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I. Introduction

The present report summarizes the work that has been carried out under
the support of the AFOSR (Grant No. AFOSR-85-0133) during the funding
period Feb. 1, 1985 to Jan. 31, 1988. The investigation covered by the Grant
deals with the physical phenomena associated with coupled hydromagnetic
waves in the magnetosphere and the physics of the coupling between the mag-
netosphere and ionosphere. The research effort is also extended to study
naturally occurred or artiflcially induced phenomena related to plasma waves in
the ionosphere and magnetosphere. Our study focuses primarily on developing
theories to explain the ohservational! results, however, the possibility of provid-
ing guidelines to future experiments is also considered.

During the past three years, our work has achieved many interesting
results, which have been either submitted or already accepted for publication.
Basically, the topics of investigation are divided into four general categories: (a)
cavity modes of the magnetosphere resulting in the discrete spectrum of the
resonant ULF waves; (b) a hydromagnetic code for the numerical study of the
coupling of hydromagnetic waves in the dipole model of the magnetosphere;
(c) a theoretical model developed for explaining the phenomenon of plasma
line overshoot observed in the ionospheric HF heating experiments; and (d)
thermal fllamentation instability as the mechanism for generation of large-scale
fleld-aligned ionospheric irregularities. For the first two topics, the hydromag-
netic wave equations are analyzed analytically in cylindrical model of the mag-
netosphere and numerically in dipole model of the magnetosphere, respectively.
While the steady state eigenvalue problem Is studied In the first topic, the
second topic is generalized to the boundary value problem considering the cou-
pling between hydromagnetic waves in the realistic geometry of the magneto-
sphere. For the third topic, a nonlinear turbulent theory (resonance broaden-
ing of electron-wave interaction) is incorporated in the study of parameter ins-
tability excited by a powerful HF in the ionosphere. For the last topic, the
thermal nonlinearity gives rise to the mode-mode coupling; threshold fleld and
the growth rate of the instability are derived.

II. Publications

The following publications include work supported by the present Grant,
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III. Summary of Work Accomplished
(a) A Model for the Discrete Spectrum cf the Resonant ULF Waves

The discrete nature of ULF pulsations observed in the magnetosphere is
theoretically explained by using a cylindrical model [Radoski, J. Geomagn.
Geoelectr., 22, 361, 1970]. A second order wave equation is derived to charac-
terize the coupling between the poloidal and toroidal modes of the hydromag-
netic waves. When the experimentally determined plasma density radial proflle
of "1/r°" form [Cummings et al., J. Geophys. Res., 74, 778, 1969; Park et al.. J.
Geophys. Res., 83, 3137, 1978] is used, it is found that the wave equation has
two turning points along the radial axis. By contrast, only one turning point
exists in the wave equation fo Kivelson and Southwood [Geophys. Res. Lett.,
12, 49, 1985] wherein the magnetosphere is described by a box model having a
linearly increasing density proflle with distance. Undamped eigenfunctions with
discrete eigenvalues are found in our collisionless case. They are conceptually
analogous to the case that has discrete eigenstates when particle is trapped by a
potential well as discussed in quantum mechanics. However, there is a
difference between the two cases. In the present case, the function f(r)
representing the square of the wavenumber cannot simply be expressed by the
difference of a constant eigenenergy and a filxed potential function as in quan-
tum mechanics. This is because the eigenvalues is multiplied by a spatially
dependent function. Therefore, the potential well determined by f(r) varies
with each discrete eigenstates.

We have calculated the eigenperiods of the most readily excited modes and
the most likely values of the east-west wavelengths. The wave eigenperiods are
calculated to be in the Pc3-4 range. When the magnetospheric cavity is con-
sidered by a resonant fliter, only discrete parts of the continuous perturtations
on the magnetopause can couple to the localized field line resonance :iodes
excited inside the magnetosphere, where the discrete nature of the spectrum is
determined by the eigenmodes of the cavity. Details of this work are enclosed
in the Appendix.

(6) Stabiity Analysis of a Finite Difference Scheme for the Coupled
Hydromagnetic Wave Equations in the Dipole Model of the Magnetosphere

In the study of wave propagation in inhomogeneous magnetoplasma, the
physical system is generally characterized by coupled partial differential equa-
tions. One specific example is the geomagnetic micropulsation originated by
the hydromagnetic waves in the magnetosphere. It is shown that these waves
in the poloidal and toroidal modes are generally governed by two coupled
second order partial differential equations. Though these two equations can be
reduced and combined into a single second order ordinary differential equation
for a simplified cylindrical model of the magnetosphere, there is no apparent
way to simplify the system of coupled equations for a more realistic dipole
model of the magnetosphere in which a dipole geomagnetic fleld is assumed.
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Moreover, the equation for the toroidal mode is shown to be a parabolic type
of partial differential equation, while the poloidal mode is elliptic. Both equa-
tions have variable coeflicients, tiierefore, for practical applications, there is
considerable interest in finding or developing means of dealing with such a sys-
tem of two mixed-type coupled partial differential equations with variable
coefficients.

In this work, a numerical algorithin dealing with the mixed-type coupled
partial differential equations with variable coefficients has been developed. The
stability of the numerical scheme has been examined and solutions for the
hydromagnetic wave equations are obtained on non-staggered grids by this algo-
rithm. The main contribution of this algorithm is to offer an efficient way to
examine the stability conditions flrst by the Fourier method and then check
them by the matrix methods. Since these two methods are different, one can
be sure of the stability conditions. Moreover, this algorithm leads a way for a
parametric study of the stability conditions. It also becomes an advantage in
the sense that the optimum parameters which can increase the accuracy of the
numerical solution can be determined together with the stability analyses.
Using the developed numerical scheme, the problem of coupling and propaga-
tion of hydromagnetic waves in the realistic dipole model of the magnetosphere
can be studied. An example of coupled hydromagnetic waves in the dipole
magnetosphere has been considered. Detalls of tais wor™ ‘=2 addressed in the
A ppendix.

(¢) Thermal Filamentation Instability Driven by the Auroral
Electrojet Current

The high-latitude ionosphere is constantly perturbed by the ionospheric
irregularities. The Farley-Buneman instability driven by electrojet current is
known to be eflective in generating meter and shorter-scale irregularities of
type I in the E region. The lrregularltles of type II are of slightly larger scale-
sizes and are generated through the ExB gradient drift instability. However,
the growth rate of the two stream instability as well as of the gradient drift ins-
tability is a function of the angle between the wavevecter and the direction of
the electron drift. The growth rate becomes zero when the wavevector is per-
pendicular to the drift direction. Therefore, it is not possible to explain the
radar observations in the direction perpendicular to the drift motion by using
the above-mentioned instability mechanisms. In addition, in the analysis of
thiuse instabilities, energy equations are not incorporated because the plasma
temperature perturbations can be ignored in those instability processes.

When the ohmic dissipation of electrolet currents is taken into account, we
find that a new instability caused by the thermal effect can be excited. The
physical process of the instability is through the modiflcation of the electron-
neutral collision frequency due to the electron temperature perturbation in the
electrojet. The collision frequency increases with the temperature perturbation.
This, in turn, further increases the jJoule loss os the electrojet currents. A ther-
mal instability is thus excited through such a positive feedback process. A
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dispersion relation of the instability is derived, from which the threshold elec-
troJet current and the growth rate of the instability are determined. It is shown
that the analyzed instability mechanism can indeed produce those as observed
relatively large-scale (greater than tens of meters) E region irregular structures
which are polarized perpendicular to the drift motion. Details of this work are
enclosed in the Appendix.

(D) Overshoot of HF-Enhanced Plasma Lines due to Resonance
Broadening Effects

One of the most reproducible phenomena observed in the Arecibo ionos-
pheric heating experiments is the so-called main plasma line overshoot. In this
work, a theoretical model is developed to explain the observations. This model
is based on the mode suppression process introduced by the resonance
broadening effect. It is expected that the presence of instabilities gives rise to
perturbations on the phase space orbits of electrons. The result of the
incoherent scattering of electron orbits by the total excited waves leads to elec-
tron diffusion in the velocity space along the magnetic fleld together with the
cross fleld diffusion in the spatial space. These diffusion processes thus appear
as an enhanced viscosity to the electron motion and therefore broaden the reso-
nance interaction between the electrons and waves. Consequently, the increase
of the anomalous damping on one plasma line can be the result of the growth
of other lines in the same region. This leads to the mode-mode competition
and hence, the spectral lines having smaller growth rate will likely be
suppressed by the presence or larger growth rate lines. Such a mode competi-
tion process leading to the overshoot of HF-enhanced plasina lines has been
described in terms of a rate equation, which determines the temporal evolution
of the parametrically excited plasma lines. The result of the modal equation
agrees favorably with the observations in the Arecibo heating experiments.
The detail of this work is also enclosed in the Appendix.
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I1V. Appendix

Reprints, preprints and submitted papers attached to this report include:
Spectral Characteristics of Hydromagnetic Waves in the Magnetosphere.

Thermal Filamentation Instability Driven by the Auroral Electrolet
Current.

Filamentation Instability of Large Amplitude Alfven Waves.

The Stability Analysis of a Finte Difference Scheme for the Coupled
Hydromagnetic Waves Equations in the Dipole Model of the Magneto-
sphere.

A New Interpretation of Plasma-Line Overshoot Phenomena.
A Theoretical Model of Artificial Spread F Echoes.

Simulanteous Excitation of Large-Scale Geomagnetic Field Fluctuations
and Plasma D ensity Irregularities by Powerful Radio Waves.

Resonant Electron Diffusion as a Saturation Process of the Synchrotron
Maser Instability.

Parametric Excitation of Whistler Waves by HF Heater.
On the Resonant Ionospheric Heating at the Electron Gyrofrequency

Enhanced Ionospheric Modiflcations by the Combined Operation of HF
and VLF Heaters.
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This work is intended to explain why the resonant response of the
magnetosphere prefers to have discrete frequencies. Using a cylindrical model
for the outer magnetosphere with a plasma density profile proportional to
1/r%, we show that the eigenequation characterizing the eigenmodes of the
hydromagnetic waves in this model has two turning points along the radial axis.
The locations of the turning points depend upon the values of the eigenperiod
and the associated east-west wavenumber of the eigenmode. The energy
spectrum of the excited cavity modes is seen to have sharp peaks at discrete
frequencies when the surface perturbations have a uniform spectrum in
the frequency range of interest. We, therefore, have also shown that only the
discrete set of the magnetospheric cavity eigenmodes can efficiently couple the
perturbations excited on the boundary of the magnetosphere to the field-line
resonant mode excited inside the inner turning point of the cavity eigenmode.
The most likely values of east-west wavenumbers and wave period range are
determined.

1. Introduction

During the past two decades, there has been a surge of interest in
understanding geomagnetic micropulsations. Vigorous observational work
(Allan & Poulter 1984; Walker & Greenwald 1981) and theoretical research
(Radoski 1970, 1971, 1973, 1974; Chen & Hasegawa 1974; Southwood &
Hughes 1983 ; Rostoker 1979; Lanzerotti & Southwood 1979) have been carried
out on hydromagnetic waves and geomagnetic pulsations. It is generally
belicved that micropulsations are caused by hydromagnetic waves which can be
generated ncar the boundarics of the magnetosphere, internally or externally
depending on local time and on the frequency ranges of the pulsations. For
example, hydromagnetic waves of poloidal and toroidal modes transmitted
along geomagnetic ficld lines can be excited during geomagnetic storms on the
nightside and they can be excited by the Kelvin~Helmholtz instability during
quict times on the dayside magnctopause. These waves then give rise to

82
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signatures of geomagnetic pulsations which can also be used as indicators of the
changes in the magnetospherie configuration. The resonant field-line picture
{Chen & Hasegawa 1974 : Southwood 1974) explains successfully the variation
of the amplitude of the geomagnetic pulsation with latitude. This model also
explains very well the associated latitudinal variation of the wave polarization
(Samson, Jackobs & Rostoker 1971 ; Lanzerotti et al. 1974a,6). However, the
above enumerated work does not explain why the resonant respounse of the
magnetosphere is often observed to have a discrete spectrum of frequencies
(Kokubum & Nagata 1965; Stuart, Sherwood & Maclntosh 1971 ; Takahashi &
McPherron 1982). Moreover, the solution of the field-line resonance mode
predicts spatially dependent eigenfrequencies and thus contains mathematical
inconsistencies in the analysis (Radoski & McClay 1967).

We show in this paper that the cavity modes of the magnetosphere
characterized with a discrete spectrum of frequencies can play a dominant role
in geomagnetic ULF pulsations. The main objection to the concept of cavity
modes in the past arises from the lack of experimental evidence of correlation
between the frequency spectra of the dayside and nightside signals. This fact is
inconsistent with the assumption of the standing wave pattern around the
equator (i.e. along the east—west direction) for a spherical cavity. However, this
problem can be resolved if one takes into account the geometry of open field
lines in the nightside region, namely, assuming that the open field-line region is
a perfect absorber of the surface perturbations that are excited in the dayside
region of the magnetopause. Therefore, the wave functions in the east-west
direction should have a travelling wave form instead. But it poses another
problem: if the source of the cavity modes has a broad and continuous
wavenumber spectrum in the east-west direction, each eigenmode then has a
finite band-width and becomes degenerate. The overlapping of the eigen-
frequency spectrum due to the continuous degeneracy of the cigenmodes will
eventually smear out the discrete nature of the individual cavity mode.

In order to resolve this problem, we propose a model that considers the
magnetospheric cavity to be a resonant filter. Then, only discrete parts of a
continuous spectrum of the perturbations that are excited in the magnetopause
can couple efficiently to the field-line resonance modes located inside the
magnetosphere (Hasegawa, Tsui & Assis 1983). In the formulation of the
theory, we use a cylindrical model of the magnectosphere (Radoski 1970, 1976)
to analysc the eigenequation of the resonant ULF waves. We will first show
that the linearized MHD equations can be combined into an eigenequation
torm, namely, a single second-order differential equation with non-uniform
coefficients. When a plasma mass density profile proportional to 1/r°
(Cummings, O'Sullivan & Coleman 1969; Park, Carpenter & Wiggin 1978) is
used, it is seen that this equation has, in general, two real turning points along
the positive axis. Therefore, the continuity conditions of the cigenfunctions at
the turning points will restrict the cigenvalues of the equation to be discrete for
a fixed cast-west wavenumber and a fixed azimuthal mode number. This is
essentially the same concept that cigenvalues become discrete in a potential
well as used in quantum mechanics. The cigenmode solutions are undamped
functions inside the two turning points in the collisionless case. Additional
constraints associated with the preferential cavity modes have been taken into
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Fictre 1. Cylindrical magnetospheric model used to study the eigenfrequencies of the
resonant ULF waves. B = B(r)@. The Z direction, normal to the plane of the figure, is
analogous to longitude.

account based on the following facts: (i) the locations of the turning points are
a function of both the eigenvalues and the corresponding east-west wave-
numbers, and (ii) the perturbations excited in the magnetopause can be
efficiently coupled to the inner magnetosphere only when the outer turning point
is located near the outer boundary. We shall show in the following analysis that
the most likely values of east-west wavenumbers and wave period range can be
determined with the present model.

2. Theory and analysis

In a cold plasma, the hydromagnetic wave equations derived from the
Maxwell’s equations and the fluid equations have the general form of

2
%"+E,l€_oBox{VX[VX(UXBo)]}=Ov (1)
where n is the wave plasma displacement vector, B, is the background
geomagnetic ficld, and £, is the mass density of the plasma.

This wave equation will be solved for a cylindrical model of the
magnetosphere. In this model, the earth becomes a flat plane and the magnetic
field lines are semicircles as shown in figure 1. In terms of the cylindrical co-
ordinates r, ¢, z, the geomagnetic ficld is expressed as B, = ¢B,/r, where B, is
a corstant. It is found that (1) has only two non-trivial components (z and r)
which correspond to the eigenequations of the toroidal mode and the poloidal
mode of the hydromagnetic waves, respectively. These two equations will be
shown to couple to each other. I we assume that the transverse wave electric
fields vanish at the reflecting points on the conducting earth at ¢ = 0, 7 it would
be reasonable to use a standing wave expression sinng for the azimuthal
dependence of the perturbations, where the integer n measures the numbers of
half-waves along a field line. The z direction corresponds to the longitude. We
assume that the surface perturbations excited in the daytime regions of the
magnetopause disappear when thev propagate toward the nightside regions
because of being guided by open field lines. A total absorption boundary
condition then requires solutions along the longitude to have the travelling
wave form as exp [{(k, 2—w!)] with continuous k,. Thus we may assume that the




VT > !v—
. - i

238 S.P. Kuo, M.C. Lee and A. Wolfe

wave perturbations take the form 3, = [F(r)/ B,(r)] sin ng exp [i(k,z—w!)] and
1, = [H(r)/ By(r)] sinng exp (i(k, z— wt)], and the two coupled eigenmode equa-
tions have the following forms (Radoski 1970, 1976):

w\* nt 1d d L1 d :

[(;) ——;E+;Er‘—i;jl F(T) =—1kz;(7;TH(T), (2)
oY _n o, = — il ii.

[(UA) —;—E_kz]H(r) =ik, dr Fr), @)

where v, = Bo/(47r§0)5 is the Alfvén speed, and H(r) and F(r) are functions
characterizing the radial dependence of the amplitudes of the torodial and
poloidal modes, respectively.

From (2) and (3), an eigenequation for the shear magnetic perturbation
G(r) =ik, vH(r)+r(d/dr) F(r) is derived to be

d2 — i 2 i 2__ L2 —
30 [drln(rk )]er-Hk k)G =0, (4)

where the notation k? = (w/v,)2—n?/r? is used.
Letting G(r) = (rk2)'¥Gl(r), equation (4) then reduces to a wave equation with
a spatially dependent wave vector given by

42
g2 G+ L) Gy(r) = 0, (5)
1d d
, =22 1,24 =% .2
where fr)y=k—-k-la +2dra and « drln(rk ).

We now model the outer magnetosphere with a plasma density profile
£, = &,/ for 2R, < r < 11R,, where £, is a constant and R, is the earthradius.
In the present paper, the sharp plasma density gradient located at the
plasmapause (r = 2—3R,) is not taken into account. Thus

82
3 = ( 1 )r
A4 \4ng,

2n*+ n? 1
and firy= (;)[l—ﬁ]—k:-?-*‘zﬁ, (6)

where s =4nf w?/B} is a parameter proportional to the squared eigen-
frequency w.

As shown in figure 2, f(r) has two zeros located at two points r, and r, on
the positive real axis. It implies that (5) has two real positive turning points
r, and r,. At the turning points, the wavenumber f(r)i becomes zero, thus each
of them defines a boundary scparating the oscillatory and non-oscillatory parts
of the solution of the wave equation. In other words, the wavefunction begins
to change its characteristics at the turning point. However, this change must be

RRI
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FiGurE 2. Spectral variations of the square of the wavenumber f(r) from r = 2 R, to
r= 1{R where n =1, k, = 0-32/R, and ¢ = 112/ R, are used.

compromised by the continuity conditions of the wavefunction and its first
derivative at each of the turning points so that the second derivative of the
wavefunction can remain finite as imposed by the considered wave equation.
The position of the turning points r, and r, depends on the values of the
parameters &, n and k,. Furthermore f(r) is negative in the region outside the
turning points. We find that (5) has solutions for G(r) which are well behaved,
namely, they decay exponentially away from the turning points in that region.
Thus spatially localized modes exist provided an eigenvalue s (i.e. w) can be
found such that the eigenvalue equation for s (or w), defined by the Bohr-
Sommerfeld quantization condition (Landan & Lifshitz 1965)

(m+hm f " fi(r)dr, (7)

can be satisfied, where m =0, 1,2, ... stands for the number of nodes of the
eigenfunction G,(r) within the two turning points r, and r,.

Equation (7) is solved numerically for s. Since r, and r, are also functions of s,
equation (7) has to be solved self-consistently. Presented in figure 3(a) and (b)
are examples of spatially localized eigenfunctions determined by (5) where (7)
has been used to determine first the approximate eigenvalues. For the given
values of n and k,, we find that (7) only has discrete solutions. Moreover, the two
turning points have to be located inside the two boundaries taken at 2R, and
11R, of the modelled magnetosphere in order to sustain spatially localized

-modes. This, in turn, determines the lower bound k,, and the upper bound &,,
of the wavenumber k,. In other words, for a given integral value of n, k, must
be within the interval (k,,, k,,) so that the turning points of (5) determined by
cach of the solutions of (7) satisfy the conditions r, 2 2R, and r, < L1R,.
Figure 4 displays the plots of f(r) for the two extreme cases k, = k,; and
k, = k,,, respectively. We observe that r, > 2R, and r, = 11 R, in the first case
of k, =k, and s = s, and r, = 2R, and r, < 11R, in the second case of k, = k,,
and s = 8,. If the resonant ULF waves in the magnetosphere are assumed to
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Fieure 3. Eigenfunctions of the eigenequation (5) for two discrete eigenvalues corresponding
to m = 0 and 1 of the solutions of (7) for the case of n = 4.
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and k, = k,, (—) respectively.
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n m A R 7, (sec) AL(R) 7, (sec)
1 0 217 130-3 182 119-5
2 0 151 872 90 671
3 0 19 66-2 60 47-0
4 0 97 531 44 358
4 1 71 409 60 377
5 0 83 447 35 29-1
5 1 62 354 46 306
6 0 73 388 2:8 24-1
6 1 56 314 36 253

TasLe L. Upper and lower bounds of the wave periods and east-west wavelengths of the
eigenmodes for azimuthal mode number n from 1 to 6.
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Frauvre 5. Energy spectrum of the magnetospheric cavity modes excited by a source of
perturbation with a uniform spectrum in the magnetopause.

arise from the perturbations in the magnetopause, i.e. excited by the Kelvin-
Helmholtz instability (Chen & Hasegawa 1974 ; Southwood 1974), it is quite
obvious that the perturbations with parameters corresponding to case one can
couple into the magnetosphere more efficiently than that corresponding to case
two. This is because in case one the outer turning point is right in the
magnetopause, hence the perturbation can be directly propagated into the
magnetosphere without tunnelling through a barrier as in case two. Table 1
lists the computed eigenperiod bands for the azimuthal mode number n
from 1 to 6. The following L = 4 reference parameters: B, = 486 x 1073 G, £, =
668 x 10"* gem™2, R, = 64 x 10® cm are used in the computation (Helliwell &
Inan 1982). It shows that the cigenperiod bands for n = 3 to 6 overlap with one
another. This is because each (n,m) mode has a finite k, band. Each eigenmode
then has a finite band-width and becomes degenerate in the overlapped range
of the wave spectrum. However, these modes do not have the same intensities
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because their turning points are different. Those having turning points away
from the magnetopause, that is the source location of perturbations, have
weaker initial intensities weighted by an exponentially decaying factor,

m
!
{
-
|
1R,
» exp{—J' (—f);dr}.

In this factor, f is defined by (6), 11R, is the radial distance of the
magnetopause from the centre of the earth and r, represents the radial distance
: of the turning points concerned. As illustrated in figure 5 following table 1, even
when the source perturbations in the magnetopause have a uniform spectrum
(expressed in an arbitrary unit) in the frequency range of interest, the energy
spectrum of the excited cavity modes can have sharp peaks at discrete
frequencies in agreement with observations. The discrete nature of the cavity
mode spectrum can be, therefore, viewed as the consequence of the following
fact. A potential barrier is imposed on the coupling of magnetospheric
h perturbations (at the magnetopause) into the cavity modes as the outer turning

points of the cavity modes do not match the location of the magnetopause.
Therefore, in table 1, the values of 7, and A,, are considered to be the most likely
periods and east-west wavelengths of the field-line resonances excited in the
magnetosphere.

3. Summary

We have theoretically explained the discrete nature of ULF pulsations
observed in the magnetosphere by using a cylindrical model (Radoski 1970,
1976). A second-order wave equation is derived to characterize the coupling
between the poloidal and toroidal modes of the hydromagnetic waves. When
the experimentally determined plasma density radial profile of the ‘1/r*’ form
(Cummings et al. 1969; Park et al. 1978) is used, it is found that the wave
equation has two turning points along the radial axis. Undamped eigenfunctions
with discrete eigenvalues are found in our collisionless case. They are
conceptually analogous to the case that has discrete eigenstates when a particle
is trapped by a potential well as discussed in quantum mechanics. However,
there is a difference between the two cases. In the present case, f(r) cannot
simply be expressed by the difference of a constant eigenenergy and a fixed
potential function as in quantum mechanism. This is because the eigenvalues
{or w) are multiplied by a spatially dependent function. Therefore, the potential
well determined by f(r) varies with each discrete eigenstate. The eigenfunctions
as shown in figure 3(a) and (b) decay rapidly toward the ‘equator’. However,
the eigenfunctions still remain finite at r = 1-6R, in the case demonstrated in
figure 3(b). This means that the pulsations can still be observed at the surface
of the earth in the polar regions where they are a distance {nR, away from the
equator. We have calculated the eigenperiods 7, of the most readily excited
modes and the most likely values of the east-west wavenumbers A,, as
tabulated in table 1 for illustrative purposes. The wave eigenperiods are
calculated to lie in the P, 3—4 range.

Further work should include the sharp plasma mass density gradient
occurring in the inner magnetosphere (plasmapause) together with a realistic
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plasma variation for the outer magnetosphere. These results using a evlindrical
model should then be modified with a more realistic dipole field model of the
carth. Transient time damping of the cavity modes by hot plasmas due to
kinetic effects should also be included phenomenologically in the wave equation.
In this case, the cavity modes having complex frequencies become damped
quasi-modes.

This work is supported by the Air Force Office of Scientific Research, Air
Force Systems Command, U.S. Air Force, under Grant No. AFOSR-85-0133,
and by the NASA Grant NAG5-725. One of the authors (8.P.K.) wishes to
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A thermal instability leading to the filamentation of auroral electro-jet currents and giving rise to
purely growing magnetic field-aligned density irregularities in the E region of the high-latitude iono-
sphere is investigated. The physical process of the instability is through the modification of the electron-
neutral collision frequency due to the electron temperature perturbation in the electrojet. A dispersion
relation of the instability is derived, from which the threshold electrojet current and the growth rate of
the instability are determined. It is found that they become independent of the scale sizes of the irregu-
larities for scale sizes larger than about [3 m. The proposed instability can, thus, be considered to be one
of the mechanisms responsible for those observed relatively large-scale E region irregularities (Pfaff et al,,

1984).

1. INTRODUCTION

The high-latitude iocnosphere is constantly structured in the
ionospheric irregularities, (see, for example, Kelley and Mozer
{19733, Phelps and Sagaiyn [1976], Rino et al. {1978], Vickrey
et al. [1980], Weber et al. {1984], and Weber and Buchan
[1985]. The appearance of these density irregularities has gen-
erally been attributed to the excitation of plasma instabilities.
These include the Farley-Buneman two stream instability
[Farley, 1963], and the E x B and current-convective instabil-
ities [Ossakow and Chaturvedi, 1979; Keskinen and Ossakow,
1983; Mitchell et al., 1985). Recently, Weber et al. [1984] and
Cerisier et al. [1985] have invoked the E x B instability, and
Das and Das [1983] and Lee [1984] have proposed thermal
instability to explain large scale density fluctuations in the F
layer of the high latitude ionosphere, and Chaturvedi et al.
[1987] have considered the parallel current effects on the
onset of the Farley-Buneman instability in the auroral E
region. A comprehensive review of ionospheric irregularities
excited by some instabilities has been published in Review of
Geophysics by Fejer and Kelley [1980], and in Radio Science
by Keskinen and Ossakow [1983]. Both large and small-scale
irregularities have been observed from the E and F layers of
the high-latitude ionosphere. The Farley-Buneman instability
driven by electrojet currents is known to be effective in gener-
ating meter and shorter-scale irregularities of type I in the E
region. This instability has been extensively investigated by
radar techniques. The irregularities of type Il are of slightly
larger scale sizes and are generated through the E x B gradi-
ent drift instability. However, the growth rate of the two
stream instability as well as of the gradient dnift instability is a
function of the angle between the wavevecior and the direc-
tion of the electron drift. The growth rate becomes zero when
the wavevector is perpendicular to the drift direction. It is
therefore not able to explain the radar observations in the
direction perpendicular to the drift motion by using the linear
two stream instability mechanism. A two-dimensional nonlin-
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ear theory [Sudan et al., 1973] has, thus, been proposed to
explain the presence of the type II gradient drift irregularities
with wavelengths and propagation directions that are predic-
ted to be linearly damped. Furthermore, the temporal and
spatial power spectrum of the irregularities in the equatorial
electrojet have also been computed [Keskinen et al., 1979]
from simulations of the two-dimensional model. The results
are found to compare favorably with several 9-m type Il radar
spectra taken in the daytime equatorial electrojet [ Balsley and
Farley, 1971]. However, in the analyses of these instabilities,
energy equations are not incorporated because plasma tem-
perature perturbations can be ignored in these instability pro-
cesses.

If the ohmic dissipation of electrojet currents is taken into
account, we expect that a new instability caused by the ther-
mal effect may be excited. In this paper, we study this new
mechanism for the generation of irregularities in the auroral
electrojet under the condition that the electron drift speed
exceeds 3 times the ion acoustic speed. This thermal insta-
bility, will be shown also to produce relatively large-scale
(greater than tens of meters) E region irregular structures
which are polarized perpendicular to the drift motion. It is
then contributed additively to the nonlinear gradient drift in-
stability. This instability is first analyzed analyticaily and de-
scribed in section 2, in which the dispersion relation of the
instability is presented. This dispersion relation is analyzed to
determine the threshold and growth rate of the instability. The
results are presented in section 3. Conclusions and general
remarks are given in section 4.

2. DiSPERSION RELATION

We study the thermal instability excited by the background
efectrojet current. The vector orientation of Figure | is con-
sidered. where E;, = XE, is the dc driving field of the electrojet
current and B, = —ZB, is the geomagnetic field. Hence the
background Pederson (x component) and Hall (y component)
current densities are given respectively by

. Ly = 2
Jeo = —englt,g, — Uin,) = (nge” m)

'(\'./(‘}z + 9,2 + (m My, “.‘2 + Qiz']EO M
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Fig. 1. Filamentation of electrojet current by thermal instability.

Joo = —enylry, — Uioy) = —(nge?/m)
Q02+ Q) — (/MR + QNE, ()

where m(M), v (v,) and Q,Q,) are the electron (ion) mass, un-
perturbed collision frequency and cyclotron frequency respec-
tively. n, is the background plasma density; v,,=
~[eEo/m)(v,2 + Q,H)](%v, — ¥Q,) and v,y = [(eEo/M)/(v;?
+ Q) + §Q).

In the presence of thermal fluctuations, the plasma density
and the electron temperature of the electrojet are perturbed.
In terms of the unperturbed quantities n, and T,,, the total
density n and the electron temperature T, are expressed as
n=n,+0dnand T, =T, + 6T, where the quasineutrality is
assumed so that én, = dn = n; and dn and 4T, are the dunsity
and temperature pertubations, respectively. These pertur-
bations are, in turn, to introduce modifications on electron
collision frequency and the plasma conductivity. Since the
electron collisions are dominated by the electron neutral col-
lision in the E region, the collision frequency ¥, is proportional
to the square root of the electron temperature and can be
expanded up to the Jowest order temperature perturbation as
v, = v(1 + 18T,/T,;). The conductivity will also be expanded
up to the lowest order density and temperature perturbations
in a similar way. With the aid of these expansions and as-
suming that the linearized perturbations bear the general form
3P = 5Pe™ e having real positive y as the growth rate of the
field-aligned purely growing mode and k = xk, + yk, perpen-
dicular to the magnetic field, the transport equations given by
Braginskii [1965] are linearized to be

k-(dv, — dv) = —(dn/nyk -u, (3)
k- dv, = (iy — k- voNdn/ny) 4
obtained from the electron and ion continuity equations,
where u, = v, — v,
v, k-dv, — Qk x év, - Z= —i(k?/mX3T,
+ To0ning) — v k- v (0T, /T,o)

Qk-év, + v,k xdv,- = —4v, (k xXv,q-NT,;T,) (5)

e

vk (Bv, — 8v) + (M/myv, Kk -ov, — Qk x (o, — év) - 7
= — ik} /m[ST, +(T o+ TXSN/ng)] — v,k - Vo XOT/T,5)  (6)
Qk - (0v, ~0v)+ vk x (dv,~0v)-Z+(M/m)v Kk x dv;- £
= 4 G kX v MOT/T.) (7

obtained from the electron and ion momentum equations,
where v, = v, + (m/M)v_, + 7 + ik - vy, and
(7 + kv 0T, + i Tok - ov,

= v (k0,2 /Q,68T, — (m/M (3 — T T, T,

+(2/3n)Q ) — 2Am/M W (T.o — TXn/ng) @)

derived by the electron thermal diffusion equation, where
v, = (T,o/m)'’? and the differential ohmic heating source
XQ,,) = dJ¥no,*), with 0,* =(l/o + MQ*/ne?*?,)"' and
o = ne*/mv,, [ Braginskii, 1965], is given by

1
;‘ Q)= (“o/vu)zH Ven0 T, — Too(V o + LU/ Vi XO0/115)]
o

+ (m/ny2e*Nv,, + Q Q)2 9)
We can further express
8J% = 2J,%dn/ng) — 2enyd, - (6v, — dv)
= 2J,%(8n/ny) + 2en,{(k - up)[k - (dv, — 6v))]
+ (£ -k x up)[Z- k x (dv, — ov))]}/k? (10
Solving (5)«7) yields
k- (v, — év) = {[(mv,, — My Ja, + mQ,c J6T,/T,)
+[(mv,, — My, )b, —m2d,]
“(On/ng)l/lmv,, — MV,)" + m*Q,*)  (11)
and
k x (0v, — ov) -Z = {[(mv,, — MV, )c, — mf,a,)(6T./T,o)
- [imv,, — My, M, + mQb,]
(On/no/limv,, — M5,)* + m*Q.%]  (12)
where
ay= =ik T o= 4mv K - Voo + [(Mv,/miv,,” +Q,)))av,, +Q,)
by = —ikATo + T) + [Mv, v o/miv,,* + Q1]
cy=—1tmv 7k % v o+ My, mv,? +Q )y, —afd,) )
dy = [Mv,Q/m(v,,* + Qb
and
a= kT, +dm kv,
b=ik’T,
= Ame K x v f
From (3) and (11), we have
'k - ug + [(mv,, — M )b, - mQ,d, }/[(mv,, — MV, )? + m*Q, %]}
dningy = —ilmv,, — M¥)a, + mQ,c, 1/ l(mv,, — M¥, )2
+ m*Q, IO, T,,) (15)
substituting (9) into (8). and with the aid of (4), (5). (10). (11),
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{12), and (19), the dispersion relation for the filamentation
instability of the electrojet is derived to be

y+ik - vo— dv, [luo/v,)? — Sk20, 7 /Q,% — 3m/M )3~ T,/ T,o)]

— i 3V QN SR v + Kk X v, - F])

= $v..{[(k?0,,2 /20,5 + 3m/2M X1 — T/ T,o) + (1 + Qv Vi)
[k - ug/kv,)* — Huo/v, Y llmv,, — My, )a, + mfdc,]
+ (1 + Qv v )E -k x ug)yk*v,*]
k- uo)llmv,, — My, )e; — m,a;]
+(byc, + a,d1/{tk - wp){mv,, — M7V, + m?Q,%]
+ [tmv,, ~ MV, )b, — mQ,d,]} (16)

This equation will be solved in the following to determine
the threshold electrojet current and the growth rate of the
instability, and the filamentation direction of the electrojet.
The thermal source of the instability is given by the ohmic loss
of the electrojet current manifested by terms proportional to
VeulUeo — Uigl™. Coilision and difusion losses impose a thresh-
old condition of the instability.

3. REesuLTS

Equation (16) is complex which can then be broken up into
two real equations. While the real part of (16) determines the
growth rate, the imaginary part of (16) defines the direction of
filamentation instability. These two equations are given, re-
spectively, to be

v = $vallug/v,)? — 5k, 2/Q,% - Am/M )1 — T,)3T,,)]

+ _%VMZVMZ/Q.){ _(kzvltz/ntz)

- ‘3’"/M~X1 - Tu/TeO) + (uo/vlc)z

+ Z(Q,Q.-2/"¢.Vin2)[(ﬂi/"inxk - uo)?

- (k * "oxf * k X uo)]/kz"uz}

(7 -k x Vol Vi + QXK - up)] (an
and
(k " 'eo)[’ e é(veul/ne)z] - §(V,,/Q,)(z' -k x v(O)

= %["enzvinzr/nrnl{vinz + Qiz)]

.(I + QCQI/V"'\"«"XZ‘ -k x Vpoxf -k x “0)/(k ¢ “0)

+ (v, /AU + Q /v, vi X7 - k X ug) (18)
where we have approximated ¥, by v, ie, |7 + (m/M), + ik
* ¥,o] «< v, is assumed, and neglected the ion thermal effect,
simplify the resultant equations.

In the quantitative analysis, we generally assume uneven
electron temperature (T,) and neutral temperature (7T, ~
T,, ~ 300°K). and the following E region parameters: v,, = 5

x10% " v, =3x10° s7!, Q=159 s”' Q, =88 x t0°
s7!, M(NO*)Ym =552 x 10* and v, = (T,/T)"?6.74 x
10* m/s will be used.

We first analyze (18) to determine the filamentation direc-

tion. i.e., the direction of k. With the aid of (10) and (2), and

using the E region parameters for simplifying the result, we
obtained

0 =tan '(k, k) = tan” "[dv, Q3,2 - Q)] (19

From (1) and (2). the direction of the clectrojet current is

also obtained to be
0y = tan™'(J o/J o) = —tan” (v, /Q) (20)
consequently, it is found
0—0,= —tan"'3v Q)= ~n/2 @1

We have thus shown that the result of thermal instability is
developing the current filaments along the electrojet current.
The excited instability is both magnetic field aligned and elec-
trojet current aligned. This feature is the characteristic nature
of the filamentation instability that is associated with purely
growing (i.e., zero real frequency) mode. If the excited mode is
not electrojet current aligned, this mode when has fii.te fre-
quency determined by k - u,. It is found that higher threshold
is required for excited nonpurely growing mode. Therefore, the
physical reason for proposed instability to be electrojet
current-aligned in addition to magnetic field-aligned is that it
meets the minimim threshold for its excitation.

We next use (19) for the direction of k, (17) then becomes

7 = $Vai(uo/0, ) TA0Q* + 7Q.%v, 7 + 9v, Q7 + v,%)
(1602 + 9v, 2 + v, v, 30 0402 + v, )]
— S(kv, /) —~ Hm/M Xt — T./3T,)
[+ vv, Q0,2 + Q)] (2
Using the E region parameters, we can express (22) as
7~ L19[(uy/v,)? ~(T,o/ TX162/4%)— 2.52(1 — T,/3T,,)] (23)

where v, = (3T,o/M,)"'? ~ 500 (T,o/T,)"'* m/s.
The threshold condition obtained from (23) by letting y = 0
is found to be

Uom ~ [(Too/ TX162/2%) + 2521 — T,/3T,)]%%0,  (24)

It is a functional dependence of T_/T,. In observations,
T,o/T, is, usually, less than 5 (R. Pfaff, private communication,
1987). We therefore limit our analyses in the following for
To/T, <5,

Figure 2 presents the relation between the threshold drift
speed u,,, and the scale iength A of the thermal instability. It
shows that u,,/v, quickly approaches to a minimum about
1.55 for A > 30 m in both T,o/T, = 2 and $ cases.

The dependences of the growth rate y on the scale length
are shown in Figure 3 for two cases in corresponding with
Figure 2. We first consider the case T,,/T, = 2 and assume

1

\

5} \
\I

Uoth/ Ve

A (m)

Fig. 2. Threshold drift speed versus the scale length of the thermal
instability, where 7,7, =2 and ¢, ~ 707 ms (solid line} and
T.o T,=5and r, ~ 1120 m:s (dashed line) are assumed.
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Fig. 3. Growth rate versus the scale length of the irregularity,
where the solid line represents the case E, = 75 mV/m, u, = 1.5 km/s,
and T,/T, = 2, and the dashed line stands for the case E, = 150
mV/m, 4, = 3km/s,and T /T, = 5.

that u, = 1.5 km/s corresponding to a dc driving field E, = 75
mV/m. In this case, only perturbations with scale lengths
larger than 11.5 m can be excited. The growth rate quickly
reaches a maximum 2.86 s~ ! for A > 30 m. We next consider a
strong clectrojet current case with E, = 150 mV/m and u, = 3
km/s. strong ohmic heating leads to large T,,/7, and a ratio 5
is thus assumed. The minimum scale length of the instability
increases only slightly to 13 m. However, the maximum
growth rate increases to about twice the previous case.

4. DiscussioN AND CONCLUSION

We have shown that a thermal instability can be excited
when the electrojet currents are intense enough. This insta-
bility can cause the filamentation of the electrojet currents and
gives rise to tens to hundreds of meters E region irregularities.
The physical process of the instability is through the modifi-
cation of the electron-neutral collision frequency due to the
electron temperature perturbation in the electrojet. The col-
lision frequency increases with the temperature perturbation.
This, in turn, further increases the ohmic loss of the electrojet
currents. A thermal instability is thus excited through such a
positive feedback process. Here we have considered a mag-
netoplasma, and hence the heat conduction in the direction
perpendicular to the magnetic field is greatly reduced. In this
case instability becomes favorable to be excited in magnetic
field-align structure and the heat transport processes are es-
sentially determined by the collisional coupling between elec-
trons and neutrals. Electron gas absorbs the energy from the
heat source and dumps a fraction of it to the neutrals. For
scale sizes larger than about 13 m, the diffusion loss can be
neglected and thus the threshold and the growth rate of the
instability become independent of the scale sizes of the irregu-
larities.

We also note that unequal electron and neutral temperature
in the high-latitude ionosphere were observed [Schlegel and
St-Maurice, 1981. Wickwar et al, 1981: Stauning, 1984).
Ohmic di-sipation of the electrojet current may be partly re-
sponsible for the elevated electron temperature. High thresh-
olds are required for the instability because of the additional
damping imposed by T,, > T, condition as shown in Figure 2.
The threshold can be exceeded at high latitude when intense
electrojet currents are present. Hundred-meter scale irregu-
larities can be cxcited by the thermal instability in less than a
second. Once the threshold conditions are met for the thermal

instability, the Farley-Buneman instability can be strongly ex-
cited in much shorter time scale (millisecond). This is because
the threshold of the Farley-Buneman instability is much lower
than that of the proposed thermal instability. It has been
shown [Ossakow et al, 1975] that the effects of finite k,,
should also be considered in determining the maximum
growth rate of the Farley-Buneman instability for such large
transverse currents. However, we don’t expect, in reality, that
the relative drift speed can be too much larger than the thresh-
old drift of the thermal instability. Therefore the proposed
instability will prefer to operate for the case of minimum
threshold (k,, = 0) instead, so that the diffusion damping is

. minimized. Though the proposed instability for generating

large scale irregularities has much smaller growth rate than
that of the Farley-Buneman instability, it does not imply that
the proposed instability will not have significant impact re-
garding the ionospheric disturbances. On the contrary, the
perturbations introduced by the large-scale field-aligned den-
sity irregularities to the ionosphere are believed to be impor-
tant by the facts that the large scale field-aligned density ir-
regularities usually have high saturation levels (e.g., fluctu-
ations in a few percent of the background density have often
been observed in the HF heating experiments), and can stay
for a very long period of time even after the driving force is
removed. While our proposed thermal instability can be devel-
oped in less than a second, E x B instability that can also
excite large scale irregularities takes a few tens of seconds for
its development.

The excited hundred meter scale ionospheric irregularities
should then be able to cause spread E echoes in ionograms.
Also, in the absence of F vegion irregularities, these E region
irregularities may still cau.e amplitude and phase scintillations
of beacon satellite signals. These phenomena can be experi-
mentally studied with coordinated incoherent scatter radar,
ionosonde, and scintillation measurement techniqucs. In addi-
tion to the distinct difference in scale lengths, the irregularities
induced by the proposed mechanism are purely growing
modes (i.e.. zero real frequency), while those excited by the
Farley-Buneman instability have real frequencies.
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Abstract

An instability that leads to the filamentation of large-amplitude Alfven waves
and gives rise to purely growing density and magnetic field fluctuations is studied.
The dispersion relation of the instability is derived, from which the threshold
conditions and the growth rates of the instability are analyzed quantitatively for
applications to the solar wind plasma. We have examined their dependence on the
filamentation spectrum, the plasma f, and the pump frequency and intensity for both
right-hand and left-hand circularly polarized Alfven waves. The excitation of
filamentation instability for certain cases of interest is discussed and compared with
that of the parametric decay and modulation instability. The relevance of the

proposed instability with some observations is commented.




1. Introduction

A great deal of interest in the stability of the MHD system in the presence of
finite amplitude Alfvén waves has arisen in recent years [Wong and Goldstein,
1986, Terasawa et al. 1986; Longtin and Sonnerup, 1986). It is mainly stimulated by
the frequent observations of large-amplitude hydromagnetic fluctuations in the solar
wind at 1 AU [Belcher and Davis, 1971)], in the high speed streams of the solar wind
[Abraham-Shrauner and Feldman, 1977], in the upstream of the Jovian bow shock
[Goldstein, et al., 1985], and in the interplanetary shocks and the terrestrial foreshock
[Vinas, et al. 1984; Smith, et al., 1985]. These fluctuations are generally believed to
be circularly polarized Alfvén waves propagating almost exactly field aligned.
A class of parametric instabilities excited by the circularly polarized Alfvén
pumps has thus been investigated. Two different instability processes are currently
discussed in the literature. One leads to the parametric decay instability [Galeev and
Oraevskii, 1963; Sagdeev and Galeev, 19669; Cohen and Dewar, 1974; Terasawa et al.,
1986}, and the other one gives rise to the modulation instability [Lashmore-Davies,
1976; lonson and Ong, 1976; Goldstein, 1978, Derby, 1978; Longtin and Sonnerup, 1986].
Moreover, the modulation instability has also been analyzed in the region that
describes the nonlinear evolution of the Alfvén waves propagating along a
static magnetic field [Mio et al. 1976a and b; Mjglhus, 1976; Spangler and Shering,
1982]. A derivative non-linear Schrodinger equation possessing soliton solutions is
derived to govern the evolution of nonlinear Alfven waves. On the contrary, Ovenden
et al. [1983] have shown that the evolution of nonlinear Alfven waves is governed by
a set of three coupled equations which in turn are related to the nonlinear
Schrodinger equation with known soliton solutions. The possible applications of

Alfvén solitons to solar and astrophysical plasmas have been discussed by




Ovenden et al. {1983] and Spangler and Sheerin [1983).

Recently, Sakai and Sonnerup [1983] investigated the effects of dispersion on
the modulation instability excited by the circularly polarized Alfven waves. Their
analysis is restricted to the situations that dispersive effects are weak and the wave
number k of the sound wave is much smaller than the wave number k, of the pump
wave (k << k). These restrictions have then been lifted in the more recent work
by Wong and Goldstein [1986). They study the dispersive effects on both the
modulation and decay instabilities in a unified manner over a wide range of physical
parameters. In addition, the results show that the maximum growth rate of the
modulation instability occurs as k is comparable to k,. A new but weaker
instability existing in a very narrow bandwidth near k = k, has also been
revealed by their analysis.

In this paper, a filamentation instability which has not been considered by
the previous workers is analyzed. It is known that a large-amplitude, initially
uniform, wave propagating in a plasma can break up into filaments because of the
filamentation instability [G. Schmidt, 1979; Kuo and Schmidt; 1983]. This starts from
small perturbations in the plasma density and it results in a modulation of the plasma
dielectric constant and wave distribution, which in turn increases the density
perturbations. The purpose of the present paper is to show that the filamentation
instability can be excited together with the parametric decay and modulation
instabilities by the large-amplitude circularly polarized Alfven waves in the solar wind.
The threshold conditions and the growth rates of the instability will be determined
and compared with those of the decay instability and the modulation instability. Some
observations will be commented for corroborating the predicted characteristic of the

proposed instability.




The organization of the paper is as follows. In Section II, we derive the
coupling equations for Alfven sidebands and the purely growing magnetostatic mode.
A dispersion relation is obtained in Section III and analyzed for the threshold fields
and the growth rates for various cases. The numerical results are also given in

Section II1. Finally presented in Section 1V are a summary and brief discussions.




I1. Coupling Equations

We investigate the propagation and filamentation of ducted large-amplitude,

circularly polarized Alfven waves in infinite, spatially uniform plasmas embedded in a

constant magnetic field §° = QBO. The wave magnetic fields are

represented by

- " . i(k z—w t)
Bp* = (x +1iy)B ° o

e + c.c.
- | %

(1)

where Bp is the unperturbed wave field intensity, assumed to be constant and a

real quantity for simplicity, the + signs refer to the right-and left-hand circular

polarizations, respectively; k, and w, are the wave number and angular wave

frequency, satisfying the dispersion relation wo’ = (1

w,/ Q) kv ?; wherein v, and R are the Alfvén speed and the

ion cyclotron frequency, respectively.

The zeroth-order velocity responses of electrons and ions to the Alfvén waves

can be written as

i(k z-w t)
o

Voer = @ :wo/sziﬁpit == (x t1y) (1, /k,) (B /B )e o (2)

+ c.c.

where the subscripts ¢ and i refer to electrons and ions.




The process under consideration is the scattering of the unperturbed Alfven
waves into sidebands (propagating oblique to the z direction) by the simultaneously

excited density perturbations associated with the purely growing magnetostatic modes.
Let k = Xk be the filamentation wave vector, the density and magnetic
field perturbations of the purely growing magentostatic modes have the expression

n, = ¥,e%coskx
and

ﬁ. = 'z\'l\i_e'”sinkx,
where ?1'. and ’[\3'_ are real amplitudes, and 7 is the growth rate;
quasineutrality has been assumed. The basic equations that are linearized for

analyzing the purely growing modes include the coatinuity equations, the momentum

equations for both electrons and ions, and the Maxwell equations:

3 o K 3
Yns + no I vsex =0 Yns +no % vsix (3)
N ) N .
- - _ ~ 9 - + i - ~ B
mve + fe x(Te/no) T ns e(ES . vsexz )
(@)
- > - 3 > - ~
= - — + = B
sy * Fl X(Ti/no) Ix ns“-e(Es Vsixz )
3 - 3 - _ e
F Esy = (Y/C)Bs ang . BS (Aﬂnoelc)(vsey vsiy) )

where n,, T, and m(M) are the unperturbed plasma density, and the

unperturbed electron (ion) temperature and mass, respectively; F,; are

the nonlinear Lorentz forces experienced by electrons and ions that reduce to the




pondermotive forces in the unmagnetized plasma case. In terms of V

and 6Vei: that represent the velocity responses of electrons and ions to

the unperturbed Alfven waves and the sidebands respectively, the nonlinear Lorentz

forces are given by

F o/ = 7(v Sy
e,i'Be, { pe,it ve,it) +i€e,ime,1/wo)
(-ik &v: . ¥ xa-% (53 x s
0 e,itz pe,it Vpe,1:XIVx (v, 4 x2)]} + c.c.
(6)
where the notations m,; = m(M) and ¢; = + 1 are used. One c¢an

show in a self-consistent way that the nonlinear Lorentz forces act only in the x

. . . = A
direction, 1i.e., Fej = X Fe‘..

~

. . - A
We now substitute the expressions Veei = (X Veeix

yetsinkx, V. =

A~
+tyv sex

sejy

~s

Vix = Veino E' =y g.ye""coskx and Eej =X ?eje"‘sinkx into (3)-(5). The relation 'E\f‘/Bo =

[P/ (WP, + i2c?)]¥,/n, is obtained and the resultant equations can be combined into a

single coupled mode equation for the purely growing magnetostatic mode

pei+
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This equation gives the purely growing density perturbation as a function of the

Alfven waves and sidebands. Without the nonlinear Lorentz forces, Eq. (6) reduces to

the linear dispersion relation of the magnetosonic eigen-mode. The magnetostatic
mode is, however, a nonlinearly driven mode.

The Alfven sidebands are excited through the beating current density driven by

the Alfven pump wave fields on the density perturbation of the magnetostatic mode.

The coupled mode equation for these sidebands can be derived from the following

fluid equations for electrons and ions together with the Maxwell equations:

3 > > _ - __S_ . > >
TS Gnt + V-(noévei + nsvpei) =0 Ye Gnt-+v (noévit + nsvpii) (8)
> 1 - _ /
<SEi + < Gvet x zB0 = - (Te noe) v 6nt (9)
_@_ > __ 2 - _ > ~ (9,)
5t évit = cSV(Gnt/no) + (e/Mc)(Gvii 6vet) XZBO
=13 3
v xaﬁi = -~ 57 6B, (10)
and

-

7xsB, = (i e/ (89, -6V ) + (a/n )@ -V )] (11)

2
= +
where cs (Te Ti)/mi'




We have neglected the nonlinear Lorentz forces (V -VV) in (9)
and kept the beating currents (n.Vp+) in (8 and (11) as the driving

sources of the Alfven sidebands. The underlying reason is that the purely growing

mode is more effective in producing density perturbations than velocity perturbations.

Following the functional dependence of the magnetostatic mode, we cxpress the

physical quantities of the sidebands as

. . .- . i(k z- w_t)
v, = [(x8v . t1yév . Jcoskx +1z 6v_  sinkxle'"e ° ° 4 c.c
ei* eitx eity eitz et
) itk z-w t)
én, =i 6n+sinkx e'te ° ° + c.c.
X . ) N . i(koz-wot)
8B, =[x tia,y)coskx-1z(k/k )sinkx]éB, el'e + c.c. (12)

where the upper sideband (Tc'+ = R.o + K, w, = w, + i7) and lower sideband (?_ = R'o-fc',

w. = w, -(i7)*) propagate together along the magnetic field and form a

standing wave pattern across the magnetic field, a, are unknown parameters

defining the polarizations of the Alfven sidebands and will be determined shortly; the
expressions of §E + can be obtained from the Faraday law (10).
Substituting (12) into (8)-(11), and eliminating S'ﬁ'i from (8) and (9),

we first obtain
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2
{ vA/w

o o)(ﬁs/no)(nplso) + (wO/ko)

(13 atwo/Qi)(Ght/Bo) /E (13)

where £ = 1 + (k/K)2(0/w,)2(1-1,2/%) (w,2/k 2v;-1), and v, = (T/M)Y? is the ion
thermal speed.

The missing component §V,, can be obtained from the z

component of (11), it reads

esz = Vyuy o (kVp/0,) (8B, /B ) (14)
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These relations of (13) and (14) are then used in the remaining two equations,

i.e., the x and y component of (11), leacing to the determination of the parameter

2,22

2 2.2
a, = (Lo /2)[1-( /0 W2/ ~1)] + (£ £, fu ) (KCva/a3) (L4 k2 C)

1+

2, 2,2 2
{(1/f two/Qi)[l—(ko/k) (wo/kovti—l)] |

+ -a2/uln edviiel-Ge o W2 v -1 (15)

ti

and that of the coupled mode equations for the Alfven sidebands

2 2, - 2,,2 2 = 2 2 v
{l_(ko/k) (Qi/wo) (l+atwo/ni) (wo/kovti D/t + 0"i(knvl\/ﬂiwo)}(<SBi/Bo)
- C(U/F *w [/9.) (k52 Iw?) (R /n ) (B /B ) (16)
TTo i oA o s o p o
Equation (16) shows the sideband fields to be produced by the pump field and
the purely growing density perturbation of the magnetostatic mode. Thus, equations

(7) and (16) form a complete coupled set of equations describing the proposed

instability process.
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l{I. Dispersion Relation

With the aid of (2), (13), (14) and (6), the coupling term on the right hand side

of (7) can be expressed explicitly as

s - - . 2, .2 2,2
h (F, + FO/M = ‘ZI‘(Qi/“’o)(ko"Ami) ({1 +k/k 3 (wo.Qi/kivi)[at-l-(m/M)

(1 +°t) (1 two/Qi)

2 2 - -
- (l/f)(ko/k) “‘;/“’o) (1;% “’0/91)]}(531/30) + (91/“’0)

(At /a)
2 2. 2,2 .
- (k0% @ e 102 /0d) 6) (ns/no)(Bp/Bo))(Bp/Bo) an

Substituting (17) into (7) and combining the resultant with (16), we finally obtain

the dispersion relation

2 2.2 2 2 2 2 2
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Equation (18) is a general expression of the dispersion relation for filamencation
instability of ducted Alfven waves. It will be analyzed in the following to determine
the threshold conditions and the growth rates of the instability.

In principal, (18) is a quadratic equation in 7 and can be solved analytically.
However, since the coefficients of (18) are complicated functions of the constant
parameters B = c¢%/v’, and K = K|V,/fi and the normalized
variable parameter K = k/k, (the notations used in Wong and Goldstein [1986] are
adopted). A numerical analysis of (18) with different parameters is desirable. In
doing so, we vary K from 0 to 2, and examine the dependences of the threshold
intensity and the growth rate on B and K for both right-(R) and left-hand (L-H)
circularly polarized Alfven waves. Presented in Figures 1-4 are the dependence of the

normalized threshold intensity (#,) on K. rr2th =

(Bp/Bo)zthis obtained by setting 7 = 0 in (18). Figures 1 and 2

correspond to the R-H circularly polarized waves. It is shown that the filamentation
instability has a lower threshold level for a wave with a smaller frequency (i.e.
smaller «). In addition, the threshold of the instability also varies with A For
very low frequency waves (K < 0.05) the threshold intensity increases with B
It, however, becomes a decreasing function of B8 for x > 0.1. This trend has
been demonstrated in these two Figures, wherein £ = 0.01 and 0.3 are used as the
representative parametric values. We have excluded the threshold values in the
neighborhood of X (marked on the curves) from the Figures. This is because, in that
wave number region the nonlinear Lorentz forces on electrons and on ions are in

opposite direction with comparable magnitude so that the two terms proportional to

(Bp/Bo)z in (18) tend to cancel to each other and the threshold, thus, becomes

very high.




Figures 3 and 4 correspond to L-H circularly polarized waves. It is found that
the instability can only be excited by waves with higher frequencies (e.g. x 2
0.15) with reasonable thresholds. The dependence of the threshold on « for 8 = 1.5
and that on # for « = 0.3 are also shown in Figures 3 and 4, respectively. It
appears that the instability prefers to be excited in the region K < 0.5. Otherwise,
the threshold increases very fast with K. In the region K < 0.5, the threshold
decreases with both x and 8 until the instability becomes forbidden for the region

of very small x (e.g. the region below K = X marked in both Figures 3 and 4 for
k= 0.3 and B = 1.5).

We next present the growth rates of the instability. Shown in Figures 5 and 6
are the functional dependence of the growth rate < on the wave field intemsity o
of R-H wave for low A= 0.5) and high A= 1.5) cases, where x and K are
considered to be constant parameters. In order to obtain adequate information for
the dependencies of v in these two cases, two representative values for each of the
two parameters £ and K are chosen in the figure presentation. « = 0.01 and 0.3
stand for the cases of the low-frequency and high-frequency waves, respectively. We
then use K = 0.1 and 1 to characterize the regions of large-scale and small-scale
filamentation instability, respectively. The results show that, in general, the growth
rate increases with 8 and K and it decreases with x For L-H wave case, the
instability can only be excited by the high-frequency waves in the high S plasma.

We, therefore, choose # = 1.5 and x = 0.15 and 0.3 to evaluate the dependence of

4 on 7. Again K = 0.1 and 1 are considered and the results are presented in
Figure 7. In this case, the growth rate increases with x for K = 0.1 and becomes a

decreasing function of « for K = L
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1V. Summary and Discussion

We have investigated the filamentation instabilities of large amplitude, circularly
polarized Alfven waves propagating along the background magnetic field. The
instabilities are excited via the scattering of the unperturbed Alfven pumps
(considered as a pump wave) into sidebands by the density perturbations that are
associated with the simultaneously excited purely growing magnetostatic modes. A
four-wave coupling process is then considered for the analysis of the instabilities.

The theory developed is based on the two fluid plasma model. In general, the fluid
model is valid when the condition kzvfi/qz = K3r28/2 << 1 is satisfied. In the

present work, the maximum value of the parameter K2x28/2 for K = 2, k = 0.3

and B = 1.5 is 0.27, which reasonably justifies the use of the fluid model. For the

more general consideration that includes the region szﬂ/z 2 1, however,
a kinetic plasma model should be used.

The nonlinear source for the Alfven sidebands is the beating current driven by
the pump wave field on the density perturbation of the purely growing mode, whereas,
the nonlinear Lorentz force (which reduces to the pondermotive force in the
unmagnetized case) introduced by the spatial gradient of the resultant high frequency
wave field is the driving source for the nonoscillatory (i.e., the purely growing) mode.
These nonlinear effects result in the coupling of nonoscillatory mode with the Alfven
sidebands through the Alfven pump wave. A dispersion relation of the instabilities is
thus derived by combining the coupled mode equations together. Solving the
dispersion relation, we have determined the threshold fields and the growth rates for
the caes of the R-H and L-H circularly polarized pump waves. We have also
determined the functional dependencies of the threshold field Ny, on the

wavenumber K of the nonoscillatory mode, the 8 of the plasma, and the frequency «
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of the pump (see Figures 1-4). The dependence of the growth rate 7 on the pump
intensity n* is examined for several sets of representative parameters (K,B5,x)
(see Figures 5-7).

For the geophysical applications of the concerned instabilities, we follow the
examples discussed by Wong and Goldstein [1986). The finite amplitude Alfvén waves
that were observed in the high speed streams of the solar wind and discussed by
Abraham-Shrauner and Feldman [1977] are the left-hand circularly polarized with
x =03 and 7 = 0.05. As shown in Wong and Goldstein [1986], these waves are
stable to both the modulational and the decay instabilities for 8 > 1. From our
analysis, however, it is found that these waves are unstable to the filamentation
instability in the small K region. The growth rates of the instability evaluated for
B = 1.5 have been presented in Figure 8. We, therefore, predict the appearance of
nonoscillatory, cross-field plasma density perturbations and magnetic field
perturbations in the background solar wind plasma. However, these predicted cross-
field density striations and magnetostatic structure probably have not been observed
in Abraham-Shrauner and Feldman [1977]. The difficulty in the in-situ measurements
by satellites lies on the large velocity difference between the solar wind and the
satellite.

Low frequency, left-hand polarized finite amplitude Alfven waves have also been
observed in the upstream of the Jovian bow shock [Goldstein, et al., 1985]. It is
shown from our analysis that this wave is filamentally stable. In fact, only the decay
instability is very weakly unstable for the case « = 0.02, ”» = 0.05 and 8 = 1.5.
Whereas, the observation of right-hand polarized waves were not reported. It can be
speculated from the linear dispersion relations of the Alfven waves. Because, in such

low frequency region, the dispersion relations of right and left-hand polarized Alfvén
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waves are almost identical. If it is indeed so, the filamentation instability ts found to
be unstable against to the right-hand pumps in the entire K region of interest. The
functional dependence of the growth rate of the instability on K is presented in
Figure 9. Again, this instability introduces nonoscillatory, cross-field density and
magnetic fluctuations to the background plasma, and thus, can attribute to the
observed correlations in the magnetic and density fluctuations.

For the other cases of right-hand polarized waves in interplanetary shocks and
in the terrestrial foreshock [Vinas, et al., 1984; Smith, et al., 1985], the filamentation
instability requires a threshold power higher than that used by Wong and Goldstein

(1986] in each case.
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Figure Captions

Functional dependence of the threshold field intensity on K and # for low

frequency (x = 0.01) R-H circularly polarized pump.

Dependence of the threshold field intensity on K and g for high frequency

(x = 0.3) R-H circularly polarized pump.

Dependence of the threshold field intensity on K and x for L-H circularly

polarized pump in high A= 1.5) plasma.

Dependence of the threshold field intensity on K and B for high frequency

(x = 0.3) L-H circularly polarized pump.
The dependence of the normalized growth rate ¥ = 7/kV, on the
R-H circularly polarized pump intensity n?, where K = 0.1 and (x A
as indicated are set in the evaluation.
Dependence of 4 on m of R-H circularly polarized pump for K = 1
and (x, A as indicated.
Dependence of ¥ on 77 of a L-H circularly polarized pump in a
plasma with g8 = 1.5,
Dependence of ¥ on K for a L-H circularly polarized pump with 7
=0.05and « = 0.3 in a plasma with 8 = 1.5
Dependence of ¥ of K for a R-H circularly polarized pump with 77

= 0.05 and < = 0.02 in a plasma with 8 = 1.5.
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Abstract

This work is intended to establish a useful method for studying the coupling and
propagation of hydromagnetic waves in the dipole model of the magnetosphere. A
numerical scheme for solving a system of two mixed-type coupled partial differential
equations having variable coefficients is developed. The stability condition of the
scheme has been examined by the Fourier method and matrix method. An initial value
problem has then been solved to demonstrate the relevance and applicability of the

work to the study of magnetospheric hydromagnetic waves.




l. Introduction

In the study of wave propagation in inhomogeneous magnetoplasma, the physical
system is generally characterized by coupled partial differential equations. One
specific example is the geomagnetic micropulsation originated by the hydromagnetic
waves in the magnetosphere [1-3]. It is shown that these waves in the poloidal and
toroidal modes a‘re generally governed by two coupled second order partial differential
equations [4, 5]. Though these two equations éan be reduced and combined into 2
single second order ordinary differential equation for a simplified cylindricai model of
the magnetosphere [5], there is no apparent way to simplify the system of coupled
equations for a more realistic dipole model of the magnetosphere [4] in
which a dipole geomagnetic field is assumed. Moreover, the equation for the toroidal
mode 1s shown to be a parabolic type of partial differential equation, while the
poloidal mode is elliptic. Both equations have variable coefficients, therefore, for
practical applications, there is a considerable interest in finding or developing means
of dealing with such a system of two mixed-type coupled partial differential equations
with variable coefficients.

Because of the difficulty anticipated and approximations necessary in the
analytical methods [6, 7], a numerical approach is, therefore, thought to be more
feasibile. Various numerical methods have been developed for dealing with partial
differential equations. However, the applicability of each method is mainly determined
by its range of stability. As early as the 1960's the energy method had been used to
solve certain classes of the partial differential equations with variable coefficients (8,
9]. The range of applicability of the method has also been discussed and
demonstrated for limited cases. Thus, the elliptic type partial differential equation

with varible coefficients has to be solved by the high-order methods [10, I1]. On the




other hand, the Galerkin method [I12]) has been shown to be more applicable for
dealing with an equation of the form u, = P(x, D)u, where D is a differential
operator with respect to x. It is noted that all the above mentioned methods have
been developed based on the finite difference techniques.

The Fourier methsd is widely used for the stability analyses of the finite
difference schemes [13, 14]. However, an analytical study of the stability of the
difference schemes by the Fourier method was often found to be very complicated or
practically impossible, Numerical approaches were thus introduced [i5, 16]. In
addition to the Fourier method, a matrix method [17, 18] which includes the boundary
conditions in the analysis was also suggested for the stability analysis. In the present
work, both method will be employed in the stability analyses. The Fourier method
will first be used to examine parametrically the stability conditions of the designed
scheme. These conditions will then be incorporated in applying the matrix method
which is thus used to exemplify the validity of these stability conditions.

For the Fourier method, solutions of the monochromatic wave form are
substituted into the difference scheme and the stability boundaries are obtained by
von Neumann condition. In the second approach, the difference equations will be

arranged into a matrix form AV, , = BV;, where A and B are matrices and
Vi and V; are solution vectors at grid number j + 1 and j  The stability
of the finite difference approximation is then ensured if the absolute values of all the
eigenvalues of A'!B are less than or equal to 1.

In Section II, the coupled hydromagnetic wave equations in the dipole coordinate
system are introduced. They represent a set of mixed-type coupled partial differential
equations with variable coefficients. The finite difference equations which are derived

by a designed numerical scheme for the system of partial differential equations are

Ao
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presented in Section III, in which the stability analyses by Fourier and matrix method
are also presented. As a specific example, the boundary conditions of the wave
equations are specified in Section IV, Presented in Section V are the stability
conditions of the numerical scheme and the numerical solutions of the wave equations.

Finally, a summary and conclusion are in Section VI.




™

II. Governing Equations

Considered next will be the propagation and coupling of hydromagnetic waves in

the magnetosphere. The coupled hydromagnetic wave equations in the dipole model of

the magnetosphere are given by [4]

& 3 R & 3
HIHZ a? €¢ + H2G1 a €¢ + (F) €¢ = —Hz a—/z €¢ -mH2 5 fv (2)
where (v, u, ¢) form an orthogonal set of the dipole coordinates; ¢, and

¢, are the normalized toroidal (shear) and poloidal (compressional) mode fields of

the hydromagnetic waves,

&, H,
G2 G
r is related to v and p through the equation uvr + u?rf = 1,
2 2 -6
A% = A2 (143¢2Y (n)°

o

where A = is the Alfven speed at the equator of the earth, a mode! plasma
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E mass density profile p = po(r)'" the plane of equator is assumed; B, is
the geomagentic field, R, is the earth’s radius, m is the azimuthal (i.e. east-west
. direction) mode number and w is eigenfrequency of waves.

Equations (1) and (2) constitute a set of mixed-type coupled partial differential

h equations with variable coefficients. vKuation (1) is a parabolic type of P.D.E., while

Eq. (2) is an elliptic type. For the convenience of the following analysis, Equations

(1) and (2) are rewritten as

P, =a(u)T,, + a(s)Tp + a(p)T (3)

[-a(mi)by 25 -ay(pdb, £ -ay(u)b T,

&
43}12

= bl(u,u)Pw + bz(u,u)P“ + bg(p, V)P + alv(u,u)b4Tw + azv(u,u)b4T“ + asv(u,u)b4T (4)

where P & €, T & ¢
H, G, i P 2
(1 =m =W N = (F‘mﬂl]

W i
b1="nT-bz=-Tn—»bs=‘mTz[;3] by =-m
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p TS X = X = P, T, a,, a,, 3
There is no apparent way to solve (3) and (4) analytically. A numerical approach is
therefore employed in the present study.

II1. Finite difference discretization and stability analyses

The governing Eq. (3) and (4) are approximated on a non-staggered grid with
grid increments Ap and Av. Both the computational grids used are carefully
chosen to ensure an algebraic system of equations that reach second order accuracy.
The standard two and three-point centered difference formulas to approximate first
and second derivatives with respect to p and v are applied in this finite difference
discretization. Moreover, a parameter # valued in the range (0, 1) is introduced as a
weighting factor into the system of difference equations. Thus, the numerical scheme
of the difference equations can change from fully implicit (6§ = 1) to fully explicit
(6 = 0). Based on the above discussion, the resulting finite difference equations

converted from (3) and (4) become

( 28v a + -ﬁ—" a2 ]Tf:} + ( ] a’1 2019 a3 JT’“

200 AV i Yitd
(A“ oal - L&, ]Ti_1
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_al - i 2 j Av j j+1
(1 asi b4 244 aayi b4 + mﬂjli b4 + 4 A—“z 6 a’lvi b4)T'I'+

(= a —— a) QAU J Av j i+l
Au? o b + 285 % by + Au? ? 4y, by + Ap 6 B, bl)ngl

L i L v, j Av . "
Rz % P 3Ap % batEfAn by-zpfa, bYTY
20 j Av 1
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L
where i 1 — I-l1and j: 1 — J-1
Two methods are used to establish the stability conditions of the finite
difference scheme which converts the differential equations (3) and (4) into the finite
difference equations (5) and (6).
A. Fourier method

In this method, the independent solutions of the difference equations are all

) I . j .
of the forms P’I B T, = ekl here
is a real spatial wave number which can have any value. Using these expressions for

P;' and T;' in (5) and (6), yields

AR S I (7)

AN O LTI o S (8)
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where Fl = [alm (COSkA#-l) + 233A1/ + 1(232 K;I smkA#) ]
Av . AV .
F, = -[ bl‘;—#—i (coskBu-1) + 20380 + i(2b,5% sinkap) ]

Fy = ((1-33b)-a;b, -A—ig(COSkAu—l)—f{alub4 %{cosk&t—lh Zag, b, Ay

. inkd,
- 1(a,by &E‘i + 2a, b, i‘—ZsinkAy))

and
F, = {(1-a,b,)-a,b 2 (coskdu-1) + {1-0)[a,.b _(2A.~ kap-1 . b, AL
4 3¢ 14A“z Iu4:“2C05 u-)‘*asu-{ ]

- i fa,b, HOKAY -2(1-6)a,, b Ssinku])

The coefficients a;, a,, a;, a,, a,, 3, b;, b, and by in the above

expressions are evaluated at g = lAp and v = jJAv, Eq. (7) and (8) can then be

expressed in the matrix form as

S b | (1-9F, i
oF F3] i) - [(1_0)1:2 F4} 4 ®)




{
N
}
{
|
& which leads the amplification matrix
v [ F3-&1-OF F, (1-6)F Fs-6F F, "
: F,-fF F, F4-6F F,
G =
(1-20)F, F,-41-6)FF,
| Fy-#FF, ' Fy-PF,F,

The definition of stability here is the classical von Neumann stability condition

which requires that the norm of the amplification matrix have to be less than or

equal to 1. It is noted that the amplification matrix has to be determined for every
grid point because of the variable coefficients appeared in the coupled equations of
the present study. The norm of the amplification matrix at each grid point is then
evaluated numerically. The result of a parametric stability analysis obtained by
varying the parameters Au, Av and 6 will be presented in Section II evaluated

numerically.

B. Matrix method:
By transforming the difference equations (5) and (6) into a heptagiagonal
matrix form, it reads

Aj+lEj+l = Bj-lEj-l (9)

b where
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(1-9b}  -2% (1-0)b),
Matrices A and B have dimension 2(I-1)x2(I-1), while matrix E has dimension 2(I-1)xI.
The stability of the scheme is then governed by the norm of the matrix A™'B.

V. Boundary conditions

In the magnetosphere, the inner boundary is located at the outside edge of

the ionosphere (r = 2R,), while the outside boundary is at the magnetopause (r

IOR,). We thus have the inner boundary at v = 0.5 and outer boundary at v

0.1. The other two boundaries are the rorth pole (4 = 0.25) and south pole (u

-0.25). These boundaries define the region -0.25 < 4 < 0.25 and 0.1 < v < 0.5 for

the magentosphere.




Assuming that the ionosphere is a perfect conductor, hence, the tangential
components of electric field at the inner boundary are equal to zero, which lead to
the fixed boundary conditions: P(v, 4 = + 0.25) = 0 = T(v, p = + 0.25). The
boundary conditions at the magnetopause P(v = 0.1, @) and T(v = 0.1, p) are, in
general, imposed by the external source such as the solar wind. They can thus be
assumed to be any funcitons of u for different'physical situation. In the present
work, we set the boundary conditions at v = 0.1 to be

P(0.1, »)

[]

P (#) = |sin(4rhy) |

0

T(0.1, u)
where P_(4) is a spatially distributed sinusoidal perturbation; h is the harmonic
number of sinusoidal perturbation; T = 0 is for the practical reason since the
perturbations in the frequency range of the toroidal mode at the outer boundary
cannot propagate into the magnetosphere.

The frequency w is given to be 2r x 0.002H, by the experimental data [19].
Two extreme cases with the azimuthal wave number m = 20 and 100 respectively will
be considered consistent with the observations ({m| = 20 -100) [19-22]. We
will also assume a reasonable densi*y index n = 3 in the numerical analysis. The
stability conditions of the numerical scheme and numerical solutions will be
determined by using these boundary conditions and parameter values.
VI. Results
In order to find the stability conditions by Fourier method which is
described in Section I A, the eigenvalues of amplification matrix G are evaluated at
every grid point. By varying the parameters Ap, Av and 9, the roots of a
second order equation defined by the eigenvalue equation are determined iteratively to

satisfy the von Newmann stability condition which requires the absolute values of both
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roots to be less than or equal to 1. Fig. 1 shows the v dependence of the maximum
absolute value of both roots of the second order equation over the entire range [-
0.25, 0.25) of p for several different 6 values and for the case m = 100, where
Ap = 0.004 and Av = 0.01334 are chosen for the reason stated in the following.
It should be pointed out that only 6 and Av are the sensitive factors in the
scheme. Because the grid number in the p di_rection will be the dimension of the
matrices A and B of Eq. (9) used for the analysis of the matrix method. Hence,
Ap, the grid size in the p direction, is limited by the memory size of the
computer, and determined reasonably to be 0.004. In other words, the dimension of
the matrices A and B is set to be 248 x 248 and the program is executed in the Cray
X-MP/48 of the Pittsburgh supercomputing center. As shown in Fig. 1, the larger ¢
is used in the scheme, the more stable scheme can be found. Therefore, the fully
implicit scheme (6 = 1) will be chosen to be the second parameter. For the accuracy

of the numerical solution, there is a need to find the minimum Av in the numerical

scheme. By specifying Ay = 0.004 and ¢ = 1, the functional dependence of the
maximum eigenvalue of amplification matrix G on v for different Av values is
shown in Fig. 2. From this analysis, the minimum Av = 0.01334 is determined. We

next apply the matrix method to examine the stability conditions obtained by the

Fourier method. As shown in Fig. 3, all of the eigenvalues of the matrix A™'B
in Eg. (9) are found to be less than 1. Therefore, the designed numerical scheme has
been proven to be stable consistently by Fourier and matrix method. In other words,
a viable numerical algorithm dealing with the mixed-type coupled partial differential
equations with variable coeffients has been developed.

Prescnted in Figs. 4 and 5 are the three dimensional plots for the resuits of

(v, p) and (v, p), where h = 2 is assumed. Using the relations [23,
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By=ﬁ——r‘;—'—3’—‘=‘%gy (10)
i v+ 4p2c3))M? Gy i
B, = -i_ M .aj’. - i B (12)
¢ W r7/2 qu wé
!
% the corresponding components of magnetic field perturbation B, B¢ and IB,J are

&
also obtained and presented in figures 6-8, where 3 " 1 x 10°° is assumed at

b the magnetopause. Using the same procedure for the stability analysis for m = 20

case, the optimum Av = 0.028 is found. It is then incorporated in the numerical

scheme in solving (1) and (2) for m = 20. The results of ¢ and ¢, together
with B, B, and B, obtained through (10)-(12) are presented in Figs. 9-13.
The results show that the field line resonance (toroidal) mode (ey,B¢,B“)
can be excited inside the magnetosphere through the coupling with the global cavity
(poloidal) mode (¢, B,) initiated by the perturbation appeared on the outer
boundary of the magnetosphere (i.e., magnetopause). The field line resonance mode
appears to be a localized oscillation as expected. For m = 20, the peak of the
oscillation is located along v = 0.23. It moves outward to v = 0.13 when m is
increased to 100. It is noted that, for m = 100 case, the frequency considered is too
low for the globe mode to propagate in the magnetosphere. Nevertheless, through the

tunneling effect the field line resonance mode can still be excited by coupling to the




excited by coupling to the decay part of the globe mode oscillation.

’ VII. Summary and Conclusion

A numerical algorithm dealing with the mixed-type coupled partial differential
equations with variable coefficients has been developed. The stability of the
i numerical scheme has been examined and solutions for the hydromagnetic wave
equations are obtained on non-staggered grids by this algorithm. The main
contribution of this algorithm is to offer an efficient way to examine the stability
conditions first by the Fourier method and then check them by the matrix method.

L Since these two methods are different, one can be sure of the stability conditions.

Moreover, this algorithm leads a way for a parametric study of the stability
conditions. It also becomes an advantage in the sense that the optimum parameters
which can increase the accuracy of the numerical solution can be determined together
with the stability analyses. Using the developed numerical scheme, the problem of
coupling and propagation of hydromagnetic waves in the realistic dipole model of the
magnetosphere can be studied. An example has been considered. The results are

presented in Figs. 4-13.
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Abstract. The temporal evolution of Langmulr
waves excited by high-power, high-frequency (HF)
radio waves In the lonosphere {s studied theoreti-
cally. This study is motivated by past observations
made with the 450 MHz radar at Arecibo Observa-
tory in Puerto Rico. Two kinds of nonlinear damp-
ing to the parametric decay instability are considered
in the derivation of the rate equation for the spectral
intensity of enhanced Langmuir waves. They are
Langmuir wave cascading caused by nonlinear Lan-
dau damping and cross-fleld electron diffusion. The
first damping process leads to the saturation of {ndi-
vidual unstable Langmuir wave. The second pro-
cess, which results from the incoherent scattering of
electron orbits by the total excited Langmulir waves,
yields anomalous damping that applies to each Lang-
muir wave. Consequently, Langmuir waves with
smaller growth rates will be suppressed by those with
larger growth rates. Such a mode competition pro-
cess may cause the overshoot of the HF-enhanced
plasma line observed with the Arecibo 430 MHz
radar. Favorable agreement is obtalned between
theory and the Arecibo observations.

Introduction

The HF-enhanced plasma lines observed In the
Arecibo heating experiments have been generally
attributed to the parametric decay instability,
whereby the plasma waves and heavily damped ion-
acoustic wave are parametrically excited by the
inJected HF heater waves [e.g. Feler and Kuo, 1973;
Perkins, et al,, 1974]. The excited plasma waves
then enhance the backscatter spectrum of the Are-
cibo 430 MHz radar at frequencies near 430 MHz
+ fyp where fyp, Is the frequency of the HF heater
wave. The radar returns at these two sidebands are
often referred to as HF-enhanced plasma lines
(HFPL,). One of the most reproducible phenomena
associated with the HF-enhanced plasma lines in the
F region over Areclbo is the so called main plasma
line overshoot [Showen and Kim, 1878; Showen and
Behnk~, 1978]. A clear demonstration of the
overshoot phenomenon Is presented in the Figure 2
of Showen and Behnke. However, the growth and
decay periods of the overshoot presented in that Fig-
ure are rather long in comparison with the recent
observations at Arecibo. It Is shown in the recent
study of temporal evolution of HFPL, that the HFPL
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signal exhibited an initial growth lasting for a few
tens of milliseconds before reaching a maximum
value, and then greatly reduced its strength in the
order of a second. The typical time scales for the
overshoot process of HFPL, at Arecibo are summar-
ized in Table I. These values are based upon the
recent data presented by Duncan and Sheerin [1985]
and DJuth et al. [1986], and the other unpublished
data. Based upon the experimental observation of
Coster et al., [1985) at Arecibo, It seems unlikely
that the anomalous absorption by HF-induced short-
scale (1-10m) Irregularities can account for this
overshoot phenomenon. In addition, recent efforts
made at Arecibo tqQ carefully measure the differential
absorption of the lonospherically reflected HF wave
have found an upper bound for the anomalous
absorption of the HF waves by the induced short-
scale irregularities that is no more than 109% power at
the heater frequency of 5.1 MHz {J.A. Feler, F.T.
Djuth, and M.P. Sulzer, private communications,
1986]. Given the fact that strong plasma line
overshoot was present during the absorption meas-
urements, this data supports the idea that anomalous
absorption does not play a key role in the plasma-
line overshoot phenomenon.

In the present work we propose a mechanism
that is based on the mode suppression process i{ntro-
duced by the resonance broadening effect to account
for the plasma-line overshoot phenomenon. It {s
expected that the presence of the parametric decay
instabilities gives rise to perturbations on the phase
space orblts of electrons (charged particles In gen-
eral). The result of the incoherent scattering of elec-
tron orbits by the total excited plasma waves can
lead to electron diffusion in the velocity space along
the magnetic fleid together with the cross-field
diffusfon in the coordinate space. On one hand,
these diffusion processes appear as an enhanced
viscosity to the electron motion. But, on the other
hand, they broaden the resonance interaction
between the electrons and waves. It has been sug-
gested that the resonance broadening effect can con-
tribute to the saturation of the parametric instability
[Weinstock and Bezzerides, 1973} mainly through
the velocity diffusion process, and further lead to the
mode suppression {Dupree, 1968; Dum and Dupree,
1970] effectively through the cross-fleld spatial
diffusion process. The mode suppression process can
be understood from the fact that the anomalous
damping Introduced by resonance broadening eflTect
to each unstable plasma line is proportional to the
total spectral intensity of the excited plasma waves.
In other words, the enhanced electron diffusion is
determined by the wotal spectral intensity, The
increase of the anomalous damping on the slowly
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TABLE I. The Arecibo 430 MHz HF-Enhanced
Plasma Line (HFPL) in the F Region

Range Typtcal

of Values Value
Total HFPL
Growth Period 2-50 ms 20 ms
Overshoot
Time Scale 0.1 -100s 1s
HFPL Overshoot
Ratio 10 - 100 50

growing plasma line can result frown the fast growth
of other lines in the same region. It wili be shown
later that the linear growth rate of each plasma line
depends on the wave propagation angle 6, (the
geomagnetic fleld) and the wavenumber k of the
plasma line. Consequently, the spectral lines having
smaller growth rates will be suppressed when their
linear growth rates are exceeded by the anomalous
damping introduced by the modes with larger growth
rates. A physical model based on the aforesald pro-
cess will be presented in the subsequent sections to
interpret the plasma-line overshoat phenomenon.

Theoretical Model

We consider the parametric decay instability near
the reflection Leight of the HF heater wave in the
jonospheric F-region. If an HF heater wave with the
ordinafry polarization is transmitted, the wave electric
fleld E, = 2E, can be assumed to be parallel to the
geomagnetic fleld B, = ZB, In the region near Its
reflection height. Electron plasma waves and lon
acoustic waves are then excited parametrically by the
imposed pump wave as the pump fleld intensity
exceeds the threshold of the instability. The linear
dispersion relation of this Instability for a dipole
pump wave E = E,e I""’L+ ¢.c. is given by [Nishi-
kawa, 1968; Kuo and Cheo, 1978],

dwwy(y +1/2) (7 +1,/2) = k}(e’El/m,m,) (1)
where wg and wq represent the frequencies of the fon
acoustic mode ‘and electron plasma mode, respec-
tively; the frequency matching condition
wgtw) = w, Is satisfled; v Is the linear growth rate,
l/q is the electron-ion collis;on frequency;

= (m/2)'? w, (T,/T,)* e - Te/2Tr3/2 pepresents the
ion Landau damping rate, and k, = kcosé for the
excited spectral line with k and a propa.gauon angle 8
with respect to the earth ma.gnetlc fleld.

The linear growth rate 7,(3 of the spectral line K
is then found to be

V= - l/g+l/ + [1 2% /2(m mw wg)' 2
cosd = ak'cosl- 3,- Bk (2)
where la = eE,/2(m mw,c,) 73, B, = vy/4,
B = —(7r/2)”20 (T, /’I‘)'ﬁ‘”e'T’/2Tr 32wy = keg and

wQNw have been used, and the maximum linear
growth rate is given by "fln?oqu = (0*/43,) cos?d- 4,

for k = k, = a’cos?@/442. 1t is seen that the linear
growth rate of the spectral line is a function of the
propagation angle ¢ and the wave number k and the
growth rate is maximized for each k at § = 0. How-
ever, the instability can also be excited at a large
propagation angle if the pump wave (s intense
enough. For a pump fleld exceeding the threshold
fleld, the maximum angle for the unstable [k | modes
is given by

box = cos™ '[(B, + B,k)/ak'?) (3)

where B, + 8, k< ak'/? is required for the instabil-
ity.

We now ronsider two possible nonlinear damping
mechanisms of the instabllity. One is due to the cas-
cading of the plasma lines and the other one is the
cross-field diffusion damping caused by the reso-
nance broadening effect. The cascading process
occurs when the amplitude of the excited plasma line
exceeds the threshold of parametric decay process.
The davghter plasma line then takes energy away
from the mother plasma line and thus slows down
the growth of the mother plasma line. If this decay
process does not drain much energy from the
mother plasma line, cascading process will proceed
further to excite more decay lines until the total
energy drained by the decay lines is large enough to
stop the growth of the mother line. Based on the
energy balance relation, the anomalous damping rate
Vgg introduced by the cascading process on the origl-
nal decay instability {s approximately equal to the
collisionless linear growth rate of the daughter decay
mode having the mother decay mode as the pump.
Itis

”iog \/E eEka/2(memlwocs)l/2 (4)

where E, g is the fleld amplitude of the mother decay
plasma line propagating at the angle ¢ and having the
wavenumber K.

In addition to the cascading process that can only
lead to the saturation of the instability, a second
non-linear effect which originates in the broadening
of wave-electron resonances by the random motion
of electrons in the excited turbulent fleld Is also con-
sidered in the study of the HFPL overshoot
phenomenon. Secular changes of the guiding center
positions, cyclotron radii, and phase angles of elec-
trons by the- turbulent fieid give rise to resonance
broadening and cross-fleld diffusion similar to those
produced by collisional scattering. It has been shown
by Dum and Dupree [1970] that the fleld-dependent
broadening can be expressed in terms of diffusion
coeficients which broaden the resonance function in
a similar way as the collisional damping does. Con-
sequently, an anomalous damping to the instability Is
also introduced by the resonance broadening process.
In the magnetized plasma, the cross-fleld diffusion
wiill be the major response of electrons to the
incoherent scattering by waves. The diffusion damp-
ing rate to the k line is thus obtained as

dg(k) = k"D, k. (5)

27](’0

where D = Z‘(CQ(Zxﬁk,) (Zxﬁkr)/Bg] ——
* K (wg+’7l?’o)

Yoo = VK'acosd’, and 11 ?<<w? Is assumed. Replac-
ing the summation by integral, we can rewrite {5) as
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Fig. 1. Temporal evolution of the spectral inten-

sity of the 40° plasma lines; the parameters 2E,
=0.5v/m, v, =400/sec, {,=5MHz and C,=3.5x10°
m/sec are used.

dg(k) = [ac®k%sin?d Blw?
J [ 2nx? VK sin® §'cosé’ EZg dk' d6’.  (8)

From (2), (4) and (8), the nonlinear growth rate of
the k line can be defilned by

ko = Vo~ Vg~ dg(k). (7)

The rate equation for describing the nonlinear evolu-
tion of E,y is then given by

d
—E. ;= E 8
a0 ke = YkeFke (8)

Analysis

To simplify the analysis, we only analyze the
evolution of the total spectral intensity Iy of plasma
lines propagating at the same angle § with respect to
the geomagnetic fleld, where Iy = 4msind [ dk k’E}
is so defined. In terms of Iy, Equation (8) becomes
approximately

_dd_t,lo:_\: [a.g cosd - Eg- 250~ ;]-919”2] Io (9)

where &y = 2a4/k,, Be = 208, +8,%). Tg
= e/kl’? (amsindmymw,c,)'’?, and

8o(t)
dy = [acgk,f"zsmzﬂ/?Bfw,f] J lgsin®f'cosb’dd’;
0

k, = a’cos?8/437, (10)

we perform the average In k by assuming the EY is
peaked initially at k, with maximum linear growth
rate; 00 is the maximum averaged spectral angle and
defined by

60000500 - E@O - 2530 =0 (11)
With the aid of (8) and (10), taking the time
derivative of (11) leads to

%00 = - {bsin®f cos*d,/[@sind, + bly sin cos®d,
+ (2- 55100, /c0s?8,)(Tp,cosb, — Bg,)) }
CEQ)
[ (@gcos- Bg- 2d5- 7old"*)14sin? 6 cos 8 a6
o
(12)

where b = a%?/328;B2w? and @ = a?/8,.

So far we have derived two coupled equations
(8) and (12) for the temporal evolution of the spec-
tral intensity of HFPL, oriented at the angle 6. They
have been solved numerically. For describing the
overshoot phenomenon observed in the Arecibo
heating experiments, we let § = 40 " and the numeri-
cal results of (9) and (12) are presented in Figures 1
and 2, which show the functional dependence of I,
and 4,(t) on time t, respectively. As shown in Fig-
ure 1, the spectral intensity I,4- grows initially at the
linear growth rate, it overshoots for very high level
to form a peak and then decreases at a much slower
rate subsequently. It eventually saturates at a much
fower level than {ts peak value. An overshoot
phenomenon has been clearly demonstrated by the
proposed theory.

Summary

A theoretical model for the temporal evolution
of the HF-enhanced plasma line (HFPL) s
developed. We sugges. that mode suppression
caused by the resonance broadening eflect may be
the physical process responsible for the overshoot of
HFPL detected by the Arecibo 430 MHz radar. In
other words, the presence of other decay linec hav-
ing larger growth rates, which cannot be detected by
the Arecibo radar, gives rise to enhanced viscosity o
electron motion and, thus, increases the threshold
for exciting the detected plasma line. We also
include the nonlinear effect introduced by the cas-
cading process in the formujation theory. This effect
results in the saturation of the parametric decay ins-
tability, and hence, is responsible for the steady state
level of the HFPL after the overshoot process.

The difference between the linear growth rate of
the parametric decay instability and the anomalous
damping introduced the aforementioned two
processes defines the nonlinear growth rate of the
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HFPL. It is then used for establishing the nonlinear
growth rate equation (8) of the HFPL, from which
the rate equation (9) for the total spectral intensity I,
of plasma lines propagating at the same angle ¢ Is
derived. Although Equation (8) does not provide
the exact amount of the temporal development of
HFPL, it greatly simplifies the analysis of the prob-
lem and maintains the important features of the
phenomenon as illustrated in Figure 1. A second
rate equation (12) for the averaged maximum spec-
tral angle 6, is also obtained for studying the tem-
poral evolution of the HFPL self-consistently. The
numerical results of (9) and (12) for § = 40" have
clearly demonstrated the overshoot phenomenon
similar to that observed by Showen and Behnke
{1878] In the Arecibo ionospheric heating experi-
ments. However, regarding the overshoot time
scales, our calculated values are more consistent with
the typical results of recent obse:vations at Arecibo
as shown by Table I.
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Four invanants of the ray trajectory are found for a ray propagating in a horizontally stratified
ionosphere under the density perturbation of HF wave-induced field-aligned irregularities. The reflec-
tion height of the ray can then be determined with the aid of those invariants. The results show that the
reflection height of the ray varies drastically (namely, strong spread F echoes) in the presence of
irregularities that polarize in the magnetic meridian plane. By contrast, the reflection height is not
affected (namely, no spread F echoes) by those irregularities that polarize in the direction perpendicular
to the meridian plane. Spread F is quite insensitive to the magnetic dip angle 8, in the region from 20’
to 70°. The dependence of spread F on the scale length of the irregularity has also been examined for
the case ), = 50°, It is found that spread F is not caused by irregularity with scale length less than

about 100 m.

1. t{NTRODUCTION

Spread F that refers to diffuse echoes on an iono-
gram from the ionospheric F region was observed in
the ionospheric heating experiments conducted at
Boulder, Colorado [Utlaur, 1971]. This ionospheric
phenomenon is generally belicved to be caused by
the excitation of large-scale (a few hundreds of meters
to kilometers) field-aligned ionospheric irregularities.
However, spread F is a rare phenomenon in the ex-
periments at Arecibo, Puerto Rico [Showen and Kim,
1978} and it has not been observed at Tromse,
Norway since the new European heating facility has
been in operation [Stubbe et al. 1982]. Evidences,
such as the radio star scintillations [Frey et al., 1984]
and the sanning radar incoherent backscatter process
[Duncan and Behnke, 1978] indicate that large-scale
ionospheric irregularities have been excited by HF
hcater waves at Tromse and Arccibo. Hence a lack
of spread F echoes does not imply the absence of
heater wave-induced 1onospheric irregularities. It

Copyright 1985 by the American Geophysical Union.
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may be due to the difference in the polarization di-
rections of the HF wave-induced irregularities where
the polarization direction of the irregularity is de-
fined to be the direction of its wave vector. In gener-
al, field-aligned irregularities can have two indepen-
dent polarization directions. One lies in the meridian
plane and the other one is in the direction perpen-
dicular to the meridian plane. The theoretical results
of filamentation instability in magnetoplasmas [Kuo
and Schmidt, 19837 also show that the irregularities
excited by the ¢ mode pump and by the x mode
pump have different polarization directions. The ir-
regularities cxcited by the o mode pump are field-
aligned and are polarized in the dircction perpen-
dicular to the meridian plane. By contrast. the irregu-
larities excited by the x mode pump are polarized in
the meridian plane and are, in general, not field-
aligned. However, the field-aligned nature of the ir-
regularities may be established to reduce the diffu-
sion damping along the magnetic field.

Since spread F is generally used as an indicater of
large-scale irregularities, and yet it is known that
sometimes such irregularities do not produce spread
F. Hence a study leading to better understanding of
the spread F phenomenon and its relationship with
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density irregularities is thought to be important in
this aspect. In the present work a theoretical model
for artificial spread F echoes is developed, from
which the relationship between the spread F echoes
and t"* HF wave-induced irregularities is studied.
The primary purpose of this study is to determine the
effects of the irregularity polarizations, scale length,
and the magnetic dipangle on the spread F echo. In
section 2, the ray trajectory equations are analyzed
to study the wave propagation in a horizontally stra-
tified ionosphere under the density perturbation of
the HF wave-induced field-aligned irregularities.
Four invariants of the ray trajectory are found. Main
results are illustrated in the figures. Conclusions are
finally drawn in section 3.

2. MODEL AND ANALYSIS

We consider a horizontally stratified ionosphere
having a scale fength L. Thus the unperturbed clec-
tron density is represented by ng(x) = ng{l + x/L),
where x is the vertical coordinate and ng = ny(0) is
the electron density at the reference plane x = 0 lo-
cated at height H. When field-aligned irregularities
are present. the background electron density distri-
bution is perturbed. Thus the total density is the sum
of the unperturbed density and the fluctuating den-
sities of the irregularities. In general, field-aligned ir-
regularities can have two independent polarization
directions. One lies in the magnetic meridian plane
and the other one is in the direction perpendicular to
th- meridian plane. For those irregularities which are
field-aligned in the magnetic meridian plane, the totai
density perturbation is simply expressed in a form of
dn, sin k,(x cos tl, + - sin fy). where 2nk, = 4, is
the average scale length of the irrcgularities. ¢ is the
magnetic dip angle, and - is the horizontal coordi-
nate as shown in Figure 1. The density perturbation
associated with the irregularities which are field
abgned in the direction perpendicular to the mag-
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netic meridian plane is modeled as on, sin (k, v + ¢),
where 4, = 2n 'k, is the averaged scale length, y is the
coordinate perpendicular to the meridian plane, and
¢ is the arbitrary phase angle. In this model, the total
el~ctron density distribution, n(x) is then composed
of three components, namely,

n(x. z} = no{l + x: L) + dny sin k(x cos 8, + = sin f,)

+ da, sin (k, ¥ + @) (N

For simplicity, the effect of the geomagnetic field
on wave propagation will be neglected in the follow-
ing analyses. The dispersion relation for the wave
propagation is thus given by

2 _ 2 2.2
®® =, + k%

(2)

where @ and k are the wave frequency and the wave
numbcr, respectively, and

e = Wloll + x/L + (8nying) sin kfx cos 0, + = sin fy)

+(6nyn) sin (ky, v + @) 3)

Since, in reality, the ionosonde antennas radiate
radio wave beams with finite cross sections and
spread angles. so it is more appropriate to consider
the transmitted pulses to be composed of rays whose
initial wave vectors and the horizontal locations on
the reference plane x = 0 are all different. Thc trajec-
tory of each ray is then governed by the following set
of characteristic equations:

d 2
—x =k, c*/w (4}
dt
L=kt (5)
— V=K%
dr- >
d
— =k ctiw (6)
dt
d , )
Z ke = =i 2wL)[1 + (3n, ' ngMk L cos 6y}
- cos ki(x cos Oy + = sin )] (N
— k= —(lo 20080y nodky cos (hy v + @) (%)
d : :
p k. = —tan gl 200 3ny ngkk L cos ()
- cos k,(x cos th, + = sin () 9)

where (5) and (8) form one set of coupled equations.
and (4), (6}, (7) and (9} form the other set of coupled
equations, but these two sets of equations do not
couple to cach other. However. those coupled cqua-
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tions can be separated by the invariants of the trajec-
tory derived as follows. We first take the ratio of (5)
and (8), which yields

dy 2k, 2

dk, wio(dny/nok, cos (kyy + ¢)

(10)
Integrating this equation gives the first invariant of
the trajectory
(8ny/ng) sin (ky y + ¢) + k3 c*/w?,o = const in time

= (dn3/no) sin (k3 yo + @) + kjo */w} (1)

where the subscript 0 represents the initial value.
We next substitute (9) into (7) to yield

pev 1/2(')1‘ \ 12)

d
— (k, — cot 8,k,) = —?
di

Integrating (12) from the initial height x = 0 of the
ray to the new height x at time ¢, leads to the second
invariant relation
k, — cot 8ok, + (wl/2wL)t = const in time
= ko — cot O k,o (13)
We now construct an equation by first multiplying

(4) and (6) by cos 8, and sin 8, respectively, and then
summing them up. The result is

d
T (x cos 8y + z sin 8) = (c*/wXk, cos 8, + k, sin 6,)

(14)

Two additional invariants will be derived as follows.
From the ratio of (14) and (7), we obtain

d{x cos 0, + z sin 6,) 2cL
dk, T @k,
k, cos O, + k, sin 0,

) + (dn,/ngkk L cos 6,) cos ky(x cos O, + z sin 0,)
(15)

With the aid of (13), (14) and (4), (15) is integrated to
obtain the third invariant

x + (tan 284/2)z + (dn,/ng)Licos? 8, /cos 20,4}
- sin ky(x cos 8, + z sin 6)
+ (2L/w}oXkkE + tan 20,k k)
= const in time = (tan 28,/2)zo + (on,/n,)
- Licos? 0, /cos 20,) sin (k,z, sin 0,)
+(c*LjwkoXk2s + tan 200k o ko) (16)

The fourth invariant is obtained from integrating the

resultant equation defined by the ratio of (14) and (9).
Itis

(tan 20,/2)z + (6n,/ny)L(sin? 6,/cos 26,)
- sin k,{x cos 8, + z sin ;)
+ (€2 L/, oX —k? + tan 204k, k,)
= const in time = (tan 20, /2)zy + (6n,/ny)
- L{sin? B, /cos 26,) sin (k,zq sin 8)
+(c*Liw} N —kZp + tan 200k, ko) 17

However, (16) and (17) can be rearranged to reduce
to much simpler forms. We first take the difference of
(16) and (17) to yield

x + (8n,/ng)L sin k(x cos 8 + z sin 8) + (k*c*Ljw}.o)
= (n,/no)L sin (k,zo sin 0,) + k3 c*Liwk,o (18)

where k, = k(0). We next multiply (16) by sin? 6, and
(17) by cos? 8, and then take their difference. The
resuit is

x — z cot Gy + (c*Liw? ok, — k, cot O5)*

= —zq cot Oy + (2 LiwZ,oNkyo — kyo cOt Bo)? (19)

ol

Fig. 2. Exampie of the appropriate trajectories of the rays de-
tectable to the ionosonde. The parameters used in the calculation
are 0,=50, L =50 km, 4, =1 km, kJc?'wlo =1 and 2=
on 'ng =0.1.
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Fig. 3. The functional dependence of the reflection height spread Ax,,, of a diagnostic beam on the magnetic dip
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We have shown that the trajectory of cach ray is
governed by four invariant relations (11), (13), (18)
and (19) that are derived from two sets of coupled
differential equations (4){9). Hence the temporal ev-
olution of any one of the four variables x, z, k, and
k.. and either one of the two variables y and k.. can
be determined, with the aid of these invariants, by
the corresponding rate equations, namely, equations
(4} (9). The elapsed time for each ray traveling from
the reference height to the reflection height can in
principle be determined by integrating (7) from k, =
k., to k= 0, with the prescribed initial conditions:
x(0) = 0, =(0) = z, and k(0) = k_o. Since the density
perturbation dn, produced by the irregularities ori-
ented in the direction perpendicular to the magnetic

meridian plane does not appear in (7), the reflection
height of cach ray is thus not expected to be modified
by the presence of such oriented irregularities. Physi-
cally, it is reahized that a ray is reflected (i.e., from
upgoing to downgoing) when k., changed the sign.
We thus expect that the reflection height of the ray is
likely determined by those parameters which can
affect the value of k, . Apparently, equation (7) shows
that dn, is not the one among those parameters. This
result that k, is independent of n, is also consistent -
with the Snells’ law in the limit of the absence of the
x variation in the plasma density. However, the den-
sity perturbation dn, produced by the irregularities
that are oriented within the meridian plane can affect
the reflection height of the ray as seen in (7). One




550 KUO ET AL.: THEORETICAL MODEL OF ARTIFICIAL SPREAD F

N I SR -
o 08 002 363 004 006 008 067 068 0OOF O

»
100
H=68
AXmax
(Km)
u—
0 A i 1 . — L - L L n
0 001 002 003 004 005 008 007 008 008 O
a
¢
100 |
AXmax Gy =78"
(Km)
50+

0 — " n . n .
9 00t 002 003 004 005 008 007 008 009 Ot
a

Fig. 4. Ax,,, versus x for 8, = (a) 50", (b) 68 ", and (¢) 78 , where

2=20dn,n,.

way to show this effect is to integrate (7) numerically.
This equation can be integrated with the aid of the
invariant relations (13), (18} and (19). If we assume
that each ray of the antenna radiation beam has a
stiaight trajectory from the ionosonde to the refer-
ence plane as shown in Figure 1. then the initial
conditions for ray trajectory starting from the refer-
ence plane can be defined as x = xq, ko = ko H/(H?
+ 23", and k,o = ko zo/(H? + 23)'2, where z, is a
free parameter characterizing the ray. By varying z,
within the cross secticni! range of the beam. a set of
trajectories for the rays of the beam can be deter-
mined. However, not all the rays can be reflected

back to the ionosonde. Only the rays which can
return to the ionosonde are responsible for the ob-
served diffuse echoes on the ionogram, and hence the
intensity of spread F is proportional to the maximum
difference of the reflection heights of those rays. The
boundary conditions at x = 0 for a downgoing ray
which can propagate straightly from the reference
plane back to the ionosonde are defined to be k, =
—koH/(H?* + z})'* and k,= —koz,/(H* + z})',
where z, is the z coordinate of the ray on the refer-
ence plane. Those conditions can be satisfied only by
rays with appropriate z,. In other words, the con-
ditions at x = 0 for the upgoing rays which can be
received later by the ionosonde can not be prede-
fined. Instead, z, and z, have to be determined simul-
taneously.

Presented in Figurc 2 are the two distinctive tra-
jectories for two different groups of rays in the beam,
where the background parameters used in the calcu-
lation are 8, = 50°, L = 50 km, A, =1 km, k3c%
wio=1 and Sny/ng=a =01 The rays which
follow these trajectories can return to the ionosonde.
These two trajectories are found to depend on the
value of a. They approach each other and then merge
into a single trajectory coincided with the x axis as
the value of a decreases to zero. It is therefore shown
that if the ionosonde transmitting beam is modelled
by many rays having different initial locations on a
reference plane, the spread F echoes can indeed be
interpreted to be caused by the difference in the re-
flection heights (or the time delays) of the returned
signals. The virtual height spread is thus proportion-
al to the maximum difference Ax,,, of these reflec-
tion heights. This spread disappears when the irregu-
larities oriented in the meridian plane are absent. It
should be noted that an ionosonde, like any receiver,
has a limited sensitivity and requires a certain mini-
mum “number of rays” from any height interval to be
recognized as a signal. Therefore, the reflection
height of this signal should be defined to be the
average value over those of rays. In view of this,
Ax,,, defined in this study may not be a fully sensi-
ble measure of the spread F strength. Nevertheless, it
indeed provides a qualitative indication.

We now employ the similar parameters to analyze
the system of (7), (13), (18), and (19): L = 50 km,
iy =1 km and kfc}/wl,o = 1; z, is allowed to vary
for determining the trajectorics of the rays. Only
taken into account are the trajectories of the rays
detectable to the ionosonde for determining the max-
imum difference Ax,, from the cefiection hicights ot
these rays. Ax,,, versus the magnetic dip angle 8, as
calculated for o = dn,/n,) = 0.005, 0.01, 0.05 and 0.1
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Fig. 5. The dependence of spread F on the scale length 4, of the
irregularity, where ¢, = 50° and x = 0.05.

and presented in Figures 3a-3d. Shown in Figures
4a—4c are Ax,,, versus the irregularity intensity a for
8, = 50°, 68°, and 78° that correspond to magnetic
dip angles at Arecibo, Boulder and Tromse, respec-
tively. The dependence of spread F on the scale
length of the irregularity has also been examined for
the case 8, = 50° and a = 0.05. The result is present-
ed in Figure 5 showing that spread F can only be
caused by irrcgularities with scale lengths larger than
about 106 m.

3. DISCUSSION AND CONCLUSIONS

A theoretical model of spread F echoes has been
developed for determining the effects of the magnetic
dip angle, irregularity intensity, and the polarization
direction and the scale length of irregularity on the
occurrence frequency and the intensity of spread F.
We first show that irregularities polarized perpen-
dicular to the meridian plane do not cause spread F.
Therefore, only irregularities polarized within the
meridian plane have been considered in the analyses
for evaluating the aforementioned effects.

As shown in Figures 3a-3d, spread F becomes
prominent as the magnetic dip angle exceeds about
5°. The reflection height spread Ax,,, first increases
rapidly to a maximum at about @, = 8° (except for
very low irregularity intensity, e.g., a = 0.001, where
the peak appears at 6, = 20°) and then decreases
monotonically to zero at 6, = 90°. However, Ax,,, is
quite flat in the region from 20° to 70° (30° to 80° for
o = 0.001). Furthermore, Ax,,, increases monotoni-
cally with the irregularity intensity as seen in Figures
4a, 4b and 4c for §, = 50°, 68°, and 78° correspond-
ing, respectively, to the magnetic dip angles at Are-
cibo, Boulder, and Tromse. While a near linear de-
pendence is found in the 6, = S0° and 68° cases,
Ax,,., starts to approach a maximum at « = 0.02 for
0, = 78°. The dependence of spread F on the scale

length A, of irregularities has been examined for
0, = 50° and a = 0.05. The result shown in Figure §
indicates that spread F appears only when 4, > 106
m. The reflection height spread remains a fairly con-
stant value from 106 m to about S00 m. This value
then increases monotonically by 35% at 4, = 1 km
which is the largest scale length employed in the
analyses. Our model shows that spread F is quite
insensitive to the magnetic dip angle. As long as the
irregularity with the polarization within the meridian
plane exists, significant spread F should be observed
over a wide range of latitude including Arecibo,
Boulder, and even Tromse. In other words, the ap-
pearance of spread F should not depend upon the
locations of the ionosondes. We, therefore, conclude
that spread F echoes on the ionograms are caused by
the irregularities with polarization directions within
the meridian plane and the scale lengths greater than
about 100 m. By contrast, irregularities with polar-
ization directions perpendicular to the meridian
plane do not give rise to spread F echoes.

The different occurrence frequencies of artificial
spread F noticed at Arecibo, Boulder, and Tromse
are most probably due to the excitation of different
types of irregularities. However, the large geomagnet-
ic dip angle at Tromse also plays an important role
(see Figure 3), which works to substantially reduce
the spread F strength at Tromsa. The o mode and x
mode pump waves transmitted from the Boulder
heating facilities cannot be separated as easily as
those from the Arccibo or the Tromseo facilities. This
fact can be evidenced by the measurements of HF
wave-induced short-scale irregularities at Boulder
[Fialer, 1974] showing that x mode can still excite
short-scale irregularities though not as efficiently as o
mode wave. The heater wave transmitted into the
ionosphere from Tromse, Norway, is a left (x mode)
or right (0 mode) hand circularly polarized wave
propagating along the geomagnetic field. Therefore
the generated irregularities (by either 0 mode or x
mode) at Tromse are expected to be magnetic field-
aligned [Kuo and Schmidt, 1983]. Further, if the -~
plasma inhomogeneity in the vertical direction is
taken into account. the filamentation instability
would be excited preferentially in the direction per-
pendicular to the meridian plane (i€, the y direction
of the coordinate system used in this work) in order
to have symmetric high frequency sidebands. This, - %
together with the effect of geomagnetic dip angle,
may explain why spread F has never been oheerved
since the Tromse faciiities were operated a tew years
ago. We also note that when the heater is operated in
o mode at Arecibo, no spread F or change of reflec- é
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tion heights can be seen (L. M. Duncan, private com-
munication, 1984). It then implies, based on the pro-
posed model of spread F mechanism, that the 0 mode
heater excited irregularities must be oriented in the y
direction. This again agrees with the theoretical pre-
diction of the generation of large-scale irregularities
by the filamentation instability [Kuo and Schmidt,
19833 and supports the proposed model of spread F
mechanism self-consistently.
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We elaborate upon the physical mechanism of thermal filamentation instability of radio waves whose
frequencies can be as low as in the VLF band and as high as in the SHF band. This instability can
excite farge-scale magnetic and plasma density fluctuations simuitaneously in the ionosphere and
magnetosphere. We comment on relevant experiments in terms of this instability and other mecha-

nisms.

1. INTRODUCTION

Manifest ionospheric disturbances can be pro-
duced by powerful HF radio waves in ionospheric
heating experiments, such as fluctuations in iono-
spheric density, plasma temperature, and the earth’s
magnetic field (see, for example, Gurevich [1978],
Fejer [1979], Stubbe et al. [1982], and Lee and Kuo
[1983a]). Unexpectedly large perturbations in the
earth’s magnetic field (~ 10.8 nT) were observed in
Tromse experiments with the EISCAT HF heating
facilities [Stubbe and Kopka, 1981], and we predicted
the coexistence of large-scale ionospheric irregu-
larities [Kuo and Lee, 1983]. Whistler waves at fre-
quencies close to, but less than, the local electron
gyrofrequency are expected to cause both plasma
density irregularities and geomagnetic field fluctu-
ations in the ionosphere if MF signals are transmit-
ted, or in the magnetosphere if VLF signals are in-
jected [Lee and Kuo, 1984a]. Microwave transmis-
sions at 2.45 GHz with central maximum power den-
sity of 230 W,m? from the conceptualized Solar
Power Satellite are also expected to perturb the
earth’s magnetic field significantly in the ionosphere
along the microwave beam [Lee and Kuo, 1984b].
Our theoretical analyses have shown that geomag-
netic field fluctuations can be excited simultaneously
with large-scale field-aligned ionospheric density by
powerful radio waves. The frequencies of radio waves

Copyright 1985 by the American Geophysical {nion.
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can be as low as in the VLF band and as high as in
the SHF band.

Thermal filamentation instability excitea vy radio
waves in the ionosphere and magnetosphere is re-
sponsible for the simultaneous perturbation in iono-
spheric density N and gecmagnetic field 6B. A non-
oscillatory (i.e., purely growing) mode is associated
with 4N and éB. whose magnitudes are interrelated
uniquely by an equation characteristic of the thermal
filamentation instability. Since the filamentation
wave vector is perpendicular to the incident wave
vector, the radio wave tends to be “self-focused ™ with
this instability. One purpose of this paper is to elab-
orate upon the physical mechanism of thermal fila-
mentation instability as presented in section 2, that
leads to features distinctively different from those of
thermal self-focusing instabilities [e.g., Perkins and
Valeo, 1974, Cragin et al., 1977, Perkins and Gold-
man, 1981]. In addition, we wish to comment on
some relevant experiments in section 3 in terms of
thermal filamentation instability and other mecha-
nisms. Conclusions are finaily drawn in section 4.

2. PHYSICAL MECHANISM OF THERMAL
FILAMENTATION INSTABILITY

Radio waves, if intense enough, are able to excite
thermal filamentation instability in the ionosphere
and magnetosphere, that produces sideband and
purely growing modes with wave vectors perpendicu-
lar to the propagation direction of radio waves. Mag-
netic field-aligned nonoscillatory modes (ie., fila-
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Fig. 1. The physical process leading to the simultaneous exci-
tation of large-scale earth’s magnetic field perturbations éB and
plasma density irregularities SN by the thermal filamentation in-
stability of powerful radio waves.

ments of magnetostatic and ionospheric density fluc-
tuations) are formed along the radio wave paths.
They are caused by a nonlinear thermal effect due to
radio wave-plasma interactions. We elucidate its
physical mechanism as follows and diagram it in
Figure 1.

The wave fields, that include the incident and side-
band fields, interact with plasmas and consequently
yields two types of nonlinear force: the ponder-
omotive force (or generally termed nonlinear Lorentz
force) and the thermal pressure force. In generating
field-aligned nonoscillatory modes, the thermal pres-
sure force turns out to be larger than the ponder-
omotive force by a factor of (4/2nr,)? for modes with
scale lengths A less than nr, 2M/m)!/2 (~ 15 m in the
ionosphere) and by a factor of (M/m) otherwise [ Kuo
et al., 1983; Lee and Kuo, 1983b], where r, and (M/m)
are the electron gyroradius and the ratio of ion to
electron masses, respectively. Ions cannot be ef-
fectively heated because of large cross-field heat diffu-
sion loss. Thermal pressure force can be built up only
in the electron gas. The dotted arrow in Figure 1
denotes such a force fr = —X(@/0xXNydT,) experi-
enced by electrons across the earth’s magnetic field
(B, = ZB,).

Electron density fluctuations (0N) that are induced
consequently by the thermal pressure force give rise
to a self-consistent field (OE = XdE) associated with
the excitation of the purely growing mode. While the
net force acting on electrons is (f; — eN, 6E), that on
singly charged ions is eN,JE. These wave-induced
forces combined with the orthogonal earth’s mag-
netic field result in cross-field drift motions of elec-
trons and ions at the velocities of (SE — fy/eN,)

x B,/B% and (OE x B,/B}), respectively. Therefore,
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Fig. 2. The threshold condition and a positive feedback loop for
the thermal filamentation instability.

a relative motion between electrons and ions at the
velocity of (f7/eNg) x B,/B3 results and produces a
net current flowing along the direction of the y axis.
This wave-induced current (and vector potential, A)
varies sinusoidally along the x axis. It can be visual-
ized as a combination of many sheetlike currents on
the y-z plane with a thickness of half the scale length
A, flowing in opposite directions alternately. Or,
equivalently, pairs of dipole current form within the
radio wave-heated ionospheric region. Earth’s mag-
entic field fluctuations 6B that result from the radio
wave-induced current are field aligned. They point to
the same direction as the geomagnetic field’s, B,,
because of V x A = AB = 24B.

The physical mechanism of producing both 6B and
SN is summarized in Figure 2 with the aid of block
diagrams, showing how a positive feedback loop can
be formed for the thermal filamentation instability.
In brief, electron temperature perturbation 47,
caused by radio wave heating produces a cross-field
thermal pressure force f, as the key nonlinearity of
the thermal filamentation instability. This nonlinear
force induces earth’s magnetic field perturbation 5B
and ionospheric density irregularities SN that, subse-
quently, cause nonuniform efectron heating and,
then, perturbs the electron temperature in turn. It
can be expected from the above delineated physical
picture that SN o 8B because both of them are in-
duced in proportion by f;. Such a relation has been,
indeed, found in our detailed formulation of the
theory with the following form [equation (2') of Lee
and Kuo, 1984b]:

ON { v,( 2nc >1[ Q,Q, (}_)z }(68)
— =l + — |- 1+ - — (1
No P Vv \Ay B,
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where the parameters, v (v,), QQ), @,,, c, 7, A (4y),
and Ny(B,) have their conventional meanings of ef-
fective electron (ion) collision frequency, electron
(ion) gyrofrequency, electron plasma frequency, the
speed of light in vacuum, the growth rate of the in-
stability, the perpendicular (parallel) scale length of
the instability and the background ionospheric den-
sity (earth’s magnetic field strength), respectively. The
density perturbation, dN/N, is proportional linearly
to the magnetic perturbation, 6B/B,, with a ratio
greater than unity. If this ratio is close to unity,
4B/B, comparable to dN/N, can be excited by the
thermal filamentation instability. Otherwise, the
earth’s magnetic field perturbation is negligibly small
as compared with the ionospheric density pertur-
bation.

One might, however, be skeptical about the possi-
bility of producing éB/B, =~ dN/N, based on the fol-
lowing argument. If 6B/B, ~ 6N/N,, then both
0B/B, and dN/N, must be extremely small compared
with 0T,/ T, according to the “MHD equilibrium”
condition:

SN 8B BT,
N o8 T .
No By 2T,

where f is the ratio of kinetic to magnetic pressure,
namely, N, T,/(B38m) ~ 10" ° for typical iono-
spheric parameters. It is apparent from (2) that, in
“MHD equilibrium,” 6T,/ T, (~ 2 x 10?) is absurdly
unrealistic even for 0.1% of ON/N, or dB/B,. The
argument that dB/B, must be extremely small under
the “MHD equilibrium™ condition is certainly true.
This fact can be also seen from (1), which requires
0B:-B, = 0 when y = 0, corresponding to the “MHD
equilibrium™ condition either before the onset or
after the saturation of the thermal filamentation in-
stability. During the linear stage of the instability
(... the growth rate (7) = a nonzero constant), 3B/B,
and 0NN, are related by (1) and significant geomag-
netic field fluctuations can be produced by powerful
radio waves. In other words. the geomagnetic field
perturbation caused by powerful radio waves via the
thermal filamentation instability is a transient phe-
nomenon, whose duration may be estimated from the
growth rate of the instability. It is reasonable to
define this duration to be the period for achieving the
seven e-folds of magnitude above the thermal fluctu-
ation level, namely, 7, '

The parallel wave number k is zero for ideal field-
aligned modes. Nevertheless, a small (compared to
k ) but finite k& can be introduced by inhomogeneity

effects associated with either the background iono-
spheric density or the finite cross section of the radio
wave beam. The inhomogeneity effects have been
reasonably ignored in our previous studies of VLF,
MF, and HF cases. This is because the instability
becomes effective in the ionosphere and mag-
netosphere for modes with scale lengths less than the
scale sizes of the background plasma density gradi-
ents and the linear dimensions of wave beam cross
sections by, at least, 2 orders of magnitude. By con-
trast, the inhomogeneity effect imposed by the
narrow microwave beam cannot be neglected in the
case of the Solar Power Satellite. The parallel scale
length 4, which is of the order of the microwave
beam size (~ 10 km), renders the factor enclosed by
the brackets in (1) to be much greater than unity in
the ionospheric F region. Physically, large heat con-
duction loss along the geomagnetic field inhibits the
thermal filamentation instability from producing sig-
nificant earth's magnetic field perturbation in the F
region. Parallel heat conduction loss is, however,
drastically reduced by the large electron-neutral col-
lisions in the E region. Therefore, the thermal fila-
mentation instability can operate efl.ctively in the E
region but not the F region in the solar power satel-
lite case.

Parallel heat tonduction loss may significantly en-
hance the threshold of the instability whose full ex-
pression is given by [equation (6") of Lee and Kuo.
19845]

f2nl/, 2m“.<2nV, 2 (21tV, mr2 3
==l —+[—) +
i, M i, Q, Ay V. ¢

where ¢,,, £4,(4 ). M(M), and V, are the threshold wave
field intensity, the perpendicular (parallel) scale
length, the electron (ion) mass, and the electron ther-
mal velocity, respectively; the factor, /. can be a func-
tion of wy, w,. Q,, and 4; depending upon the
frequency (w,) of the radio waves. The thermal fila-
mentation instability requires a threshold basically
because the sideband and purely growing modes are
not normal modes but nonlinearly driven modes in
space plasmas. The threshold level (g,,) is determined
in (3). representing the energy balance between the
driving thermal source of the instability (i.e., the col-
lisional dissipation of radio wave energy) and the
damping processes denoted by the three terms:
2Am/M), 2nV, 4 Q)% and (2n¥,/i, v,)?. These three
damping terms correspond to the collisional damp-
ing of the thermal source, the cross-field heat conduc-
tion loss, and the parallel heat conduction loss, re-
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spectively. The first term dominatcs for the instability
with 4, > QM/m)'?aV,/Q, (~15 m in the iono-
sphere) and (4, /4)) > (Q,/v.). But, parallel heat con-
duction loss becomes the dominant damping process
if A,/Augp > mM(2M/m)''?, where Aiygp is the electron
mean free path.

In general, the instability with large-scale lengths
requires lower thresholds. since lg,|x 47 !. The fa-
vorable excitation of geomagnetic field fluctuations

by large-scale modes can be seen in (1), which for

highly field aligned modes, can be reduced to

oN [ v, ( 2nc )1 68)
— =l +—|- -— 4)
No 7 \4, w,, B,

where the growth rate y increases generally with scale
lengths. Smaller ratios of SN/N, to 6B/B, are there-
fore associated with larger-scale modes, namely, sig-
nificant geomagnetic field fluctuations can be excited
mainly through large-scale thermal filamentation in-
stability.

It is interesting to note that the threshold con-
dition given by (3) is independent of the electron col-
lision frequency v, for the excitation of “large-scale,
highly field aligned” modes, that is,

. 4nV, (m s
~r52(5) ®
where the factor f is not a function of v,. This is
understandable because both the generation rate (the
left-hand side of (5)) and the damping rate of the
thermal source are proportional to v,. More specifi-
cally, electron collisions with ions or neutrals convert
the radio wave energy into the thermal source of the
filamentation instability; meanwhile, the induced
electron temperature perturbations are also deter-
mined by the collisional loss of wave-generated heat.
It should be stressed that electron collisions do not
weaken the purely growing modes (i.e, the mag-
netostatic and ionospheric density fluctuation) be-
cause electrons and ions move together in the wave
vector direction of the purely growing mode.

The expressions of the growth rate have been
found to be generally proportional to v,. This offers
another evidence that electron collisions enhance the
instability. The principal reason is that large cross-
field mobility of charged particles is conducive to the
establishment of collective oscillations, i.e., the field-
aligned purely growing fluid modes. The cross-field
mobility is greatly enhanced by electron collisions.
Another interesting thing to note is that the relation-
ship between SN and 4B shown in {4) turns out to be
not a function of v, because 7 x v,.

€€,
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The generation of large-scale 10nospheric density
irregularities by powerful radio waves have been in-
vestigated. for example, by Perkins and Valeo [1974)
and Perkins and Goldman [1981] via the thermal self-
focusing instability, and by Fejer [1973], Cragin and
Fejer [1974], and Cragin et al. (1977] via the ther-
mal stimulated Brillouin backscattering instability.
These two instabilities have their own distinctive fea-
tures in. for instance, the threshold conditions dis-
cussed in next section, though they are believed to be
physically equivalent. The simultaneous excitation of
large-scale earth's magnetic field fluctuations and
ionospheric density irregularities is the important
discovery in our theory of thermal filamentation in-
stability. In addition. the geomagnetic field effect on
the high-frequency sideband mode that was ignored
in the previous theories has been taken into account
in our formulation of the instability.

The inclusion of this effect exhibits its important
contribution to the driving sources of sideband
modes (especially as w, < Q,) that satisfy the follow-
ing Fourier transform wave equation

2 -
[(kg 4k ‘Lj\l Z k23— kAR - kg — (£ - :‘.ﬂ]t.,
< / X

o 4,
o2

s+ Iy +dy) (6)

where | is the unit dyadic; £ and X denote the unit
vectors taken along the direction of the geomagnetic
field (B, = ZB,) and the filamentation wave vector
(k = xk). For simplicity, the radio wave has been as-
sumed to propagate along the gecomagnetic field. The
w.ve-induced current density includes three parts:
Js= —eNyV,, Jy=eNV,, and Jy =eNyV,,
where

3 Y 2o Qez .Qe Iy
V,=i———=1l¢, + 31 ~— . +i—ixg
m(wg — Q) wh o

j=0o0r 1 (T

are the electron quiver velocities responding to the
incident wave field (g£5) and the sideband field (g,).
respectively:

e [ON

, Q.
Vy= —i——— [ Voxi+i—1,[6B )

me () — Q) o

1s the electron velocity perturbation caused by the
V, x 4B Lorentz force. Jg is the linear response of
electrons to the sideband field €,, whereas Jy and J,,
are the nonlinear beating currents stemming from the
nonlinear coupling between the purely growing
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modes (3N or oB) and the incident wave field (g4). On
one hand, the sideband mode is produced by the
parametric interaction of the incident radic wave and
the purely growing modes. On the other hand, the
purely growing modes are driven by the thermal
pressure force (—V(N,46T,)) that is caused by the
ohmic dissipation of the incident and sideband
modes at the rate of @, = 2y, Nogm(V§ -V, + V.
Vi)

3. COMMENTS ON RELEVANT EXPERIMENTS

The thermal filamentation instability of VLF
waves (whistlers) can be excited in the magnetosphere
rather than the ionosphere. This is because the insta-
bility can only be excited in the frequency ringe
Q.2 < w, < Q, by whistlers and Q,/2r is about 1.4
MHz in the ionosphere and 13.65 KHz in the mag-
netosphere at L = 4. Although VLF wave injection
experiments have been performed actively, for exam-
ple. at Siple, Antarctica, the ground-based transmit-
ters are usualiy operated in a pulsed-wave mode with
duration of a few seconds. These VLF wave pulses
have been used to study. primarily, coherent wave-
particle interactions in the magnetosphere such as
the wave amplification, the triggering of wave emis-
sions. the induced particle precipitation, etc. (see, for
example, Helliwell [1983]). However, the excitation
of thermal filamentation instability in the mag-
netosphere requires the continuous operation of VLF
transmitters for a few minutes because of the small
electron collision frequency (~0.1 Hz) and then the
small growth rates (10 * to 10 ? Hz). Experiments
can be planned with the Siple transmitter or more
powerful U.S. Navy communication transmitters op-
erated in CW modes and also with spacecrafts, for
instance, the ISEE 1 to monitor the VLF wave-
induced magnetospheric disturbances.

The thermal filamentation instability can be excit-
ed in the ionosphere by radio waves whose fre-
quencies ¢xceed half the electron gyrofrequency
(~0.7 MHz). The ionospheric heating facilities lo-
cated at Arecibo and Tromse currently operate in
the HF band at lowest frequencies of the order of 3
MHz (J. A. Fejer, private communication, 1984).
Those in U.S.S.R. are also primarily HF transmitters
except the one near Moscow that operates at a fre-
quency (~1.35 MHz) near the electron gy-
rofrequency [Gurevich and Miqgulin, 1982]. Unex-
pectedly large geomagnetic field perturbation of the
order of 10 nT had been caused by the Tromse trans-
mitter [ Stubbe and Kopka, 1981 . Stubbe et al.. 1982]

and we explain it in terms of the thermal fila-
mentation instability [Kuo and Lee, 1983]. This in-
stability needs several minutes to be developed under
the experimental conditions at Tromse. This charac-
teristic growth time is consistent with the observa-
tions that geomagnetic perturbation increased regu-
larly with the operation time of radio waves in the
range from 10 to 360 s {Stubbe et al., 1982]. Another
interpretation of magnetic fluctuations is that they
are caused by perturbations in the steady currents
{i.e., the auroral electrojet) flowing in the ionosphere
caused by perturbations in the ionospheric conduc-
tivity [Fejer and Krenzien, 1982, and references
therein]. One would expect from this mechanism that
increased magnetic field fluctuations are associated
with more intense electrojet current for future experi-
mental verification. The source(s) of magnetic fluctu-
ations can be unambiguously identified by in situ
measurements performed by rockets or spacecrafts in
the modified ionosphere. While the auroral electrojet
as a line source is located at an altitude of about 100
km above the earth’s crest, the radio wave-induced
dc current appears in a higher and broader heated
ionospheric region below the reflection height of the
incident heater wave. A unique feature of thermal
filamentation instability is that the simultaneously
excited magnetic and density fluctuations have iden-
tical characteristic scale lengths and growth rates.
Moreover, the strengths of these two types of fluctu-
ations are interrelated specifically by (1). The in situ
measurements would provide an excellent diagnosis
of the heated ionosphere to test the theories in these
aspects.

The theories of Perkins and Valeo [1974] and
Cragin et al. [1977] have been cxamined by Farley et
al. [1983] and Frey and Duncan [1984] as candidate
mechanisms of producing large-scale irregularities in
overdense ionospheric heating experiments at Are-
cibo. The thresholds of Perkins and Valeo theory are
significantly higher than those of Cragin et al. theory,
especially, in generating kilometer-scale irregularities.
The measured threshold powers for exciting a few
kilometer-scale irregularities in the Arecibo experi-
ments agree reasonably well with the theoretical
values of Cragin et al. However. the observed
hundreds of meter-scale irregularities cannot be ex-
cited by Cragin et al. instability because the required
threshold powers P, are too large according to the
scaling law: P, x 4, % (in contrast to 4, 2 of Perkins
and Valeo {1974]). The detection of hundreds meter-
scale irregularities by UHF scintillation technique
was recently performed by Frev et al. [1984] in
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Tromse heating experiments. Frey et al. considered
three candidate mechanisms including Perkins and
Valeo [1974], Cragin et al. {1977], and ours {Kuo
and Lee, 1983]. They reported that the thresholds of
our thermal filamentation instability were consistent
with their measured ones, whereas those of the other
two instabilities wece higher by at least a factor of
100.

It has been predicted that the conceptualized Solar
Power Satellite (SPS) will produce large-scale iono-
spheric irregularities {Perkins and Goldman, 1981]
and also possibly together with the simultaneous ex-
citation of carth’s magnetic field fluctuations [Lee
and Kuo. 1984b]). A rocket experiment named Micro-
wave lonosphere Nonlinear Interaction Experiment
(MINIX) was carried out recently by the Kyoto Uni-
versity group in Japan to simulate the SPS [Matsu-
moto et al., 19847, The microwaves were transmitted
at a frequency of 2.45 GHz with incident power den-
sities comparable to the envisioned intensity of 230
W m? in SPS. The beam width of order of a few
meters i1s, however, less than that (~ 10 km) proposed
for SPS by. at least, 3 orders of magnitude. The exci-
tation of electron cyclotron waves and electron
plasma waves were observed, but it is not surprising
that ionospheric irregularities and other predicted
phenomena could not be produced in MINIX be-
cause of the rather narrow microwave beam. The
beam size is probably a very crucial parameter in the
simulation experiments of SPS.

4. CONCLUSIONS

Thermal filamentation instability can be excited in
space plasmas by powerful radio waves whose fre-
gucncies exceed half the electron gyrofrequency.
Large-scale magnetic and plasma density fluctuations
can be simultaneously created if the transmitter of
radio waves is operated continuously for a few min-
utes. During its linear stage, this instability is able to
produce significantly large earth’s magnetic field fluc-
tuations in the ionosphere and magnetosphere that is
a lew-ff plasma. A threshold is required for the insta-
bility fundamentally because the high-frequency side-
bands and the purely growing modes are not cigen-
modes rather the nonlinearly driven modes. The off-
resonance ¢tfect (i.e.. detuning) imposes the primary
damping mechanism of the instabilitv. The electron-
ion (clectron-neutral) collisions play the foliowing
roles in the excitation of thermal filamentation insta-
bility: (1) to convert the radio wave energy into the
driving heat source of the instability. (2) to reduce the

electron temperature perturbations induced by the
heat source: this is also the principal process of
energy loss in determining the threshold level of
large-scale, highly fieid aligned instability (see equa-
tion (3)), and it is therefore commonly termed
“electron-ion (electron-neutral) cooling” {e.g., Farley
et al., 1983]. and (3) to facilitate cross-field mobility
of charged particles for establishing the collective os-
cillations (i, the field-aligned purely growing

-modes) and, as a consequence, the growth rate of the

instability is generally proportional linearly to the
electron-ion (electron-neutral) collision frequency.

We have proposed the thermal filamentation insta-
bility as the cause of HF wave-induced geomagnetic
field perturbation in Tromse ionospheric heating ex-
periments [Stubbe and Kopka, 1981; Stubbe et al.,
1982]. The thresholds of this instability were found
to agree with the measured ones in recent Tromse
experiments [Frey et al., 1984]. However, our pro-
posed mechanism and the one suggested by Fejer and
Krenzien [1982] among others need to be further
verified in the future experiments with, for instance,
coordinated in situ measurements in the heated iono-
spheric region. The thermal filamentation instability
of VLF waves (whistlers) can occur in the mag-
netosphere with growth times of a few minutes. Our
work thus suggests a wave plasma interaction pro-
cess for future VLF wave injection experiments to
explore with the operation of transmitters in a CW
rather than pulsed wave mode. The Japanese simula-
tion experiments of Solar Power Satellite [Matsu-
moto et al., 19847 unfortunately cannot test the Per-
kins and Goldman's predictions and ours of
microwave-induced 10nospheric disturbances because
of the intrinsic limitation on the transmitter size in a
rocket. The space station under consideration by
NASA probably can provide better experimental
conditions for the future simulation experiments.
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The theory of resonant electron diffusion as an effective saturation process of the
auroral kilometric radiation has been formulated. The auroral kilometric
radiation is assumed to be amplified by the synchrotron maser instability that is
driven by an electron distribution of the loss-cone type. The calculated intensity
of the saturated radiation is found to have a significantly lower value in com-
parison with that caused by the quasi-linear diffusion process as an alternative
saturation process. This indicates that resonant electron diffusion dominates over
quasi-linear diffusion in saturating the synchrotron maser instability.

1. Introduction

Coherent electromagnetic radiation can be generated in a magnetized non-
Maxwellian plasma by the synchrotron maser instability. This instability occurs
under the conditions of inverted population, and stems from the relativistic mass
dependence of the electron gyrofrequency that gives rise to phase bunching in the
electron gyration orbits (see, for example, Bekefi, Hirshfield & Brown 1961). The
operation of this instability has been suggested by, for instance, Melrose (1976)
and Wu & Lee (1979) to be responsible for auroral kilometric radiation (see, for
example, Gurnett 1974; Benson 1985 and references therein).

The optimum environment for the excitation of this instability in space
plasmas is provided by the following processes that invert the population and
form the non-Maxwellian electron distribution for lasing. Kilovolt electric
potential drops are believed to exist along the auroral field lines during the
inverted-V events (e.g. Gurnett & Frank 1973; Lin & Hoffman 1982 and references
therein). Although the depletion of the background electrons to a very low level
is expected because of the parallel electric field, the upgoing electrons that
originate in the reflected plasma-sheet electrons introduce a loss-cone distri-
bution. The non-Maxwellian electron distribution thus created is capable of
producing intense coherent electromagnetic radiation in the upper atmosphere
(Benson 1985).
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The synchrotron maser instability converts the electron energy into coherent
radiation. More specifically, the amplification of electromagnetic radiation occurs
h at the expense of the kinetic energy of electrons whose perpendicular momentum

falls in the range where the electron distribution function has a positive slope.
The saturation of this instability is, therefore, carried out by processes that can
decrease the positive slope of the momentum distribution. A quasi-linear
diffusion process has been analysed by Wu et al. (1981) to evaluate the saturation
level of the auroral kilometric radiation. This diffusion process suppresses the
instability by driving electrons into the lower velocity region, i.e. by reducing
the positive gradient of the electron distribution function. Since the radiation
frequency is less than, but very close to, the electron gyrofrequency, resonance
broadening was also examined by Wu ef al. as another potential saturation
process. They found that the saturation wave energy would be one order of
magnitude higher if resonance broadening, rather than quasi-linear diffusion,
were considered to be the primary saturation process. In other words, quasi-linear
diffusion dominates over resonance broadening as a saturation process of the
synchrotron maser instability in generating auroral kilometric radiation.

A computer simulation of auroral kilometric radiation was performed later
by Wagner et al. (1983). It shows that the synchrotron maser instability saturates
when the resonant electrons diffuse into the loss cone as a result of the turbulent
scattering of particles by the amplified radiation. The turbulent scattering means
the resonant broadening due to the perturbations on the particle trajectories
caused by the amplified radiation whose saturation intensities can be deter-
mined by computer simulation and analytically from our equation (17). The
resonant electrons referred to are those that satisfy the synchrotron maser
resonance condition: w,— Q—k,v, = 0 where o, is the real part of the radiation
frequency, (2 defined by eB,/ymc is the relativistic electron gyrofrequency, k
and v represent the wavenumber of radiation and the electron velocity, respec-

- tively. The subscript z denotes the z axis of a rectangular reference frame taken
along the geomagnetic field. The parameters, e, m, ¢, B,, and y defined by
(1—v2/c?)-%, have their respective conventional meanings of electron charge,
electron rest mass, the speed of light in vacuum, the geometric field intensity,
and the relativistic factor. In the present paper, we investigate analytically this
computer simulated physical process. An upper bound of the corresponding
saturated radiation can then be derived analytically, and compared quanti-
tatively with the saturated radiation deduced from the quasi-linear diffusion
saturation process.

The formulation of the resonant electron diffusion is presented in §2, starting
with the relativistic Vlasov equation. This is followed by a quantitative analysis
and comparison of resonant electron diffusion with quasi-linear diffusion as the
dominant process that causes the saturation of the synchrotron maser instability
in the production of auroral kilometric radiation. A sammary and conclusions
are presented in §3.
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2. Formalism
2.1. Resonant electron diffusion

Resonant diffusion of the background electron distribution in velocity space
resuits from the interaction of electrons with the amplified electromagnetic
radiation. We use the following relativistic Vlasov equation

L +(0/ym). ¥~ [E+ (p/yme) x (B+2B,)].V4)f = . (1)

where p is the electron momentum and B, is the background geomagnetic field
assumed to be uniform. E and B designate the wave fields of the amplified
radiation, which is assumed to have a right-hand circular polarization, that is,

E = 3 (2 +if) e eitkz—od), l
k

2
B = —iY (2 +1f) (kc/w) e eitke—et) @)
k
where o = w(k)) and ¢( = e(k)) are the wave frequency and field intensity of the
amplified radiation, respectively.
The distribution function (f) is assumed to be a linear combination of the
background ({f)) and the perturbation (df) portions:

[= D+ =fo+fi+8fu+dfy

where {f) = f,+f, and 8f = df, + df,. The four parts of the distribution function,
fo f1» 8fs and &f,, correspond to the unperturbed background distribution, the
perturbation on the background distribution (a second-order effect), the phase
coherent linear density perturbation (a first-order effect), and the phase coherent
nonlinear density perturbation (a third-order effect), respectively. The un-
perturbed background distribution (f,) is of the loss-cone type given by

fo(P.B) =}r’<AP,~>*”+"Pf’exm—P*/AP?), (3)

where j(> 0) is the loss-cone index, AP, = [mT,/(} +§j)}t, and P = P%+ P
The phase coherent linear (df;) and nonlinear (3f,) density perturbations are
caused by the instability via wave-particle resonant interaction. The phase
incoherent density perturbation due to nonlinear wave-wave interaction will
not be included in our analysis, for simplicity. However, it should be pointed out
that when the amplified wave field grows to a significantly high level, the wave-
wave interaction process may also become important and contribute additively
to the saturation of the instability.

Along the unperturbed trajectory dr/dt = P/ym and dP/dt = — QP x 2, the
governing equations deduced from (1) for perturbations of the distribution
function are given by

e

%f, = e<[E*+ (7-,%-6) x Bt] .V,(6j0+6f,)+c,c,>, (5)
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%8]‘1 = e[E+ (;'::—c) x B]-Vl’fv (6)

where both ¢.c. and the superscript * indicate the complex conjugate. Integrating
(4) along the unperturbed trajectory, one obtains the phase coherent density
perturbation due to the instability,

. ecetlkz-ut) " kP\ & kP, 0
o=t o, [(1‘%) 7P, +‘ymw3P]f°
where 0 = tan—! (Py/Px).
Similarly, integrating (6) leads to

. ecetths—d) o kP,\ & kP, 9
= 33770 | () P prsan )

.

(7

(8)

Substituting (7) and (8) into (5) yields
9 ittt ottt {1 _FPe ( l) (kPL)i
zif1 = Zietlelte (‘ yma) \oB 1 7,) ¥ \7mat ) 3B

"ml‘—ﬁvi)[(‘ kP)a; *(kP)aP]<f>+c° (9)

which, after being integrated along the unperturbed trajectory, becomes

hi= %%—I—el’e‘““-“'*! L% p —a—+[(—é-+—l-)

PaP taP, oP, " P,
1 2 %
X (0 + 0* — 2ky, — Q)+ ]m[gﬁ—+kvlﬁ]}<f> (10)
L t

Substituting (10) into (8), one ﬁnally gets the phase coherent nonlinear density
perturbation due to the instability,

.e¥le o gilkz~wt) 0 o0
s %= _He—“'—"ume“[(w‘k”')é'ﬁ'””*é'ﬁ]

1 9 7 0 / ’
X{EEP*W’;J{(@P P)(w +o'*— 2k, Q)+8P ]
. 1 0
:  mna | e, E e O

where w’' (= '(k’')) and €' (= €'(k)) are the wave frequency and field intensity of
radiation with wavenumber k'. One can note from (7) and (11) that the wave—
particle resonant interacticn occurs at w,— Q — kv, = 0 where w, is the real part
of the wave frequency w.

2.2. Saturation of the instability

The linear and nonlinear density perturbations, df, and &f,, give rise to the
induced current density defined by

2w
83 = —en, J' dP_dP, f dOP,(P/ym)df,
0
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where 74 is the unperturbed background electron density. We shall show that
the nonlinearly induced current, imposing a stabilizing effect, determines the
saturation level of the instability. These induced currents, appearing in the
following wave equation, acts as the driving source of the radiation:

& E_VE = —4nl 8] 12
3t2 C = - 7752 . ( )

With the substitution of the calculated induced current densities, this wave

equation yields the nonlinear dispersion relation for the synchrotron maser
instability. It is found to be

P2 (w? — k2?)
202 — 2 L
—k%? = 270} [fdP dP,—= { — Q Icv T 2mectyHw— Q— kv, )2

ele’| 2 0
(f+2|w|2{1’ 2P, 11 3p,

2 1
'k _9L'y —
+ [(6P P)(w +'*-2k'v,— Q)

+ap o g O )| 0)] 09

where v = w, +1[, the real and imaginary parts being the real wave frequency
and the nonlinear growth rate, respectively.
Solving (13) for w, and T', we derive the nonlinear growth rate:

22 m2r2 P @
r - Tusmict J dp,fo dPlPl[ Q" ";fu ]S(PL—PN)

40), Pa
? d 62]6 21 & , @
*[“5?*""*5?] (f°+ DR E {FEEP*E”?’I

4 v
+[(ap +3 )(2w,—2k Q)+apkvl]

1 8 .. 2
where
P onc+w(Qo+k202—w3) H
212— Lﬂci '

2t
e (B BV 2L
w, M mic

The following identities have been used in the derivation of (14):

1 . ]
w—Q—kv,= Pwr_Q~kv‘—m8(w,—-Q—Lv:)
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and
0y oYY+ D0, + kP, /mow,]
Ow,— Q—kv,) = @P, oo, Jriict] S(P —P,)
for

F,<F <P,

where P means the principal part. We remark that the real wave frequency w,
of the amplified radiation is determined primarily by the bulk electrons of the
distribution rather than the resonant electrons. It is then reasonable to assume
that the real wave frequency is only weakly affected by the nonlinearity due
to the wave-particle interaction. Therefore, we will not include the effect of
nonlinear frequency shift in the present work and simply approximate w, with
the value derived from the linear dispersion relation deduced from (13) after
dropping the nonlinear terms.

The saturation condition for the instability is determined by (14) after setting
I’ = 0. The result has an unknown integral over the average background distri-
bution function, {f). An estimate of it can be reasonably made on the basis of
the following arguments. The growth rate of the instability and the distribution
function can be assumed to remain unchanged for most of the instability evolution
time. It is only during the final stage of the instability that the growth rate drops
sharply to zero with the formation of a plateau in the velocity range of the
distribution function where a positive slope existed originally. Mathematically
while |w — Q — kv,|2 > 0 because of the resonance condition and I' > 0 at the final
stage of the instability, (Q8/6P, + kv, é/8P,]{f)— 0 because of the formation of
a plateau in the distribution function. For an order of magnitude estimate of
the saturation level, we let

1 o ., 8 1( 2 , @ )
o' - Q—~k'y |2(Q‘3Tl+kv‘éﬁ)<f>:I‘_{(Qa_ﬂ"'kv.l.é?)fo (15)
z z 2z

in (14), where

mew? mic? Pa o
F'_—__‘!(uf J.P“dP,fo dP P,
Q, kP, o 2
X[‘y+a—l:+;-n;r]6(PL—-P_L0)[Q-8?‘L+LU_L52]fO (16)

is the initial (namely, the linear) growth rate of the instability. The assumption
that the growth rate of the synchrotron maser instability driven by a loss-cone
distribution remains at its initial value for a large fraction of the time has been
justified in Wu et al. (1981).

After a few exponentiation periods, the fastest growing wave becomes
dominant. Since the frequency spectrum of the amplified radiation narrows down
sufficiently, the single-wave approximation is good enough for the purpose of
estimating the saturation level of the instability. In view of these points and
noting that I'y(k) is largest at k = 0 (Wu 1981), we can further simplify the
analysis of (14) by considering only a single wave with k = 0 for estimating the
upper bound of the saturated wave intensity.
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2.3. Intensity of the saturated radiation

With these simplifications the integrations in (14) can be carried out analytically.
Then, taking I' = 0 in (14) leads to the following expression for the saturation
intensity:
& _@3j—2aj+ b/ +a), azs[l _2+D@E+Y)
dameT, @ 2Z(ZH+3)(Y+1) il J(2+3)@5+1)
4G+ G+2)at  (G-1) (2 + 1)]
HZ+3)(2j+5)(3j+1)  2(3j+1)a?

BE v\ __(+lat (. 244\
T (1+W;)j(2j+3)(3j+1)(J x 2,-+5)} (17)
where
) T, = 0,/Q, Ty =0,/ Vi=T/Q B2 = APY/mict
an

a? = (1-@y)/f*a;.
The normalized linear growth rate y;, obtained from (16), is given by

mEh L LI 2542
B, ¢ (2j+1)![9‘“ 2j+3]' (18)

=

It is clear from (18) that y, is negative for j = 0 corresponding to the case of a
Maxwellian distribution (see (2)). The positive index j characterizes the velocity
spread of the loss-cone distribution (defined by (2)) in the v, space. It is the
population inversion in P, that provides the source of free energy for the syn-
chrotron maser instability.

We now evaluate the intensity of the saturated radiation based on (17) with
the intention of comparing resonant diffusion with quasi-linear diffusion as the
dominant saturation process in auroral kilometric radiation that is amplified by
the synchrotron maser instability. The typical magnetospheric parameters that
were used by Wu (1981) to analyse quasi-linear diffusion in the loss-cone distri-
bution with j = 1 are also adopted as follows:

w, =02 T,=5keV, ny=1cm3, A%~002

For the k = 0 mode, the calculated @, is about 0-999 and then a ~ 0-112 and
v; = 6-8 x 10~3. With these parameters, we obtain the following results from (17):

&
4mn, T,

~ 87x10-% or f—f—r ~ 7-0x 1013 (erg cm—3) (19)

forny = 1ecm—3and 7, = 5keV.

This energy density (7-0 x 10~13erg cm~3) of the saturated radiation is lower
than those (~ 10-%ergcm~3) obtained from the consideration of the quasi-
linear diffusion process by about two orders of magnitude. This indicates that
resonant diffusion is more effective than quasi-linear diffusion in causing the
saturation of the synchrotron maser instability that is driven by a loss-cone
distribution.
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3. Summary and Conclusions

We have formulated the theory of resonant electron diffusion as a saturation
process of the synchrotron maser instability driven by a loss-cone electron distri-
bution. We were motivated by the computer simulation work of Wagner et al.
(1983). They showed that auroral kilometric radiation amplified by the syn-
chrotron maser instability saturates when the resonant electrons diffuse into the
loss cone via turbulent scattering of electrons by the excited radiation. We are
able to evaluate analytically the intensity of the saturated auroral kilometric
radiation. The ratio (=~ 8-7 x 10-%) of the saturated wave energy to the kinetic
energy, as given in (19), is less than that (~ 2:0 x 10-3) obtained in computer
simulation by a factor of about 20 because different distribution functions and
parameters are used.

The main purpose of this paper is to find out whether resonant diffusion indeed
dominates over quasi-linear diffusion in causing the saturation of auroral kilo-
metric radiation. The saturated radiation intensity has been calculated with the
same distribution function and plasma parameters that were employed in Wu
(1981) for the analysis of the quasi-linear diffusion process. The radiation
saturated by the resonant diffusion process has a significantly lower intensity
in comparison with that by the quasi-linear diffusion process. We conclude,
therefore, that resonant electron diffusion provides the dominant process for
saturating the synchrotron maser instability in the generation of aurcral kilo-
metric radiation as Wagner et al. (1983) demonstrated in the computer simu-
lation.

The work at the Massachusetts Institute of Technology was supported jointly
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F19628-83-K-0024; that at the Polytechnic Institute of New York was supported
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REFERENCES

Beker1, G., HirsHFIELD, J. L. & Brown, S. C. 1961 Phys. Rev. 122, 1037.

Benson, R. F. 1985 J. Geophys. Res. 90, 2753.

GurNETT, D. A. 1974 J. Geophys. Res. 79, 4227.

GURNETT, D. A. & Frang, L. A. 1973. J. Geophys. Res. 78, 145.

Lin, C. S. & HorrMaN, R. A. 1982 Space Sci. Rev. 33, 415.

MELROSE, D. B. 1976 Astrophys. J. 207, 651.

WAGNER, J. S, LEE, L.C,, Wu, C. S. & Tasima, T. 1983 Geophys. Res. Lett. 10, 483.

Wu, C.S. 1981 Physics of Auroral Arc Formation (ed. S. I. Akasofu and J. R. Kan). AGU
Geophysical Monograph, vol. 25, p. 418.

Wu, C.S. & LeEg, L. C. 1979 Astrophys. J. 230, 621.

Wu, C. 8., Tsar, 8. T.,, Xvu, M. J. & SHEN, J. W. 1881 Astrophys. J. 248, 384.




USSR, ACADEMY OF SCIENCE

MODIFICATION
OF THE IONOSPHERE
BY POWERFUL
RADIO WAVES

(Proceedings of the International Symposium,
Suzdal, september 1986)

NOSCOW 1986

i




AL Ve LY ...umOHw

WIAtRJON Uf MUWAdXY  uoncinpogy 2t isoun), e 10 0 numg ;

TNL UL int)

TROL 6L0 0T Tty osay

SCUA0ID L'SIATAN JAEI]] INAUILRIONIAN Jo $IVPQRISH] UONTIU

£q pIINPOI4 UONEMOIN( PLAl] INAUTe N et "33 DN PUE 'S "onj] p

1801
‘G001 ‘TZ say SEYGoRD L LTIUINIAT pruawkad Y sitd ‘UONRINDON

yafondatg 1elod £q uopesing §Od Jo uontiauan, exdod "j{ pue °J ‘anamg 1

[RFHEFRI RIS
‘0LZ-S-O VYN 'ON UBID VSVYN U pun "££10-$8-HSOJY 1LTiD YSOA Y
Y1 CTZECSIESINLIY WEID SN AW Aq (vl pnsoddns S NJow o st

‘papnIdU| B3IQ FBY ApMIdUre piay
2 UO JUJIME JO 12303 YL UM SANIIES oswOd], 3t £q AHQRUTw /AL
P12y 21410313 31 JO IpnIdWe ¥ead AYL UBY Jamof § In[eA SIYL "W/AZ T ~ 7%
spralk {§) ol °m=z%m  pue  2o9/w@or ~"a CTHINYL = 22/' U
THINFOY = =u\o3 3unninsqng “Asqeisty 3y Jo Dlousayy a1 nw
-NBAD 0F U2SOQD SNY1 61 (AN(I7E) OSWOIL 1) jO sumawered 3y "daydsouol apns
-8l Y31y ay1 oy Neidoidde LU0 S| X10m s(q1 gy padojdwra ANawosld ayy adus
(s) v (PU-0m)  (2pks ) 0
3q 01 L451IQRISUT UL JO PIOYSIIRY Ay S3TITLINID "UIn1 Ul ‘YIju =
'1+UZ=U0)/1 -0 suonenba Y1 £q pauiwiiNIp <y §) In(eauand Ayl
) 0= a4 :u-cdv\ﬁ.qefv.%lc
P
‘2,4(V/0)=3 neupioo
DIZIBWIOW Y1 JO SWIAN Ul ‘SIwWoraq (g} puw '(,0/,1-1),0+,TH/1 -==(2);
Netlixoddde SNyl ued Im .nq\_vv_.w_ ps U <<l AR Ul tadurg
"papnIdul are (007£D) U0 A111GWISU] MUY paE (coykn) A11283%0WONUl punc
ANG 3 Jo s12ahd A WA Taba, (P y-om) Sy ]t ux, (w/a)=,0 pim

(/g4 1 (9 =110+ [, (31 -9 )/ 14 (14 ) 1411 =, ()3 - 80/ (Brs )z 2 -
1

=20 (0 -9 -1+ 1 -a01 " (g1 -R b a) A (B s a2 (20
(B)1=by (1(a)s [T)axabvan
'} AWM

1P

(e) o = (| (2 + —
P

F% QOMeNndI ¥NTIIGIP JIPJO PUOIIS ¥ C1T1 PAVIQWOO 3q T (Z) pue (1) "ai3e

-IRA UojsUrn 2vde T am d QM WA 0} muojsusA vidNT| 2y JuiNNL

&01

(Pu-tmimimow o e
) > . 5 ™ele PR S P I [ i
i3 * d.. & i B
aplaye fo P ¢
f
20 O PIAIIIP S| IATM IV :
put 'gopenba sodsuen wmuawow uanenba LnUpuod uodela T

°
pasn e {{eplzy e f4albe-anig
1

2% =" pray cwind ayy oy suoIsAs N

Play aaem Jinwiue] Ay pue ,
‘w/lre = Pa .Aﬂ;xm\:n% Cxu\xxg\mw: - = v

v o= oy ty/mla = Ta /? U ANT = TA

(1) ap?

1p(1 )T ”?y (p-m) ux 2 ¢

s pautesqo st {{,2p(,2)7xg [eimeTug puN

),.QT.«,HJ@Q play  a2Afm  J9ns|Yw  IW1 JOJ uopenbd opow |

‘uopERbs aaEm ot wioig -papsnes ore A=(0)9+(0)'y pue g -dme =T oy

% o10f 22182y ay) JO AedPp Sljamesed Yyl o) ssavoud Iy Apnis mo

(k1 -x} =, 2O/ 1Y% (A1 -x) = 93 £q paapow UL S

10t =

sy Ul prag durnd Yyl ‘uoPduny Ay 2 jo Ntad 19y 3 Jo Iptm

A\ CUONNGIIISIP UODUNS KUY Q1 UG PUE datsm SUIPUEIS ¥ SAUICIIG 221 7 &,
'Lauandad) Nead-4 9 Ueyl $83) sl 1NTIY 3 JO Kouanbal) 3yl 1 pewl sew o
3\~+:ocnc a|yodd £1isBep 2uiseaoul £1reIUN Y "PlAY 72U WO pIT UM

| 3uore premdn Jupwtedoid Jmsay nazpreiod L1Ieinadd J{-71 € JPISUOd sy

“PIIPNIS Si UONEBIAUII daum 471IA JO WsIUBYIIUI aaissa ! any s
Jap6iYm JO HONTIdXD djnduresed Joj §$3204d YL *YIom SIUT U (SIALM TN

JO UONEIdX3 olnawesEd pUY ,JaTEAY JH W o LNQesuy uvonviuau

_..Eu._._:u 19{0J10912 9U1 JO wopeinpowl 3yl 3pnRUY SUCMEAIISQO [wiudtiiIddNg

a1 Joj suonmiaudint) QY TWTIL MY 46ed a1 JUEND PINULNUON UL 1 aavy

£Q 212Udsouoi a1 ul saABm 1N/ 4°10/4LA 0 vopedsyndwr |

10§ SWSIUNYIOM JunvINEdAU] Ul 18321U1 JIQUIIPISUOY § Y

ALV 4H AQ STAVAL YFLLSTHA 4O NOLLVLIDXA DRLLAINVH VI

6E120 'VIN '9201iQOre) ‘A300UYII], JO NNINET] ENISRYILEFTIN “D7IN "2
GELTT AN ‘3Mep3njmmyd ‘011 NNOY KUSIIAIUN AUWINA(OJ '3 "ond

—




vl Sit-T-0s 91

3u11an1838 Y1 'SpIOm 1ay1o U] ‘suolienidng apow parvsejod A{ie|ndild papuey -1yBu
351412410 Y1 01UI PIdNPOIIUL UIIQ SeY IUdUodwod spowr paziiejod Ajreauy| v ey (z)
wolj uaas A|1ea(d 3Q UBY 1| "SUOLIENIINY K1lsuap uonIRZIUO [RuoIIdRI) Yy §1 (Pu/ug)
‘sanptseinBalsy itsuap disaydsouot ayy AQ Butiaireds aaem 1a)isiym wol) Sutwwals suon
' -eQIn1iad play aaem padnpul Yy jo siuavodwod omy Yl e A9 pue Tyg aaym

{z) fggr - {"ufug)eg- =39
‘yotienba
Buimo|joj ayi £q uonenidny Lisuap suiaydsouot ayy 01 paedl st Fg ‘uotreqinitad

"£861 ‘€607 ‘88 sy s{ydosn [ oquary PI3Yy 2.®m 3Y1 121 PUY aw 'u011RNbI asTm IY1 U suoneqInisad jo sisd{eue 2y wolyg

1w Luaiqeisul Buisnso)-)ag 2y Jo saipmig ‘Jafad 'H'g pue ‘zoge] D L q ‘Aaiey
sanige|nBalin Lisuap

suaydsouor pagyijdwe saveay JH Yl Yiim parvidosse * ug ‘uonenidng isuap ayy ;
Jeuatiiodold AjJRaul] S JU24IND WICHUNUOU SIY1 1RY) UMOYS 3G Ued 11 ‘Uay] "uonielsea
[enneds |eprosnuts Buiary SUOIIBNIdNY D11R1S01133]d IN1|-2aem BuipurIs §8 PaQuIIsIP aq
ued satyre(nBaiit LA1suap dzaydsouot padnput 1aeay JH YL sautse(nBain Lisuap
Y1 Wou) aaem JAISIYM A1 Jo Buiianleds Iy £q paInpul aq ued 1WILIND WIOJIURUOL
® ‘satjise|nBaint Ay1suap daydsouol jo @audsaid Iyl UL 1asamoy Aruanbayy Jaisiym
Y1 1@ 1USLIRY DY WIOjUL ® WIOj PIAY daeam JIisIym Yl 01 Buipuodsal suolie(jidso
UoJIDa[A WIOJIUN Ayl ‘Uay] 'pJag dt1auBewoad ayy Yaim sapiouIed 1Ry sixe 2 ayy Buole
S3dUdlajaY 2q 01 uayel udaq sey uoidap uonededosd arem 2y A[aa11dadsas LOuINbII) Jaem pUE
13QUWINU ATM ‘PJAY 211132[2 2Aem JO STUIURIW |RUOIIUIAUOD J1AYY 2aRY O~ 'Oy ‘07 alaym

6261 ‘888 ‘T “isuri] j3ug ‘uoi1d3F wnuend) sAyd orpey ‘asaydsouo ayl jo
19Ae] 3 Iy1 ul sAtauaBowoyul [eidyile jvds-a3sey jo wWni1dadg ‘UIIYNRY A"y
Pu® ‘UYs,[3pPOd ‘N’ "AOUNSRAN "N’ 11U NV “Ader0y ['A TINTT Taowiyynig

2861
‘6801 'pb VSAYJ "113] csowny [ ‘sa|IqeRISUl PaNIXd J} AQ PaIvI3|IIIC LOIIDII
[ewiayiedns jO SIXN| § JO UONIRAIISGQ 'SRIURI "d°O) PUR ‘yemydipgy ‘g A "D H 'vosiie)

(1'd)Le10-$8-USOLY 1ueed YSOL4V 24 pue 2ZeSieg-INLY ueid 4o\ ) (19= - siy)udxaog(f1 - 1) = ©
a1 pue " I'TIN)I0LZ-S-OVYN WeiB ysyy ayy £q Aputol paisoddns st giom sty (1 T F 1) =07

‘( apows aaem 12(istym ‘'2'l Japom paz
-rejod £jaeqnoand papuey-1yBi v {q paiuasaidai s: asaydsouot ayy ut BunieBedoid sasem
1A pavdalur ayy *sapnine; ydiy 1e pawsopad sie sauawiiadxe a1 teyy ¥soddag

'21040Q01103 01 s1uawIadx? aInin} Joj uc1Bal § ay1 Ul s1day3 uonedyIpow
du1aydsouot a1 adueyua A1eald ued 1Ry HUINQINY daem plIGAY 1amO| IsuIul 3re
-21> 01 pa1dadx3 st sineay JJA PuU® JH Jo uoneiado pasodord ay: 'Azewwns uj

{ 2861 '*1® 12 vosjze)) ) s2ulj ewse(d Jo uolINQUISIp
1yB1ay pue mo1311e jo SjuwAINSRIW Yy ‘3jdwexd 10) *Aq palojtuow Iq ued 313ydsouot
S41 Ul S123Y2 UONEIYIPOW paduRyua Y] ‘sewseid d1Iaydsouor ay3 1eIY £]aANdIPI uwd
1Y) 25UINQIn] daem puqly 3mo| Buoais adnpoid 01 paidadxa st uoiBas dudydsouor
payipows -aaem JH 3yl 01Ul saaem dwnd 3774 jo uotdalut yuanbasqns ay] ‘sdaem puiq
-y 1amO| 01U1 S3A®M A JO UO!ISI2AUOY PO JRAUTIUOU Y1 JapUIL 01 3|qR 3T® ‘mol3q
umoys se ‘suonenidny L1suap duaydsouor parueyus A1eas8 asay ] ‘suonelis Ajsuap
pausye-pjag asuaiut Butiesauad jo uon1edadxa 22 Yiim UOIBA § duaydsouot ayy areu
-IWIR{[1 1S4y $2aBm Ja1BaY JH ©1IRU3DS BUImO}10) ad Yiim uo1Bal ¢ 3y Ul suoieIytpow
yIaydsouot a>uryus 01 pasodosd st s1a1eaY {17 A pue JH Jo uonesado pauiquol ayy,

‘saaem pUGAY 1amof orutl sdwnd 474 pardafut ayy
1313936 01 3jqe v sanjuzwnBatlt padnposd-11eay JH Y1 121 parediput seY ‘310j1aY
‘msAeun Areuviwijaid ang ( U1IAYL 532U} pue £RET e 13 Kajae] '6L6T '[¥ 12 AOW
Sy nag 309 JsIdwoty mMaj ¥ 01 SI1WNUIY jo sud wouj BurBues syiBua| apeds asey
santse|nBalit padnpul-1aeay JH Y3 1ey) umouy K|[viauald uazaq sey if IHY Of = °f
pue 'tIN ¥'T = Y ‘THIN 9 = m\.ng x § = 2 ssavmered Juimo[lo] Y1 Jo uonnins
-qQns Y1 Yim sidtaw gzt A(aiewixordde ag 01 punoj s ¢ jo anjes ayl Lj3andadsas
‘Kouanbasj aaem J7A 2y pue ‘£ouanbaiy ¥o110)34> U013 ay1 ‘Aruandbal) vwisejd ayy
‘wnndea ) Y3y jo paads ayy a5 °f puw 3% jraym .N\Lu\\;\:g\ L0 =)
ueyl §93] as¢ 913U ajeds asoym sanurenBain duIydsouot £q pasalieds st aem A
pa1dafur 3y uaym s1ndd0 siy] ‘(sepows prqhy iamo| “'3'1)sapouwl 11eIS0I13|d jo aMm
“RU JURUIWIOD ATy Aew sapow pazirejod Ajedndi|{a PIdnpul Y1 1eyYl wOYs ued am
‘sanyse|ndalsy dtIaydsouol padnpul-datm JH jO SAININIJ PIUCLIUIW-II0J® Y1 YU AL

SYILVIH 474 ANV 4H 40 NOILVAIL0
Q3NIGINOD JHL AG SNOILYOIJIQOIN DTHIHdSONOI GAONYHNI
‘SIPOW PLIQAY Jamo[ jo $21IsLINRIRY> RUIpURISING ay; sey ‘(%u ug)d7 = Vigg VST SELTT AN CajepButwirey ‘gl a1noy 'Ausiaaiun nuydnkjod 4§ ‘ony
£q uaai® s1 Lusudtyr play 3sot'm “1uduoduwsod Ipowd patirejod Ajredury sty suotjeqiny

¥'STN'6E120 VIN “+8priquie) ‘KBojouyR] jo
-12d apow paziawjod Ajpedndiyd sasnes sanjuuenBain SIAYdsouo!l Jo sasew 1IIsiym jo

21M11ISU] S1IISNYIVESTLY '$21U0129{F JO KIoreioqe] yoswasay "y [ 'Buoy pue D | ‘99 W




L3S
sl

G861 (ST "L¥ ‘sAYd 3431 souny [ *a19ydsount ayy ut rumnouId
IeauluUoy jo "Y'§'S ) MYy w uonednssaul  \ Y YOAIND puR Ay TUNRR gy

€86 [ *6L6 ‘0 1137 "5y "sAYdosr) ‘sasem 1aivay »audeulondafd jo sarprqeisy:
uotjrjuatme|y £q pasnpoid suonenidny piag dMaudets ey Y N 327 pur °d’S tony

SAIUILAYIY

(''d)ECI0S8-HSO4Y 1WHB YSO 4V 2 PuT "ZZES1E8INLY 1w Joy
au1 pue ("L 1'WI0LZS-DYN WHd ySYN 2y . £j1usol parsoddns st yiom sty

‘Bunaaw ayy 1e paruasaid ag (pim Airjiqeistt uoneUALIR Y
|eulIay) Y} UO SUOISSNISIP pUR SIsK[PUR pajivia(] "$IARM J1e3Y Y1 JO 1omod apqe
o

-jiea® ayl £Qq papavdX3 3q U AU{IQRISUL Y1 jo POYSIIYY Y1 JrY) UwOys Y At
stskreue Kreutmijaid ay L (p) pue (7) wouj pasiiap aq ued uone(ds uotsiadsip ay

110113312 £q pasrudtiadxa ar10) T3tase)
seautjuou ay) jo wauodwiod z Yy st Ty ,n:\...;,.«.; e (Y )iz e L L ERan s
'ssewn (uotjuoiidala ayy pue Lisuap wwise|d poqiniadun ayy fouanhagy (uonnp .

raisw|d uor iy e (jy)w pue ou ('y)'m pue i ?\m;m«rm cPer ) = A

(» (la-on+ _N..CN%?\:;M s 27l u/oa0uvy) =

vo{re clera s 0™ a0}

2q 01 punoj §1 sapou Axuanba.,;
-013z Y1 Joj uotienba apowr pajdnod ay g Kduanbaz) UOIN||0I UOI-UOIINI ¢ 21 aiatiw

(e Caran [fo/(t » pn(tn - 1)1 = ourug

sty ((1l}dxa{rys0d)F 97 = g7¢ (WIOJ AYY JO LU 1RAIINY drivie
-o1auleur ayy pue suonentday A1suIp wwme(d [0 UOITRUIND FMOIURYNNUIY AN} JOJ 11}
-1pU0Y AYY St ANIfIQeISUl UOIIPIUAUIR]Y [RIIIAY W3 jo MM yaseyd Bunsaiyl uy

P13y 2aem dwind ayy pue sepow L>uanbaij-0133 Y1 UINIMIAQ Bulydnod reaurjun
Y1 10 PIIY pueqapls Y1 01 SUOIIII(I Jo Isuodsas rvaulf Y1 o) Bunynsas sgavodie
33141 10 pasodwod ;' £ ‘KYBUIP TUILINI PIONPUI Y IPRAD JIUN Y} KIIOUIP [ Asaym

{11

(1L)dxa(zyv03)dg = dg wi0j jvsauald ayy aswy sapou <
Y1 JO UONPINXI WWENLIOIUOD Y1 YlIw PARIDOSTE 373 ‘play dnaule: 4o
-a1a ‘Ayisuap eweeld Ut suoneqniiad Y] Iy = y ‘101331 uoneyy
‘el (1moIR ayy Buraey PIAg pueQaIpPI9 PAIXI 3 &1 TCQ: Mz + 1y

(n 23+ (10 - 209 )r'dxa {{(jL)dx2

(zxuwishz 4 1y80> ") 4 (A1« 7)) = o7

AQ u3aa1B st aapm sajmay A,
JO PI3Y {101 ay1 'A3}1qRISUI UOITRINAUIR|Y [RUIIAY] YT JO 2IUdsaid A1 ! nntivrgee
se[nOI papury-1YBis 24T 01 PIUINITE St aavm 1A1PY WIPHOUI Y K3 rduns og

£>uanbatjorf® uo113312 a;; 3¢ pareiads
1313y ayy £q partdxa asaydsouor ayy ut Kiiprqeisut uonRIUIUIT Y (el Uy Aardjgeny
01 st 1aded yuasard a1 jo asodind urews ayy (urasayy S3DUIII;I PUT ue | “yiaaIne,

puw unndyy Jeuatiouayd siraydsouor seaurjuou Fuindinur awos padnpo. ey g g

A UL PAINPuod AouanbaijosdB yo1133(a 3yl 1® FUITRIY 1UPUORI DALt I aempyas
.Au:usvu.:o:u UonI I3 Ay v Lyrpiqeien uoniRIuAWe|Y |ewayy ), WLy A
Jutexd 03 Bunsaianui sty »u:o:?sco;u U0 24} SAYNIPU CIudr g, ot v e,
a1 ov Jurdinep uo10124) 10113313 ay1 KQ pasodun Lurew st PIOUSAIYY B+ Saawey

jo wiatuwydaw Furdurep 1uruiusop aq1 §¥ 13943 (Jurun1ap ay1’ a1 Jasuruacaipn any £
PauTULINIp Ljusewiid 9t pjoysasyy {nfrqesut ayy *A>uandasjosh® uosdar 11 A aen-
L13a tou w £ouanbasjanem duind ayy uay s sIpou: udanp Sppeauiuou »

SUNR, sapot
uaBia jou ase (suonwnidNy Kisuap pue d>awfem Yt pare:zosse) sapp {y .3..5:
<0137 3y3 puw spueqapts Loudnbasj yBiy parXA YL (£RET A PuT v M lwwiny
'OSWOL] 1% PI1IO] UARAY Y ayl q pacnpur suchiendINy pray dAtle noal ooy gy
2|q'suodsas aq 01 pa19aRBns ulaq sey 1| SPUISR|A 23eds U saduanbal; 4w ;ooafur:

PROIQ K134 ® 1 2195200 1UT) $3aTm OIPRI jO (1rITRISH UONIRIUAWIRIY (v h il b

AONINDIYAONAD NOYLD3T3
AHL LY ONLLY3H DIYAHASONO! INYNOSHH FHL N O

Y S 1USELLT AN TNEpRUL® g 'O1] Moy Giisraat y s1uydas s g . e

V'S 1 RCICO Viy 9Bpugque) ARo iy
FININBUL #1129NY VTR Y '6I1101139|F jo KiojeiOqe] Yrieasay ‘Buoy ¥ [ nuw D) gy e




