
Tccbnical Report

Learning Algorithmns
for th11e Miuitilayer Perceptron

11 1. ). Eggers
T.S., Khuon

28 Ctor 1913

Prcporcd for ilir 5fg~nrtn tbo Army.

BEST
AVAILABLE COPY £ 3 0 7

S4I ~



The work reported in this document was performed at Lincoln Laboratory, a
center for research operated by Massachusetts Institute of Technology. This
program is sponsored by the U.S. Army Strategic Defense Command under Air
Force Contract F19628-85-C-002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The views and conclusions contained in this document are those of the
contractor and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the United States Government.

The ESD Public Affairs Office has reviewed this report,
and it is releasable to the National Technical Information
Service, where it will be available to the general public,
including foreign national=.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Hugh L. Southall, Lt. Col., USAF
Chief, ESD Lincoln Laboratory Project Office

Non.Lincoln Recipients

PLEASE O0 NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

, . ,m .. nn mmnm m []final i J mml



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

LEARNING ALGORITHMS FOR THE
MULTILAYER PERCEPTRON

M.D. EGGERS
T.S. KHUON

Group 93

INCC¢T, 
o

Acce'zicui Vor

TECHNICAL REPORT 813 NTIS -.J

28 OCTOBER 1988 JI; r,

By'

D:.!

Dist...........

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS



ABSTRACT

Central to the development of adaptive pattern processing algorithms (adaptive

filters) for random problems - problems where statistics are unknown a priori and/or

explicit rules governing behavior cannot be extracted in a reductionist manner - is the

pursuit of adaptive architectures for associating arbitrary inputs to outputs. Such
"associative memories" are important for providing the mathematical mapping (transfer

function) relating inputs to outputs arising from implicit relationships found in a given

training ensemble. The adaption of these filters or architectures during training is guided

by a learning algorithm, mathematically derived from an objective function to ensure good

association properties.

-The subject of this paper is an investigation of a class of learning algorithms for the

highly parallel multilayer perceptron architecture used in an associative memory context.

By controlling the scheduling of patterns presented during training, a generalized class of

learning algorithms are shown to result. Specific realizations of the generalized algorithm

include steepest descent (parameters adapted following presentation of all training

patterns), Rumelhart back propagation (parameters adapted following presentation of each

pattern), and a new algorithm which captures in part the benefits of both, less parameter

adaption and faster convergence, by gradually varying the number of patterns presented per

parameter adaption: A systematic derivation of the fundamental steepest descent algorithm

for the multilayer perceptron is included for clarification, although related learning

algorithms have been[ formulated by others.
9

Learning results are presented utilizing the algorithms on a simple benchmark ('

association problem. Although performance is similar amongst the algorithms, the relative

computational burden differs substantially. Of the algorithms investigated, steepest descent

requires the least computation, while back propagation is the most demanding.
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1. INTRODUCTION

1.1 OBJECTIVE

The objective of a learning algorithm is to adjust the free parameters of an adaptive system

architecture to achieve satisfactory system performance in a given problem domain. Often the

algorithm can be derived from an objective or risk function, which mathematically incorporates the

desired objectives of the problem solution. And by minimizing the objective function through

execution of the resulting learning algorithm, a set of free parameters result yielding the defined

optimal system. The specific embodiment presented entails deriving a learning algorithm for an

adaptive system used for associating arbitrary input and output vector pairs. This arbitrary

association problem - associative memory - is quite useful in the classification of patterns

required for many pattern processing applications including speech recognition, machine vision,

and decision making.

Assume an arbitrary set of input/output vector pairs comprising the training set 7 is given

by
T Y) ..... ( , )},(1)

the specific objective being to derive a learning algorithm which best associates the input/output

pairs found in the training set. To rigorously derive the best algorithm, the system architecture and

objective function must first be defined. Desired objectives include perfect recall and

generalization. Mathematically, these objectives can be satisfied by requiring the learning

algorithm to adapt the free parameters of the system or machine towards a realization that results in

a mapping function F (see Fig. 1.) such that

F = V i (perfect recall) (2)

F( '. + = Y- V i (generalization). (3)

Note, caution must be exercised when interpreting generalization capability. First,

generalization is used here in a strict mathematical sense. That is, if the system is excited by a



novel input, being close in norm to the masked prototype (F = . + h" where
x 9 T , / n- / < 6 ) and a correct output is obtained, then the system is said to possess

generalization capability. Good generalization is achieved by maintaining large distances in the

input space between the inputs having different outputs, and operating well within the memory

capacity [I].

x F_____il_ =L'i Yil= i2 •F i 22

iN • L .4 ,YiL ,
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INPUTS OUTPUTS OUTPUTS
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x/d
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INPUT OUTPUT m

SPACE SPACE 0

(b)

Fig. 1. (a) Machine notation with inputs, outputs and target (desired) outputs.

(b ) Mathematical associative memory mapping.
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Confusion often arises when a semantic interpretation of generalization is applied to the

mathematical system. Basically, semantic generalization is the ability to generalize semantic

concepts. As an example, consider teaching a person to identify trees. The training might consist

of presenting the student several species of trees with the respective correct labels (i.e., birch, pine,

oak). Now if the student is then presented a novel tree, say an apple tree, and correctly recognizes

it as a tree, then the student has demonstrated semantic generalization. And indeed this type of

generalization, giving rise to robust recognition, is intensely sought by machine intelligence

researchers.

The distinction between mathematical and semantic generalization lies in the representation of

the data. For if a representation is chosen for the tree learning problem whereby the apple tree

input vector is within the region of the input space mapped to the output region designating "tree,"

mathematical generalization yields the desired semantic generalization. Therefore, the

representation of the data determines whether semantic generalization is achieved in a system

possessing mathematical generalization capabilities.

1.2 APPROACH

With the desired objectives of the system delineated, the specific system architecture and

objective function must be defined, thereby restricting the class of solutions for the association

problem.

The system architecture chosen is the multilayer perceptron [2,3]. Illustrated in Fig. 2., the

architecture is comprised of processing units and interconnections. Each interconnection has an

associated connection strength or weight. The complete collection of weights comprise the set of

free parameters for the adaptive system. Each processing unit first performs a weighted

accumulation of the respective inputs and bias value, then passes the result through a threshold

function.

Reasons supporting the architecture choice include fast system operation, achieved by the

highly parallel circuitry. Furthermore, the multilayer architecture is quite expressive. That is, most

mapping functions F can be realized with the architecture shown. In fact, Kolmogorov proved

3



that continuous mapping functions of several inputs can be expressed by a three layer network [4].
However the theorem and extensions [5,61 are existence proofs, and hence no practical learning
algorithms are offered to direct the selection of the connection weights. However with the
processing units shown in Fig. 2b., together with connection strengths given by the learning
algorithms to be discussed, the multilayer perceptron architecture has been empirically found (via
computer simulation) capable of mapping complex association problems [7-10].

HIDDEN UNIT LAYERS

LAYER 1 - LAYER 2 -- --- LAYER K

xp pI

INPUTS OUTPUTS

X pN oo K
"pL

(a)

22I 2 p2 2
p2 

"-,')

2 2

WA

pN ,

Nk

Fig. 2. (a) Multilaver perceptron architecture and (b) processing unit 2 on layer 2 ( N= number of

processing units on layer k).
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Next an objective (equivalently risk, energy, performance) function must be specified which

incorporates the desired objectives in a mathematical expression. Again for the association

problem, the desire is to construct a system whose output best approximates the behavior found in

the training data, resulting in perfect recall and generalization. The objective function utilized is the

sum squared error over all training patterns

E = E p (4)
patterns

where

Ep = K
2 PK 2i(5

I

represents the error per pattern as the squared difference of the machine and desired outputs when

an input pattern xp is presented. Consequently the approach involves deriving a learning

algorithm that selects the free parameters (weights wv.ji ) to minimize the overall sum squared error

(4), thereby forcing the outputs of the system to mimic the outputs displayed in the training set.

Exploiting the general architecture and objective function, a number of learning algorithms

have been developed. First, Widrow and Hoff [ 11] developed an adaptive network wherein the

threshold function f (x) is linear. The resulting LMS (least mean square) algorithm and related

extensions have proven successful in numerous signal processing applications requiring adaptive

filters [12]. Parker [ 13] has developed a least squares solution which simultaneously minimizes

the changes to internal architecture parameters during training. Thus the algorithm, by the method

of Lagrange multipliers, actually represents a solution to a constrained minimization problem.

The current approach involves first presenting a systematic derivation of the steepest descent

learning algorithm for the described architecture with an arbitrary nonlinear yet differentiable

threshold functionftx), and accompanying squared error objective function. Next modifications of

the resulting algorithm are shown to yield the Rumelhart back propagation algorithm [7] and a new

algorithm which captures in part the benefits of both steepest descent (less weight adaptions) and

back propagation (faster convergence). Results are then presented comparing the performance of

5



the algorithms on a benchmark association problem. Following, the relative computation burden is

assessed and the sensitivity of the proposed algorithm to additional a priori information is

demonstrated.
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2. LEARNING ALGORITHMS

A systematic derivation of the steepest descent learning algorithm for the multilayer

perceptron architecture with accompanying sum squared error objective function is presented.

Following, a generalized learning algorithm is introduced that reduces to a host of special cases,

including steepest descent and Rumelhart back propagation, by simply controlling the manner in

which the training patterns are presented.

2.1 DERIVATION

The minimization of the objective function with respect to the connection strengths (", )
is conducted numerically by a steepest descent algorithm (see Appendix for basic formulation),

with the weight adaption given by

w. (,+ 1)= w. (n) + A",. (()6

ji ii i(6)

where

Awk (n)= r dE

i

The iterative process in initiated with iT (o), a pseudorandom vector. The algorithm (6,7) simply

forms a new weight value by stepping from the present position in the direction of steepest

descent, wherein the size of the step is governed by the learning rate r/.

Clearly the learning algorithm (6,7) is completely specified once the gradient of the error

measure is derived for the multilayer system architecture. Proceeding, computing the gradient

dE dEp
oA, k- -, -k (8)

jt P .it

requires computing the partial derivative of the error per pattern with respect to the weights, thus

by (5)
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dw k YP I i

-X~~y,,, K, ,
, K p

I ii

which in turn necessitates calculating the partial derivatives of the output units (layer K ) with

respect to the weights. Recall from the network architecture, the expression for the Ith output

unit is

z K = f(net K) (10)

where

netK = KzK-I
m

fK (q) l+ e- q (12)

Notice from the architecture (Fig. 2.), net K represents the net input to unit I of layer K when

excited with input pattern T p, while fK is a differentiable threshold function for unit I of layer

K . Consequently, using the chain rule on (10)

o K  odnetpK
p ,K K PI

0 P ftnet 1j3

iii

Notice the partial derivative of the net input to the output unit must now be computed with respect
to the weight wK' k And depending upon where the specific weight w4, k occurs in the network

architecture, two algorithms result.
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2.1.1. Case 1. Hidden < Output

Consider the weights connecting units from the K - 1 layer (last hidden unit layer) to the

Kth layer (output layer). Here the layer index on such weights becomes k = K yielding
0w K

° netK zK - I In

~K -K

m p

m

-pi -j (14)

where
bq q=0 (15)

is the Kroneker delta function. Hence, the steepest descent learning rule for the last layer of

weights is given by (6) and (7) with

,E X: (y, -' )Y;KnetK I - iX. KKIPIP
ji P I

(~ zK)fK( netpjK -

pp
pi i (16

PP

where
AK yj- Z K" ),K (7

AK = -YPJ . )f j (net') (17)
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represents the error signal derived from the jth output unit upon the presentation of pattern x.

Consequently, the weights w K in the last layer are adapted following the presentation of all
.i

training patterns according to

AwK (n) = 11 AK.zK(-IJ1 P p i (18)
p

2.1.2. Case 2. Hidden +-*Hidden and Input <--Hidden

Next consider the weights connecting units within the hidden unit layers. These weights are

changed sequentially in layers, beginning with the weights between hidden units in layers K - 2

and K - 1, proceeding backwards until reaching the first hidden units in the layer coupled to the

inputs. Beginning with the weights between hidden unit layers K - 2 and K - 1, the partial

derivative of the error per pattern with respect to the weight wvK - 1 following (9) through (13), is
ii

dEp -,K . dnetK

K -I "PI (' ) S f;(net) K -1 (19)
ji ji

where now

dnetK oK- IP1
m -11m KPT- (20)

Substituting the expression for the mth unit of layer K - 1, the resulting term necessary for

evaluating (20) becomes

d ZK -_ K -1 netKm- I

opK - I Pm K - fm PM

= f , nerX ' - i q m pq
ji

10



fm PM pq I ! mq

q

=f( net K ,JzK 2 6 (21)M M pi m - j

Finally, substituting (21), (20), and (19) into (8) yields the gradient

E Y K nK
I. ( yp, e.p) netpoX ,K - i I I P

n P I

A AK WKf'K- I( n e t K- K  2-2
p "

=-K A K f K- I net IK - 1),: K - 2

__ K &K- I K - 2
pA pI z (22)

where

AK. - 1 14 wKA K f.K I(netK -1)/i (23)

and thus the error signal AK. I driving the adaption of the weights in the K - layer is
P1 K

expressed recursively as a weighted sum of the error signals AK, computed in the previous layer.

This recursion (23) allows the adaption of the weights hidden between layers of hidden units

which do not have explicit target values, as do the output units.

11



Consequently, the weights wK - in the K - I layer are adapted following theji

presentation of all training patterns according to

K - I). K -IK-2

Awji -(n) = t" YA p . pi (24)
P

This procedure is repeated layer by layer until the first layer is reached, upon which the weights are

adapted by

Am, p ".(n) A i (25)

where

z0 - x i = 2,..., N (26)ptpi

In summary, the learning procedure consists of cycling through two phases repeatedly until

appropriate performance criteria are satisfied. The initial phase - forward propagation - entails

passing an input training pattern xp through the forward circuitry to obtain the network output
-K P K

P . Next, the back propagation phase is conducted by forming error signals Ai . between the
-K

output z and the desired target value Tp. Now in a recursive fashion demonstrated in Fig. 3.

the error signals derived from the output layer are subsequently used to form new error signals

A .- 1, which guide weight adaptions in layer (K - 1) per (24). The back propagation

recursion is completed when the first hidden unit layer is reached. Following the completion of

one training cycle (forward propagation -4 back propagation), a new training pattern is presented

and the cycle is repeated. Cycling through all training patterns once allows the adaption of the

weights according to (27), and is referred to as a training sweep.

The complete circuitry required for the forward and backward propagation phases is shown

in Fig.4. for a network with two hidden units. As observed, the compromise for the fast parallel

forward circuitry (shown in bold) is the complicated back propagation feedback circuit. However

once trained, the weights are fixed and thus only the forward circuitry is necessary for operation.

12



LEARNING ALGORITHM z ]k. yPj

w k.(n + ) = w k.(n )+ vk (n ) zK . _- H D

,i ii (i P O)=- , .OU T

PIP'. (27)
Si(KP

WK -K
K -2 .i K -1

HIDDEN HIDDEN
Spi "- .pj

K'. -1 Kn I= K -
.It )= ( Yy( )k K pi(8

P

I
Xpi kp j p

p ( ,ki- z kP netpi k = K

A,. =I k +A~p .I k k (28)

Fig. 3. Schematic of learning procedure.
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2.2 GENERALIZATION AND SPECIAL CASES

To motivate the generalization of the learning algorithm, consider the weight adaption

process as a numerical search through a multidimensional weight space. The trajectory is governed

by the general weight adaption rule

J(n)
Aw "i ( n ) = 17 1 A Pi . -1

p=i

and the objective is to find the location where the objective function [sum squared error (4,5)] is

minimum.

Now according to the steepest descent learning algorithm (J (n) = M ), the weights are

adapted following the presentation of all training patterns. Thus much caution is taken in choosing

a trajectory, for the response of the system to the entire training set is considered before each step

is taken.

Conversely, the Rumelhart back propagation algorithm [7] results in a more erratic search.

Here the weights are adapted following the presentation of a single pattern in the training set
(J (n) = 1 ). Intuitively, such an erratic trajectory is desired for initially searching a vast

multidimensional space. However, the noisy trajectory can be prohibitive in the latter phases of the

search, causing the new step to wander away from the near optimal region. In fact, such trajectory
jitter is often countered with smoothing by placing a momentum term in the learning equation [7]
(actually a single pole low pass filter Awi(n + 1) = a Aw.(n) + 17(A Pi zpi ) ).

A compromise is postulated to gain the benefit of both extremes. At the beginning of the

search, the weights are adapted after each training pattern is presented, while toward the end of the

search, all training patterns are presented before the weights are adapted. The variation is gradual

as depicted in Fig. 5.
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QM 2QM QM - M ---

TRAINING CYCLES

Fig. 5. Graded training schedule.

Such schedule requires M 2Q training cycles ( M durations at QM cycles per duration),
while the total number of weight adaptions follow a finite harmonic series

N QM. (30)
(jl

Q is chosen large enough to ensure satisfactory training. Typically Q is estimated by

Q = " / M (31)

where 3" is the average number of training sweeps required to learn a given mapping using the

Rumelhart algorithm [7].
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In consequence, three distinct learning algorithms emerge as special cases of the

generalized weight adaption rule (29). These cases are distinguished by the manner in which the

training patterns are presented per weight adaption according to

'M ...... steepest descent I I I I I I I
I . . . . . . . . . Rum elhart I I I I I I I I I I I ] 1 1 1 1

J (n) M q - -]aroiq 1 harmonic IIIIIIIIIIIII I I I I
[I:U (n - QM Xr332

q (32)

where
U(n)={l 1O< nn~

is the unit step function.
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3. RESULTS

The performance comparison via simulation consists of exercising the algorithms on a

benchmark association problem. Given the training set, the learning process is initiated with a

pseudorandom weight vector and is terminated when the outputs of the system are all within 10%

of the target values

- Vpj O.1Vpj (33)

denoting zero decision errors. In addition to the tabulation of the decision errors versus training

sweep, the root-mean-squared error (RMS = 'f2"E/ML)is also included. Furthermore, the relative

computational burden of the algorithms is discussed, along with the sensitivity of the proposed

algorithm to the additional a priori information required.

3.1 BENCHMARK ASSOCIATION PROBLEM

The classical benchmark problem for analyzing perceptron based architectures is the

exclusive - OR (XOR) problem [3]. The XOR mapping

T" = {((O', 0).,((0), 1).,((10), 1), (('), 0)} (34)

involves second-order correlations and hence requires hidden units. The XOR performance

comparison is conducted by executing each of the three algorithms supplied with identical

pseudorandom weight vectors. Both RMS and decision errors are tabulated as a function of the

training sweep. ( A training sweep is defined as M training cycles.) Following 200 independent

training sessions for each algorithm, statistics are gathered and the architecture is then modified by

changing the number of hidden units. Results of the procedure shown in Fig. 6. include the

average time required by the algorithms to learn the XOR mapping ( expressed by the number of

training sweeps) as a function of the number of hidden units. Also shown are the least-squares

linear fit expressions [ 14] for each of the algorithms, yielding a linear variation in the training time

19



versus the logarithm of the number of hidden unit processors. Such relationship reinforces the

trade-off between training time and architecture size for each of the algorithms.

Notice the algorithms exhibit similar performance. The harmonic algorithm experiences

slightly faster convergence for the larger architectures, while the Rumelhart algorithm is slightly

superior at the smaller architectures, and the steepest descent algorithm possesses the slowest

convergence.

II I II
400 XOR TRAINING RESULTS

' ,X STEEPEST DESCENT
M = 286-28 log (H)

RUMELHART BACK PROPAGATION
M = 280-29 log (H)

--- 0 HARMONIC
300 LM -M285-31 log (H)

0 200-

0z
z

100

0q

I I ! I I ! ! I

0 1 2 3 4 5 6 7

HIDDEN UNITS (log(Base 2))

Fig. 6. Averaged results for XOR problem. Network parameters include q 0.25, a = 0.90.

Error bars denote ± .
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3.2 COMPUTATION REQUIREMENT COMPARISON

Given an arbitrary association problem, analytically assessing the absolute computational

requirements for successful learning using the learning algorithms discussed would be difficult.

However, if the number of training cycles is maintained equivalent for each of the algorithms, a

relative computation comparison is straightforward. And provided the algorithms yield similar

performance on the given association task (as demonstrated in the above XOR problem), such

comparison serves to accurately depict the differences in computational requirements.

Now since each algorithm employs the same circuitry to conduct a training cycle (see Fig.4.),

the difference in computation lies primarily in the amount of weight adaptions required. Thus the

quantity of interest is the relative amount of weight adaptions required by each of the learning

algorithms, assuming an equal number of training cycles conducted.

Assuming QM training cycles are required to learn a given mapping, then the number of

weight adaptions required for the Rumelhart algorithm is N. = QM (since the weights are

adapted following each training cycle), while the steepest descent algorithm requires N QM

(since the weights are adapted following M training cycles). Finally, the number of net weight

adaptions for the harmonic algorithm is

NH =QMIN QM

= Mw (35)
i=1)

and is seen to be a fraction of those required for the Rumelhart algorithm.The growth of the weight

adaptions as a function of the number of training cycles is illustrated in Fig. 7.
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3: HARMONIC

,- 2QM

QM STEEPEST DESCENT

QM 2QM •, Q 2

TRAINING CYCLES

Fig. 7. Cumulative weight adaptions for the learning algorithms.

Notice the harmonic algorithm asymptotically reaches the rate of adaptions required by steepest

descent, while the Rumeihart algorithm grows at a rate M times faster.

Therefore assuming equal number of training cycles for each algorithm, the harmonic

algorithm requires significantly less weight adaptions than conventional back propagation (35),

although not as few as the stee est descent algorithm. In fact for the XOR problem
( N1 , =52% NR'w = 208% Nsw)the harmonic algorithm requires about half the weight

updates required for Rumelhart back propagation, although twice as many for steepest descent.

3.3 SENSITIVITY TO ADDITIONAL A PRIORI INFORMATION

The relative sensitivity of the harmonic algorithm with respect to additional a priori

information is addressed. The additional information consists of specifying the training duration

parameter Q.

22



As noted previously Q is typically estimated by running the Rumelhart algorithm repeatedly

on the training set to obtain the average number of training sweeps. However, this procedure can
be time consuming. Alternatively Q may be arbitrarily selected provided the performance remains

satisfactory. The following sensitivity study illustrates the degradation incurred for arbitrary

selections of Q for the benchmark association problem.

The study involves varying the value of Q about the nominal value (Q = Qo = F- / M).
Note the limiting cases (Q = 0, Q = oo)represent the previously compared algorithms as

illustrated in Fig. 8.

STEEPEST DESCENT

~RUMELMART Q=

Fig. 8. Training schedules produced by varying duration parameter Q

The least-squares linear approximations to the training performance data compiled with the
various Q values for the same 200 independent sessions used in 3.1 are shown in Fig. 9. The

sensitivity appears most pronounced for the excessively large architectures (37% at AQ = Qo - 07
at 2 hidden units) and almost negligible at the smaller architectures matched to the XOR problem2
complexity (3% at AQ = Qo - 0 at 2 hidden units). Notice the performance of the various Q

cases are upper bounded by steepest descent, Q = 0. Thus for the problem tested, improper a

priori estimation of Q results at worst in the training performance characteristic of the steepest

descent algorithm.
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Fig. 9. Training results for variations in training schedules.
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4. CONCLUSION

In conclusion, a generalized learning algorithm was introduced for the multilayer perceptron
which reduces to a host of special cases - steepest descent, Rumelhart back propagation, and the

proposed harmonic algorithm - simply by altering the scheduling of the patterns presented during
training. This general technique of modifying the scheduling of the training patterns is applicable

to a variety of iterative minimization techniques, possibly resulting in favorable compromises as

demonstrated here in the associative memory context.

Within such context, the training schedule for the proposed harmonic algorithm represents a
specific compromise where the search for the optimal weight vector begins by adapting the weights

following the presentation of each training pattern, while concluding by adapting the weights

following the presentation of all training patterns.

The results indicate similar training performance amongst the three algorithms compared,

although significant differences arise in the amount of weight adaptions required. The steepest

descent algorithm requires the least adaptions, followed by the harmonic algorithm (weight

adaption rate asymptotically approaches the favorable steepest descent rate), and finally the

Rumelhart algorithm (weight adaption rate M times greater than steepest descent).

In all, the choice of the learning algorithm employed for a given association problem is

dependent upon the training performance comparison for such problem and the priority given to the
relative computational burden.
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APPENDIX

The method of steepest descent can be intuitively formulated with the following

example. Consider the single dimension case where G(w) is to be minimized with respect

to the independent variable w. The function G can be viewed as a landscape with hills

and valleys, as shown in Fig. A-1.

G)fv

WESTERN EASTERN
HILLSIDE HILLSIDE

W (0) W* w
wtu, EAST

WEST

Fig. A-I. Landscape interpretation of minimization.

With such interpretation, the goal of the minimization process is to travel from an initial

position upon a hillside to the final destination in the valley below. From the diagram, the

traveler should travel east (increasing w ) when on the western hillside in order to reach the

valley. Notice the slope of the western hillside is negative while the eastern hillside is

positive. Hence the traveler's plan can be stated mathematically as always moving in the

direction opposite to the polarity of the derivative at the present location. Thus the
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traveler's rule guiding the next step can be formulated in terms of the present step according

to
K,(n + 1) = w(n)+ Aw(n) (36)

where

Aw(n)=- rl sign (-%-w(n) (37)

and tj represents the traveling rate (dependent upon the traveler's physical condition).

A refinement can be made by realizing the traveler should take large steps when
high on the hillside far from the valley (large IXG / d, I) , and conversely take small

steps when nearing the valley (small 1X / dw I ). Mathematically, this is equivalent to

making the step size proportional to the magnitude of the derivative. Consequently, the

refined rule is (36) with

a4- w ( ) (38)

and this minimization process is diagrammed in Fig. A-i.

The final extension involves expanding the landscape in many directions. Here G

is now a function of several independent variables, denoted by the vector W. And the

traveler simply moves in the direction of steepest descent yielding the following algorithm

applied to each component,

W (n + 1) = w(n)+ AwI(n) (39)

where

0 (7(n) (40)

Disadvantages of the algorithm include the inability to escape from local minima as well as

excessive computation times for large dimensions.
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