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Preface

The purpose of this study was to examine the effects
of corona wind on the heat transfer rate fr~m horizontally
gsuspended heated cylinders and compare the results for
variations in cylinder diameter, emicter device, and
emitter-to-cylinder distance.

The cooling capar ity of corona wind has alread? been
harnessed, and used for consumer applications. I found the
phendmeno%lparticularly interesting because of the pos-
sibilities for application in weld processes.

Thanks go out to my thesgis advisor, Dr. Milton Franke,
who kept me on the straight and narrow, and to P:éfessor
James Hitchcock for imprbmptu aid. A debt of gratitude is
owed to Mr. Nick Yardich, Mr. Leroy Cannon, and especially
to Mr. Jay Anderson. They procured the equipment I needed
to get the experiment started, and kept it going when the

going got tough.

Pergsonal message to my husband,- ana to my‘
o -

"Thanks guys! I couldn’t have done it witnout you."
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Abstract

Experiments were conducted to determine the effect
of the corona wind on the convective heat transfer rate
from each of three horizontally mounted, heated aluminum
cylinders. The cylinder was maintained at ground potential
and an emitter was connected to a high voltage source.
Stretched wire and multipoint emitter devices were used.
Emitter-to-cylinder spacing and field voltage were para-
meters. Blown air was also used to simulate the corona
wind generated from the stretched wire emitter.

An energy balance method was used for data analysis.
Free convection heat transfer rates were used as a base-
line. The results of all experiments were compared and
contrasted. The multipoint emitter was a more efficient
emitter device than the stretched wire emitter. The convec-
tion heat transfer rate due to the corona wind with an
applied high voltage field of 15kV was as much as 6.5 times

the free convection heat transfer rate. /- el
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h o I. Introduction

An experimental study of the effects of corona wind on

the cooling of a horizontal cylinder was accomplished at

the Air Force Institute of Technology recently by Hogue

(5). Interest in the corona wind phenomenon has been

renewed after a period of relative neglect. Within the

last ten years, Franke and Hutson (4), Hrycak (6),

Hogue(5), Stefkovich (14), Didkovsky and Bologa (3),

Velkoff and Godfrey (16), Cross (2), and Mitchell (9), have

all published papers or theses on coeling augmentation
with corona wind.

This revived interest, by academia and industry, can

L. be attributed to better equipment and analytical techniques

for studying the corona wind phenomena, and to the identi~-

fication of special heat transfer problems which may be

solved by applying the unique properties of electrostatic

cooling (1:1).

I A
A
’7&\” . 5o e S

Background P

d§£ona wind @i&¢143ﬁ3 GV"‘r:efer:s"go the movement of gas
induced by the repulsion of ions from the vicinity of a
high voltage discharge electrodégz A typical corona test
configuration (13:4) is illustrated in Figure 1. Free
charges are produced in the ionized region surrounding the
high field active electrode. These charged particles

migrate and collide with neutral air particles in the drift

~
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collecting electrode

//////////

Field
and Ion
Flow Line

Ionization Limit

Discharge Electrode

Figure 1. Diagram of a Typical Corona Wind Generation System (13:4)

region. The collisions transfer momentum to the neutral
gas, the result of which is an electric wind directed away
from the active electrode. These ions are then collected
by the low field passive electrode.

A temperature gradient forms around a heated surface
which is surrounded by a cooler fluid. The heated surface
heats the adjacent fluid, which lowers the density of that
fluid and thus causes it to rise. The fluid motion cools
the heated surface. This cooling is termed free convec-
tion. The corona wind induces an artificial air flow which
increases convection heat transfer away from the heated
surface. Recent experimenters have achieved convection
heat transfer rates of from two to six times the free
convection rate (5, 14 and 17).

Until recently the wind had primarily been used to
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blow out candles and drive windmills in demonstration

experiments (13:8). However, as noted earlier, more prac-

tical applications are now being considered. Inter-Probe

(17) has done extensive work with corona wind. This com-
pany holds many patents in the field of electrostatically
accelerated heat transfer technology. They also have pro-
ducts called Modular Energy Transfer Catalyzers, which
use corona wind for heating and cooling. These units can
generate corona wind velocities of up to 1000 feet per
minute and operate in temperature environments ranging from
-100°F to +500°F. Many applications are advertised. The
units may be mounted over, under or beside stationary
processing equipment or moving conveyors. Application
examples cited included heating or cooling of paper, food,
metal, ceramic and glass products,

There has also been recent interest in corona wind for
cooling applications in the aerospace industry. Martin
Marietta Aerospace (1) recently published results of their
investigation into the control of heat transfer in welding
processes through the use of corona wind.

Welding heat effects cause problems with product inte-
grity and reproducibility. Controlled solidification of

welds can reduce the i1eat-affected-zone and subseqguently

the number of flaws. It was toward this end that Martin
Marietta Aerospace developed and tested a proprietary elec-
trostatic cooling systenm. Beal (1) reported that the i

overall test results indicated improved weld quality with a

w
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more refined weld micro structure. Selective spot cooling
applications around weld puddles decreased detrimental
stresses during and after the welding process.

AFIT thesis and staff work, investigating numerous
geometries and test configurations, has also stepped up in

the last few years (4, 5, and 14). Hogue (5) compared

corona augmented convection from a cylindrical surface to
baseline free convective heat transfer and to non-ionized
forced air cooling. He used a l-in-diameter s0lid aluminum
cylinder and studied the results produced by varying dis-
charge electrode (emitter) geometry, electrostatic field
voltage, and emitter-to-cylinder spacing. Hogue also used
a grid and/or shroud in his study in an attempt to direct
& and/or accelerate the corona wind. He found that the grid
and shroud configurations tested did not improve and,
indeed, in some cases, actually reduced the amount of

cooling achievable with the emitter alone.

Objective

The objective of this study was to determine the
effects of corona induced forced convection on the heat
transfer rates from 2, 1, and 1/4-in-diameter horizontally
suspended aluminum cylinders. Experimental test runs were
to be accomplished with stretched wire and multipoint
corona emitter devices and with a jet of uncharged air

configured to simulate the corona discharge from the

stretched wire emitter device.
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The free convection heat transfer coefficient was to
be determined from an empirical model and used as a base-
line for the analysis of the experimental data. The
adequacy of this model was to be validated by incorporating
the modelled free convection heat transfer coefficient into
a well developed definition of the total heat transfer
rate, and then comparing the value for total heat transfer
rate calculated with the definition to the value measured

during the experiment.

Aggroach

The investigation was divided into the following
parts, for each of the three cylinders.

1. Measurement of the total heat transfer rate with
no forced convective cooling. Comparison of this rate with
the rate calculated from the mathematical model. Extrac-
tion of the baseline free convection rate.

2. Measurement of the change in the convection heat
transfer rate when (a) a multipoint emitter and (b) a
stretched wire emitter were employed to generate a corona
wind.

3. Measurement of the change in the heat transfer
rate when a jet of uncharged air was used to simulate the
corona wind.

4. Comparison of the measured changes in the heat
transfer rates for (a) baseline free convection, (b) corona

induced forced convection, and (c) forced air convection.




The cylinder surface was maintained at a temperature
SO°F above the temperature of the ambient air. Source to
test cylinder spacing and field voltage were the parameters
varied for each of the noted test.

The Energy Balance Method, developed by Franke (4) and
modified by Stefkovich (14), was used to determine the
ratio of the forced convection heat transfer coefficient to
the free convection heat transfer coefficient. This ratio
was used for the analysis and comparison of the test
results. This Energy Balance Method is described in

Appendix A.




II. Eguigment

The equipment used in this experiment was divided into
five basic groups according to task. The equipment used
for cylinder heating, temperature measurement, corona wind
generation, blown air generation, and visualization are
depicted and described below. The test cylinders and test
stand are also described. The monitoring and control

station is shown in Figure 2.

Test Cylinders

There were three right circular 10-in-long test cylin-
ders with diameters of 2, 1, and 1/4 in. The cylinders
were fabricated from 2219-T87 aluminum alloy which was
selected for evaluation because of its many aerospace
applications. The l-in-diameter cylinder, designed by
Hogue (5), was constructed in two horizontal halves to
allow for installation of thermocouples and for a heater
coil in a 3/8-in~diameter longitudinal cavity. Flush
fitting ring collars were used to assemble the two halves.
Figure 3 is a schematic of this cylinder. There were 12
thermocouples which were located 0.025 inch below the out-
side surface.

The 1/4-in-diameter cylinder is depicted in the sche-
matic in Figure 4., This cylinder was fabricated with two
tubes. Eight axial slots for the thermocouples were cut

into the surface of the smaller tube. After insertion of
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Figure 3. Diagram of the One~Inch-Diameter Test Cylinder

Figure 4. Diagram of the 1/4-Inch-Diameter Test Cylinder




the thermocouples, the smaller tube was pressed into the
larger tube. The heater wire was inserted in the center
channel of the smaller tube.

The configuration of the 2-in-diameter cylinder was
very similar to that of the l-in-diameter cylinder. This
cylinder had five rings of thermocouples, for a total of
twenty. The thermocouple wires were recessed into channels
away from the heater coil. A schematic diagram of the 2-

in-diameter cylinder is shown in Figure 5.

Heater Circuit

The heater circuit was composed of a heater coil or
strand, a variable voltage transformer, and a digital
multimeter. A schematic of the circuit is shown in Figure
6. A bridge was used to connect each of the three
components in series. This system was employed to maintain
the cylinder at a equilibrium temperature S50°F 1°F above
the atmospheric temperature.

The heaters for the 1 and 2-in-diameter cylinders were
helical coils of 0.0l125-in-diameter nichrome wire sheathed
in teflon tubing. The heater for the l/4-in-diameter
cylinder was a single strand of the same wire. Nichrome
was chosen because of its high resistivity. The variable
voltage transformer was used to scale the 110 volt AC input
to any output level between 0 and 110 volts AC. This
voltage was adjusted to the level required to maintain the

test cvlinder at a temperature 50°F above the ambient room

10




Diagram of the Two-Inch-Diameter Test Cylinder
11

Figure 5.
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temperature.

Once an equilibrium temperature was achieved, an RMS
reading of the AC current was recorded from a digital
multimeter reading. The multimeter range was O to 2000 maA.
A 0 to 5 amp AC ammeter was substituted when higher current
flows were required during testing of the 1l/4-in-diameter
cylinder. The current readings and the heater coil resis-
tance were used later to compute the power required to
maintain the test cylinder at an equilibrium temperature
50°F above the ambient temperature.

A variable resistor was added to this system when the
1/4-in-diameter cylinder was tested. The less voluminous
l1/4~in-diameter cylinder had a much smaller heater and
subsequently added very little resistance to the overall
test circuit. From Ohm’s law, a given current level can be
maintained if the voltage is lowered in response to
lowering the resistance. The variable transformer voltage
output was unstable at low settings and caused erratic
current readings. The multimeter current readings stabi-
lized when the additional resistance was added to the
circuit., Higher voltage settings were required to maintain

the desired current flow through the ¢ylinder heater.

Temperature Measurement

In order to maintain a constant AT of 50°F, it was
first necessary to monitor the test cylinder and ambient

temperatures. Thermocouples were embedded in the cylinder
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Figure 7. Schematic Diagram of the Temperature Measurement Equipment

and attached to the inside of the lower horizontal test
stand member.

The thermocouples were fabricated by arc welding from
Type T 30 gage copper (high junction) and constantan (low
junction) teflon coated thermocouple wire. "Omegabond 101"
adhesive was used to install the thermocouples in the
cylinder and to coat the two thermocouples mounted in the
test stand. This adhesive was a thermally conductive,
electrically insulating epoxy.

The automatic data system shown in Figure 7 was com-
posed of a HP 9835B System Controller, a HP 3455A Digital
Voltmeter, and a HP 3495A Scanner. The scanner has

multiple input channels and a single output. The thermo-
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couple leads were connected directly to the scanner and the
scanner output was connected to the electronic icepoint,
This arrangement of scanner before reference junction is an
application of the second thermocouple law (20). The Law
of Intermediate Metals states that the introduction of a
third metal has no effect, as long as the junctions of the
third metal with the two thermocouple wires are at the same
temperature.

The voltmeter measured the emf of the thermocouples
and displayed the voltage readings. The system controller
used the computer program shown in Appendix B to drive the
scanner and voltmeter., The controller then used a HP
conversion algorithm to convert each voltage reading to a
temperature in both Celsius and Fahrenheit, and computed
the average test cylinder temperature and the AT between

this temperature and the ambient temperature.

Corona Wind Generation

The corona wind generation system consisted of a
direct current (DC) power supply (0 to 30 kV), emitter
devices, an in-line DC micrometer, and an electrostatic
voltmeter (0 to 15kV). A schematic of the system is shown
in Figure 8. Beldon type 8866 high voltage wire was used
to interconnect these elements.

The 0-~15 kV voltmeter was used in lieu of the volt-
meter on the DC power supply to gain greater accuracy on

the voltage readings. Use of the 0-15 kV voltmeter limited

15
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the experiment to a 15 kV maximum applied voltage to the
emitter device.

The micrometer measured the current resultant from the
ion flow between the emitter and the grounded test cylin-
der.

Two types of emitters were used during testing, both
are depicted in Figure 9. The stretched wire emitter was
a strand of 40 gage (0.0031-in diameter) Chromel wire
mounted taunt between two copper rods. These rods were
screwed into brackets on each side of the test stand and
connected to the high voltage power supply. The stretched
wire was mounted directly beneath, and parallel to the
longitudinal axis of the test specimen, Figure 10 shows
this emitter device mounted in the test section.

The multipoint emitter had nineteen 1/4-in-lengths of
the 40 gage Chromel wire mounted perpendicular to the
longitudinal axis of the cylinder (see Figure 9). The
Chromel emitters were mounted in 4-in-long, 1l/4-in-diameter
copper rods. These rods were screwed into a copper bus bar
embedded in a Plexiglas holder. The copper bus bar had
threaded ends which extended through the mounting brackets.
The high voltage source was connected to the two threaded
bus bar end segments. This emitter is shown mounted in the

test section in Figqure 11.

Blown Air Generation

The blown air system consisted of a wedge shaped

17
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plenum chamber,a Bell and Howell pressure transducer, a HP
6205B DC power supply, a HP 3466A digital voltmeter, a
pressure gauge, and a supply of compressed air. The system
is depicted in Figure 12 and shown mounted in the test
section in Figure 13. The plenum chamber had a 12-in-long
by 1/64-in-wide slot in its top edge, and two quick connect
inlets near its bottom. Compressed air from the AFIT
laboratory supply line was introduced into the plenum to
produce an air flow from the slot. The pressure transducer
was used to measure the stagnation pressure in the plenum
before and during testing. The pressure transducer was
excited with 10 volts DC from the power supply. The trans-
ducer output a DC voltage which was read by the digital

multimeter.

Visualization

A Mach-Zehnder type interferometer, depicted in Figure
14, was used for visualization of the thermal gradients
around the cylinder. Photographs of the interferometer
images of the fringe patterns were taken with a Polaroid

Graflex camera and Polaroid type 42 film.

Test Stand

The test stand is depicted in Figure 15. The main
structure was made entirely of Plexiglas. The runners used
to hang the test stand in the test section of the interfer-

ometer were wooden.

21
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III. Experimental Procedure

The experiment was divided into three basic cate-
gories: set-up and calibration, data collection, and data

reduction.

Set-up and Calibration

Set-up and calibration encompassed calibrating the
thermocouples and meters, determining heater coil resis-
tances, adjusting the interferometer, aligning the cylinder
and emitter devices, and measuring corona wind and blown
air velocities.

All of the mechanical meters were checked and zeroced
with the set-screw. The electrical meters were calibrated
by the Wright-Patterson AFB Precision Measurement Equipment
Laboratory as required.

The thermocouples for each cylinder were calibrated
against a Fisher Scientific mercury thermometer before
being mounted. The thermocouples were connected to the HP
Automatic Data Acquisition System and electronic icepoint.
Temperature measurements were taken with the measurement
junctions exposed to the ambient air, submerged in a
distilled water icebath, and submerged in a heated bath of
distilled water. All thermocouple measurements were within
t19%F of the mercury thermometer readings at each test
condition,

Periodically during testing, an additional calibration

26




was performed. The measurement junction of a thermocouple
was submerged in a distilled water ice bath to verify the
accuracy of the electronic icepoint. The readings were
always between 0.0 and 0.1°cC.

The resistance of each cylinder heater coil was
measured with a HP 3466A digital multimeter.

One heater coil was used to determine the resistance
vs. temperature properties of nichrome. The measured
resistance was a weak function of temperature, exhibiting a
temperature coefficient of 0.014 percent/°C. This value is
well within the 0.012 to 0.017 percent/°C commercial mini-
mum/maximum temperature coefficient ratings (21). The value
of heater resistance measured at ambient temperature were
therefore used for all power calculations.

During the initial apparatus set-up, the interfero-
meter was focused and aligned to yield the fringe pattern.
The interferometer was then adjusted to the infinite fringe
setting. This last adjustment was checked before each test
run and repeated as necessary.

Before each test run, the cylinder was first adjusted
to the proper height above the emitter and then aligned in
the interferometer test section. The image projected to
the camera after proper alignment was one of a solid
circle.

Prior to each test, the ambient temperature, relative
humidity, and barometric pressure were recorded. A sling

psychrometer was used to determine the dry-bulb and wet-

27




bulb temperatures. These temperatures were used to deter-

mine the percent relative humidity.

Corona wind and blown air velocities were measured
L. with a Velometer. A velocity probe was mounted above the
h stretched wire corona wind emitter at each of three
emitter-to-cylinder distances. Velocity measurements were

recorded for discrete high field voltages. These measure-

ments were repeated with low velocity (0 - 300 ft/min) and
high velocity (0 - 1250 ft/min) Velometer probes. The data
was used to plot transform curves between high field
voltage and velocity (see Figure 16). These transforms
were needed to facilitate comparisons of corona and blown
air experimental data.

o Blown air velocities were measured with a Velometer
probe mounted above the plenum chamber in place of a test
cylinder. Velocity was measured at three plenum-to-
cylinder distances for various line pressures. These
measurements were also repeated for low and high velocity
Velometer probes. Blown air cooling data were recorded

versus compressed air line pressure gauge readings, and

later transformed to a velocity baseline (see Figure 17).

Data Collection

The procedure was the same for each experimental con-
figuration. Each experimental test run began by estab-
lishing a stable 50°F AT between cylinder surface and

ambient room temperatures. This was accomplished by ad-
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justing the voltage transformer output to the cylinder
- heater while monitoring average cylinder surface tempera-
ture readings. After stabilization, the heater current and
average cylinder surface temperature were recorded.

After this initial step, DC high voltage was applied
to the emitter to induce the corona wind., The cylinder
heater current was then adjusted to reestablish the stable
SO0°r AT. After stabilization, the heater current, tempera-
ture data, and current induced between the emitter and
grounded cylinder were recorded. At this point, a photo-
graph was taken of the interferometer image, and the pro-
cess was repeated for a different high voltage setting.

This data collection process was modified slightly for
the blown air experimental test runs. The corona emitter
device was replaced with the blown air plenum chamber. The
voltage transformer output was then adjusted to achieve the
50°F" AT, and the cylinder heater current and temperature
data were recorded. Next the compressed air line pressure
was adjusted to the desired level and the heater current
was adjusted to reestablish the 50°F AT. After stabili-
zation, the heater current, temperature data and plenum
chamber stagnation pressure were recorded and a photograph

was taken of the interferometer image. The process was

repeated for all blown air test runs.

Data Reduction ]

Newton’s (7:13) equation defining the convection heat q
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transfer rate is

Q.= halr (1)
For constant A and AT, equation (1) can be used to demon-~
strate that the ratio of h/ho is equivalent to a like
ratio of the convection heat transfer rates.
The equation for h/h, developed in the energy balance
data reduction technique described in Appendix A is
h/hg = 1 + Ap, /0., (2)

APh is the difference between the power required to main-

tain a 50°F AT for forced convection and the power required
to maintain the 50°F AT for free convection. Py, for each
condition was calculated using equation (3).
p, = I%R (3)
Cylinder heater currents recorded during experimental test
runs and heater coil resistances determined during set-up
and calibration were used to evaluate equation (3).
The ratio h/ho was plotted and used to compare the

test results.




IV. Enpirical Model

Experimental results were validated via a compari-
son of the free convection experimental test results to a
well developed definition of heat transfer.
Qr = Qs + Qp + Qng (4)
The models of convection and radiation heat transfer are
repeated from references below. Conduction away from the
cylinder was negligible.

The test cylinder has convection heat transfer from
the horizontal cylindrical surface and from the vertical
end sections.

%% = Q1 * %2 (5)
The heat transfer coefficient needed to calculate Q., for
the horizontal cylindrical surface was determined using the

following equation (8:172).
_________________ -=- (6)

The physical properties, c¢ k, P, B, and M were

p'
evaluated at a film temperature midway betweén the average
cylinder surface temperature and the ambient fluid tempera-
ture.

The value of Qc1 calculated for the l-in-diameter
cylinder was 4.34 watt for the atmospheric conditions
listed in Table I.

The convection heat transfer coefficient for convec-

tion from the vertical ends of the cylinder was calculated
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TABLE I

Air Properties and Ambient Conditions

T 130.8°F

T, 80.7°F

Ar 50°F

P 29.076 in-Hg

D 0.0833 ft

g 4.17(10E08) ft/hr?
ke 0.015804 Btu/hr-ft2-F
B 9.4563(1073) (°F)~1
Pe 0.069 1lbm/ft3

e 0.04626 lbm/ft-hr
Cof 0.214 Btu/lbm-°F

using the following eguation (8:l7éL
hey = 0.59k¢| D3P 298 Lnf c p | 1/4 )
E iz \x | . |

The h,, calculated with equation (7) for the 1l-in-
diameter cylinder was used in equation (1) to yieldaanz
of 0.42 watt,

Q.7 and Q.5 sum for a total convection heat transfer
rate Q. of 4.77 watt.

The Stefan-Boltzmann law (15:5-10) states that the ra-

diation from a black body to another body is proportional

34




to the difference between the fourth power of the absolute
temperatures of the two bodies. When the radiating body is
not a perfect black body, as in the case of the aluminum
cylinder,

o, = (0.174x10"8)ne(r 4 - 1,9 (8)
Emissivity for polished aluminum is 0.095 (8:472). The Q.
calculated for the l-in-diameter cylinder was 0.39 watt.

The test stand was configured to preclude any
significant means of conduction heat transfer away from the
test cylinder. The cylinder was mounted to Plexiglas
(polymethyl methacrylate) which has a thermal conductivity
of 0.0833 Btu/hr-ft-°F (19:515.23.5). The thermocouple
leads were the only other conduction path. Their contribu-
tion to the total heat transfer away from the test cylinder
was negligible.

The total heat transfer rate Q. calculated with the
empirical model was 5.16 watt.

The power, P, required to maintain a OT of 50°F is
equivalent to the total heat transfer rate Q.. P, was 5.24

watt for the free convection test run model above.
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V. Results and Discussion

TABLE IT

Free Convection Heat Transfer <ates

Cylinder Diameter (in) Qpe (watt)
1/4 1.52
1 4,34
2 7.31

Baseline Free Convection Heat Transfer

Empirical Model. An empirical model of the total heat

transfer rate was developed in Chapter IV for the l1-in-
diameter test cylinder with the typical set of actual
experiment atmospheric conditions listed in Table I. The
Qpr calculated with the mathematical model was 5.16 watt.
The power required to maintain the AT of 50°F during the
test run at the ambient conditions in Table I was 5.24
watt. The experimental value was 1.6% above the empirical
valgf. There was very good correlation between the two
values. This correlation validated the experimental data
reduction procedures.

Values of h, from the empirical model were used to
calculate the values of Q.. in Table II. These ro's were

used in the energy balance data reduction technique to

evaluate h/ho.
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FEffects Q_E_A_'l_‘ Variations. The energy balance method
used for data reduction assumes a AT of 50°F for each data
point collected. Actual measurements were at Ar’s between
49 and 51°F. For nonconstant AT, the equation of h/ho must
be multiplied by the ratio of AT/AT,. The calculated
values of h/ho may include a maximum error of + 4%.

Humidity Effects. Evaluation otf the air properties

used in Chapter IV illuminated the possible impact of humi-
dity on the overall heat transfer rate. The potential for
humidity impacts was checked by comparing the ho's recorded
when humidity levels were at the maximum and minimum levels
observed during testing of the 1-in cylinder. The high and
low relative humidity levels recorded were 28% and 40%,
with barometric pressure readings of 29.050 and 29.027 in-
Hg, respectively. The corresponding readings for h, were
1.56 and 1.59 Btu/hr-ft2-°F. The h, increased 1.6% for a
42.9% increase in relative humidity. The increase in the
h, was as expected: as the relative humidity of ambient air
increases, 8o too does the thermal conductivity. Humidity
remained relatively constant for the time required to col-
lect a complete test run. The thermal conductivity of the

ambient air was therefore also constant, and thus the ratio

of h/h, used for data analysis was unaffected by humidity.

Experimental Results

One Inch Diameter Test Cylinder

A total of nine experimental test configurations were
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run on the l-in test cylinder. Emitter to cylinder spacing
d, was set at 1/4, 1/2, and 3/4 in for test runs with the
stretched wire emitter, the multipoint emitter, and the

blown air plenum.

Stretched Wire Emitter. The results of the test runs

with the stretched wire emitter are plotted in Figure 18.
This plot illustrates the breakdown voltage phenomenology
and the effect of dg variation. The interferometer photo-
graph (Figure 19) shows the effect of increasing field
voltage on the boundary layer. As Hogue (5) observed, the
boundary layer separated at about 90° from the bottom of
the cylinder.

The initial application of field voltage to the emit-
ter produced no corona wind and thus no corresponding
change in the h/ho ratio. This lack of forced convective
cooling was due to the absence of ion flow, current, from
the emitter to the cylinder. The field voltage level at
which ion flow began was termed the breakdown voltage. The
field voltage level required to achieve breakdown voltage
increased from 3.4 kV to 5.2 kV as emitter to cylinder
spacing increased.

Emitter to cylinder spacing alsc affected cooling
effectiveness of the corona wind. The h/ho ratio decreased
as d, increased for constant field voltage. This trend was
evident even when the plots were shifted along the x-axis
to align the breakdown voltages. This functional relation-

ship between h/ho and d, was not present in the Figure 20

38




97

J333TW3 3JIM paya3aJls

® U3}TM S3JUR3}ST( JAATS23H 03 8I2JNOS SNOTJEA 3B JApUITA) 3sal

Jajawerg UT-} 8yl Joj QU/Yy OT3IEY 8yl UO PUTM BUOJOD 40 328443 8T aJnbt4
(AX) abe3jrop pratd
vl cl 01 8 9 14 c 0
1 1 1 1 1 1 1 1 1 hﬂ.—ln—-llr.m 1 1 1 .w
4\\
+ a L. 2
v
\\\\\\\ \\\+\\\
v n
4\.\ +\+ o £
\ >
a L. ¢ W
S °
o
JN/E=3D ¢
2/1=3p +
-9
._V\ﬁHmU 0
L

39




, 20uUR3STd I3ATPD9Y O3 92IN0g yduI-z/T e I13I3Twd daTM PaYo3ladils
! 8yl Y3Tm I3put 14D 3IS8L A932werq-ydul-auo 3yl 3Jo aske1 Aaepunog Tewaayy
8y3 uoc pulm euoaop a9yl Jo 3ID0a33d 3yl putmoys ydeabojoyd ae3sworazasjul ‘6l sanbtd

AY O AX L A O

sbejroA PTaTd




Ja33tWw3 aJdIM PaydlaJdls
e Y3TM S3Jue3}st(g JBATa2ay 03 92JN0S SNOTJBA 3@ J3pUITAk] 389

JajawetQ UuT-} 3y3 JOj QU/Y OTIEY 3Yl UO JaMOd PT8T4 40 323443 “0c aJnbTd

(33eM) Jamod P13l

: 1) 0'? 70 10°
s |1 I I I I I N N I A I | 1 R W 1 I
3 v
e -
v, \\\\\\
4\uummmw.+ - €
\\\\\\\\ =
o ~ v >
\\\\\ ©
o
o~
~ G
«V/€E=9D v
«c/¥=3p
/ + g
WW/1=3p g
L

i1




plots of h/ho versus field power.

There was very good correlation between the stretched
wire data collect in this experiment and Hogue’s (5) data.
The shapes of the h/ho versus field voltage curves were
generally analogous. Hogue’s breakdown voltages were
higher because he used larger diameter wire (0.004 in
versus 0.0031 in) in the emitter. His emitter device, with
more total surface area, required higher field power levels
to reach the electrostatic field intensity per unit area
necessary to produce breakdown. The plots of h/ho versus
field power in Figures 21 and 22 show excellent correlation
between the two sets of data.

Multipoint Emitter. Plots of the data collected for

test runs with the multipoint emitter are shown in Figures
23 and 24 for field voltage and field power ordinate axes,
respectively. The multipoint emitter had lower breakdown
voltages and more turbulent ion flow.

The multipoint emitter was also more efficient than
the stretched wire device. Figures 25, 26, and 27 show
that for a given field power input, the h/ho ratio was
higher for the multipoint emitter than for the stretched
wire emitter,

Comparison plots of the multipoint and stretched wire
data versus field voltage are in Figures 28, 29, and 30.
At d,°s of 3/4 and 1/2 in the multipoint emitter produced
h/ho ratios at least 40% higher than those produced with

the stretched wire emitter. The two sets of data have
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equal slopes and plot into a single curve when the break-
down voltage affects are nulled by shifting the curves
along the x-axis. At 1/4-in d, the slope of the stretched
wire curve is greater than the slope of the multipoint

curve.

Blown Air Plenum. The data collected for test runs

with the blown air plenum are plotted in Figure 31. The
plenum was designed by Hogue (5) to simulate the stretched
wire emitter device. A field voltage to corona wind velo-
city transform was compiled experimentally to facilitate
comparison of the cooling data collected with the two
devices (see Figure 16). The h/h, ratio versus velocity
data for the stretched wire and blown air configurations
are plotted in Figures 32, 33, and 34 for each of the three
d, settings, respectively.

The h/h, ratio increased almost linearly with velocity
for the range of blown air data collected. The corona h/ho
ratio exhibited a more exponential increase with increasing
velocity. At low velocities, the blown air had higher h/ho
ratios than the corona wind. At higher velocities, the
corona wind ratios were greatest. The two plots crossed at
velocities between 150 and 200 ft/min, The crossover
velocity point was higher for each increase in the dg
setting.

Hogue plotted similar data for the l-in-diameter

cylinder with d, settings of 1/2 in and 3/4 in. His data
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yielded blown air h/ho versus velocity plots slightly
higher than the corona wind plot at 1/2-in d,, and vir-
tually overlapping plots at 3/4-in do. This difference of
experimental results at equivalent de settings was most
probably due to the differences in breakdown voltages
explained above.

The interferometer photograph (Figure 35) of the test
cylinder in blown air showed that the boundary layers of
the blown air and corona wind (Figure 19) were markedly
different despite the fact that the blown air plenum was
designed to simulate the corona stretched wire emitter
device. Flow separation occurred almost immediately in the
blown air; the corona flow separated at about 90° from the
bottom of the test cylinder.

1/4 Inch Diameter Test Cylinder

The 1/4-in cylinder was tested at nine configurations
identical to those used during testing of the 1l-in
cylinder.

The average total heat transfer coefficient, hto’ for
the free convection test runs on the 1/4-in diameter cylin-
der was 1.57 Btu/hr—ft2-°F: equivalent to the value for the
l-in-diameter test cylinder.

Stretched Wire Emitter. The data collected with the

stretched wire emitter device are plotted in Figures 36 and
37 for field voltage and power, respectively. The inter-
ferometer photograph (Figure 38) for stretched wire corona

cooling of the 1/4-in-diameter test cylinder showed the
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same pattern of flow separation as the l-in~diameter test
cylinder (Figure 19).

Multipoint Emitter. The data collected with the

multipoint emitter device are plotted in Figure 39 and 40
for field voltage and power, respectively. Stretched wire
versus multipoint comparison plots for the 1/4-in test
cylinder are in Figures 41, 42, and 43 for field voltage
and Figures 44, 45, and 46 for field power. At each of the
three d, settings, the multipoint emitter device produced
higher h/h, ratios and used power more efficiently than the
stretched wire emitter device. These results exhibited the
same trends as the results obtained with the 1-in cylinder
with the exception of the 1/4-in d, case.

Blown Air Plenum. Data collected with the blown air

device are plotted in Figure 47. The 1/4-in-diameter test
cylinder (Figure 48) had less turbulent flow than the l-in-
diameter test cylinder (Figure 35) in blown air at high
velocities.

Comparison plots of the blown air and stretched wire
results are in Figures 49, 50, and 51. As with the 1-in
cylinder, the h/h, ratios for the 1/4-in cylinder were
first higher for blown air at low velocities, and then
higher for corona wind at higher velocities. The
velocities at which the plots crossed were higher for the
1/4-in cylinder than for the l-in cylinder, and showed the

same trend of becoming higher as the dg spacing decreased.
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2 Inch Diameter Test Cylinder

Test configurations for the 2-in cylinder matched
those for the 1-in and 1/4-in cylinders. The average total
free convection heat transfer coefficient was approximately
1.55 Btu/hr-ft2-°F; very close to the value for the l-in
and 1/4-in cyiinders.

Stretched Wire Emitter. The data collected with the

stretchedwire emitter device are plotted in Figures 52 and
53 for field voltage and power, respectively. As with the
l-in-diameter test cylinder (Figure 19), flow separation
occurred at about 90° from the bottom of the 2-in-diameter
test cylinder (Figure 54).

The plots of the stretched wire data for all three
test cylinders in Figqures 55, 56, and 57 showed the 2-in
cylinder to have higher h/h, ratios than the 1/4-in cylin-
der. The h/ho plot for the 2-in cylinder was approximately
equal the h/h, plot for the 1-in cylinder at dg"s of 3/4 in
and 1/2 in, and lower than the 1l-in cylinder h/h, plot at
1/4-in d,.

Multipoint Emitter. Figures 58 and 59 contain plots

of the data collected with the multipoint emitter. As with
the stretched wire emitter, Fiqures 60, 61, and 62 showed
the 2-in cylinder to also have higher multipoint h/ho
ratios than the 1/4-in cylinder. At 3/4-in d, the 2-in and
1-in cylinder h/ho data plotted as approximately one curve.
The data for the 2~in cylinder plotted lower than the data

for the 1-in cylinder at d,’s of 1/2 and 1/4 in.
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Multipoint and stretched wire h/h, data collected with
the 2-in cylinder were compared in Figures 63, 64, and 65
for field voltage and Figures 66, 67, and 68 for field
power. These plots exhibit the same trends as the plots
for the 1-in cylinder. The multipoint emitter produced
higher h/ho ratios and used power more efficiently than the
stretched wire emitter at d, settings of 3/4 in and 1/2 in,
and the two curves converged rapidly into a single curve at
1/4-in dg.

Blown Air Plenum. The blown air data in Figqure 69 are

plotted with the blown air data for the 1-in and 1/4-in
cylinders in Figures 70, 71, and 72, The interferometer
photograph (Figure 73) shows the same immediate flow sepa-
ration that occurred with the l-in-diameter test cylinder
(Figure 35).

Comparison plots of the blown air and stretched wire
tegt results for the 2-in cylinder are in Figures 74, 75,
and 76. Again the h/h, ratios for the 2-in cylinder were
largest for blown air at low velocities and then larger for
corona wind at higher velocities. The trend of higher
crossover velocities for smaller d, spacing was also

repeated.
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VI. Conclusions

Based on the results of this study the following
conclusions are drawn:

1. The convective heat transfer from a horizontal
cylinder produced by corona wind was up to 6.5 times
the free convection heat transfer rate.

2. Smaller source to receiver distances produced
greater corona cooling effects.

3. The field voltage level required to produce ion
flow, termed the breakdown voltage level, decreased as
source to receiver distance decreased.

4. Convective heat transfer from horizontal cylinders
produced by corona wind exhibited practically a step
function increase at the breakdown voltage.

5. The multipoint emitter produced greater ion flow
than a stretched wire emitter, and thus greater
ion induced convection cooling. Exceptions were noted at
a source to receiver distance of 1/4-inch, where the multi-
point and stretched wire emitter cooling of the 1 and 2-in
diameter cylinders was equal at field voltage levels above
6 kV. Corona cooling for the 1/4-in diameter test cylinder
was greater for the mulitpoint emitter. This suggests that
the relationship between cylinder size and d, can be opti-
mized to maximize corona conling.

6. The multipoint emitter used power more efficiently

than the stretched wire emitter.
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7. Corona cooling was dependent on cylinder size.

8. The total heat transfer coefficient for free con-
vection was independent of diameter.

9. 1Increases in relative humidity of the ambient
air produced an increase in convective heat transfer.
Relative humidity did however remain basically constant
during and experimental test run, the ratio of h/ho used
for data analysis was therefore unaffected.

10. The stretched wire emitter produced greater
convective cooling than the blown air plenum at velocities
below 150 to 250 ft/min. Above those velocities, blown air

cooling was greater than corona cooling,
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VII. Recommendations

An analytical model of ion acceleration of air should
be developed. The ability to model this phenomenon could
then be extended to model corona wind in other atmospheres
besides air. This may be particularly useful for study of
corona cooling enhancements for weld processes, which are
routinely performed in alternate atmospheres.

New multiple emitter designs should be studied.
Multiple emitter devices produce greater ion flow. Emitter
device design for maximizing cooling should be studied.

The relationship of cylinder diameter to multiple
emitter cooling performance should be explored more exten-

sively.
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Appendix A
The Energy Balance Method (5)

The dimensionless ratio h/ho was used to compare test
results for the various experimental configurations. This
h/ho ratio is the average heat transfer coefficient for the
cylinder with an applied high voltage field divided by the
average heat transfer coefficient for the cylinder without
an applied high voltage field. Stefkovich’s (14) modifica-
tion of Franke’s (4) method for calculation h/h, was
extracted from Hogue’s (5) work and is repeated below.

The expression for the heat transfer rate by convec-
tion from a horizontal cylinder is

0. = hakr (1)
And similarly, for phe free convection case

= hadr (9)

QOC

By using equations (1) and (9), the ratio Qc/ro is
e (10)

Then if the area A and temperature difference AT are helgd

constant,

h Q
-— = = (11)
ho Qoc
The heat transfer rate at any time can be written as
Qe = Quc *+ Ao, (12)

Substituting equation (12) into equation (1l1) gives
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-—- =1 + === (13)

An expression for AQC which can be evaluated from
experimental data is developed from the equation for AQt’
the difference between the total heat transfer rate with a
high voltage field applied and the free convection heat

transfer rate.

Ao,

Ao, + Ao, + Aogg (14)
where
AQ. = Qo.; + Ao, (15)
For small changes in radiation, conduction, and end
plate convection heat transfer rates, AQ., 80,4/ and A0 ,
respectively,
Aoy = Ao, = Ao, (16)
Under steady state conditions, the total heat transfer
rate from the cylinder is equal to the electrical power

input by the heater coil.
2

Q. = Pp = Iy°R (17)
where

Iy = measured heater coil current

R = known heater coil resistance

The change in the total heat transfer rate is therefore
Ao, = Apy (18)
Substituting equation (18) into equation (16) yields
Ary, = Ao, (19)
A further substitution of equations (9) and (19) into

equation (13) yields
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- —— = l + m,—m——— (20)
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Appendix B

Listing of the System Controller Program Code
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10

40

60
7

189
11
12¢
13
140
159
169
170
180
199
200
a1e

230
240
250
268
a7e
280

310
320
338
340
350
360
37@
380

400
410
420
430
440
450
460
A70
480
490

S10

REM THIS PROGRAM SCANS CHANNELS WITH COPPER-CONSTANTAN
REM THERMOCOUPLES AND BIVES THE TEMPERRTURE READING ON EACH
REM CHANNEL IN BOTH DEGREES € AND F. IT ALSO GIVES AVERAGE
REM TEMPERATURE AND THE DELTA FROM AMBIENT

REM

REM

REAL REFJUNCT, TEMPF, TEMPC, VOL TRGE, RVGC, AVGF, AMBC, DELTC, DELTF
INTEGER X, Y, CHAN, COUNT

INPUT "ENTER RUN NUMBER"“, X

INPUT “"ENTER DATE (DAY/MO)", Y

DATA 7,709, 701

READ BUS, SCN, DVM

COM SCN, DVM, BUS

PRINTER 1S 16

INPUT "ANOTHER PASS? (YES=i{, NO=2) ", R

ON R GOTO 179,600

INPUT *"FULL PRINTOUT? (YES=1, NO=2) ", S

ABORTIO BUS

REMOTE BUS

RESET BUS

OUTPUT DVM USING "K"3"Fi1R7T2T3*

AVGC=0

RVGF =9

IMAGE /7, "RUN NO.: *, DD, /,"DATEs:s ", DDDD,//

PRINT USING 240; X,Y

FOR CHANNEL=0 TO 13

REFJUNCT=Q

OUTPUT SCN USING “"F*"jVOLTARGE

TRIGGER DVM

ENTER DVM USING “F";VOLTRGE

TEMPC=FNTEMP (VOLTAGE, REF JUNCT)

TEMPF=TEMPC#1,8+32.90

REM

REM HERE WANT TO CALCULATE THE AVERAGE CYLINDER TEMP USING A
REM WEIGHTED AVERAGE WHERE THE CENTER OF THE CYLINDER IS GIVEN
REM AAX WEIGHTING AND THE ENDS ARE EACH GIVEN 28X WEIGHTING
REM

CHAN=CHANNEL +1

COUNT=CHANNEL DIV 4+1

ON COUNT GOTO 410, 440, 410, 480

AVBC=AVGC+. 07+ TEMPC

AVEF=AVGF+. 872 TEMPF

6070 3510

AVGC=AVGC+. 11 TEMPC

AVGF=AVGF +. 1 | sTEMPF

6070 510

IMAGE °CHANNEL *, DD, ":",/, MDDD.D, "C*, 2X, MDDD.D, “F", /
IF CHANNEL {) 13 THEN 520

AMBC=TEMPC

AMBF =sTEMPF

ON S GOTO 520,530

PRINT USING 470;CHAN, TEMPC, TEMPF
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330
540
SSe
560

57
580
590
600
610
620
639
640
650
660
670
680
6990
700
710
720
730
740
750

760
770

780

NEXT CHANNEL

DEL TC=RVGC-AMBC

DEL TF =AVGF -AMBF

IMAGE "AVG CYL TEMP:*, /, MDDD.D, "C", 2X, MDDD.D, “F*, //, “DELTA
TEMP*, /, MDDD.D, *C*, 2X, MDDD.D, "F*, //

PRINT USING 5603 RVGC, RVGF, DELYC, DELTF

OUTPUT DVM; “A1"

GOTO 150

END

DEFFNTEMP (VOL TRGE, RJUNCT)

COM SCN, DVM, BUS

DIN JUNCT(2),COEFF (8)

JUNCT (1) =3, 6880238€E1

JUNCT (2) =41277001E-2

COEFF (@) =. 10086@91

COEFF (1)=25727. 94369

COEFF (2) =~767345. 8295

COEFF (3) =78025595. 81

COEFF (4) =~924 7486589

COEFF (5) =6, 97688E1 1

COEFF (6) =-2. 66192E13

COEFF (7)=3. 94078E14

COEFF (8) =1. OQE13

TEMP=FNPOLY (COEFF (%), VOLTAGE+1E~6# ( (JUNCT (2) #RIJUNCT+JUNCT (1) ) #
RJUNCT) )

RETURN TEMP

DEF FNPOLY (CO(#),VAL) = ((((( ((CO(B)#VAL+CO(7) ) #VAL+CO(6) ) #VAL+CO(S) )
SVAL+CO(4)) #VAL+CO(3) ) #VAL+CO(2) ) #VAL+CO (1) ) #VAL+CO (@)

FNEND
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