
FILE

~OF

AUTOMATED EVALUATION SYSTEM FOR THE JOINT

PLANNING (JPLAN) EXERCISE SYSTEM

THESIS

Chester J. Jean, Jr.
Captain, USAF

AFIT/GLM/LSM/88S-39

DTIC
&ELECTE

DEPARTMENT OF THE AIR FORCE E
AIR UNIVERSITYi

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

_l~ IJXM*I approved-.

AFIT/GLM/LSM/88S-39

AUTOMATED EVALUATION SYSTEM FOR THE JOINT

PLANNING (JPLAN) EXERCISE SYSTEM

THESIS

Chester J. Jean, Jr.
Captain, USAF

AFIT/GLM/LSM/88S-39

Approved for public release; distribution unlimited

DT[" "._ T
S7 # r-- 19

The contents of the document are technically accurate, and no
sensitive items, detrimental ideas, or deleterious information is
contained therein. Furthermore, the views expressed in the
document are those of the author and do not necessarily reflect
the views of the School of Systems and Logistics, the Air
University, the United States Air Force, or the Department of
Defense.

Accession For

NTIS GRA&I
DTIC TA3
Unannounced n
Justificatio

Distribution/

Availability Codes

Avail1 and/or

Dist Epecial

qg

AFIT/GLM/LSM/88S-39

AUTOMATED EVALUATION SYSTEM FOR THE JOINT

PLANNING (JPLAN) EXERCISE SYSTEM

THESIS

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Logistics Management

Chester J. Jean, Jr., B.S.

Captain, USAF

September 1988

Approved for public release; distribution unlimited

Preface

The purpose of this study was to develcp a computer

program which would evaluate student performance in the

JPLAN computer exercise used in the Air Force Institute of

Technology (AFIT) Professional Continuing Education (PCE)

Combat Logistics Course (LOG 299).

JPLAN is a simulation of the Joint Operations Planning

System (JOPS), which is the Department of Defense system for

conducting the joint planning process. The JPLAN exercise

requires students to complete force planning for a

fictitious, and partially completed Operations Plan.

This thesis discusses the background of the Joint

Planning Process, the JOPS system, and JPLAN Exercise

system. It then discusses the problems associated with the

manual method of evaluating student performance, and finally

explains how the evaluation computer program was developed.

This project was not a solo effort and several people

have my gratitude for their help. I am deeply indebted to

my thesis adVisor, Capt Joel Melsha for her assistance in

the functional areas of this project, and to Capt Mark Roth

for his assistance in the technical areas of this project.

Finally, my wife deserves a great deal of thanks for

her understanding during those many hours when my face was

buried in the computer screen.

I i Chester J. Jean, Jr,

tli

Table of Contents

Page

Preface ii

List of Figures v

Abstract vi

I. Introduction I

General Issue
Specific Problem 4
Background 4

The Planning Process 4
JOPS ADP 7
JPLAN..................11
JPLAN Rewrite 13

Research Objective 17
Investigative Questions 17
Scope and Limitations 18
Assumptions 18

II. Methodology 20

Overview 20
Specific Methodology 20

Investigative Question I 20
Investigative Question 2 21
Investigative Question 3 21
Investigative Question 4 22
Investigative Question 5 23
Investigative Question 6 23

III. Program Design, Development, and Implementation . 26

Overview 26
Program Design 26

Programming Language and DBMS 26
Evaluation Criteria 27
Database Design 31
Program Layout 32

Program Development 33
Database Construction 33
Program Code 37
Testing and Debugging 45

Program Implementation 47
Evaluation System Installation 47
Program Execution 48

lii

IV. Recommendations and Conclusions 50

Recommendations 50
Conclusions 51

Appendix A: Definitions 52

Appendix B: Evaluation System Program Code 55

Appendix C: Data File Maintenance 92

Overview 92
Interactive INGRES and QBF 93
Evaluation System Database Overview 96
Evaluation System Data File Descriptions . . 97

A PORT 97
STMP 98
STRP 98
EAGLE 99
BARE 99
SUPPLY 99
FUELS 100
CSG 100
T MAINT 101
MATH 101
ARMY 101
ADV 102
HB MOSS 102
FLYSQN 104
SURVEY 104
BEEF '104
SECURITY 104
COMM 104
FMAINT 105
MMAINT 105

Bibliography 107

Vita 109

iv

List of Figures

Figure Page

1. Planning Process Relationships. 6

2. Steps in the Plan Development Phase 9

3. D-Day Time Line....................44

v

AFIT/GLM/LSM/88S-39

Abstract

The-purpose of this thesis was to develop a computer

program which would apply the same evaluation criteria to

student performance in the Joint Planning (JPLAN) exercise

simulation system that the instructor previously had to

apply manually.

JPLAN, which is used in Combat LogisticsL-9 , an

Air Force Institute of Technology (AFIT) Professional

Continuing Education (PCE) course, is a computerized

simulation of the real-world Joint Operation Planning System

(JOPS). JOPS is the Department of Defense system used for

conducting joint planning.

In JPLAN, students are presented with a partially

completed Operations Plan based on a fictitious scenario in

which planning for the defense of Iguana, an American ally,

is underway. Students must complete the plan by programming

Combat Support Forces and Combat Services Support Forces-to

support pre-programmed combat forces.

Following completion of the exercise, student

performance is evaluated by the instructor for shortfalls

and discrepancies.-'Factors evaluated are; sufficient

housekeeping, supply, combat support group, and transient

maintenance to support each base's population; sufficient

STAMP, STRAPP, fuel, field maintenance, and munitions

maintenance for all flying squadrons; sufficient

vi

• • m l | | |-

aerial port support to handle the average daily tonnage

coming into each base; two hospitals in theater; proper

sequencing of the UTCs that must arrive in a given sequence;

and arrival timing for the UTCs that must arrive prior to

the start of flying operations on Day D-3.

A computer program was developed to take the JPLAN data

files that comprise the students output, and evaluate them,

applying the criteria described above. With this program,

evaluation was reduced from over 3 hours using the manual

method, to approximately 30 minutes.

The program was written using Microsoft C as the

programming language and INGRES as the database management

system, the same developmental software used in the JPLAN

exercise system.

vii

AUTOMATED EVALUATION SYSTEM

FOR THE

JOINT PLANNING (JPLAN) EXERCISE SYSTEM

I. Introduction

General Issue

Combat Logistics (LOG 299), taught as an Air Force

Institute of Technology (AFIT) Professional Continuing

Education (PCE) course has, as one of its objectives, to

show how the wartime roles and responsibilities of logistics

managers are integrated into the larger context of U.S. Air

Force and Department of Defense (DOD) wartime preparations

(5:1). As a means to meeting this objective, the course

includes blocks of instruction on the Deliberate Planning

Process and the Joint Operation Planning System (JOPS)

(Terms and abbreviations are defined in Appendix A). In

order to apply what they learn in the Deliberate Planning

Process block, the students participate in a computerized

exercise called the Joint Planning (JPLAN) exercise.

JPLAN, originally developed by what is now called the Air

Force Wargaming Center, is also used at the Air Command and

Staff College (ACSC), and the Air War College (AWC). It is

a simulation of the real-world Joint Operation Planning

System Automated Data Processing (JOPS ADP) computer system

(9:2).

1

In the JPLAN simulation scenario, plan development for

the defense of Iguana, a fictitious ally of the United

States, is already underway with planning for four of the

six bases in Iguana complete (2:3). The students are

presented with a simulated intelligence report on the

situation in Iguana, a limited amount of transportation

resources, and a force list peculiar to JPLAN which contains

the Unit Type Codes (UTC) of available forces to be assigned

to specific bases in the defense of Iguana. The students

are then tasked to complete the plan development. They must

complete support force planning, complete the Time Phased

Force Deployment Data (TPFDD), and plan for the movement of

all forces in the force list to bases in Iguana.

Following initial plan development, the students must

test the transportation feasibility of their plan. This

involves making sure that airlift requested is available,

and that all units are delivered to their Port of

Debarkation (POD) no later than their Latest Arrival Date

(LAD). The students then must resolve any shortfalls in

supportability and transportation that they find. Some

examples of shortfalls are: inadequate housekeeping to

support the forces at a base, not enough aerial port

capability to unload incoming cargo, not planning enough

medical support to care for the forces in the theater of

operations, or not moving Standard Air Munitions Packages

(STAMP) and Standard Tank, Racks, Adapters, and Pylons

2

Packages (STRAPP) (Appendix A) with a tactical fighter

squadron. They must also resolve any UTC sequencing and

timing errors. There are a number of UTCs which must have a

Latest Arrival Date (LAD) which will have them arrive at

their Planned Operating Base (POB) in Iguana no later than

Day D-3, and in a specified proper sequence.

In order to evaluate the students' performance in the

exercise, the instructor must manually review the exercise

data files for shortfalls such as those mentioned above.

According to Capt Joel Melsha, the Combat Logistics Course

Director, and Lt Col Dennis Dragich, Combat Logistics

instructor and previous course director, this method is time

consuming and not entirely accurate (7,11). The instructor

must manually add and subtract many numbers from the data

files, and keep track of these calculations, while looking

for other numbers to sum and compare to those already

summed. For example, the total force population at each

base must be calculated. Then, the evaluator must locate

housekeeping support, medical support, and base supply

support selected by the team for each base. The number of

forces each of these can support must be totaled, then those

numbers must be compared to the actual base-population. A

number of UTCs must also be checked to ensure they are

programmed in the proper sequence, and are programmed to

arrive by D-3. The instructors say it is very easy to add

the wrong numbers, lose a sum of numbers, or entirely miss

some numbers. They believe that a more accurate method of

3

evaluation would be fairer to the students, and that a

faster method of evaluation would provide feedback to the

students in minutes, rather than hours, thus providing

stronger reinforcement for what they learned in the

exercise.

Specific Problem

The general issue described above is summarized in this

specific problem: How can a computer program be developed

to evaluate student output from the JPLAN exercise system

more accurately than the present manual method of

evaluation, and so reduce the time required to provide

feedback to the students on their exercise performance from

hours to minutes, lessening the instructor's workload?

Background

The Planning Process. The Air Force does not operate

alone in defending the United States, nor would it fight

alone. The Air Force is part of a team, along with the

Army, Navy and Marine Corps, and planning for war means that

the relationships and interactions between the team members

must be considered. Developing a plan in which more than

one service is involved, called joint planning, is a complex

process which requires a great deal of coordination between

the services. This is because of the large numbers and

different types of forces in the United States military, and

"the magnitude of the strategic transportation problem which

4

is involved in moving forces from their home bases to their

Planned Operating Bases (POB)" (2:5.12).

The process which allows the services to develop joint

plans is the Joint Operating Planning System (JOPS). JOPS

is a DOD directed , Joint Chiefs of Staff (JCS) specified

system designed to, "establish a set of procedures for

global and regional operation plan development, review, and

execution" (2:5.12). This means JOPS is a standard system

for the services to use to develop and execute war plans.

As the system designed for the joint planning process, JOPS

is used by the specified and unified commands in developing

their Operations Plans (OPLANs). JOPS "provides a

standardized approach for planning and integrating these

joint military operations" (9:2), which means that JOPS is

the system that provides a standardized approach to

developing plans which involve more than one service.

The entire planning process is a very complex set of

interrelationships between several systems, involving a

number of documents. To fully explain the planning process

is beyond the scope of this research, so to facilitate

understanding, a condensed explanation of the planning

process and JOPS' part in it is presented here. The entire

planning process can be viewed as a three link chain, as

shown in Figure I (page 6), with JOPS on one end, the

Planning, Programming and Budgeting System (PPBS) on the

other, and the Joint Strategic Planning System (JSPS), in

the middle (2:5.15).

. . .. , i I 5

SYSTEMS RELATIONSHIPS

_______ATIO MMNCNNCIO

-ii

Th SP s ere ofdoumS usdbthJon

PNS POM

..'G
with JOPS from JPES hc

fit PLANSEVC

SSERVICE AND UNIFIED/SPECIFE

Figure 1. Planning Process Relationships (2:5-15)

The JSPS is a series of documents used by the Joint

Chiefs of Staff (JCS) to satisfy their strategic planning

responsibilities and identify force requirements based on

the perceived threat (2:5.4). The PPBS takes these force

requirements identified in JSPS, and generates the budget.

From its position in the middle of the chain, JSPS interacts

with both JOPS and PPBS. Documents from JSPS, which

identify force requirements, are input to PPBS, generating

budget requirements. Budgetary limitations may require

fewer forces than those requested through JSPS, so the

6

results of PPBS are fed back into JSPS. JSPS then makes

changes in force requirements brought about by the

budgetary constraints from PPBS. JSPS passes this updated

force data, in the form of a Joint Strategic Capabilities

Plan (JSCP) plan, to JOPS. In addition to availability of

forces, the JSCP also contains intelligence information, and

guidance issued by the Secretary of Defense. This

information triggers the generation of Operations Plans

(OPLANs) in JOPS to meet specific requirements identified by

JSPS. Changes to the documents in JSPS affect both the PPBS

process and the JOPS process, while changes in the PPBS

process affect the JSPS documents, which in-turn, generates

changes in JOPS. There is no direct JOPS and PPBS

interaction (2:5.1-5.16).

JOPS ADP. JOPS is resident on the World Wide Military

Command and Control System (WWMCCS) (2:5.12). WWMCCS is

defined as "the system that provides the means for

operational direction and technical administrative support

involved in the function of command and control of U.S.

military forces" (2:5.18). The computerized portion of

JOPS, called JOPS Automatic Data Processing, or JOPS ADP,

resides on the Honeywell 6000 (H6000) Series computer, which

is the standard WWMCCS computer. These computers, which are

usually found at Joint, Major Command (MAJCOM), and Numbered

Air Force (NAF) headquarters in the Air Force, and

equivalent levels of command in the other services, are

joined together into the WWMCCS Intercomputer Network (WIN).

7

These connections allow organizations in the network to

easily share databases, which occurs with regularity in JOPS

ADP.

Deliberate planning is defined as "the cyclic process

used when time permits the total participation of the

commanders and staffs of the supported command... °° (2:6.6).

This refers to plans that are compiled during the normal

planning cycle, and not in response to any contingency

situation. The deliberate planning process, of which JOPS

is a part, consists of five phases: initiation, concept

development, plan development, plan review, and supporting

plans (2:6.9). JOPS ADP is used in the plan development

phase of the process.

The plan development phase contains eight steps which

are described below and summarized in Figure 2 (page 9):

1. Force planning, in which all forces needed to

support the concept of operations are identified.

2. Support planning, where support to sustain the

forces in combat, such as supplies, medical material, civil

engineering materials and replacement personnel, is planned.

3. Chemical/nuclear planning, where possible chemical

and biological warfare is planned.

4. Transportation planning, where the planners begin

the task of planning for the movement of the support.and

combat forces previously identified.

8

5. Shortfall identification, where any shortfalls,

particularly transportation shortfalls are identified and

solved.

6. Transportation feasibility analysis, where

transportation shortfalls are analyzed to determine if it is

possible to move the forces selected to the correct base at

the times selected.

7. Time-Phased Force and Deployment Data (TPFDD)

refinement verifies that the units identified in the TPFDD

are valid and that each OPLAN requirement has a unit

assigned.

8. Documentation, in which the OPLAN is placed in its

final format and published. (2:6.24-6.40).

STEP 1 FORCE PLANNING

STEP 2 - SUPPORT PLANNING

STEP 3 CHEMICAL/NUCLEAR PLANNING

STEP 4 TRANSPORTATION PLANNING

STEP 5 - SHORTFALL IDENTIFICATION

STEP 6 TRANSPORTATION FEASIBILITY ANALYSIS

STEP 7 TPFOD REFINEMENT

STEP 8 - DOCUMENTATION
TFOG

Figure 2. Steps in the Plan Development Phase (2:6-24)

9

In addition to deliberate planning, JOPS ADP also does

time-sensitive planning, sometimes referred to as Crisis

Action Procedures, which are conducted in crises situations.

A crisis is defined as:

An incident or situation involving a threat to the
United States, its territories, and possessions that
rapidly develops and creates a condition of such
diplomatic, economic, political, or military importance
to the U.S. Government that commitment of U.S. military
forces and resources is contemplated to achieve U.S.
national objectives [3:7-3].

In such situations, there is not sufficient time to follow

the deliberate planning process. The portion of JOPS ADP

that defines procedures to be used in time-sensitive

planning is called the Crisis Action System (CAS). The

Joint Deployment System (JDS) does the data processing for

CAS (2:6.6).

Planners using JOPS ADP generate a TPFDD file which

contains units identified for deployment by their UTC. The

TPFDD file also contains characteristics of those units,

such as: Port of Embarkation (POE), Port of Debarkation

(POD), number of personnel, number of short tons (Appendix

A) of cargo to be moved, movement dates and arrival dates

(4:55). The TPFDD is then used as the basis to produce

outputs from the JOPS ADP process. This output is in the

form of OPLANS and Operation Orders. An OPLAN is a plan for

"a single or series of connected operations to be carried

out simultaneously or in succession" (2:5.12). This means

that when a contingency arises with a scenario similar to

the scenario an OPLAN, or several OPLANs were designed to

I0

meet, those plans are executed. These plans are maintained

in the JDS database, and saved for execution in the event of

a contingency in which a specific OPLAN is applicable. An

operation order is the "directive issued by a commander to

subordinate commanders for the purpose of effecting the

coordinated execution of an operation" (2:5.12), which

means, an order to execute an OPLAN.

JPLAN. Combat Logistics (LOG 299), taught as an AFIT

PCE course is designed to:

provide logistics managers with an overview of many of
the combat logistics plans, strategies, and procedures
that will likely be implemented in a wartime scenario.
It is designed to provide an understanding of how
logistics contributes to the overall war effort and
wartime requirements [5:1].

To meet these course objectives, Combat Logistics

includes blocks of instruction in the Deliberate Planning

Process, including JOPS, JSPS, and a Joint Planning (JPLAN)

Exercise (5:i).

The Joint Planning (JPLAN) exercise is a simulation of

JOPS ADP, involving the students in the plan development

phase of the deliberate planning process (4:1). In JPLAN,

students are presented with a fictional scenario in which an

OPLAN for the defense of Iguana, an American ally, is in

development, but not complete. In the OPLAN, combat forces

have been selected for all six bases in theater, but combat

support forces have been selected for only four of the six

bases. The students must plan the remaining Combat Support

(CS) Forces and Combat Services Support (CSS) Forces for the

11

OPLAN, and readjust combat support and services support

where required.

JPLAN's database contains force list data similar in

format to that found in JOPS. The students use this force

list data to identify combat support and combat services

support forces to deploy to Iguana. They then build a TPFDD

file, similar to the one found in JOPS, using the forces

they identified. Following this, just like JOPS, the TPFDD

is used as the basis to identify support for the OPLAN.

The students must ensure they have programmed

sufficient housing to shelter all incoming forces,

construction units to erect any necessary housing, services

units to feed the troops, sufficient medical personnel and

medical supplies to meet the needs of the deployed force,

aerial port units to on-load and off-load cargo, other forms

of support as necessary, and that the support forces arrive

in the proper sequence and on time (4:3).

Following force selection and loading into the computer

database, the students then test the feasibility of movement

of their selected forces to remote locations to meet OPLAN

requirements. They must balance a limited number of

transportation resources and base reception capability when

moving their forces, yet they must still ensure the planned

forces are delivered to their warfighting locations by the

LAD. The students must then resolve shortfalls. See the

General Issue section for examples of types of shortfalls.

12

JPLAN Rewrite. The original JPLAN exercise was

developed for ACSC by the Computer Science Division of the

Air University, now called the Air Force War Gaming Center.

As originally designed, JPLAN was written in FORTRAN and ran

on the H6000 computer, using a hardcopy thermal printer

terminal (9:2).

Combat Logistics' use of the original JPLAN exercise

required access to the AFLC H6000 computer through telephone

lines, a modem operating at 300 BAUD (most modems in

microcomputers operate at 1200 BAUD), and the Computational

Resources for Engineering and Simulation, Training, and

Education (CREATE) System (4:122). Using JPLAN in this

fashion caused problems. It was difficult to get sufficient

computer time to run JPLAN, response time was generally slow

because of many other users on the H6000, and data moved

slowly through the 300 BAUD modem.

Combat Logistics is regularly taught at other bases,

which caused additional problems in using the JPLAN game.

The host site did not always have access to an H6000

computer and the CREATE system, computer personnel to

install the software were not always available, the software

would not always run on the host computer, and the required

terminals were not always available (9:3). There was also

the time, expense and frustration of using long-distance

commercial telephone with a modem, which resulted in bad

connections and frequent disconnects.

13

In addition to problems with the host computer the

original JPLAN exercise was not at all user friendly. All

inputs and outputs were accomplished through the hardcopy

terminal, which is very slow when compared to a standard

video terminal. Because of the use of FORTRAN to write the

program, commands were entered in a string, with commas

separating each command. If an error occurred during input,

the entire line had to be entered again. The students were

spending time that should have been spent on the learning

objective trying to make JPLAN run (9:3).

The original JPLAN system was re-written by Capt James

Jansen, an AFIT School of Engineering 87-D graduate. Capt

Jansen had several objectives which would make his JPLAN

rewrite an improvement over the original JPLAN. One

improvement was to make a system that could run on a

microcomputer. With the current availability of

microcomputers in most military organizations, compatibility

and availability problems would be virtually eliminated.

Another of Capt Jansen's objectives was to make the system

more user friendly. He accomplished this by using on-screen

menus in which system commands are entered. Capt Jansen

also included help screens to answer users questions about

JPLAN commands without the user having to refer to a manual.

Finally, he wanted to utilize a state-of-the-art Database

Management System (DBMS) in JPLAN, to make the new exercise

more like JOPS ADP than the old JPLAN, and to make database

updates easier for the instructors (9:5).

14

Capt Jansen chose PC INGRES by Relational Technology as

the DBMS because the Air Force Wargaming Center, who would

maintain JPLAN after its development and implementation,

uses the mainframe version of INGRES in other projects they

are developing. This meant lower training requirements for

Wargaming Center personnel, and ensures compatibility with

any other systems JPLAN may have to interface with in the

future (9:35).

JPLAN was rewritten in the C computer language. C is a

middle-level, block structured language, and is very

portable. Portable means that a program written in C on one

type of computer can easily be made to run on another type

of computer. The C computer language was chosen for its

compatibility with PC INGRES. The only other computer

language compatible with PC INGRES is COBOL, but

microcomputer versions of COBOL are relatively expensive.

Additionally, COBOL is not as popular a computer language as

it once was because programmers now consider it wordy and

cumbersome (14:6).

The new JPLAN is now being used successfully at AFIT.

According to the Combat Logistics Course Director, more

students are successfully completing the JPLAN exercise

objectives in the course than when the old JPLAN was used.

She attributes this to the fact that the new system is more

user friendly than the previous system because of the on-

screen help, on-screen menus, and on-screen command boxes.

15

The students no longer have to spend their class time

learning how to make JPLAN run. In addition, since no modem

is needed, and there are no competing users, response times

are significantly faster with the new system, further

reducing wasted class time.

A way to improve the new JPLAN exercise would be to

develop a system that would automatically evaluate the

students' performance. In order to perform that evaluation,

the instructor must print several reports from the JPLAN

data base, and visually scan them, looking for particular

conditions based on choices the students made in assembling

their forces. The instructor must also perform many manual

mathematical calculations. This process is time consuming,

and it is possible for the instructor to make mistakes.

The judgements the instructor makes in evaluating the

output could be converted into computer programming logic,

and performed automatically. This process would be more

accurate and much faster than the present method. The

students would be able to receive feedback on their

performance in minutes, compared to waiting overnight as

with the present method. This would enhance the learning

process by providing immediate reinfornement to their

actions in the exercise.

Therefore, a computerized means of evaluating JPLAN

exercise performance would benefit both the instructor and

the students. In addition, since JPLAN is used at other

16

service schools, a computerized evaluation system would

benefit them as well.

Research Objective

The objective of this research project was to improve

the evaluation process of students' performance on the JPLAN

exercise system by developing a computer program that would

apply the same evaluation criteria used by the instructor.

This program will perform the evaluation faster and more

accurately than present manual method.

Investigative Questions

The following investigative questions were addressed in

designing, developing, testing, and implementing the JPLAN

exercise evaluation system:

1. What are the characteristics of the JPLAN exercise

system?

2. What characteristics must the evaluation system have?

3. How can the instructor's evaluation criteria be

converted to computer logic?

4. How should the output be formatted, and how will the

output form, screen or hardcopy, affect the desired output

format?

5. There is a senior service school, and a possible real-

world application for JPLAN and the evaluation system. What

features should be designed into the evaluation system to

make it as compatible as possible with JPLAN, and to make

the conversion to these other applications easier?

17

6. Can the system be developed to be better than the

existing manual evaluation system? If so, how?

Scope and Limitations

Following were the scope and limitations for this

research project:

1. The instructor for any course in any school using JPLAN

must have the ability to modify the input data in the

database to meet their course needs. This meant it was

possible that there was a different database for every site

using JPLAN. This system was developed with the database

used at AFIT. Any tailoring of the evaluation system

database to make it run at other sites will have to be done

by that site.

2. To ensure complete compatibility with JPLAN, the

evaluation system was written in the same computer language

as JPLAN, and used the same database structure that JPLAN

uses.

3. The majority of the research effort on this project was

expended learning the computer language the evaluation

system was written in, and the data base management system

it used.

Assumptions

The following assumptions were applicable to this

research project:

18

1. Evaluation criteria were standard at all sites using

the JPLAN exercise.

2. The person using the evaluation system was familiar

with the JPLAN system.

3. Students would not use the evaluation system.

4. Testing the evaluation system with the AFIT database

would be sufficient to ensure compatibility with JPLAN at

other sites.

5. Following successful completion, the evaluation system

would be incorporated into JPLAN, which is owned by the Air

Force Wargaming Center.

6. There would be no software changes to JPLAN which would

affect the evaluation system while software for the

evaluation system was being developed.

7. The evaluation criteria would be able to be converted

to computer program logic.

8. Technical support on the development language, and the

Database Management System (DBMS) would be available during

software development.

19

II. Methodology

Overview

This chapter identifies the processes used to answer

the investigative questions identified in Chapter I. Each

investigative question will be repeated, and the specific

methodology used to solye it will be presented.

Specific Methodology

The following methods were used to answer each

investigative question.

Investigative Question 1.

What are the characteristics of the JPLAN exercise
system?

This question was partially answered in unstructured

interviews with Capt Jansen (10), the author of the re-

written JPLAN system, and Lt Col Dragich (7), the former

Combat Logistics course director. A literature review of

Chapter 2 of the JPLAN Documentation Manual (8:3-15);

Chapter III, and Appendix B of Capt Jansen's Thesis (9:22-

34,64-67); and the JPLAN computer source code, provided

information on the format of the input files.

Learning the logic of the JPLAN system was accomplished

through simulation and experimentation. This was done by

running the JPLAN system to see what it does; stepping

through the source code line-by-line; and re-running JPLAN

frequently while stepping through the source code to ensure

20

the logic was understood. Both the source code, and the

executable object code were available to accomplish this.

Additional help in understanding the program logic was

provided by Capt Jansen's thesis advisor in the AFIT School

of Engineering, Capt Mark Roth.

Learning about the output from JPLAN, both hardcopy and

data files, was achieved through a literature review, and

experimentation with the system. Chapter 7 of the JPLAN

Users Manual, Appendix A of Capt Jansen's thesis, and

Chapter 2.4 of the JPLAN Documentation Manual, discuss

program output, including how to generate output products,

and how they are formatted. Experimenting with the system

involved running the exercise, trying all system options,

and taking all the output options to generate reports so

they could be reviewed.

Investigative Question 2.

What characteristics must the evaluation system
have?

This question was answered in unstructured interviews

with Capt Jansen (10), Lt Col Dragich (7), and Capt Roth

(13). These interviews attempted to find the

characteristics for the evaluation system that would best

suit the course director's needs.

Investigative Question 3.

How can the instructor's evaluation criteria be
converted to computer logic?

This question was answered by conducting unstructured

interviews with the instructors who regularly evaluate the

21

students' JPLAN performance, Lt Col Dragich (7) and Capt

Melsha (11). The interviews attempted to determine if the

evaluation was based on subjective or objective criteria.

If the initial questioning indicated that the

instructors apply objective criteria, that meant they have

specific rules they use when they evaluate JPLAN output.

The instructors were asked to verbalize, or write down all

the rules they apply when they are evaluating JPLAN output.

If the instructors indicated that they apply subjective

evaluation criteria, that meant they don't have specific

rules they follow when they evaluate JPLAN output, but base

their evaluation on their opinions about the output, or some

internal criteria. They were then asked to quantify, as

best as they could, what they look for. Then that

subjective evaluation criteria could be converted to firm

rules that could be used to formulate either/or logic needed

for a computer program.

Investigative Question 4.

How should the output be formatted, and how will
the output form, screen or hardcopy, affect the
desired output format?

The Course Director was interviewed (11) to determine

how the output should be formatted, and whether it should be

screen or paper output. If paper output was desired, it had

to be determined what width paper the printer to be used

would have. This was necessary because the width or paper

used would have an effect on the format of the output. For

22

example, a printer with a 10" carriage allows 80 characters

of print on a line, while a printer with a 15" carriage

allows up to 132 characters on a line.

Investigative Question 5.

There is a senior service school, and a possible
real-world application for JPLAN and the
evaluation system. What features should be
designed into the evaluation system to make it as
compatible as possible with JPLAN, and to make the
conversion to these other uses easier?

Unstructured interviews with Capt Roth (13) provided

initial suggestions on how to ensure the evaluation system

was fully compatible with JPLAN.

To make it fully compatible, the evaluation system was

written in the same computer language as JPLAN, utilizes the

same DBMS as JPLAN, and runs on the same computers as JPLAN,

to make it fully compatible. Comments were placed in each

routine of the program code to explain what that particular

routine does. This will make the job of program maintenance

easier for the person responsible for that task, by allowing

that person to read the comments about what a program

routine does, rather than reading the code and trying to

decipher the program logic.

Investigative Question 6.

Can the system be developed to be better than the
existing manual system? If so, how?

Answering this investigative question required modeling

and experimentation, but before these processes could begin,

all previous investigative questions had to be answered. At

this point, program design began. This required compilation

23

of all knowledge acquired thus far in the research project,

such as: JPLAN system characteristics, the computer language

the evaluation system will be written in, the DBMS the

evaluation system will use, the instructor's needs, and the

instructor's evaluation criteria. All of this information

was used to determine the system design. Functional

questions that came up during this period were answered by

the course directors and technical questions were answered

by Capt Roth.

The system design was then used as the basis to develop

the computer language source code. Following coding, the

program was compiled from source code to executable object

code. This compilation process identified any syntax errors

in the code. After all syntax errors were corrected, and

the program had been successfully compiled, the program was

tested in order to identify any logic errors. Four sets of

output files from Combat Logistics student groups, along

with the instructor's evaluation of each, were saved. The

evaluation program was run using all of the test data files,

and the output was compared to the instructor's evaluation.

After all logic errors detected using this method were

corrected, the program was tested again using live output

data, and compared to the instructor's evaluation results.

This live data testing process was repeated until the course

director and the programmer were satisfied the program was

error-free. Implementation simply involved supplying the

24

Combat Logistics course director and the Air Force War

Gaming Center with the program, and all associated

documentation. Since students will not use the evaluation

system, it will run separately, and will not need to be

included in the JPLAN installation.

25

III. Proaram Design, Development and Implementation

Overview

This chapter describes how the JPLAN evaluation system

was developed. It will discuss the criteria that determined

what the system design would be, what the system design

actually was, how the program was developed and tested, and

how the program was implemented.

Program Design

Programming Language and DBMS. The inherent JPLAN

exercise program language and DBMS were the primary factors

in determining the language and DBMS that the JPLAN

evaluation system would use. Because JPLAN is written in C,

using embedded Structured Query Language (SQL) from PC

INGRES as the DBMS, it was determined that the evaluation

system should be written in C and PC INGRES also to ensure

complete compatibility with JPLAN. Compatibility is

necessary to ensure that the evaluation system can use the

JPLAN database, and to ease program maintenance. The Air

Force War Gaming Center will be responsible for program

maintenance of the evaluation system, as they are for JPLAN.

Having the evaluation system written in the same language

and DBMS as JPLAN makes that job easier, since the

programmers at the War Gaming Center will only need to know

one language.

26

Before any further program design could proceed, time

had to be spent learning C and INGRES. This was

accomplished by studying C and INGRES reference manuals, and

writing several small programs.

Evaluation Criteria. Following the selection of the

programming language and the DBMS, the Evaluation Criteria,

which are the things the Combat Logistics instructor looks

for when evaluating JPLAN output, became the driver for the

overall program design.

There are a many criteria which the instructor

considers when evaluating JPLAN output that had to be

included in the evaluation system. First, the program had

to ensure the final Army population in the entire theater is

equal to the preloaded Army population, and that a minimum

of two Modular Air Transportable Hospitals (MATH) are

programmed for the theater. It had to make a number of

checks in which supportability is based on base population.

For example, it had to ensure there was enough housekeeping,

supply support, combat support group (if a Harvest Eagle kit

is programmed), and transient maintenance to support the

population at each base. The program had to ensure there is

not a Harvest Eagle and a Harvest Bare housekeeping set

programmed for the same base. If Harvest Bare housekeeping

support is planned for a base, the program had to make sure

there is sufficient Maintenance/Operations Support Shelters

(MOSS) support for each Tactical Fighter Squadron planned

for the base, that a Harvest Bare Advance UTC is programmed,

27

and that it is programmed to arrive before the Harvest Bare

kit. The system had to ensure that there is sufficient

Standard Tanks, Racks, Adapters, and Pylons Packages

(STRAPP) and Standard Air Munitions Packages (STAMP) for

each Tactical Fighter Squadron that requires them and ensure

that there is sufficient fuel support for every flying

squadron planned for a base. It also had to ensure that the

aerial port capability programmed for each base is capable

of handling the average daily tonnage scheduled for off-

loading.

In addition to the supportability checks mentioned

above, the program also had to check UTC sequencing and

timing. There are a number of UTCs that must arrive in a

given sequence, and before a given D-Day. In addition,

there are a number of other UTCs that must be checked for

arrival by a given Day.

Close examination of the evaluation criteria revealed

that there were two general types. One required that two

numbers be compared to each other to see if one is less than

or equal to another. For example, the final Army population

is compared to the preloaded Army population to see if it is

less, which would indicate to the instructor that an Army

UTC was deleted from the database by the students. Another

is that some UTCs must occur in pairs or groups, or, the

presence of one UTC requires the presence of one or more

other UTCs. An example of this is if there is a Harvest

28

Eagle kit programmed for a base, there must also be a Combat

Support Group planned for that base. This discovery made

the rest of system design and development easier because it

allowed all program sub-routines that performed criteria

evaluations to be very similar to one of two types of

evaluation criteria.

The specific evaluation criteria are as follows:

Army Preload. When the students complete the

JPLAN exercise, they must have the same population of Army

troops in the database as was in the database when the

exercise started.

MATH. Two MATHs must be programmed within the

theater. They can be programmed for any base(s) in the

theater.

Housekeeping. There must be sufficient

housekeeping support planned for each base to support no

less than 80% of the programmed base population. Support

planned for more than 80%, or even more than 100% is

acceptable, there is no upper limit. This support can be

either Harvest Eagle kits or Harvest Bare kits, but only one

type is permitted at each base. A base cannot have both a

Harvest Bare kit and a Harvest Eagle kit planned.

Combat Support Group. If Harvest Eagle support is

planned for a base, there must be combat support group

support planned to support no less than 90% of the base

population. There is no upper limit.

29

Harvest Bare Advance. If Harvest Bare support is

planned for a base, a Harvest Bare Advance UTC must be

planned to arrive at the base before the Harvest Bare kit

arrives. The Advance kit's LAD must be at least one day

earlier than the Harvest Bare's LAD.

MOSS. If Harvest Bare support is planned for a

base, MOSS support must also be planned for each Tactical

Fighter unit also planned for that base. There must be the

proper number of MOSS units, and they must be of the proper

type for the type of aircraft planned for the base.

Aerial Port Capacity. The aerial port capacity

planned for a base must be able to handle at least 75% of

the average daily tonnage coming into the base prior to

D-Day. The average daily tonnage coming into a base is

computed by dividing the total amount of tonnage planned for

the base by the number of days there is material actually

arriving at the base. For example, if out of a 7 day time

period, cargo is only arriving at a base during 5 days, the

total tonnage would be divided by 5 not 7.

SuDDly. Supply support must be planned to support

no less than 90% of the planned base population.

Fuel. There must be enough fuel support at a base

to support every flying squadron planned for that base.

Transient Maintenance. There must be enough

transient maintenance support planned for each base to

support no less than 90% of the base population.

30

STAMP and STRAPP. For each Tactical Fighter

Squadron that requires these, the proper type of STAMP and

STRAPP for the aircraft type must be deployed.

UTC Sequencing and Timing. There are a number of

UTCs that must arrive before Day D-3 to ensure they are in-

place before flying operations begin. In addition to this,

there are a number of units that must arrive in a prescribed

sequence.

Database Design. After analyzing the evaluation

criteria, it became apparent that there would have to be a

way to allow the evaluation system to distinguish between

types of UTCs and their properties so it could make the

various evaluations. For example, the system would have to

be able to tell the supply support UTCs from other UTCs, and

what populations each supply support UTC could support; or

for a tactical fighter squadron UTC, what STAMP and STRAPP

UTCs are needed.

It was determined there were two ways to pass this type

of information to the program. One was to include the UTCs

and their properties in the program code. The other way was

to design a data file for each type of UTC that needed to be

evaluated in the program and include them as part of the

JPLAN database.

Including the data in the program code would have made

program development easier, and would have made the program

run faster due to fewer database accesses that would have

been required. However, for ease of maintainability, it was

31

decided to design and create data files for each type UTC

that needed to be checked by the program.

If the evaluation criteria data was included in the

program code, it would take a programmer to make any

necessary data changes. Including the information on

individual data files ensures that the user can update the

evaluation criteria data files through the INGRES

Interactive Query-By-Forms sub-system, rather than having to

have a programmer make the changes. Using INGRES in the

interactive mode would also allow the user to view the data,

which would not be possible if the data was in the program

code. The decision to include this information in data

files rather than in the program also allows each site that

will use the evaluation system to use slightly different

data if they desire.

Program Layout. A general program layout, based on

everything that was known about the programming language,

DBMS, the evaluation criteria, and the database was selected

next. The evaluation system would consist of one program

with a main sub-routine and a series of smaller sub-

routines, rather than several smaller programs linked

together. This was because the program would be small

enough to be easily handled as a single program, making

development and follow-on maintenance easier.

It was determined that the main sub-routine would

include the program introduction, and all user interface,

32

such as what output form is desired. It would also include

all the calls to the other sub-routines. These other sub-

routines would do such things as build tables, add numbers

together, and make the actual evaluations. Each sub-routin

will be discussed in detail.in the Program Development

section of this chapter.

Program Development

Database Construction. After program design was

accomplished, construction of the new data files for the

evaluation system was the next requirement. A total of 20

new files were added to the JPLAN database. The interactive

JPLAN system was used to create and add records to these

files. The interactive JPLAN system provides a complete

means of database maintenance. It allows file creation and

deletion, updating of existing records in a database, and

inserting or appending new records to a database. A brief

description of each new data file follows. Appendix C

contains detailed record layouts of each data file, and

information on file maintenance.

A PORT. The APORT file contains every aerial

port UTC and its daily tonnage capability. It is also used

to determine Aerial Port arrival timing and sequence.

STMP. This file contains every STAMP UTC, and the

UTC of every tactical fighter squadron that uses that STAMP.

Each record contains one STAMP UTC, and up to four aircraft

squadron UTCs that use that particular STAMP.

33

STRP. This file contains every STRAPP UTC, and

the UTC of every tactical fighter squadron that uses that

STRAPP. Each record contains one STRAPP UTC, and up to

three aircraft squadron UTCs that use that particular

STRAPP.

EAGLE. This file contains the Harvest Eagle UTC,

and the population it is capable of supporting. At the

present time, there is only one Harvest Eagle UTC, but by

putting this information on a file, it allows for new

records that may be added in the future, such as the

creation of UTCs for 550 or 275 man Harvest Eagle support

kits.

BARE. This file contains every Harvest Bare UTC,

and the population each is capable of supporting.

SUPPLY. This file contains every supply support

UTC, and the population each is capable of supporting. It

is also used in determining Supply arrival timing.

FUELS. This file contains every fuel/POL support

UTC, and the number of flying squadrons each is capable of

supporting. It is also used in determining Fuel support

arrival timing.

CSG. This file contains every Combat Support

Group UTC, and the population each is capable of supporting.

It is also used in determining Combat Support Group arrival

timing.

T MAINT. This file contains every transient

maintenance UTC, and the population each is capable of

34

supporting. It is also used in determining Transient

Maintenance arrival timing.

MATH. This file contains all Modular Air

Transportable Hospital (MATH) UTCs.

ARMY. This file contains one record, which holds

the total of the preload Army population on the JPLAN

database.

ADV. This file contains the Ha.vest Bare advance

HB MOSS. This file contains aircraft squadron

UTC's that need MOSS support, and the UTCs of the MOSS units

they need for support. Each record contains up to three

aircraft UTCs, up to four UTCs for MOSS units that will

support those aircraft, and the number of squadrons each

MOSS unit will support.

FLY SQN. This file contains the UTC of every

flying squadron. It is also used in determining flying

squadron arrival timing.

SURVEY. This file contains the UTCs of Site

Survey teams. It is used in checking timing and sequencing

of Site Survey teams.

BEEF. This file contains the UTCs of Prime Beef

and Red Horse units. It is used in checking timing and

sequencing of Prime Beef and Red Horse units.

35

SECURITY. This file contains the UTCs of Security

Police units. It is used in checking timing and sequencing

of Security Police units.

COMM. This file contains the UTCs of

Communication units. It is used in checking timing of

arrival of Communications units.

FMAINT. This file contains the UTCs of aircraft

units requiring Field Maintenance support, the aircraft

type, and the UTCs of the Field Maintenance units. It is

used in determining arrival timing of Field Maintenance

units.

MMAINT. This file is similar to the FMAINT file,

except it contains the UTCs of Munitions Maintenance units,

and the UTCs of aircraft units that need them. It is used

in determining arrival timing of Munitions Maintenance

units.

In addition to the new data files mentioned above, the

evaluation system would use several of the existing JPLAN

data files for input. One is the AIR_TPFDD file. This file

contains all UTCs that were programmed for deployment during

the exercise, their Planned Operating"Base (POB) and their

LAD. Cross referencing of UTCs in this file with UTCs

contained in the files discussed above is necessary in the

program to make the required checks. It is used to ensure

required UTCs are present, and to compute the number of

times they occur per base to assist in making the

evaluation.

36

Another JPLAN file used for input is the AIRBASE file.

The evaluation system performs its evaluation by base. It

reads a record from the AIRBASE file, evaluates that base,

then processes the next base. This process continues until

the end of the AIRBASE file is reached.

The MIOPOD JPLAN file contains personnel and tonnage

information in LAD and airbase code sequence. This file is

used for computing the average amount of tonnage coming into

a base, and in adding up the each bases total population,

the theater-wide Army population.

Program Code. After construction of the new data

files, actual program coding began. The first section of

the program, The Declare Section, identifies working and

holding areas to the program (See Appendix B - JPLAN

Evaluation System Program Code). These working areas

include JPLAN database files that the program will use,

array structures which will hold data read from the JPLAN

files, and other working areas which will hold numbers and

characters during processing.

Coding the main sub-routine was next. It does not do

any actual processing, but calls each sub-routine that does

actual processing. It first asks the user whether they

desire Hardcopy or Screen output, or Both.

After this step, the main sub-routine calls a series of

sub-routines that build arrays from many of the data files

used by this program. This was done to reduce the number of

37

times the system must read the database while it makes its

evaluations. Arrays are stored in the computer's memory

while the program is running, while the database is stored

on disk. The computer can access its memory faster than it

can access a disk, so for those files where multiple

accesses would have been necessary, arrays are constructed

to speed processing.

Within the main sub-routine, there is a loop that is

executed once for every base in the AIRBASE file. Except

for the Army preload and the MATH checks, which are done

once for the whole theater, every evaluation criteria is

accomplished once for every base on the AIRBASE file.

Within the loop, each base population and the average daily

amount of tonnage coming into that base are totaled, and a

sub-routine which performs each of the evaluation criteria

discussed in the Evaluation Criteria section is performed.

When the loop has been executed once for every base in the

AIRBASE file, a message saying the evaluation is complete is

displayed, and the program ends.

The evaluation criteria discussed earlier in this

chapter are performed in separate sub-routines. The

programming logic behind each of the criteria is as follows:

Army Preload. The objective here is to make sure

the Army population at the end of the exercise is not

smaller than preload Army population. The preload

population total is first retrieved from the Army file.

Next the ending Army population is computed by adding all of

38

the 'ARMY' fields from the MIOPOD file. That number is

compared to the preload Army population, and if it is

smaller, an error message is displayed.

MATH. MATH UTCs are retrieved from the MATH

array, and a total of all occurences of all MATH UTCs in the

AIRTPFDD file is computed. If, after all MATH UTCs have

been processed, the total of MATHs programmed is less than

two, an error message is displayed.

Supp y. Each supply UTC from the SUPPLY array

checked against the AIRTPFDD file for number of occurences.

That number is multiplied by the population that supply UTC

can support, and then added to a running total. After all

supply UTCs have been processed, the running total is

multiplied by 1.1 and compared to the base population. If

it is smaller, an error message is displayed.

Transient Maintenance. This sub-routine works

like the supply support check, using UTCs from the TMAINT

array.

Aerial Port Capacity. Each aerial port UTC is

read from the APORT array and checked against the AIRTPFDD

file for the number of times the UTC occurs in the AIRTPFDD

file. The number of occurences is multiplied by the amount

of cargo that the UTC can handle, and added to a running

total. Following the check of all aerial port UTCs, the

running total is multiplied by 1.25, and is compared to the

39

average daily tonnage the base can handle. If the running

total is less, an error message is displayed.

Housekeepinz Support. First, the AIRTPFDD is

checked for the presence of a Harvest Eagle. The Harvest

Eagle UTC is retrieved from the EAGLE array, and the number

of times it occurs in the AIRTPFDD file is added. That

number is then multiplied by the population that a Harvest

Eagle can support.

A check for a Harvest Bare kit is performed next.

Each Harvest Bare UTC is retrieved from the BARE array. The

number of times each UTC occurs in the AIRTPFDD file is

added, multiplied by the population that UTC can support,

and added to a running total of population supportability.

In addition, the earliest LAD of all Harvest Bare kits

programmed for the base is retrieved and stored for later

use.

The program then checks for the presence of both

Harvest Eagle and Harvest Bare kits at the same base. If

both Harvest Eagle and Harvest Bare kits are programmed for

a base, an error message is displayed. The total population

that programmed housekeeping can support is then multiplied

times 1.2 and compared to-the base population. If it is

smaller, an error message is displayed.

Combat Support Group. If a Harvest Eagle kit is

planned for a base, the CSG check is performed. The CSG UTC

is retrieved from the CSG file and the number of times it

occurs in the AIR_TPFDD file is added and multiplied by the

40

population it can support. This number is then multiplied

by 1.1 and compared to the base population. If it is

smaller, an error message is displayed.

Harvest Bare Advance. If a Harvest Bare kit was

programmed for a base, a check for a Harvest Bare advance is

made. All advance UTCs are checked against the AIRTPFDD

file, and the earliest LAD of these is saved and compared to

the Harvest Bare LAD stored earlier. If the Harvest Bare LAD

is earlier than the advance LAD, or if no advance at all is

planned, an error message is displayed.

MOSS. If a Harvest Bare kit is planned for a

base, the flying squadrons need MOSS units. First, a record

from the MOSS array is retrieved, and the AIRTPFDD file is

examined for every occurrence of any of the up to three

aircraft UTCs. This total is stored. Next, each of the up

to four MOSS UTCs on the record is added and that total is

multiplied by the number of aircraft squadrons each will

support. The total of aircraft squadrons that need MOSS

support is compared to the number of squadrons that can be

supported by the planned MOSS. If the number of aircraft

squadrons MOSS units can support is smaller than the number

of aircraft squadron UTCs, an error message is displayed.

Fuel. There must be fuel support for every flying

squadron planned for a base. First, each fuel support UTC,

from the FUELS array and the number of flying squadrons it

will support is processed against the AIRTPFDD file for

41

number of occurences. The number of occurences is then

multiplied by the number of flying squadrons that particular

fuel UTC can support, and added to a running total of fuel

support. Next, each UTC is read from the FLY_SQN file, and

the number of times it occurs in the AIRTPFDD file is added

to a running total until all flying squadron UTCs have been

processed. Then, the number of flying squadrons that can be

supported by programmed fuel support is compared to the

total number of flying squadrons planned for that base. If

it is smal4er, an error message is displayed.

STAMP and STRAPP. STAMP and STRAPP are processed

in different sub-routines, but both work the same way.

Fighter squadrons require STAMP and STRAPP support. These,

and the STAMP and STRAPP UTCs they need are in the STMP and

STRP files respectively. First, a record is read from the

STMP/STRP file. The UTC for the STAMP or STRAPP is

processed against the AIRTPFDD file and the number of times

it occurs is totaled. Next, each of the up to four aircraft

UTCs that use that STAMP or STRAPP are processed against the

AIR_TPFDD file and the number of times they occur is

totaled. The total number of flying squadrons needing a

particular STAMP or STRAPP is compared to the total number

of that STAMP or STRAPP programmed, and if it is larger, an

error message is displayed.

UTC Sequencins. There are several types of units

that must arrive in a predetermined sequence. Those units,

in order of required arrival, are; Site Survey, Aerial Port,

42

Red Horse or Prime Beef, Housekeeping, Combat Support Group

(if a Harvest Eagle is programmed), and Security. The UTCs

for each type of unit are in separate data files, for

example, there is a file for Site Survey UTCs called SURVEY,

a file for Aerial Port UTCs called APORT, etc. The program

first processes all UTCs in the SURVEY file against the

AIRTPFDD file for the presence of any of the Site Survey

UTCs at the base being processed. The earliest LAD of all

Site Survey UTCs programmed for the base is stored. It then

extracts the LAD for the other unit types in the sequence in

a similar manner. After all of the LADs have been

extracted, comparisons are made. The Site Survey LAD is

compared to the Aerial Port LAD. If the Site Survey LAD is

later, an error message is displayed. The Aerial Port LAD

is then compared to the Red Horse/Prime Beef LAD, and so on,

until the sequencing for Security has been checked. The

arrival sequence is set in the program, and any changes to

the sequence will require that the program be modified.

UTC Timing. Figure 3 on page 44 illustrates the

sequence of events in JPLAN. D-Day is the day on which

hostilities or operations begin. Numbers on the line to the

left of D-Day are the number of days before combat

operations begin, while numbers to the right of D-Day are

days after hostilities begin. Therefore, D-3 is three days

before hostilities begin, D-4 is four days before, D+3 is

three days after, etc. There are a number of UTCs that must

43

have an LAD prior to D-3. These UTCs are processed in three

separate sub-routines. The UTCs that must arrive in

sequence must also arrive prior to D-3. Those units are

checked for late arrival at the same time the sequence is

checked. The second timing check is done on flying squadron

UTCs. Records are extracted individually from the FLYSQN

file and processed against the AIRTPFDD file, checking for

the presence of that UTC at the base being processed. If

the UTC is programmed at the base being processed, and its

LAD is D-3 or less, an error message is displayed. A timing

check for the remaining units where timing is important is

done in a third sub-routine. Those-types of units are;

Transient Maintenance, Communications, Fuel Support, Supply

Support, Field Maintenance, and Munitions Maintenance. All

are processed in a manner similar to the aircraft UTCs

except for Field and Munitions Maintenance, which are

aircraft dependent. For those two unit types, a check is

first made for the presence of each particular aircraft UTC

that requires Field or Munitions Maintenance. For every

aircraft UTC that is found, a search is made for its

corresponding Field or Munitions Maintenance unit, and their

LADs compared ensure they are lower than D-3. If they are

not, an error message is displayed.

D-10 --------- D-3 ----- D-DAY ----- D+3 --------- D+10
Deployment Flying Hostilities

Begins Ops Begin Begin

Figure 3. D-Day Time Line

44

Testing and Debugging. Following the writing and

entering of the computer code, testing and debugging began.

The first step in debugging is compiling the program. This

process uses a computer program which takes the program

code, which is in human readable format called source code

(See Appendix B), and converts it to computer readable

format called object code. While the compiler performs this

operation, it also checks the commands in the code for

compliance to the rules of the particular computer

programming language. If any of the commands are found to

be in error, the compiler flags those errors and stops the

compile process. These errors are called syntax errors, and

must be corrected before the program can be successfully

compiled and run.

In this particular program, since there was a mix of C

commands and INGRES commands in the same program, two

compiles and a linker had to be run to make an executable

program. The first compile took INGRES commands and

converted them into source code C commands. Once all of the

syntax errors were corrected on this compile, the C compile

was run. The C compile takes all of the source code and

creates the object code. After all of the C syntax errors

were corrected, the linker was run. The linker joins the

object code with the C and INGRES command files it needs to

run and creates the executable file that the user will run

by simply typing the file name.

45

Following error-free compiles, actual program testing

began. Four sets of student data files from a previous

Combat Logistics class were used in testing. Between all

four databases, there were enough different conditions to

adequately test the evaluation program. Prior to testing

the program with this data, the data was manually evaluated

using the same criteria the program would use. This was

done so it would be known what to expect when the program

was run, and it would be known when the program made an

error.

Errors that turned up during this phase of testing were

logic errors. A logic error indicates that the syntax of

the commands is correct, but the sequence in which they are

executed is wrong, or the wrong commands are used. Whatever

the cause, when a program has a logic error, the program

either does not do what is expected, or it does not complete

running at all.

Logic errors are sometimes hard to fix because the

programmer does not always know where in the program they

are occurring. That was not the case in this program. A

number of print messages were put inserted into the program

code, so that when the program ran, it left a trail of

messages. If something unexpected occurred while the

program was running, all that needed to be done was to

follow the trail of messages through the source code, and

the exact location of a logic error could be easily found.

46

Following successful evaluations of all of the test data,

the program was considered complete.

Program Implementation

Evaluation System Installation. Implementation of the

JPLAN evaluation was extremely simple. To install the

evaluation system, the user simply follows the JPLAN

installation instructions outlined in Chapter 2 of the JPLAN

Monitor User's Manual (8:3-4). Evaluation system

installation was integrated into the JPLAN installation so

that there are no changes in the way the user installs

JPLAN.

When JPLAN is installed onto a computer for an

exercise, two installation programs copy the contents of the

JPLAN floppy disks onto the C: drive (hard disk) of the

receiving computer. One installation program copies the

JPLAN program and INGRES files, while the other copies the

JPLAN database files. Implementation of the evaluation

system simply involved incorporating evaluation system files

into the existing JPLAN installation procedure. For those

familiar with the JPLAN installation procedure before the

evaluation system, the only visible difference is that the

install program now prompts the user to insert the

evaluation system disk in the A: (floppy disk) drive.

In incorporating evaluation system installation into

JPLAN installation, the evaluation system program, the batch

file that executes it, and a batch program to generate the

47

hardcopy printout of evaluation system output were put on a

floppy disk. The batch program that installs JPLAN was

modified to tell the user to insert the evaluation system

disk after which it would load those three files into the

\INGRES\BIN directory.

Next, all of the new data files that were created,

along with some INGRES system-created files from the

INGRES\DATA\JPLAN directory were copied onto the JPLAN data

disks used for installation. A batch program was created

for this purpose. When JPLAN data is installed onto a

computer for an exercise, the batch program that does the

installation of the data files simply copies all files from

the data disks to the C: drive of the receiving computer, so

it was not necessary to change the JPLAN database

installation program. Following JPLAN installation, the

evaluation system is ready run.

Program Execution. To begin the JPLAN evaluation, the

user only ne~ds to enter EVALJPLN, and hit return. The

program will ask the user if Hardcopy output, Screen output,

or Both is desired. Entering 'S' to this option will send

all evaluation system messages to the CRT screen, with no

hardcopy. Entering 'H' will send all evaluation system

messages to a file called EVALOUT.TXT. After the program

has completed running, entering 'EVALPRNT' will send the

output file to the printer. Entering 'B' will give both

screen output and file output. Once the user answers the

48

output format question, there is no further user-program

interface.

Another output option is to enter 'CTRL P' on the

computer keyboard before program execution. This command

makes everything that displays on the CRT echo on the

printer. If this is done, enter 'S' or 'B' to the hardcopy

option question, and all messages that display on the CRT

will also print on the printer at the same time. To stop

messages from echoing on the printer, enter 'CTRL P' a

second time.

The evaluation system, at the present time, takes about

30-35 minutes to complete its evaluation of the entire JPLAN

database. When the program completes its evaluation, a

message is displayed saying that the JPLAN evaluation is

complete. The program will then terminate.

49

IV. Recommendations and Conclusions

Recommendations

There are several recommendations for improvement, all

which would enhance the evaluation system. First, the

program code could probably be made more efficient, which

would allow it to run faster. As it is presently-written,

the evaluation system takes approximately 30-35 minutes to

process the present JPLAN database with 6 bases in the

AIRBASE file. This task should be taken on by someone that

knows C and INGRES so that they can follow the logic of the

present code and apply more efficient programming methods to

it.

The development of an interactive program to maintain

the data files created for the evaluation system would also

enhance the evaluation program. While INGRES can be used

interactively to maintain these files, it can be

intimidating to the first time or infrequent user because of

the sheer number of options available in interactive INGRES.

This interactive program should allow the user to update

just the evaluation system files. It should employ forms,

and allow for displaying, adding, deleting, modifying and

sorting records in the evaluation system data files.

50

Conclusions

This thesis has shown that it is possible to

computerize the evaluation of student performance in the

JPLAN Exercise system. Although the program could be

optimized to run faster, at its present speed it still

evaluates student performance faster than previous manual

methods, and frees the instructor to do other things while

the evaluation system is performing its evaluations.

There is room for improvement in the evaluation system;

few, if any, computer systems are perfect on their first

iteration. The recommendations mentioned above will make

the evaluation system a more valuable tool for the Combat

Logistics instructors, and as they use the system they will

think of other ways to improve it.

51

Appendix A: Definitions

The following is a list of definitions to terms that

will be used:

Aerial Port: Provides freight/passenger services,
inspection of air drop loads, and organic maintenance for a
contingency air terminal (3:71-74).

Bare Base: A base which has as a minimum, a source of
potable water, a runway, taxiways and parking areas adequate
for a deployed force (4:57).

C-Day: The unnamed day which a deployment begins, or
is scheduled to begin (6:AI-1-1-3)

Combat Support (CS) Forces: Forces whose primary
missions are to give combat support (operational assistance)
to combat forces (2:11.5). Includes such unit types as
maintenance, transportation, and supply.

Combat Service Support (CSS) Forces: Forces whose
primary missions are to give service support to combat (and
combat support) forces (2:11.5). Includes such unit types
as, food services, mortuary affairs, and recreation
services.

Concept of Operations: A broad outline of a commander's
assumptions or intent in regard to an operation or series of
operations. Concept of Operations gives an overall picture
of the operation (2:11.6).

D-Day: The unnamed day on which hostilities, an
operation or an exercise begins or is scheduled to begin
(6:A1-1-1-'s).

Database: Collection of one or more computer files that
represent all the data associated with, or supporting the
objective of an ADP system (2:11.7).

Database Management System: A system used for storing,
retrieving and formatting information to and from a
database (1:77).

Force List: List of the total combat, CS, and CSS
forces required by an OPLAN. Includes assigned forces,
augmentation forces and other forces to be employed in
support of the plan (2:11.13).

52

Harvest Bare (HB): A bare base package which consists
of modular shelters, utilities, base maintenance equipment
and support systems necessary to convert a bare base into an
operational base. Harvest Bare packages in JPLAN are able
to support up to 4500 personnel in 1500 man increments, and
are maintained in a ready-to-deploy condition (3:29).
Harvest Bare packages are made up of 3 components: Base
Augmentation Support Set (BASS), Maintenance/Operations
Support Shelters (MOSS), and Modular Air Transportable
Hospital (MATH) (4:63).

Harvest Eakle (HE): Air transportable bare base
housekeeping packages capable of supporting up to 1100
personnel. HE kits include tents, administrative equipment,
chaplain supplies, cots, sleeping bags, heaters, water
purifiers, electrical generators and kitchen equipment. HE
kits are not weapon-system-specific (4:64).

Joint Operation Planning System (JOPS): DOD directed,
JCS specified system for planning regional and global, joint
military operations. Does not include strategic plans
(SIOP) (2:11.17).

JOPS ADP: WWMCCS computer-based system to support JOPS
(2:11.19).

Latest Arrival Date (LAD): Latest day, relative to
C-Day in which a unit can arrive at its port of debarkation,
and still support the OPLAN (2:11.19).

Limiting Factor (LIMFAC): A factor or condition that
impedes mission accomplishment (2:11.19).

Maintenance/Operations Support Shelters (MOSS): That
part of a HB kit that contains reusable, expandable shelters
that are weapon system peculiar (4:63).

Modular Air Transportable Hospital (MATH): Medical
support portion of a HB package. Consists of medical
equipment and modules (4:63).

Port of Debarkation (POD): The location to which a
unit will deploy. May or may not be the final destination
(2:11.25).

Port of Embarkation (POE): Location from which a
movement of a unit begins. May or may not be the point of
origin (2:11.26).

Short Ton (STON): Unit of weight measure (2000lbs)
(2:11.28).

53

Shortfall: A lack of forces, equipment, personnel, or
capability that affects the ability to accomplish a mission
(2:11.28).

Standard Air Munitions Package (STAMP): A weapon-
system-specific deployable munitions package designed to
provide supplies of munitions until resupply can occur
(4:68).

Standard Tanks, Racks, Adapters, and Pylons Package
(STRAPP): A weapon-system-specific package of tanks, racks,
adapters and pylons. Similar to the same service that STAMP
does for munitions. (4:68).

Support Forces: Forces whose primary missions are to
give combat support or services support to combat forces
(2:11.5).

Time-Phased Force Deployment Data (TPFDD): Computer
file containing force data of an OPLAN (2:11.31). Includes
UTC, a short unit description, number of personnel, number
of tons, FAD, and LAD.

Type Unit Data File (TUCHA): A computer file containing
planning data and movement characteristics for personnel,
cargo and supplies (2:11.34).

Unified Command: A command which consists of the forces
from two or more services, and whose purpose is to deploy
and employ US military forces in the most effective way
(2:2.12).

Unit Type Code (UTC): A five position code that
communicates force requirement information to the Joint
Operation Planning System (JOPS). They can provide
information about either in-place or deploying units
(3:2),(2:11.34).

54

Appendix B: Evaluation System Program Code

Following is the source program code for the JPLAN

Evaluation System:

JPLAN SIMULATION EVALUATION A

by Capt Chip Jean

*AFIT Class 88-S

Declare INGRES Tables Used in Program

EXEC SQL INCLUDE sqlca;

EXEC SQL DECLARE tucha TABLE
(utc vchar(5),
des vchar(16),
pers integer2,
bpers integer2,
pax integer2,
stons integer2,
osize integer2,
nonairtran integer2,
svc vchar(2));

EXEC SQL DECLARE airtpfdd TABLE
(linenumber integer2,
utc vchar(5),
abpod vchar(3),
emd integer2,
lad integer2,
pri integer2);

EXEC SQL DECLARE airbase TABLE
(abpod vchar(3),
basename vchar(12),
paxcap integer4,
abcargocap integer4,
max-rampsp integer4,

55

EXEC SQL DECLARE miOpod TABLE
(lad integer2,
pod vchar(3),
pax integer2,
stons integer2,
osize integer2,
army iriteger2,
usaf iriteger2,
bpers integer2);

EXEC SQL DECLARE mi~tot TABLE
(lad iriteger2,
pax integer2,
stons integer2,
osize iriteger2,
army integer2,
usaf integer2,
bpers integer2);

EXEC SQL DECLARE aerial port TABLE
(utc vchar(5),
ap-pax-cap integer2,
apcargo cap integer2);-

EXEC SQL DECLARE stmp-TABLE
(stmp-utc vchar(5),
sta acl vchar(5),
sta ac2 vchar(5),
sta ac3 vchar(5),
sta-ac4 vchar(5));

EXEC SQL DECLARE strp TABLE
(strp -utc vchar(5),
str acl vchar(5),
str ac2 vchar(5),
str ac3 vchar(5),
str-ac4 vchar(5));

EXEC SQL DECLARE eagle TABLE
(eagle utc vchar(5),
eagle pop integer2);

EXEC SQL DECLARE bare TABLE
(bare -utc vchar(5),
bare-apt integer2);

EXEC SQL DECLARE supply TABLE
(supply-utc vchar(5),
supply-spt integer2);

EXEC SQL DECLARE fuels TABLE
(fuels -utc vchar(5),
fuels-sqn integer2);

56

EXEC SQL DECLARE csg TABLE
(csgutc vchar(5),
csg-spt integer2);

EXEC SQL DECLARE a-port TABLE
(port utc vchar(5),
port tons integer2);

EXEC SQL DECLARE t-inaint TABLE
(tin_utc vchar(5),
tmspt integer2);

EXEC SQL DECLARE math TABLE
(math-utc vchar(5));

EXEC SQL DECLARE army TABLE
(grunts integer2);

EXEC SQL DECLARE adv TABLE
(hb_adv-utc vchar(5));

EXEC SQL DECLARE hb-moss TABLE
(moaci vchar(5),
moac2 vcbar(5),
moac3 vchar(5),
moutcl vchar(5),
monol integer2,
moutc2 vchar(5),
mono2 integer2,
moutc3 vchar(5),
mono3 integer2,
moutc4 vchar(5),
mono4 integer2);

EXEC SQL DECLARE fly sqn TABLE
(fly utc vchar(5));

EXEC SQL DECLARE survey TABLE
(survey_utc vchar(5));

EXEC SQL DECLARE beef TABLE
(beef-utc vchar(5));

EXEC SQL DECLARE security TABLE
(sputc vchar(5));

EXEC SQL DECLARE domin TABLE
(comm-utc vchar(5));

EXEC SQL DECLARE fmaint TABLE
(ftype vchar(5),
fac-utcl vchar(5),

57

fac utc2 vchar(5),
fac utc3 vchar(5),
fmutcl vchar(5),
fmutc2 vchar(5),
frnutc3 vchar(5));;

EXEC SQL DECLARE mmaint TABLE
(mtype vchar(5),
mac utcl vchar(5),
mac utc2 vchar(5),
mac utc3 vchar(5),
mmutcl vchar(5)i
mmutc2 vchar(5),
mmutc3 vchar(5));

* DECLARE STRUCTURES

EXEC SQL BEGIN DECLARE SECTION;

struct fldtab(f
char fldtype[6];
char fldacl(6];
char fldac2(6];
char fldac3(6];
char fldutclf6);
char fldutc2Il6];
char fldutc3(6];
) fldtab[20];

struct uuntabf(
char muntype(6];
char munacl(6];
char munac2[6];
char munac3[6];
char munutcl [6];
char uiunutc2[6];
char munutc3[6];
) muntab[201;

struct motab_ (
char moal[6J;
char moa2[6];
char moa3(6);
char moul[6];
short rnouln;
char mou2[61;
short uiou2n;
char mou3(6];
short mou3n;
char mou4[6];

58

short mou4n;
) motabll2O];

struct base -tab_ (
char base pod[4];
char base name[13];
long base-cap;
) base-tab[20];

struct he_tab_ (
char he_utc[61;
short he pop;
Ihe-tab[201;

struct. hb-tab_
char hb_utcf[6J;
short hbpop;
) hb_tab[20];

struct supp tab_ (
char supply_utc[6];
short pop spt;
Isupptab[201;

struct. fuel _tab_
char fuel-utc[6];
short fuel _sqn;
) fuel _tab[20];

struct. csgtab_ (
char cs_utc(61;
short cs-spt;
) csgtab[201;

struct aptab_ (
char aputc[61;
short apspt;
) aptab[201;

struct maint-tab_{
char maint-utc[6];
short maint_spt;
}maint tabII2O];

struct mIO -tab-
short tons;
short bpop;
)mlO_tab[201;

char ma_utc (20] [61;
char adv_utc(20] [61;
char fly sqn[20] [61;

59

* DECLARE VARIABLES *

int baseidx = 0; /* Index for Base Table A/

int base max - 0; /* # Entries for Base Table */
int he_idx a 0; / Index for Harvest Eagle Table A/

int hemax - 0; /* # Entries for Harvest Eagle Table m/
int hb idx = 0; / Index for Harvest Bare Table */
int hbmax = 0; /* # Entries for Harvest Bare Table /
int suppidx = 0; /* Index for Supply Table */
int suppmax = 6; /* # Entries for Supply Table */
nt fuelidx = 0; /* Index for Fuel Table
int fuel _max = 0; /* # Entries for Fuel Table */
nt csg-idx = 0; /* Index for CSG Table */
int csgmax = 0; /* # Entries for Combat Spt Grp Table /
int ap_idx = 0; /* Index for Aerial Port Table */
nt ap_max = 0; /* * Entries for Aerial Port Table A/

int maintidx = 0; /* Index for Transient Maint Table*/
nt maintmax - 0; /* # Entries for Maintenance Table A/

int math idx = 0; /* Index for MATH Table */
int math max = 0; /* # Entries for Hospital Table A,

int count_1; /A Used to hold # of occurences A/

int avg-tons a 0; /* Avg tons a base can handle daily */
int totpop = 0; /* Total population at a base */
int armypop = 0; /* Next 3 used in checking Army pop A/

int armytot = 0;
nt tot-grunt = 0;
char hold utc[6]; /* Temp holding area for UTCs */
nt hold tot = 0; /* Used to keep running totals A/

nt he_chk = 0; / 0 if no HE, I if HE found */
nt hb chk = 0; /* 0 if no HB, I if HB found */
nt bare lad = 0; /* Latest arrival date for HB */
int bcomplad - 10; /* Used for comparing HB lad A/

nt adv lad = 0; /* HB advance LAD */
nt acomplad = 10; /* Used for comparing advance LAD /

int adv idx = 0; /* Index for adv table */
int adv max = 0; /A # entries for advance table A/

int sqn idx = 0; /* Index for fly sqn table */
int sqnmax = 0; /* # entries-for flying UTCs A/

int moidx = 0; /1 Index for MOSS table */
int momax = 0; /* # entries for MOSS table */
int holdit a 0; /* next 2, holding areas */
int hid cnt = 0;
char outform; /* Holds output form request */
int barepop;
int form ok a 0;
int hsb ; 0;
int surveylad = 11; /* Site Survey LAD */
int aplad = 11; /* Aerial Port LAD A/

int hklad = 11; /* Housekeeping LAD *]
int csg-lad = 11; / CSG LAD */

60

int splad = 11; /* Security LAD
int beef_ lad = 11; / Prime Beef/Red Horse LAD */
int needs fuel = 0; /* 1=needs fuel O=does not need fuel */
int munidx = 0; /* Index for munitions maint table "/
int munmax = 0; /* # entries in mun maint table /
int fldidx = 0; /* Index for field maint table */
int fldmax = 0; /* # entries for field maint table a/

EXEC SQL END DECLARE SECTION;

a START MAIN PROGRAM *

#include <c:\msc\include\signal.h>
#include <c:\msc\include\stdio.h>
#include <c:\msc\include\ctype.h>
#include <c:\msc\include\math.h>
#include <c:\msc\include\process.h>

FILE *eout;
main ()

EXEC SQL WHENEVER sqlerror STOP;
printf (" \n\n\n\n\n");
printf (" WELCOME TO THE\n");
printf (" JPLAN Simulation Evaluation\n\n\n");
printf (" This Program Will Evaluate the JPLAN"

"Database\n");
printf ("For Supportability Shortfalls and Timing and"

"Sequence Errors\n\n");
printf ("NOTE: If you enter H or B to the following"

"question, you must\n");

printf (" enter EVALPRNT at the C: prompt after this"
"program is\n");

printf (" complete, to get your hardcopy output."

"\n\n");

do
{
if (count_1 > 0) printf ("ERROR - Entry Must Be H, S, or"

"B\n\n");

count_1 = 1;
printf ("Select Output Media - Hardcopy, Screen, or

"Both\n\n");
printf ("Enter H for Hardcopy Output Only\n");
printf ("Enter S for Screen Output Only\n");
printf ("Enter B for Both Hardcopy and Screen Output"

"\n\n");

outform = getch);
if ((outform = 'H') H (outform == 'h')) hsb = 3;

61

if ((outform I= S') 1: (outform == s')) hsb = 1;
if ((outform == B') H: (outform -='b')) hsb a2;

while (hsb < 1);
if (hsb) 1)

eout =fopen("evalout.txt'l,"w');
bid base 0
bid adv 0
bid he 0
bid hb 0
bid supply 0
bid fuel 0
bid csg 0
bid maint 0
bid-ap ();
bid math 0
bid sqn 0
bid moss 0
bid fid 0
bid-mun)
army ();
medical 0
for (base-idx -0; base-idx <base-max; base-idx ++)

he-chk = 0; hb-chk - 0; countI = 0;
if (hsb < 3)

printf (".\n");
printf (*****A****A*****A****f"

printf ("EVALUATING BASE %s \n",
base_tab~base idxl.base_name);

printf (*********t**********nn

if (hsb 1)

fprintf (eout," \n");
fprintf(eu,*************f***\n
fprintf (eout," EVALUATING BASE %s \nil

base_tab[base idx].base_name);
fprintf (ot ****************\~ t

base-tots 0
supply 0
maint 0
tons 0
he_hb 0
if (he_chk > 0) csg 0
if (hb_chk > 0) moss 0
chk -stamp 0
chk strapp 0
fuels ();
sequence 0
acft-timing 0

62

misctiming (;
I

if (hsb < 3){
printf (h***********t*****A****************lhn);
printf (" JPLAN EVALUATION COMPLETE *\n");
printf(I**********************\l)
I

if (hsb > 1)
C
fprintf (eout,"** ******************A*******\nh)
fprintf (eout,"* JPLAN EVALUATI-ON COMPLETE *\n");
fprintf (eout, *************A****************\n)
fclose(eout);
)

EXEC SQL DISCONNECT;
I

* BUILD BASE TABLE *

bld base ()
C

if (hsb < 3)
{
printf ("\n\n");
printf (" ------------ BUILDING TABLES ------------ \n\n");
I

EXEC SQL CONNECT jplan;
EXEC SQL DECLARE base_csr CURSOR FOR

select distinct
ab_pod,
base name,
ab_cargocap

from airbase
order by abpod;

EXEC SQL OPEN base_csr;
EXEC SQL FRTCH base_csr into :basetab[base_idx];
while (sqlca.sqlcode == 0)

(
base idx ++;
base-max ++;
EXEC SQL FETCH base_car into :base_tab(base_idx];I

EXEC SQL CLOSE base_csr;
6

63

/ ****A***A***********A*****A**A******l~mt~lRJmtJ,,Ai**Ai****

* BUILD HARVEST BARE ADVANCE TABLE *

bld adv ()
(

EXEC SQL DECLARE adv_csr CURSOR FOR
select distinct

hb adv utc
from adv;

EXEC SQL OPEN adv csr;
EXEC SQL FETCH adv csr into :adv_utc[adv_idx];
while (sqlca.sqlcode == 0)

(
adv idx ++;
adv max ++;
EXEC SQL FETCH advcsr into :adv_utc(advidx];
I

EXEC SQL CLOSE advcsr;

*BUILD HARVEST BARE TABLE

bid hb ()

EXEC SQL DECLARE hb csr CURSOR FOR
select distinct

bare utc,
bare spt

from bare;
EXEC SQL OPEN hb csr;
EXEC SQL FETCH hb csr into :hb_tab[hb_idx];
while (sqlca.sqlcode == 0)

(
hb idx ++;
hb max ++;
EXEC SQL FETCH hb_csr into :hbtab[hbidx];
I

EXEC SQL CLOSE hb csr;.
6

64

* BUILD HARVEST EAGLE TABLE *

bid he ()
{

EXEC SQL DECLARE hecsr CURSOR FOR
select distinct

eagle_utc,
eagle_pop

from eagle;
EXEC SQL OPEN he csr;
EXEC SQL FETCH hecsr into :he_tab[he_idx];
while (sqlca.sqlcode == 0)

{
he idx ++;
he max ++;
EXEC SQL FETCH hecsr into :hetab(he_idx];
}

EXEC SQL CLOSE he csr;I

* BUILD SUPPLY TABLE *

bld supply ()
{

EXEC SQL DECLARE suppcsr CURSOR FOR
select distinct

supply-utc,
supply-spt

from supply;
EXEC SQL OPEN suppcsr;
EXEC SQL FETCH supp csr into :supp_tab[suppidx];
while (sqlca.sqlcode == 0)

(
supp idx ++;
supp-max ++;
EXEC SQL FETCH suppcsr into :supptab(suppidx];I

EXEC SQL CLOSE supp-csr;
6

65

* BUILD FUELS TABLE f

bid fuel ()

EXEC SQL DECLARE fuelcsr CURSOR FOR
select distinct

fuelsutc,
fuels_sqn

from fuels;
EXEC SQL OPEN fuelcsr;
EXEC SQL FETCH fuel_csr into :fuel-tab(fuelidx];
while (sqlca.sqlcode == 0)

{
fuel idx ++;
fuel-max ++;
EXEC SQL FETCH fuelcsr into :fuel_tab[fuelidxJ;
}

EXEC SQL CLOSE fuelcsr;I

BUILD COMBAT SUPPORT GROUP TABLE

bldcsg ()
f

EXEC SQL DECLARE csg_csr CURSOR FOR
select distinct

csg_utc,
csg_spt

from csg;
EXEC SQL OPEN csg csr;
EXEC SQL FETCH csgcsr into :csg tab[csg_idxl;
while (sqlca.sqtcode == 0)

;csgidx ++;

csgmax ++;

EXEC SQL FETCH csgcsr into :csgtab[csgidx];)
EXEC SQL CLOSE csgcsr;

6

66

* BUILD MAINTENANCE TABLE *

bldmaint ()
{

EXEC SQL DECLARE maint csr CURSOR FOR
select distinct

tm utc,
tmspt

from t maint;
EXEC SQL OPEN maintcsr;
EXEC SQL FETCH maintcsr into :mainttab(maint_idx];
while (sqlca.sqlcode == 0)

{
maint idx ++;
maint max ++;

EXEC SQL FETCH maintcsr into :mainttab(maintidx];
}

EXEC SQL CLOSE maintcsr;)

A BUILD AERIAL PORT TABLE A

bld_ap ()
{

EXEC SQL DECLARE apcsr CURSOR FOR
select distinct

portutc,
port-tons

from a port;
EXEC SQL OPEN apcsr;
EXEC SQL FETCH ap csr into :aptab[apidx];
while (sqlca.sqlcode -= 0)

{
apidx ++;
apmax ++;

EXEC SQL FETCH ap csr into :aptab(apidx];
}

EXEC SQL CLOSE ap csr;
}

BI BUILD HOSPITAL TABLE A

bldmath ()
{

67

EXEC SQL DECLARE mathcsr CURSOR FOR
select distinct

math utc
from math;

EXEC SQL OPEN math csr;
EXEC SQL FETCH math_csr into :ma_utc[mathidx];
while (sqlca.sqlcode == 0)

{
mathidx ++;
math max ++;
EXEC SQL FETCH math csr into :mautc[mathidx];
I

EXEC SQL CLOSE math csr;
I

* BUILD FLYING SQUADRON TABLE *

bld sqn ()
{

EXEC SQL DECLARE bld sqn_csr CURSOR FOR
select

flyutc
from fly sqn;

EXEC SQL OPEN bld sqncsr;
EXEC SQL FETCH bld_sqn_csr into :fly sqn(sqn idx];
while (sqlca.sqlcode == 0)

;
sqnidx ++;
sqnmax ++;

EXEC SQL FETCH bld_sqn_csr into :flysqn[sqn idx];
I

EXEC SQL CLOSE bld_sqncsr;
I

a BUILD MOSS TABLE

bld-moss ()
(

EXEC SQL DECLARE moss_csr CURSOR FOR
select

moacl, moac2, moac3, moutcl, monol, moutc2, mono2,
moutc3, mono3,moutc4, mono4

from hb moss;
EXEC SQL OPEN moss csr;
while (sqlca.sqlcode == 0)

6

68

EXEC SQL FETCH mosscsr into :motab[moidx];
moidx ++;
momax ++;
)

EXEC SQL CLOSE moss csr;)

* BUILD FIELD MAINTENANCE TABLE

bld fid ()
{

EXEC SQL DECLARE bldfld csr CURSOR FOR
select

ftype, fac_utcl, fac_utc2, fac_utc3, fmutcl,
fmutc2, fmutc3

from fmaint;
EXEC SQL OPEN bldfldcsr;
while (sqlca.sqlcode == 0)

(
EXEC SQL FETCH bldfld csr into :fldtab[fldidx];
fldidx ++;
fldmax ++;
I

EXEC SQL CLOSE bldfld csr;I

*IBUILD MUNITIONS MAINTENANCE TABLE A

bldmun ()
{

EXEC SQL DECLARE bldmun csr CURSOR FOR
select

mtype, mac_utcl, macutc2, macutc3, mmutcl,
mmutc2, mmutc3

from mmaint;
EXEC SQL OPEN bldmuncsr;
while (sqlca.sqlcode == 0)

C
EXEC SQL FETCH bldmun_csr into :muntab[munidx];
munidx ++;
munmax ++;
I

EXEC SQL CLOSE bldmun_csr;
6

69

* DONE BUILDING TABLES *

* BEGIN REAL PROCESSING

* CHECK ARMY POPULATION AGAINST PRELOAD *

army ()
(

if (hsb < 3)
printf ("-------------- CHECKING ARMY PRELOAD

S------------\n\n");

if (hsb > 1)
fprintf (eout," --------------- CHECKING ARMY PRELOAD

It ..------ -\n\n");

/* Compute current Army population totals in database */
EXEC SQL DECLARE armycsr CURSOR FOR

select
army

from mlOpod;
EXEC SQL OPEN army csr;
while (sqlca.sqlcode == 0)

f
EXEC SQL FETCH armycsr into :armypop;
armytot = army_tot + armypop;
)

armytot = armytot - armypop;
EXEC SQL CLOSE army csr;
/2***** Get Army preload population total
EXEC SQL DECLARE grunt_csr CURSOR FOR

select distinct
grunts

from army;
EXEC SQL OPEN grunt csr;
/* Get Army Preload Population */
EXEC SQL FETCH gruntcsr into :totgrunt;
if (hsb < 3)

printf ("Army Preload is %d, Current Army Population"
" is %d\n",

totgrunt, army tot);
if (hsb > 1)

fprintf (eout,"Army Preload is %d, Current Army"
" Population is %d\n",tot grunt, army tot);

if (hsb < 3)
if (armytot < totgrunt)

printf ("ERROR - Ending Army Population Less Than"
" Beginning - %d vs %d\n\n",
armytot,totgrunt);

else printf ("Army Population OK\n\n");
if (hsb > 1)

70

if (army tot < tot grunt)
fprintf (eout,"ERROR - Ending Army Population Less

"Than Beginning - %d vs %d\n\n",
army tot, tot-grunt);

else fprintf (eout,"Army Population OK\n\n");
EXEC SQL CLOSE grunt_csr;

A MAKE SURE TWO FIELD HOSPITALS ARE INCLUDEDA

medical (

if (hsb < 3)
printf "----------------------CHECKING FOR TWO HOSPITALS

1------------ \n\n");
if (hsb) 1)

fprintf Ceout," -------------- CHECKING FOR~ TWO HOSPITALS
--------------- \n\n");

count_I = 0;
EXEC SQL DECLARE med csr CURSOR FOR

select
utc

from air tpfdd
where utc =:ma_utc~math_idx];

for (math_idx =0; math-idx < math-max; math idx ++)

EXEC SQL OPEN med_csr;
while (sqlca.sqlcode == 0)

EXEC SQL FETCH med-csr into :hold-utc;
count_1 -+;

count_1
EXEC SQL CLOSE med_csr;

if (hsb < 3)
printf ("Number of Hospitals Programmed is %d\n",

count_1);
if (hsb > 1)

fprintf (eout,"Number of Hospitals Programmed is %d\n",
count_ 1);

if (hsb < 3)
if (count_1 < 2)

printf (".ERROR - Less Than Two Field Hospitals
"Programmed\n\n");

else printf ("Field Hospitals OK\n\n");
if (hsb > 1)

if (count_1 < 2)
fprintf (eout,"ERROR - Less Than Two Field Hospitals"

"Programmed\n\n");

71

else fprintf (eout."Field Hospitals OK\n\n");

* COMPUTE BASE TONNAGE CAPABILITIES AND POPULATION

base_tots ()
{

avgtons = 0; totpop = 0; countI = 0; holdtot = 0;
hid cnt = 0;
EXEC SQL DECLARE mi0_csr CURSOR FOR

select
stons,
bpers

from mi0pod
where pod = :base_tab(baseidx].basepod and

lad < 1;
EXEC SQL OPEN m1O_csr;
while (sqlca.sqlcode -= 0)

{
EXEC SQL FETCH mIO_csr into :hold_tot, :hldcnt;
count_1 ++;
avg tons = avgtons + holdtot;
tot pop = totpop + hldcnt;I

countI -- ;
totpop = totpop - hld_cnt;
avgtons = (avgtons - hold tot) / count_1;
if (hsb < 3)

printf ("Base Population = %d\n\n",totpop);
printf ("Average Daily Tonnage = %d\n\n",avgtons);
I

if (hsb > 1){
fprintf (eout,"Base Population - %d\n\n",totpop);
fprintf (eout,"Average Daily Tonnage = %dkn\n",

avgtons);
I

EXEC SQL CLOSE m10_csr;
I

*C CHECK SUPPLY SUPPORT BASED ON BASE POPULATION A

supply ()
{

hold-tot = 0;

72

if (hsb < 3)
printf ("---------------------EVALUATING SUPPLY SUPPORT

it--------------- \n\n");
if (hsb > 1)

fprintf (eout,--------------- EVALUATING SUPPLY SUPPORT"
-------------- \n\n")

for (suppidx =0; suppidx < suppmax; suppidx ++)

count_1 =0;

EXEC SQL SELECT count(utc)
into :countI
from air_tpfdd
where utc = :supptab[suppidxj.supplyutc and

ab_pod = :base_tablibase_idx] .base pod;
hold-tot = hold-tot + (countI A

supptab~suppidx] .popspt);

hold tot = hold-tot * 1.1; 10% FUDGE FACTOR **

if (hsb < 3)
printf ("Supply Can Support a Population of %~d\n",

hold-tot);
if (hsb > 1)

fprintf (eout,"Supply Can Support a Population of %d\n"
,hold-tot);

if (hsb < 3)
if (tot_pop > hold_tot)
printf ("ERROR - Insufficient Supply Support\n\n');

else printf ("Supply Support OK\n\n");
if (hsb > 1)

if (tot_pop > hold -tot)
fprintf (eout,"ERROR - Insufficient Supply

"Support\n\n");
else fprintf (eout,"Supply Support OK\n\n");

* CHECK TRANSIENT MAINTENANCE SUPPORT
* BASED ON BASE POPULATION

mairit

hold tot = 0;
if (hsb < 3)

printf ("------------------- EVALUATING TRANS. MAINT. SUPPORT"
--------------- \n\n");

if (hsb > 1)
fprintf (eout,"-------------- EVALUATING TRANS. MAINT."

SUPPORT ------------
Fl\n\n") ;

for (mn.int idx =0; maint ldx < maint max; maint idx ++)

73

count_1 = 0;
EXEC SQL SELECT count(utc)

into :countI
from air-tpfdd
where utc = :maint -tab(maint_idx].majnt -utc and

ab_pod = :base_tab[base_idxj.base pod;
hold-tot = hold_tot + (count_1 *

maint_tab~maint_idx].maintspt);

hold tot = hold-tot *1.1; /A*~ 10%, FUDGE FACTOR A**A/
if (hsb < 3)

printf ("Trans. Maint. Can Support a Population of"
it d\4", hold_tot);

if (hsb > 1)
fprintf (eout,"Trans. Maint. Can Support a Population

"of %d\n", hold_tot);
if (hsb > 3)

if (tot pop > hold_tot)
fprintf (eout,"ERRiOR - Insufficient Transient

"Maintenance Support\n\n");
else fprintf (eout,"Transient Maintenance Support OK"'

if (hsb < 3)
if (tot pop > hold_tot)

printf ("ERROR - Insufficient Transient Maintenance"
" Support\n\n");

else printf ("Transient Maintenance Support OK\n\n");

A* * *** A!* ** ** ** ** A* ** Al AtArAl ArAr Arr a a2 t t II a A III II At a * It ** *

~;xpx~ N I II imi \vivRAGE DAILY*
*AM~tiNT l11i Ai. I AiN ilANJ)1,A., ANP THE AMOUNT OF AERIAL PORT *

* PROGRAMMED INTO Till- 13ASE

tons (

hold tot =0;

if (hsb < 3)
printf ("------------------ EVALUATING AERIAL PORT CAPABILITY"

--------------- \n\n");
if (hsb > 1)

fprintf (eout,--------------- EVALUATING AERIAL PORT
"CAPABILITY ----------

for (apidx = 0; ap_idx < apmax; apidx ++)

count_ 1 m 0;
EXEC SQL SELECT count(utc)

into :count_1

74

from air-tpfdd
where utc = :aptab[apidx).aputc and

ab -pod = :base tab[base_idx] .base pod;
hold tot = hold-tot + (count_1 * ap-tab~apidx.ap_spt);

hold tot =hold tot * 1.25; /****25%, FUDGE FACTOR***/
if (hsb < 3)

printf ("Aerial Port Capability is %d\n", hold_tot);
if (hsb > 1)

fprintf (eout,"Aerial Port Capability is %d\n",
hold-tot);

if (hsb > 1)
if (avg_tons > hold-tot)

fprintf (eout,"ERROR - Insufficient Aerial Port"
" Support\n\n");

else fprintf (eout,"Aerial Ports OK\n\n");
if (hsb < 3)

if (avg_tons > hold-tot)
printf ("ERROR - Insufficient Aerial Port Support"

else printf ("Aerial Ports OK\n\n");

* CHECK IF HARVEST EAGLE CSG WAS PROGRAMMED

csg (0

hold tot = 0;
if (hisb < 3)

printf ("--------------------COMBAT SUPPORT GROUP CHECK"
----------------- \n\n");

if (hsb > 1)
fprintf (eout,"---------------- COMBAT SUPPORT GROUP

CHECK ------ nn)
for (csgidx = 0; csgidx < csgmax; csgidx ++)

countI = 0;
EXEC SQL SELECT count(utc)

into :count_1
from air -tpfdd
where utc = :csgtab(csgidx].cs_utc and

ab pod = :base_tab(base idx].base pod;
hold-tot = hold-tot + (count_1

csgtab~csgidx] .csspt);

hold tot = hold-tot * 1.1;
if (hsb < 3)

printf ("Population Supported by CSG is %d\n",hold_tot);
if (hsb > 1)

75

fprintf (eout,"Population Supported by CSG is %d\n",
hold-tot);

if (hsb > 1)
if (tot_pop > holdtot)

fprintf (eout,"ERROR - Insufficient CSG for HE\n\n");
else fprintf (eout,"CSG OK\n\n");

if (hsb < 3)
if (totpop > holdtot)
printf ("ERROR - Insufficient CSG for HE\n\n");

else printf ("CSG OK\n\n");
I

* CHECK BARE BASE SUPPORT VS PROGRAMMED POPULATION *

* ALSO CHECK FOR BOTH HARVEST BARE AND HARVEST AT THE
* SAME BASE, WHICH ISN'T ALLOWED *

he hb (){

barepop = 0; holdtot = 0;
if (hsb < 3)

printf (" -------------- HOUSEKEEPING SUPPORT CHECK"1 -----------.. \nkn");

if (hsb > 1)
fprintf (eout," ------------ HOUSEKEEPING SUPPORT"

CHECK ------------ \nkn");
for (heidx = 0; he idx < hemax; he idx ++)

(
count 1 = 0;
EXEC SQL SELECT count(utc)

into :count_1
from airtpfdd
where utc - :he tab(heidx].heutc and

ab-pod = :basetab[base_idx].basepod;
hold-tot = hold tot + (count 1

he_tab[he_idx].hepop);-
if (count_1 > 0) hechk - 1;
I

if (hechk > 0) printf ("Harvest Eagle Programmed\n");

* BEGIN HARVEST BARE CHECK *

EXEC SQL DECLARE barecsr CURSOR FOR
select

utc,
lad

from air_tpfdd
where abpod = :basetab(base_idx].basepod and

76

utc = :hbtab~hbidx.hb -utc;
acomp_ lad = 10; bcornp-lad = 10; bare -lad - 10;
for (hb-idx =0; hb idx < hb-max; hb idx ++)

count1=0;
EXEC SQL OPEN bare_csr;
while (sqicasqicode an 0)

EXEC SQL FETCH bare-csr into :hold-utc, :bare-lad;
count_1 ++;
if (bare_lad < bcomp lad)

bcomp lad = bare-lad;

countI
bare-pop =bare pop + (count_I hb-tab~hbidx].hbpop);
if (countI > 0) hb_chk = 1;
EXEC SQL CLOSE bare-csr;

* CHECK FOR HARVEST BARE ADVANCE

if (hb-chk > 0)

count_1 = 0; acomp-lad - 10; adv-lad = 10;
if (hsb < 3)

printf ("Harvest Bare Programmed\n");
if (hsb > 1)

fprintf (eout,"Harvest Bare Programmed\n");
EXEC SQL DECLARE adv-chk-csr CURSOR FOR

select
utc,
lad

from air -tpfdd
where ab_pod a :base_tab(base_idx] .base pod and

utc - :adv -utc[adv_idx];
for (adv -idx = 0; adv idx < adv-max; adv-idx ++)

EXEC SQL OPEN adv-chk-csr;
while (sqlca.sqlcode == 0)

EXEC SQL FETCH adv-chk-csr into :hold-utc,
:adv lad;

count_1 ++;
if (adv-lad < acomp lad) acomp lad a adv-lad;

count 1-,
EXEC SQL, CLOSE adv chk-csr;

if (hsb > 1)
if (count_-I == 0)

fprintf (eout,"ERROR - Harvest Bare Advance Not"

77

Deployed\n\n");
if (hsb < 3)

if (count 1 == 0)
printf ("ERROR - Harvest Bare Advance Not Deployed"

"2\n\n");

if (hsb > 1)
if ((bcomplad <= acomplad) && (count_I > 0))

fprintf (eout,"ERROR - Harvest Bare Advance
"Deployed Late\n\n");

else fprintf (eout,"Harvest Bare Advance OK\n\n");
if (hsb < 3)

if ((bcomplad <= acomplad) && (count_l > 0).)
printf ("ERROR - Harvest Bare Advance Deployed

"Late\n\n");
else printf ("Harvest Bare Advance OK\n\n");

)

* Check For HE and HB Deployed to Same Base *

if (hsb > I)
if ((hechk > 0) && (hb chk > 0))

fprintf (eout,"ERROR - HE and HB Deployed to Same
"Base\n\n");

if (hsb < 3)
if ((hechk > 0) && (hbchk > 0))

printf ("ERROR - HE and HB Deployed to Same Base"
"\n\n");

if (hb-chk > 0) holdtot = bare pop;
hold-tot = hold-tot * 1.2;
if (he_chk > 0)

printf ("Population Supported by HE is %d\n", hold_tot);
if ((hbchk > 0) && (he_chk < 1))

printf ("Population Supported by HB is %d\n", holdtot);
if (hsb > 1)

if (tot_pop > hold_tot)
fprintf (eout,"ERROR - Insufficient Housekeeping

"(HE/HB)\nkn");
else fprintf (eout,"Housekeeping OK\n\n");

if (hsb < 3)
if (tot_pop > hold tot)
printf ("ERROR - Insufficient Housekeeping

" (HE /HB)\nkn ") ;
else printf ("Housekeeping OK\n\n");

}

ft CHECK FOR MOSS IF HARVEST BARE WAS USED

moss ()
{

78

if (hsb < 3)
printf ("------------------MOSS CHECK ------------ \~n)
if (hsb > 1)
fprintf (eout, ----------- MOSS CHECK ------------ \~n)
for (moidx = 0; moidx < momax; moidx ++)

count_1 = 0; hid cnt = 0; hold-it = 0;
EXEC SQL SELECT count(utc)

into :hld-cnt
from air-tpfdd
where -(ab_pod = :base -tabrbaseidxl.basepod) and

(utc = :motab(moidx] .moal or
utc = :motabrmoidxl.moa2 or
utc = :motab[moidx].moa3);

EXEC SQL SELECT count(utc)
into :hold it
from air_tpfdd
where ab-pod = :base_tab~baseidx).base pod and

(utc = :motab(moidx].moul);
count_-I = countI + (hold-it * motab(moidxl.mouln);
EXEC SQL SELECT count(utc)

into :hoid-it
from air-tpfdd
where abpod = :base_tab~base idx] .base pod and

utc = :motab[moidx].mou2;
count_1 = count_1 + (hold it * motab~moidx].mou2n);
EXEC SQL'SELECT count(utc)

into :hold-it
from air-tpfdd
where ab-pod a :base_tab~base_idx] .base pod and

utc a :motabllmoidx].niou3;
count_-I = count_1 + (hold-it * motab[iuoidx].mou3n);
EXEC SQL SELECT count(utc)

into :hold-it
from air-tpfdd
where abpod a :base_tab(base idxJ .base pod and

utc = :motab(moidxj.mou4;
countI = count_1 + (hold it * motab(moidx].mou4n);
if (hid cnt) 0) form-ok = 1;
if ((hsb; > 1) && (hid_cnt > 0))

if (count_1 < hid-cnt)
fpriritf (eout,i'ERROR - Insufficient MOSS for"

"UTC(s) %s %s %s\n\n",motab~moidx].moa1
,motab~moidxj .moa2,motab(moidxj .moa3);

else fprintf (eout,"MOSS OK for UTC(s) %s %a %s\n\n",
motab[moidxl .moal,motab(moidx] .moa2,
motab[moidx] .moa3);

if ((hsb < 3) && (hid_cnt > 0))
if (count_1 < hid-cnt)
printf ("ERROR - Insufficient MOSS for UTC(s)"

" s %Is 's\n\n"l,motab(moidxl .moal,
motab[moidx] .moa2,motab~moidx] .moa3);

79

else printf ("MOSS OK for UTC(s) %~s %s %s\n\n",
motab[moidxj .moal,motab~moidx] .moa2,
motab(moidx] .moa3);

if (hsb > 1 && form-ok == 0)
fprintf (eout,"MOSS Not Needed\n\n");

if (hsb < 3 && form ok == 0)
printf ("MOSS Rot Needed\n\n");

SCHECK FOR FUEL SUPPORT FOR EVERY FLYING SQUADRON

fuels C

if (hsb < 3)
printf ("-------------------FUEL CHECK ------ nn)

if (hsb > 1)
fprintf (eout, --------- FUEL CHECK------------- \n\n");

countII = 0; hid-cnt = 0; needs -fuel = 0;
for (fuel _ idx = 0; fuel _idx < fuel-max; fuel_idx ++)

EXEC SQL SELECT count(utc)
into :countI
from air -tpfdd
where utc a :fuel _ tab~fuel _idx].fuel-utc and

ab-pod = :base_tab~base_idxj.base pod;
hid-cnt = hid -cnt + (count_- *

fuel-tab~fuel_idxj.fuel~sqn);

TOTAL UP NUMBER OF FLYING SQUADRONS ***

count_1 = 0;
EXEC SQL DECLARE fly_csr CURSOR FOR

sel1ect
air tpfdd. utc

from air tpfdd, fly sqn
where air tpfdd.ab_pod =:base-tab~base idx] .base pod

and air -tpfdd.utc =fly sqn fly utc;
EXEC SQL OPEN fly csr;
while (sqlca.sqlcode an 0)

EXEC SQL FETCH fly csr into :hoid-utc;
countI ++;

EXEC SQL CLOSE fly csr;
count_I -- ;
if (count_1 > 0) needs-fuel a 1;
if (hsb < 3)

printf ("Flying Sqns a %d Fuel Sqns %dn"
count_1,hld_cnt);

80

if (hsb > 1)
fprintf (eout,"Flying Sqns = %di Fuel Sqns = %~"

count_1,hld-cnt);
if (hsb > 1)

if (hid cnt < count_1)
fprintf (eout,"ERROR - Insufficient Fuel Support"

else fprintf (eout,"Fuel Support OK\n\n');
if (hsb < 3)

if (hid-cnt < count_1)
printf ("ERROR - Insufficient Fuel Support\n\n");

else printf ("Fuel Support OK\n\n");

A MAKE SURE THAT EACH TFS HAS A STAMP

chk stamp (

countI = 0;
hid cnt =O;
if (hsb < 3)

printf ("-------------------STAMP CHECK ------ nn)

if (hab > 1)
fprintf (eout,"------------- STAMP CHECK------------- nn;

EXEC SQL DECLARE eta-ac-csr CURSOR FOR
select

air tpfdd. utc
from air tpfdd, stmp
where (air tpfdd.ab_pod = :base -tab[base_idx].basepod)

and (air_tpfdd.utc = stmp.sta-adl or
air tpfdd.utc = stmp.sta-ac2 or
air tpfdd.utc = stmp.sta_ac3 or
air tpfdd.utc = stmp.sta'ac4);

EXEC SQL OPEN eta -ac_csr;
while (sqlca.sqlcode == 0)

EXEC-SQL FETCH sta-ac-csr into :hold-utc;
count_1 ++;

EXEC SQL CLOSE eta-ac-cer;
countI -- ;

EXEC SQL DECLARE sta-utc-cer CURSOR FOR
select

air tpfdd.utc'
from air tpfdd, stmp
where (air tpfdd.ab pod =:base -tab(baseidx].basepod)

and (air_tpfdd.utc =stmp.stmputc);

EXEC SQL OPEN eta -utc csr;
while (sqlca.sqlcode ;- 0)

81

EXEC SQL FETCH sta-utc-csr into :hoid-utc;
hid cnt ++;

EXEC SQL CLOSE sta-utc-csr;
hid crit --;
if (count_1 == 0 && hid -cnt =- 0)

printf ("STAMP Not Needed\n\n");
if ((hsb > 1) && (countI > 0))

if (hid-cnt < count_1)
fprintf (eout,"ERROR - Insufficient STANP\n\n");

else
fprintf (eout,"STAMP OK \n\n");

if ((hsb < 3) && (count_1 > 0))
if (hid-cnt < count_1)
printf ("ERROR - Insufficient STAMP\n\n");

el1se
printf ("STAMP OK\n\n");

* MAKE SURE THAT EACH TFS HAS A STRAPP

chk strapp (

countI = 0;
hid cnt = 0;
if (hsb < 3)

printf ("------------------STRAPP CHECK ------------ \~n)
if (hsb > 1)

fprintf (eout, "----------STRAPP CHECK ------------

EXEC SQL DECLARE str-ac-csr CURSOR FOR
select

air tpfdd. utc
from air tpfdd, strp
where (air tpfdd.ab pod = :base_tab~base idx].base pod)

and (air_tpfdd.utc = strp.str_adl or
air tpfdd.utc = strp.str-ac2 or
air tpfdd.utc = strp.str_ac3);

EXEC SQL OPEN str-ac_csr;
while (sqica.sqicode == 0)

EXEC SQL FETCH str-ac-csr into :hold-utc;
countI ++;

EXEC SQL CLOSE str-ac-csr;
countI --;
EXEC SQL DECLARE str-utc-csr CURSOR FOR

select
air tpfdd. utc

82

from air tpfdd, strp
where (air tpfdd.ab_pod =:base_tab~base_idxl.base pod)

and (air tpfdd.utc =strp.strputc);

EXEC SQL OPEN str-utc-csr;
while (sqlca.sqlcode == 0)

EXEC SQL FETCH str-utc-csr into :hoid-utc;
hid cnt ++;

EXEC SQL CLOSE str-utc-csr;
hid-cnt -- ;
if (count_1 == 0 && hid -cnt == 0)

printf ("STRAPP Not Needed\n\n");
if ((hsb > 1) && (count_1 > 0))

if (hid -cnt < count_1)
fprintf (eout,"ERROR - Insufficient STRAPP\n\n");

else
fprintf (eout,"strapp OK\n\n");

if ((hsb < 3) && (countI > 0))
if (hid-cnt < count_1)

printf ("ERROR - Insufficient STRAPP\n\n");
else

printf ("STRAPP OK\n\n");

*CHECK TIMING AND SEQUENCING OF UTCs WHERE ORDER IS
*IMPORTANT - THE ORDER IS AS FOLLOWS 1. Site Survey
A2. Aerial Port 3. Red Horse/Prime Beef 4. Housekeeping
S5. Combat Support Group (if HE) 6. Security

ATHE ABOVE UNITS MUST ARRIVE IN THAT ORDER, AND BEFORE D-3*

sequence (

if (hsb < 3)
printf ("---------------- CHECKING UTC SEQUENCING

i------------- \n\n");
if (hsb > 1)

fprintf (eout, -----------CHECKING UTC SEQUENCING"
t------------- \n\n");

EXEC SQL SELECT uiin(air tpfdd. lad)
into :survey lad
from air tpfdd, survey
where (air tpfdd.ab_pod = :base_tab~base_idxl.base pod)

and (air tpfdd.utc - survey.survey_utc);
EXEC SQL SELECT min(air_tpfdd. lad)

into :ap lad
from air tpfdd, a port
where (air tpfdd.ab_pod =:base_tab~base_idxj .base pod)

and (air tpfdd.utc =aport.portutc);

83

EXEC SQL SELECT min(air tpfdd. lad)
into :beef_ lad
from air tpfdd, beef
where (air tpfdd.ab pod =:base_tab~base_idx] .base pod)

and (air tpfdd.utc =beef.beef-utc);
if (he_chk) 0)

I
EXEC SQL SELECT min(air_tpfdd. lad)

into :csg lad
from air tpfdd, csg
where (air_tpfdd.ab pod=

:base tab~base_idxj.base_pod)
and (ailr tpfdd-utc = csg.csgutc);

EXEC SQL SELECT min(air tpfdd. lad)
into :hk-lad
from air tpfdd, eagle
where (air tpfdd.ab pod=

:base -tab(base_idx].base_pod) and
(air tpfdd.utc.= eagle.eagleutc);

if (hb-chk > 0)
EXEC SQL SELECT min(air tpfdd. lad)

into :hk-lad
from air tpfdd, bare
where (air tpfdd.ab pod=

:base-tab~base_idx] .base_pod) and
(air_tpfdd.utc = bare.bare-utc);

EXEC SQL SELECT min(air tpfdd. lad)
into :sp_ lad
from air_ tpfdd, security
where (air tpfdd.ab_pod=

:base_tab(baseidx].basepod) and
(air tpfdd.utc = security. sputc);

if (hsb > 1)
f
fprintf (eout,"SITE SURVEY LAD IS %d\n", survey lad);
fprintf (eout,"AERIAL PORT LAD IS %d\n", apldd);
fprintf (eout,"RED HORSE/BEEF LAD IS %~d\n"p beef_lad);
fprintf (eout,"HOUSEKEEPING LAD IS %d\n", hk-lad);
if (he chk > 0)

fprintf (eout,"CSG-LAD IS %d\n", csg-lad);
fprintf (eout,"SECURITY LAD IS %d\n\n", sp_lad);
if (survey lad > aplad :survey lad > -4)

fprintf (eout,"ERROR -Site Survey Late, Out of"
"Sequence or Not Deployed\n\n");

else
fprintf (eout, "Site Survey Sequence OK\n\n");

if (ap lad > beef lad 11I aplad > -4)
fprintf (eout,"'ERROR - Aerial Port Late or Out of"

"Sequence\n\n");
else

fprintf (eout,"Aerial Port Sequence OK\n\n");
if (beef-lad > hk-lad :1 beef-lad > -4)

84

fprintf (eout,"ERROR - Prime Beef/Red Horse Late,"
tOut of Sequence, or Not Deployed\n\n");

else
fprintf (eout,"Prime Beef/Red Horse Sequence

if (he chk > 0)

if (hk_ lad), csg lad :1 hk -lad > -4)
fprintf (eout,"ERROR - Housekeeping Late or

"Out of Sequence\n\n");
else

fprintf (eout,"Housekeeping Sequence OK\n\n");
if (csg lad > splad 1!csg lad > -4)

fprintf (eout,"ERROR - Combat Support Group
"Late or Out of Sequence\n\n");

else
fprintf (eout,"Combat Support Group Sequence

"OK\n\n");
if ((sp lad > -4) H1 (sp_ lad < hk_ lad))

fprintf (eout,"ERROR -Security Late of Out
"of Sequence
"or Not Deployed\n\n");

else
fprintf (eout, "Security Sequence OK\n\n");

if (hb -chk > 0 && he-chk == 0)

if (hk_lad > splad ",hk -lad >-4)
fprintf (eout,"ERROR - Housekeeping Late or Out"

"of Sequence\n\n");
else

fprintf (eout, "Housekeeping Sequence .OK\n\n");
if ((sp lad)o -4) H1 (sp_ lad < hk_ lad))

fprintf (eout,"ERROR - SecurityN Late or Out of"
"Sequence\n\n");

else
fprintf (eout,"Security Sequence OK\n\n");

if (hsb < 3)

printf ("SITE SURVEY LAD IS %d\n", survey lad);
printf ("AERIAL PORT LAD IS %d\n", aplad);
printf ("RED HORSE/BEEF LAD IS %d\n", beef_lad);
printf ("HOUSEKEEPING LAD IS %d\n", hk-lad);
if (he_chk), 0)

printf ("CSG LAD IS %d\n", csg-lad);
printf ("SECURITY LAD IS %d\n\n", splad);
if (survey lad), aplad I : survey lad), -4)

printf ("ERROR - Site Survey Late, Out of Sequence"
"oor Not Deployed\n\n");

else
printf ("Site Survey Sequence OK\n\n");

85

if (ap lad > beef_lad 11 aplad > -4)
printf ("ERROR - Aerial Port Late or Out of

"Sequence\n\n");
else

printf ("Aerial Port Sequence OK\n\n");
if (beeflad > hk lad 11 beeflad > -4)

printf ("ERROR - Prime Beef/Red Horse Late, Out of
"Sequence, or Not Deployed\n\n');

else
printf ("Prime Beef/Red Horse Sequence OK\n\n");

if (hechk > 0)
{
if (hk_lad > csglad :I hklad > -4)

printf .("ERROR - Housekeeping Late or Out of
"Sequence\n\n");

else
printf ("Housekeeping Sequence OK\n\n");

if (csg lad > splad I csg lad > -4)
printf ("ERROR - Combat Support Group Late or

"Out of Sequence\n\n");
else

printf ("Combat Support Group Sequence OK\n\n");
if ((sp lad > -4) H1 (sp lad < hk_ lad))

printf ("ERROR - Security Late, Out of Sequence"
t or Not Deployed\n\n");

else
printf ("Security Sequence OK\n\n");

1
if (hbchk > 0 && hechk == 0)

(
if (hklad > sp lad 11 hk lad > -4)

printf ("ERROR - Housekeeping Late or Out of
"Sequence\n\n");

else
printf ("Housekeeping Sequence OK\n\n");

if ((splad > -4) H (splad < hk_lad))
printf ("ERROR - Security Late or Out of

"Sequence\n\n");

else
printf ("Security Sequence OK\n\n");

I

* CHECK TIMING OF AIRCRAFT SQUADRON ARRIVAL *
* LAD MUST BE EARLIER THAN D-3 *

acft_timing ()

if (hsb < 3)
printf (" -------------- CHECKING AIRCRAFT TIMING"

86

if (hsb > 1)
fprintf (eout,"--------------- CHECKING AIRCRAFT TIMING"

It--------------- \n\n");
EXEC SQL DECLARE acft-csr CURSOR FOR

sel1ect
air tpfdd. utc,
air tpfdd. lad

from air tpfdd, fly sqn
where (air tpfdd.ab_pod -:base_tab[baseidx].basepod)

and (air tpfdd.utc =fly sqn.fly utc);
EXEC SQL OPEN acft-csr;
while (sqlca.sqlcode == 0)

EXEC SQL FETCH acft-csr intu :hold_utc, :acomp lad;
if (sqlca.sqlcode (1)

if (hsb > 1)
if (acomp lad > -4)
fprintf (eout,"ERROR - Late LAD for Aircraft UTC"

" %s\n",hold-utc);
else
fprintf (eout,"LAD for Aircraft UTC %s OK\n",

hold-utc);
if (hsb < 3)

if (acomp lad > -4)
printf ("ERROR - Late LAD for Aircraft UTC

else
printf ("LAD for Aircraft UTC %s OK\n",hold_utc);

if (hsb < 3)
printf (11 \n"I);

if (hsb > 1)
fprintf (eout," \n");

EXEC SQL CLOSE acft-csr;

* CHECK TIMING ON UTCs WHERE ORDER OF ARRIVAL IS
A NOT IMPORTANT - Transient Maintenance, Communication,

Fuels, Supply, Field Maintenance and Munitions Maintenence
A CHECK FOR ARRIVAL NO LATER THAN D-4

misc_timing (

count_1 - 0;
if (hsb < 3)

printf ("-------------------CHECKING MISCELLANEOUS UTC TIMING

87

if (hsb > 1)
fprintf (eout,"----------- CHECKING MISCELLANEOUS UTC

"TIMING ---------- \~n)

CHECKING TRANS. MAINTENANCE TIMING A***

EXEC SQL SELECT min(air tpfdd. lad)
into :acomp lad
from air tpfdd, t -maint
where (air tpfdd.ab pod =:base-tabibase_idxl .base pod)

and (air_tpfdd.utc =t-maint.tm-utc);
if (hsb > 1)

fprintf (eout,"Transient Maintenance LAD is %d\n",
acomp_lad);

if (acomp lad > -4)
fprintf (eout,"ERROR -Transient Maintenance

"Deployed Late\n\n");
else fprintf (eout,"Transient Maintenance Timing

IO~~n)

if (hsb < 3)

printf ("Transient Maintenance LAD is %d\n",acomp lad);
if (acomp lad > -4)

printf ("ERROR - Transient Maintenance Deployed
"Late\n\n");

else printf ("Transient Maintenance Timing OK\n\n");

CHECKING COMMUNICATIONS TIMING
EXEC SQL SELECT min(air tpfdd. lad)

into :acomp lad
from air tpfdd, comm
where (air tpfdd.ab_pod -:base-tab(base_idx] .base pod)

and (air_tpfdd.utc -comm.comm-utc);
if (hsb > 1)

fprintf (eout,"Communication LAD is %d\n",acomp lad);
if (acomp lad > -4)

fprintf (eout,"ERROR - Communication Deployed
"Late\n\n");

else fprintf (eout,"Couuuunication Timing OK\n\n");

I

printf ("Communication LAD is %d\n",acomp_lad);
if (acomp lad > -4)

printf ("ERROR - Communication Deployed Late\n\n");
else printf ("Communication Timing OK\n\n");

88

CHECKING FUELS TIMING
if (needs_fuel > 0)

EXEC SQL SELECT min(air tpfdd. lad)
into :acomp lad
from air-tpfdd, fuels
where (air-tpfdd.ab_pod

:base-tab(base_idx] .base pod) and
(air tpfdd.utc = fuels.fuels-utc);

if (hsb > 1)

fprintf (eout,"Fuel Support LAD is %d\n",acomp lad);
if (acomp-lad > -4)

fprintf (eout,"ERROR - Fuel Support Deployed
"Late\n\n");

else fprintf (eout,"Fuel Support Timing OK\n\n");

if (hsb < 3)

priritf ("Fuel Suppor~t LAD is %d\n",acoip lad);

if (acomp -lad > -4)
printf ("ERROR - Fuel Support Deployed

"Late\n\n");
else printf ("Fuel Support Timing OK\n\n");

CHECKING SUPPLY TIMING

EXEC SQL SELECT min(air tpfdd. lad)
into :acomp lad
from air tpfdd, supply
where (air tpfdd.ab pod =:base_tab~base_idx3.base pod)

and (air tpfdd.utc =supply.supplyutc);
if (hsb > 1)

fprintf (eout,"Supply Support LAD is %d\n",acomp_lad);
if (acomp lad > -4)

fprintf (eout,"ERROR - Supply Support Deployed
"Late\n\n");

else fprintf (eout,"Supply Support Timing OK\n\n");

if (hsb < 3)

printf ("Supply Support LAD is %d\n",acomp lad);
if (acomp lad > -4)

printf ("ERROR - Supply Support Deployed Late\n\n");
else printf ("Supply Support Timing OK\n\n");

89

/1%****% CHECKING FIELD AND MUNITIONS MAINTENANCE
for (fldidx =0; fldidx < fidmax; fldidx ++)

count_ = 0;
EXEC SQL SELECT count(utc)

into :countI
from air_tpfdd
where (ab_pod = :base_tab(baseidxj.basepod) and

(utc = :fldtabffldidxJ.fldacl or
utc = :fldtab[fldidx].fldac2 or
utc a :fldtab~fldidxj.fldac3);

if (count_I > 0)

EXEC SQL SELECT min(lad)
into :acomp lad
from air-tpfdd
where (ab pod = :base_tab~base_idx] .base pod) and

(utc = :fldtab~fldidx].fldutcl or
utc = :fldtab~fldidx].fldutc2 or
utc = :fldtab~fldidx].fldutc3);

if (hsb > 1)

fprintf (eout,"Field Maintenance LAD for %s"
"is %d\n",fldtab~fldidx] .fldtype,
acomp lad);

if (acomp -lad > -4)
fprintf (eout,"ERROR - Field Maintenance"

"Late or Not Deployed\n\n");
else fprintf (eout,"Field Maintenance OK\n\n");

if (hsb < 3)

printf ("Field Maintenance LAD for %s is %d\n",
fldtab(fldidx . fldtype, acomp lad);

if (acomp -lad > -4)
printf ("ERROR - Field Maintenance Late or

"Not Deployed\n\n");
else printf ("Field Maintenance OK\n\n");

for (munidx =0; munidx < munmax; munidx +4.)

count_1 =0;

EXEC SQL SELECT count(utc)
into :countI
from air_tpfdd
where (ab pod a :base_tab(baseidx].basepod) and

(utc = :muntab~munidx].munacl or
utc = :muntab~munidx].munac2 or
utc = :muntab[munidxJ.munac3);

if (count_1 > 0)

90

EXEC SQL SELECT minC lad)
into :acomp lad
from air -tpfdd
where (ab pod = :base -tab(base_idx] .base pod) and

(utc = :muntab[munidx].munutcl or
utc = :muntab~munidx].munutc2 or
utc = :muntab[munidx].munutc3);

if (hsb > 1)

fprintf (eout,"Munitions Maintenance LAD for
"%s is %d\n"I,muntab~munidx1 .muntype,

if~aompladacomp1lad);
if (aomp~ad >-4)

fprintf (eout,"ERROR - Munitions Maintenance"
"Late or Not Deployed\n\n");

else fprintf (eout,"Munitions Maintenance

IO~~n)

if (hsb < 3)

printf ("Munitions Maintenance LAD for %s is 0
%d\n" ,muntab[munidx] .muntype, acomp lad);

if (acomp lad > -4) .
printf ("ERROR - Munitions Maintenance Late

"or Not Deployed\n\n");
else printf ("Munitions Maintenance OK\n\n");

91

Appendix C: Data File Maintenance

Overview

There were a number of new data files that were added

to the JPLAN database as a result of the JPLAN evaluation

system. There is not however, a special program for the

user to maintain these files, although a recommendation of

this study is that one be developed as soon as possible.

Until such a program can be developed, the user will have to

use the Query-By-Forms (QBF) module of the interactive PC

INGRES system to add, delete, modify, or review records in

the evaluation system data files.

This appendix will provide the user with an

introduction to the QBF portion of interactive INGRES. It

is not intended to be a full tutorial for that system. For

a complete QBF tutorial, the user should refer to chapters 6

through 11 of the PC INGRES Reference Guide (12:6.1-11.5).

This appendix will explain to the user how to access

interactive INGRES, how to choose a file for updating, how

to access the QBF module of INGRES, and how to select the

proper update function.

In addition to providing an introduction to INGRES QBF,

this appendix will also provide information about each of

the evaluation system data files, such as file names, field

names in each file, what each field contains, whether the

field is alphanumeric or integer, and record layout of each

92

file. An alphanumeric field is one which can contain either

letters or integer numbers, while an integer field contains

only whole numbers, either positive or negative.

Interactive INGRES and QBF

In explaining how to get into interactive INGRES and

how to use the QBF portion of INGRES, commands that the user

must enter will be identified in capital letters. When

[RETURN] is seen, it means the user should hit the return

key, All other commands are designated by parenthesis. The

following is a step-by-step overview on how to use the QBF

sub-system of PC INGRES:

1. From the DOS C: prompt, make INGRES memory resident by

entering (ADDINGRES) [RETURN].

2. At the C: prompt again, begin interactive INGRES by

entering (INGRES JPLAN) (RETURN].

3. An introductory screen will appear with a menu of

options across the top of the screen. The 'tables' option

will be highlighted. The user should enter [RETURN].

4. Another screen will appear with a menu of options

across the top, and a list of file names in the middle of

the screen. The cursor will be over the first file name.

Using the up and/or down arrow keys, highlight the file name

that needs to be updated. Press the (F2) key to move the

cursor to the menu options on the top of the screen.

Whenever the cursor is in the middle of the screen, as it

93

was at the beginning of this screen, pressing (F2) will get

the user to the menu bar at the top of the screen.

5. Enter (Q) to enter the QBF sub-system.

6. The system will then ask if the user wants

Simple Fields or TableFields. Enter (T) for TableFields.

This will allow the user to work with and/or view more than

one record at a time. SimpleFields allows the user to work

on and view only one record at a time.

7. The QBF menu will appear across the top of the screen.

To add a new record to the selected file, the user should

enter A for append. To change or delete existing records in

the selected file, the user should select (U) for update.

To just view data, the user should choose (R) for retrieve.

To select a new file to work with in QBF, enter (N). Each

of these functions will be addressed seperately.

8. APPEND.

a. Enter (A) to add a new record, or several new

records to the file.

b. A screen will appear with the field names for the

records in the chosen file. Enter the information for

the record(s) to be added. To move the cursor between

columns and lines, use the arrow or tab keys.

c. To save the records that have been added, press

either (F9) alone, or press (F2) and then press (G).

This will append the records to the end of the file.

d. Press (F10) to return to the QBF menu when

additions are complete

94

9. UPDATE.

a. Enter (U) to modify or delete an existing record.

b. The same column and field name screen as described

in 8b above will appear. Enter some identifying

characteristic of the record you want to change, such

as the UTC, in the appropriate column. Wildcards such

as (*) are acceptable. For example, entering a (U*) in

the UTC field will cause the system to retrieve all

UTCs in the file that begin with U. If (UF*) were

entered, it would find all UTCs that begin with UF.

After the identifying characteristic is entered, press

(F9), or press (F2) and (G).

c. All records meeting the identifying criteria will

be posted on the screen. Using the arrow and tab keys

to position the cursor, make any necessary changes.

After changes are complete, press (F2) and (S) to save

the changes.

d. To delete a record, position the cursor on the

record to be deleted, and press (F2) and (D). A new

menu will appear at the top of the screen. Press (R).

e. After all changes are complete, press (F10) to

return to the QBF menu.

10. RETRIEVE.

a. To review data, enter (R) from the QBF menu.

95

b. The same screen seen in the other functions will

appear. Enter selection criteria and press either (F9)

or (F2) and (G).

c. To return to the QBF screen, press (FIO).

11. NEWFILE.

a. To work on a different file in the QBF function,

enter (N).

b. The system will ask for the name of the next file

to work on. Enter the filename and [RETURN].

12. To exit from INGRES, and get back to DOS from the QBF

menu, press (F1O) twice.

Evaluation System Database Overview

The previous section of this appendix was an overview

on the mechanics of maintaining the evaluation system data

files. Before the user attempts to make any changes to the

evaluation system data files, he should have an

understanding of what is in each file.

Before that however, the user should have a clear

understanding of some identifying terms, such as what is

meant by a data file, a record and a data field.

A data file is a collection of related information

which is made up of individual lines of information, which

are in turn made up of individual bits of information. The

phone book, which is an example of a data file, is made up

of individual lines of information which include names,

addresses and phone numbers. Each of these lines is called

96

a rec,'d, while the individual bits of information that

represent the names, addresses and phone numbers are called

data fields or fields. Therefore, a file (the phone book)

is made up of records (all the information on one person

included in the phone book), which are, in turn, made up of

individual data fields (name, address, phone number).

Evaluatio'i System Data File Descriptions

The following paragraphs describe each data file and

the data fields in all of the data files created for the

evaluation system. It will give the name of each field,

what each field is used for, what information should go into

that field, and what type of information (integer, or

alphanumeric) is in that file. All alphanumeric fields are

five character positions.

A PORT. The APORT file identifies aerial port UTCs to

the evaluation system, and the daily cargo handling capacity

of each. Each record is made up of two fields. One is

called PORTUTC, which is alphanumeric, and should contain

aerial port UTCs. The other is called PORTTONS. This is

an integer field which should contain the daily cargo

handling capacity of its accompanying UTC. This file should

contain a record for every aerial port UTC that the students

can program in the exercise. The records on the file can be

in any order. Record layout is as follows:

PORTUTC Alphanumeric

PORTTONS Integer

97

STMP. This file identifies to the system every STAMP

UTC, and what aircraft UTCs need that particular STAMP.

Each record is made up of five alphanumeric fields. The

first is called STMP UTC, and is the UTC of the STAMP. The

other four are called STAAC#, where # is a number from 1 to

4. These are the aircraft UTCs that need that particular

STAMP. There should be a record in the file for every STAMP

UTC, but there does not necessarily have to be an aircraft

UTC to fill in all four STAAC# fields. For example, STAMP

UTC HHJSC is only needed by three aircraft UTCs, so in the

file for that record, STAAC4 is left blank. Order is not

important. The record layout is as follows:

STMPUTC Alphanumeric

STAACi Alphanumeric

STAAC2 Alphanumeric

STAAC3 Alphanumeric

STAAC4 Alphanumeric

STRP. This file identifies STRAPP UTCs to the system,

and the aircraft squadrons that need them. It is identical

to the STMP file, except that the field names are STRUTC

and STRAC#, where # is a number from 1 to 3. The record

layout is as follows:

STRPUTC Alphanumeric

STRPACi Alphanumeric

STRPAC2 Alphanumeric

STRPAC3 Alphanumeric

98

EAGLE. This file identifies Harvest Eagle UTCs to the

evaluation system, and the base population each will

support. Each record contains two fields. One is an

alphanumeric field called EAGLEUTC, which should contain

the Harvest Eagle UTC. The other field is an integer field

called EAGLEPOP, and should contain the base population its

accompanying UTC can support. There should be one record on

file for every Harvest Eagle. Record order is not

important. Record layout is as follows:

EAGLEUTC Alphanumeric

EAGLEPOP Integer

BARE. This file identifies Harvest Bare UTCs and the

base populations they can support to the evaluation system.

Each record contains two fields, one alphanumeric, and one

integer. The alphanumeric field is called BAREUTC and

should contain a Harvest Bare UTC. The integer field is

called BARESPT and should contain the population its

accompanying Harvest Bare UTC can support. There should be

one record on file for every Harvest Bare UTC. Order is not

important. Record layout is as follows:

BAREUTC Alphanumeric

BARESPT Integer

SUPPLY. This file identifies Supply Support UTCs and

the base populations they can support to the evaluation

system. Each record is made up of two fields. One is

alphanumeric, and is called SUPPLYUTC. It contains the UTC

of a supply support unit. The other is integer, and

99

contains the base population its accompanying UTC can

support. There should be a record on file for every supply

support unit UTC. Order is not important. Record layout is

as follows:

SUPPLYUTC Alphanumeric

SUPPLYSPT Integer

FUELS. This file identifies POL support UTCs and the

number of flying squadrons each can support to the

evaluation system. Each record contains two fields, an

alphanumeric and an integer field. The alphanumeric field

is called FUELSUTC, and contains the UTC of the'POL support

unit. The integer field is called FUELS SQN and contains

the number of flying squadrons its accompanying UTC can

support. There should be one record on file for every POL

support UTC. Order of records is not important. Record

layout is as follows:

FUELSUTC Alphanumeric

FUELSSQN Integer

CSG. This file identifies to the evaluation system

Combat Support Group UTCs and the base population each can

support. There are two fields in each record. First is an

alphanumeric field called CSGUTC, contains the UTC of the

Combat Support Group. The other is an integer field called

CSG SPT, which is the population its accompanying CSG UTC

can support. There should be a record on file for every

100

Combat Support Group UTC. Record order is not important.

Record layout is as follows:

CSGUTC Alphanumeric

CSGSPT Integer

T MAINT. This file identifies Transient Maintenance

support UTCs, and the base population they can support to

the evaluation system. Each record contains two fields.

There is an alphanumeric field called TMUTC which contains

the UTC of each Transient Maintenance package. The other

field is an integer field called TMSPT which contains the

base population its accompanying UTC can support. There

must be a record on file for every Transient Maintenance

UTC. Record order within the file is not important. Record

layout is as follows:

TMUTC Alphanumeric

TMSPT Integer

MATH. This file identifies MATH UTCs to the evaluation

system. It contains one alphanumeric field called MATHUTC

which contains the UTC of a MATH. There should be one

record on file for every MATH UTC. Order is not important.

Record layout is as follows:

MATHUTC Alphanumeric

ARMY. This file contains one record which is made up

of one integer field. The field is called GRUNTS, and it

contains the preload Army population for the entire JPLAN

101

database. There should be only one record in this file.

Record layout is as follows:

GRUNTS Integer

ADV. This file identifies the Harvest Bare Advance

UTCs to the evaluation system. Each record contains one

alphanumeric field called HBADVUTC which contains the UTC

of a Harvest Bare Advance unit. There should be one record

for every Harvest Bare Advance UTC. Order is not important.

Record layout is as follows:

HBADVUTC Alphanumeric

HB MOSS. Thi.s file identifies to the evaluation system

all Flying Squadrons that require MOSS support, all MOSS

UTCs that can support the accompanying Flying Squadron UTCs,

and the number of Flying Squadrons each MOSS UTC can

support. Each record contains 11 fields, 7 alphanumeric and

4 integer. First are three alphanumeric fields called

MOAC#, where # is a number between one and three. These

fields identify up to three Flying Squadron UTCs that

require MOSS support. The following eight fields are in

four pairs of one alphanumeric, one integer each. the

alphanumeric fields are called MOUTC#, where # is a number

between one and four. These UTCs represent MOSS UTCs that

can support any of the three aircraft UTCs. The integer

fields are called MONO#, where * is also a number between

one and four. These fields represent the number of flying

squadrons its accompanying MOSS UTC can support.

102

Each record says that the up to three different

aircraft UTCs can be supported by the up to four MOSS UTCs.

There does not have to be three aircraft UTCs identified on

each record, but there must be at least one. There also

does not have to be four MOSS UTCs entered in each record,

but there must be at least one with the accompanying number

of flying squadrons it can support. An example of an actual

HBMOSS record may clarify this. One record has UTCs 3FJDC

and 3FJDD identified as flying squadron UTCs. It also has

MOSS UTCs XFFYE, XFFYF, XFFYG, XFFYH identified as MOSS

units. This mean that either of the two identified flying

UTCs can have their MOSS support requirements satisfied by

any one of the four MOSS UTCs. All flying squadron UTCs

that require MOSS support and all MOSS UTCs should be in at

least one record. Record order is not important. Record

layout is as follows:

MOACI Alphanumeric

MOAC2 Alphanumeric

MOAC3 Alphanumeric

MOUTC1 Alphanumeric

MONOI Integer

MOUTC2 Alphanumeric

MONO2 Integer

MOUTC3 Alphanumeric

MONO3 Integer

MOUTC4 Alphanumeric

MONO4 Integer

103

FLY SON. This file identifies all Flying Squadron UTCs

to the evaluation system. Each record has one alphanumeric

field called FLYUTC which contains the UTC of a flying

squadron. There should be a record on file for every Flying

Squadron UTC. Record order is not important. Record layout

is as follows:

FLYUTC Alphanumeric

SURVEY. This file identifies all Site Survey UTCs to

the evaluation system. There should be one record on file

for every Site Survey UTC. Record order is not important.

Record layout is as follows:

SURVEYUTC Alphanumeric

BEEF: This file contains all Prime Beef and Red Horse

UTCs. There should be one record on file for every Prime

Beef and Red Horse UTC. Record Order is not important.

Record layout is as follows:

BEEF UTC Alphanumeric

SECURITY: This file identifies Security UTCs to the

evaluation system. There should be one record on file for

every Security UTC. Record order is not important. Record

layout is as follows:

SPUTC Alphanumeric

COMM: This file identifies all Communications UTCs to

the evaluation system. There should be one record on file

104

for every Communications UTC. Record order is not

important, and the record layout is as follows:

COMMUTC Alphanumeric

FMAINT: This file identifies to the evaluation system

all aircraft UTCs that need Field Maintenance support, and

the UTCs of the appropriate Field Maintenance units. Each

record can contain up to three aircraft UTCs, up to three

Field Maintenance UTCs, and a clear text aircraft

identifier. Each aircraft UTC in a record should be able to

be supported by the Field Maintenance UTCs identified in the

same record. Every aircraft UTC that needs Field

Maintenance support, and the Field Maintenance UTCs that can

support them should be in the file. Record order is not

important. The record layout is as follows:

FTYPE Alphanumeric

FACUTCI Alphanumeric

FACUTC2 Alphamuneric

FAC UTC3 Alphanumeric

FMUTCI Alphanumeric

FMUTC2 Alphanumeric

FMUTC3 Alphanumeric

MMAINT: This file is identical to the FMAINT file

except it identifies aircraft UTCs that need Munitions

Maintenance support, and the UTCs of Munitions Maintenance

units. Record layout is as follows:

MTYPE Alphanumeric

MACUTCI Alphanumeric

105

MACUTC2 Alphamuneric

MACUTC3 Alphanumeric

M UTCI Alphanumeric

MMUTC2 Alphanumeric

MMUTC3 Alphanumeric

106

Bibliography

1. Davis, Michael W. Applied Decision Support. Englewood
Cliffs NJ: Prentice Hall, 1988.

2. Department of Defense. Armed Forces Staff College Pub
1: Joint Staff Officers Guide. National Defense
University, Armed Forces Staff College, Norfolk VA,
1986.

3. Department of the Air Force. Air Command and Staff.
College Basic Deployment Data Handbook. Air
University, Maxwell AFB AL.

4. Department of the Air Force. Joint Operation Planning
Exercise - (JPLAN). School of Systems and Logistics,
Air Force Institute of Technology (AU), Wright-
Patterson AFB OH.

5. Department of the Air Force. Syllabus of Instruction -

LOG 299 Combat Logistics. School of Systems and
Logistics, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, 1987.

6. Department of the Air Force. War Planning: USAF
Mobility Planning. AFR 28-4. Washington: HQ USAF, 16
November 1978.

7. Dragich, Lt Col Dennis P., Assistant Professor of
Logistics Management. Personal interviews. School of
Systems and Logistics, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1987
through February 1988.

8. Jansen, Capt James R. JPLAN Monitor Users Guide.
School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, 1987.

9. ---- Redesign of the Joint Planning Exercise
(JPLAN). MS Thesis, AFIT/GCS/ENG/87D-15. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, 1987 (AD-A189599).

10. Jansen, Capt James R., AFIT Student. Telephone
interview. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, 17
December 1987.

107

11. Melsha, Capt Joel E., Instructor of Logistics
Management. Personal interviews. School of Systems
and Logistics, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, February through July 1988.

12. PC Ingres Reference Guide. Relational Technology,
Inc., May 1987.

13. Roth, Capt Mark, Assistant Professor of Computer
Sciences. Personal interviews. School of Engineering,
Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, February through July 1988.

14. Schildt, Herbert. Using Turbo C. Berkeley, CA:
Borland-Osborne/McGraw-Hill, 1988.

108

Vita

Capt Chester J. Jean, Jr. was born onn

where he graduated from Meturhen High School in

1969. He attended James Madison University in Harrisonburg,

Virginia, graduating in 1974 with a Bachelor of Science

degree in Health and Physical Education. He enlisted in the

U.S. Air Force in 1976 and served as a computer operator for

the 727 Tacticai Control Squadron at Bergstrom AFB, Texas.

He received his commission from the Air Force Officer

Training School in 1978. Following computer programmer

training at Keesler AFB, Mississippi, he was assigned to the

4501 Computer Services Squadron, Headquarters, Tactical Air

Command, Langley AFB, Virginia as a Contingency Support

Analyst, and as Chief of the Command and Control Systems

Branch. Capt Jean was then assigned to Headquarters,

Pacific Air Forces, Hickam AFB, Hawaii as a Logistics Plans

Staff Officer, and as Chief of Logistics Requirements

Systems. He entered the School of Systems and Logistics,

Air Force Institute of Technology in 1987.

109

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

I Form Approved
REPORT DOCUMENTATION PAGE OMA No. 0704-0188

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release" distribution

unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/CLM/LS? /88S-39

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
School of Systems and Logistic If "f P

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology (AU)
Wright-Patterson AFB, OH 45433-6583

8a. NAME OF FUNDING /SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
t ORGANIZATION (If applicable)

II

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNITSELEMENT NO. NO NO ACCESSION NO.

11. TITLE (include Security Classification)E

Automated Evaluation System For The Joint Planning (JPLAN) Exercise System

12. PERSONAL AUTHOR(S)
Chester J. Jean, Jr., B.S., Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 1,. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
MS Thesis I FROM TO 1988 September 120

16 SUPPLEMENTARY NOTATION

17. COSAII CODES | 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Computer Aplications, Analyzers, Military Training,
12 0)5]Computer Simulation

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: AUTOw1ATED EVALUATION SYSTEM FOR THE JOINT PLANNING (JPLAN) EXERCISE SYSTEM

Thesis Advisor: Joel E. Melsha, Caotain, USAF
Instructor of Logistics Management

Approved for public release IAW AFR 190-1.
V_- .

WILLIAM4 A. 17 Oct 88
Associate Dean

School of Systems and Logistics

Air Force Institute of Technology (AU)

20 OISTRIBUTION/AVAILABIITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIEDiUNLIMITED 0 SAME AS RPT. 0 DtIC USERS UNCLASSIFIED

22a NAME OF RESPONSI13LE INDIVIDUAL 22b. TELEPHONE (Include Area Code) M22 OFFICE SYMBOL
Joel E. Melsha, Captain, USAF (513) 255-5023 1

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCtASSTFIED

Abstract

The purpose of this thesis was to develop a computer
program which would apply the same evaluation criteria to
student performance in the Joint Planning (JPLAN) exerclse
simulation system that the instructor previously had to
apply manually.

JPLAN, which is used in Combat Logistics (LOG 299), an
Air Force Institute of Technology (AFIT) Professional
Continuing Education (PCE) course, is a computerized
simulation of the real-world Joint Operation Planning System
(JOPS). JOPS is the Department of Defense system used for
conducting joint planning.

in JPLAN, students are presented with a partialIV
completed Operations Plan based on a fictitious scenario in
which planning for the defense of Iguana, an American ally,
is underway. Students must complete the plan by programming
Combat Support Forces and Combat Services Support Forces to
support pre-programmed combat forces.

Following completion of the exercise, student
performance is evaluated by the instructor for shortfalls
and discrepancies. Factors evaluated are; sufficient
housekeeping, supply, combat support group, and transient
maintenance to support each base's population; sufficient
STAMP, STRAPP, fuel, field maintenance, and muniLions
maintenance for all flying squadrons; sufficient
aerial port support to handle the average daily tonnage
coming into each base; two hospitals in theater; proper
sequencing of the UTCs that must arrive in a given sequence;
and arrival timing for the UTCs that must arrive prior to
the start of flying operations on Day D-3.

A computer program was developed to take the JPLAN data
files that comprise the students output, and evaluate them,
applying the criteria described above. With this program,
evaluation was reduced from over 3 hours using the manual
method, to approximately 30 minutes.

The program was written using Microsoft C as the
programming language and INGRES as the database management
system, the same developmental software used in the JPLAN
exercise system.

UNCLASSIFI ED

