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ABSTRACT J
A three node flat shell element with six engineering displacement

degrees-of-freedom at each node is developed. The basic

formulation allows for the arbitrary location of the reference

surface in which the membrane forces and bending moments are fully

coupled.

The well-known, highly accurate, DKT bending element is combined

with a higher order membrane element in order to obtain a

consistent formulation. The higher order membrane behavior is

obtained by the introduction of three additional normal rotational

degrees-of-freedom.

This report presents a summary of the theoretical steps involved

in the development of the element. The accuracy of the element is

illustrated by the solution of several standard problems and a

comparison of results with other thin shell elements. The FORTRAN

77 listing of the subroutines which form the basic element

matrices contain less than 300 statements and is presented in

order to illustrate that the computer implementation of the

element is relatively simple.
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INTRODUCTION

General Backaround

The use Of composite materials allows for the efficient design of

many different types of structural systems. One of the major

advantages of the material is that different stiffness and

strength properties can be obtained in different directions.

Therefore, more efficient structures can be obtained since the

material can be concentrated in the directions of maximum

stresses.

Most of the existing finite element programs do not have

sufficient generality to consider such material properties. Also,

in the case of thin shell structures very few programs have the

ability to consider shells in which the bending and membrane

forces are coupled. In addition, problems associated with the

modelling of complex shell structures with thin shell elements

exist since the classical thin shell formulation does not have

stiffness terms associated with the normal rotational degrees of

freedom. Therefore, the user of the program is often required to

add artificial members to a finite element model in order to avoid

numerical instability in the solution of the finite element

system. The purpose of this report is to present a new thin shell

element which is sufficiently robust to solve the above mentioned

problems.

Recent Research

Within the past two years several papers have presented methods

which introduce a normal rotation in order to improve the membrane

behavior of plane elements. Carpenter, Stolarski and Belytschko

present a flat triangular shell element with improved membrane

interpolation. [1] They introduced normal mid-side displacements

of the constant strain triangle. The normal displacements are

eliminated and node rotations are introduced by the use of a cubic

constraint function along each side of the triangle. A one point

integration method is used in order to eliminate membrane locking

within the elements. The element yields very accurate

displacements; however, the element is rank deficient and is

unstable for certain geometries.



Taylor and Simo applied the same basic approach as presented in

reference [1] to improve the membrane behavior of quadrilateral

elements [2]. For many problems excellent displacements and

stresses are obtained. However, for shell structures such as a

twisted beam the displacements become very large as the mesh was

refined. In addition, the flat quadrilateral element does not

accurately model many common types of shell geometries. Also, the

DKQ formulation was used to form the bending stiffness which has

proven to be not as accurate as the DKT formulation.

Bergan and Felippa have developed a triangular membrane element

with normal rotational degrees-of-freedom [3]. The formulation is

based on the "free formulation" and uses the continuum-mechanics

definition of rotation. The element passes the patch test and is

stable for all applications. The element produces good values of

displacements; however, the values for stresses are poor compared

to the values obtained from the Taylor quadrilateral [4].

The three elements previously mentioned have not been used for

thin shells in which the membrane and bending forces are coupled.

Therefore, one of the purposes of this report is to develop an

element which has a consistent formulation for both the bending

and membrane behavior. In addition, the problems with the

instability associated with normal rotational degree-of-freedom

will be studied and a simple technique is suggested in order to

avoid this problem.
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BASIC EQUATIONS - ORTHOTROPIC MATERIALS

The 18 x 18 triangular shell element stiffness matrix for a stiffened
composite material as shown in figure 1 can be directly calculated

from the following well-known equation:

IT D B dA (1)

The 6x6 D matrix relates the forces to the deformations which are

associated with a differential element of area dA. Including thermal

deformations the force-deformation relationship can be expressed by

the following matrix equation:

f D a + to (2)

where

fI T [ Me 32 3l 2 flI f2i fl ] (3)

and

_ = [ kil kim kin all gas al e (4)

The positive definition of these forces and deformations is

illustrated in figure 2.

Normally the matrix D cannot be defined directly for complex

materials. However, the inverse D- 1 can normally be easily calculated

from the basic principles of mechanics or determined experimentally.

Therefore, the terms for D-1 are normally specified as input to a

computer program. The numerical values of D are then evaluated within

the element stiffness subroutine. Hence, the basic behavior of the

thin shell, including thermal deformations, is expressed in the

following form:

kii Pi I PIL a Pi a Ci I Cis• Cis all I i

ks •P2 I P2 2 P2 8 C21i Cg • Coo Ra •I

kP P I Pa Cs I Cam Can 312 Me

= + dT (5)

La Cii Cai Co i Di i Di Die fI ad

ass Cas Cis Cos Doi D22 Dma fta I

as Cis C-. Cs. Do Doa Doa fin Go
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Figure 1. EXAMPLE OF ANISOTROPIC SHELL

lo fI12

2- f"'12

Figure 2. DEFINITION OF POSITIVE FORCES
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Or in terms of matrix notation:

= - f + Le (5)

Where dT is the temperature change and Li to a& are the measured

thermal expansion coefficients. Hence, the thermal forces indicated
in equation (2) are calculated from:

f'e - D to (6)

Each flexibility term in equation (6) has a direct physical meaning.

For example, the term Cia is the curvature kil due to a unit force,

fa - 1. Whereas, the term C21 is the strain all at the reference

plane caused by the application of a unit bending moment, mit - 1.

It is apparent that these terms can be best determined experimentally

for complex composite materials. Also, the values of these terms are

dependent on the definition of the reference plane which must be

defined at the same time as the flexibility terms are determined.

For the special case of constant thickness isotropic shells the

mid-surface is the logical reference plane and the terms Cii and

several other flexibility terms are zero in equation (5).

In equation (1) the 6x18 B matrix defines the relationship between

the deformation terms and the node displacements v in the local

1,2,3 system. Or, in matrix form:

a B V (7)

which can be written in submatrix form as

=p AP V (8a)

z.V - 3 (8b)

where the "p" and "m" indicate the plate-bending and membrane terms

respectively.



-6-

BENDING APPROXIMATION - THE DKT ELEMENT

The development of the B matrix is based on the standard DKT element

[53. Because the bending and membrane behavior are coupled the DKT

formulation will be summarized here in order that the B. matrix will

be developed with consistent approximations in the next section of

this report.

The DKT element is based on the independent expansion of the inplane

rotations of the reference surface for a 6 node triangle which is

shown in figure 3. If the local 1 and 2 directions are indicated by

the local x and y coordinates the finite element approximation is

written in the following form:

Pu al + aaX+ asy + %a4x2 + asxy + %asy2
(9)

P1 = a, + asx + asy + Va.x2 + aiIxy + Kaia ys

The six constants as to as, as, can be expressed in terms of the six

node rotations Pxi to Pas by an inversion of a 6x6 matrix which will

produce an equation of the following form:

a -_tb (10)

The same 6x6 matrix, f_, will relate the constants a, to ais, a, to

the node rotations ply.

From the theory of thin plates the curvature-displacement

relationships are defined by the following equations:

kax- Ax,. z as + a4x + asy (11a)

kr- r,r = as + aSix + aisy (11b)

ksy - p,, + p,,
.5

- as + aox + isy + as + alex + asy (11c)

Or, in the following matrix form:

jp g a (12)
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M

(a) BASIC ROTATIONAL UNKNOWNS

L j is the length from I to J

I M J

(b) DISPLACEMENTS ALONG TYPICAL SIDE

Figure 3. DISPLACEMENT APPROXIMATION - DKT ELEMENT
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Where

A-,= [ as + aa + as + a4 + as + a& +

a. + as + aie + ai + ai a (13)

and

0 0 0 0 0 0 1 0 x y(14)0 1 0 x y 1 0 x y

The six rotational degrees-of-freedom which are associated with a

typical side I-J of the element are shown in figure (3a). These

rotations can be transformed to a n-s reference system which is

parallel and normal to a typical element side as shown in figure (3b).

The basic DKT constraints are enforced as follows:

1. The mid-side rotation 0.. is set to the average of the values

at point I and J. Or,

Go. - ( 1, + es ) 1 2 (15)

2. The s-displacements, above and below the reference plane, and

the normal displacement in the z-direction are forced to be

cubic functions since the transverse shear strain is in the

s-direction is set to zero. Therefore, the mid-side normal

rotation must satisfy the following equation:

ens- - (661 + 4j)/4 - 3(wi + wj)/(2Lij) (16)

The constraint specified by equation (15) will force the normal

displacement along the element sides, above and below the reference

plane, to be linear function. Hence, displacement and slope

compatibility is satisfied along the sides of all elements. Since no

attempt is made to set the transverse shear strains to zero within the

element the name Discrete Kichoff Triangle was selected as the name of

this element.
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Equation (15) and (16) can be summarized in matrix form as

9s [1_10- + 12 0+ 1.5/il~j 1 [W 17)
ON -1/4 on: 0 -1/4 esmj -01 1 w1 -

The relationship between the N-S and X-Y coordinate systems are

[esl] Cosa Sing-j exOu
=OJ-Cs]O (18a)ew L-Sin8 Cosa ley

and

[ex Cosa -Sinai ~
= 1(18b)

e, Sin8 cosft ON

Equation (17) can now be written in the X-Y system asI i i I +r Hr
ex Ti T2 exi : T1 T21OJ lS/L Ts Ts WT2]=x + [1T ej + 1.5/L, j T: s i (19)e L 2 T3 e T2 T3 l _ Tc -TcJLW (

Where

Ti - 0.5 Cos2 S - 0.25 Sin2 5

T2 - 1.5 Sin5 Cos&

T3 - 0.5 Sin2 5 - 0.25 Cos2 5

Ts - 1.5 Lis Sin5

Tc - 1.5 Lis Cosa

The six rotational degrees-of-freedom associated with the three

mid-side nodes of the triangle can be eliminated by the application of

equation (19). These transformations can be summarized by a matrix

equation of the following form:

* - TV w (20)

where Tp is a 12x9 matrix and W represents a 9x1 vector of Oxi, Oei

and wi for the three nodes of the triangle.
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MEMBRANE APPROXIMATION

The membrane behavior of the triangular shell element is based on the

basic six node quadratic membrane. If the 12 coefficents are defined

by the 12 x 1 vector b the membrane strains can be expressed in the -

following form:

_. - _, b (21)

As in the case of the DKT plate bending element the three mid-side

displacements are rotated to the local N-S coordinate of each side as

shown in figure (4). In order to maintain displacement compatibility

between element the displacement us is assumed to be linear along each

side and the displacement uN is a cubic function. These assumptions

can be summarized by the following equations for the displacements at

the mid-side nodes:

us - (usi + us 1)/2
(22)

um = (umx + um j)/2 + Ltj (ezi - ezj)/8

These equations can be written In terms of the X-Y coordinate system
as

uzi 5Fz +[. 0- Zx r15L -Sin6 Sin5j Ozi 23
.5:] ] + + .125LI 123)uj 0 0 LJu Cosa -Cos5 Oei

The six translational displacements at the midside nodes can now be

eliminated and three rotational unknowns are introduced at the

vertices by the direct application of equation (23). The same basic

approach which was used in the DKT formulation is now applied in order

to form the matrix equation of the following form:

b u (24)

Therefore, the three membrane strains can be written in terms of the

nine node displacements as

a_ - G T U (25)

It is now possible to evaluate the 24 x 24 element stiffness by the

direct application of equation (1).



ze

Figure 5 TRIANGULAR 18 DEGREE-OF-FREEDOM SHELL ELEMENT
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COMPUTER PROGRAM IMPLEMENTATION

The 18 x 18 triangular element stiffness matrix, for the element shown

in figure 5, is given by equation (1). Where the the

strain-displacement matrix B can now be written in terms of the

bending and membrane submatrices, or

Gui 0 Ti' 0
3- = (x,y) T (26)

Since the T matrix is not a function of x and y it is possible to

rewrite equation (1) in the following form:

T J GT D G dA T (27)

The matrix G is very sparse and contains only the terms 1, x and y;

therefore the integral cab be evaluated directly with a minimum of

numerical effort as illustrated by the FORTRAN listing given in

Appedix A. In addition, an integral reduction factor can be used on

selective terms in order to improve the membrane performance as

suggested in reference (3).

NUMERICAL EXAMPLES

In order to illustrate the behavior of the element and to compare the

results with other shell elements several examples will be presented.

Cantilever Beam

The beam shown in figure 6 is idealized by a lx4 rectangular mesh and

is subjected to a load of 40 kips at the tip of the cantilever. The

theoretical displacement at the tip, including shearing deformation,

is 0.3558 inches.
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The Taylor quadrilateral element shell yields a displacement of 0.3467

inches; or an error of -1.02 percent. Note that the rotations at tke

base of the cantilever are set to zero which is inconsistent with the

existence of shearing deformations.

The element presented in this report, TSHELL, was used to model this

beam with two triangles to form each quadrilateral. The completely

integrated element produces a displacement of 0.2695 inches, or an

error of -24.3 percent. With a reduced integration factor of 0.5 the

tip displacement is 0.3726, or an error of +4.5 percent.

For all example problems presented in this report a reduced

integration factor of 0.5 is used. The use of the reduced integration

factor has the major advantage over one point integration is that a

"rank deficiency" is not introduced into the element.

E 30,000 v a 1/4 t a 1.0
d

48

Figure 6. CANTILEVER DEAM EXAMPLE
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Twisted Beam

The twisted beam shown in figure 7 has become a standard test problem

for thin shell elements [6]. Table 1 summarizes the results obtained

using four different elements. It is important to note that the

SHELL element does not converge as the mesh is refined. The reason

for this unacceptable behavior is because the element is flat and it

cannot model the twisted surface accurately. The new triangular

element gives good results for this problem.

WIDTH 1. 1
DEPTH = 0.32
TWIST 900
E a 29.0 x 106

POISSON RATIO • 0.22

12x 1.0 MESH a 12 x 2
Unit loads at end

Figure 7. TWISTED BEAM EXAMPLE

Table 1. Deflection Under Load For Twisted Beam

Element Type and Mesh IN-PLANS error OUT-OF-PLANE error

Reference Values 0.005424 0 0.001754 0

NASTRAN QUAD4 0.005386 -0.7 0.001727 -1.5
NASTRAN QUADS 0.005413 -0.2 0.001750 -0.2

SHELL (2x12) 0.005779 +6.4 0.001993 +13.7
(4x24) 0.006849 +26.2 0.002750 +56.9

TSHELL (2x12) 0.005390 -0.6 0.001717 -2.1
(4x24) 0.005399 -0.5 0.001735 -1.1
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Scordelis-Lo Roof

The shell structure shown in figure 8 is a standard test problem [6].

Table 2 summarizes the maximum displacement obtained using different

elements and meshes. For this problem the SHELL element results are

very good. However, the TSHELL results appear to converge very

slowly. However, for even the coarse mesh, the results are of

acceptable accuracy for normal engineering analysis.

THICKNESS 0.25
X E a 4.52 X 108

POISSON RATIOa 0.0

LOADING: 90/unit ores in z dir.

u a w a 0 on curved edge

50 MESH N xN on quodront

Figure 8. SCORDELIS-LO CYLINDRICAL SHELL

Table 2. Maximum Displacement Of Scordelis-Lo Roof

Element Type and Mesh VALUE ERROR

Reference Value 0.3086 ft. 0.0 %

SHELL N-4 +5.2 %
Nm6 +1.7 %
N-8 +0.6 %
N-10 +0.2 %

TSHELL N-4 0.3036 -1.6 %

N-8 0.2982 -3.4 %

N-12 0.2997 -2.9 %
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Spherical Shell

A spherical shell subjected to point loads is shown in figure 9 and is

also a standard test problem 16]. This structure clearly illustrates

the weakness of the TSHELL element. With a 12x12 mesh the error in

displacement is 17.8 percent. The reason for this very slow

convergence is that the triangular elements essentially add rib

reinforcement to the very flexible spherical surface.

RADUS a IO.o
THICKNESS a 0.04Z E a 6.825 a iO'
POISSION RATIO a0.3
MESH a N aN (oquodnMt)

K/F. 2.0 yul

(an qu-dront)

Figure 9. SPHERICAL SHELL EXAMPLE

Table 3. Displacement of Spherical Shell

Element Type and Mesh VALUE ERROR

Reference Value 0.0925 in. 0.0 I

SHELL NM4 -46.1 %
N-8 -3.3 %
N12 -0.7 %

TSHELL N-8 0.051265 -44.6 %
N12 0.075974 -17.8 %
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FINAL REMARKS

A new anisotropic triangular shell element, with normal rotations at

the nodes has been developed. The element can be connected directly

to nodes with beam elements without special consideration.

The general accuracy of the element has been demonstrated. Care

should be taken if the element is used to model shells which have

double curvature.
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APPENDIX A - FORTRAN LISTING OF TRIANGULAR SHELL ELEMENT

C--------------------------------------------------- SHELLT
SUBROUTINE SHELLT(S,TFDC,V,X,Y,AREA, PRES ,TEMP)
IMPLICIT REAL*8 (A-H,O-Z)

C---------- INFORMATION CALCULATED-----------------------
C S - 18 x 18 STIFFNESS MATRIX IN X-Y-Z SYSTEM
C T - 18 x 18 FORCE-TRANSFORMATION MATRIX
C F - 18 x 2 FORCES DUE TO PRESSURE AND TEMP.
C---------- INFORMATION SPECIFIED------------------------
C D -6 x 6 MATERIAL PROPERTY MATRIX
C LOCAL FORCES ARE AS SUMMED TO BE IN THE
C ORDER Mll, M22, M12, N11, N22 and N12
C C - 6 x 1 MATRIX OF THERMAL EXPANSION TERMS
C V - THE DIRECTION COSINE ARRAY WHICH RELATES THE
C LOCAL 1-2-3 TO THE GLOBAL X-Y-Z SYSTEM
C X, Y, Z GLOBAL NODE COORDINATES
C AREA - ELEMENT AREA
C PRES - AVERAGE SURFACE PRESSURE
C TEMP - AVERAGE TEMPERATURE CHANGE
C----------------------------------------------------------
C WRITTEN BY EDWARD L. WILSON, JAN. - JUNE 1987
C -- - - - - - - - - - - - - - - - - - - - - - - - - - -

DIMENSION V(4,4),KL(24,3),XY(3),E(6),H(6,6),
. S(18,18),T(18,18),D(6,6),X(6),Y(6),AP(10,12),
. AM(10,12),A(20,18),AIN(3,3),G(20,20),JP(9),
. JM(9),TT(20,1),F(18,2).C(6)

DATA
. JP /4,5,10,11,16,17,3,9,15/,
*JM /1.2,7,8,13,14,6,12,18/
DATA KL /
. 1,1,1, 2,2,2, 3,3,3,3,3,3, 4,4,4, 5,5,5, 6,6,6,6,6,6,
. 1,3,4, 7,9,10, 2,4,5,6,8,9, 11,13,14, 17,19,20,12,14,15,16,18,19,
. 1,2,3, 1,2,3, 1,2,3,1,2,3, 1,2,3, 1,2,3, 1,2,3,1,2,3/
NT - 24

C---- CHANGE TO LOCAL COORDINATES SYSTEM--------------
XC -( X(1) + X(2) + X(3) )/3.
YC - ( Y(1) + Y(2) + Y(3) )/3.
DO 20 1-1,3
X(I) - X(I) - XC
Y(I) - Y(I) - YC
DO 20 J-1,3

20 AIN(I,J) - 0.0
C---- COMPUTE INTEGRALS---------------------------------

RED - 0.50*AREA
AIN(1,1) - AREA
AIN(2,2) -- RED*( X(1)*X(2) + X(2)*X(3) + X(3)*X(1) ) / 6.
AIN(2,3) - RED*( X(1)*Y(1) + X(2)*Y(2) + X(3)*Y(3) ) / 12.
AIN(3,3) -- RED*( Y(1)*Y(2) + Y(2)*Y(3) + Y(3)*Y(1) ) / 6.
AIN(3,2) -AIN(2,3)
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FORTRAN LISTING OF TRIANGULAR SHELL ELEMENT

C ---- FORM "H" ARRAY FOR GENERAL 6-NODE TRIANGLE ----
CALL FORMH(HA,XY)

C --FORM "AP" ARRAY FOR PLATE ELEMENT---------
CALL FORMAP(APH,XY)

C --FORM "AM" ARRAY FOR PLANE ELEMENT---------
CALL FORMAM(AM,HX,Y)

DO 160 K-1,20
DO 160 L-1,K

160 G(K,L) - 0.0

DO 200 N-1,NT
I - KL(N,l)
K - KL(N,2)
II - KL(N,3)
DO 190 M-1,NT
J - KL(M,l)
IF (D(I,J).EQ.0.0) GO TO 190
L - KL(M,2)
IF (L.GT.K) GO TO 190
JJ - KL(M,3)
G(K,L) - G(KL) + D(I,J)*AIN(IIJJ)

190 CONTINUE
200 CONTINUE

C
DO 210 K-1l,20
DO 210 L-1,K

210 G(LK) - G(K,L)
C---- FORM 20x18 "A" ARRAY---------------

DO 300 J-1,18
F(J,1) - 0.0
F(J,2) - 0.0
DO 300 1-1,20

300 A(I,J) - 0.0

DO 305 J-1l,9
JJ - JP(J)
DO 305 1-1,10

305 A(I,JJ) - AP(I,J)
C

DO 310 J-1,9
JJ - JM(J)
DO 310 1-1,10

310 A(1+10,JJ) - AN(I,J)
C---- ROTATE TO GLOBAL X, Y, Z SYSTEM ----------

DO 350 N-1,6
NZ - 3*N
NY -NZ- 1
NX - NY - 1
DO 350 1-1,20
XX - A(I.NX)*V(1,1) + A(I,NY)*V(1,2) + A(INZ)*V(1,3)
YY - A(I,NX)*V(2,1) + A(I,NY)*V(2,2) + A(I,NZ)*V(2,3)
ZZ - A(I,NX)*V(3,1) + A(I.NY)*V(3,2) + A(I,NZ)*V(3,3)
A(I,NX) - XX
A(I,NY) - YY

350 A(I,NZ) - ZZ
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C---- FORM 18x18 ELEMENT STIFFNESS
DO 380 1-1,20
DO 380 J-1,18
CALL DOTP(G(1,I),A(1,J),SUM,20)

380 TT(I,J) = SUM
C

DO 400 1-1,18
DO 400 J-1,I
CALL DOTP(A(l,I),TT(1,J),SUM,20)
S(I,J) sUM

400 S(J,I) - SUM
C---- FORM FORCE-DISPLACEMENT TRANSFORMATION ARRAY

NO - 0
DO 500 N=1,3
XY(1) - 1.0
XY(2) = X(N)
XY(3) - Y(N)

* C
DO 450 K-1,18

C
DO 410 1-1,6

410 E(I) - 0.0
C

DO 420 M-1,NT
I - KL(M,1)
L - KL(M,2)
J = KL(M,3)

420 E(I) - E(I) + XY(J)*A(L,K)
C

DO 440 1-1,6
SUM , 0.0
DO 430 J=1,6

430 SUM - SUM + D(J,I)*E(J)
II - NO + I

440 T(II,K) - SUM
* C

450 CONTINUE
C

500 NO - NO + 6
C---- FORM THERMAL FORCES--------------------------------

IF (TEMP.EQ.0.0) GO TO 625
DO 600 1-1,6
CALL DOTP(D(I,I),C(1),E(I),6)

600 CONTINUE
DO 610 1-1,6

610 C(I) - - TEMP*E(I)
C

DO 620 1-1,18
F(I,2) - C(1)*A(1,I)
F(I,2) - C(2)*A(7,I)
F(I,2) - C(3)*( A(2,I) + A(6,I)
F(I,2) - C(4)*A(11,I)
F(I.2) - C(5)*A(17,I)

620 F(I,2) - C(6)*( A(12,I) + A(16,I)
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C---- CALCULATE PRESSURE FORCES -----------------------
625 IF(PRES.EQ.0.0) GO TO 800

FORCE - - AREA*PRES/3.0
DO 630 1-1,18,6
F(I 1) - FORCE*V(1,3)
F(I+1,1) - FORCE*V(2,3)

630 F(I+2,1) - FORCE*V(3,3)
C
800 RETURN

C --------
END

C -------------------------------------------------- FORMH
SUBROUTINE FORMH(H,B,X,Y)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION H(6,6),B(6,6),Y(4),X(4)

C ---- FORM COEFFICIENT MATRIX FOR 6 NODE TRIANGLE
X(4) - (X(1) + X(2) ) / 2.
X(5) ( X(2) + X(3) ) / 2.
X(6) - (X(3) + X(1) ) / 2.
Y(4) - (Y(1) + Y(2) ) / 2.
Y(5) - (Y(2) + Y(3) ) / 2.
Y(6) - (Y(3) + Y(1) ) / 2.

C
DO 100 1,6
H(1,I) 1.0
H(2,I) X(I)
H(3,I) Y(I)
H(4,I) X(I)*X(I) / 2.
H(5,I) X(I)*Y(I)

100 H(6,I) Y(I)*Y(I) / 2.
C---- INVERT TO FORM H MATRIX---------------------

DO 200 1-1,6
DO 200 J-1,I
SUM - 0.0
DO 190 K-1,6

190 SUM - SUM + H(I,K)*H(J,K)
B(J,I) - SUM

200 B(I,J) - SUM
C

CALL SYMSOL(BH,6,6,0)
C

RETURN
END
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C ------------------------------------------------- FORMAP
SUBROUTINE FORMAP (AP,H,X,Y)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION AP(10,12),H(6,6),Y(4),X(4),IT(4)
DATA IT /1,3,5,1/

C---- FORM 12 DOF MATRIX---------------------------------
DO 240 1-2,6
K 0
DO 240 J-1,6
K=K+ 1
AP(I-1,K) = 0.0
AP(I+4,K) = H(I,J)
K- K+ 1
AP(I-1,K) = - H(I,J)

240 AP(I+4,K) - 0.0
C---- ELIMINATION OF 4,5,6 MID-SIDE ROTATIONS

X(4) - X(1)
Y(4) - Y(1)
DO 300 N-1,3
DX = X(N+I) - X(N)
DY - Y(N+I) - Y(N)
XL = DSQRT( DX*DX + DY*DY
S = DY / XL
C = DX / XL
Ti - C*C/2. - S*S/4.
T2 = 0.75*S*C
T3 = S*S/2. - C*C/4.
XX = 1.5/XL
TC - XX*C
TS - XX*S

C
I1 - IT(N)
12 = II + 1
J1 - IT(N+1)
J2 = Ji + 1
L2 = 6 + N + N
Li - L2 - 1

J= I + 1
IF (N.EQ.3) J - 7

DO 300 K-1,10
AP(K,I1) - AP(K,I1) + AP(K,L1)*T1 + AP(K,L2)*T2
AP(K,12) = AP(K,12) + AP(K,L1)*T2 + AP(K,L2)*T3
AP(K,J1) - AP(K,J1) + AP(K,L1)*T1 + AP(K,L2)*T2
AP(K,J2) = AP(K,J2) + AP(K,L1)*T2 + AP(K,L2)*T3
W - - AP(K,L1)*TS + AP(K,L2)*TC
AP(K,L1) - 0.0
AP(K,L2) - 0.0
AP(K,I) - AP(K,I) + W
AP(K,J) - AP(K,J) - W

300 CONTINUE

RETURN

END
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C----------------------------------------------- FORMAM
SUBROUTINE FORMAM(AMH,X,Y)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION AM(10,12),H(6,6),Y(4),X(4),IT(4)
DATA IT /1,3,5,1/

C---- FORM 12 DOF MATRIX-------------------------------
DO 240 1-2,6
K- 0
DO 240 J=1,6
K-K+ 1
AM(I-1,K) = H(I,J)
AM(I+4,K) - 0.0
K - K + 1

AM(I-1,K) 0.0
240 AM(I+4,K) = H(I,J)

C---- ROTATE NODE 4, 5, 6 MID-SIDE DISPLACEMENTS
X(4) = X(1)
Y(4) = Y(1)

C
DO 300 N=1,3
DX = X(N+I) - X(N)
DY = Y(N+1) - Y(N)

C
NY = 2*N + 6
NX = NY - 1
IX = IT(N)
IY = IX + 1
JX - IT(N+1)
JY - JX + 1
I -N + 6

J- I + 1
IF (N.EQ.3) J - 7

C---- ELIMINATE MID-SIDE DISPLACEMENTS
DO 260 K-1,10
TT = .125*( - AM(K,NX)*DY + AM(KNY)*DX
AM(K,IX) - AM(K,IX) + AM(KNX)/2.
AM(K,IY) = AM(K,IY) + AM(K,NY)/2.
AM(K,JX) - AM(K,JX) + AM(K,NX)/2.
AM(K,JY) - AM(K,JY) + AM(K,NY)/2.
AM(K,NX) - 0.0
AN(K,NY) - 0.0
AM(K,I) - AM(K,I) + TT
AM(K,J) - AM(K,J) - TT

260 CONTINUE
C

300 CONTINUE
C

RETURN
END
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C ---------------------------------------------- LOCALT
SUBROUTINE LOCALT(XYZ,X,Y,V,AREA,IAXIS)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION XYZ(3,3),X(6),Y(6),V(4,4)

C ---- TRANSFORM TO LOCAL COORDINATE SYSTEM-----------
C WRITE (*,3000) XYZ
C 3000 FORMAT (3F15.4)

IF (IAXIS.NE.0) THEN
DO 100 1=1,3

100 V(I,4) = 0.0
I - IABS(IAXIS)
V(I,4) = IAXIS/I

END IF
C---- DEFINE LOCAL 1,2,3 REFERANCE SYSTEM--------------

CALL VECTOR(V(1,1),XYZ(1,1),XYZ(1,2),XYZ(1,3),
* XYZ(2,1),XYZ(2,2),XYZ(2,3))
CALL VECTOR(V(1,2),XYZ(1,1),XYZ(1,2),XYZ(1,3),
* XYZ(3,1),XYZ(3,2),XYZ(3,3))
CALL CROSS(V(1,1),V(1,2),V(1,3))
IF (IAXIS.NE.0) CALL CROSS(V(1,4),V(1,3),V(1.1))
CALL CROSS(V(1,3),V(1,1),V(1,2))

C
DO 5 N=1,3
X(N) - XYZ(N,1)*V(1,1) + XYZ(N,2)*V(2,1) + XYZ(N,3)*V(3,1)

5 Y(N) = XYZ(N,1)*V(1,2) + XYZ(N,2)*V(2,2) + XYZ(N,3)*V(3,2)
C---- CALCULATE AREA OF ELEMENT------------------------

AREA - (X(2)*Y(3) - X(3)*Y(2) + X(3)*Y(1)
* - X(1)*Y(3) + X(1)*Y(2) - X(2)*Y(1) ) / 2.0

IF (AREA.LE.0.0) THEN
PAUSE ' ZERO OR NEGATIVE AREA
RETURN
END IF

C--------------------------------------------------------
RETURN
END
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