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Preface

The purpose of this study was to develop a computer model of the dynamics and

controls for a robot spacecraft used to capture a tumbling and spinning satellite. The

robot spacecraft is to detumble and despin the other spacecraft so it can be repaired and

returned to useful service. I would like to acknowledge the help of Lt Col Joseph W.

Widhalm in getting me started on this endeavor, which was a follow-on to his previous

work. I would also like to acknowledge the help of Dr. Curtis H. Spenny who later filled

in as my thesis advisor after Lt Col Widhaim's departure in July of this year.
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Notation

Symbol Definition

' 2 "6 3  unit vector set arbitrarily fixed at the center of mass of Body 0 (OMV)
and aligned with its principal axes

pJ = nongravitational external force on body i

pH= interaction force on body A transmitted through joint j

, f unit vectors representing the axes at the joints of an n-body system
about which rotation is possible

i, unit vector set representing inertial planetocentric coordinate system

J, set of joints on body ;

vector from the center of mass of body x to the joint on body x leading
to a body u

m total mass of the n-body system

rnm A mass of a component body x

n number of bodies in the multibody system

h I , 2, 3 unit vector set arbitrarily fixed at the center of mass of the target
satellite and aligned with its principal axes

r = number of rotational degrees of freedom in the n-body system

rA = vector from the system center of mass to the center of mass of body k

T'= nongravitational external torque on body x

= constraint torque on body x at joint j

sD = spring damper torque on body A at joint j

= time

= nine-element control vector

ix



f nine-element state vector

- augmented thirteen-element state vectorX I3

yz = three-element joint translational vector

= unit dyadic

y= planet's gravitational constant

y,= angle of rotation about axis ,

Y= coning angle of the target satellite

= planetocentric position vector of n-body system center of mass

= unit vector in the direction ofPJ

=)- planetocentric position vector to the center of mass of body x

- inertia dyadic of body ;L

= pure spin rate of target satellite

= precession rate of the target satellite

S0 angular velocity of body 0

o - angular velocity of body 0

x
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The problem of detumbling and despinning a freely spinning and precessing

axisymmetric target satellite using an orbital maneuvering vehicle is considered. The

axisymmetric orbital maneuvering vehicle is equipped with a multibody grappling arm

assembly to capture the target. Counter-masses are used to maintain dynamic balancing

and stability throughout the deployment of the arm and the subsequent spin-up of the

grappling device prior to docking. The five-body system is modeled using Eulerian-based

equations of motion developed by Hooker and Margulies. Open-loop control laws are

formulated to deploy the grappling arm assembly and spin-up the grappling device using

internal motor torques. A Liapunov technique is applied to derive a nonlinear feedback

control law that drives the docked system to a final spin-stabilized state of equilibrium.

External thrusters are used to maintain the absolute motion of the system during this

process. Variations in grappling arm length, target coning angle, and response times are

examined for design purposes. State and control histories are presented and the results

from this five-body model are compared with the Widhalm and Conway two-body study.

The simulation indicates that the required control magnitudes are higher for the five-body

model but are still quite reasonable. The addition of the grappling arm assembly adds

both realism and flexibility to the capture problem.

xi



REMOTE ORBITAL CAPTURE USING AN ORBITAL MANEUVERING VEHICLE

EQUIPPED WITH A MULTIBODY GRAPPLING ARM ASSEMBLY .

I. Introduction

The servicing and repair of satellites in orbits beyond the direct reach of the Space

Shuttle requires a teleoperator spacecraft or orbital maneuvering vehicle (OMV) to dock

with these target satellites and, if necessary, return them to an accessible orbit. If the

target has experienced a control system failure, it may be necessary to detumble it. If the

target satellite is spin stabilized it may be necessary to despin it. Docking followed by

despinning or detumbling is defined here as remote orbital capture.

Previous work by Widhalm and Conway (9) considered both the detumbling and

despinning aspects of remote orbital capture, and the requirement to control the absolute

motion of the two-body system using feedback control. In their model (Fig. 1), an

axisymmetric OMV was docked with a freely spinning and precessing axisymmetric target.

The OMV was equipped with a two rotational degree of freedom joint that connected

with a fixed appendage on the target body. This joint was free to translate along the

surface of the OMV to provide positioning adjustments during docking. Despinning and

detumbling were accomplished using feedback control by driving the joint to the OMV's

axis of symmetry and applying internal motor torques to the target through the connecting

joint. While this was being done, the OMV external thrusters were fired to control the

absolute motion of the two-body system. It was shown that this "detumbling process is

quite benign and that the required control magnitudes are small" (9:657).

One key assumption made in the Widhalm and Conway model was that the target had

a fixed appendage that the OMV's joint connected with to form the two-body docked

configuration. In reality, however, a target satellite would probably not have this

convenient appendage to serve as a docking point. What would really be required is for

the OMV to be equipped with a grappling arm assembly which it could deploy to capture

and detumble the target satellite.

This thesis extends the Widhalm and Conway two-body model by taking into account

the requirement for a grappling arm assembly attached to the OMV. The new model

consists of five constant mass rigid bodies. Simulation of the capture process now
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Fig I. The Widhaim and Conway Model for the Two-Body System
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becomes a three step rather than a single step process. The first step is the deployment of

the grappling arm assembly up to but not including docking with the target vehicle. The

deployment of the grappling arm significantly alters the dynamics of the system, and

one important aspect of the problem is to maintain dynamic balancing and stability

throughout the process.. The second step is the spin-up of the grappling device to match

the pure spin rate of the target , just prior to docking. The actual docking process itself

is not treated in this thesis, and is handled as a discrete event. The final step once the

target satellite is joined with the OMV is to apply the required internal motor torques

and OMV thruster firings using feedback control to detumble and despin the target and

drive the entire system to a spin-stabilized state of equilibrium.

Both the system initial configuration and the desired final state are defined. The

applicable equations of motion for the five body system are then derived, and the

required control laws are formulated for each of the three steps in the capture process.

The results of the simulation show the magnitude of both the internal and external control

torques required to achieve the desired outcome. This information would be necessary in

eventual hardware design for sizing motors and thrusters, and in performing structural

analysis of the system.

3



11. Problem Formulation

System Configuration

The OMV model for this thesis consists of five rigid bodies as depicted in Fig. 2.

These five bodies are; the original axisymmetric reference or base body used in the

Widhalm and Conway model, the grappling arm, the counter-mass, and the grappling

device with its corresponding counter-mass. The el,e2 ,e3 coordinate system used here is

a rotating system fixed at the center of mass of Body 0, not at the center of mass of the

system. The e 2 axis is aligned along the direction of the translating joint and the the

grappling arm assembly, and the e3 axis is the axis of symmetry for the reference body.

There is no specified coordinate system fixed at the center of mass of the system and all

equations are eventually expressed in the el,e2 ,e3 system.

Body 0, the reference or base body, has angular velocity components wot, W0 2 , W0 3

corresponding to its three principal axes, el,e 2 ,e3 . Also, Body 0 contains the three

external variable control thrusters. The three external control torques generated , Tl, T2,

T3, again correspond to the el,e 2,e3 principal axes. To simplify the problem, it is

assumed that firing the thrusters does not affect the mass properties of the OMV and the

entire model is assumed to be a constant mass system.

There are six additional rotational degrees of freedom for the overall OMV system,

specified by their respective axes of rotation, g1 , g2 , g3 , g4 , g5 , g6 , for a total of nine

rotational degrees of freedom. The amount of rotation about each axis is specified by

Y1I Y21 Y31 y4 . ys, y6 , respectively. There are also six internal motor torques, TGI,

TG2, TG3, TG4, TG5, TG6 , again corresponding to the six axes of rotation.

Body I is connected to the reference body by Joint I which is the same type of

translating joint used in the Widhalm and Conway model. Joint I has two rotational

degrees of freedom, one about g, which is parallel to the el axis, and one about g2 which

is aligned with the grappling arm. The amount of rotation of Body I relative to Body 0

in the positive el direction is measured by the angle y . Body 1 is the grappling arm

itself, and does not include the two end masses, Body 3 and Body 4, which represent the

4
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Fig 2. The Five-Body OMV Model With Grappling Arm Assembly
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grappling device assembly. However, Body 1 does include the mass of the translating

joint assembly, Joint 1.

Body 2 is the counter-mass which is designed to balance out the combined effects of

Body 1, Body 3, and Body 4 so that no cross products of inertia terms are generated

during the deployment phase. Body 2 is connected to Body I with Joint 2. Its only

degree of freedom is about the g3 axis which is parallel to the el axis. The amount of this

rotation relative to Body 1 is measured by y3 and is in the negative el direction.

Body 3 is the grappling device. Note that it is not the scope of this thesis to design

or specify an actual hardware device. Body 3 is merely a mathematical representation of

the grappling device. Similarly, the actual docking process is not part of this simulation,

and is merely a discrete event. The system is still undocked at the end of the deployment

and spin-up phases and already docked at the start of the detumble/despin phase.

Body 4 is another counter-mass with exactly the same mass and inertia properties as

Body 3. Its purpose is to spin at an equal but opposite rate as Body 3 during the spin-up

phase. This will cancel out the moment created by spinning up Body 3.

Body 3 and Body 4 are both attached to Body I by Joint 3 which must allow for three

rotational degrees of freedom. It allows Body 3 and Body 4 to rotate as one body about

the 94 axis which is parallel to the el axis. The amount of this rotation is measured by

the angle y4 and the direction is in the negative el direction. Note that Y. is defined to be

in the 0o position when the g5 and g6 axes are perpendicular to Body 1, as shown in Fig. 2.

In addition there is the spin rotation of Body 3 about the g5 axis, and the spin rotation of

Body 4 about the g6 axis. Note that g5 and g6 are the same axis, with the spin of Body 3

in the positive direction and the spin of Body 4 in the negative direction. Note also that

Body 3 and Body 4 have axisymmetric inertia properties with their axis of symmetry

being this g5/g6 axis.

In the initial configuration prior to deployment of the arm, the OMV is positioned

relative to the target satellite such that the OMV's axis of symmetry, e3, is parallel to the

target's angular momentum vector. The target satellite is both tumbling and spinning,

where

6



correspond to the target's coning angle, precession rate, and spin rate (about its n3 axis),

respectively. These three properties are related as shown by Greenwood (5:386) and

repeated here:

where I.. is the target's moment of inertia about the n, and n2 axes, and I,.s is the target's

moment of inertia about its axis of symmetry, n3 . The OMV is positioned such that the

target's center of mass is lined up on the OMV's e3 axis. The OMV is spun-up so that its

angular velocity component W0 3 about the e3 axis exactly matches the target's precession

rate, while the w0 1 and w02 components remain zero. The OMV is therefore in a state of

pure spin. Besides the target's pure spin rate, the OMV and the target will have zero

relative motion. The OMV is also positioned at a pre-determined stand-off distance from

the target, such that when Joint 1 translates a specified amount in the e2 direction and the

grappling arm is raised by a corresponding angle y, , the grappling device will be able to

successfully dock with the target as shown in Fig. 3. This stand-off distance depends on

the target's length and coning angle, the length of the grappling arm, and the allowable

amount of joint translation. It is assumed that the complete initial state of the target has

been accurately determined by the OMV's computer, that the OMV has been properly

placed into the required position, and has already been spun-up to match the target's

precession rate. It is with this initial configuration that this thesis begins.

The first phase of the simulation is the deployment of the grappling arm assembly. In

the initial state Bodies 1, 2, 3,and 4 are stored horizontally on the surface of the OMV so

that y, y , y4 are all zero. Joint I is commanded to begin translating in the e2

direction toward the e3 axis of symmetry, and internal motor torques are applied to begin

erecting the grappling arm assembly. It is the intent of this thesis to perform the entire

deployment process and still maintain the OMV in a state of pure spin at the constant

initial rate with a minimum application of external control torques, if any. It is desired

not to fire these external thrusters unless absolutely necessary in order to conserve the

attitude maneuvering fuel.

7
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Fig. 3. The Five-Body OMV Model Docked with Target
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It is therefore critical in order to maintain dynamic balancing and stability, that; 1)

the combined center of mass of Bodies 1, 2, 3, and 4 always lies on the e3 axis, and 2) the

inertia properties of the counter-mass Body 2 are such that, when combined with the

inertia properties of Bodies 1, 3, and 4, the e3 axis is always the axis of symmetry for all

five bodies so no cross products of inertia terms are generated. To solve this problem, the

mass properties of Body 1, Body 3, and Body 4 must be such that the total mass center of

these three masses is at Joint 2 , which is located at the geometric center of the grappling

arm and is also the center of mass of Body 2. Therefore, the combined center of mass of

Bodies 1, 2, 3, and 4 is located at Joint 2 and the control problem now is to maintain

Joint 2 always along the e3 axis during the deployment process. This is achieved with the

use of an open-loop control algorithm and the application of internal motor torques. It is

also desired to lock the rotations about g2 , g4, gs, and g6 fixed during this process, since

they are not required. As for the cross product of inertia problem, Body 2 should

maintain a constant relationship with Body I such that y, is always exactly twice as much

as yj, but in the opposite direction. Again, this is handled with the appropriate open-loop

algorithm and the application of the required internal motor torques.

Throughout this process if the thrusters are not fired the OMV's system mass center

will not move in inertial space since no external forces or torques are being applied.

However, the system mass center will be moving "upward" relative to the OMV's base and

so the center of mass of the OMV's base, the reference Body 0, will translate "downward"

in inertial space along the vertical e3 axis. The reference body's position relative to the

target will therefore be changing during the process. Although this translation can easily

be calculated, it will be assumed for the purposes of this thesis that the OMV has a

separate control system that will compensate for it by applying the appropriate

translational thrusters, thereby maintaining zero relative motion between the base of the

OMV and the target.

The arm will be deployed up to but not including docking. Body 3 will then be

assumed to be at an infinitely small distance away from the target. In reality, this would

probably be the best opportunity to measure the spin rate of the target accurately using a

sensor on Body 3. At this point the second phase of the simulation begins. Body 3 will

be spun-up, from rest, to the same rate as the pre-determined spin rate of the target. At

9



the same time, Body 4 will be spun-up at an equal and opposite rate , cancelling out the

m moment created by Body 3, in order to maintain dynamic balance and stability. Body 3

will now have zero relative velocity in relation to the target, and will be ready to grab

hold of it. Prior to docking, the entire OMV system should be in a state of pure spin

about the e3 axis without the application of the external thrusters.

7The third and final phase of the simulation begins immediately after docking with the

target. After this discrete event, the total system is still treated as a five-body problem

by simply adding the mass and inertia properties of the target to Body 3, and treating the

i target and grappling device as one single body (still labeled Body 3 - See Figs. 2 and 3).

The closed-loop feedback system is now turned on, and both internal motor torques and

external thruster torques are applied to drive the system to the final desired state. This

final state is that in which Joint 1 is centered at the e3 axis, y, = 90o , y 3 = 180o , and

Y4 - 90o so that Body 1, Body 2, Body 3 (including the target), and Body 4 are all in the

vertical position, as shown in Fig. 4 and the entire system is in a spin-stabilized state of

equilibrium.

U
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Fig. 4. The Five-Body OMV /Target System in Spin-Stabilized State of Equilibrium
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Body 2 Requirements

As discussed in the previous section, Body 2 with its center of mass at Joint 2 must

have the equivalent inertia properties as Body 1, Body 3, and Body 4 with their combined

mass center also at Joint 2. Body 2's inertia requirements can be determined by a simple

application of the parallel axis theorem.

2 2. = I 1' + m L 2
2 -'

. [ ,2 L 2]
IX 13i + Mr3 [L 1  - L 1 23 2  L 31

lxx 4 + r . L14  L 12  + L 4 1 , (

lI 2 = 1I 1 + lv>.3: m 3naL3 1 2

1 ',4 * ,L ,2(3) _

2

IY2 = m41L4+" L +
22

1 1z' I 'L 12

+ M + n 3 [L 1 3  - .2 '  +

m 4 r - 2 (4) /

lXI (i), Iyy (i), I,,, (i) refer to the principal mass moments of inertia of each body.

Note that when all bodies are initially in the stored position, these principal moments of

inertia are parallel to the el, e2, e3 axes, respectively. Note that L12 is the length from

the center of mass of Body I to Joint 2, and L13 , L14 are both the length from the center

of mass of Body I to Joint 3. Also, L31 is the length from the center of mass of Body 3

to Joint 3 which, prior to docking, is equal to L4 1

12



The Hooker-Margulies Equations

The appropriate equations of motion now need to be developed to describe the

five-body model. Fletcher, Rongved, and Yu (4) derived the dynamical attitude equations

for a two-body satellite. Hooker and Margulies (7) then generalized these equations for

an n-body satellite. They used Newton's equations to eliminate the moments of the

unknown interaction forces (i.e. the moments of the reactive forces transmitted through

the joints) from the Euler equations. They therefore derived a complete set of 3n scalar

equations for an n-body system that are free of unknown joint constraint forces but still

contain the unknown constraint torques. There are, however, two restrictions placed on

these equations. First of all, the topology of the overall configuration of bodies and

interconnecting joints must be equivalent to a topological tree (i.e. no closed loops).

Second, the relative motion about a joint is assumed to be rotational and does not allow

translation of either body relative to the joint. (7:123)

Hooker (6) in a follow-on paper showed that the the constraint torques could also be

eliminated. This reduces the number of dynamical attitude equations from 3n to r where

r is the number of rotation degrees of freedom for the system. The number of dependent

variables is also reduced from the set of 3n angular velocity components to 3 angular

velocity components of the reference body and an additional r-3 relative angular

rotational rates. The original Hooker-Margulies equations are written for all the bodies

lying on one side of a selected joint and subsequently added. The interaction torques all

cancel in pairs with the exception of the constraint torque at the selected joint. If this

particular joint has a rotational degree of freedom about an axis g, then the dot product

of g and the expression for the constraint torque is zero, and so writing the dot product

and setting it to zero yields an equation that is free of the constraint torque. This process

can then be repeated for each degree of freedom at each joint to eliminate all the

unknown constraint torques from the equations. (6:1205-1207) This subsequent set of r

equations for an n-body system with r rotational degrees of freedom is called the

modified Hooker-Marqulies equations.

An equivalent set of dynamical attitude equations of motion could be derived using

the Lagrangian method. The Lagrange approach to deriving the equations of motion has

the advantage that the constraint torques never appear, and that the number of equations

13



is r, the number of rotational degrees of freedom for the system. However, the resulting

equations would not be written in terms of physical body axes, as are the HM and

modified HM equations. As a result, it would be exceeding difficult to modify the

Lagrange equations in order to adapt them to an active control system and to include the

the effects of joint motion. (6:1205)

One other important advantage of the modified HM equations is that they

significantly reduce the amount of computer time by only having to integrate numerically

r equations rather than 3n equations. (6:1205)

As previously mentioned, neither the HM equations nor the modified HM equations

account for translation of the joints relative to the bodies adjacent to the joint. In this

thesis, as in the Widhalm and Conway model, Joint I connecting Body 0 and Body I

translates relative to Body 0, the reference body. This was dealt with by Conway and

Widhalm (1) with an extension of the modified HM equations that permits the translation

of the joint. It is therefore this extended version of the modified HM equations that can

now be applied to this thesis.

Even though the modified HM equations eliminate both the constraint forces and the

constraint torques, this information may later be needed in performing a structural

analysis of the system. Fortunately, it is relatively easy to recover this information as

shown in references (6) and (7).

14



Application of the Hooker-Margulles Equations

The dynamical attitude equations for the 5-Body OMV system (n=5) with its 9

rotational degrees of freedom (r=9) can be derived directly using the modified

Hooker-Margulies Equations (6) extended by Widhalm and Conway (1) to take into

account the translation of Joint 1 relative to Body 0.

a0 0  a.0 1  a 06 d) 0

V2
-y3oo

- 4

La60 a 66 - )f 6

- m, Zol X Z - m 2  Z02 X - m 3  Zo X Z

- m 4  4o 4  X C + D,, x m C + Do x m C

D40 X m C

91 1

02 T?2 ()

93 P

04A

6 6 6  J
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where

a,- yb. a dyadic(6

aOk ZEkq5' h k a vector (7)

a -O . ,a vector (8)

a I , E , .A k a scalar (9)
AuJ

and

1 - , if gi belongs to a joint anywhere on the chain

of bodies connecting u with the reference body

0, otherwise (e.g. if m 0)
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and

IB 
2

PSF+ D x MC D 0 Xm ~(0

(11



and

C = , + 2Wo x 2R,(15)

+ X 1- DXDj+ ZM[ 7D2M 1- (16)

. )L"u= _ r[ D "" l _ JI ,, XIA ] (17)

D . Th -m rm 'A (18)

Th + Lu (19)

where Zx, is the vector from the mass center of a body x to the joint on body k leading

to a body 4 , m, and 0, are the mass and the inertia dyadic of body k , and m is the total

mass of the five-body system. The actual values for the masses, lengths, and inertia

properties used in the model are specified in Chapter IV. F' is determined from

E(20)
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and r, is the vector

2x3-,- 3 X 45 W- x,,, P) t , (-A)w, 7 1 +, 7 3D 21 .

+~X~ ~7DAMX~m~x~wU~k)(21)

In Eq (5),

WO= (J) 061 + W 0 2 6 2 + Ck)0 3 6 3

and the y, terms again refer to the rotation about the gi axes of rotation. Note that

o1= 02= l 0 3 = l 0 4

since all of these terms represent the vector from the center of mass of the reference body

to Joint 1, the translating joint. Note also, superscript R in Eq (15) refers to the fact

that the time derivatives are taken relative to the rotating el, e2, e3 reference frame.

Therefore, the D,, D o, terms refer to the translational velocity and acceleration of Joint I

relative to the surface of the OMV. The spring and damper torques TSD refer to the six

*internal motor control torques TGI, TG2, TG3, TG4, TG5, and TG6. The external

torques T' refer to the three external thruster control torques, TI, T2, T3 , located on the

reference body. All external forces are assumed zero. In addition, all gravity gradient

terms are assumed negligible (all terms containing the planetocentric position vector )

The joint translational motion and the internal and external control torques need to be

specified in the equations of motion, which is the topic of next chapter.

As mentioned earlier, the constraint forces and torques at the joints have been

eliminated from the equations of motion. These terms can easily be recovered as

described in references (6) and (7). The equation for the constraint torques is as follows,

where the subscript i refers to the particular joint; Joint 1, Joint 2, or Joint 3:
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T~=Z~M{ZAM.(iO Z~k Yk~) -(22)

and the constraint force at the translating joint can be found with

= mr 0o (23)

where To is the position vector from the system mass center to the center of mass of the

reference body, Body 0.
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III. Controil Laws

There are two types of control schemes required in this thesis. The first involves

maintaining dynamic balancing and stability throughout the deployment of the grappling

arm and the subsequent spin-up of the grappling device prior to docking. The second

control problem involves the detumbling and despinning of the OMV/Target docked system

to a spin-stabilized state of equilibrium. The first problem incorporates a rather simple set

of open-loop control laws. The second control problem is more complex and involves

applying a Liapunov analysis to the system in order to derive the feedback control laws.

Before specifying either the open-loop or the closed-loop control laws, a quick analysis

should be performed in order to express the equations of motion in a form more convenient

to work with. The following analysis closely parallels the formulation performed by

Widhalm and Conway (9:659-661).

Eq (5) can first be written in the form

Ax = (24)

where A is defined as the 9 X 9 matrix on the left-hand side of Eq (5). The vector F is

defined as the nine element vector on the right-hand side of Eq (5), and

X 2 X 3  4  X 6  8

C' 'O 2 C'O03 1 Y2  3 4 S 6T(25)

where Eq (25) is derived from the state variables

X XI X 2 X 3 x 4 X 5 X 6 X 7 X 8 X 9]

= WK o 0 °oJ 02 03 OI2  Y 2 -9 3 - 4 i s -Y e6 r  (26)

Due to the convenient form of the modified Hooker-Margulies equations, the control

vector, u , can easily be extracted from the right-hand side so that Eq (24) can now be

written as

= " + (27)
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where

p [IUI U 2 U 3 U 4 U5 U 6 U 7 U8 /9

=[T1 T2 T3 TG1 TG2 TG3 TG4 TC5 TG6]T  (28)

TI, T2, T3 are the three external thrusters and TGI, TG2, TG3, TG4, TG5, TG6 are

* the six internal motor torques corresponding to the six axes of rotation gi, g2, g3, g4, gs, g6.

The symmetric matrix A is always invertible for physical systems, and pre-multiplying

. Eq (27) by the inverse of matrix A yields

x A-'F+ A -L (29)

This system of equations of motion can then be augmented with the kinematical equations

10 X 4

X II X 6

X 12 = X7 (30)

13 -X 5

where

XI I= Ya 3(31)

X 12 = -Y4

X 13 - Y2

Therefore , x1o is the angle between Body 1 and Body 0, x1l is the angle between Body 2

and Body 1, and x1 2 is the angle between Body 3/4 and Body 1, all in the el direction. x13

is the angle of rotation about the grappling arm itself. It is used only in the coordinate

transformations required to rotate the inertia matrices to the el, e2, e3 system. The angles

y, and y, are the angles of rotation of Body 3 and Body 4, respectively, about the g5 / g6
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axis (See Fig. 2). Since both Body 3 and Body 4 have cylindrical inertia properties, these

two angles are not needed in any of the coordinate transformations and are not included in
the kinematical equations.

This completes the set of attitude equations of motion. The augmented state vector is

now defined as xls* and contains the original state vector x plus the additional elements

X10, Xll, X12 , Xl 3 •

Note that Eq (5) rewritten as Eq (27) still contains the terms

r01, 9g jifZgR

corresponding to Joint I position, velocity, and acceleration relative to the reference body.

Since this translating joint motion is a specified function of time, Eq (27) is a

nonautonomous system. It will later be shown that it is desirable to work with autonomous

systems when applying the Liapunov analysis. Widhalm and Conway (9:660) suggested that

the joint motion can be expressed as a third order linear system. The joint position

relative to the reference body is

I = W } - j#2 + C6'3 (32)

Note that w and c are both constants. c is the height from the center of mass of the base

of the OMV to its top surface. w is the width from the original Joint I position, when the

grappling arm is stored horizontally, to the e3 axis. w is also half the length of the

grappling arm which is the length from Joint I to Joint 2 and also the length from Joint 2

to Joint 3. Y, is the joint translation in the positive e2 direction (i.e.: towards the e3 axis).

Since w and c are both constants:

ZRg =y J 1 62 = Y 2 6 2  (33)

TRI = 162 = =22 m Y362 (34)

Expressing the Joint 1 translational motion as a third order linear system and combining it

with Eq (29) and (30) yields the following set of equations for the system:

'10 = X4
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I = X 6  
(35)

12 = X 7

13 = X

Y=DY

where

[0 1 01 (36)

- D = 0 0 1i

LD 31  D 32  D 3 3 j

The constants D31, D3 2, and D 33 can be specified for whatever Joint 1 motion and response

time is desired.

I Open-Loop Control Laws

As previously mentioned, the purpose of the open-loop control laws is to deploy the

grappling arm assembly, and to spin-up the grappling device, while the OMV system

remains in a state of pure constant spin about the e3 axis. In other words, wo, and w0 2

should remain zero, and W0 3 should remain constant. In addition, the HX and HY

components of angular momentum should also remain zero, and HZ should remain constant

if the external thrusters are not applied (conservation of angular momentum). In order to

maintain this state of pure spin, several relationships need to be obeyed.

Deployment Phase

At all times throughout the deployment process, Joint 2 must remain along the e3 axis.

Also, Body 2 must form a "scissors" arrangement with Body I so that the e3 axis remains

the axis of symmetry for the five body system. Since the Joint 1 translational motion can
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be arbitrarily specified, the various requirements for the dynamical attitude motion of the

system need to be defined as functions of this Joint 1 motion. Since Joint 2 must always be

on the e3 axis the following relationship has to be satisfied:

-o 62 =  (
- 0  -1 o ) e2 = w COS( y l 2(37)

so that

= o - Y (38)

Taking the first and second time derivatives yields

*Y (39)
tWsinty) wsinfy,

and

= ? 2 sin y Y2 I Cos~ Y,'
1 sin 2(y1

Y 3 sin(yI)-Y 2 'cos(y) (40)

uwsin 2(yI)

Also, the "scissors" arrangement between Body I and Body 2 requires that

y.3= -2y (41)

Y = -2Y 1 (42)

and

3 --- -2Y 1(43)

Finally, since the rotation about the g2 , g4, gs, g6 axes should remain fixed:
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2 0

V4 0

(44)

i;5 =0

V6 0

Eqs (40), (43), and (44) specify the required motion of Bodies 1, 2, 3, and 4 during the

deployment phase in order to maintain dynamic balancing. The required control torques

now need to be calculated in order to achieve this motion.

For the case of not using any external torques, T1, T2, and T3 can be set equal to zero.

Referring back to Eq (29), both the A matrix and the F vector are known. Also, the terms

- 4 , 5 , 6  X 7 , )8 X 9

have all been specified in Eq (40), (43), and (44). The only unknowns on either side of

these six equations are the terms contained in the control vector u . Therefore since TI,

T2, and T3 are zero, the only unknown terms are TGI, TG2, TG3, TG4, TG5, and TG6.

There are now six equations and six unknowns which can be solved simultaneously to yield

the six required internal control torques.

If external torques are allowed to ensure the system remains in a state of pure spin,

then the additional requirements that

ao1 = 0

02 = 0 (45)

Wao3 = 0

can be added, and the system then solved for all nine control torques. Rather than

simultaneously solving nine equations for nine unknowns, these nine control torques can be

computed directly with a simple manipulation of Eq (27).

u =Ai - (46)
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It is desired that the deployment phase be accomplished without the external thrusters, if

possible. For either case, once the control vector has been solved for, it can be substituted

back into the original system of equations which are then numerically integrated to yield

the state vector.

Spin-up Phase

This same methodology can be applied for spinning up the grappling device after

deployment of the arm and just prior to docking. Body 3 is spun-up to match the spin rate

of the target satellite while Body 4 is simultaneously spun-up at an equal and opposite

rate. Since Joint 1 is no longer translating and is stationary

S3=0 (47)

and again

S=0 (48)

but this time

5 constant = - (49)

Nonlinear Feedback Contol-Detumble/Despin Phase

Once the OMV and the satellite are docked, the next control problem is to detumble

and despin the target by applying the appropriate internal motor torques while firing
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external thrusters to control the absolute motion of the system. Joint 1 is driven to the

center of the OMV corresponding to the e3 axis, and Bodies 1, 2, 3 (including the target)

and 4 are all erected to the vertical position. The OMV should remain in a state of pure

constant spin throughout the process.

In order to solve this problem, a feedback control approach, similar to that taken by

Widhalm and Conway, needs to be incorporated. The complete nine element control vector,

u , is a nonlinear function of the augmented system state variables and the Joint 1 motion

expressed in Eq (35). Liapunov's direct method can be applied to derive a control law

which is globally asymptotically stable with respect to the spin-stabilized state of

equilibrium. Eq (35) is repeated here for convenience.

=A _'F+A _U

X 10= X4

I = xY6 
(35)

X12 = X .

1I3= Xe

7=DY

Recall from the previous discussion that the Joint I translational motion Y is expressed

separately as a third order linear system so that the equations of motion form an

autonomous system more suitable for Liapunov analysis. Note that D is a negative definite

matrix selected to obtain the desired decay of Joint I to the final position at [0 0 c].

A lemma presented by Vidyasagar (8) , which is valid for autonomous systems, can

now be applied. It is stated as follows: "Let V( x13 * , Y ) be continuously differentiable

and suppose that for some d 0 the set

Sd= [X1 , 37 :V 13  , C<

is bounded. Suppose that V is bounded below over the set Sd* and that
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for all x13" and Y in Sd* . Let S denote the subset of Sd* defined by

and let M be the largest invariant set of a system which is contained in S. Then whenever

xls* and Y(0) are members of Sd* , the solution of the system of Eq (35) approaches M as t

approaches infinity." (8:157)

Since the system of Eq (35) is autonomous , every state trajectory is an invariant set.

The task, therefore , is to find the candidate Liapunov function, V , in order to "derive a

nonlinear feedback control law that drives the five-body system to the spin-stabilized state

of equilibrium." (9:660)

On the same lines as Widhalm and Conway (9:660), one candidate Liapunov function is

V (1 I()K(o )2( K,,(x 1800)

( K .12 - 900) _)K,( RY

where I is the identity matrix, K10, K11 , K1 2 , and K13 are positive constants, and R is a

positive definite constant matrix. The function is continuously differentiable, and taking

its derivative with respect to time yields

XTlI + Ki to - 90),I+ K 1 1 (X1 1 - I8..i

,K 12 -90). L2+K 1 3 xt,,*1 +37rRY+ yrR?" (51)

Substituting from Eq (35) gives

- T1= -I F + A " ' 1  
1

K ( X  
0- 9 0 )  X 4 +

'
K  

Ii X t -  1 8 0 )x 6' I-
K12 ' X I2 _ +9 0 o ) X 7 K13X13X. +  D-rR - RD 3" (52)

However , since R is positive definite and D was specified to be negative definite, the

Liapunov matrix equation can be written as
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D T R +RD=-Q (53)

where Q is a positive definite matrix. Therefore, Y[DTR + RD]Y is negative definite. To

make the derivative of V at least negative semidefinite, choose (9:660):

u=-T . .

+-A[0 , 0, - Klo(.-,o1 900), -K 3.,13,,- <,,(X , 11 800), -K,(X-,2-90o ), 0o 0o

-AB (54)

substituting back into (51) yields

(55)

1,=-XrIB-+Yr[DR + RD]"

If the matrix B is positive definite, then the derivative of V is negative semidefinite in x10

X1 1, x12 . However, if B is diagonal with positive elements (except B33 = 0), then the

derivative of V is negative semidefinite in x3 and x1o, x11 , x12 . (9:660). Note that 90o,

180o, and 900 have been subtracted from x1 o, x11, x1 2 , respectively, in this analysis. This is

just a simple coordinate rotation. The spin-stabilized state of equilibrium is about the X3 ' -

axis (e3 axis). This state occurs when x1o = 90o, x1l = 180o, and x12 = 900,, SO that the

coordinate rotation is needed to express these three values in relationship to the state of

equilibrium. Whenever these three values are not 90 o , 180o, and 900 , respectively (i.e.:

when they are nonzero relative to the x3 axis), then a nonzero control u results. The control

law for u in Eq (54) represents the desired nonlinear feedback control law to drive the

system of Eq (35) to a spin-stabilized state of equilibrium.

Substituting Eq (54) for u into the system of Eq (35) results in the following linear

system

.L o, 0, - K o(., 1 0o90o),- , 3 . < .11(x 1 1 - 1800),- K 1 2 (.-9y 0 ;1.o

-B.3
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10 X4

I i - X6 (56)

.X 1 2 - X 7

13 = X

37=DY

Note again that the four constants, K10 , K11 , K1 2, and K13 are positive as are the

elements of the diagonal matrix B. These values determine the motion and response times

of the various bodies as they decay to the spin-stabilized state of equilibrium, just as the

elements of the D matrix determine the decay of Joint 1. However, since the rotation ( y.,

about the grappling arm itself is locked prior to docking, x13 and x5 are both initially zero.

Therefore, the constants K13 and B55 will have no effect on the control law and can be

chosen arbitrarily. Note also that if wo, and W0 2 (xl and x2) are initially zero, any choice

of B11 and B22 will still result in these two components of angular velocity remaining zero.

Also, B33 should be chosen to be zero so that w03 remains constant. The choice of the other

K, B, D constants should be made such that the motion of Bodies 1, 2, 3, and 4 is closely

coordinated with the motion of Joint I so that Joint 2 and the target center of mass remain

as close to the e3 axis as is practical. This will help reduce the required amount of control

to maintain the absolute motion of the system.
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IV. Results

In this chapter, the mass and inertia properties for the five bodies of the OMV system

and for the target are presented, and the actual docking configuration is established. The

initial conditions for the three phases of the simulation are specified, and the results from

each phase are presented. A total of nine cases are analyzed; three cases from the

deployment phase, one case from the spin-up phase, and five cases from the

detumble/despin phase. The deployment phase is run without external thrusters, with

external thrusters, and finally with external thrusters but without deployment of the

counter-mass. The spin-up phase is only run without external thrusters. The detum-

ble/despin phase is run with variations in response time, target coning angle, and

deployment arm length.

The equations of motion formulated in this problem are rather complex, and the

corresponding computer code quite lengthy. To validate the equations and computer code, -

a routine was added to compute both the total system angular momentum and the total

system kinetic energy during each time step in the numerical integration. When no

external torques were applied (i.e. TI, T2, T3 = 0) both these properties were successfully

conserved, thereby verifying the validity of the equations of motion for this model.

Both the target and the OMV mass and inertia properties are presented in Table I,

and the necessary dimensions are listed in Table II. The target properties are the same as

those used in the Widhalm and Conway study (9). The base of the OMV, Body 0, also has

the same properties as the the OMV in the Widhalm and Conway model. These values

were chosen as such so that a reasonable comparison could be made between the results

from the 2-body model and the 5-body model. An estimate was made for the mass and

inertia properties of Body 1, the grappling arm, and for Body 3, the grappling device.

The grappling arm was chosen to have a total length of 3.5 meters, with two equal halfs

of 1.75 meters divided by Joint 2. Body 1 includes the mass of the translating Joint 1

assembly so its center of mass is somewhat to the left of Joint 2. Body 4 has exactly the

same properties of Body 3, and together they form two equal halfs of a sphere. Body 2's

required inertia properties were computed using Eqs (2), (3), and (4) in Chapter 2, and its

corresponding mass was estimated given these requirements. Note that the mass and
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inertia properties of Body 2 are approximately six time higher than those of Body 1. This

adds considerable extra mass to the system. However, the total mass of Body 1, 2, 3, and

4 is 390 kg which is less than a 9% addition to the original OMV.

TABLE I

Nominal Mass Properties .___"

BODY MASS (Kg) I, (Kg-m) Iyy (Kg-m) I., (Kg-m)

Target 1000 1000 1000 1100

Body 0 4500 6400 6400 11800
(Base of OMV)

Body 1 50 50 10 50
(Grappling Arm) ,_.

Body 2 300 311.125 50.625 311.125
(Counter-mass)

Body 3 20 20 20 20.3125
(Grappling Device)

Body 4 20 20 20 20.3125
(Counter-mass)
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TABLE II
Nominal Dimensions (Constants)

W One Half the Length of the Grappling 1.75 m

Arm (i.e. from Joint 1 to Joint 2 or
from Joint 2 to Joint 3)

C Vertical Length from Center of Mass of 0.62 m
the Reference Body to Joint 1

L1p Length along Grappling Arm from 0.35 m
Center of Mass of Body I to Joint 1

L12  Length along Grappling Arm from 1.40 m
Center of Mass of Body 1 to Joint 2

L 3 , L14  Length along Grappling Arm from 3.15 m
Center of Mass of Body I to Joint 3

L3 0 , L3 1  (Pre-Docked) Length from Center of 0.125 m
Mass of Body 3 to Joint 3

L 40 , L 4 1  Length from Center of Mass of Body 4 0.125 m
to Joint 3

L 30 , L3 1  (Post-Docked) Length from Center of 1.75 m
Mass of Body 3 (Target Satellite) to
Joint 3

Docking Configuration

As previously mentioned, the target used in this problem has the same characteristics

as in the Widhalm and Conway problem (9). These characteristics, along with the target's

length from its center of mass to Joint 3 after docking, determine the initial positioning

and spin rate of the OMV prior to deployment of the grappling arm, and the necessary

position of the grappling arm assembly after deployment. The target's state also

determines the required pre-docking spin-up of the grappling device. Nominal motion of

the target is listed in Table III and its mass and inertia properties have already been

presented in Table I.
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TABLE III

Nominal Target Motion

Yr Coning Angle 0.349 radians

Precession Rate 0.102 rad/sec

T Spin Rate 0.009 rad/sec

The initial spin rate of the OMV about its e3 axis of symmetry must be 0.102 rad/sec

in order to match the precession rate of the target. The spin rate of Body 3 must be

0.009 rad/sec to match the target's spin rate. The docking configuration is outlined in

Fig. 5. It can easily be seen that with the given lengths and coning angles, only one

configuration will work. The angles, y, and y 4 , required for docking have to be

determined. Since the lengths from Joint 2 to Joint 3 and from the target's center of mass

to Joint 3 are both 1.75 meter , the triangle from Joint 2 to Joint 3 to the target's center

of mass to Joint 2 is isosceles. Therefore, the angle formed between the grappling arm

and the e3 axis is equal to the coning angle, 200 (0.3490 rads), so that y, must be 70o

(1.2217 rads) in the docked configuration. Furthermore, the angle y, , the rotation of

Body 3/Body 4 with respect to the grappling arm, must be 500 (0.8727 rads). The

distance of Joint 1 from the e3 axis in the docked configuration determines the necessary

amount of joint translation. This distance from Joint 1 to the e3 axis is a function of the

target coning angle and is equal to the horizontal displacement , b , of Joint 3 from the e3

axis. This distance is calculated to be 0.5985 meters.

Deployment Phase

The OMV is initially pre-positioned relative to the target, and spun-up to match the

target's precession rate. Initial conditions for the deployment phase are shown in Table

IV. Bodies 1, 2, 3, and 4 are all stored flat on the too) surface of the OMV's base. Note,
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however, in the deployment open-loop control law Eq (40) there is a singularity at y, =

0o. Body 1 is therefore stored slightly offset from the horizontal, at an initial angle of 1o

(0.01745 rads), and Body 2 is stored at an angle of 20 (0.03490 rads). This is a simple

work around to this singularity, since it does not lend itself to an easy removal using

L'Hospital's rule. This slight offset does not in anyway detract from the analysis of the

results. 250 seconds are allocated for the total deployment event. Joint motion is specified

as a third order linear system, with three equal eigenvalues of -0.06, giving a joint motion

of

Y 3 =-O.000216(Y, +.599)-O.0108Y 2 -O.18Y 3  (57)

3I
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Fig. 5. Docking Configuration
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TABLE IV

Deployment Phase Initial Conditions

CW 0 0.0 rad/sec

(4 02 0.0 rad/sec

W 03 0.102 rad/sec

Y 1 0.01745 radians

Y2 0.0 radians -'

Y3 0.03490 radians

Y4 0.0 radians

0.0 rad/sec

Y2 0.0 rad/sec

3 0.0 rad/sec

4 0.0 rad/sec

Y s0.0 rad/sec

Y6 0.0 rad/sec

Y - W -1.75 meters

Y2 0.0 m/sec

Y3 0.0 m/seC2
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CASE I - DEPLOYMENT WITHOUT EXTERNAL THRUSTERS: In this particular

case, the deployment of the arm is achieved with the external thrusters turned off. It can

be seen from Figs. 6, 7, and 8 that Joint 1 moves smoothly from a position of rest -1.75

meters from the es axis and decays down to -0.5985 meters, well within the allocated 250

seconds. Looking at Y, and i' in Figs. 9 and 10, the grappling arm is smoothly raised

from 1o to 700. Body 2 is successfully deployed (See Figs. 11 and 12 ) in a manner such

that y3 is always twice as much as y so that Body 2 forms a scissors arrangement with

Body 1. It can be seen from Fig. 13 that the internal motor torque TG1 responsible for

erecting the grappling arm assembly experiences a sharp start-up transient which dies out

after approximately 10 seconds. The peak required start-up torque is less than 7 N-M. A

sharp transient is also present in the constraint torques at Joint 1 and Joint 2 (See Figs. 19,

20, and 21 ). The rest of the internal motor control torques (TG2, TG3, TG4, TG5, TG6)

are very small (Figs. 14-18 ), since they all play minors roles, with the exception of TG3

which controls the motion of Body 2. The sharp transient control torque at TGI is due to

the fact that a large moment is initially required to raise the arm from its stored

horizontal position, and get it moving.

The most important goal in the deployment phase is to maintain dynamic balance and

stability throughout the process without having to fire the external thrusters. In other

words, there should only be pure spin about the e3 axis, and wo and W02 should remain -

zero. Also, the cross products of inertia should all be cancelled out by the deployment of

Body 2, so that angular momentum exists only in the e3 direction, lined up with W0 3

This is successfully achieved. Both w01 and W0 2 remain zero throughout the process. The

HX and HY components (See Figs. 23 and 24 ) are negligible when compared with the HZ

component in Fig. 25, and can be attributed to numerical round-off errors. Figs. 25 and

26 show that all the angular momentum remains completely in the e3 direction. Fig. 26

also shows that angular momentum is conserved throughout the process since no external

torques are applied, thus proving that the equations of motion for the system are valid.

There is one important thing that does not work as expected, however. The initial

spin rate of w03 = 0.102 rad/sec does not remain constant, as required, but instead

increases to almost 0.106 rad/sec. It is important to note again though that the wo, and

W02 components remain zero and so the system is still in a state of pure, though not
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constant, spin about the e3 axis. The reason that the spin rate changes is due to a simple

conservation principle that was overlooked in the initial formulation stages of the

problem. The angular momentum remains constant about the e3 axis throughout the

deployment process. As the translating joint moves inward and the arm is erected, the

individual angular momentum components of Body 1, Body 2, Body 3, and Body 4 all

change, but the total system angular momentum must remain the same. Therefore, the

angular momentum of Body 0 must somehow change, and since it is in a state of pure

spin, its spin rate must change. This is not a problem for stability but it is a serious

docking problem.

The spin rate of the OMV must match the precession rate of the target. There are

two possible solutions to this problem, short of a system configuration change. The first

solution merely involves applying the external thrusters during the deployment process to

keep the spin rate of the OMV fixed. The other alternative is to start with a different

initial spin rate and not use the external thrusters. Since the desired OMV spin rate at the

end of the deployment process is known (0.102 rad/sec) and angular momentum is

constant, the required spin rate at the beginning of the deployment can easily be

computed. This was done, and it was found that an initial OMV spin rate of 0.0982

rad/sec will yield a final spin rate of 0.102 at the end of the deployment process (i.e.

when y, = 700 and Y3 = 140o) . This lower initial spin-rate saves maneuvering fuel in two

ways. First of all, the OMV has to be initially spun-up that much less, and second , the

external thrusters don't have to be turned on at all during the deployment process. The

main problem with this approach is with alignment. The grappling arm assembly is

initially lined up "underneath" its intended docking point on the target. If the OMV does

not have the same constant spin rate throughout the deployment process to match the

constant precession rate of the target, the grappling device will not arrive at the intended

point on the target. If the OMV is spun-up at the lower initial rate, an additional

algorithm is required to ensure that the grappling device arrives at the intended docking

point. This adds more complexity to the pre-positioning program and runs the added risk

of interference with appendages on the targat. Therefore, it is probably more desirable to

use the external thrusters to keep the OMV's spin rate constant about the e3 axis during

the deployment process, and it is this technique that is incorporated in Case 2, hereafter

referred to as the Nominal Deployment Case.
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One last noteworthy piece of data is gleaned from this case. During the deployment

process, the total system mass center of the OMV assembly remains fixed in inertial space

since no external torques or forces are applied. However, as the grappling arm assembly

is deployed, the system mass center moves "upward" relative, the base reference body.

Since the system mass center is fixed in inertial space, the base reference body, Body 0,

moves "downward," away from the target. This has to be compensated for by a

translational external thruster control system on board the OMV in order to maintain a

constant stand-off distance. This amount of vertical translation that needs to be

compensated is computed to be 0.18 meters as shown in Fig. 27.

CASE 2 - NOMINAL DEPLOYMENT: The second deployment run is made using exactly

the same initial conditions as Case 1 (Table IV) except this time the external thrusters are

turned on in order to maintain the OMV at a constant initial spin rate of 0.102 rad/sec. -

Fig. 28 shows that the control scheme is successful in achieving this objective. The

internal motor torques are exactly the same as in Case 1, as expected since their task

remains unchanged. The required external thrusters are shown in Figs. 29, 30, and 31

Note that TI and T2 about the el and e2 axes are both negligible and can be attributed to

numerical round-off error. The only external control torque required was T3 about the e3

axis, and it has a peak magnitude of less than I N-M. Therefore, the amount of external

control required to maintain a constant spin-rate is quite reasonable

CASE 3 - DEPLOYMENT WITHOUT BODY 2 COMPENSATION: In both Case I and

Case 2, Body 2 is deployed in a scissors fashion relative to Body 1. This successfully

accomplishes its intended purpose of cancelling out the cross-product of inertia terms

thereby maintaining stability without the use of the external thrusters. However, Body 2

adds a considerable amount of mass to the system. This extra mass has to be ferried up

into orbit along with the OMV and also has to be transported each time the vehicle is

boosted into higher capture orbits. This could amount to a significant fuel cost. There

might also be the problem of Body 2 interfering with target appendages such as solar

panels and antennas. One alternative that needs to be examined is at what maneuvering

fuel cost can the deployment phase be achieved without deploying Body 2. In this case,

YJ ix a Q0o throughout the process so that Body I and Body 2 remain coincident,
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while the external thrusters are turned on to maintain a constant spin about the e3 axis

only. The resulting control magnitudes are shown in Figs 32, 33, and 34 . Most of the

control is with TI about the el axis in keeping the system balanced. The T2 and T3

thrusters are used to a lesser degree. Both their magnitudes are less than 1 N-M, and

neither are required beyond 200 seconds where the deployment process is essentially

achieved. Notice that the TI thruster is still turned on at a constan, 1. N-M at the end

of the 250 seconds process. This appears to be the major advantage otfered by Body 2.

The external thruster control without using Body 2 is not unreasonable during

deployment, but must be kept on continuously in the pre-docked configuration. By

deploying Body 2, the system remains in a state of pure (although not constant) spin

without the use of external thrusters. The advantages offered by Body 2 versus its added

mass is a decision that would need to be weighed by the mission planner. This thesis

merely shows that both options are feasible from a controls point of view.

Spin-Up Phase

CASE 4 - NOMINAL SPIN-UP: Once deployment is completed, Body 3 is spun-up in

order to match the spin rate of the target satellite just prior to docking. Body 4, the

counter-mass, is spun-up at an equal rate but in an opposite direction in order to cancel

out the moments. For this phase of the simulation Joint 1 is held fixed as are the other

bodies (W0 3 = 0.102 rad/sec, y = 70o, and y, = 1400 ). External thrusters are shut

completely off. Both Body 3 and Body 4 are given a constant acceleration of 0.0009

rad/sec 2 for 10 seconds, and then the OMV system is left in its pre-docked pure spin

configuration for an additional 40 seconds, again with no external controls. The spin-up

of Body 3 and Body 4 is shown in Figs. 35 and 36 . Both bodies successfully spin-up to a

constant 0.009 rad/sec. Figs. 37 and 38 show the very small internal motor torques

required to accomplish this task. Figs. 39-42 show that dynamic stability is maintained

throughout this process without the use of external controls, and the angular momentum

vector remains aligned in the e3 direction along with the constant spin rate.
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Detumble/Despin Phase

The actual mating of the grappling device to the target is not within the scope of this

thesis, and occurs as a discrete event in which Body 3 takes on the mass, length, and

inertia properties of the target. Nonlinear feedback control is then applied, using all nine

internal and external controls, to drive Joint I to the e3 axis, and erect all bodies in the

vertical position (yI = 900, Y3 = 180o,, y4 = 90o ) in a spin-stabilized state of equilibrium.

Also in this process, the spin-rate of Body 3 (target) and Body 4 is reduced to zero in

order to despin the target. The initial conditions for the detumble-despin phase are

shown in Table V.
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TABLE V

Detumble/Despin Phase Initial Conditions

CA ol 0.0 rad/sec

02 0.0 rad/sec

W03 0.102 rad/sec

Y 1 1.2217 radians

Y2 0.0 radians

)Y3 2.4434 radians

Y4 0.8727 radians

0.0 rad/sec

Y2 0.0 rad/sec

Y3 0.0 rad/sec

Y4 0.0 rad/sec -

Ys 0.009 rad/sec

A6 -0.009 rad/sec

Y1 -W -0.5985 meters

Y2 0.0 m/sec

Y3 0.0 m/sec 2
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CASE 5 - DETUMBLE/DESPIN WITH WIDHALM/CONWAY GAIN SETTINGS: In this

case, control ae chosen in such a fashion al IQ emulate the Widhalm and Conway

study L2 as much as possible for comparison purposes. Feedback is applied for 300

seconds. The joint translational motion is specified using the same third order linear

equation as Widhalm and Conway (9), corresponding to three equal eigenvalues of -0.04.

? 3 =-0.000064Y I - 0.0048Y 2 - O.12Y 3  (58)

The constants K10, K11, K12 , and K13 as well as the nine elements of the positive

diagonal B matrix (See Eqs (54) and (56)) have to be specified. B33 is set equal to 0.0

since it is desired that the OMV's spin rate about the e3 axis remains constant throughout

the process. B11 and B22 are set equal to 0.046 as is done in the Widhalm study. Actually,

since we1 and W0 2 (corresponding to x, and x2 ) are both initially zero and remain that

way , the constants B11 and B22 have no effect on the problem and can be any value.

Note also that the rotation about the g2 axis (the axis coincident with the grappling arm)

needs to be initially zero. Rotation about this axis after docking and prior to erection

could be disastrous, since it would create stability problems and could even result in the

target crashing into the base of the OMV. Therefore, since y2 (x13 ) and '2 (X5 ) are

initially zero, the constants K13 and B55 have no influence on the problem. K13 is

arbitrarily set equal to a value chosen for one of the other K constants, and B55 is set

equal to B11 and B22

The choice of B44 and K10 determines the second order linear system which

represents the motion of y, (x10) from 70o to 900. Similarly, B6 5 and K11 determine the

motion of y, (x11) from 140o to 1800 , and B77 and K1 2 determine the motion of y4 (x1 2)

from 500 to 900. Widhalm and Conway (9) chose to specify the erection of the target

(which is similar to the erection of Body I in this model) as a critically damped system

using two equal eigenvalues of -0.035. The equivalent motion of Body 1 in this problem

needs to be closely coordinated with the decay of the translating joint in order that Joint

2 remain as close to the e3 axis as possible. The erection of Body 3 (the target) should be

timed so that the center of mass of the target also remains close to the e3 axis. This
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reduces the amount of external torque needed to maintain a dynamically stable system.

Body 2 should decay in a fashion similar to Body 1. The motion of all three angles is

chosen to be represented by the critically damped second order equation consisting of two

equal eigenvalues of -0.035. Therefore B44, B86, and B77 are all chosen to be 0.07 while

K10, K 11, K 1 2 and are all chosen to be 0.001225.

Finally, the decay rate for the spin of Body 3 (the target) is determined by the choice

for B8 . This again is chosen using the same decay rate as in the Widhalm and Conway

model (9) , an eigenvalue of -0.02, making B88 equal to 0.02. The decay of Body 4 (in

the opposite direction) is also chosen to be -0.02 so B99 too is set at 0.02.

The results illustrate that the detumbling and despinning of the satellite is successfully

accomplished in the allotted 300 seconds, leaving the system in the desired state of pure

spin shown in Fig. 4 . All motion shown in Figs. 43-48 is smooth and is such that the

target center of mass is always directly above Joint 2. Body 2 has exactly twice the rate as - --

Body 1 at all times, since it has to cover twice the angular displacement. Fig. 49 shows

the successful despin of Body 3 - the target, while Fig. 50 illustrates the corresponding

despin of Body 4. The smooth joint translational motion is shown in Figs. 51, 52, and 53.

The most important information from this run is the required external and internal

control torques needed in the detumble and despin process. The largest control torques

are clearly the internal motor torque TGI and the external thruster TI, both in the el

direction. TI starts off at approximately 18 N-M and drops down to almost -9 N-M in

the opposite direction before decaying towards zero. This is an order of magnitude higher

than the external torque in the results of the Widhalm and Conway study (9), which were

bounded from +2 N-M to -3 N-M.

There are two probable reasons why the required TGI and TI and also TG4 control

are so much higher than in the Widhalm and Conway model (9). First of all, this model

has the additional mass and inertia of the grappling arm , the counter-mass., the grappling

device, and its counter-mass. This adds 390 kg to the system, which is a 39% addition to

the target mass. Second, the geometry in this problem is considerably different. In the

Widhalm and Conway model ( Fig. 1), the target was joined directly at the translating

joint. In this model, the target is connected at Joint 3 which is linked with Joint I by a

3.5 meter long grappling arm. The maximum negative control torque magnitude for both

TI and TGI occurs, just as in the Widhalm and Conway study (9) at 50 seconds, and
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corresponds to when Joint 2 and the center of mass of the target both have the equal

maximum displacement from the e3 axis of approximately 11.4 cm.. The second largest

required internal motor torque is seen by TG4 at Joint 3, which is responsible for erecting

the target itself relative to Body 1 (i.e. y4). The amount of torque required to despin the

target, TG5, is quite small due to its very small initial spin rate.

All internal and external control torques decay very close to zero within 300 seconds,

implying that the system achieves a spin-stabilized state of equilibrium. The magnitude

of the constraint torques at Joints 1, 2, and 3 are shown in Figs. 63, 64, and 65 . Notice

that the magnitudes of these torques correspond approximately to the magnitude of the -

internal motor torque at the particular joints. Also, the constraint force in the e2

direction for the translating joint is shown in Fig. 66 . The force in the y-direction is the

amount of force required to "push" the translating joint towards the center of the OMV.

CASE 6 - REDUCED GRAPPLING ARM LENGTH: The next case examines the effect

of reducing the length Qf the graggling arm to see if a shorter arm reduces the large TGI

and TI control torques seen in Case 5. The question first is how short can the grappling

arm be, and still accomplish its task. Looking at Fig. 5, it is apparent that with the

coning angle and the length from the target center of mass to Joint 3 fixed, Y4 changes as

the length w from Joint 2 to Joint 3 changes. The smaller the w, the less the Body 3 and

Body 4 assembly needs to be rotated in order to dock with the target. As a design

constraint, it is decided to limit the minimum angle Y4 at 0o in order that the target not

run the risk of interference with the grappling arm assembly or the reference body. In

other words when docked at this minimum angle of rotation, the target should be

perpendicular to the grappling arm so that the angle between the length from the target

center of mass to Joint 3 and the length from Joint 2 to Joint 3 is 900. The length w

required for this can easily be computed using simple geometry , and is found to be

0.63695 meters so that the total length of the grappling arm is 1.2739 meters. This is

considerably less than the original 3.5 meters. The angle y is also found to be equal to

the coning angle, Therefore, the new initial conditions are y = 20o, y, = 40o , and y, =

0o. Also, the joint translation and the the control values for K and B are all the same as

those used in case 5.
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The resulting TI, TGl, and TG4 control torques are shown in Figs. 67, 68, and 69.

These three are chosen since they have the most signifizant magnitudes in Case 5.

Shortening the length of the grappling arm does not help reduce TI and TG1. In fact,

TG4 actually increases due to the fact that it rotates the target from 00 to 90o in the same

amount of time it originally had to rotate it from 500 to 900.

The most important piece of information gained from this run is the fact that TGI

and TI are not reduced by significantly decreasing the length of the grappling arm and

instead remain almost exactly the same. There is one thing to note here that could explain

this lack of change. Even though the length of the arm changes, the length b in Fig. 5

remains exactly the same . Length b is the horizontal displacement of the end of the

target at Joint 3 from its center to mass on the e3 axis, and is a function of the target's

length and coning angle only. The length b is also the length that Joint I has to translate

inward. It appears that TI and TGI are somehow dependent on this length b.

CASE 7 - INCREASED TARGET CONING ANGLE: Since altering the length of the

grappling arm has little effect on T1 and TGI , the next two cases study the effect of

altering the horizontal length b mentioned above by varying the ini I coning angle of the

target. The length , precession rate, and mass properties of the target are all kept the

same, but the coning angle is increased from 200 to 30. This decreases the initial spin

rate of the target to 0.008 rad/sec, in accordance with Eq (1). The original length of the

grappling arm of 3.5 meters is used. From Fig 5 with the new coning angle of 30o it can

be seen that the new initial conditions are Yi = 600, y = 120o, and y. = 30o . Joint

translation motion and decay rates are again the same as in Case 5. This leads to a new

length b of 0.875 meters and an initial Joint 1 position of -0.875 meters from the the e3

axis.

The resulting TI, TGI, and TG4 for this run are shown in Figs. 70, 71, and 72 . It is

apparent that increasing the cone angle thereby increasing the required amount of Joint I

translation has the effect of increasing the required Ti and TGI control torques.

Case 8 - DECREASED TARGET CONING ANGLE: This next case examines the effect ..

of decreasing the coning angle. A coning angle of 10o is used which results in initial

conditions of y, = 800, y, 160o, and y, = 70o, and an initial Joint I position of only
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-0.30388 meters. The resulting TI, TGI, and TG4 are shown in Figs. 73, 74, and 75

Note that the peak control magnitudes are reduced to less than 10 N-M. Therefore,
reducing the coning angle significantly reduces the required control torques, TGI and TI

Case 7 and 8 illustrate that the coning angle, which determines the required amount

of Joint 1 translation, significantly affects the principal control torques TI and TGI,

while Case 6 shows that altering the length of the grappling arm has very little effect.

Case 9 - NOMINAL DETUMBLE/DESPIN: The next and final case incorporates the

original grappling arm length of 3.5 meters, and the designated target coning angle of 20o

It uses all the same initial conditions as in Case 5 shown in Table V. The big

difference though is the choice of control variables K1I. Kl. K12. and the elements Qf

the diagonal B matrix. Joint translational motion is again kept the same as that specified

in Eq (58). B11, B22, B33, K13, B66, B88 and B99 are also chosen to remain the same as in

Case 5. The values that are manipulated are the values K10, B44, K11, B66, K12 , B77 that

specify the decay functions of the angles y,,. Y3 and Y 4. There are three things at

stake here in choosing these constants. First of all, these constants show up directly in the

control laws (see Eq (54)), so that higher instructed decay rates require higher control

magnitudes. Second, decay rates determine how long it takes the complete system to reach

its spin-stabilized state of equilibrium (y, = 900, y3 = 180o, and y. = 90o). The third and

final effect the choice of these control constants have is on how well both Joint 2 and the

center of mass of the target are maintained as close to the e3 axis as possible. It is

important to coordinate the decay of yj and Y4 with the Joint 1 translation. Large

deviations of either Joint 2 or the target center of mass call for large control magnitudes

to balance the system and keep it stable. In case 2 the largest negative external TI (and

TGI) control torque of approximately -8 N-M occurs 50 seconds into the detumble/despin

phase, when both Joint 2 and the target center of mass are offset by almost 11.5 cm. to

the left of the e3 axis.

Various efforts were made to reduce the large control torques T I, TGI, and to a

lesser extent TG4, seen in Case 5 by altering these response values. At first, the decay

rates of y, and y, (Body I and 2) were kept the same while the decay rate of y. (Body

3/4) was altered. Quicker response times led to higher initial values of TGI and TI.
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Slower responses, while reducing the initial control magnitudes, led to much higher

negative torques in the process, due to the fact that the target's center of mass became

further offset from the e3 axis. It appears that overall lower control torques are produced

when Joint 2 and and the target center of mass are lined up vertically as in Case 5.

Therefore, the last option for lowering the control torques is to change the original

response values used in the Widhalm and Conway analysis. Since Joint 2 and the target

cm are offset to the left of the e3 axis, this offset can be reduced by slowing the decay

rates of Y,. Y3 and y 4 while keeping the joint translation the same. The only trade-off is

response time. The final values chosen are equal eigenvalues of -0.025 for all three

functions. This leads to a -ralue of 0.000625 for K10 , K11 , and K 12 , and a value of 0.05

for B44 , B66 , and B7 7 . Also, due to the slower response rate, an additional 50 seconds

worth of feedback is applied, allowing a total of 350 rather than 300 seconds for the

detumble,'despin event.

The results of this run are illustrated in Figs. 76 - 99 . Body 1, Body 2 and Body 3/4

(Y1, Y3, Y4) all decay smoothly to their final designated positions within the 350

seconds. The effects of changing the response time are shown in Table VI.

TABLE VI

Effect of Decay Rate on Final Equilibrium Position

YI Y3  Y4

(degs) (degs) (degs)

Case 5/ 300 secs 89.994 179.987 89.987

Case 9/ 300 secs 89.906 179.812 89.812

Case 9/ 350 secs 89.969 179.938 89.938

It can be seen that despite the slower response time of this case, the bodies still come very

close to their equilibrium position after 300 seconds. The additional 50 seconds worth of
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feedback control, although not critical, brings them even closer to the values seen in Case

5.

Joint I translational motion and the despin of Bodies 3 and 4 are the same as in Case

5, except they are given an additional 50 seconds to damp out any residue motion. The

biggest change in the run is the very significant improvement in the TGI, TI, and TG4

control torques. The initial TI and TGI torques are reduced from the 18 N-M peak value

seen in case 5 to a much lower peak value 9.31 N-M . Also, the negative torque is

reduced from the original low of -8 N-M at the 50 seconds point to a much smaller value

of -1.63 N-M at the 43 seconds point,

The reduction of the initial starting torque can be explained by the slower decay rates

fed into the control laws. The much lower negative torque at 43 seconds can be explained

by better coordination of these decay rates with the Joint 1 translation rate. Joint 2 and

the target cm are both maintained closer to the e3 axis of symmetry. In case 5 they are

displaced a maximum at the 50 seconds point of 11.5 cm to the left of the e3 axis. In this

case they are only displaced a maximum at the 43 seconds point of 3.5 cm to the right of

the e3 axis. This smaller displacement leads to much smaller required control torques, TI

and TGL. The TG4 torque is also reduced from the original 7 N-M to less than a 4 N-M

initial torque with almost no overshoot. This new case also reduces T2 and smooths out

T3. These reduced internal and external motor torques provide comparable reductions in

the constraint torques

The results of this case clearly show a significant improvement in the required

external and internal control torques. Reducing the response rates makes a big

improvement, while only having to extend the required maneuvering time shortly.
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V. Conclusion

The equations of motion were derived for the five rigid body system used to model

, capture of a freely spinning and precessing axisymmetric target satellite. Control laws

* were formulated for each of the intended phases; deployment, spin-up, and detumble/de-

spin. A Liapunov analysis was performed for the nonlinear feedback control required in

the detumble/despin phase, in order to drive the system to a spin-stabilized state of

equilibrium. A computer simulation was then used to examine each of the three phases of

the capture process.

The deployment of the grappling arm and its counter-mass was successfully

accomplished within an allotted 250 seconds. A sharp transient was initially observed

with the TG1 motor torque at Joint 1 due to the large moment required to start the arm

moving from its stored position. However, the momentary peak was less than 7 N-M and

quickly leveled out. It was shown that dynamic balancing and stability could be

maintained without the use of any external torques, but that the initial spin rate about the

e.3 axis of symmetry did not remain constant due to the conservation of angular

momentum. A small application of the external T3 thruster about the e3 axis was able to

alleviate this problem and keep this spin rate constant as required for capture.

The necessary external control torques to achieve deployment without utilizing the

counter-mass were also shown, in order to illustrate this as a feasible alternative.

Once the grappling arm was deployed, the grappling device was spun-up for 10

seconds and its counter-mass was spun-up at an equal and opposite rate. An additional 40

seconds were allowed to elapse to observe the OMV system in a state of pure spin just

prior to docking. This entire 50 second process was achieved without any external

torques, and the rysterh remained in its state of pure constant spin. The spin-up of the

grappling device and the counter-mass required very small internal motor torques.

Docking was assumed to be a discrete event that initiated the detumble/despin phase.

Nonlinear feedback control was immediately applied in order to detumble and despin the

target. With the final selection of response values, feedback was applied for 350 seconds.

All motion of the bodies was smooth as they travelled to the spin-stabilized state of

equilibrium. The response values were chosen so that the movements of the bodies were

coordinated with the decay of the translating joint to ensure that the composite center of

146



mass stayed close to the e3 axis. The most significant control torques observed were with

the TGl internal motor at Joint 1 and the external TI thruster, both about the e3 axis.

Each initially were almost 10 N-M, which is more than three times the control torques

observed in the Widhalm and Conway two-body model. These higher torques can be

explained by the additional mass and inertia added at Joint I by the grappling arm

assembly and counter-mass, and by. the different geometry of this problem with the

grappling arm acting as a linkage between Joint I and the target.

Additional caszs were examined in the detumble/despin process for design purposes.

Quicker response times led to higher initial control torques. Reducing the length of the

grappling arm had no significant effect on control magnitudes. What did have an effect

on these control torques was the change in coning angles. The amount of required control

torques clearly increases with increasing coning angles. Therefore, control requirements

for the detumble/despin process are direct function of coning angle. It was also shown

that torque requirements can be reduced by effective control of the the target's center of

mass position relative to the OMV's axis of symmetry. These are all important

consideration in the design of an orbital capture vehicle.

All major objectives were accomplished in this thesis. The simulation showed that a

5-body OMV using a combination of internal and external thrusters can successfully

capture and detumble/despin an axisymmetric target satellite. Counter-balance masses can

be effectively used in lieu of external thrusters during deployment and spin-up. The --

five-body system definitely adds both realism and flexibility to the original two-body

model. This study gives a good indication of the dynamics and controls involved in

remote orbital capture using the proposed five-body OMV model, and has hopefully

paved the way for possible future studies of actual hardware design.
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VI. Recommendations

There are several possibilities for follow-on work with the OMV model developed in

this thesis. One option would be to add an internal momentum wheel about the e3 axis to

keep the OMV's spin-rate constant during deployment, without having to fire the T3

thruster. A further extension of this idea would be to add a complete set of three

orthogonal momentum wheels instead of external thrusters for attitude control, as was done

by Fleming (3) on the Widhalm and Conway two-body model. Another possible area of

follow-on research could be to examine a wider range of targets and capture scenarios.

This particular study was limited to axisymmetric target satellites only. The capture of an

asymmetric target would present additional problems and requirements that would have to

be examined.
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