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I. INTRODUCTION

Over the past five years, the patch clamp technique (1) has enabled the study of
ion channels in a variety of cells of the immune system. The advantages of patch
recording include the ability to record from very small cells, resolution to the level of
single ion channels, the ability to control the readily diffusible constituents of cytoplasm,
and the ability to study isolated membrane patches in either outside-out or inside-out
configurations. We have recently reviewed the types of channels found in cells of the
immune system emphasizing the parallels between nervous and immune system channel
plasticity during differentiation and activation (2). Several types of ion channels
previously characterized in excitable cells such as nerve and muscle are also expressed by
cells of the immune system. Tetrodotoxin-sensitive, voltage-gated Na+ channels are
infrequently found in lymphocytes (3), but are abundant enough in certain leukemia cell
lines (K562, 4) and in mouse natural killer cells to iroduce action potentials (Cahalan and
Sutro, unpublished observationi). Voltage-gated Cal+ channels with properties similar to
inactivating, transient-type Ca channels (T in the nomenclature of Dr. Richard Tsien)
have been recognized in secreting B-cell hybridomas (5,6), but have not been found in
normal lymphoid cells. Several distinct types of K + channels have been found in various
cells of the immune system. The most abundant type of channel in T lymphocytes is a
voltage-gated K+ channel (termed type n for normal), similar in its biophysical
characteristics to K + channels in skeletal muscle cells which mediate repolarization of the
action potential (3,7-11). Other types of K+ channels - including inward rectifier K+

channels that turn on when the membrane is made more negative, and Ca-activated K+
2+channels that turn on when intracellular [Ca J rises - have not been seen in lymphoid

cells, but are expressed in other cells of the hemopoictic lineage (12-14).

A few ty pes of channels have been discovered in lymphoid cells. Two variants of
voltage-gated K channels, n' and 1, have been recognized in murine cytotoxic/supprcssor
T cells (15-18). Two types of CI" channels, one of which may pliy a role in the regulation
of cell volume, have been characterized ijx lymphocytes (19). Ca + channels have proved
more elusive, although a nonselective, Ca -permeable channel has been identified at the
single channel level (20). This channel has an itxcreased opening probability in the
presence of IP3 (21), and could represent the Ca + entry pathway stimulated early in
mitogenesis, although this has not been tested. Toward the goal of fi rther characterizing
the ion selectivity, gating and pharmacology of mitogen-regulated Ca + channels, we have
recently identified a divalent-selective current in whole cell recordings.

Channel phenotype and function. Within the hematopoictic cell lineage, we have recorded
from red blood cells, platelets, neutrophils, T and B lymphocytes, basophilic cells,
hybridomas, and several types of leukemic cells. Each cell type appears to express its own
unique contingent of ion channels, suggesting that channels may contribute to the
functional capability of variot Tcell types. For example, Hagiwara's lab has shown that
expression of voltage-gated Ca channels p rallels the ability to secrete antibodies in B-
cell hybridoma cell lines, suggesting that Ca + channels play a role in antibody sccretio
(5). Reuter's group has identified a nonselective cation channel that is permeable to Ca +

ions and would appear to amplify the calcium Signal in neutrophils stimulated with
chemotactic pcptidc (22). The nonselective, Ca+-peImeable channels in T cells, studied
by Gardner and colleagues, become closed when [Ca ], rises, an effect which may limit
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the Ca 2 + rise. The role of ion channels is unclear regarding macrophage functions,
examined by Gallin's group, and degranulation by mast cells and basophils, studied by
Neher, Almers, Fernandez, and colleagues (23-25). Evidence from our lab, as well as from
Deutsch, McKinnon, Hagiwara and their colleagues, relating K+ channels in T
lymphocytes to mitogenesis and cytotoxicity is briefly summarized next.

K+ channels and T-cell activation. Voltage-gated K+ channels appear to be essential for
T-lymphocyte activation. Mitogenic lectins enhance the opening of K+ channels in a
rapid and irreversible effect, resulting in membrane hyperpolarization and increased K+
efflux (3,26,27). By comparing the dose-response relation of channel block 1-- a variety of
agents (summarized in Table 1) with that for immunological and biochemical assays of
events in T-cell activation, we have shown that K+ channels are required for mitogen-
stimulated thymidine uptake, protein synthesis, and IL-2 production, but not for
expression of the IL-2 receptor (22). Furthermore, functioning K + channels are required
for target cell lysis by activated cytotoxic T cells and natural killer cells (4). In order to
exclude nonspecific cytotoxic effects of K+-channel blockers, three types of control
experiments were performed (7,28). First, T lymphocytes incubated with blockers were3
viable by the criterion of trypan blue dye exclusion. Second, normal incorporation of H-
thymidine was observed after washing out the blockers, indi-Cating that inhibition was not
due to general toxicity. Third, the blockers did not inhibit "H-thymidine incorporation in
a cell line that lacks K+ channels, CCRF-HSB-2. K+-channel blockers inhibit mitogencsis
measured at 60 hours, only if they are added during the first 20-30 hours of mitogcn
stimulation (28,29). This implies that the K+ channel is required for some early event(s)
in T-cell activation.

II. PROGRESS REPORT

Overview of ion channels found. We have further characterized the biophysical and
pharmacological properties of voltage-gated K+ channels. By examining the influence of
divalent ions, we provided additional evidence that these channels are not activated by
Ca +, but that divalent ions can be trapped inside the K+ channel. We discovered that
different varieties of voltage-gated K+ channels are expressed by T-lymphocyte subsets.
We also discovered two types of CI" channels, one of which can be opened by osmotic
stimuli. In whole-cell recording, we have idenlified a divalent-selective conductance
which may provide the influx pathwy for Ca + ions following mitogen stimulation. We
hav f correlated the appearance of CaL+ channels with measurement of intracellular
[Ca +] using the indicator dye, fura-2. These results are summarized below. Two chaTn-l
types that we anl 9several other groups have not found in T cells are voltage-gated Ca +

channels and CaL+-activated K+ channels, such as the "maxi-K" channel.

K+ channel pharmacology. One striking aspect of K+ channels in T lymphocytes is that ,PECTX*

they can be blocked by a wide variety of agents, including those known to have effects
on calcium channels and calcium-activated channels in other types of cells. This wide
spectrum of pharmacological sensitivity is intriguing, perhaps suggestive of an underlying
structural relatedness among channels - possibly a channel superfamily. In addition, the
blocking compounds provide tools to assess the involvement of K+ channels in T-cell
functions. Two of the recently discovered blockers merit special note. Charybdotoxin, a L
component of Leiurus scorpion venom, blocks T lymphocyte K+ channels with an apparent El
Kd of 300 pM, a sensitivity which may facilitate biochemical characterization of
lymphocyte K + channels.

In collaboration with Dr. Patricia Schmidt, a member of the Ob-Gyn faculty at UCI, I
have tested several steroid hormones for effects on ion channels in T cells. Dr. Schmidt's
research interests include how the immune system functions during pregnancy. ---uIviL 'i



Progesterone blocks K+ channels reyersibly with a threshold effect aS-I ug/ml. Dr.
Schmidt has also found that the Ca Z+ signal and mitogen-stimulated H-thymidine uptake
are inhibited at similar doses of progesterone. Higher concentrations are found in the
placenta, raising the possibility that progesterone acts locally in the placenta to block
lymphocyte K+ channels and mediate a transient, localized immunosuppression. This
mechanism might serve to protect the fetus from attack by the mother's T cells, without
inhibiting immune responsiveness in the mother's circulation. We may have discovered an
endogenous K+ channel blocker.

Divalent ion trapping inside the K+ channel. The K+ channel's gating mechanism is
sensititive to calcium and potassium ions. Bregestovski has reported that raising
intracellular Ca '+ above the physiological range (>1 uM) accelerates the inactivation rate
and reduces the whole-cell conductance (30), reinforcing the conclusion that these
channels are not calcium-activated (3,7,8). In exploring effects of divalent ions, we found
that extracellular Cai + also enhances the rate of inactivation (8). Recently, we have done
experiments to determine whether this effect is due ts Ca + ions passing !hrough K+
channels, analogous to Ca-induced inactivation of Ca -+ channels (31). Raising the
intracellular buffering by including 55 mM BAPTA, a calcium chelator similar to EGTA
but with faster kinetics, had no effect on the rate of inactivation. Thus it appears that
the site for Ca2+ modulation of inactivation (Kd = 3.5 mM) is either on the outside
surface of the channel or possibly inside the chanrnl, but not inside accessible to internal
Ca + buffer. We found that externally applied Ba ions can become trapped inside the
K+ channel; block is relieved after washing only when pulses are given to open the
channel. Using Rb ions externally to slow K+ channel kinetics, we discovered that Ca 2 +

ions can also become trapped inside the K+ channel, but are apparently released to the
cytoplasm in between pulses. This means that Ca + ions are sparingly permeant in K+
channels.

Three types of K+ channels. Our recent studies on T cells and thymocytes from mice
support the idea that K + channels are required for cell proliferation. During the life of a
T cell, expression of type n voltage-gated K+ channels parallels cell proliferation. During
differentiation in the thymus, rapidly proliferating immature cells express abundant K +

channels. As cells mature and become committed to either helper or cytotoxic/suppressor
subsets, the number of K+ channels per cell decreases in the quiescent state. Upon
subsequent mitogen stimulation, T cells up-regulate the K+ channels prior to cell division.
The type of K+ channel in proliferating murine T cells and thymocytes (type n) is the
same as the K+ channel in human T cells. We have recently found that two additional
types of K+ channel - called type I for large conductance or lpr (signifying
lymphoproliferation), and type n' to sugest homology to the normal type channel - arc
expressed selectively in quiescent CD8 cells of the cytotoxic/suppressor lineage.
Mitogen-unresponsive T cells from diseased MRL-Ipr mice also express primarily type 1 K +

channels. Thus, the type of K+ channel expressed varies according to the functional class
and proliferative state of the T cell. This pattern of expression is suggestive of a
functional role, and can be used as a marker for differentiation and pathology.

Channel expression in thymocytes and mature splenic T cells. We have used a
combination of patch clamping and fluorescence microscopy to correlate ion channel
expression with the differentiation of T lymphocytes within the thymus (18).
Fluorescently labeled monoclonal antibodies were used to visualize two surface antigens,
CD4 and CD8, that are expressed in mature helper T cells, and suppressor/cytotoxic T
cells, respectively. These antigens participate in MHC recognition. (CD4 is also the AIDS
virus receptor.) The double negative and double positive cells proliferate rapidly in vivo,
and thus occurrence of large numbers of type n channels in these cells is consistent with a
role for type n channels in allowing normal T lymphocytes to enter the G1 phase of the



cell cycle. K+ channel expression was strikingly different in mature thymocytes (18).
Thymocytes with the helper T-cell phenotype (CD4+, CD8-) were found to have small
numbers of type n channels, whereas cells with the cytotoxic and suppressor phenotype
(CD&+, CD4-) expressed moderate to large numbers of type I or a' K+ channels. In mature
splenic T lymphocytes, the subset dependence of K+ channel expression is maintained,
although with fewer channels per cell expressed. Within 24 hours of adding Con A, the
number of K+ channels per mouse T cell increases by about an order of magnitude (16),
due entirely to a selective increase in the number of type n K+ channels.

Type 1 K+ channels provide a marker for abnormally proliferating T cells. MRL-lpr/lpr
mice, which carry the lpr (denoting lymphoproliferation) gene mutation, spontaneously
develop hyperplasia of phenotypically and functionally abnormal T cells by about the
fourth month of age, along with a disease resembling human systemic lupus erythematosus
(32,33). T cells from sick MRL-i mice do not respond to mitogens and antigens (34,35). If
functional K+ channels are required for T-lymphocyte activation, the deficient mitogcnic
responses in T cells from MRL-l mice may be associated with altered K+ channels. T cells
from diseased MRL-I mice (> 4 months of age), 90% of which are phenotypically and
f anctionally abnormal (36-40), have about 20-fold more K+ channels per cell (200-300
channels/cell), which are nearly all type 1 (17), in contrast to activated normal T cells
which express large numbers of type n channels. Although the primary defect in the
disease has not yet been identified, it has been proposed that it involves the aberrant
expansion of a subset of immature thymocytes. If true, it is tempting to speculate that
this subset is one which gives rise to CD8+ CD4- T cells during normal development. We
have recently extended this approach, by examining T cells from a different genetic
defect - gld for generalized lymphoproliferative disorder - a developmental disorder
which results in an expansion of a similar T cell subset. Again, lymph node T cells in the
diseased mice expressed large numbers of type I channels (41). Type I channels may
provide a useful surface marker to follow the disease process and the normal
differentiation of T cells.

Measurement of intracellular [Ca2+]. T-cell mitogens such as PHA or antibodies to the T-
cell receptor/CD3 complex induce a rapid increase in cytosolic calcium, which is believed
to be linked to subsequent biochemical events leading to proliferation. To determine the
[Ca2+]i signal in individual cells we have added a photomultiplier photon counting
detection system to one of the patch clamp setups for simultaneous measurement of patch
clamp currents and Fura-2 fluorescence ratios. Software has been written for
simultaneous data acquisition of membrane currents and photomultiplier signals. With
alternate illumination at 340 and 380 nm (currently done rapidly by movement of a filter
cube with appropriate interference filters) we collect data at both wavelengths and then
compute the ratio, to estimate [Ca2+li. To visualize the [Ca2+]i in a population of cells,
we have constructed a state-of-the-art imaging facility (diagrammed below) to enable us
to study intracellular ion concentrations in individual cells, and to use video-enhanced
differential interference contrast optics for extremely high magnification. Combining the
fura-2 ratio calcium signal with patch recording will provide a powerful approach to
study the mechanism of voltage- and mitogen-dependent calcium entry, as well as
modulation of the calcium signal by second messengers. Video imaging provides a
dramatic way of observing (Ca2+]i in individual cells. Summarized briefly below and in
Figures of the Appendix are some of our results on the mechanism of Ca2+ signalling.

Application of PHA to Jurkat cells induced repetitive oscillations in intracellular
Ca2+ that commenced after a delay of 100-300 sec (Fig. 1). Peak Ca2+ values reached
micromolar levels in individual cells, and the oscillations occurred with a period of 92 +
12 sec (n=62 cells). This period was not correlated with the response latency. These
characteristics of single-cell responses differ markedly from the ensemble average



response; the average response has a sigmoidal onset and reaches a peak level of only 350
nM, with no indication of oscillations. These differences may be explained by the
variable latencies of individual cells, their lack of sync rony, and the fact that only -80%
of the cells responded to PHA. Tke mitogen-evoked Cah+ oscillations in Jurkat cells
appear to depend critically on Ca + influx across the plasma membrane. Peducing
extracellular Ca + to nominally Ca +free levels rapidly suppressed the Ca + rise, with no
indication of continuing oscillations (Fig. 2) These results suggest that the oscillations
depend on Ca + influx, perhaps thrqugh Ca 2 + channels. Membrane cepolarization by 160
mM K+ 0 or applicatioa of 5 mM Ni ' + also effectively suppressed Ca + oscillations,
suggesting that the Ca channels are not activated by depolarization and are blocked by
Ni + .

Whole-cceI voltage-clamp experiments were conducted to search for Ca 2 +

channels that are activated by mitogens. We found, surprisingly, that a voltage-
independent Ca 2 + conductance becomes activated spontaneously during whole-cell
recording, with properties that strongly suggest that it underlies the lesponse to mitogen.
Shortly after "break-in" to the whole-cell recording mod5, inward Cal + current appears
(Fig. 3). With time, the influx of Ca 2 + saturates the Ca + buffer (EGTA,9 supplied to the
cell's irtterior from the pipette, and [Ca ]. begins to rise. After the [Ca ]i exceeds -200
nM, Ca -activated,+ channels begin to open, c'eating an outward current that sums
with the inward Ca + current (Fig. 3B). The Ca + conductance is not voltage-dependent,
and influx through the channels is inhibited b~y depolarization, similar to the results on
intact cells described above. Likewise, tje Ca + current is abolished reversibly by 5 mM
NiL+ suggesting that it underlies the Ca + oscillations evoked by PHA. In some cases,
Ca2+' current fluctuated, giving rise to [Ca 2 +]- and K+ currcn~ oscillations (Fig. 4). Each

2+ ] oscillation was preceded by a transient increase in CaL current (Fig. 4B).[C ]i 2+ " ""( g- )

Analysis of ramp currents during t e oscillations demonstrated that while Ca2 + current
fluctuations precede changes i Ca concentration, the Ca -activated K+ current
follows the time course of [Ca +]i very closely (Fig. 4D). One possible function for the
K + current may be to maintain a negative membrane potential necessary to maximize
Ca2+ influx through the Ca 2 + channels.

Maxi- and mini- Cl- channels and volume regulation. Two novel types of chloride
channels have been discovered in patch-clamp studies of lymphoid cells. Kolb and
Schwartz originally described an extremely large-conductance channel in macrophages
(42), which has since been observed in muscle and epithelial cells (43-45), and in B-cell
hybridoma cells (46). We call this channel the "maxi-Cl" channel in honor of its largest
conductance state - 400 pS. This channel appears to be dormant normally, but can be
induced to conduct in T cells if the membrane is held depolarized to +20 mV for about 2
minutes. The possible functions of this channel are unknown. Recently, we have
discovered a second type of CI" channel with very different biophysical and induction
characteristics - a "mini-Cl" channel so named for its very small single channel
conductance -2 pS. This channel also appears to be dormant normally, but can be
induced by osmotic gradients tending to swell the cell, provided that ATP is in the pipette
solution. CI" conductances can reach quite large values of several nS/cell, representing on
the order of a thousand mini-Cl" channels. We believe that activation of mini-Cl
channels provides the initial trigger for the regulatory volume decrease (RVD) upon
exposure to hypotonic saline, as discussed more fully in manuscript # 8 of the Appendix.
The ability of lymphocytes to regulate their volume in the face of osmotic gradients is
essential to their proper function in regions such as the kidney, and is also a property
shared by several other mammalian cells. RVD is associated with increased K+ and CF"
fluxes through separate pathways. From the pharmacology of the RVD response in
comparison to the K+ channel pharmacology outlined in Table 1, it appears that voltage-
gated K + channels are the pathway for K efflux (8,19,47). The "mini Cl" channel can be
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activated by hypotonic solution, perhaps via membrane stretch, and probably represents
the anion pathway in RVD, based upon a comparison of ion selectivity of RVD (47) and
the mini-Cl cha nel. This conductance must be considered when designing experiments
to search for Ca+ channels.
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APPENDIX

TABLE AND FIGURES

SUBSTANCES THAT BLOCK T-CELL K' CHANNELS

Classical K Channel Blockers
Tctraethylammoniumn (TEA)
4-aminopyridine (4AP)

"Ca-activated K + Channel Blockers"
Quinine
Ce ti cdil
Charybdotoxin

Ca 2 + Channel Blockers
Diltiazem
Nifedipinc, nimodipine, nitrendipine
Verapamnil3+ 2 M2
Polyvaient Cations: La3 + Zn2  Ni 2 +, Co 2+, M 2

Calmodulin Antagonists
Trifluoperazine
Ch lorpromazi nc

Steroid Hormones
Progesterone
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Figure 1. Block diagram of the imaging facilit '. The microscope is an inverted Zciss IM35
equipped for epifluorescence and differential-interference-contrast microscopy.
Epifluorescence illumination is produced by a computer controlled, dual-monochromator xenon
light source (PTI Delta-Scan 1). Two video cameras are attached to the microscope: a SIT
camera (Dage model 66) for low light level imaging, and a Newvicon camera (Hamamatsu
model C2400) for high light level, high-resolution imaging. Both cameras are mounted on
optical rails to allow variable magnification of the video image. Prior to image processing. the
output of either camera can be observed on a high-resolution black and white monitor and
recorded on a computer-controllable video tape recorder (Sony U-Matic VO-9600). The image
processor consists of eight VME-based processing modules housed in a remote chassis.
controlled by an 80286 personal computer (AST model 170) through an AT-to-VME bus
interface (Bit-3). The processing boards (Analog Devices RTI-HS series, designed by
Datacube), are arranged in a custom-designed pipeline optimized for real-time fura-2 imaging
(i.e., averaging, background correction, and division of video images with zero frame loss). An
extensive library of software primitives for controlling processing-board functions have been
developed and written in assembly language for optimal speed, by a systems programmer in
our laboratory. Processed images are observed on an RGB monitor. Pseudocolored RGB
images can be converted to NTSC-compatible video and stored on an optical memory disk
recorder (Panasonic TQ-2026F). Horizontal and vertical timing for the entire system is
provided by a master sync generator (Grass Valley model 9510).



low 120

0oo V .4.C

+ 2OW 0 c, 00 0 09

0 0

L) lo 0&

1 O^ O0 A

O U4)

- 0
Saw. 40

L. 0 w

ASANo 0 100 200 300
Latency (sec)

wo 0  Averoge

0 .00 a n
Time (sec)

Figure 2. Mitogens evoke [Ca2+} oscillations. Jurkat E6-1 human T leukemia cells are
loaded with 3 uM fura-2/AM for 30 in at 37C. Cells are illuminated alternately at 345

and 375 nm and their fluorescence emission at 510 nrm collected with a SIT video camera.
Sixteen frame averages at each wavelength are divided to yield a ratio image, R. [Ca 2+ ] is
then estimated using the equation [Ca2+]=Kd'S(R-Ruin)/(Rmax-R) where S. R in and

R at f'a 2+ f ' m i ,' n
Rm x wvere determined from cells treated with 10 mM EGTA or 10 mM Ca in the presence
of 5uM ionomycin. All experiments are conducted at 22-250 C. (LEFT) [Ca 2+]1 oscillations
evoked in 5 cells by application of PHA (10 ug/ml). The bottom record is the averaged
response of 87 cells in this experiment. (RIGHT) The latency of first Ca 2 + response plotted
against oscillation period. Each symbol represents a single cell, and each symbol type
represents a different experiment. The period is well-regulated and is not correlated with
latency. These results suggest tht the rate-limiting step for initiation of the response does not
determine the period of the [Ca +]i oscillations.
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Figure 3. [C2,joscillationzsdepenzd onextraccllular Ca2+. The top three traces show~
responses of single PHA -stimulated cells to removal and restoration of extracellular Ca
The average at bottomi was obtained frym n?>50 cells in the field of view, At the second arrow,
cells wvere perfused with nominally Ca +-free PHA solut on. Oscillations are suppressed
reversibly, suggesting that the PHA response involves Ca +influx across the plasma memibrante.
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Figure 4. Activation of Ca 2+ and K+ currents during whole-cell recording. (A) Changes in
inward current at -80 :nV (top) and [Ca ]i (bottom) occurring shortly after entering whole-

cell configuration. EGTA entering the cell from the pipette rapidly chelates the cell's resting
Ca + , but a deve oping inward current (carrying Ca + into the cell) eventually saturates the
buffer, and [Ca ] rises. (B) Voltage ramps from -80 to 0 mV were applied to distinguish
the sequential activation of ion channels during three phases of the recording. Shortly after
breakin (a), on ly voltage-dependent K+ current is present (Iv/ 1 , at Vm > -30 mV). Later (b).
an inward Ca2 + current develops. As [Ca2+i rises (c). a K -selective current appears and
sums with ICa: this represents Ca +activated K+ current (IK(Ca)).
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Figure 5. Cyclic activation of Ca 2+ and K+ currents during [Ca2+]i oscillations. (A)
Fluctuating inward current measured at -80 mV is associated with repetitive [Ca 2+
oscillations. (B) Expanded view of one a + transient from (A). The increase in inward
current (arrow) precedes the rise in [Ca +]i, as expected for a Ca -selective current. (C)
Four ramp currents collected at times a-d in (B). At time b, an inward Ca2+ current has

developed. As [Ca2 +] rises, K+ channels become activated (c). After this point, ICa declines
to its initial value, [Ca2+]i falls, and K+ channels deactivate (d). (D) Normalized membrane
conductances and [Ca+]iI plotted against time during one oscillation. Conductance values
were calculated from ramp currents li e those picture in (C). The increase and decrease of

gCa precedes the rise and fall of [Ca +]i,while gK(Ca) follows the Ca2 transient closely.
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