum

torque rating, r,,.a, which is not dependent on the direction of shaft rotation. The torque

limit constraint defined by r,.. may or may not be more constraining to a grasp than the

previously considered constraints; however, it requires investigation.

If one were to plot the torque requirement of the ith joint, rj, versus the grasp angle,

0 for a given A', the band of achievable torques would be bounded above by r,,,z and

below by - Such a plot would not only identify the feasible grasp angles, but could
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also give insight into choosing the 'optimal' grasp based on the criteria of minimizing the

joint torque levels. Therefore, the goal is to obtain an expression for ri as a function of 6

and parameterized by A'.

As was mentioned in Section 3.6 several physical characteristics of the gripper config-

uration affect the vector of required joint torques for a given set of contact forces between

the gripper and an object. Among these are:

e The number of fingers in contact with the object.

* The number of contacts between each finger and the object.

* The number of links in each finger of the gripper.

e The lengths of the finger links.

e The distance between the joints of the fingers connected to the palm of the gripper.

* The distance between the object and the palm of the gripper.

* The orientation of the object and external load wrench with respect to the palm of

the gripper.

In order to reasonably limit the scope of this thesis, it was assumed that there are only two

gripper fingers which may contact the object in at most one point each. In order to make

the inverse kinematics determinate, only two-links per finger are considered to be actively

controlled. If one wished to apply the analysis to a three-link finger set, one would have to

lock a joint on each of the fingers and effectively reduce them to two links each. The last

four items in the list above are variables in the analysis which are used in Section 3.7 to

determine the joint angles of the fingers required to grasp the object in the configuration

specified. The length of the jth link of the ith finger is given by Iii. The distance between

the joints of the two fingers connected to the palm of the gripper is given by a, while

the distance between the center of the object and the palm of the gripper is given by h.

Finally, the orientations of the object and external load wrench arc given by a and tP.

The procedure for generating a plot of r as a function of 0 is to specify enough object

and hand variables to determine the inverse kinematic solutions for the joint angles as
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developed in Section 3.7 and then use those joint angles to calculate the joint torques using

the relationships developed in Section 3.6. From Section 3.7 the following relationships are

recalled for the solutions of the joint angles:

,,= accs 2[ - r sin (9 + p)] 2 + [h + r COS(9 + 10)]2 - 12' -12' 4.

0 2  = cs 21,112 -{2 i- 1 (4.16)

0s = -S arccos -  2121122 2 (4.17)

where S is +1 for knuckle-in configuration and -1 for knuckle-out configuration. The

knuckle-out configuration is preferred because it minimizes interference between the fingers

and the object as well as interference between the fingers themselves. To determine 01 and

@4 the tangent of each angle is formed from expressions for their sine and cosine and the

ATAN2 function is used to arrive at solutions in the proper quadrants. The expressions

for the sine and cosine of each angle are given below:

sin 1 =f11 (h + rcos(8+ 0)) +112 [hcos 2 - !sin0 2 +rcos((+ b- 2 )]} (4.18)
12= + 12 + 211(12 co41)

COS ( [2 - rsin (9 + + 112 (h sin 02 + 2 COS0 - r sin ( + - )] (4.19)
11 + 12 + 21, 1112 cos 0 2 )

sin04= {l 2 [h+rcos(9- )+l 2 2 [hcosOs+2sinOs+rcos(- +s)} (4.20)
s21 + 122 + 2121122 cos -s)

cos 0 = {121 [-2 + rsin(# - 0)] + 122 [h sin s - ! cosOs + rsin(0 - +s) } (4.21)
12 + 122 + 21.11., COs) 1

Using these joint angles, the joint torques are found using relationships recalled from

Section 3.6. In keeping with the previous developments, dimensionless torque parameters

are defined as

(4.22)
aF.

4-11



Applying Eq (4.22) to Eq (3.135) yields

f' = '+ fh' (4.23)

where, for a nominal load,

III COS (I + 112 COS 12112 COSG +(1o2

1 11 2 cos 1 2  1 (4.24)

2a 121 COS ( + 122 COS (45

122 COS (45

and S- 111 sin(I - 112sin ( 1 2

A' -i122 sin C12' 1 i-- 2  1(4.25)
a 121 sin 4 + 122 sin ( 45

122 sin (4 J
As an example let us assume a gripper with

a = 11= 112 = 121 = 122= 1

which is to grasp an object having a radius r = a/2 = 0.5 such that the center of the

object is a height h = a = 1 above the palm and the line connecting the fingertips is

parallel to the palm (i.e. = 00). Figures 4.4 through 4.7 depict the required torques in

joints 1, 2, 4, and 5, respectively, assuming the object is subjected to a nominal load.

These plots reveal a trend in the torques of joints I and 4. Generally, for a constant

A' joints 1 and 4 must have higher torques as 0 gets larger. As the desired A' increases, the

required torques in joints 1 and 4 also increase as one would expect. Due to the symmetry

of the grasp and the definition of the coordinate system, the torque in joint 4 is equal and

opposite to that of joint 1.

The plots for joints 2 and 5, however, have unexpected crossover points where the

required torques are identical for all internal grasp force magnitudes. This invariance is

an indication that the inverse kinematic solution of the hand at this grasp angle results

in joint angles that position links 2 and 5 perpendicular to the direction of the external
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wrench. That is, in the given position, the torques applied to joints 2 and 5 can make

no contribution to the internal grasp force but, instead constitute the particular solution

contact force vectors. Therefore, the configuration of the gripper at this point is one with

the centerlines of links 2 and 5 along the line connecting the contact points (i.e. horizontal).

One can superimpose the torque limit constraint on the plots by computing the

corresponding ' from the given l and aFt

rmaz (4.26)ar,.t

The feasible grasp region is identified by the range of 0 which is within the band of ±0.

For a given ,, the range of allowable 0 decreases with increasing V'. This is in contrast

with the trend for the crush limit constraint where increasing A'resulted in a larger range

of allowable 0.

As an example, assume that the maximum torque which can be generated by any of

the joint motors resuts in r"', = 1 and the internal grasp force is to be maintained at A'

- 1. Figures 4.4 and 4.6 indicate that, based on the torque capabilities of joints 1 and 4,

the object must be grasped with 0 E (900 < 0 < 1800). Examining Figures 4.5 and 4.7

reveals that joints 2 and 5 impose no restriction on the range of allowable 0 since for A'= 1

they remain below r4..f for all 6.

4.4 SIMULTANEOUS CONSIDERATION OF CONSTRAINTS

In order for a grasp configuration to be physically feasible, it must simultaneously

satisfy all of the constraints previously mentioned in this chapter. The intersection of

the allowable grasping angle regions identified in the example of Sections 4.1 through 4.3 --

identifies the 'good' grasp region for '= 1. When all of the constraints are simultaneously

considered and ,V=1, the choice of 6 is reduced to 0 E (90' < 0 < 1620). In order to remain

as far removed from the constraint boundaries one might suggest that the midpoint of this

region be selected. However, one should examine the trends in Figures 4.1 through 4.7

within this range of 0 before arbitrarily selecting the midpoint. Upon examining the

trends of the curves from 90' to 1620 one discovers it is beneficial to tend towards 162'

based on the crush limit and torque limit constraints, but it is detrimental with respect tores-
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the friction limit constraint. With this controversy, it is not clear which way one should

tend.

The next chapter presents a method of evaluating the benefits of tending towards one

bound or the other. By way of illustration, however, let us arbitrarily choose to further

examine the grasp at 0 = 1350 and A'= 1. The trigonometric relations for 9 = 1350 are

relatively simple so this configuration should serve well as an illustration. Figure 4.8 shows

the configuration of the gripper for this example when 0 is chosen to be 135 degrees.

/12 = ] 122 --

-I
121

Figure 4.8. Configuration of the gripper fingers for the grasp example with 0 = 1350,
a = [ij = h = 1, r = 0.5, and 4 - 00

-4

4.5 CHAPTER SUMMARY

Analytic expressions are presented which model the equilibrium requirements of two-

fingered grasps of cylindrical objects confined to planar motion. The analytic expressions
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are three sets of inequality relations which correspond to three grasp constraints; friction

limits, crush limits, and joint torque limits. Use of these expressions is restricted by the

assumptions and limitations mentioned in Section 1.2. A nominal external load wrench was

defined as a zero-pitch wrench (a pure force) acting along the yo-axis such that a = 1800.

The inequality relations were then plotted as equalities for the conditions of the nominal

external load wrench. To construct the plots for this indeterminate system, the grasp

angle, 9, was arbitrarily chosen as the independent variable and the internal grasp force

magnitude, A', was chosen as a parameter. Trends in the requirements for friction angle,

contact normal force, and finger joint torques for selected values of A' as functions of Owere

then examined. These plotting trends were interpreted in terms of the physical conditions

of the grasp.

During the course of the examination of constraint requirements for nominal load

conditions, the following trends were noted:

" The friction angle required to maintain an equilibrium grasp varies linearly with the

grasp angle, 8, if one maintains a constant internal grasp force magnitude, A'.

" The friction angles at fingertips 1 and 2 are equal in magnitude and opposite in sign.

" For any positive static coefficient of friction, u,, and any internal grasp force, there

exists some 9 which corresponds to an equilibrium grasp if there are no crush or joint

torque limits.

" At every 0, one can vary the required friction angle through a range of 900 by varying

A' between zero and infinity.

* Increasing the internal grasp force magnitude, A', tends to be detrimental to grasp

equilibrium when 9 is in the neighborhood of 180' and it enhances grasp equilibrium

when 9 is in the neighborhood of 900.

• The magnitudes of the contact normal forces are less affected by increasing A' when

9 is near 0' or 1800 than they are when 8 is near 90'.

" When the centerlines of the finger links are aligned with the direction of the internal

grasp force, their joint torques required for grasp equilibrium are independent of A'.
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Coulomb = 1

Friction A'= 1
Limit

Crush C' = 1.5
Lin-it A'= 1 _

Finger r, = 1 r =0.5
Joint X'= 1 = 00
Torque a = 1 lj 1
Limit h = I

Table 4.1. Values of variables specified in each section for the example grasp analysis

* Depending on the configuration of the grasp, there may be regions of 6 whose joint

torques required for grasp equilibrium are less sensitive to changes in A' than other

regions.

An example was presented to illustrate a method of using the analytic expressions

to determine feasible grasp angles and internal grasp force magnitudes. The values which

were specified in each section of this chapter for the example are summarized in Table

4.1. The method includes graphical displays of data which depict trends in the equilib-

rium requirements as functions of the grasp angle and the internal grasp force level. One

can select grasp configurations using this method and be guaranteed that it will achieve

equilibrium. However, if one was interested in optimizing the grasp configuration's ability

to tolerate changes in the external load wrench, one would need a further method. The

additional method would be intended to evaluate the merit of a range of feasible grasp

configurations with respect to the criteria mentioned. Chapter V presents such a method.

A basic premise of using the analytic expressions presented in this chapter is that

one has a means of determining several factors about the object and the external load

on the object. A camera system could be used to acquire the radius and location of the

object if the lighting conditions were sufficient. Once the radius and position of the object

are known, one must additionally determine the type of material on the object's surface,

so that an estimate of the static coefficient of friction can be made, and the mass of the
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object so its weight can be estimated. Probably the most difficult measurement, however,

is that of the magnitude and direction of the external load on the object. If the object is

known to be resting on a supporting surface, then the net external wrench is zero. If the

object is being held stationary by the gripper, one can guess with fairly high confidence

that the external wrench consists only of gravity. On the other hand, if the object is being

held by the gripper and someone pulls on the object, then some instrumentation is needed 7-

to determine the characteristics of the wrench caused by the pulling. It is unclear to the

author as to what type of instrumentation could provide this information.
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V. EVALUATING THE EFFECTS OF

LOAD VARIATIONS ON A GRASP

Chapter IV presents a graphical method of selecting the grasp angle based on a

nominal load. The term 'nominal' load was used to describe an external wrench on the

object having zero-pitch and acting along the y.-axis such that c = 1800. Once a candidate

grasp configuration has been chosen by the methods in Chapter IV, one would like to

check the 'quality' of the grasp. For the purposes of this thesis, the 'quality' of a grasp is

determined by its ability to tolerate disturbances or changes in the external load wrench.

Figure 4.8 shows the configuration of the gripper fingers and the object for the conditions

given by the grasp example in Chapter IV. That configuration will be further analyzed to

illustrate the concepts in this chapter.

The variations in the external load wrench may be viewed in either one of two ways.

If one wishes, he can view the nominal value for the external load wrench as a measured

quantity and the variations as possible measurement errors. Or one can view the nominal

load as currently being an accurate value and the variations as possible future configu-

rations of the load. If the load varies quasistatically, a static equilibrium analysis can

correctly evaluate the behavior of the grasp during the change. However, if inertial effects

become significant, the static equilibrium analysis presented will no longer be suitable.

In this chapter, a method for evaluating the ability of a grasp to tolerate variations

in the nominal load wrench is defined. The nominal load wrench can vary in three ways.

The zero-pitch component of the external wrench may vary in direction or magnitude from

the nominal and the infinite-pitch component may vary from its nominal zero magnitude.

The first two variations are characterized by changes in a and Feet, respectively, while the

third variation is characterized by a nonzero M'.

5.1 CHANGES IN THE NOMINAL LOAD DIRECTION

When the direction of the external load wrench changes from the nominal condition of

a = 1800 the load is then said to be asymmetric. This symmetry destroys the equal and
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Figure 5.1. Friction angle at fingertip 1 versus variation in a, the angle of the external load

opposite relationship between 1 and 02 which existed for the nominal case. In addition,

C 1, is no longer identical to C2 , and the symmetry in the torques vanishes.

By examining the friction, contact normal magnitude, and finger joint torque require-

ments of a grasp for values of a in the neighborhood of the nominal condition, one can

determine the ability of a grasp to tolerate a variation in a.

5.1.1 FRICTION LIMIT CONSTRAINT. If candidate values for 8 and A' have

been chosen by the methods of Chapter IV and a is assigned as the free variable in

Eqs (4.6) and (4.7), one can plot the required )31 and I2 for various a using those same

equations to explore the effect. Doing this for the example problem given in Chapter IV,

yields Figures 5.1 and 5.2.

When a = 450 or a = 2250 all values of A> 0 share the same 31 in Figure 5.1. These

two orientations of the external load wrench correspond to 4.t pointing either directly

away from, or directly at the point of contact between fingertip 2 and the object. In these

configurations, one might think that di would be sero and e2 would entirely equilibrate

'1ew. However, this is not the case beocause of the premise that two contacts must exist
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Figure 5.2. Friction angle at fingertip 2 versus variation in a, the angle of the external load

between the hand and the object rather than one. There are, in fact, equilibrium solutions

for the case of two finger contacts that require nonzero e, and 2 , neither of which are

pure normal forces.

Let us examine for a moment these configurations when A' = 0. The condition!'

for A = 0 require that there be no internal grasp force. This does not mean that the

resultant contact forces, C1 and e2, do not have components along the direction of the

internal grasp force (the line connecting the two contact points). Rather, it means that

there is zero force interaction along this direction [Wal86: 215'. This implies that if el

and e2 have components in this direction, they must be oriented in the same sense so as

not to oppose each other. A vector diagram of the resulting solution for a = 450 is given

in Figure 5.3 while that for a = 225' is given in Figure 5.4. When a - 450 and A'

is increased, the normal and tangential components of the additional contact force must

increase proportionally to act along the direction of the internal grasp force. Therefore, 01

remains at -450 for all '.

When a = 225', however, the direction of el will change as A increases. Thus, ,ll
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Figure 5.3. Vector diagram of the contact force vector solution when A'= 0 and a - 450

C, 0.25 0.75

(52

Figure 5.4. Vector diagram of the contact force vector solution when A'= 0 and a = 2250
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starts at 1350 and when A' exceeds ((.25)2 + (.25)2)0. = 0.3535, 01 transitions abruptly

to -45* . P2 behaves in a similar fashion except at a 1350 and a = 3150 as shown in

Figure 5.2.

As A increases towards infinity, the internal grasp force overshadows the external

load wrench and the contact force vector becomes decreasingly sensitive to changing a. As

a result, when A' = oo, #I remains constant at -45' while 132 remains constant at +450.

Since P = +45' is the boundary of the friction limit constraint for the example,

Figures 5.1 and 5.2 indicate that this constraint will not be violated as long as A' > 0.3535

and

a.E (135' < a < 225)

This means that, based on the friction limit constraint, the direction of the external load

wrench can vary by 45 degrees to either side of the nominal configuration and the object

will not slip from the grasp as long as the contact forces are adjusted accordingly. For

variations beyond this range, it is impossible to maintain an equilibrium grasp. It is

interesting to note that 'squeezing' the object harder does nothing to improve the range

of tolerable a variation for this configuration of the grasp.

5.1.2 CRUSH LIMIT CONSTRAINT. By plotting the magnitude of the contact

normal force versus a one can evaluate the effect of changing the direction of the external

load wrench on the crush limit constraint. In Section IV expressions were derived for the

normalized normal forces at contact points 1 and 2 as furctions of r, 0, a, A', and M'.

Since M'= 0 for a nominal load and only the effect of varying a is to be explored, M' =

0 can be substituted into Eqs (4.12) and (4.13) and r can be canceled from the numerator

and denominator to get the following expressions:

C/ -- {2A'sin2 0+ cosa sin 0 cos0+sina (5.1)

Cm 2 sine0 1(51
= {2A' sin2 0 + COS a sin0 cOsG - sina} (5.2)

Since the goal is to evaluate candidate values for A' and 0 which were chosen by the

method in Section IV, those chosen values can be substituted into Eqs (5.1) and (5.2)
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Figure 5.5. Normalized contact normal force at fingertip 1 versus variation in a, the angle
of the external load

which can in turn be used to plot C' and C,, versus a. For the nominal condition

having a = 180', the plots of C, and C2 versus a will be reflections of each other about

a =1800. Figure 5.5 shows a plot of C', versus a for the example problem using three

different values of V'.

Figure 5.6 shows a similar plot for C',, versus a. As one would expect, the required

normal forces increase without bound as V' is increased towards infinity. The plots are

sinusoidal in nature owing to the cyclic nature of varying a from 0 to 360 degrees. Since

the crush limit of the example is 1.5 and the candidate A' is 1, the plots indicate that a

variations cannot violate the crush limit constraint. In the regions of a near 120 degrees

or 240 degrees the crush lit is approached, however, it is never exceeded for either of the

contacts. The conclusion is that the equilibrium of the grasp can be maintained despite

the variations in a without being concerned about crushing the object.

5.1.3 TORQUE LIMIT CONSTRAINT. In order to explore the ability of the grip-

per to generate the torques required to maintain grasp equilibrium when the direction
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Figure 5.6. Normalized contact normal force at fingertip 2 versus variation in a, the angle
of the external load

of the external load varies, it would be useful to obtain expressions for the finger joint

torques as explicit functions of a. For the nominal load explicit symbolic expressions were

derived for the normalized homogeneous and particular solutions of the joint torque vector

and summed them using Eq (4.23) to get f". If a is retained as a variable, however, the

complexity of the resulting expressions for 9' becomes unmanageable. Therefore, numer-

ical evaluation of subexpressions are used to generate the data required to plot the joint

torques as functions of a.

The procedure is as follows. The same inverse kinematic equations as were presented

in Eqs (4.18) through (4.22) are used to yield the two joint angles for each finger. These

joint angles are then used in Eqs (3.110) through (3.115) and Eqs (3.120) through (3.125)

to determine the jijk that are in turn substituted into Eq (3.131) to yield the transpose

of the global hand Jacobian matrix, jT. One must next evaluate the contact force vector

for the given grasp and load configuration. This is done by substituting the appropriate

5-7



0, a, and ,V into the following equation:

2,V sin2 0 + cos a sin 0cos 6 + sin a

2A' sin G cos 0 - cos a sin2

= __Ft 0 (5.3)

2sin I 2A'sin2 0 + cosa sin0 cos0 - sina

-2A' sin 0 cos 0 + cos a sin2 9

0

The final step in determining the vector of joint torques is to multiply the global hand

Jacobian matrix by the contact force vector via

9, C; (5.4)

Although Eq (5.4) is presented as a matrix multiplication, one does not have to multiply

all of the row elements of ,7T by all of the column elements of d because of the numerous

zero elements. By planning ahead, one can greatly reduce the computation time for the

joint torque vector.

One can now use this method to produce plots of the four different finger joint torques

versus a for the example problem under study. Using 0 = 1350, the plots given in Fig-

ures 5.7 through 5.10 were generated. These figures indicate that the joint torques vary

in a sinusoidal fashion as a goes from 0 to 360 degrees. Also note that while increasing a

from the nominal reduces the torques in joints 1 and 4, it increases the torques required in

joints 2 and 5. When a varies below the nominal, the opposite occurs. However, none of

the joint torques are driven outside of the allowable band defined in the example problem

asr'8 = =+1 by any value of a. Based on the torque limit constraint one should conclude

that the equilibrium of the grasp will not be destroyed by variations in the direction of the

external load if we choose A' = 1.

As a result of this investigation into the tolerance of the grasp in the example problem

to variations in the direction of the external load wrench, it is concluded that the candidate

values of 1350 for 0 and unity for A' are good enough to maintain static equilibrium under

variations in a of as much as 45 degrees away from the nominal direction. When a varies
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by more than 45 degrees, the object will slip from the grasp due to a violation of the

friction limit constraint.

5.2 CHANGES IN THE NOMINAL LOAD MAGNITUDE

When the magnitude of the external load wrench changes, it affects the equilibrium

demands of the grasp. Having determined candidate values for the grasp angle, 0, and the

internal grasp force, A', by means of a nominal load analysis in Chapter IV, one would like

to determine the range of variation in the magnitude of Fet that can be tolerated by the

grasp without losing equilibrium or violating any one of the other two constraints. To do

this, one must examine each of the three constraints, in turn, as F,.t is allowed to vary

in magnitude. In order to distinguish between the nominal or reference magnitude of Fezt

and the varied magnitude of Fet, the magnitude of the nominal external load wrench is

denoted as F:.t.

In general, the range of tolerable F.,t will have an upper and a lower bound when each

of the constraints is examined in the presence of a variation in the external load wrench

magnitude. Since only positive Fezt are considered, the lower bound itself is bounded by

zero. The subsequent analysis will indicate that, in general, the friction limit (-nstraint

will define upper and lower bounds on Ft which are finite and non-zero. The types of

bounds corresponding to the crush limit constraint will be dependent on the quadrant in

which 6 lies, and the bounds corresponding to the torque limit constraint will be dependent

on the configuration of the gripper fingers as they grasp the object.

A fundamental assumption used in determining the bounds on Fete for which the

grasp can maintain equilibrium is that the grasp configuration and internal grasp force

magnitude will be maintained during the variation. This implies that 8, A' 1, a, the link

lengths, and the finger joint angles are to be held constant in the analysis that follows. A

new parameter, F*, is defined as

F* =F..t(5.5)
Fezt

'In Chapter IlI A' was defined in Eq (3.37) as the ratio of the magnitudes of the internal grasp force and
F,,. In this chapter, this definition is refined by defining ' as the ratio of the magnitudes of the internal
grasp force, A, and4 the nominal external load wrench F
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The magnitude of F* at the upper and lower bounds wiln reflect the ratios of the bounding

• values of F.,t to ,F=t'. Thus, the larger the bounding F" limits, the more 'headroom' one

has for the candidate grasp configuration.

5.2.1 FRICTION LIMIT CONSTRAINT. To consider the effect of increasing F,.t

on the required values of 01 and 12, begin by recalling the expressions for the homogeneous

and particular solutions to the contact force vector while the object is subjected to nominal

load conditions. In Chapter III Eq (3.24) gave the homogeneous contact force vector

solution as

sin 1
Ih Cos A (5.6)

sin G

£ - cos J
and (3.31) gave the particular solution contact force vector as

- cos 0

*F. 8, sine 0
'P 2 - Cos# G.7)

- sin 0

where the C1, and C 2, components have been intentionally excluded. Summing (h and

O, to get the total contact force vector e, yields

S2A sin e - F.,t cos 0

0.5 2A cos 9 + F..t sin 0 (5.8)
2A sin 0 - Fg, cos #

-2A cos0 - F.., sin 0

If the definition of A' is introduced into Eq (5.8), the result is

2A'sin 8 - F cos 0

Fo m  2A'co, 0 + sin F
tget (5.9)

2A'sin 0 - ) cos 0
et
F -2A'cos o - r sin o

5-12

==C



Substituting the definition of F* given by Eq (5.5) into Eq (5.8) gives

2A' sin 0 - F* cos 0

F. ' 2A'cosO+ F*sinO (5.10)

2 2A'sin 0 - F* cos 0

-2A'cos 0 - F* sin9

The friction angles at contact points one and two are formed by substituting the appropriate

expressions from Eq (5.10) into the defining equations for 031 and /2 given by Eqs (4.4)

and (4.5) to get
2A'cos 0 + F* sin (

= 2A'sin _- F" cos0 (5.11)

and

132 2A'cos 8 - F* sinO (5.12)
2A'sin0- F*cos 5

Once again, note that /31 = -/02 for the symmetric load conditions under which the

external load magnitude variations are analyzed. 031 and /2 are plotted as functions of

F' to evaluate the range of F,2. which can be tolerated without loss of grasp equilibrium.

Figures 5.11 and 5.12 show the plots for #1 and P2, respectively, for the example grasp

under study. In those figures, the data has been plotted from F* = 0 up to F* = 2 in

order to represent variations of ±100 percent on F,t.

There are several interesting features of Figures 5.11 and 5.12. Consider for a moment

the data at F* = 0 which corresponds to no external load on the object. For A' = 0 and F'

= 0 the total contact force is zero at both fingertips so the fingertips are not in contact with

the object and the friction angles are undefined. For a differentially small F*, however, the

friction angles are defined and equal to ±45* for A' = 0 as shown in Figures 5.11 and 5.12.

These friction angles correspond to having the total contact force vectors at fingertips 1

and 2 pointing straight up along the positive y.-axis. This is known to be the case when

a symmetric load and zero internal grasp force coexist.

With the exception of A' = 0, all A' require /# = -45* and 02 = 450 at F' = 0.

When F' = 0 there is no external force on the object and, therefore, the particular solution

contact force vector, (I., is identically a zero vector. Such a condition would exist when
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the object was stationary in a zero-gravity field or if it was in a gravity field and resting

on some support external to the gripper.

When all non-zero values of A' coincide at one point on these plots, it indicates that

one could 'squeeze' the object as hard as one wanted without changing the friction angle

required for an equilibrium grasp. For example, consider a cylindrical object resting on

a pedestal support. If only the friction limit constraint is considered for the moment,

Figures 5.11 and 5.12 indicate that the object can be grasped with 0 = 1350 and increase

A' to any desired value without upsetting the equilibrium or violating the friction limit

constraint as long as p, > 1. Such a condition allows one to preset A' before lifting the

object, thereby ensuring that a 'firm' grasp is maintained.

One could model the act of quasistatically lifting the object straight up from the

support in a uniform downward-acting gravity field, as increasing F' from an initial value

of zero to some final nominal value, F:.t, which might represent the weight of the object.

Consequently, when the object was lifted completely off of the support, F" would be equal

to one. In Figures 5.11 and 5.12, increasing F* for constant, finite, non-zero A' results in

a reduction of the required friction angle. However, recognize that this characteristic is

unique to cradling grasps (i.e. 0 between 900 and 1800.) with F" less than 2. If the plot

of 61 was extended to include F* greater than 2, the constant A' lines would cross # = 00

and asymptotically approach 3 = -45 ° as F* approaches infinity. Since the friction angle

limits for this example are 0 E (-450 < # < 450), for this grasp configuration, there are no

finite restrictions on the range of F* which can be tolerated by the grasp when the friction

limit constraint is scrutinized.

The lines in the figures for A' = 0 have specific physical meanings. When A' = 0, the

contact force vector, 6, consists entirely of the particular solution, d.. When a = 1800

and M' = 0, the load is symmetric which means that dlp and C2 , must be directed along

the y.-axis to oppose j no matter what magnitude F.,t takes on. One can easily verify

that if the contact forces are directed along the y.-axis, that the friction angles must be

450 and -45* at fingertips one and two, respectively. This is consistent with the known

directions of 10p and esp.
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5.2.2 CRUSH LIMIT CONSTRAINT. To examine the effect of varying F..t on

the crush limit constraint, recall the expression for the normal contact forces as given by

Eq (5.10)

C - - A'sinO - 0.5F* cosG (5.13)
.. t

Because the nominal load is symmetric, the normalized contact normal forces at fingertips

1 and 2 are equal so they are both referred to as C,. The requirement to prevent crushing

the object is that Cn must remain less than the C' that was defined in Eq (4.15).

Therefore, the following inequality constraint equation must be obeyed:

C' = A'sin0 -0.5F* cos < (5.14)

This can be rewritten as

- F* cos0 < 2(Cn ... - A'sinG) (5.15)

Since Eq (5.15) is linear in F*, it can solved for the bounds on F..t. Care must

be taken to ensure that the proper sign of cos 0 is used when solving for F ° because the

direction of the equality will change depending on the sign of cos 0 when dividing both

sides by it.

When 0 E (0 < 9 < 900) it is a palming grasp2 and the cos 0 will be positive so the

crush limit constraint is

F" > 2(A'tan 0 - C .sec 0) (0 < a < 900) (5.16)

Eq (5.16) implies that there is a minimum value of F' which corresponds to the crush limit

for a palming grasp. Intuition tells one that, for a palming grasp, increasing F..t will tend

to pull the object from the grasp and cause the normal forces to decrease. Decreasing F._t,

on the other hand, will increase the magnitudes of the normal contact forces. Therefore,

for a palming grasp there is a lower bound on F* and there is no upper bound based on

the crush limit. This behavior is accurately represented in Eq (5.16).

2See Section 3.2.1 for definition of palming gruap.
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When 9 E (900 < 0 < 180') there is a cradling grasp3 and cos 0 will be negative so

the crush limit constraint is

F* < 2(A'tan6 - C',g. sec 0) (900 < 9< 1800) (5.17)

Eq (5.17) implies that there is a maximum value of F* which corresponds to the crush

limit in a cradling grasp. Intuition tells one in the case of a cradling grasp that increasing

F,.t will tend to press the object into the fingers and cause the normal forces to increase.

Decreasing F.=t, on the other hand, will decrease the magnitudes of the normal contact

forces. Therefore, for a cradling grasp there is an upper bound on F* and the lower bound

is zero, based on the crush limit. Eq (5.17) accurately represents this type of behavior.

In the example grasp under analysis, 0 = 135', A' = 1, and C = 1.5. Since

0 = 135" is a cradling grasp, these values are substituted into Eq (5.17) and the bounding

F" is found to be

F* < 2.243

This tells one that Fett can more than double and the structural limits of the object will

not be exceeded while trying to maintain an equilibrium grasp.

5.2.3 TORQUE LIMIT CONSTRAINT. Evaluating the torque limit constraint tol-

erance of a grasp configuration subjected to changes in the magnitude of F.tt will be done

in a fashion similar to the analysis of the crush limit constraint in the preceding section.

Begin by recalling the expressions for the homogeneous and particular solutions of the

finger joint torque vector from Eqs (3.142) and (3.143) in Section 3.7 which are repeated

here for convenience:

II cos l + 112CO cos
S ll= cosl (5.18)

2 121 COS (4 + 122 coS 4

122 cos J6
3 See Section 3.2.1 for a definition of a cradling grasp.

5-17



-II sin(1 - 12 sin (12

-112 sin(1 (:

I2 sin (4 + l2 sm (4 5

122 sin C4

where the ('s are defined in Eqs (3.144) through (3.147).

To form the vector of dimensionless torque parameters as defined in Eq (4.22) and

used in Eq (4.23), one must sum the expressions in Eqs (5.18) and (5.19) and divide the

result by F:mt. Doing so, and introducing the definition of F* given by Eq (5.5), yields

( -A'(11, sin(, + 12 sin( 1 2 ) + 0.5F" (1, cos( + I12 cos( 12 )

-A'112 sin(1 2 + 0.5F112 cos (1 2  (5.20)

A' (12 , sinC 4 + 122 Sin (46) + 0.5F* (121 cos( 4 + l2 2 cos ( 46)

A'12 2 sin (4 + 0.5F 122 COs 4 I

In order not to violate the torque limit constraint, one must satisfy the following

inequalities:

f'r2var (5.21)'r4 ent-z

where, in general, the torque limit of each finger joint may be different. If the bounding

value of F" for the ith joint is represented as Fi*, then one can solve Eq (5.21) for the

F. The bounding F* for the grasp would be the most restrictive F> that is found to be

positive and simultaneously satisfies all of the inequalities in Eq (5.21). The requirement

for F* to be positive can be expressed as a fifth inequality relationship which must be

simultaneously satisfied:

F- > 0 (5.22)

The inequalities in Eq (5.21) can be rewritten as

F(II cos (I + 11 2 cos (1 2 ) !5 2 [rl"m .+ A'(I 11 sin C, + 12 sin( 1 2 )] (5,23)

F.2 (f1 2 cos( 1 2 ) : 2 [r"m,, + A'(11sSin Ci 2 )] (5.24)
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F (12i cos( 4 + iz2cos( 4 s) < 2 [ ,4. + ' (121 sin (4 + 122sin(4s)] (5.25)

F (1:2 cos ,s) < 2 [T.0. + ' (122 sin (4s)] (5.26)

The signs of the parenthetical terms on the left hand sides of Eqs (5.23) through (5.26)

are dependent on the configuration of the grasp. In solving for the F*, the direction of the

inequality must be reversed if the parenthetical quantity is negative for the ith joint. These

parenthetical quantities are equal to the Xp-components of the position vectors pointing

from the ith joint to the tip of the finger. Therefore, referring to Figure 3.10, whenever

the fingertip is to the left of the ith joint, the parenthetical quantity will be negative and

the direction of the inequality must be reversed when solving for F'.

To determine the range of tolerable variations of F.,, one must solve the four inequali-

ties in Eqs (5.23) through (5.26) for the F* and take the intersection of their solution spaces

with the solution space of Eq (5.22).

For the example grasp problem under analysis, the inverse kinematic solution results

in

= 147.880

(12 = 6.590

(4 = 32.12 °

(45 = 173.410

Using these joint angles, ' 1, 111 = 112 = 121 = 122= 1, and 1 for all joints,

yields

F'(0.146) < 3.293

F(0.993) < 2.230

F-(-0o.146) _< 3.293

Fs(-0.993) < 2.230

Solving these equations for their corresponding F's results in

Fj* < 22.485
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F; < 2.244

F > -22.485

Fs _ -2.244

Simultaneous consideration of all F* for this example indicates that, based on the torque

limit constraint, the grasp can only tolerate variations in the magnitude of the external

load wrench within the bounds defined by

Fgt E (0 <_ F.t 5 2-244EF:"')

while maintaining an equilibrium grasp.

5.3 CHANGES IN THE EXTERNAL LOAD MOMENT

Applying a nonzero moment to the object will cause a change in the equilibrium

requirements for a grasp. In Chapter IV candidate values for 0 and A' were selected by

analyzing the nominal load requirements of a grasp. In this section the tolerance of the

grasp characterized by the candidate values of 0 and A' to the presence of a non-zero

external load moment will be examined. The requirements of the grasp will be analyzed

in terms of each of the three constraints individually.

The nominal external moment on the object was taken as zero for the analysis con-

ducted in Chapter IV so introducing a non-zero M' constitutes a variation in the external

load moment. To facilitate this exploration of the effect of variations in the external load

moment on grasp equilibrium, a dimensionless parameter, M*, is defined as

M Met _ M' (5.27)

where r is the radius of the object. By defining this parameter some physical insight has

been fabricated into its meaning. One can interpret M* to be related to the moment arm

of an equivalent force couple where the two forces have magnitudes equal to Fm:'t. With

this insight, M* is equal to the moment arm of the force couple expressed as a fraction

of the object radius. Therefore, an M* of one could be thought of as corresponding to

a couple consisting of two parallel, opposing forces, F:,t, separated by a p,,rpendicular

distance equal to r.
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5.3.1 FRICTION LIMIT CONSTRAINT. Equation (3.39) gives the expression for

the total contact force vector in its most general form. The normal and tangential compo-

nents are repeated here for convenience.

2rA'sin2 0 + rCOs a sin0 cos0 + rsin a - M'cos0

_F.- 2rA'sin6 cos0 - rcosa sin2 0 + M'sinO 1
2r sin 0 2rA'sin2 0 + r cosa sin 8 cos 9 - r sina + M'cos 0

-2rA' sin 0 cos 0 + r cos a sin2 0 + M' sin 0

where
M'- M..t

= (5.29)

If M ° from Eq (5.27) and a = 180' are substituted into Eq (5.28), it reduces to

2A'sin 2 0 - sin 0 cos 0 - M" cos 0

F.t 2A'sin 0cos9 + sin2 9 + MsinG (5.30)
2sin0 2A'sin2 9- sinO cos + M'cos I

-2A' sin0 cosO - sin2 0+ M sinO

The expressions for the friction angles at fingertips one and two are formed by selecting

the appropriate components from Eq (5.30). The result is

C1 t 2A'sin 0 cos 0 + sin2 0 + M" sin 0

Ci , 2A'sin2 0- sin0 cosO-M'cosO (5.31)

2 C2  _ - 2A'sin 0 cos 0 - sin 2 9 + M*sina (5.32)
C2- C - 2A'sin 2 9-sin0 cos9 + M cos9

One can plot Eq (5.31) and (5.32) for various values of A' as functions of F* to

explore the equilibrium requirements of a grasp characterized by 0. The plot information

is evaluated in the same way as the nominal friction limit constraint plots were evaluated.

All M* having a friction angle within the bounds of ±,.. = ± arctanI. are tolerable

external moment loads as far as the friction limit constraint is concerned.

If the data for the example grasp nominal conditions given in Section 4.4 are plotted,

Figures 5.13 and 5.14 result.

One immediately notices the discontinuity in the plots for A' = 0. As was seen

in the analysis of the grasp for a nominal load, this discontinuity is due to a direction
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change in the contact forces. In the case of this example, the discontinuity in /31 occurs

when M* = -0.707 because that is when the tangential force required to equilibrate the

moment is exactly equal and opposite to the tangential force of the nominal-loped particular

solution contact force for fingertip one. Therefore, the tangential contact force is zero at

this value of M*. In general, a geometric analysis reveals that the discontinuity of A' = 0

will occur at M" = - sin 8 for 01 and at M* - sin# for 02 .

The reason that the /3 are constant for AV = 0 is that, when there can be no interaction

force, the directions of the resultant contact forces at the fingertips cannot change unless

the direction of F,.t changes. Since presently only changes in the external moment are to he

considered, the direction of Fett must remain at a = 180 degrees. Thus, for equilibrium,

the contact forces can have no components in the zo-direction. It follows then, if the

tangential force component changes magnitude to compensate for the external moment,

then the normal force component must change proportionally as well. Hence, the friction

angle remains constant until the two contact force components change sign simultaneously.

This occurs at the point where the external moment requires a change in the tangential

force that exactly cancels the tangential force of the grasp that was required at M* = 0.

At this point, the particular solution contact force vector at fingertip one. C1p, is equal to

zero.

Figure 5.13 shows that this point is also a crossover point for all values of A'. Since

Olp is equal to zero when M* = -0.707, a non-zero V produces 51 = dlh which must

be directed along the -.- axis. For such a force, )31 must equal -45' no matter what its

magnitude, A', may be. Consequently, all A' curves pass through the point corresponding

to W,3 1 )= (-0.707,-45*).

Figure 5.14 shows trends in the data for fingertip 2 that are equivalent to those

discussed for fingertip 1. However, the crossover point occurs at a value of M* which is

the negative of the value at which the crossover occurred for fingertip 1 (i.e. M" = 0.707.)

Aside from the foregoing interpretation of the physical phenomenon associated with

the features of Figures 5.13 and 5.14, one can also determine the limits of tolerable M*.

Since the allowable bounds on the friction angle for the example grasp are ±45' one
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can determine from consideration of both the /31 and the /32 plots that the friction limit

0• constraint is satisfied for

M* E (-0.707 < M* < 0.707)

This is true, of course, only if an internal grasp force having A' > 1 is applied. The

* corresponding limits on the external load moment, M', are

M' E (-0.354 < M' < 0.354)

* 5.3.2 CRUSH LIMIT CONSTRAINT. The crush limit constraint states that in

order to keep from deforming the object structure, the normal contact forces must be kept

below some maximum value given by Eq (4.15). This condition can be expressed as

' < " (5.33)

The vector notation is used to denote that there are actually two independent inequality

constraints which must simultaneously be met in order for the crush limit constraint not

to be violated. In general, the C'. can vary from point to point on the surface of the

object, and it may in fact be a function of 8. One would have to perform a structural

analysis or make conservative estimates to obtain C;, .. at the two contact points.

To obtain (n the first and third components are selected from the vector C given in

Eq (5.30) and divided by Fwt to get

C , = A'sinO- 0.5 cos0 - 0.5M* cot 0 (5.34)

C, = A'sin 0 - 0.5 cos0 + 0.5M* cot 0 (5.35)

From the form of Eqs (5.34) and (5.35), it is clear that the relationships between the

normal forces and M* will be linear. Both functions will intersect the Cn-axis at C =

A'sin 0 - 0.5 cos 0. A plot of C'.- versus M* would have a slope equal to (-0.5 cot#) while

a plot of C2n would have a slope equal to (0.5 cot 9). From this information, one can solve

these linear equations for the bounding values of M °.Substituting Eqs (5.34) and (5.35)

into Eq (5.33), yields the following inequality constraints:

A' sin 0 - 0.5 cos 0 - 0.SM* cot 0 < C' (5.36)
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A'sin0 - 0.5cosO + 0.5M* cot8 < C'. (5.37)

If the terms with M* are isolated on the left hand sides, Eqs (5.36) and (5.37) become

-0.5M*cot6 < C; -A'sin9+0.5cos0 (5.38)

0.5M*cotG < C' - A'sin6 + 0.5 cos6 (5.39)

which can be combined into a single inequality given by

MI < 2tanO(C' - A'sinG) + sin s (5.40)

From Eq (5.40) it is clear that the upper and lower bounds on M* are equal in

magnitude and opposite in direction for the crush limit constraint. This is primarily due

to the fact that M' = 0 for the nominal condition. In this case then, only a single number

need be calculated when defining the range of M* which are tolerable for a grasp.

For the example grasp, the maximum C, was given as 1.5 and the grasp configuration

(as determined by a nominal load analysis) had 0 = 1350 and A' = I. When these values

are inserted into Eq (5.40), the results show that the grasp can tolerate M* given by

IM-1 < 0.879

without violating the crush limit constraint. The corresponding limits on the external load

moment, M , are

M' E (-0.439 < M' < 0.439)

5.3.3 TORQUE LIMIT CONSTRAINT. The torques required in the finger joints

will vary as the external moment on the object varies. Since the finger joint actuators

have physical limitations as to their maximum outputs, one must examine the torque

requirements for varying M" in light of the torque limit constraint.

The global hand Jacobian matrix that was derived in Section 3.5 for a gripper with

two, three-link fingers can be reduced to apply for a gripper with two, two-link fingers by

assigning zero to lengths of the most distal links and eliminating the resulting zero rows

and columns to yield a 2x2 matrix. If this is done to the expression given in Eq (3.131)
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for the transpose of the global hand Jacobian matrix, the result is

Jill 1121 0 0

'IT i112 jl22 0 0 (5.41)
0 0 j211 J221

0 0 j222 i222 "

where

jill = -(II sin) 1 +Ix2sin0I) 2)sin(
0 +4)-

(II cos 41 + 112 cos 4012)cos (9 + ) (5.42)

il.12 -I 12 sin 0 12 sin (0 + ) -112 cosS 0 12 cos (8 + P) (5.43)

j121 - (111 sin 01 +112 sin0 12) cos (9 + 0) +

(111 COS 0 1 + 112 COS 0 12) sin (8 + 1/) (5.44)

h122 - 12 sinOI22 cos( + 0) + 1 2 cos 12 sin(8+ ') (5.45)

j211 (121Sin 04 + 122 sin 45) sin (9 - 0) -

(121 cos 04 + 122 COS4S) cos ( - 10) (5.46) "

J22 122 Sin 4s sin(9- 0 ) - lflCOS46 cos(9- ) (5.47)

i221 - (121 sin 4)4 + 122 sin 04s) cos (0 - 0) -

(121 cos 4 + 122 cos 04 s) sin (8 - ') (5.48)

222 = -122 sin 04s cos (0 - 0,) - 122 cos 4s sin (0 - 'k) (5.49)

To compute the joint torque vector, substitute the contact force vector given by

Eq (5.30) and the transpose of the global hand Jacobian given by Eq (5.41) into

,= jT (5.50)

In order to compute JT one must use the same inverse kinematic solution as was given

in Section 3.7 to produce the finger joint angles. In keeping with the previous analysis, a

vector of normalized joint torques is defined by

(5.51)
aF..t
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In light of Eq (5.51), Eq (5.50) can be modified to give

f= 1y (5.52)
a

where ' is defined as (1/T()55.

Since the contact force vector given by Eq (5.30) is an explicit function of M*, one can

easily calculate the vector of contact forces for a given M" and substitute it into Eq (5.52) to

get the vector of joint torques for varying values of M*. One could symbolically derive the

explicit expressions for the joint torques as functions of M" using a symbolic mathematical

manipulation programming tool such as MACSYMA [VAX85], however, such a derivation

was beyond the schedule of this thesis.

The torque limit constraint can be written as the following vector relationship which

is essentially a set of four inequality constraints:

P<7 (5.53)

If one had symbolic expressions for the joint torques as functions of M*, one could symbol-

ically manipulate them to isolate M*, thereby yielding explicit expressions for the range

of tolerable M" for each finger joint. The solution space for the grasp limits of tolerable

M" would be the intersection of the four solution spaces given in Eq (5.53).

Instead of solving the equations symbolically, one could numerically calculate the joint

torque vector for the grasp and load configuration of interest and plot the joint torques as

functions of M ° . One could then identify the limits of M* which do not violate the torque

limit constraint from the plots. Those limits would be given by the range of M* for which

all of the joint torques simultaneously remain below their corresponding maximum joint

torques, 7"1..

The data for the example grasp under study have been plotted in Figures 5.15 through

5.18 for M* ranging from -2 to 2. The figures indicate that the finger joint torques

vary linearly with M*. If the symbolic solution was computed as outlined above, the

results would be expressions that clearly showed a linear relationship. This notion can be

reinforced by examining the linearity in Eqs (5.30) and (5.52). The contact force vector

can be thought of as the sum of a constant portion and a portion dependent on M*. The
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constant portion of the contact force vector will result in a constant torque offset for each

joint at M ° = 0. The variable part of the contact force will give joint torques which are

linear with M*, therefore, the total torque at each joint will vary linearly with M*.

The data plotted in Figure 5.15 for A' = I indicates that, if r,... = 1, joint 1 can

tolerate variations in M* within the bounds

M* E (-2 < * < 2+)

where, 2+ means some number greater than 2 that is not within our range of concern.

From the data in Figure 5.16 the bounds on the tolerable variations are

M ° E (-0.984 < M* < 0.440)

for joint 2. Figure 5.17 gives bounds for joint 4 as

M" E (-(-2) -_ M" < 2)

where, -(-2) means some number less than -2 that is not within our range of concern.

Finally, Figure 5.18 gives the bounds for joint 5 as

M" E (-0.440 < M ° < 0.984)

Therefore, the composite range of tolerable variation in M* for the grasp is

IM1 < 0.440

which corresponds to a range of M' given by

IM'I < 0.220

In this case, the bounds on M* are symmetric with respect to the nominal load condition

because the grasp angle, 0, is zero. If the grasp was asymmetric4 the bounds on M* based

on the torque limits would not be symmetric with respect to the nominal load condition.

If one now considers all of the constraints simultaneously for the example grasping

problem, we coi.!ude that the range of M" which we can tolerate without loosing equilib-

rium is

IM -i < 0.440

"An asymmetric grasp is characterised by 0 7 0 which is not to be confused with an asymmetric load
that is characterised by a 1800.
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which corresponds to a range on the value of M' defined by

IM'I < 0.220

The most restrictive constraint is the torque limit constraint in this case.

One may have noticed that the range of allowable M" was symmetric with respect

to the nominal M* for all of the constraints for this example grasp problem. By way of

explanation, one should recall that both the grasp and the load were symmetric for the

example. In general, when a i 1800 and/or v # 0 the composite bounds on the range of

tolerable M" will not be symmetric with respect to M" = 0.

5.4 CHAPTER SUMMARY

In this chapter analytic expressions which can be used to examine a grasp's ability to

tolerate variations in the characteristics of the external load wrench were presented. Three

types of variations were addressed: magnitude variation, direction variation, and moment

variation from the nominal wrench. A method of using the expressions to evaluate the

robustness of a grasp was illustrated by an example. One distinct limitation of the iflus--

trated method is that it only considered the three possible modes of variation individually.

The method did not look at the cumulative effect of simultaneous variations. Therefore,

although the method could be used to determine if the grasp could tolerate some Aa or

some AF.3 t, or some M', it cannot determine if the grasp can tolerate some Aa and some

AF.,mt, and some M'. Using such a method, the best that one might be able to do is

to generate a pessimistic estimate of whether the grasp would remain in equilibrium by

summing the effects of the three individual variations and examining the equilibrium.

To quantify the effects of varying the load direction on the equilibrium requirements

of a grasp, data plots similar to those for the nominal load analysis were constructed. In

this case, however, a was the independent parameter instead of 9. Consequently, one could

say that this method evaluates a candidate grasp described by candidate values for 9 and

A'. The candidate values are taken from the nominal load analysis.

In the course of examining the trends in the data plots for direction variations of the

external load, the following trends were noted:

5-31



* At external load angles given by a = (1800 - 09) or a = (3600 - 9) the friction angle

at fingertip 1 is single-valued for all A' except zero.

9 At external load angles given by a = 0 or a = (1800 + 0) the friction angle at

fingertip 2 is single-valued for all A' except zero.

o The contact normal force magnitude corresponding to a constant AV varies sinusoidally

with a.

* For a constant A' the magnitude of the contact normal force at fingertip 1 for some

a is equal to that of fingertip 2 for -a. This implies that the plot of C1,, versus a is

the mirror image of C2,, versus a when it is reflected about a = 0.

e The joint torques corresponding to a constant A' vary sinusoidally with a.

a For a symmetric grasp' the joint torque plots for joints 1 and 4 are closely related.

The sinusoidal joint torque plots for joints 1 and 4 both have the same peak-to-peak

amplitude variations and periods, but have equal and opposite constant offsets from

zero torque. A similar relationship holds true for joints 2 and 5.

To quantify the effects of varying the load magnitude on the equilibrium requirements

of a grasp, data plots were constructed for the friction limit constraint that were similar

to those for the nominal load analysis and the plots for the crush limit and torque limit

constraints were bypassed in favor of simple linear expressions. Since an understanding

of the influence of variations in F, was desired, F,.t was assigned as the independent

variable and A' was maintained as a parameter. In order to generalize the variation of

F. , a new variable called F* was defined as the ratio of F,,t to its nominal value, Fr.t.

The inequality constraint equations were derived as functions of the new free variable, F*.

The crush limit and torque limit inequality constraint equations turned out to be explicitly

linear functions of F* so the bounds on F* were determined symbolically instead of using

data plots.

While examining the data plots and equations for magnitude variations in the external

load, the following points were found to be true:

"A symmetric grasp is characterised by io = 00.
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" The friction angles at fingertips 1 and 2 remained equal and opposite while the ex-

ternal torce magnitude, F.3 t, varied.

" When A' = 0 or A' = oo, the friction angle is a constant for all F'.

" For non-zero, finite A' and 9 less than 900, increasing F" from zero to 2 increases the

friction angle required for grasp equilibrium.

" For non-zero, finite A' and e greater than 900, increasing F* from zero to 2 reduces

the friction angle required for grasp equilibrium.

" For F' between 0 and 2, the friction angles corresponding to minimum internal grasp

force (A' = 0) are

Olmi. = (1800 - 9) = -02min

while the friction angles corresponding to maximum internal grasp force (A' = oo)

are

i =tat (900 - 9) =

Thus, there is a 90 degree band of 3 for both fingertips which contains all possible A'.

" For F' = 0, all positive A' require the same friction angle as given in the previous

bullet for A' = oo. Therefore, prior to picking up an object resting on a support,

friction will allow one to preset A' to any value without disturbing the object, as long

as that common friction angle is within the friction limit constraint.

" The bounding values of F' for the crush limit constraint were found to be linear

functions of the grasp angle, 9, the selected internal grasp force magnitude, A', and

the maximum normalized normal contact force, C;.

" For 9 between 0 and 90 degrees, there is a minimum F* corresponding to the crush

limit constraint, while for 9 between 90 and 180 degrees, the bounding F' is a maxi-

mum. The bounding values are given in Eqs (5.16) and (5.17), respectively.

" Based on the torque limit constraint, the range of tolerable F" is given by the inter-

section of the solution spaces of five inequality equations given in Eqs (5.22) through

(5.26). In general, there is one more inequality equation than there are finger joints

because the additional constraint that F' must be positive is imposed.
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e The torque limit constraint inequalities are linear in F* and can be solved explicitly

for the bounding values of F*. There will be a single bounding value for each joint

which may be an upper bound or a lower bound.

* For a symmetric grasp, the upper bounding value of joint 1 will be the negative of

the lower bounding value of joint 4. Also, the upper bounding value for joint 2 will

be the negative of the lower bounding value of joint 5.

To quantify the effects of varying the load moment from its nominal value of zero,

data plots were constructed for the friction limit and torque limit constraints that were

similar to those constructed for the nominal load analysis. However, plots for the crush

limit constraint were bypassed because the crush limit was found to be an explicitly linear

function of M'. To gain an understanding of the influence of variations in M', M' was

assigned as the independent variable and Y' was maintained as a parameter. In order to

generalize the variation of M', a new variable called M* was defined as the ratio of M' to

the object radius, r. The constraint equations were derived as functions of the new free

variable, M*.

While evaluating the susceptibility of grasp equilibrium to variations in M*, the

following points were found to be true:

e For A' = 0, the friction angle at fingertip one has a discontinuity at M* = -sin#

while the friction angle at fingertip two has a discontinuity at M* = sin0. These

values of M* correspond to a zero contact force at the respective fingertips.

* For A' > 0, the friction angle plots are single-valued at the same values of M* which

cause discontinuities when A' = 0. This is because 4p = 0 and therefore, 0 = di,.

Since the direction of eh does not change with varying A', the friction angle does not

change either.

* The range of tolerable variations in M* can be expressed as a single inequality equa-

tion given by Eq (5.40). Since the nominal external load moment was taken as zero,

the crush limit constraint is symmetric with respect to M* = 0. Therefore, the grasp

can tolerate as much external moment in one direction as it can in the other.
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" The bounds on M* for the joint torque limit constraint could be expressed as a set of

linear inequality equations if one were to perform an extensive amount of algebra and

trigonometry. One could delegate that task to a symbolic mathematical manipulation

program such as MACSYMA [VAX85). Instead of deriving the explicit symbolic

expressions for the joint torques as linear functions of M*, one could numerically

generate data for plotting. The numerical approach was used for this thesis.

" The torque data were, in fact, found to be linear with joints I and 4 having equal

slopes and joints 2 and 5 having equal slopes for the example grasp.
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VI. RESULTS, CONCLUSIONS, AND RECOMMENDATIONS

6.1 RESULTS

In Chapter IV analytic expressions were given which model the equilibrium require-

ments for grasping cylindrical objects confined to planar motion. The expressions represent

the equilibrium requirements in terms of inequality constraints on the allowable frictional

forces, normal contact forces, and the finger joint torques.

The constraining equations for the frictional forces at fingertips 1 and 2 are given

by Eqs (4.8) and (4.9), respectively, which are equal and opposite in sign. In order to

maintain equilibrium between the hand and the object, the static coefficient of friction

must be sufficiently large to support the friction angles given by Eqs (4.8) and (4.9). In

general, the static coefficient of friction may be different for the two fingertip contacts.

By plotting Eqs (4.8) and (4.9) as functions of the grasp angle, 8, and parameterized by

the internal grasp force, A', one can examine trends in the required friction angles for all

possible grasp configurations of a nominally-loaded object. The friction angle was found

to be linearly related to the grasp angle for a given A'. A symbolic expression explicitly

revealing the linearity of the friction angle relationship was not derived because of the

transcendental nature of the expression. However, several sets of numerical data were

linearly fit with perfect correlations.

The constraining equation for the crush limit is given by Eq (4.14) for a nominally-

loaded object. Since the normal contact force components are equal when there is a nominal

external load, only one constraint equation is required. One can examine trends in the

required normal contact force component for all possible grasp configurations by plotting

Eq (4.14) as a function of 0 and parameterized by ,V. In order to maintain equilibrium

without crushing the object, the normalized contact normal force given by Eq (4.14) must

be less than the upper bound on the allowable normal force given by Eq (4.15). In general,

the upper bound may be different at each of the two fingertip locations. In fact, the

upper bound may be given as a function of 9. Some applications may not require one

to consider the object crush limit constraint. For example, if the structure of the object

corresponds to normal contact forces which are far beyond the capability of the gripper,
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then there is no point in monitoring the crush limit constraint because the finger joint

torque limit constraint will always be more dominant. Since one cannot universally exclude

the possibility of crushing the object, Eq (4.15) was derived so that it could be used to

check the equilibrium normal contact force component magnitudes against an object crush

limit value.

The constraining equations for the finger joint torque limits are given by the sum of

Eqs (4.24) and (4.25). In order to solve these torque limit equations, one must first use

Eqs (4.16) through (4.21) to solve for the finger joint angles. This is due to the configuration

dependence of the global hand Jacobian matrix which is part of the relationship between

the contact force vector and the vector of finger joint torques. In addition to the grasp

variables in Table 4.1 that must be specified to solve for the finger joint torques, one must

also specify 'knuckle-in' or 'knuckle-out' because there are two solutions to the inverse

kinematic equations. The 'knuckle-out' configuration is favored because it reduces the

possibility of finger/object interferences although it does not exclude the possibility.

One can examine trends in the finger joint torque requirements by plotting the sum

of Eqs (4.24) and (4.25) as a function of 0 and parameterized by A'. Among other things,

such plots reveal the finger joint actuator demands caused by increasing the internal grasp

force.

Chapter V examines the consequences of varying the characteristics of the external

load from the conditions of a nominal load. The analysis presumes that the object has

been grasped and 0 is known. In addition, the value of A' is to remain fixed as the grasp

attempts to maintain equilibrium with the object under the influence of the load variations.

Constraint equations on allowable friction forces, normal contact forces, and finger joint

torques are derived and examined for each variation in the external load. Variations in the

magnitude, direction, and moment of the external load are considered. The variations are

only considered individually; not cumulatively.

The first external load variation considered was a change in the nominal load direction

which is characterized by a taking on values other than 180 degrees. A range of allowable

a was found by simultaneous consideration of the three different grasp constraints. Once
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again, however, one may not find it necessary to include all three of the constraints under

special circumstances. The equilibrium requirements were found to vary in a sinsusoidal

fashion as a was varied from 0° to 3600.

A situation where the external load may vary in direction is when an object in a

uniform gravity field is picked up and then accelerated horizontally. The horizontal ac-

celeration introduces an inertial force component which, when added to the gravity force,

results in the external load varying in direction. The direction of the external load as

defined for the analysis would also vary if the orientation of the hand was changed while

the external load was constant with respect to an inertial coordinate frame. In either case,

the external load would no longer act through the center of the palm of the gripper and

the analytic expressions given contain the information necessary to determine the range

of variation in external load direction which could be tolerated without the grasp losing

equilibrium.

The second external load variation that is considered is a change in the magnitude.

The nominal magnitude of the external load is designated by E"". Using F + to represent

the ratio of the varied magnitude to the nominal magnitude, equations were derived which

express the equilibrium constraint requirements as functions of F*. In keeping with the

nominal analysis, the equations were parameterized by V. A range of allowable F" was

found by simultaneous consideration of the three different grasp constraints. The crush

limit and finger joint torque limit constraints were found to be explicitly linear with respect

to F*. This linearity allows fast and accurate symbolic solution for the maximum and

minimum values of F* which can be tolerated by a grasp. The friction angle constraint

expression was not found to be linear with respect to F* so the equation must be plotted

to analyze trends in the data.

A physical situation which corresponds to a variation in the external load magnitude

is when an object is picked up off of a spring platform. Before the gripper contacts the

object, the magnitude of F" can be taken as zero. As the gripper contacts the object and

then lifts it using position control, FP can be made to slowly (quasistatically) increase. If

the nominal value of F, t was taken as the weight of the object, then, when the object was

suspended above the spring platform, F would be equal to one. Therefore, by examining
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the equilibrium requirements of a given grasp configuration for F" between zero and one

using the analytic expressions derived in Section 5.2, one can determine if it is possible to

lift the given object from the spring platform without losing equilibrium.

The third external load variation which was considered in Chapter V was a change

in the moment of the external load. By considering moment variations, one can analyze

cylindrical objects whose centers of mass are not coincident with their geometric centers.

In this case the moment variation is due to the moment arm of the gravity force about

the object center. An additional benefit of considering moment variations is that one adds

to the repertoire of the analysis a whole class of problems which includes determining the

equilibrium requirements for turning a bolt in a threaded hole. In this case the moment

variation is due to the frictional torque caused by the interface of the bolt and the threaded

hole. In order to generalize the analysis as much as possible, a dimensionless variable,

M*, was introduced and defined in Eq (5.27). The objective then was to determine the

range of M* which could be tolerated without violating any of the three grasp constraints.

Eqs (5.31) and (5.32) are the expressions for I and P2, respectively, as functions of M* and

represent the friction limit constraint. Because these equations are not explicitly linear in

M*, they were plotted to reveal any possible trends and identify the range of tolerable M*.

On the other hand, the object crush limit constraint equations did turn out to be explicitly

linear in M*, thereby enabling explicit symbolic solution for the bounds on tolerable M*.

The single inequality equation which gives the bounds on M* for the object crush limit

constraint is given in Eq (5.40). The upper and lower bounding M* based on the crush

limit constraint were found to be symmetric with respect to M* = 0. This means that

the grasp can maintain equilibrium for the same range of external load moment in both

directions about the z-axis.

Symbolic analytic expressions for the finger joint torques as explicit functions of

M" were not derived because the complexity of the expressions became unmanageable

by hand. The algebra is not particularly difficult, but it is tedious and prone to error.

This is a perfect application for a symbolic mathematical solver as was mentioned in

Chapter V. In order to expedite results, the choice was made to solve for the finger joint

torques numerically. In this case, numerically means evaluating intermediate values and
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then substituting them into subsequent equations rather than carrying large symbolic

substitutions. The numerical application here in no way implies an approximation or

iteration. When the expressions were evaluated and plotted, they revealed that the finger

joint torques are all linear functions of M*. This realization enables one to compute just

two points and then interpolate between them rather than continue to plod through a long

numerical algorithm. For application to a real-time algorithm this is important.

6.2 CONCLUSIONS

Analytic expressions which model the equilibrium requirements of grasping cylindrical

objects in planar motion with two, two-link robotic fingers have been developed. These

expressions include consideration of constraints on the allowable frictional forces, contact

normal forces, and finger joint torques. Expressions were derived for grasping an object

subjected to a nominal external load wrench and for modeling variations in the magnitude,

direction, and moment of the external load from the nominal external load configuration.

6.3 FUTURE WORK

There are many follow-on research areas which might prove fruitful. The most im-

portant next step is to generate an index which represents the quality of a grasp and use

that index to determine the 'optimal' grasp for a given cylinder/load configuration in a

real-time algorithm. If one could develop such an algorithm for the specific conditions un-

der which the derivations of this thesis were conducted, then it would be relatively simple

to generalize the method in a step-by-step fashion.

Possibly the first generalizing step would be to generalize the gripper. Initially one

should consider grippers having three links per finger rather than two. This would require

some refinements in the inverse kinematic solution to resolve the nonuniqueness of the

joint angle solution. It would also allow one to choose a configuration which might be best

suite,. to the grasp. In addition, one might want to consider methods for checking the

inverse kinematic solution to account for interferences between the object and the fingers

as they try to reach for a particular grasp angle.
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Another generalization of the gripper might be to add a third contact point between

the gripper and the object. The third contact could be an extra fingertip contact or contact

between the object and the gripper palm. In either case, one would like to know if there

are ranges of the grasp angle for which adding the third contact might degrade the grasp

equilibrium. There may also be ranges of the grasp angle for which adding the third contact

would enhance the grasp equilibrium. The regions of possible force closure grasps would

also be an area of interest if a third contact point was included.

Generalizing the object would constitute another major effort of future research. One

could consider elliptical object shapes before proceeding to examine further deviations in

object shape. A method of determining whether the object is too large for the gripper to

secure an equilibrium grasp would also be an important contribution.

After the hand and the object have been generalized to the extent possible, one

should investigate spatial motion rather than planar motion. The extension to spatial

motion should be relatively straight-forward because of the inherent power of the linear

algebra method of analyzing grasp equilibrium. This step could be taken prior to any or

all of the other proposed research steps.

Other issues which remain to be addressed include consideration of multiple contacts

between each finger and the object, consideration of various fingertip contact types, and

examination of the dynamics encountered when capturing the object.

Although the many topics just mentioned remain to be explored, the techniques

presented in this thesis constitute significant steps towards developing real-time algorithms

for grasping cylindrical objects. In the course of extending this thesis as outlined above,

one should be able to begin demonstrating simplified real-time algorithms which automate

the process of grasping. One day we will see versatile, dexterous robotic hands which are

as autonomous as our own. It is only a matter of time- tick.. .tick...tick.

-A
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Appendix A.

DETAILS OF FORMING TWISTS AND WRENCHES

This appendix presents a detailed geometric description of how to form a twist or

a wrench from a given velocity or force state, respectively. It is intended as a layman's

interpretation of the material presented by Hunt [Hun78: 47].

A.1 TWIST FORMATION

Any displacement of a body can be described as a screw displacement along a unique

screw axis. In the case when the displacement is infinitesimally small, there is an instan-

taneously defined unique screw axis called an infinitesimal twist about which the body is

rotating and along which the body is moving. For gross motion, this infinitesimal twist

changes from one instant to another as the body displacement is described by a succession

of infinitesimal displacements.

The twist axis in three-space motion is the equivalent of an instantaneous center in

planar motion. From planar motion kinematics, we know that if the extent of the body

of interest includes the instant center, the point on the body which coincides with the

instant center has no translation at that instant in time - it only rotates. In effect, it is

the temporary hinge point for the body to rotate about. Similarly, if there is a point on a

body in three space that lies on the twist axis, then its motion in the plane perpendicular

to the axis is purely rotational at that instant in time. Note, however, that it can translate

along the twist axis.

To form an infinitesimal twist, start with a rigid body undergoing an infinitesimal

displacement. If we choose an arbitrary point A as the origin of our coordinate system,

then the infinitesimal displacement can be expressed as an angular displacement, U0, about

some axis which passes through point A and a linear displacement, 6, of a point on the

body at the origin. In general, the vectors 6i and 6 will not be parallel. However, 6i can

be resolved into two components; 6i-L perpendicular to 6W and 6Y? parallel as shown in

Figure A.1. Now, 61 can be shifted by some perpendicular directed distance 9" to a line I

which is both parallel to 61 and in the plane perpendicular to M- as shown in Figure A.2.
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Figure A.1. Resolving 6i into components perpendicular and parallel to 6W

The shifted angular displacement vector is now called 6(0 and the vector F is chosen so

that the displacement 0 x f = -6F- and ,therefore, 61 is canceled. The vector 6A has

the same magnitude and direction as 69. When 6i is along the line 1, the resultant linear

displacement, 6?, is also parallel to 1.

Thus, we have attained a representation which is equivalent to the original displace-

ment and whose vectors, 616 and 6X are parallel.

This representation of the motion is termed an infinitesimal twist and it can be

denoted in terms of twist coordinates as

T = (t, t 2, t3 , t4 , 4, t) (A.1)

where the first three components (t1 , t 2 , t 3 ) constitute the angular displacement, 6l, of the

body while the last three components (t4 , tS, t6) constitute the linear displacement, IV, of

a point on the body at the origin of the coordinate system.

A.2 WRENCH FORMATION

Consider a single rigid body in any arbitrary external force and moment state as

shown in Figure A.3. Let the forces on the body be called Fi where i = 1,2,.. .,n and

the moments be called Mj where j = 1,2, ... , m. Choose an arbitrary point, A, on the

body and shift all of the externally applied forces to act through that point. According
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Figure A.2. Shifting 6W so as to cancel 6x-
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Figure A.4. Additional moments are required to compensate for shifting
forces to act through point A

to elementary statics, in order to preserve the original force and moment state when the

forces are shifted to act through point A, additional moments must be applied to the body

to compensate for new moment arms of the new forces FAi as shown in Figure A.4. Call

the vector sum of these additional moments CA, and let FA be the vector sum of all FAi.

If the induced moment CA and all of the externally applied moments Mi are summed,

the result is a net moment vector, MA, through point A as shown in Figure A.5. In

general, FA and MA are not parallel. However, MA can be resolved into two components;

M parallel to FA, and M, perpendicular as shown in Figure A.6. Now, FA is shifted by

some perpendicular distance r to a line w which is both parallel to FA and in the plane

perpendicular to M, as shown in Figure A.7. The distance r is chosen so that the couple

FA x r = -M, . This shifted force vector is now called F and has the same magnitude

and direction as FA. When F is along the line w, the resultant couple M is parallel to w

also.

Thus, we have attained a resultant force and moment representation which is equiva-

lent to the original force and moment state and whose vectors, F and M are parallel. We

A-4



AF

FigreA.5 Iducd ometandetraIoetaesmmdt entmmnM

A

Figure A.6. Resolving MA into components parallel and perpendicular to FA
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Figure A.7. Shifting FA so as to create a moment which cancels M,

call this representation a wrench and denote it as

W = (F, M) (A.2) -

where F is the net force exerted on the body and M is the net moment about the origin

of the reference frame. The line w is known as the wrench axs.

If I now specify that F has components (wI, w2, w3) and that M has components

(w 4 , ws, we), I can identify the wrench coordinates as

W = (wI P , wsW4, ws, we) (A.3)

Regardless of what point A one chooses to use when deriving the wrench (on or off of

the physical body), the same wrench axis, w, will result. Thus, there is a unique wrench

representation for any particular external force and moment state.
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Appendix B.

GEOMETRIC DERIVATION OF

CONTACT FRICTION ANGLE EQUATIONS

The derivations presented in this chapter are for a two-fingered grasp on a cylindrical

object. The object is assumed to be made of a homogenous material so that its center-of-

gravity (CG) is located at its center. The fingers are assumed to be rigid members and

contact the object only at their fingertips. The contacts between the fingertips and the

object are taken as point contacts with friction. Since planar motion is also assumed, each

contact can only apply forces normal and tangential to the surface of the object [MS85:

19].

In general, the object is subjected to a load external to that imposed by the grasping

hand. This external load consists of external forces on the object due to contact with

something other than the gripper, Ppoied, and body forces. The body forces are due to

gravity and/or centripetal acceleration acting on the object mass, m. The sum of all of

these external forces is denoted by P.t which is assumed to act through the center of the

object:

M( )+P="' (B.1)

Since the resultant external force, ..t, acts through the object center, it produces no

external moment on the object. For this analysis no externally applied moment is allowed.

Thus, the external load is a wrench with zero-pitch and an intensity equal to Ft. In gen-

eral, P..t may act in any direction through the CG of the object creating an asymmetric

load configuration. To begin the analysis, however, P..t will be assumed to act perpen-

dicular to the line connecting the contact points so that a symmetric load configuration

results.

The two-fingered grasp is overconstrained [KR86b: 1362] because there are four con-

tact force components (C1 ., Cit, C3., C2t) and only three degrees of freedom in planar

motion (translation along x- and y-axes and rotation about z-axis). Overconstraint implies

that there are more unknown contact force components than there are equations of motion

and, therefore, solution is indeterminate. For an overconstrained grasp, the contact force
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vectors can be separated into two orthogonal components; the particular solution, (2,, and

the homogeneous solution, (2k. They are related to the total solution by

d = d + eh(B.2)

Besides the four unknown contact force components, there are three additional un-

knowns that will appear in the equations; 0, a, and pzt. This will make a total of seven

unknowns with only three static equilibrium equations available. To alleviate this problem,

instead of solving for the four individual contact force components, two new variables will

be defined as the ratios of the normal and tangential contact force components at each

contact point. The two new variables, #1 and 12, are related to the active friction angle at

each contact point.

Defining 01 and 12 reduces the number of unknowns from seven to five, but still

requires three parameters to be specified before the set of three simultaneous equations

can be solved. For this thesis & and a are two of the three parameters which will be

arbitrarily specified because they define the geometry of the grasp and can be measured.

The third arbitrary variable must then be related to Fe,.t without introducing additional

unknowns. With this as the only constraint, many different variables could be chosen as the

third arbitrary parameter. For this thesis, however, only one possibility was investigated

which was a dimensionless parameter involving the internal grasp force and F,t. Both

the symmetric and the asymmetric load configurations will be investigated using this set

of variables.

B.1 SYMMETRIC LOAD CONFIGURATION

The internal grasp force is defined as the indeterminate contact force vector which

will result in no net force on the object [KR86b: 13631. As shown in Eq (B.2), the internal

grasp force vector is represented by d, and has a magnitude of A.

Figure B.I shows the configuration of the contact forces at fingertip I for a symmetric

load configuration. The internal grasp force, C1, for a two-fingered grasp will always act

along the line connecting the contact points of the two fingers which, for the coordinate

system defined here, is equivalent to acting along the x-axis. In addition, for a symmetric

B-2



Ch

ClpC

y

C1,1 Ult

fi

Figure B.I. Vector diagram of the contact force components and coordinate
system for the contact of fingertip 1 with the object under a
symmetric load.

load configuration, Op will always be along the y-axis and the magnitude C1p will be equal

to C2p. Thus, C, and Ch are orthogonal.

The component of C1 which is internal to the grasp will be equal in magnitude to the

component of d 2 which is internal. Therefore, there is no need to separately consider CA1

and C2h.

The origin of the coordinate system is taken to be at the center of the cylinder and

the positive y-axis is directed upward through the centroid of the two contact points. As

a consequence of this coordinate system, Ch is along the x-axis.

From Figure B.A one can see that

lC1  = xi+ Cj (B.3)

el = C1,fi1,, + C1tfilt (B.4)

where i is the unit vector along the x-axis, 3 is the unit vector along the y-axis, fii,, is the

inward unit normal vector at contact 1, filt is the unit tangential vector at contact 1 which

is oriented positive as shown in Figure B.1. Since this derivation is for the symmetric case,

the results for the friction angle at contact one, 0i1, will be equal and opposite in sign to
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that at contact two, 02. Consequently, the derivation which follows for #1 also applies for

the derivation of ,82trom Figure B.1, the following unit vector relations can be derived:

i = sin 0 61,, + cos 0 filt (B.5)

= -cos6usn +sin0u 1 , (B.6)

Substituting Eqs (B.5) and (B.6) into Eq (B.3) results in

dix = A (sin 0 uil, + cos 8 filt) + C~p (- cos 6 fil,, + sin 0 filt) (B. 7)

Now rearrange Eq (B.7) to get

C = (A sin 0 - CIp cos 0) il, + (A cos 0 + Ci, sin 0) A It (B.8)

By definition, the friction angle, )31, is equal to the arctangent of the magnitude of

the tangential contact force component divided by the magnitude of the normal contact

force component:
31 -arctan (B.9)

tbl
The magnitude of the tangential contact force component can be found from the dot

product of the contact force, el, with the unit tangential vector, filt:

I i = 01  ,, = AcosO + C, sinO (B.1o)

Similarly, the magnitude of the normal contact force component can be found from

the dot product of the contact force, ci, with the unit normal vector, u1,:

lel.1 = el o ti, 1 = A sin - CIp cosG (B.,1)

Substituting Eqs (B.10) and (B.11) into Eq (B.9) results in

a tct A cos# + C1, sinOe

rctan kA sin0 - C1. cos 0 (B.12)

Equation (B.12) represents the solution for 81 in terms of the homogeneous and par-

ticular solutions for the contact forces. Since the magnitude of the homogeneous solution,
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A, is arbitrary it will be left in the equation as a parameter. However, the particular solu-

tion, CIp, is a determinate quantity which can be found using the linear algebra method

presented by Kerr and Roth (see Section 3.4). When that method is used the result is

F,=e (B.13)CIP = 02P = . (13
2

Using Eq (B.13) to substitute for C1p in Eq (B.12) yields

13 = arctan \ -(F / (B.14)

which can be rearranged to give

arctan (2A/F.t)cos: + sin ) (B.15),~~ =rta (2A / Ft) sin 0 - cos0

For convenience, the internal grasp force is divided by Fe.t to form a dimensionless

parameter, A', defined as

A' A A (B.16)

When Eq (B.16) is substituted into Eq (B.15) it results in the following:

/ 2A' cos 0 + sin e ( 1

i = actan \ 'sir- co (B.17)

Equation (BAT) is the desired result which gives 61 as a function of 0 and parameterized

by the internal grasp force magnitude, A'.

Recalling that )32 is equal and opposite to 1 we find that the friction angle at contact

point 2 is given by

S= t 2A'sn - cose

The expressions in Eqs (B.17) and (B.18) are identical with the expressions for '0

and /32 in Eqs (4.8) and (4.9) that were derived in Chapter IV.

B.2 ASYMMETRIC LOAD CONFIGURATION

For a two-fingered grasp on an asymmetrically loaded circular cylinder the internal

grasp force will be along the line connecting the two contact points. Using the same

coordinate system defined in Figure 3.1, this means that C will act parallel to the x-axis
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Figure B.2. Force configuration and coordinate system for the particular
solution contact forces of a grasp on an asymmetrically loaded
object

as it did for the symmetric load configuration. However, the particular solution component

of the total contact force vector, d., will not be constrained to act along the y-axis as it was

for the symmetric load configuration. In fact, its direction is dependent on the direction

of F.,t as one would expect.

The approach used for this derivation is to solve for the particular and homogeneous

solutions independently and then substitute them into Eq (B.2) to get the total contact

force solutions. The total solutions will then be resolved in the normal and tangential

directions and, finally, the friction angles will be computed.

B.2.1 FINDING THE PARTICULAR SOLUTION. To determine the particular

solution, we begin by redrawing the free body diagram with only the particular solution

components shown. The nomenclature used to symbolize this is Cp to represent the par-

ticular solution component of the ith contact force in the x-direction. Similarly, C,,,, Cp,

and Cit, represent the particular solution component of the ith contact force in the y-,

normal-, and tangential-directions, respectively. Figure B.2 illustrates the nomenclature

of the particular solution forces equilibrating 4.,t. From Figure B.2, the three equations
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for static equilibrium arei0
= Clnpsin0 + CIt, cosO - CU, sinO + C2 tcosO - F,.t sina (B.19)

-Cl p cos + Ctpsin9 - C2,,pCOS- c2 p sin 8 + Fe.tcosa (B.20)

o = =-rC,, - rC2tp (B.21)

One additional equation is required to solve for the particular solution component

of e. The additional equation must express the orthogonality of the particular and ho-

mogeneous solutions while simultaneously isolating the particular solution, p, from the

homogeneous solution. To do this we note that the internal grasp force must be zero

and apply Kumar and Waldron's zero force interaction principle [KW87: 253] which is

mathematically expressed as:

(e,,- e,,)=0 (B.22)

where P is the position vector Erom the origin of the coordinate system to the ith contact

point. In words, Eq (B.22) says that the vector difference between the two contact forces,

ei, and 2 , should have no component along the line connecting the two contact points.

This is in keeping with the definition of zero internal grasp force thereby leaving only the

particular solution.

For the coordinate system in Figure B.2, Eq (B.22) reduces to the constraint that

the component of elp in the x-direction must be equal to the component of e2p in the

x-direction:

Ciwp - 2 ,-p- 0 (B.23)

Figure B.3 shows the vector relationships among the particular solution components

for the contact of finger 1 while Figure B.4 shows the relationships for the contact of finger

2 with the object. From Figures B.3 and B.4, the following magnitude relationships can
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C1,2

filep

Figure B.3. Vector diagram of the particular solution contact force components
and coordinate system for the contact of fingertip 1 with an
asymmetrically loaded object

y C2n

t x _ ,

C2PX

Figure B.4. Vector diagram of the particular solution contact force components
and coordinate system for the contact of fingertip 2 with an
asymmetrically loaded object.
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be derived:

CIp. = C,,,sin8 + C1ecos8 (B.24)

C2,p = -C 2,,,sinO + C2tpcos9 (B.25)

When Eqs (B.24) and (B.25) are substituted into Eq (B.23), the result is

C1,,p sin 0 + C1t cos 0 + C2,p sin - C2tp cos 0 = 0 (B.26)

The sum of the moments in Eq (B.21) implies that

Cltp= -C 2tp (B.27)

which can be substituted into Eq (B.26) to get

(Ci,,p + CGP) sin 0 + 2CitP cos 0 = 0 (B.28)

When Eq (B.27) is substituted into Eqs (B.19) and (B.20), we get

(01,,p - C2,,p) sin 0 = Pe, sin a (B.29)

and

- (C1,,p + C2,,,) cos 0 + 2CItsinO = F.t coo a (B.30)

If Eqs (B.28), (B.29), and (B.30) are put into the matrix form of Ax=b , we get

sin6 sin 0 2coss 1 f J, 0

sin 0 - sinG 0 C2np = F..tsin a (B.31)

-cos0 - cosO 2sin0 CUP -F.t cos a

Equation (B.31) can be solved by using one of several methods including Cramer's method

[Kre83: 319]. Using Cramer's method requires one to find the determinant of the coefficient

matrix, A. The determinant of the coefficient matrix in Eq (B.31) is found to be -4 sinO.

Applying Cramer's method to solve for Clp, then yields

C,, -.. , Cos 0 Cos a +sina (B.32)2 sinG
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Similarly, the solution for C2,,p givesFet( ) -m
F.t sin aC2-e =  2 (Cos 0 Cosa - sin--33

while solving for C-, results in

Cup = -.. cos a sin 0 (B.34)

Substituting Eq (B.34) into Eq (B.27) we find that

C2tp E'-j Cos a sin 6 (B.35)

So the particular solutions for the contact forces of fingers 1 and 2 can be written as

elp E T Cos Cco sia - il,, - (cos a sin 0) uit (B.36)

and
(Co - Cs- - sina/fi2" + (cos a sin 0) €(.7
2 sina

Equations (B.36) and (B.37) represent the portions of the contact forces at the fin-

gertips of fingers 1 and 2, respectively, which maintain static equilibrium with P..t under

the constraint of the zero force interaction principle.

B.2.2 FINDING THE HOMOGENEOUS SOLUTION. To determine the homoge-

neous solution, we first note that a positive internal grasp force will be a compressive force

along the line connecting contact point 1 with contact point 2. In addition, since the

homogeneous solution must not impart any net force on the object, we note that the mag-

nitude of the homogeneous component of di must be equal to that of z. This common

magnitude will be represented by A. Figure B.5 illustrates the nomenclature used for the

homogeneous solution in the form of a vector diagram of the homogeneous components of

the contact forces for fingertips 1 and 2. Note that the tangential contact force at fingertip

2, C2ht, is shown in the negative direction. From Figure B.5 we can say

Cl, = AsinO (B.38)

Cith = AcosO (B.39)

C 2, = AsinO (B.40)

C2th = -AcosO (B.41)

B-10



! a

x

Figure B.5. Vector diagram of the homogeneous solution contact force
components for the grasp of an asymmetrically loaded object

So the homogeneous solutions for the contact forces of fingers 1 and 2 can be written as

&-A sin 0 fi,, + A cos 0 fit (B.42)

and

esh =Asin 0 f- - Acos i e (B.43)

Equations (B.36) and (B.42) can be substituted into Eq (B.2) to yield the total

solution for the contact force between fingertip 1 and the object:

el = e, + h

F (osaCosa + sin a  + 2A s i - )
2 -sin + F.t

+- f -Cos a sin+2-A cosa) 0 (B.44)
+-2 (- co ,sn#+F--'.t ,,

Similarly, Eqs (B.37) and (B.43) can be substituted into Eq (B.2) to yield the total solution

for the contact force between fingertip 2 and the object:

e 2  = 6 + chFeg sin a 2A

F.t cos e osa - s-- + sin U2n
- 2 sine F.,
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2A Cos 0 (B.45)
+2 -cossin+ 2 /

When the normal and tangential components of 1 are substituted into the definition

of 61 given by Eq (B.9) the resulting expression for I is

= arctan 2A cos 0 - Ft co * sas (B.46)
I Fegt cos 0 cos a + F,.t + 2A sin 0 B

If the dimensionless parameter, V, defined in Eq (B.16) is substituted, Eq (B.46) can

be rewritten as

=arctan (B.47),Sz ~~ Co rt a Cos oa + + 2A'sin 0 (B47

With a couple of trigonometric substitutions and some algebraic rearrangement,

Eq (B.47) becomes

=arctan 2A' sin 20 - cos a (1 - cos 20) (B.48)
[2A' (1 - cos 20) + cos a sin 20 + 2 sin a

Similarly, 02 can be found to be given by

32 = arctan 2A' sin 20 - cos a (I - cos 20) 1(B49)=2A' (1 - cos 20) + cos asin2e - 2-sin a

When a = 180 degrees is substituted into Eqs (B.48) and (B.49), they reduce to

Eqs (B.17) and (B.18), respectively.
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