DTIC
ELECTE
JAN1 8 1983

D

e e

@ —nema

DISTP/EUTION STA——MTNT K “‘
Approvad i zuiblic reiecse;

i pUZ LT

: Diggributicn Uni:mited

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio E

89 1 17 037

| | i

e -

T

AFIT/GE/ENG/88D-63

DTIC ’
ZLECTZ |
JAN 1 81983

DA

- o e

8755 EMULATOR DESIGN
THESIS
John L Woods
Captain, USAF

AFIT/GE/ENG/88D-63

Approved for public release; distribution unlimited

LM TP RA NI . A A S NN

] AFIT/GE/ENG/88D-63

8755 EMULATOR DESIGN
Thesis
Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University

In Partial Fulfillment of the

Requirement for the Degree of
Master of Science in Computer Engineering

John L Woods)

Accesion For
Captain, U.S. Air Force NTIS CRA&l
DTIC TAS 0O
Uniaano —s=arf 1

Justibica o

December 1988

et s can comas ras g

By

oTiC
Ao Doges
. A

oOPY
INSPECTED

Approved for public release; distribution unlimited JJ

[N T SNch W, e .o R :

l Preface

The purpose of this design project was to design and
TWTE L

build a device which could replace the‘8755 microchip in

experimental circuit designs. The 8755 emulator provides the
%_ standard input/output ports and 2048 bytes of memory. It also
provides the ability to load this memory from the 2-100, to

1 single-step a target circuit, break on a specified address,
‘i and control the I/0 ports from the 2-100. -~ <. < /1!)
In designing and building this device 1 received

support from several sources. I would like to acknowledge

the members of the AFIT Electrical Engineering office for
their support in helping me to acquire the parts and test
equipment which were imperative to my thesis effort. I would
like to thank LtC Charles Bisbee for his patience and
guidance, as well as LtC Bert Garcia and Major Joe DeGroat
for their support. Most of all I would like to thank my wife

and children for their patience and support.

Captain John L Woods

ii

ATl

Preface

Table of Contents

List of Figures« v ¢ « o« « « &

List of Tables . « ¢ ¢ ¢« ¢ « ¢ o o &«

Abstract

I. Introduction . « ¢ ¢ ¢ ¢ o o .

Background
Problem Statement .
Thesis Objective .

Current Knowledge
Assumptions . . .
Scope
Standards
Approach
User Module . .
Emulator Module
Target Module

» o e & » o & 5 & o o
e ¢ o @ 9 e o o
® o e ® o o 8 e »

II. Literature Review . . .+ « « « .

I1I.

Introduction
Emulation Process
Hardware Design Techniques
Software Design Techniques
Conclusion . . . « « « «

Theory of Operation: Hardware

Introduction . . « . .« . .
Block Diagram
Central Processor Section
Emulator Memory
Target Memory

Serial Port
Parallel Port
Break Address Section
Target 40 pin Section
Special Function Section

.
.
-
.
.

iii

e » 8 s 6 8 8 o ¢ o

e e ¢ & ¢ & e ¢ ¢ &

¢ & 8 & 2 e e o » s .

e o o o & o o s s

Page

ii

vi

vii

WO -IAUTUNENNN -

[
P

el e
O O b NI

21

IVv. Theory of Operation: Software « . . 42
Introduction ¢« ¢ ¢ ¢« ¢ ¢ ¢ o ¢ ¢ o o o e s e 42

Bootup Software . . ¢« ¢ ¢ ¢ ¢ o o ¢ o o © o 44

Main Emulator Software . « « ¢ ¢ ¢ « ¢ o o o @ 47

User Memory Control . « « ¢ ¢ ¢ « o« o o s« o = 48

Emulator Mode Control « .« .+ . . . 50

Single-step control . ¢ ¢ « ¢« ¢ ¢ 4 ¢ & o o @ 51

' Break Control =« ¢« & ¢ ¢ o o o o o s o o o o &« 51
%_ 8755 I/0 Control « « v o ¢ o o o« o o o o o o 54
Z"loo CODtrOl SOftware Y - . . . - . . 55
Pass User MemoOry . « « « « o o o o s o o s o 57

Break Control Module . . « ¢ ¢« o ¢ o o o o o o 60

_ Parallel Port Control . « ¢ o « o o o o o o @ 62
- Main Menu Control .« ¢ ¢ ¢ ¢ ¢ ¢ « o o o o o 64
V. Recommendations .+ « o o « o o o o o o s o o o o & 67

Appendix A: Hardware DiagramsS . « « ¢ o« o s o o o o 69

Appendix B: Net Wiring List . ¢ « ¢ ¢ ¢« o ¢« o o o o & 84

Appendix C: Software Flowcharts . « . « ¢« « ¢ & o« o« & 115
Appendix D: Source Code . . . ¢ ¢ o 2 o o + o « o o @ 131
Appendix E: User Guide . . ¢« ¢ ¢ ¢ o o o ¢ o« « o o s @ 193
Bibliograhy . « « ¢ & ¢« o ¢ ¢ o o o o o s o o o o s o & 195

Vit@ o ¢ 6 o o o o ¢ o o o o o o 2 e o o o o s e s s s 196

List of Figures

‘Figure
1. Emulator Block Diagram
2. Emulator Schematic Diagram . . .
3. Bootup Flowchart
4. Emulator Main Flowchart
5. Emulator User Memory Flowchart .
6. Emulator Single-step Flowchart .
7. Emulator Break Control Flowchart
8. Emulator Break Interrupt Flowchart
9. Emulator Parallel 1/0 Flowchart
10. 2-100 Main Flowchart
11. 2Z-100 User Memory Flowchart . .
12. 2-100 Break Control Flowchart .
13. 2Z-100 Parallel Port Flowchart .
14, 2-100 Single-step Flowchart . .
15. 2-100 Target Control Flowchart .

Page
69
70

115
116
117
118
119
120
121
122
124
126
127
128

129

I

List of Tables

Table Page

1. Parts List L] L] - . L2 L] - * L) L] - L] . - L2 L2 - L] - L] 82
2. Emulator AAAress Map . « « « o o o o o o o o o o = 130

3. Register/Comparator Truth Table 35

vi

8 AFIT/GE/ENG/88D~63
-

g Abstract
- QEJL() This paper discusses the requirements to develop and
1O e
.\‘ E.
‘S build an electronic device to emulate the 8755 microchip. The

Tihe Fdesign hadifivé’basic objectives: {TE Allow the user to

download 8755 emulation memﬁgxg (2) Allow control of the

target program fromvlgggt§56; (g) Provide a single step

capabilityy {i) Provide breaking at a specified address.

(g) Allow the user to set or change the emulated 8755

input/output ports. 7o A . ,;
It describes the standard memory and input/output

capabilities of the 8755. It describes in detail the emulator

enhancement features to the standard 8755. The hardware

circuits used to implement the emulator are discussed at the

block diagram, component, and signal levels. It concludes

with a detail description of the emulator square used to

[TS S B S A T S o
/ b . - \

- . . ; . \
P‘ TRy SN f\)gl*f\' V\iv. LOe T oy Tv:f"s' S, € c] PR BN
T § 5 — R . .

control the hardware. KF%””-{’

8755 EMULATOR DESIGN

I. Introduction

Background
The Air Force Institute of Technology (AFIT) offers

Advanced Microcomputer Engineering (EENG 687) as a primary
course in its digital engineering curriculum. As a course
requirement students must design and build a coprocessor
board capable of interfacing to a Zenith Z-100 microcomputer.
The coprocessor must be able to take control of the 2-100
upon command from a software routine. During the design and
fabrication of the coprocessor, the software routine must be
programmed into an Intel 8755 microchip. The 8755 is needed
because it provides 16 input/output lines as well as the
memory for the software routine. To program the 8755, the
student must perform the following sequence of operations:

1. Load the software routine into a specified Z2-100.

2. Erase the 8755 memory with an ultraviolet light.

3. Set-up the 8755 programming device.

4. Connect and adjust a power supply for the programming

device.

5. Program the 8755.

6. Verify that the 8755 is properly programmed.

If the student finds errors in the 8755 software routine,
the entire process must be repeated. The sequence takes a

minimum of an hour to complete. Over the last several

" e -
SR SRR I S SR P

bt]
—

T

quarters, the instructors have received numerous complaints
regarding the time wasted as a result of this programming

sequence (l). Eliminating this problem will allow EENG 687

students to concentrate on the specific course objectives.

Problem Statement

The current hardware and software available in EENG 687
are inefficient and hinder the students ability to
successfully design and build the required Z-100 coprocessor

within the course time constraints.

Thesis Objective

The purpose of this thesis is to design and build an 8755
emulator. The emulator will be a microprocessor based system
that connects to a host computer v.a an RS232 interface. The
user must be able to download 8755 emulation memory, cause
the target processor to execute, single step, or break on
access of specified memory locations, and set or change the

emulated 8755 input/output ports.

Current Knowledge

Currently, the 8755 is available only from the Intel
corporation. The B755 provides 16, bit defineable,
input/ov:»ut lines and is directly compatible with the

requirements defined for the Z-100 coprocessor board. In as

the 8755 provides 2048 bytes (2 kbytes) of eraseable
programmable read only memory (EPROM) for program storage.
EPROM allows the user to store a program in the device and ~Jj

remove the device from the power source without a loss of

2z data. In contrast, random access memory (RAM) allows the user
h to load a program but will lose its data if the power source
is removed. The coprocessor board will need to be installed

and removed from the 2-100 on a frequent basis to allow all

students equal time on the Z-100 systems. The requirement for
bit definable input/output lines and non-volatile memory can
only be satisfied by the 8755 or an 8755 emulator.

To eliminate the problems associated with the 8755
programming process, the emulator must replace the EPROM
section with RAM. The emulator must appear to be a standard
B755 to the circuit into which it is installed. As a result
the emulator must provide additional control circuitry to
load and modify the target system's memory. Additionally,
circuitry will also be required to provide additional
features, which will further enhance the cstudent's design and
troubleshooting ability. Enhancements to the standard 8755
are transparent to the target system but will be very useful
to the user. All enhancement features will be initialized and
invoked from a host computer, but carried out by the emulator
board. Currently designed enhancement features of the
emulator board are:

1. A means of stopping the target system after the

execution of each instruction. The user is able to -

disable this mode via the host computer keyboard.

2, Special registers monitor all address bus accesses

from the target system. When a previously defined address

is detected, the emulator will halt the target system and
advise the user of the halt condition and halt address.
3. The user may edit a software program on the host
computer, while the target system is simultaneously
executing the program in target memory. When the user is
ready to load the new program into the target memory
space, the emulator will halt the target system and
perform the memory download.
4, The ability to change the 8755 port configuration
without modifying the target memory.
Currently, literature from the 8755 manufacturer
indicates that none of the enhanced features are available
(2) . The exact means of implementing these enhancements is

discussed in chapters three and four.

Assumptions

The following assumptions have been made with respect to
the design of the 8755 emulator project.

l. Users of the 8755 emulator are thoroughly familiar

with the proper operations of the standard 8755

microchip. This is essential since the emulator will

functionally appear to be an 8755.

2. Users are familiar with the operations of the host

microcomputer and the MS-DOS operating system. This

is required because the emulator will be controlled

via the host computer serial port.

3. The user possesses the ability to write software

routines in assembly language code and convert this

code to machine readable format.

Scope

This project will investigate applicable hardware and
software resources, then design and build an 8755 emulator.

The specific goals of this project are to:

1. Provide a device which will meet all timing
constraints of the 8755.

2. Provide two 8 bit input/output ports, with

individual bit direction control.

3. Provide 2048 bytes of random access memory.

4. Provide the ability to perform single-step operations,
with control via the host computer.

5. Provide the ability for the user to download control
software from the host computer to the emulator board.
6. Allow the user to set break addresses to stop program
execution when accessed.

7. Allow the user to reconfigure or read the 16

input/output ports from the host computer.
8. Provide documentation of all hardware and software

associated with the emulator.

N
Standards
The emulator device and its control software must meet
the following criteria: : q

i Bt drl b b e

1. The external electrical functions of the emulator
must:
a. Respond to all 8755 control signals.
b. Meet or exceed the timing parameters of the 8755.
c. Provide the same output power drive capability as
an 8755.
2. The software used to control the emulator must be
properly documented. This will allow future students to
modify or update the device as required.
3. The device must perform each function listed in the

scope section of this paper.

Approach

A practical solution to this problem is to develop an
emulation device using commercially available hardware and
in-house software to mimic all standard 8755 operations.

The emulator board, design is separated into three major
functional sections. Each section is then designed and
implemented with its unique set of hardware and software
resources. The first section is the user module and refers to
the host microcomputer, its operator input keyboard, and its
serial input/output port. The operator issues all commands to
the rest of the system via the computer keyboard and software
routines.

The second section is the emulator module and consists of
the hardware and software used by the 8755 emulator to
communicate with the user as well as with an attached

circuit. The last section is the target module and refers to

!-I-.IllIl-!--!-II--—--!-—_--l—-!----!-—--: . - o

[NV WP LIPULER S LR A TR e

the hardware which is attached to the emulator via a 40 pin
plug. The 40 pin plug represents a standard 8755 and plugs
directly into the target circuit. Some portions of the

emulator and target module are controlled, mutually

exclusively, by both modules. A three module approach was
3 selected in order to establish small, functionally cohesive,
1 manageable modules.

Each module will be self-contained, with limited input
and output paths. Controlling access to each module will ease

the design, trocubleshooting, and maintenance of the system. A

brief description of each module and the interrelationship

between modules follows.

User Module:

This section of the emulator consists of software which
resides on a host computer. The hardware used is the host
computer and will not require any modifications. The user
software will provide instructions and menus to control the
emulator module. The host computer will download the emulator
control program to the emulator board automatically. This
software is the emulator system monitor and controls all
aspects of the emulator with the exception of the boot-up
routine. The boot-up routine will reside on the emulator
board at all times. After bootup is finished, a setup menu
will be displayed. Each item on this menu should be invoked
in sequence. The setup menu consists of the following list of

options:

a. Pass target memory.

b. Set break addresses.

c. Configure ports.

d. Return to main menu.

Option (a) of the setup menu downloads the 2048 byte
target software to the emulator. This software is used
exclusively by the target system, but may be modified by the
user module. Option (b), the set break address function,
downloads a file containing 1 to 5 memory addresses to the
appropriate registers on the emulator board. Option (c), the
configure port function, defines the direction of data flow
through each bit of the emulated 8755 ports. The last option,
return to main menu, simply displays menu 2.

The main menu will be the starting point of all actions
atfer system startup. The main menu consists of the following
options:

a. Start or stop target system.

b. Enable/disable break detector.

¢. Change break addresses

d. Enable/disable single-step

e. Edit/view/download user memory

f. Edit/view parallel ports

g. Exit to DOS

Emulator Module:
This module of the emulator contains all emulator
hardware components. It interfaces with the host computer via

an RS232 serial port and the target system via an extended 40

pin ribbon cable. To implement this module, a separate
microcomputer was designed and constructed. This
microcomputer consists of an 8088 central processing unit
(CPU) and its associated memory devices. A read only memory
module contains the software necessary to initialize the
hardware upon power on. To communicate with the 2-100, a
universal asnychronous serial receiver/transmitter (UART) is
used. The UART receives parallel data from the CPU and
converts it to a serial bit stream. This serial data is
transmitted to the host computer via a serial port. This
process is reversed when data is transmitted from the host
computer to the emulator board. The emulator and user
software, as well as all system commands, are received via
this path. The emulator exercises control over the target
system and the input/output ports. Control of the target
system is implemented by connecting the emulator to the
control lines of the ports and target system. When the
emulator's CPU is controlling the system, the target system
is inhibited. When a requested function is completed, the
target system is restarted. The emulator may communicate with
the host computer while the target system is in its

operational mode without conflict.

Target Module:
This section of the emulator is located on the emulator
board. The break on address function is invoked by the user,

implemented by the emulator, and receives all necessary data

B " .

from the target. The target module functions in a passive
mode and does not invoke any commands relative to the user

. and emulator modules. All control, address, and data lines of
the target are monitored by the emulator. Depending on the

1 data received, the emulator will invoke a number of responses

and prompt the user for additional input when required.

10

I1. Literature Review

Introduction

This literature search reviews an emulation system design
for the Intel 8755 microchip. This device provides erasable
programmable read only memory (EPROM) and input/output ports
to peripheral devices (1). The 8755 is used in microcomputers
and in industrial applications. The compatibility of this
device with the 8088 CPU has prompted its use in educating
students at the Air Force Institue of Technology (AFIT). In
the school environment at AFIT, the 8755 must be programmed
and reprogrammed during the course of laboratory exercises.
Frequent changes to the software programs waste time because
the 8755 must be erased, reprogrammed, and verified with each
change. The entire process can take a significant amount of
time and if one piece of code is incorrect, the entire
process must be repeated. To increase the effective use of
class time and resources, an 8755 emulator is needed (1). The
emulator must provide program memory, the ability to single-
step through a program, input/output ports, and reduce the
time required to program or reprogram the device. Sound
hardware and software development techniques must be used to
design, fabricate, and test the 8755 emulator. This
literature search addresses digital emulation techniques

currently used.

11

Emulation Process

The emulation process starts with performing an in-depth
requirement analysis, to ensure that what the user wants is
clearly understood and documented (5:35-36). Pressman states
that the system designer begins with customer-defined goals
and constraints, and devises a representation of function
performance, interfaces, design constraints, and information
structures. Booch believes the systems engineer must bound
the system by determining the scope of what is to be
accomplished (3:76). Wilcox states that the requirement
analysis process is an interactive one which is completed
when the customer and system designer agree on exactly what
is to be done (9:27).

Following the requirement analysis, the requirements are
organized into tasks which cre then alloted to teams with
specified due dates (6:50). Each task is approached as a
separate module with a set of input and output parameters.
Each module may be accomplished independent cf other modules
as long as the boundary specifications are adhered to. 1f,
during the course of developing the modules, the boundary
parameters must change, then the change must be approved and
coordinated by the system engineer (3:121). Modules may
perform strictly hardware or software functions, but most
perform a combination. Regardless of how the external
processing is accomplished, the system engineer is only

concerned with the system module at the interface level.

12

An alternate process for producing an emulation device is
to perform a preliminary requirement analysis, which
intentionally leaves many questions unanswered. (10:400-402).
The goal 1is to start working as quickly as possible on a
prototype of the desired system. The customer is then given a
demonstration illustrating the strengths and weaknesses of
the proposed design. Wilcox states that in many cases the
user will make suggestions to add or delete features as a
result of having a real model to base his decision on (9:63-
64) . The primary benefit gained from prototyping is the
reduced likelihood of changes in requirements after the
design process has begun. A disadvantage of prototyping is
the cost in time and material to develop, build, and rebuild
the demonstration model. The decision as to which emulation
approach to take is made by the system engineer. The user
only defines the end product performance specifications and
the format of data entering the system from an external
source (10:405). The implementation of the modules is
determined by the hardware and software engineers. The
emulation process suggested by Pressman lends itself to the
8755 emulator design. The time restraints imposed by AFIT
prevent the use of rapid prototyping. A thorough requirement
analysis will prevent late changes to the emulator
performance goals and also save the time and material
required to build a prototype. The requirement analysis is
only the first step in an emulator design project. The

recuirement will eventually have to be implemented with

13

hardware and software . When the customer and system engineer
have a firm set of requirements, the design engineer and
software engineer may start system the development process
(8:87-88). Initially, hardware and software engineers must
work together to determine which modules pertain to hardware
and which pertain to software. Both areas have a variety of

design techniques which may be used to develop the modules.

Hardware Design Techniques

Engineering design is a creative process of devising a
product to fill requirements specified by the customer
(7:379). The problem-~-solving approach is one creative design
technique and involves defining the problem, selecting a
possible solution, evaluating the solution, generating other
possible solutions, and selecting the best solution. Central
to successfully using the problem-solving approach is the
ability to plan a project. Objectives must be clearly stated,
and time schedules developed and adhered to. Strategies to
achieve objectives must be developed and a specific plan of
action developed (4:185-186).

Top down design is another technique often used in
hardware, as well as software, design (3:76-85). Top down
design decomposes the problem at hand into seperate but
functionally similar modules. Each module is decomposed
further until the original complex task has been reduced to

several small manageable tasks. Top~down design incorporates

14

0 Sl el it it i T B Lar el w i L~

heuristic design rules when the lowest level modules are

P implemented.

Regardless of the design technique used, the actual
hardware components must be selected. This selection process
will again include software engineers since their software
will have to run on the hardware selected (6:100-110). Off-

the-shelf components should be used whenever possible to save

the cost of creating these components. Review and
modifications are recommended at this stage since any change
beyond this point will be costly .

The top-down design technique provides an excellent
approach to the 8755 emulator design. At its highest level of
abstraction, the emulator must appear as an 8755 microchip
with enhanced features. This level of abstraction may then be
broken down to a user module, emulator control module, and
target system module. Each module may be broken into still
lower level modules until each subfunction is represented as
a separate module. When this level of abstraction is reached,
the heuristic design rules may be applied to implement each
subfunction. This approach to the problem provides a direct

path to design and implementation.

The hardware design process is an important segment of
the overall design effort, but equally important is the
software needed to control the hardware. Hardware and
software design must take place in parallel and in reaction

to each other. Software design techniques exist which allow _J*

15

the interactive development of software and hardware, but

still addresses the special needs of the software designer.

Software Design Techniques

Any digital emulator project requires the extensive use
- of software design techniques and methods. Modern software
design is an outgrowth of hardware and system engineering. It

encompasses methods, tools, and procedures that enable the

desi.rner to control the process of software development
(4:188) . Software design methods encompass a broad array of
tasks that include: software requirements analysis, design of
data structures, program architecture and algorithm
procedures, coding, testing and maintenance. Software design
tools provide automated support for these methods. Software
design procedures provide the sequence in which methods will
be applied, the deliverables that are required, the controls
that help assure quality, and the milestones to assess
progress. The steps necessary for software design are
referred to as software design paradigms (6:110-118). The
paradigm chosen is based on the nature of the project and
application, the methods and tools to be used, and the
controls that are required.

The classic life cycle paradigm is the oldest and most
widely used . Software design using the classic life cycle
demands a systematic sequential approach that begins at the
system level and progresses through analysis, design, coding,

testing, and maintenance. Software analysis starts with the

16

system requirements analysis to allow the software designer
to understand the nature of the programs to be written. The
software designer must also be familiar with hardware to be
sure the system components are compatible. Software design
translates requirements into a representation of the software
that can be assessed for quality before coding begins. During
coding, the software design is translated into machine
readable code. Software testing focuses on the internal logic
of the software and the external functions of the system to
ensure that a defined input will produce the desired output.
Software maintenance applies each of the preceding life cycle
steps to an existing program rather than to a new one.

The classic life cycle paradigm is not without its
criticism in some situations (3:87). Booch points out that
real projects rarely follow the sequential flow proposed by
the classic life cycle, and often it is difficult in the
beginning for the customer to state all requirements
explicitly. Further, Booch suggests using the protyping
paradigm in situations where these criticisms are valid. The
prototype paradigm is best suited for situations where the
customer does not have a complete understanding of system
requirements,

Prototyping is a process that enables the developer to
create a model of the software to be built. The model can
take one of three forms: a paper prototype that depicts
human-machine interaction in a form that enables the user to

understand how such interactions will occur, a working

17

Ty v

prototype that implements some subset of the functions
required of the software, or an existing program that
performs part or all of the functions desired but has other
features to be improved upon in the new development effort.
All prototyping approaches begin with the customer and
designer defining overall objectives for the software,
identifying whatever requirements are known, and outlining
areas where further definition will be required.

A quick design is then initiated and focuses on a
representation of those aspects of the software visible to
the user. The quick design leads to the construction of a
prototype. The prototype is evaluated by the customer and is
used to refine requirements for the software to be developed.
A process of interaction occurs as the prototype is refined
to satisfy the needs of the customer, while simultaneously
enabling the designer to better understand what needs to be
done. The prototype is usually a first try, throw away model
and may cause some problems.

A problem associated with the protype paradigm is that
when the customer is informed that the device must still be
built from scratch, he usually objects. The appearance of
needless waste is a problem with this approach. If the
customer demands a few quick fixes to the prototype instead
of a complete design and fabricaton, problems with quality

and reliability may result (9:122-125).

18

TR WP B P SWT AN LR R S O

The 8755 emulator is well suited to aspects of the
classic life'cycle and the prototyping paradigm. A thorough
analysis and design will ensure minimal redesign problems as
the project progresses, and prototyping will ensure that no
important design considerations were overlooked. The combined
application of these techniques provides a direct and
reliable approach to designing the emulator software. When
the software is completed, it must be tested on the hardware
it was designd for, and receive final approval from the

system designer.

Conclusion

A clear need exists for the development of an enhanced
8755 microchip. Currently, there is not a commercially
available digital device to satisfy the needs of AFIT (1).
The emulator will provide memory to match that available on
the 8755 and a complete set of I/0 ports. Enhancement
features include the ability to reconfiqure ports from an
attached microcompter, to stop the emulater at any given
time, and to allow easy reprogramming of the 8755 memory. The
process of designing the emulator begins with a thorough
requirements analysis involving the customer and system
designer. The requirements will be divided into modules which
will be small and manageable. The modules will be implemented
using current hardware and software design techniques.

The engineering design process is a creative process

which involves making all the decisions necessary to

19

implement the design requirements successfully. The designer
could use the problem-solving approach, heuristic design
rules, or top-down design. For the 8755 emulator, the top-
down design is most compatible since this approach requires
fewer initial designs and matches the requirement analysis
process closely. By aligning each requirement with a module
to be implemented and then decomposing the modules into
subfunctions, an accurate design is probable. The
subfunctions are implemented at the hardware interface level
and require close coordination between software and hardware
designers.

The software design must be conducted simultaneously and
interactively with the hardware design. A combination of the
classical life cycle and protyping paradigms provide the most
effective approach to implement the requirements defined in
the requirement analysis. This approach also provides the
interaction needed between the hardware and software
development efforts. Each paradigm individually has problems
and limitations which can be avoided by selective application
at the appropriate time. Together these paradigms provide

rapid but accurate software development and implementation.

20

ITII. THEORY OF OPERATION: HARDWARE

Introduction

This chapter provides detailed information on the
hardware devices used in the 8755 emulator. The software to
control the system is presented in chapter 4.

The 8755 EPROM/1-0 device is produced by the Intel
corporation. Intel produces a family of micro devices which
are all designed to work together with minimum support logic
and driver chips. To ensure maximum compatibility between the
emulator and the actual timing and power parameters of the
8755, Intel chips are used when possible.

The overall purpose of the emulator system is to provide
all the features available on a standard 8755, and the
additional capability to single step, load the user memory
directly, break on specified memory addresses, and control
this process via an RS232 serial link to a host computer
microcomputer. The user circuit must also be able to use the
standard 8755 features when desired, while the emulator
circuit remains transparent in terms of timing constraints.

In order to accomplish the requirements listed above the
8755 1/0 and memory hardware were broken into two separate
sections of hardware. The additonal special features required
were accomplish through the use of several subsections which
are described in the remainder of this chapter. Many of the

devices used in the emulator circuits require software inputs

21

:

}
o

to initialize and control them. When a device requiring

software is discussed, the discussion will be brief and the
full explaination reserved until chapter 4.

Each major functional section of the emulator will be
discussed separately so that all details of that subsection
are presented as a package to the reader of this paper. The
block diagram (figure 1) and schematic daigram (figure 2)

referred to in this section may be found in Appendix A.

Block Diagram

The block diagram for the 8755 emulator is shown in
figure 1. This diagram breaks the emulator circuit into eight
functional areas. The central processor section processor
exercises control over all over parts of the system. The
emulator memory section contains all system memory which is
used exclusively by the central processor. The target memory
section contains the user 2 kilobyte static ram which is used
primarily by the target, but is also accessible by the
central processor. The serial port section is built around an
Intel 8251A Universal Asynchronous Synchronous Transceiver
(UART) and contains all the hardware necessary to support
serial communications. The parallel port section contains an
8755-2 I/0 memory chip and the necessary support devices. The
parallel section is accessible by either the target or
central processor. The break section monitors the target
address bus for memory address loaded from the host computer

via the central processor. Upon detection of a memory access

22

A T L el cwnt A W e L T iy

by the target which matches any of the stored addresses in
the break registers the target is halted and the central
processor is sent an interrupt request. The break section may
be disabled through software control from the host computer.
I1f the break section is in its enable mode the interrupt
request will advise the host computer of which address has
been detected. The target system remains halted until
restarted by a command from the host computer. The target
module contains a 40 pin socket plug which replaces the 8755
in the application circuit. All pins are identical and all
8755 features may been accessed by the target through the
plug. The target section also contains additional hardware to
support the enhanced features of the emulator listed in the
introduction. The special features section includes the
harware necessary to provide the emulator single-step, target
single-step, and mode control functions. The mode control
function is used to control whether the emulator or target
system has access to user memory and parallel I/0 ports at
any given time. Access to these two section is mutual
exclusive under all circumstances. The remainder of this
chapter provides a detail discussion of each section of the

block diagram.

Central Processor Section

System timing is provided by U9, an 8284A clock generator
and driver. The 8284A is driven by a 14.3 MHZ crystal

oscillator. The CPU operating frequency is 4.77 MHZ at the

23

B

output of U9 pin 8. The PCLK output is used as the internal
CLK signal to the UART(U3) and is 2.39 MHZ. The 8284 provides
synchronization of the ready input signal and the system
clock. The RDY output is a synchronized signal generated by
the into at pin 4. This input is used to halt the CPU during
single-step operations, by driving U8 (8088) pin 22 low. The
system reset is input to the 8284 as a low on the RES* pin
when switch S1 is pressed. This signal is synchronized and

inverted then output at U9 pin 10 as a high. The CPU, UART,

and 8755 are reset by this signal. For a system reset the
signal at U8-21 must be high for a minimum of 50

microseconds. Capacitor Cl and resistor R5 ensure that the

minimum timing requirement is satisfied. When this happens U8
will clear its status flags, DS, SS, and IP registers. The CS
register is set to FFFFh, thus FFFFO is the address at which
the CPU restarts when reset returns to a low state.

The heart of the emulator is the 8088-2 (U8) central
processor unit (CPU). The 8088 provides the address, data,
status, and control signals to direct the emulator
operations. The address lines ADO through AD7 and Alé through

Al9 are multiplexed to also function as data and status pins,

respectively. These signals must be latched in order to be

available for an entire machine cycle. Address latches U6

and U7 are used to latch the address bus during Tl of each
cycle. The signal used as a latch strobe is the address latch

enable (ALE). During each bus cycle from the 8088-2, ADO

24

through AD7 and Alé through Al19 change to valid data and
status during T2. This data remains valid until the middle of
T4. Address lines A8 - AlS5 are not multiplexed and are valid
for . the entire machine cycle. This timing arrangement of the
ALE is important in the implementation of the target and
emulator single step features. The ouput of U6 and U7, plus
A8 through AlS5 form the address bus used to drive all
emulator devices (figure 2a). The latched address remains
valid until the falling edge of the next ALE, at which time
the new address is strobed into U6 and U7.

The 8088-2 control lines used by the emulator include the
RD*, WR*, ALE, IO/M*, Reset, MN/MX*, DT/R*, DEN*, and Ready.
The RD* and WR* controls lines are buffered through U60
(7407) , because the fanout capability of both lines is
exceeded, the other control lines of U8 did not require
buffering. The RD* signal is used to turn on the output
drivers of a selected device. When the RD* line is low the
data bus is strobed into U8 (8088). When WR* is low the data
present on ADO through AD7 are strobed into an addressed
device. The ALE is also used to strobe U36 (8755) control
signals and to reset the emulator single step flipflop. If
the current machine cycle is accessing memory the I0/M* pin
will be low. If the machine cycle is an I0 access then this
pin will be high. For the emulator the 8088-2 is configured
to operate in the minimum mode by tying the MN/MX* to VCC.
The DT/R pin controls the direction of data flow through Ul4

(74F245) and U35 (74F245) during each machine cycle. When

25

T S g N P bt

DT/R* is high data is transferred from the CPU and when the
pin is low data is moves toward the CPU. The DEN* output is
used to control the outputs of the data transceivers when the
user RAM and 8755 are accessed. Finally, the INTR pin is used
- to detect when the break section has detected a break

address. This pin may be disable with a software instruction,

——

but if it is enabled the CPU outputs a interrupt acknowledge
T- on INTA. Following each break detection the INTR input is

L' disabled and must be reset by the interrupt handler routine.

Emulator Memory

The emulator memory space is addressable only by U8, and

therefore does not require any multiplexed address and
controls lines (fiqure 2c). All addresses discussed in this
paper are in hexidecimal format. The emulator memory is
controlled by U5, an Intel 8205 3-to-8 decoder. Address lines
Al6, Al7, and Al8 are used to drive the decoder input. Output
U5-15 is ORed with Al5 to control Ul5 (MSM62256) and ORed
with Al15* to control Ul6 (MSM62256) chip enable inputs. These
two static RAM chips form page 0 of the 8088 memory space.
Addresses (00000~-07FFF) are located on Ul6 and addresses
(08000-0FFFF) are located on U15. The emulator memory map is

shown in table 2. Output U5-7 provides the emulator clip

select to Ul7 (2716), which is page 7 of the memory space. A
2716 EPROM was used because it was readily available in the
engineering laboratory. The system ROM is located on Ul1l7 ‘i

with addresses 70000 - 707FF. Since Al6-A18 are all ones

26

after a reset, and the lower 11 address bits are 7F0, the

emulator begins its operation from the address 707F0. Decoder
output U5-13 is used to control the system mode flipflop U39-
B (7474). Decoder output U5-12 and U5-13 control the target
system single-step circuits U65 (7474). Both of these
control lines will be discussed in greater detail later.

Finally, output U5-9 controls Ul18 (UM6116), which is page 6

of the emulator memory space. Static ram Ul8 may be addressed
by the target system also and will be discussed in detail in
the next section.

The emulator 1/0 address space is controlled by U38
({74154) a 4-to-16 decoder. Each output of U38 will be discuss
in the functional section where it is used. The control
inputs to U38 consist of address lines A4 - A7 and an
inverted I0/M* control signal. The 10/M* signal ensures that
U38 and U5 (B8205) are never active at the same time. This
separation of memory and IO space is necessary since the A4

through A7 are used throughout the emulator.

Target Memory

Another user requirement is for the emulator to eliminate
the 8755 ROM, and to provide the target with equivalent user
RAM. Additionally, access to the user by the emulator system
and the user's CPU ram must be mutually exclusive. To
accomplish this requirement, the address lines A0 through Al0
are multiplexed using 74F157A 2-to-1 multiplexers. Each

multiplexer has two sets of four inputs and one set of four

27

A TP SR, o S S SRR

outputs. Address lines A0 through A3, A4 through A7, and A8
through Al10, and CS* are applied to U10, Ull, and Ul2,
respectively (figure 2c). One set of these sighals come from
the emulator and an identical set comes from the user
circuit. The output of U1l0, Ull, and Ul2 are applied to U1l8
(UM6116) . The select line pin 1 of U10 through Ul2 controls
which set of input signals are connected to the output. When
select is high the emulator is in control of the SRAM.
Conversely, when select is low the target system has access
to the SRAM. The select lines of all multiplexers in the
emulator are control by the output of the mode flipflop U39-A
(7474) . The write enable input (U18-21) is enabled only by
the emulator. This limited access to the write enable is
necessary because the a real 8755 does not have a write
capability.

The output of Ul8 is connected to Ul4 and Ul13. These
devices are 74F245 transceivers and are required to isolate
the SRAM from the system data bus. The output enable input on
Ul4 is controlled by the ORing of chip select of Ul8 and data
enable of U8. The output of U41-A (7432) is low only when
DEN* and CS* are both active. The direction of data flow
through Ul4 is controlled by the CPU RD* signal. Transceiver
U13 performs a similar function for the target circuit's

access to Ul8 (UM6116), except data flow is only allowed from

Ul8 into port B and out of port A. This prevents the user

from inadvertently writing to Ul18. Output enable of Ul3

28

(74£245) is controlled by ORing 10/M* (MISC1-7), CEl1* (MISCl-
1), and the target RD* (MISCl1-9) signals. When all three
inputs are low U40-D will produce a low when Ul8 is accessed
by the target. The 74F157A and 74F245 devices were selected
to limit the amount of delay introduced, while allowing a
flexible means of gaining access to Ul18. The multiplexer-
transceiver combination adds only 14 ns delay, and is

transparent to the user.

Serial Port

A primary requirement of the emulator system is the
ability to communicate serially with the host computer
microcomputer. This is accomplished via the serial port J2 on
the rear of the host computer. The emulator uses U3 an 8251A
universal asynchronous receiver transmitter (UART) as its
serial port. The 8251A is capable of being programmed for
asynchronous or synchronous communications. This project uses
only the asynchronous mode, and operates at 9600 baud, with

odd parity, and one stop bit. The specific software required

to configure the UART is discussed in the next chapter. Data
transferred between the CPU and UART is in an eight bit
parallel format. An 8286 transceiver (U4) is used to isolate
the UART from the CPU. The outputs of U4 are tri-stated
unless the UART's chip select is low. The direction of data
flow through U4 (8286) is controlled by an inverted RD* from
the CPU. The UART converts the parallel data to a serial

string and inserts start, stop, and parity bits. This string

29

In

is transmitted serially on the TXD pin U3-19 (8251A). The
UART output is standard TTL output, which must be converted
to RS232C signal specifications. The 1488 line driver (Ul)
converts the TTL levels OV and 5V to -12 and +12,
respectively. The output of Ul is connected to the RS232C
cable and received by the host computer. Data terminal ready
(DTR*) and request to send (RTS*) signals are also provided
by the UART and passed through the 1488 driver. To receive
data from the host computer the RS232C signals must be
converted to TTL prior to being applied to the UART. Line
receiver U2 (1489) converts the input data string, clear to
send (CTS*), and data set ready (DSR*) signals. The use of
the DTR*, RTS*, CTS*, DSR* handshking signals will be
discussed in the next chapter. The RS232 cable also provides
a ground return path between the host computer and emulator.
The receive and transmit clock is provided by an external
function generator via connector J2. At 9600 baud the
required clock fregquency is 153.6 Khz when the baud rate
factor is programmed for 16 (see chapter 4). For proper
operation U3 (8215A) requires a minimum clock period of 310
ns. The system clock of the cpu has a period of 210ns, but
the PCLK (U9-2) satisfies this requirement with a period of

420ns.
The control signals of the 8251A are the CS*, RD*, WR¥,

and C/D* inputs. The CS* and RD* must be low to transfer data
from the UART to the CPU. The CS* and WR* must be low to

transter data from the CPU to the UART. The C/D* input is

30

connected to A0 on the address bus and determines which
internal register is being accessed. A detailed description

r- of register control is covered in the next chapter.

k- Parallel Port

An 8755 hac 2 kbytes of EPROM and two 8 bit data ports
(figure 2j). The data ports may by used as inputs or outputs
and each bit is individually defineable through software.
Software requirements for the 8755 are covered in the next
chapter. The literature review found that the 8755 is the
only commmercially available device with bit-defineable
ports. To implement this feature the emulator is using an
8755-2 (U36), the the memory section of this device was not
used in this application. Since the emulator and the user
must have access to the 8755 ports three more 74F157A
multiplexers, U31l, U32, and U33 are used to control access to
this chip. Multiplxer U31 directs ALE, RESET, RD*, and WR¥*;
U32 directs CLK, VDD, A0, and Al; U33 directs CE2, I10/M%*,
CEl,and IOR* from the emulator or user CPU contiol lines. The
active set of inputs at any given time is determined by the
mode flipflop U39-A (7474). All outputs of the multiplexers
go to U36 to allow control of this device by either source.

When CEl1* and CE2 are active the 8755 will strobe the
address and 1I0/M* lines on the falling edge of ALE. To

prevent extraneous data during an access to user ram, the CE2

input is ANDed with the target IO/M* control line before

being applied to U33 (74F157). The output of this gate will

31

P-a."

PSR R e L

drive CE2 low during each memory access by the target
system. This will inhibit the 8755-2, thus preventing an 1/0
operation. The 8755 does not strickly require the use of the
10/M* line to perform an I/0 operation. The 1/0 may be
accessed by using only the IOR* and IOW* lines. This option
is still available to the target user, but the emulator was
not designed wusing these lines. If this approach were taken
the possibility of bus contention would exist when the user
tried to perform a normal memory access. This problem only
exists from the target system, because to it the 8755 uses
the same chip enables for its memory and I/0 operations. The
emulator directly accesses the user memory and the 8755,
because from its perspective theses devices have separate
chip select addresses. The clock input to U36 was routed
through tne multiplexer to allow the user the option of
inserting wait states, but the 8755 typically does not
require wait states with Intel microprocessors. The clock is
only used to drop the ready line U36-6 during each bus cycle.
The emulator system does not use the ready line with its
operations with the 8755. The 8755 1/0 ports are controllable
by the emulator or the target, but the port outputs are
connected only to the target system\‘Thus when the user
performs an 1/0 operation through the ports the data is
receive and transmitted directly to his circuit application.
The user may also drive these ports from the emulator, but

the output will still be applied to the target circuit. If

32

‘.'T

the user desires to read the I/0 ports via the emulator the

data may be displayed at the host computer terminal. The

emulator may also be used to reconfigure the data direction
registers while the target is in its halt state. This feature
allows the user to trouble shoot a circuit without having to
change the user program which could also be used to do the
reconfiguration.

The key hardware which provides the user with these
flexible features are U34 (74F245) and U35 (74F245). These
are 5 ns maximum delay data transceivers used to provide
isolation between the emulator and target data busses.
Transceiver U34 is connected to the target and is only
enabled when the mode flipflop is set to the target mode and
the target is performing an 1/0 operation. These two signals
are combined with AND gate U56-C (7400), with this output
applied to the OE* input of U34. The emulator transceiver U35
is controlled by ORing U36 chip select with the DEN* output

of the emulator CPU.

Break Address Section

Another key requirement of the emulator is to provide the
capability for the target system to break (halt) on specified
memory addresses. In order to provide this feature the
emulator must store the break address, monitor the target
system address bus, detect a valid match, halt the target at
before the address changes, and interrupt the emulator so it

can handle the break condition. Additionally, the emulator

33

must allow the user to disable the break section if desired,
and clear the break condition on command.

The break circuit consists of two primary hardware
sections. First, the ability to store and monitor the address
bus is provided by a set of ten 74F524 reqister/comparator
chips (figure 2e). These devices are eight bits wide and can
perform serial or parallel reads and writes. The parallel
mode is used in this application, in order to allow direct a
connection between the break circuits and the emulator CPU
data bus. Since the address bus of the target is 11 bits wide
two 74F524s are cascaded to form a 16 bit combination. The
highest five bits are tied to ground and not used. The 74F524
retains the desired break address in an internal register and
compares this address with the target address during each bus
cycle. When a match is detected the equal (EQ) output goes
low. This output is open collector and both cascaded EQ lines
are tied together and connect to VCC through a lk resistor.
The clock input (CP) to the 74F524 is used for internal
synchronization and is applied at pin 11. This signal must be

provided by the CPU that is reading or writing to the chip.

The data inputs which receive the desired break address from
the emulator are also used to monitor the target address bus.
Therefore, the address and clock lines are multiplexed using -Ji
U42, U043, and U44 which are 74F157A chips (figure 2d). The
control lines for this type of multiplexer was discussed

earlier. The break addresses are label break_1 through B i

break_5, but the actual chips are broken out as break 1A and

34

YT

break_1B through break 5A and break_5B. This was necessary
because the data bus is only eight bits wide and each break
address requires two write addresses. During the address
monitoring process all address bits are applied simutaneously
to the comparators from the output of 029 (8282) and U30
(8282). In order for each comparator to be individually
addressable, each chip required its own chip enable address.
All chip selects are located in the emulator I/0 address
space and controlled by U38 (74154). Each comparator also
requires combinational logic to drive its S0 (Pin 1) and S1
(Pin 19) inputs. Figures (2f-2h) shows specific connections
for each control block, but each block performs according to

the following truth table.

Table 3. Register/Comparator Truth Table

S0 S1 Operation
L L Hold

Retains data in shift register.

L H Read Read contents in register onto data.

bus.

H L Shift

Allows serial shifting on next clock

H H Load

Load data on bus into register

The second hardware section is the break detect interrupt

circuits (figure 2k). This section is built around an 8259A

(U58) interrupt controller chip. This device is produced by
Intel and is compatible with the emulator CPU. The 8259A is

software programmable and must be intialized by the CPU. The -—Jq

35

specific software requirements are discussed in chapter 4.
The data bus of the 8259A is connected directly the CPU. It
uses the RD*, WR*, A0 lines to determine which internal
register is being accessed. This chip handles a maximum of
eight interrupts based on its programmed priority scheme.
Each cascaded break comparator is connected to the interrupt
controller through an invertor. When a break is detected the
open collector output of the comparator is pulled low,
inverted, and applied to US8 (8251A). The low to high
transition causes the INT pin to go high. If the CPU's
interrupt flag is set the high on its INTR line will initiate
an interrupt sequence. The CPU responses by sending two
interrupt acknowledge pulses on its INTA line. The 8259A will
return a byte after the first interrupt acknowledge
specifying which interrupt type has occurred. The second
interrrupt acknowledge received is used by the 8259A for
internal housekeeping. The CPU uses the interrupt type to
determine the address of the break handling routine.

When any one of the break detectors outputs go low the
target system must be halted. To accomplish this the output
of the break detectors are ANDed together through U62A (7411)
and U62B. The output of these gates is ORed with the break
control flipflop output and fed through an open collector
buffer (U61-B) to the target ready line. If the output of the
break control flipflop is low when a break is detected the
target system is halted by forcing its ready low. The break

control flipflop is controlled by the emulator CPU by setting

36

e |-|_|M‘

r

AT A R AR N T I P

and resetting U66-A (7474). To enable the break section an

I1/0 operation is performed to address 00h to clear the break

flipflop. To disable the flipflop and 1/0 operation is

e d

perform to address 10h, which sets the flipflop. When the

v

o flipflop is set its output is high, which makes U63-B (7432)
a go high. This prevents the open collector buffer from going
. low regardless of what the rest of the break detection
3 section is doing. After a break operation has occurred the
break detectors automatically clear themselves upon the
» arrival of the next target address. The CPU interrupt
hl clearing process is handled with software and will be discuss

5 in chapter 4.

Target 40 Pin Section

The address lines from the target plug MISCl1l (12-19 and
21-23) are the output of the target CPU. The 8755 address
lines are strobed by the ALE signal and normally do not
require latching. Since the 8755 memory section is not being
used, two 8282 latches are placed between the MISCl lines and
U10, Ull, and Ul12 address inputs . Target address lines A0
through A7 flow through U29 (8282) and A8 through Al10 flow
through U30 (8282) (figure 2i). Both latches are strobed by
the target CPU ALE (MISC1-11) at the beginning of each cycle.
Memory access by the target system is similar to I/O circuit
access. When the target system reads memory the control

signals are not directed to the 8755, but instead are fed to

the user memory chip Ul18 (UM6116). To allow access by the

37

R ————r = ——

Tv——

target or the emulator multiplexers Ul0 - Ul2 (74F157) are
used as described in the user memory section. The output
enable line is multiplexed through U31, using the read line
that also drives the 8755 read input. This provides an
accurate control arrangement because the mode flipflop
ensures that only one set of control lines are applied to the
user memory and 8755 control lines. To ensure that the target
system cannot write to the user static ram, the chip select
CEl is ORed with the I0/M* signal before being applied to the
multiélexer input. This controlled chip select is only active
when the target is performing a memory read cycle. Since the
IOW* is high during a read cycle this ensures that the ram
write enable is at its required inactive state during each
read cycle. The write enable signal must be low when the
emulator performs a memory write cycle, therefore the WR*
control from U8B (8088) must have access to the ram device.
When the mode flipflop is set to allow emulator access, the
emulator may read and write the user ram or the parallel
ports of the 8755. To prevent bus contention when the target
system accesses the ram while the emulator is performing
other operations, separate tranceivers were required at the

data output of the ram device. The data direction control

input to U13 (74F245) is tied to ground so that data may not
be moved from the target system to the ram chip. This
prevents anyone from maliciously performing a memory write

from the target system. The output enable of Ul3 (74F245) is

38

controlled by the target read line, which is qualified by the
memory chip select described earlier. The normal memory

access time of the 8755 is 450 ns and 300 ns for a 8755-2.

The 8755-2 is used in the emulator design to ensure that the
user may use any currently available version of the 8755 in a

circuit design. The control signals and data from the target

CPU must flow through a number of support devices for either
a memory or 1/0 operation. For a memory operation U29 and U30
(8282) introduce a 30 ns delay, Ul0 - Ul2 (74F157) introduce
a 6.5 ns, and Ul3 (74F245) introduces a 7.5 ns delay. Since

Ul8 is a 150 ns access time static ram, the total memory

access time is a maximum of 194 ns. Therefore, the additional
hardware is transparent to the target system. During an I/0
operation to U36 (8755-2) the additional hardware includes
U31 - U33 (74F157) with 6.5 ns delay, and U34 (74F245) with
7.5 ns delay. The 8282 U29 and U30 delay is not encountered
during 1/0 operations, because U36 only requires the A0
address line and this is taken directly off of the target

plug.

Special Function Section

The final requirement of the emulator is to provide the
user with the ability to single~-step the target from the host
computer. This process required both hardware and software
support. The single-step ability of the emulator is limited
to either a step mode or a free-run mode. If the user desires

to single-step from a specific location in memory this must

39

be done by first breaking at that address and then entering
the single-step mode.

The target single-step mode is entered when the CPU
performs a memory operation to address 40000, thus clearing
the single-step mode flipflop U65-B (figure 21). By placing a
low on the Q output of U65-B and ORing this with the output
of the stepper flipflop U65-A the target is halted after each
bus cycle. The stepper flipflop is stepped by an 1/0
operation at address 20h by the emulator CPU. This signal is
used to clock U66-A (7474), which then pulses U63-A (7432).
If the single-step mode flipflop output is low, this signal
will force the target ready line high. The ready line will
remain high until the next target ALE signal goes high. The
ALE signal is inverted and applied to the clear input of
U65A, which drives the stepper output low. When the stepper
output goes low this forces the target ready line low and
halts the target CPU. To put the target system in the free-
run mode, the emulator CPU performs an memory operation to
location 30000. This sets flipflop U65-B and prevents the
stepper flopflip from driving the target ready line low.

An additional single-step circuit was built to allow the
emulator CPU to be single-stepped (figure 21). This circuit
is not used in the normal operation of the emulator, but is
provided for the convenience of maintenance to the system.
The operation of this stepper is similar to that described
for the target. However, the clock pulse for this stepper is

generated by switch S2. When S2 is depressed the pulse is

40

.

LMAAW_LI_

R TS L, R B R A UL I

N

debounced and used to trigger a one-shot multivibrator U045
(74121) . Each pulse from S2 produces a positive going
sguarewave at the output of U45, which then clocks the
stepper flipflop U39-A. The stepper flipflop is cleared each
bus cycle by the ALE signal. The output of U39-A is Ored

with the output of switch S3. If S3 is set to ground the CPU
is controlled by the stepper flipflop and halts after each
cycle. If S3 is set to VCC the stepper flipflop has no effect
since the output of U41-D (7432) is held high. The output of
U41-D is fed to the clock generator (U9), synchronized, and
applied to the CPU.

The emulator is built on two perforated project boards as
which are connected by a 40 pin ribbon cable. The pin
connections at both ends of the cable, MISC2 and MISC3, are
listed in appendix A. Additionally, table 1 of appendix A
lists the parts used to build the emulator. The net wiring

list is shown in appendix B.

41

IV. THEORY OF OPERATION: SOFTWARE

INTRODUCTION

One of the primary enhancement features of the emulator
when compared to a standard 8755 is its capability to be

controlled from a host computer microcomputer. The hardware

to provide this ability was discussed in the last chapter. In
this chapter the software to control the emulator system is
discussed in detail.

The software necessary to control the emulator may be
broken into three separate sections. The first section to be
discussed is the emulator bootup routine. The software is
situated in the emulator address space such that it is the
first code encountered upon system startup. The bootup
routine has the responsibility to initialize the emulator.
This is accomplished through a series of read and write
operations to the proper pieces of hardware. The bootup
routine also performs a self-test on its static ram prior to
making contact with the host computer. Likewise, the user
static ram is tested and any problems reported to the host
computer. Finally, the bootup routine must download the main
emulator control software and verify to the host computer
that the program was received accurately.

The second section of software is the main emulator
control software. This program is initially located on the

host computer, but is downloaded to the emulator. This

42

section is responsible for all emulator activity after the

x. initial bootup routine has terminated. The emulator code

‘ contains all the flag and message smybolcs used between the
emulator and the host computer. It also contains the software

necessary to change any of the hardware originally configured

r: by the bootup routine. The emulator does not actually alter
any subsystems without receiving instructions from the host

- computer. Once the emulator is downloaded it is passed
control by the bootup routine. The emulator then awaits
further instruction from the user via the host computer.

E The third section of software is the host computer

emulator control software. This code resides on the host
computer and is only usable by the host computer. This
program contains all the flags used by the emulator and uses

them to pass desired action commands to emulator. Each

transaction between the emulator and host computer is
preceded by an attention signal, contains a positive or
negative acknowledge, and ends with the EOT signal. If the
acknowledge message is negative the appropriate error message
is display to the user by the host computer.

Each software program has a corresponding flowchart in
appendix C and these should be used by the reader during the
discussion which follows. The source code listing for each

section is in appendix D. The source code contains

explanatory comments to aid the reader in interpreting the

assembly language code. _j*

43

B Lul Bl

Bootup Software

Upon startup the CPU outputs address FFFF0 (Table 2) as
described in the hardware discussion. This address equates to
707F0 in the emulator address space. At this location the
emulator branches to address 70000 and begins its
initialization process (figure 3).

The first task accomplished 1is to halt the target system
to ensure that no interference is created between the two
CPUs. This is accomplished by performing a memory write
cycle to address 40000, which puts the target in its single-
step mode. Here the single-step mode is equivalent to a halt,
because the target system cannot advance without a step
pulse, which must come from the emulator. The second task to
be accomplished is to put the break circuits into their off
state. This is accomplished by performing an I/O write cycle
to address 0030, which masks out the state of the break
detector circuits. This is done to ensure that an erroneous
break detect does not occur before the break registers are
properly configured. The break section remains disabled
until changed by the main emulator program. At this point the
target circuits are isolated from the emulator.

The bootup routine now begans to initialize itself for
operations with the host computer. The serial port is
programmed for asynchronous communication by writing three

consecutive zero bytes to put the UART in its worst case

44

{ il

configuration (2). This causes the UART to be set for
synchronous operation with two zero bytes for SYNC
" characters. At this point the UART is reset by writing 40h
to the control register. Next, the mode register is loaded
. with 5Eh, which configures the UART for asynchronous

.~ transmission, one stop bit, odd parity, eight data bits, and

a baud rate factor of 16. The baud rate factor is used to

determine the required clock frequency as:

Clock frequency = baud rate factor X baud rate (1)

For the emulator the baud rate is 9600 baud, therefore the
UART clock frequency is 153.6 Khz. This clock is only used to
clock the serial shift registers in the UART. The next byte
written to UART goes into the control register. The receiver
and transmitter are enabled, error flags cleared, and the
data terminal ready pin activated by outputting 37h. At this

point the UART may be used to communicate with the host

computer.

Before sending or receiving data through the UART its
status register must be read and analyzed. Before each
transmit operation the status register is read and compared 'J*
with 0lh to see if the transmit register is empty. Prior to
each read operation the status register is compared with 02h
two see if a new data byte has been received. Bits three
four, and five indicate whether a framing, overrun, or parity

error has occurred. These flags are used with any transmit or

45

receive operation to ensure accurate data transfer. For file
transfers, proper transmission and receiption of data is also

Il verified by using a checksum counter. The checksum value
follows the end-of-file (EOT) during each communication
between the emulator and host computer.

- Following the initialization of the UART, the static ram

| on page zero is tested. To test the ram alternate 00h and FFh
bytes are written to all 64 kbytes. At the conclusion of the
write cycles each location is read and tested to see if the

proper data is there. If an error is found an error counter

is incremented and the NACK signal sent to the host computer

L at the conclusion of the test. If all is well this is sent to
the host computer and an acknowledge reply is returned. Once
the emulator memory has been tested the user static ram is

. scanned in the same manner and the results reported to the
host computer. If problems are reported the host computer is
responsible for advising the user. The bootup routine must

- have three failures of a given memory section before an error
message is sent. At this point the emulator should be reset

and the bootup routine run again.

When the all clear is sent to the host computer this is

used as a signal to download the emulator program. The

starting address for storage is set at 00000 and the emulator
" will loop until the host computer responds with the download J‘

signal. The next byte to be received by the emulator is

stored at the first memory location. All subsequent bytes are

46

stored sequentially until the EOT signal is detected. Each
byte received must be tested and also added to the checksum
register. When the EOT is found the next byte is compared
with the checksum value an if a match is found an acknowledge
signal is sent to the host computer. If the checksums do not
match the host computer will retransmit the emulator, in
response to a NACK signal, and the process is repeated. After
three attempts to pass the emulator memory the host computer
will display an error message and the emulator resumes
testing its memory. If the acknowledge signal was returned
the emulator passes control to address 00400 and the bootup

routine is terminated.

Main Emulator Software

The emulator routine starts by waiting in a loop for the
host computer to communicate the desires of the user. The
host computer provides a series of menus and prompts to
communicate with the user. The emulator operates in a passive
mode, except that it will signal the host computer if a break
condition occurs.

The emulator software provides four basic functions which
may be requested by the host computer. Figure 4 shows the
basic flow chart arrangement of the emulator code. The
emulator waits for the attention signal (++) followed by an
ascii character. If a 'U', ascii 55h, is received the user
memory procedure is activated and controls the interaction

between the host computer and the user memory. If a 'S’',

47

o " o P r——

e Wl Al Kk he o e H oo o cle . . . S e lmiay Somacy s cele T w2

ascii 53h, is received the single~step control procedure is
activated. If a 'B', ascii 42h, is received the break control
procedure is activated. Finally, if a 'P', ascii 50h, is
received the 8755 control procedure is activated. Each

procedure returns control to the wait loop upon termination.

User Memory Control

The user memory procedure allows the user to download the
target program to Ul8, write to a particular location, or
read a particular location. All user memory functions must be
initiated by and coordinated with the host computer.

When the emulator loop receives a (++U) string the user
memory procedure is called (figure 5). Upon activation the
procedure returns a ready signal to the host computer. The
host computer returns a string which contains a direction
flag and the starting address. The emulator stores this
string in the user instruction buffer. Next, this string is
analyzed to determine what actions to take. If the direction
flag is for a download the emulator clears the transmit
attempt counter and the checksum register. The emulator then
sends the ready signal to the host computer. At this time the
host computer begins to download the data. Each byte received
is stored in a temporary data buffer until the entire file is
verified at the end of the transfer. With each byte received
the value of the data is added to the checksum register. This

process is continued until the EOT is received. When the EOT

48

T

is received the next byte received is interpreted to be the
checksum value calculated by the host computer. This value is
compared to the emulators checksum and if they match the host
computer is sent the acknowledge signal. The emulator then
stops the target sytem and changes the user ram circuits to
the emulator mode. The data received is transferred to the
user ram and the target restarted. If the checksums do not
match the NACK signal is returned and the transmit counter is
incremented. The transmit counter is compared to three, if
the count exceeds three the user procedure is exited. If the
transmit counter is less than three the download is repeated.
The emulator does not send a retransmit signal to the host
computer, because the host computer keeps a separate count of
its transmission attempts.

If the string stored after the emulator returns its ready
signal is an upload the emulator will follow a course
opposite to the one just described. The start address and
number of bytes to upload are received from the host
computer. The emulator clears its transmit counter and
checksum register. Next, the target is halted and the data
loaded into the temporary buffer area. The purpose of the
buffer is to keep the data on hand for a repeat transmission
if an error occurs during the upload. The data is held in the
buffer until over written by future transfer operations.
After the data is in the data buffer the target is returned

to its previous status. The emulator sends the acknowledge

49

T

signal to the host computer to indictate that the data is
next. Each byte is sent to the host computer and the checksum
is tabulated until the proper number of bytes have been
uploaded. When the byte limit is reached the emulator will
send the EOT, which is then followed by the checksum value.
The emulator then waits until an ACK or NACK is received. If
the ACK is received the user procedure is exited. If the NACK
is received the emulator will increment the transmit counter.
If the flag now exceeds three the procedure is exited. The
emulator does not handle this error condition since the host
computer handles all errors. If the transmit count is less
than three the ACK is sent and the data retransmitted. This
process is repeated until the data is accurately transferred

or the transmit count exceeds three.

Emulator Mode Control

The emulator mode control procedure is not explicitly
called by a host computer command. This routine is accessible
only by the emulator, but provides service to various host
computer commands. For example, the user memory operation
uses this procedure during the its memory reads and writes to
disable the target section. This procedure simply uses the
mode flag to either put the emulator multiplexers in the
target or emulator mode. If the target mode is desired a
memory 20001 write is executed. Conversely, if the emulator
mode is desired the memory write goes to 20000. In either

case the mode flag is set to the proper status and the

50

procedure is exited, with control returning to the calling

procedure.

Single-step Control

The single-step procedure is called when the emulator
waiting loop receives the (++S) string (figure 6). The
procedure responds by sending the ready signal. The host
computer then sends the desired action code, which may be to
enable the stepper, to put the target in the free-run mode,
or to step the target. If the enable code is received the
emulator performs a memory write to address 40000, updates
the single-step flag, sends the ACK signal, and returns to
the waiting loop. If the free-run code is received the
emulator performs a memory write to address 30000, updates
the single-step flag, sends the ACK signal, and returns to
the waiting loop. If the action code is to step the target
circuit the emulator checks the single-step status to ensure
that the stepper is in the step mode. If the mode is set to
step the emulator writes to 1/0 address 0020, returns the ACK
signal, and then returns to the waiting loop. If the mode is
set to free-run the emulator returns the NACK signal and

exits the procedure.

Break Control

The emulator break circuits are controlled by a
combination of the bootup routine and this emulator

procedure. The bootup routine took care of initializing the

51

ml

L i LB R Dk e a e a2t .

8259A and inhibiting the break circuits. This procedure is
used to load the break registers, enable or disable the break
circuits.

When the emulator waiting loop receives the (++B)} string
it calls this procedure (figure 7). A ready signal is
immediately returned to the host computer. The host computer
then sends a code to enable, disable, or download to the
break registers. If the action desired is to enable the break
detection circuits the emulator writes to 1/0 address 0000.
The break flag is updated and then the ACK signal is
returned. If the action desired is to disable the break
circuits the emulator will write to 1I/0 address 0010. The
break status flag will then be updated and the procedure
exited. .

If the user desires to load the break registers the
download signal is used. Following the ready signal to the
host computer the emulator clears its checksum register and
sends another ready signal. The data bytes received will be
placed in the break address buffer until the EOT is detected.
Once this flag is received the next byte will be compared to
the emulator checksum value. If the checksums match the break
circuits are disabled, the break register are loaded, and the
break circuits then enabled. Next, the break status flag is
updated and the ACK signal returned to the host computer. The

procedure then returns to the waiting loop. If the checksums

52

do not match the NACK signal is returned and the procedure is
exited.

When the 8259A receives an interrupt from the break
detectors it must direct the response of the CPU. Regardless
of which break address is detected the 8259A will respond
with an interrupt request to the emulator CPU. The CPU
responds by sending two interrupt acknowledge signals, which
causes the 8259 to output the interrupt tjpe number. The type
ranges from 8 through 12 and is calculated by the 8259A based
on the setting of its IR0-IR2 bits (figure 8). These bits are
combined with 00001b to indicated the proper type number.
Each interrupt type is used to vector to the interrupt
handler code address. Each interrupt handler simply moves its
type number to the interrupt hold register. The interrupt
hold register is simply a memory location used for parameter
passing. Each interrupt handler then passes control to the
break reporting procedure. This procedure sends the (++B)
string and waits for the ACK signal. When the ACK is received
the emulator sends the interrupt number in the interrupt hold
register. The emulator will wait for instructions from the
emulator before resetting the break circuits. If the host
computer indicates that the break procedure should be left as
is the circuits are disabled and the status flag updated. If
the reset command is received the break circuit is disabled
and then enabled to reset them. The the enable/disable

sequence is required to allow the break address comparators

53

(hL F

B .

to overwrite the last address. With either of the above

actions the break loading procedure is exited.

8755 1/0 Control

The emulator initiates a call to the 8755 control
procedure upon receiving the (++P) control signal. This
procedure is used to read or write to the target circuit
ports and to reconfiqure the bit assignments {figure 9). The
procedure responds to its call by returning the ready signal
to the host computer. Next, the host computer sends the

direction flag followed by a port number. If the direction

flag indicates an upload, the port number will be to port A
or B only. In either case the emulator will hold this
infomation in a temporary register. The target system is
halted and the mode changed to the emulator. The selected
port is read, the data is moved to the temporary register,
and the target restarted. The emulator clears its checksum
and the transmit counter, then sends the ready signal. The
data byte is then uploaded, followed by the EOT and checksum.
The emulator then waits for the ACK from the host computer.
If the ACK is received the procedure is exited. In the event
the NACK is received the transmit counter is increment and

compared to three. If the count does not exceed three the

transmission process is repeated. If the count does exceed
three the procedure is simply exited. When the direction flag
indicates a download it is possible for the data to go to the]

ports or to the data direction registers. The host computer -:]%

54

sends the port number after receiving the ready signal. The
emulator halts the target, clears its checksum, and clears
the transmit counter. The emulator sends the ready signal
again to indicate it is ready for the data byte. The data is
received and held until after the checksum is verified. After
verification the data is loaded into the appropriate register
and the ACK signal is returned. The emulator then restarts
the target and returns control to the waiting loop. If the
checksum is not correct the emulator performs the usual three

tries then terminates.

Host Computer Control Software

The host computer program serves as the interface between
the emulator and the user. Most of the actions taken by the
host computer will be initiated by the user. However, there
are two cases when this is not true. When the system is
started the emulator memory is downloaded without user
intervention. The other case is in the event of a break
address detection. In general the user is prompted for an

input and the response is then transmitted to the emulator.

The flowchart for this portion of the system programs is
located in figure 10.

Upon startup the host computer program displays a welcome _ﬁj‘
message and advises the user to standby. The program then |
monitors the serial port for two ACK signals from the

emulator. One ACK is for the emulator SRAM and the other is - i

55

for the target SRAM. If either signal is replaced by the NACK
signal the host computer displays an error message and the
user should reboot.

When the ACK signals are received the emulator clears its
transmit and checksum counters. The host computer sends the
download signal, followed by the emulator program. The
emulator program is then verified using the checksum method.
I1f the program receives the NACK instead of the ACK, the
transmit counter is incremented and the emulator code
retransmitted. This is repeated up to three times before an
error condition is assumed. If an error condition does turn
out to be the case the program displays an error message
advising the user to reset the emulator and host computer
program. I1f the emulator program is successfully downloaded
the wait prompt is removed and the setup menu is displayed.
The display will also contain the status of the single-step,
system mode, and break circuits. The single-step will be in
the step mode, the system mode set to system, and the break
circuits disabled. This is the initial system configuration.
These statuses will be displayed anytime the setup or main
menus are displayed. They are also displayed individually
when their corresponding submenus are displayed.

The user must address each section of the setup menu that
is intended té be used. Generally, all three areas should be
setup, but this is not required if only partial operations

are planned. In any case the program waits for the user

56

selection and then branches to the proper procedure. Each

procedure will return control to the setup menu and the user
will eventually need to select item (d) to escape the setup
menu. Selections a, b, and ¢ each handle a specific emulator

feature and their operation are discussed next.

Pass User Memory

When item (a) is selected the user memory module is
called (figure 11). The program sets a flag which indicates
which menu was currently in used prior to the call. This flag
will be used later to ensure the user display contains the
same menu when the module is exited. The user is then given
the following set of options.

User Memory Menu:

a. Down load target memory

b. View target memory location

c. Edit target memory location

d. Exit

Which offers the choice of downloading the target memory,
viewing a particular memory location, or edit a target
location. When the download target option is chosen the user
is prompted for the filename, starting and ending addresses.
The starting address is use to inform the emulator of which
address in the user ram to load the program. The ending
address is used to determine when the EOT should be sent to

the emulator, but this address is never sent to the emulator.

57

B ek i = At B oM e S - D e o et

After receiving this information the procedure uses MS-DOS
! function calls to open and read the user program into a
temporary 2 kbyte buffer. This buffer is maintain at all

r times after the initial data read. The user must have this

buffer loaded before option (b) may be accurately employed.
r The reason for this restraint is that if the view option is

selected the user is shown what is in the temporary user

buffer and not what is in the user memory chip. Once the
buffer is loaded the program will clear its transmit counter
and checksum register. The emulator is sent the (++U) signal
and the program then waits on the ready response. The
emulator responds with the ready signal and then awaits the
direction flag and starting address. When this information is
received the emulator sends another ready and the download is
accomplished. When the byte count has been reached the
program inserts the EOT, and then sends the checksum value.
I1f all went well the emulator will return the ACK signal and
the transfer is terminated. In this case the calling menu is
displayed. If the NACK signal is received the download is

attemped two more times. If the download still has not

succeeded the user is informed via an error message display.
At this point the entire system should be reset an the
download attempted again. o
The view target memcry option is provided so that the —‘1
user can look at changes which may have been made to the user

memory. It is not designed to alter the user memory since 1

58

o
T
| | | R

this requires the target to be halted. If the user does
desire to alter the user memory the edit option should be
used. The best way for the user to keep track of all changes
is to keep the code listing available and to annotate all
changes. When the viewing option is selected the user is
again prompted for the starting address within the user
memory (buffer) area and ending address. The user may view a
maximum of 20 consecutive locations at a time. The
information will be displayed by location and content. The
edit option allows the user to change the data at a given
location within the target memory. The maximum number of
locations which may be edited is ten. This number is
arbitrary, but should be adequate for testing purposes. If
the user wishes to do extensive editing the most efficient
method is to make the changes at the assembly level and
reload the user program. When the edit option is selected the
user is prompted for the starting address and byte count. The
program setups up the temporary edit buffer and clears its
byte counter. The user is then prompted for the new data,
which must be entered in consecutive locations. If more than
five bytes are attempted the user is informed of the error
and the calling menu is displayed. In order for the user to
accomplish additional editing the same sequence of steps just
described must be accomplished. After the user has entered
the new data the carriage return is require to download the

data. The download procedure is the same from here on as in

59

the case of a total user memory download. The temporary user
buffer is updated with these changes and the procedure

returns control to the calling menu. If the user is

performing the original user download it is suggested that
the break circuits are configured next. This procedure is

discussed in the next section.

Break Control Module

If the user selects item (b) from the setup menu or items
(b) or (c¢) of the main menu, the break control procedure is
entered (figure 12). The procedure displays the following

break menu.

Break Control Menu:

a. Enable break detection

b. Disable break detection
c. View break addresses

d. Change break addresses

e. Exit break menu

If the user is still setting up the emulator then item
{(d) should be selected. This is the option to choose to edit
the the break registers at any time. When item (d) is
selected the user is prompted for the register number, which
ranges from 1 to 5. When the desired register is entered the
user is prompted for the break address. The break registers
consist of two separate registers, but the user may simply

enter a three character hex address. This address will be

60

separated by the program and stored in the break buffer area.
All break addresses must fall within the legal memory space
of the target ram. These addresses range from XX7FF to XX000
from the target perspective. After each address is entered
the user is asked if further address changes are desired. If
the reply is yes the process is repeated as many times as the
user desires. If the ceply is no the emulator is sent the
(++B) signal and the normal download process is carried out.

The break control menu is displayed and the user may select

another option or exit this menu. If the break register
download was unsuccessful the user is informed and the break
menu exited. The user may try again from the original calling
menu. Whenever the break menu is displayed the current status
of the break circuit on the emulator is automatically
displayed and any changes to the status are automatically
updated. To enable the break circuits to monitor the target,
the user simply selects item (a) from the break menu. The
user must ensure that the break registers have be previously
set because the emulator will break on any address match it
detects. To disable the break circuits the user simply

selects item (b) and the rest is handled automatically. For

the enable or disable option the host computer sends the
emulator the break control signal, which is followed by the
desired change flag. If the user desires to view the current
break register contents then option (¢) is entered and the

local break addresses are displayed. The user should always

61

note the current status of the break circuits before sending
changes to the emulator. There final option on the setup menu

is to configure the parallel 1/0 ports. This setup is not

necessary for normal operations, since the user program will
do this. The option is provide to give the user added

flexiblility and is discussed in the next section.

Parallel Port Control

The user of a normal 8755 1/0 chip often uses the device
for its flexible ports, rather than for the memory it
contains. To allow the user full flexibility during circuit
testing, the emulator allows all of the original 8755
capabilities and also permits altering the target ports while
the target CPU is in a halt state. This feature will be
useful for pulsing circuits connected tc the target, reading
the data at the ports after execution of an instruction, and
changing the data direction registers.

To access the parallel port procedure the user may select
item (c) of the setup menu or item (d) from the main menu.
When activated the procedure displays the port menu:

Port Menu:

a. Read port A

b. Read port B

c. Write port A

d. Write port B

e. View/Reconfigure port A DDR

62

f. View/Reconfigure port B DDR

g. Exit port control memu

I1f the user selects items (a) or (b) the host computer
sends the (++P) signal and awaits the ready signal from the
emulator (figure 13). When the ready is received the port
number corresponding to the user selection is sent. The
emulator responds with a byte of data retrieved from the 8755
port. The host computer then sends the ACK signal and
displays the port number and data to the user. If item (c),
(d), (e), or (f) is selected the user is prompted for the
data to send to the emulator. The data is placed in a
temporary buffer and the emulator is sent the port operation
flag. The emulator returns the ready flag and waits on the
direction flag and returns the ready signal. The host
computer now sends the data and port number. When the write
operation is complete the emulator returns the ACK and the
transaction is complete. The port menu will be displayed and
the user may enter the next selection. If item (g) is
selected the user is returned to the calling menu. After the
setup process is initially completed the user does not need
to return to this menu. The main menu has access to all the
submenus discussed thus far and this is where normal

operations are initiated.

63

POSLONESF RS CANERENRPARETIS. VSRRV W S F

Main Menu Control

The main menu is entered from the setup menu and may
control the entire emulator during a session. The reason for

the setup menu was simply to ensure the user remembers to go

through the setup procedure. The main menu uses the same
procedures as the setup menu, but the user may not go from

the main menu to setup menu. The main menu maintains the

status of the target (system/target) the break detectors
(enabled/disabled), and the stepper circuit (step/free-runj).
When the system is brought up the target is halted by the
bootup routine and the break circuits are configured during
the host computer initializtion of the target. Both should be
left disabled until after the setup operation is complete.
Therefore, when the main menu is initially displayed the user
should enable the break detects before enabling the target.
This ensures that the target is still at its starting address
when the break monitoring begans. After the initial start the
breaks may be enabled or disabled at any time, but the user
will have to keep track of the target address. One way to do
this is to enter the single step mode before enabling the

break detectors. Other than these precautions the user may

select from the main menu freely.

Only options (a), (b), and (d) have not been discussed
from the host computer perspective. Option (a) allows the
user to start or stop the target at any time (figure 14). To

do this the user is prompted for the desired action after (a)

64

ey

3 L.

is entered. The command is sent to the emulator and executed.
The emulator returns the ACK signal to verify the completion
of the requested action. The host computer informs the user
of the completion, updates target status flag, and returns to
the main menu. If item (b) is entered the user is again
prompted for the desired mode and the command is carrjed out.
If item (d) is entered the process is a bit more involved.

In response to the single step selection the host

computer displays the single-step menu:

Single-step Menu:

a. Start single-step mode
b. Step target

c. Exit single-step mode

d. Mair menu

From this menu the user may enable or disable the stepper
circuits, single-step the target if the stepper is enabled,
or return to the main menu. The user should note the status
of the target before attempting to single step it. If the
user selects item (a) or (c) the host computer checks the
status flag and if it is the opposite of the requested mode
the command is executed. If the requested status already

exists the program simply displays the single-step menu. If

the user desires to step the target, the mode should be
checked an set to "step" if not already in that mode. If the

user fails to do this then an error message will be displayed

65

and the single~step menu displayed after a brief delay. If

the target is in the step mode, a request to step will be

executed on command. The host computer sends the (++S) flag
and receives the ready reply. The step flag is then sent to

the emulator, which executes one step and returns the ACK

signal for verification. After each step the host computer

informs the user and loops back to the single-step menu. The

user may select item (d) if other options on the main menu
are desired while in the single-step mode. The other options
may then be executed and the main menu used to get back to
the single-step menu. For example, if the user has entered
the single step mode and now desires to disable the break
circuit the following action is regquire. Enter (d) on the
single-step menu, select (b) on the main menu, then select
(b) on break menu, select (e) on the break menu, and (d) on
the main menu to return to the single-step menu. This type of
process is necessary if something besides the single-step
options is desired while in the single-step mode. Normally,
the user would only need to enter (b) to step the target from
the single~step mode. Once the user leaves the single-step
mode the single-step menu is removed and control is returned
to the main menu. From the main menu all emulator features
may again be accessed. Figure 15 maintains the current status
of the mode flag and informs the emulator of any desired

change to the emulator's mode setting.

66

IEFPIRLIS 327 SUTSRVLL P NP PR S SOCTUS-SEEE SR

V. Recommendations

The 8755 emulator provides the user with several features
which are not available with the standard 8755 device. These
features allow the user of the emulator to test and
troubleshoot circuits more efficiently. The emulator's
usefulness could be increased still further with some
additional changes.

One aspect of using the emulator which needs to be
improved involves its hardware setup. This involves making

connections to several external devices. The +5 VDC, +12 VDC,

and -12VDC power supplies should be built into the emulator
to increase the mobility of the device. The 5 volt supply

requires 4.2 amperes, which has required connecting two power

supplies in parallel in the past. This could be annoying to

students moving the emulator from one work station to

another. The emulator currently does not need forced air
cooling, but this is recommended if a built-in power supply

is added.

The UART's transmit and receive clock signals are also
provided by an external source. These signals are currently

running at the same frequency and are tied together inside

the emulator. For convenience this signal could be derived
from an onboard oscillator or clock chip. For still greater

flexibility the receive and transmit clocks should be

independent of each other. These changes to the serial port
section would allow the emulator to connect to a wider

variety of devices. The emulator hardware and software is not

67

Z-100 dependent and will work with any device which sends the
proper flags and messages. One limitation of the serial port
is the requirement for asynchronous communications. The UART
used is capable of synchronous operations, but this will
require modification to the serial port initialization

routine and minor hardware changes.

The number of break addresses which may be monitored
simultaneously is currently five. While this is a limited
number of addresses, it is not recommend that additional
address monitors be added. Each break address requires the

addition of two register/comparators and ten logic gates.

Additionally, if more than three address monitors are added
an additional interrupt handler is required. Therefore, if a
significant number of new break address handlers are desired
the user should considered a different approach.

Finally, future units of the emulator should use printed
circuit boards instead of the wire wrapping method. The
emulator uses a large number of microchips and the density of
the interconnect wiring is high. This caused crosstalk
problems during the design of the emulator. With a well
designed printed circuit board this problem would be less

noticeable and hence the emulator more reliable.

68

Appendix A: Hardware Diagram

TEN

P ,mm TARGET SEEAL
MEMORY MEMORY PoRT
T—‘
TARCET
P0G

SPRCIAL BREAX PARAULEL
yONC— DETECTOR PORT
TIONS
.]
Figure 1. Emulator Block Diagram i
69

Portaci. -k

NOTE : AL BESSTANCES ARE N (A
UNCESS OTHERWER STATED

Figure 2a. Schematic Diagram

70

159

T
ps
=5 43R

] ¢ I
3 1
""04 4 ==
-
U2 cs
~
e
7@
- J1
2 s |
P
u
U1

Figure 2b.

Schematic Diagram

71

Blarie oot v e e m

Figure 2c. Schematic Diagram

72

(LS|
-
. g
AP

B B
w13
ot
Lty
te-t 7
0~y yi
e /
Ot CONTROL BUS
oe-1
[
ne-a
se6
(]

UL P11~ Did-1

g ihy i

BG-L DO-L Vet r

n
K
«
4 V19 ~UB (2345

i

U - BN i

m

Figure 2d. Schematic Diagram

73

.l

T

L

U

ow aeedsl ¢
E |
| T

N

s =
ol
¥ Uz
AR 9
TEPE4

PR
e

o

&
5

Figure 2e. Schematic Diagram

Figure 2f. Schematic Diagram _ﬁ

75

Figure 2g. Schematic Diagram !ﬁ

76

Figure 2h. Schematic Diagram

7

L.

Figure 2i. Schematic Diagram

IRMPBEINLE LS SN TR

E PORT B

Figure 2j. Schematic Diagram

79

Figure 2k. Schematic Diagram

80

1
E_

U45

Figure 21. Schematic Diagram

81

——

PART

Ul

02

U3

U4

U5

U6

U7

U8

us

U10
Ul1l
Ul2
Ul13
Ul4
Ul5
Ulé6
u17
018
U019
U20
u21
U22
v23
U24
V25
U26
027
v2s
U229
U30
031
U32
U33
U34

U35
U3eé

037
u3s
U39
U40
U41
042
U43
U44

1488
1489
8251A
8286
8205
8282
8282
8088
8284
74F157A
74F157A
74F157A
74F 245
74F245
MSM51257
MSM51257
2716
MSM5128
74F524
74F524
74F524
74F524
74F524
74F524
74F524
74F524
74F524
74F524
8282
8282
74F157A
74F157A
74F157A
74F 245

74F 245
8755

7404
74154
7474
7432
7432
74F157
74F157
74F157

NAME

RS232 DRIVER

R5232 RECEIVER

UART

TRANSCEIVER

DECODER

LATCH

LATCH

CPU

CLOCK

2-TO-1 MULTIPLEXOR
2-TO~1 MULTIPLEXOR
2-TO-1 MULTIPLEXOR
FAST TRANSCEIVER
FAST TRANSCEIVER
32Kx8 SRAM

32Kx8 SRAM

2Kx8 EEPROM

2Kx8 SRAM

FAST REG/COMPARATOR
FAST REG/COMPARATOR
FAST REG/COMPARATOR
FAST REG/COMPARATOR
FAST REG/COMPARATOR
FAST REG/COMPARATOR
FAST REG/COMPARATOR
FAST REG/COMPARATOR
FAST REG/COMPARATOR
FAST REG/COMPARATOR
LATCH

LATCH

FAST 2-TO-1 MUX
FAST 2-TO-1 MUX
FAST 2-TO-1 MUX
FAST TRANSCEIVER
FAST TRANSCEIVER
1/0 ROM

HEX INVERTOR
4-TO-16 DECODER
DUAL D-FF
QUAD-2 INPUT OR
QUAD-2 INPUT OR
2-TO-1 MUX
2-TO-1 MUX
2-TO-1 MUX

BOARD

O e e L e Y i e S e e N N N N N N N N R N N e e e e S e e e e =l SV RN

Table la. Parts List

82

PINS

14
14
28
20
16
20
20
40
18
16
16
16
20
20
28
28
24
24
20
20
20
20
20
20
20
20
20
20
20
20
16
16
16
20

20
40

14
24
14
14
14
16
16
16

U45
V46
u47
U48
U49
050
U51
U552
U53
U54
U55
U56
us7
058
U59
U60
U6l
U62
063

U64
1)

U66

74121
7400
7404
7404
7408
7408
7408
7400
7408
7408
7408
7400
7408
8259A
7408
7407
7409
7411
7432

7404
7474

7474

MISC1
MISC2
MISC3
MISC4
MISC5

Jl
J2
J3
J4
J5
S1
S2
S3

40
40
40
20
20

RS232 CONNECTOR

PIN
PIN
PIN
PIN
PIN

ONE SHOT MULTI
QUAD 2-IN NAND
HEX INVERTOR
HEX INVERTOR

QUAD-2
QUAD-2
QUAD-2
QUAD-2
QUAD=-2
QUAD-2
QUAD-2
QUAD-2
QUAD-2

IN
IN
IN
IN
IN
IN
IN
IN
IN

INTERRUPT

QUAD-2

IN

AND
AND
AND
NAND
AND
AND
AND
NAND
AND
CONTROLLER
AND

HEX BUFFER (OC)
QUAD-2 IN AND (0OC)
TRIPLE-3 IN AND
QUAD-2 IN OR

HEX INVERTER
DUAL D FLIPFLOP

DUAL D FLIPFLOP

MISCELLANEOUS PARTS

USER PLUG SOCKET

BOARD CONNECTOR # 1
BOARD CONNECTOR # 2
COMPONENT HOLDER BOARD 1
COMPONENT HOLDER BOARD 2

+5 VOLT INPUT

+12 VOLT INPUT
-12 VOLT INPUT

COMMON GROUND INPUT
RESET SWITCH
EMULATOR STEPPER CONTROL
EMULATOR STEPPER SWITCH

Table 1b. Parts List

83

NRERPORPNEREONDNODONODONNDODNONNDNDND N

14
14
14
14
14
14
14

14
14
14
14
14
28
14
14
14
14
14

14
14

14

b

Appendix B: Net Wiring List

c
[}
—

1488 DRIVER

=12 vDC
U3-19
RE232-2
U3-23
U3-23
RS232-4
GND

NC

NC

10 NC

11 RS232-20
12 U3-24
13 U3-24
14 +12 VDC

WOt W

U-2 1489 RECEIVER

1 RS232-5,MISC5-1
2 NC

3 U3-17

4 RS232~3
5 NC

6 U3-3

7 GND

8 NC

9 U3-22
10 RS232-6
11 NC

12 NC

1 NC

14 +12 VDC

U-3 8251A UART

U4-3
U4-4
U2-6
GND
U4-~5
U4-6
U4-7
U4-8
153.6 Khz
CT2-19
U38-6

HER YOOIV B WN P

- O

84

]

12 CT2-19
13 CT2-20
14 NC
15 NC
16 NC
17 U2-3
18 NC
19 U1-2
20 CT2-16
21 CT2-18
22 U2-9
23 U1-4,01-5
24 U1-12,U01-13
25 153.6 Khz
26 +5 VvDC
27 U4-1
28 U4-2
U-~-4 8286 TRANSCEIVER
1 U3-27
2 U3-28
3 03-1
4 U3-2
5 U3-5
6 U3-6
7 U3-7
8 U3-8
9 U38-6
10 GND
11 U48-10
12 CT2-8
13 CT2-9
14 CT2-10
15 CT2-11
16 CT2-12
17 CT2-13
18 CT2-14
19 CT2-15
20 +5 VDC
U-5 8205 DECODER
1 U7-19
2 U7-18
3 u7-17
4 GND
S Ug-28 #
6 +5 VDC -
7 Ul7-18
85

U-6 8282 LATCH

PP EPRWOJAWU bWk
= O

=
N w

=
oo

N =
O W0

u-7 8282 LATCH

Woo~l1oanns W

86

GND

012-10

NC

NC

NC

NC

NC
U40-1,U040-4
+5 VvDC

CT1-15
CT1-14
CT1-13
CT1-12
CTl-11
CT1-10
CT1-9
CT1-8
GND
GND
U8-25
CT1-28
CT1-27
CT1-26
CT1-25
CT1-24
CT1-23
CT1-22
CT1-21
+5 VDC

U8-38
U8-37
U8-36
NC

NC

NC

NC

NC
GND
GND
U8-25
NC

NC

NC

1

15 NC

16 NC

17 05-3
18 Us5-2
19 U5-1
20 +5 VDC

U-8 8088-2 CPU

1 GND

2 U15~1,U016-~1

3 U15-26,016-26

4 Ul15-2,016-~2

5 U15-23,016-23

6 U17-19,U015-21,016-21,012-3
7 U17-22,015-24,016-24,012-6
8 U17-23,U12-13,015-25,U016-25
9 U6-8,04-12,014-9,035-9
10 U6-7,04-13,014-8,035-8
11 U6-6,04-14,014-7,035-7
12 U6-5,04~15,014-6,035-6
13 U6-4,U4-16,014-5,035-5
14 U6-3,U4-17,014-4,035-4
15 06-2,04-18,014-3,U035-3
16 U6-1,04-19,U14-2,035-2
17 GND

18 CT1-22

19 09-8

20 GND

21 U9-10

22 U9-5

23 GND

24 CT1-23

25 U6-11,07-11,037-11

26 U41-1

27 U35-1,014-1

28 U33-6,05-5,CT1-17

29 CT1-19

30 NC

31 GND

32 CT1-~20

33 +5 VDC

34 NC

35 NC

36 U7-1

37 07-2

38 u7-3

39 U37-1,U40-4

40 +5 VDC

a7

T
\O

8284 CLOCK

GND

CT1-16

GND

U41-11

U8-22

GND

+5VDC
U8-19,032-3
GND
U8-21,031-6,CT1-18
MISC4-16 & 17
NC

GND

NC

GND

CRYSTAL
CRYSTAL

+5 VDC

WO ~JoOWn &N =

el
DIV B WO

U-10 74F157A MULTIPLEXER

U39-8
U29-19
U6-19
Ul8-8
U29-18
U6-18
U1g8-7
GND
v18-5
10 U6-16
11 029-16
12 U18-6
13 U6-17
14 U29-17
15 GND

16 +5VDC

woo-Jound WwWwN -

U-11 74F157A MULTIPLEXER

U39-8
U29-15
U6-15
Ulg8-4
U29-14
U6-14
U18-3

GND
uilg-1
U6-12

WU S WN
o

88

P g — T — . - ——
SO L PRSI TS S R T P B

v 11 U29-12
12 U18-2
_ 13 U6-13
14 029-13
Lo 15 GND
16 +5VDC
L. U-12 74F157A MULTIPLEXER
1 039-8
2 U30-19
3 UB8-8
4 U18-23
- 5 U30-18
6 U8-7
7 Ul1l8-22
8 GND
9 U18-18
10 U5-9
' 11 U40-8
o 12 Ul8-19
13 UB-6
14 U30-17
15 GND
16 +5vDC

U-13 74F245 DATA LATCH

1 GND

2 MISC1~12

3 MISC1~13

4 MISC1~14 -
5 MISC1~15

6 MISC1~16

7 MISCl~17 3
8 MISC1~18§ j
9 MISC1~19 é
10 GND —
11 U18-17,U34-9

12 U18-16,U34-8

13 U18-15,U34-7

14 U18-14,U34-6 ;
15 U18-13,034-5

16 U18-11,U34-4 *‘1
17 U18-10,U34-3

18 Ul8- 9,U34-2 :
19 U40-11

20 +5VDC

U-14 74F245 DATA LATCH -!

89

.

OO~V Wi

U-15

WoOoOJoUa W -

-
N = O

(S SN
(S, W)

[Tl N Sy SR N
N OWR-JO

NN NN O DN
W ~J ULk W Mo

MSM51257 SRAM

90

U8-~-27
U8-16
U8-15
U8-14
U8-13
U8-12
U8-11
U8-10
U8-9
GND
U1l8-17
U18-16
018-15
U1l6-14
U18-13
Ul18-11
U18-10
U18-9
U41-6
+5VDC

U-16

WO &WN -

SN
O

=
R E N

[W
w

[S SN
oW U

NN
W N

NNNDN
[e o 2R Mo RNV)

U-17

OWOoOJAhUNd W=

= Y Y Sy WU
OJAUVAWN O

[
o

MSM51257 SRAM

2716 EPROM

91

U6-12
U6-13
U6-14
U6-15
U6-16
u6-17
U6-18
U6-19
U8-16
U8-15
U8-14
GND
Ug-13
U8-12
U8-11
U8-10
v8-9
U5-7
Ug-6

20
21
22
23
24

U-18

WA b wh -

U-19

WO JA WU bt

[
o

e
I RS

MSM5128 SRAM

Ug-32
+5VDC
u8-7
U8-8
+5VDC

U11-9

Ul11-12

U11-7

Ul1l-4

U10-9

Ul10-12

U10-7

Ul0-4
Ul13-18,014-18
U13-17,014-17
U13-16,U14-16
GND
U13-15,015-15
U13-14,014-14
0U13-13,014-13
Ul3-12,014-12
U13-11,U14-11
Ul2-9

U12-12

U31-12

U36-10

ul12-7

Ul2-4

+5VDC

74F524 REGISTER/COMPARATOR

92

U59-3
U42-4
U42-7
U42-12
U42-9
U43-4
U43-7
U43-12
U43-9
GND
U44-9
GND
NC

NC
U24-15,064-13

16 U24-17
3 17 +5VDC
H 18 U24-17

19 U49-3

20 +5VDC

U-20 74F524 REGISTER/COMPARATOR

1 U50-6

2 U42-4
- 3 U42-7
] 4 U42-12

5 U42-9
i 6 U43-4

7 U43-7
r 8 U43-12

9 U43-9

10 GND

11 U44-9

1z GND

13 NC

14 NC

15 U25-15,064-3

16 U2s5-17

17 +5VDC

18 v28-17

19 U50-8

20 +5VDC

U-21 74F524 REGISTER/COMPARATOR

1 U51-3
2 U42-4
3 U42-7
4 U42-12
5 U42-9
6 U43-4
7 U43-7
8 U43-12
9 U43-9
10 GND

11 U44-9
12 GND

13 NC

14 NC

15 U26-15,064-5
16 U26-17
17 +5VDC
18 U26-17
19 U53-3

93

i

¥ u:ﬁi\.‘-..’.:ala-.c...kwa;;g;; e

20

U-22

Wo-JoOuUvbe WK

U-23

WOWW-JOH U & WN -

+5VDC

74F524 REGISTER/COMPARATOR

U54-6
U42-4
U42-7
U42-12
042-9
U43-4
U43-7
U43-12
U43-9
GND
U44-9
GND

NC

NC
U027-15,U064-9
v27-17
+5VDC
027-17
U54-8
+5VDC

74F524 REGISTER/COMPARATOR

U55~-11
U42-4
U42-7
U42-12
U42-9
U43-4
U43-7
U43-12
U43-9
GND
U44-9
GND

NC

NC
U28-15,064-11
U28-17
+5VDC
v28-17
U57-3
+5VDC

U-24 74F524 REGISTER/COMPARATOR

1 U49-8
2 U44-4
3 U44-7
4 U44-12
5 GND
6 GND
7 GND
3 8 GND
i 9 GND
10 GND
11 U44-9
L 12 GND
13 NC
14 NC
15 U19-15
16 NC
! 17 Ul19-16,U19-18
i 18 GND
19 U49-11
20 +5VDC

U-25 74F524 REGISTER/COMPARATOR

1 Us1-3
2 Ud4-4
3 U44-7
4 U44-12
5 GND
€ GND
7 GND
8 GND
9 GND
10 GND
11 Ud4-9
- 12 GND
13 NC
14 NC
15 U20-15
16 NC
17 U20-16,U20-18
] 18 GND
i 19 US1-6
20 +5VDC

U-26 74F524 REGISTER/COMPARATOR

* 1 5

2 U44-4

95

E 3 v44-7
4 U44-12
5 GND

' 6 GND
7 GND
8 GND

f 9 GND

i 10 GND
11 U44-9

3 12 GND
13 NC
14 NC

. 15 U21-15
16 NC

S 17 U21-16,021-18
18 GND

. 19 U53-11
20 +5VDC

U-27 74F524 REGISTER/COMPARATOR

1 U55-3
2 U44-4
3 u44-7
4 U44-12
) GND
6 GND
7 GND
8 GND
9 GND
10 GND
11 U44-9
12 GND
13 NC
14 NC
15 022-15
16 NC

‘ 17 U22-16,022-18

1 18 GND
19 U55-6
20 +5VDC

U-28 74F524 REGISTER/COMPARATOR

U57-8
v44-4
U44-7
U44-12
GND
GND
GND

GND ~~!‘

GND

WO JAUELE WN -

10
11
12
13
14
15
16
17
18
19
20

U-29

WOOJNhWUNdWwhN -

U-30

1
2
3
4
5
6
7
8
9

8282 LATCH

8282 LATCH

GND
U44-9
GND
NC

NC
U23-15
NC
U23~-16,023-18
GND
U57-11
+5VDC

MISCl1-12
MISC1-13
MISC1-14
MISC1-15
MISC1-16
MISC1-17
MISC1-18
MISC1-19

GND

GND

MISC1-11
U43-11,011-11
U43-14,011-14
U43-5 ,U11-5
U43-2 ,U011-2
U42-11,010-11
U42-14,U010-14
U42-5 ,U010-5

U42-2 ,010-2 —Ji
+5 VDC

MISC1-21 *

MISC1-22
MISC1-23
NC

NC {
NC . 4
NC

NC

GND
GND
MISC1-11 o

NC _d

NC

9 14 NC
s 15 NC
16 NC
17 U44-14,U12-14
P 18 U44-5,U012-5
19 U44-2,U012-2
20 +5 VDC
L U-31 74F157A MULTIPLEXER
1 U39-8
2 MISCi-11
3 U8-25
& 4 U36-11
5 MISC1-4
6 U9-10
7 U36-4
8 GND
_ 9 U36-10
: 10 U8-29 o
11 MISC1-10 ﬂ
12 U36-9
13 U8-32
14 MISC1-9]
15 GND -
16 +5VDC - ‘i
U-32 74F157A MULTIPLEXER
1 U39-8
2 MISC1-3
3 U9-8
4 U36-3 : 4
5 MISC1-5
6 +5VDC
7 U36-5
8 GND
9 U36-13 4
10 U8-15 .-
11 MISC1-13
12 U36-12
13 UB-16
14 MISC1-12
15 GND
16 +5VDC -‘ﬂ
U-33 74F157A MULTIPLEXER
1 U39-8
2 U61-3 -»d
3 +5VDC !

98

7]
4 U36-2
5 MISC1-7
6 Ug8-28
. 7 U36-7
8 GND
9 U36-8
10 +5VDC
11 MISC1-8
12 U36-1
- 13 U38-5
14 MISC1-1
15 GND
16 +5VDC
- U-34 74F245 LATCH
1 MISC1-9
2 U13-2
3 U13-3
4 Ul13-4
5 U13-5
6 Ul3-6
7 U13-7
8 U13-8
9 U13-9
10 GND
11 U36-19
12 U36-18
13 U36-17
14 U36-16
15 U36-15
16 U36-14
17 U36-13
18 U36-12
19 CT1-4
20 +5 VDC
U-35 74F245 LATCH
1 U8-32
2 U8-16
3 U8-15
4 U8-14
5 U8-13
6 U8-12
7 Us-11
8 U8-10
9 U8-9
10 GND 4
11 U36-19
12 U36-18 7

99

U

13
14
15
16
17
18
19
20

-36

WO -JonUt b WN -
= O

e
QWU B WN

N
-

8755 I/0 PORTS

100

U36-17
U36-16
U36-15
U36-14
U36-13
U36-12
U41-8

+5 VDC

U33-12

033-4

U32-4

U31-7

u3a2-7

R-16

033-7

U33-9

U31-12

U31-9

U31-4
032-12,034-18,035~-18
U32- 9,034-17,035~17
U34-16,035-16
U34-15,035-15
U34-14,035-14
U34-13,U035-13
U34-12,035-12
U34-11,034-11
GND

NC

NC

NC

MISC1-24
MISC1-25
MISC1-26
MISC1-27
MISC1l-28
MISC1-29
MISC1-30
MISC1-31
MISC1-32
MISC1-33
MISC1-34
MISC1-35
MISCl-36
MISC1-37
MISC1-38
MISC1-39

+5 VDC

-37 7404 HEX INVERTER

Woo-JoOne W= c

U-38 74154 4 TO 16 DECODER

WO -JOHhWUL & WN -

-39 7474 DUAL D FLIP-FLOP

101

MISCi-11
U65-1

ug-39

U40-1
U37-8,U045-5
U37-9,MISC4-7
GND
U37-5,045-5
U37-6,MISC4-7
U39-1

u7-11

U39-11

U5-13

+5VDC

U66-1
U66-4
U56-13
U58-1
U41-10,033-13
U4-9,03-11
U47-1
U47-3
U47-5
U47-9
U47-11
GND
U47-13
U48-1
U48-3
U48-5
U48-9
GND
U48-12
CT2-28
CT2-27
CT2-26
CT2-25
+5VDC

U37-10
U39-4,+5VDC

U45-6 .__A*
U39-2,+5VDC

oJowuw

11
12
13
14

U-40 7408 QUAD 2-INPUT AND

WO bW =

U-41 7432 QUAD 2-INPUT OR

=P O 00N S W

& W RO

U-42 74F157A MULTIPLEXER

102

U41-13

NC

GND
010-~-1,011-1,012-1,032-1
U31-1,U064-1,CT1-2,033-1
U41-5

U39-13,+5VDC

U037-12

U6-19

U39-10,+5VDC

+5VDC

U37-4
U5-15
U15-20
U8-39
U5-15
Ul6-20
GND
Ul2-11
MISC1-7
MISCl-1
U1l3-19
MISC1-9
U40-8
+5VDC

U8-26
v12-9
U41-4
U41-3
U39-9
Ul4-19
GND
U35-19
UB-26
U3g-5
U9-4
S3

U39-5
GND

B~ "

U ST T SO PN PV TURE SN

WOJRAWN & W=

[y
- o

—
N

s
oUW

U-43

O oOoJAAUTE WK -

U-44

WoOo-Joaunnd wNn PP

e Y
W RO

74F157A MULTIPLEXER

74F157A MULTIPLEXER

103

U60-10
029-19
u8-16
U(19-23)-2
U29-18
U8-15
U(19-23)-3
GND
U(19-23)-5
U8-13
029-16
U(19-23)-4
U8-14
029-17

GND

+5VDC

U60-10
U29-15
U8-~12
U(19-23)-6
U29-14
Ug-11
U(19-23)=7
GND
U(19-23)-9
U8-9
U29-12
U(19-23)-8
U8-10
U29-13

GND

+5VDC

U60-10
030-19
U8~16
U(24-28)-2
U30-18
Ug-15
U(24-28)-3
GND
D(19-28)-11
u9-8
MISC1-3
U(24-28)-4
U8-14

U-45 74121 ONE SHOT

OO~ WUea WwN K

[Py S
INE SN

(W
> w

U-46 7400 QUAD 2-INPUT NAND

W oo~JOoO b WN -

U-47 7404 HEX INVERTER

HWOOJAAUS W

104

U30-17
GND
+5VDC

NC

NC
U45-4,GND
045-31GND
U37-8
U39-3

GND

NC

+5VDC

+80 pf cap
-80 pf cap
NC

NC

+5VDC

U60-8
U60-4
U59-1
U60-8
U60-4
U49-5
GND
U50-2
U60-4
U60~-8
U50-12
060-4
U60-8
+5VDC

v3s-7
U59-1,049-2
U38-8
U49-9,049-12
U38-9
U50-5,050-9
GND
U51-2,051-5
U38-10
U51-12,053-2

~ N

v'—,'" WY

m-, _n!{-;,";‘ OO

e Souial

11
12
13
14

U~-48 7404 HEX INVERTER

WO wh =

——
(e

=
FYWENY

U-49 7408 QUAD 2-INPUT AND

WOoJO WU WN -

U-50 7408 QUAD 2-INPUT AND

WO~ U WN

105

U38-11
U53-9,053-12
U38-13

+5VDC

U38-14
U54-5,U54-9
U38-15
U55-2,055-5
U38-16
U55-12,057-2
GND
u57-9,057-12
U38-17

U4-11

U3-13

NC

NC

+5VDC

U46-3
U47-2
U19-19
U60-12
U46-6
U49-10
GND
U24-1
U47~4
U49-6
U24-19
U47~4
U46-6
+5VDC

U60-12
U46-~8
U50-4
U50-3
U47-6
U20-1
GND
U20-19
U47-6
U46-8

S "R

T

B SR

11
12
13
14

U-51 7408 QUAD 2-INPUT AND

WO O-JN U &

U-52 7400 QUAD 2-INPUT NAND

WooJaanbd W

-
[

e
W

U-53 7408 QUAD 2-INPUT AND

WO h WM

106

U51-1
U46-11
U60-12
+5VDC

050-11
U47-8
U25-1
U46-11
U47-8
U25-19
GND
U51-13
U52-3
U60-12
U21-1
U47-10
U51-8
+5VDC

U60-6
U60-2
U51-9
U60-6
U60-2
U53-5
GND
U54-2
U60-2
U60-6
U54-12
U60-2
U60-6
+5VDC

U52-3
U47-10
U21-19
U60-6
052-6
U53-10
GND
v26-1
U47-12
U53-6

11 026~19
12 U47~12
13 U53-6
14 +5VDC

c
!
w
S

7408 QUAD 2-INPUT AND

U60-12
052-8
U54-4
U54-3
U48-2
U22-1
GND
U22-19
U48-2
U52-8
Us55-1
U60-~2
U60-~6
+5VDC

WO -Jawund wWwN -

o
[

— e
BN

c
[}
w
wn

7408 QUAD 2-INPUT AND

U54-11
U48-4
v27-1
U52-11
U48-4
U27-19 "
GND ‘
U55-13 “‘
U56~3
10 U60-12

11 U23-1
12 U48-6

13 U55-~8 4
14 +5VDC

U-56 7400 QUAD 2-INPUT NAND

WO -JOWUNb W

U60-8

U60-4 "q
U55-9,U057-1
U60-8

U60-~4

U57~5

GND

U34-19
MISC1-7

WOoO~JandwNhn =

107

. 10 U64-2
11 CT2-24
F 12 U56-13,038-3
13 056-12,038-3
14 +5VDC

U-57 7408 QUAD 2-INPUT AND

U56-3
U48-6
U23-19
U60-12
U56-6
U57-10
GND
v28-1
U48-8
10 Us7-6
) 11 U28-19
12 U48-8
13 U56-6
14 +5VDC

WOV H W

i

-58 8259A INTERRUPT CONTROLLER

1 U38-4
2 U60--2
3 U60-6
4 CT2-8
T' 5 CT2-9
6 CT2-10
7 CT2-11
8 CT2-12
9 CT2-13
10 CT2-14
s 11 CT2-15
; 12 NC
13 NC
14 GND
l; 15 NC
’ 16 +5V
17 CT2-22
18 U64-12
‘ 19 V64-4
i 20 U64-6
21 U64-8
22 U64-10
23 GND
24 GND

108

L s

P R o ot SR P B M

' 25 GND
26 CT2-23
' 27 CT2-21
r 28 +5V
, U-59 7408 QUAD 2-INPUT AND
3
L 1 U46-3
4 2 U60-12
3 U59-4
4 U59-3
5 U47-2
6 U19-1
B 7 GND
8 NC
9 NC
10 NC
11 NC
12 NC
13 NC
14 +5VDC
U-60 7407 HEX BUFFER
1 CT2-19
2 U52-(2,5,9,12),03-10
3 CT2-19
4 U46-(2,5,9,12),056-(2,5)
5 CT2-20
6 U52-(1,4,10,13)
7 GND
8 U3-13,046-(1,4,10,13),
U56-(1,4)
9 CT2-20
10 U42-1,043-1,044-1
11 CT2-2
12 U49-4,059~-2,U50-(1,13),U51-10,
U53-4,054-(1,13) ,0U55-10,U57-4 j
13 CT2-20
14 +5VDC
|
U-61 7409 QUAD 2-INPUT AND (OC)
1 MISC1l-2
2 MISC1-7 |
3 U33-2
4 U63-6,U61-5 '“jq
5 U63-6,061-4
109]
— o

.

U-62

WOJOAU bW

=
B WO

U-63

= = O 0 O U B WA R

B> W RO

U-64

oW

7411 TRIPLE-3-INPUT-AND

7432 QUAD-2-INPUT OR

7404 HEX INVERTER

110

MISC1-6

GND

MISC1i-6
U63-3,061~-10
U63-3,061~9
NC

NC

NC

+5vDC

U19-15
U20-15
U62-12
U22-15
U23-15
CT2-5
GND

NC

NC

NC

NC
U62-3
021-5
+5VDC

U65-5

U65-9
U61-9,061-10
U66-5

CT2-5
U61-4,U061-5
GND

NC

NC

NC
NC
NC

NC
+5VDC

CT2-2

U56-10
U20-15
U58-19

a

=

-

ML o 2

at ___gumn

=i = O 0) OV N

BN - O

U-65 7474 DUAL D FLIPFLOP

WO WU bW

U-66 7474 DUAL D FLIPFLOP

OO ~JAAWU bW

MISC1 TARGET PLUG

111

021-15
U58-20
GND

U58-21
U22-15
U58-22
U23-15

Us58-18
ul9-15
+5VDC

U37-2
+5V,U065-4
CT1-24
+5V,U64-2
U63-1

NC

GND

NC

U63-2
05-12

GND

NC

Us5-11
+5VDC

U3g-1
NC
GND
U38-2
U63-4
NC
GND
NC

NC
NC
NC

NC

NC
+5VDC

U33-14
U33-2

U32-2
v31-5
U32-5
U61-8,U61-6
U33-5
U33-11
U31-14
U31-11
U31-2
U32-14,029-1,U013-2
Tr 13 U32-11,029-2,U13-3
14 U29-3,U13-4
15 U29-4,013-5
| 16 U29-5,U13-6
? 17 U29-6,U13-7
H— 18 U29-7,U013-8
19 U29-8,U13-9
‘ 20 GND
21 U30-1
22 U30-2
, 23 U30-3
F. 24 U36-24
25 U36-25
_ 26 U36-26
- 27 U36-27
28 U36-28
29 U36-29
h 30 U36-30
, 31 U36-31
32 U36-32
33 U36-33
34 U36-34
35 U36-35 J
36 U36-36
37 U36-37 -
38 U36-38
39 U36-39
40 +5 VDC
MISC2 CONNECTOR BOARD-1 Jﬁ
1 U33-13
2 U39-8
3 MISC1-7
4 U34-19
g U63-5 _JJ
6 U63-4
7 U9-8
8 U8-9,U6-8,U17-8
9 U8-10,U6-7,U017-7
10 U8-11,U6-6,U17-6
11 U8-12,U6-5,U17-5 _Ji

112

ln

MISC3

1
2
3
4
5
6
7
8
9

CONNECTOR BOARD-2

113

U8-13,U6-4,U17-4
U8-14,06-3,017-3
U8-15,U6-2,017-2
U8-16,06-1,U17-1
U9-2

U8-28

U8-21

Ug8-29

U8-32

U6-19

ug-18

UB-24

U65-15

U6-15

U6-14

Ue-13
U6-12

U29-19
U29-18
U29-17
U29-16
U29-15
U29-14
U29-13
U29-12
U30-19
U30-18
U30-17
MISC1-3

U38-5
U60-11
U56-9
U56-8
U62-6
U66-5
U44-10
U4-12
U4-13
U4-14
U4-15
U4-16
U4-17
U4-18
U4-19
U3-20
U48-13
U3-21
060-1,3
U60-5,9,13

i

s

21
22
23
24
25
26
27
28

30
31
32
33
34
35
36
37
38
39
40

114

U3-10
U58-17
U58-26
U56-11
U38-23
U38-22
U38-21
U38-20
U42-2
U42-5
U42-14
U42-11
U43-2
U43-5
U43-14
U43-11
U44-2
U44-5
U44-14
U44-11

—

e

I T T S R T

v

Appendix C: Software Flowcharts

T

.

= L v

i acoadla mite &AL RS L Wl e tRent. DAl

MATCH ?

YES ASS CONTROL ERROR WITH
P EMULATOR DOWN-
TO EMULATOR LOAD STRING S

Figure 3. Bootup Flowcharts

115

T

oy

> . .. it
PEYRPOR T, Y R TP o o)

ENULATOR

INTEEFACE

YAITING LOOP
OSER MEMORY PARALLEL PORT
FONCTIONS FOUNCTIONS

BREAK CONTROL
CONTROL

Figure 4. Emulator Main Flowchart

116

- " .y
PRI RO IR ST P S

SEND READY TO oP _[RECEIVE START

2-100 DIFECTION ADDRESS AND
o BYTE COUNT

V) —

RECEIVE STARTING CLEAR XMT

ADDRESS BALT TARGET GOTO

CLEAR XMT EMUTATOR MODE

CLEAR CHECESOM mnnﬁeun

SEND READY START TARGET

RECTIVE BYTE CLEAR CHECESUM

INCREMENT BYTR

= _%%!L'

UPDATE CHECKSOM SEND A BYTE

STORE IN BUFFER UPDATE CHECESUM

e >

YES
GET (HECKSUM YES
AND COMPARE
CHECENS SEND

GBT ACENOWLEDGE

;

YES

D NO
SEND NACK
INCREMENT XMT

BN

Figure 5. Emulator User Memory Flowchart

117

T D S D P T O e T B R TR R N R T P S e

SEND READY

0 2-100
SIRP
WRITE 70 READ SINGLE-STRP WRITE TO
ADDRESS 40008 STATUS FLAG ADDRESS 300008
CPDATR
SINGLE-STEP Mm-m
STATTS FLAG L_STATUS FLAC
T
SEND NACX
Figure 6. Emulator Single-step Flowchart

118

SEND READY
10 2-100

WRIIE 10 [/0
ADDRESS 208

CIEAR CHESCM ' WRITE 10 /0
SEND READY ADDRESS 108

RECE'R BREAK UPDATE BREAK
STATUS FLAG
CHECESUM S SEND &K

L_UPOATE THE FLAG

LOAD DATA IN
BREAX REGISTERS

Figure 7.

Emulator Break Control Flowchart

!
4

i Rl a5 (N udPL A0S i T at kil a e e e % w Te e

HARDVWARE
INTERRUPT OCCURS

l'"" INT 2 Nt 3 INT 4 TS
[Mow cen ovio oCH [NT0
LOCATION BUFFER LOCATION BUFFER
LINLPRO | CAIL INT_PRO
i =
WOV 03 INTO Vo
LOCATION BOFFER LOCATION BOFPER | | LOCATION BUFFER
. CALL INT_PRO CALL INT_PBO

Figure 8. Emulator Break Interrupt Flowchart

P R I LA I A g s N ey DA DA

SEND READY
3 10 2-100
3 oPTION DOV
B
ALY TARGET BAT TARGET
BoReT e s mrre
| CLEAR CEECESOM CIRAR CHECESOM
5 — | —3
SEND RRADY SEND READY
GET FORT NUMBER
SEND DATA SeT PoRT
NO r___;i;. .
YES . GET CHECESOM
-<q.:a,g-> AND COMPARR
o CHECESUMS
SKND NACK NO
INCREMENT XMT INCREMENT XMT -<IIE:EII>
Tes
@ No
WHITE DATA 1O
&S SELECTED PORT
SEND ACK

.J

RESTART TARGET RESTAET TARGET

b e

Figure 9. Emulator Parallel 1/0 Flowchart

I

121

v et BB aa e T . - P -

FOR BMULATOR CODE

MalN
EMULATOR PROGRAM
AND CHECESUM

i
o

Figure 10a. 2Z-100 Main Flowchart

122

filo

N —
CALL USER CALL BREAE DISPLAY MAIN
MEMORY MODULE MODOLE MENU
N
CALL PORT
CONTROL MODULE
RETORN 10 CALL TARGET
SKTUP MENU CONTROL MODULE
%kz CALL BRRAK
SINGLE-STEP CONTROL MCDOLR
CONTROL
L —

CALL USER MENORY
CONTROL MODULB

L___ii:L-

CALL CONFIGURE
PARALLEL PORTS

e

3 [

Figure 10b. Z2-100 Main Flowchart

123

b

K

N

ln.

m' e b e wd AL L v . s e T T el

DISPLAY USER GET SELECTION
MENU AND AND STORE THE
CURRENT MENU

OPEN FILE AND

LOAD DATA IN

BOFFER

CLOSE THE FILE SEND BOT

AND CLEAR XMT THEN CHECESOM

COC™TFR

SND ++0 AND NO

PROMPT FOR
RESTART TARCET
Yo OMNAND
YES _No JMT > 3
SEND BYTE
RECORD CHECESUM YES ES
VALCB
SEND RESTART
SIGNAL
S
= -9
ORIGINAL
MENU
DISPLAY RRECR
DURING
oD ‘_q
4
Figure l1la. Z-100 User Memory Flowchart {
124

[~ PRONFT FOR BEQUEST
START AND ADDRESS
ENDING ADDRESS
SEND ++CP AND READ KEYBOARD
- YAIT FOR AND CONVERT
READY SIG) DATA
SEND START AND DISPLAY ENTER
CLEAR CHRCESOM DATA OR RSCAPR
RECEIVE ACK TO END EDIT

SEND BYTE SEND DATA TO
ADD CHECESCM EMULATOR AND
, DISPLAYMENU |
N ¢
YIS
1
SEND CHECSSUM
RECEIVE X
DISPLAY DATA A
i -
L
DISPLAY
ORIGINAL MRNU
Figure 11lb. Z-100 User Memory Flowchart i
T
!
125
|

I SO Sag PR et - S

Bocoin: - g disl =’ Sm 4 e i K ke Ly

-y
‘ DISPLAY CONTENTS GET NEW VALUE P
‘ UPDATE BREAK
! STATUS FIAG
r'-

m

:i

DISPLAY ERROR
DUBING BREAE “
m'?f |
.- DELAY FOR q
30 SECONDS i
|
. |

{ Figure 12. 2-100 Break Control Flowchart

126

, |

Figure 13. 2-100 Parallel Port Flowchart

127

DISPLAY MENU RETURN 1O
GET SELECTION SELECTION ORIGINAL MENU
[) 1
SEND ++S CHECK CLEAR
READY SINGLE-STEP SINGLE-STEP
CLEAR CHECRSUM STATUS FLAG STATUS F1AG
SEND ON F1AG 0F) SEND ++S
AND CHECESUM ‘ FECEIVE READY
1) - A}
RECEIVE ACK SEND ++S SEND CFF FLAG
UPDA RECEIVE AND CHECESUM
| FTRQTE STATUS CLEAR CHECKSUM RECEIVE ACK |
® L ©
SEND
COMMAND AND
CHECKSUM
DISPLAY ERROR RECEIVE ACK
STEP MQLE = OFF DISPLAY TARGET
DELAY 30 SECONDS svsméstm
Figure 14. 2-100 Single-step Flowchart

128

e e

MATCH

UPDATE TARGET
STATUS FLAG

SEND ++T

Figure 15.

2-100 Target Control Flowchart

i o e -

LA LB vk et aneS Tl

Address

FFFFO
7FFFF
707FF
6FFFF
607FF
SFFFF
4FFFF
40000
3FFFF
30000
2FFFF
20001
20000
1FFFF
OFFFF

00FO0
00EQ
00D0
00CO
00BO
00AO
0090
0080
0070
0060
0050
0051
0040
0041
0042
0043
0030
0031
0020
0010
0000

80000
70800
70000
60800
60000
50000
40001

30001

20002

10000
00000

Table 2. Emulator Address Map

Memory Map

Use
Not
Not
U117
Not
Uls8
Not
Not

Used

Used
Monitor Rom
Used

Target Ram
Used

Used

Enable Stepper Mode

Not

Used

Return Stepper to Freerun

Not

Used

Enable Target Mode
Enable Emulator Mode

Not
U1lS

Used
and Ulé Emulator Ram

Break Reg 5b, U28
Break Reg 5a, U023
Break Reg 4b, U027
Break Reg 4a, U22
Break Reg 3b, U26
Break Reg 3a, U21
Break Reg 2b, U025
Break Reg 2a, U20
Break Reg 1lb, U24
Break Reg 1la, U1l9
Serial Data Port
Serial Control Port
Parallel Port A
Parallel Port

Data Direction Reg A
Data Direction Reg B
Interrupt Port 1
Interrupt Port 2
Step Trigger

Break Disable

Break Enable

130

t',‘-.;a. [T e N A S V! SN

Appendix D: Source Code

TITLE EMULATOR BOOTUP PROGRAM

c page 60,132
-

I Z 222X RS2SR 222222222 2222222222222 222222 i 2t 2 8]

This program initializes emulator hardware and downloads

the MAIN EMULATOR program
ERRRR AR RA AR R R RR AR R AR AR AR R AR A RRANR AN AAR AR AR AR AR AR RN AR R A AR Ak h &

~e we we o

r—y
cseg segment q
assume cs:cseqg, ds:cseg, ss:Cseg, €s:Cseg
start: mov ax,cs
: mov ds,ax -1

I 2 X2 S R R X R R R X RS R S R XA RSS2SR RS2 2222222 2R

H
; The bootup program starts here
;**

;halt target

mov ax,4000h :1set es to page ¢ |

mov es,ax

mov es: [bx] ,al :set stepper to step mode :

; (i.e halt target) ;14

;set mode

mov ax,2000h ;set es to page 2

mov es,ax

mov bx,0

mov es: [bx] ,al iset mode to emulator o
;disable break detectors {

out Bk_off,al :set break flipflop to off

;setup 8259A interrupt controller

mov al,13h ;set ICW1
out port0,al
mov al,18h :set ICW2
out portl,al
mov al,0dh ;set ICW4
out portl,al

sinitialize 8251 serial port

131

:

.

L

|

aenieuadiihe M

mov

out

i out
out
mov
mov
m out
mov
out

mov
- out

s we we

mov
test 64k: mov
- mov
mov
mov
mov
mov
inc
cmp
je

mov
mov
inc
cmp
je

jmp
mov
mov
inc
cmp

loopl:

chk_read:
loop2:

inc
mov
inc
cmp
je

no_err:

al,o
51lh,al

51lh,al
51h,al
al,reset
dx,msc_reg
dx,al
al,set_mode
dx,al

al,set_cont
dx,al

dx,0100h

ax,0000nh
es,ax

bx,0

cx,0

al,o

es: [bx],al
bx

bx,0
chk_read
al,0ffh
es: [bx],al
bx

bx,0
chk_read
loopl

bx,0
al,es: [bx]
bx

al,o
no_err

cx

al,es: [bx]
bx
al,0ffh
counter

rol

IE R AR AR R RSS2 22222222 X222 22 X222 222X 2 X

64k Emulator ram test
AR RRERR R R R R R R R AR AR R R AR RARRRRARRRRRARRARRRRRR AR ARR AR R AR R AN R k&

132

;configure 8251A
;put UART into worst
;case mode

;sync mode, with 2
;characters

;reset UART

;set UART for async mode
;odd parity, 8 bit data
;baud factor 16

:set control register as
;transmit & receive
;enabled, DTR* enabled,
;clear error bits,

;set RTR*, no reset or

; hunt

:clear xmt counter and set
stest # to 64k
;setup extra segment

:write all zeroes to ram

;check for all done
;1if done then read
;write all 1's to ram

;read zero bytes

;test data against zero
;skip counter if match is
; found

;read all one bytes

;test data against ones
:skip if match is found

& M

]

A P LI FENG S TR PRI B S T

inc
counter: cmp
jne

CcX
bx,0 ;test for end of memory
loop?2 ;continue if not done

7***t**i**************************t**************************

;look at 64k error count and send ack or nack
;**ttttikttti***************t***********tkt****t**i********t*

mov
cmp
jz
jmp

skip: mov

buf full 1:

- ~ in
test
jz
mov

out
inc
cmp
mov
slow: nop
loop
jne

ax,0 ;compare total errors
CX,ax
skip
error

di,offset ack_stg

al,msc_reg ;read status register

al,tx rdy ;test for empty register

buf full 1 ;loop until UART is free

al, [di] ;load acknowledge character
;signals all clear on ram

data_reg,al ;test to Z100

di :send ++ ack EOT string

al,eot

cx,01ffh

slow

buf full 1

:**

;test user ram memory
;*********************t**************************************

mov

test 2k: mov
mov
mov
mov

loop3: mov
mov
inc
cmp
je
mov
mov
inc
cmp
je
jmp

chk_read2:

dx,0200h ;Clear xmt counter and set
;test # to 2k

ax,6000h ;setup extra segment
es,ax
bx,0
cx,0
al,o ;write all zeroes to ram
es: [bx],al
bx
bx,07ffh ;check for all done
chk read2 ;1f done then read
al,0ffh ;jwrite all 1's to ram
es: [bx] ,al
bx
bx,07ffh ;check for all done
chk_read2
loop3

133

N

i

mov bx,0
loop4: mov al,es: [bx] ;read zero bytes
inc bx
cmp bx,07ffh
je eval
cmp al,o ;jtest data against zero
je no err2 ;skip counter if match is
inc cxX ; found
no_err2: mov al,es: [bx] ;read all one bytes
inc bx
cmp al,0ffh ;test data against ones
je counter? :skip if match is found
inc cxX
counter2: cmp bx,07ffh ;test for end of memory
jl loop4 ;continue if not done

;**

;11ook at 2k user ram error count and send ack or nack
;******************************i*****************************

eval: mov ax,0 ;compare total errors
cmp cX,ax
je skip4
jmp error

skipé: mov di,offset ack_stg

buf full 3:

in al,msc_reg ;read status register

test al,tx rdy ;test for empty register

jz buf full 3 ;loop until UART is free

mov al, [di] ;load acknowledge character

;signals all clear on ram

out data_reg,al itest to 2100

inc di ;send ++ ack EOT string]

cmp al,eot ;when end of string get]

mov cx,01ffh T o
slowl: nop “j!

loop slowl :

jne buf_ full 3 ;jdownload string

e we “we

mov ax,0
mov es,ax
mov bx,0400h

get_char_1:

(2222222222822 22 2222 22 2 222222022222 222 2 o 2d

input string then test for ++ dw eot, download signal
(222 X2 222222 2222222222222 222222 X2 2222222222322 22X 2 XXX X2 X

dov et DI i TV R E R R > - .

8 in al,msc reg ;read status register
' test al,cha?_rdy ;check for a character
jz get_char 1 ;loop until character available
skipl: in al,data_reg ;read character
mov es: [bx],al ;save Z-100 response
cmp al,EQOT
je done
inc bx
jmp get_char_1
done: cld ;test for download string
mov cx,04
lea si,down_ld ;point to download string
mov d4i,0400h ;point to received string
repe cmpsb ;compare strings
cmp cx,0
jne error

AARRR AR AR KRR A AR KRR R AR AR AR R AR AR AR R R RRR R AR R A AR AR R AR A AR AR R A kR b kk

H
; Load the emulator memory
;***************t**

mov dx,0300h ;clear xmt counter and

;set test # to emulator
emul code:

mov ax,0 ;point to page zero of ram

mov es,ax

mov bx,0 ;point to 00000h memory

mov cl,0 ;use cl as checksum register
emul: in al,msc reg ;read status register

test al,char_rdy icheck for a character

jz emul ;loop until character

;available

in al,data_reg ;:read character

cmp al,ETB ;check for end of download

je emul2 ;11f end get checksum

mov es: [bx],al ;store the emulator program

add cl,al ;add to checksum

inc bx

jmp emul .
emul2: mov ah,al ;save first byte of "ﬁ
emul3: in al,msc_req ;terminator

test al,char_rdy

jz emul3

in al,data_reg

cmp al,ETB ;1f yes then end of file - j‘

je emull -

mov es: [bx] ,ah :else save the first data

135

-t e

inc bx
add cl,ah supdate chk_sum
mov es: [bx] ,al ;save second byte
add cl,al ;jupdate chk sum
inc bx -
imp emul
[‘ emull: in al,msc_reg ;read status register
test al,char_rdy icheck for a character
jz emull :loop until character
= ;available
in al,data reg ;read character
cmp cl,al ;test checksum
f jne error

KRR KRR AN KRR AR R AR R AR R AR AR AR AR AR R KRR RN AR AR R RN R ANRR AR RN AR A A ARk Ak

Send acknowledge to Z2-100 for emulator memory download
EAR R AR AR R RN R AR AR R AR R R AR A AR AR AR A RN AN R R AR AR AR R A AR AR AR AR Ak &

L4
-e we wo

mov di,offset ack_stg ;load ack character
buf full 2:
) - in al,msc_reg ;read status register
2 test al,tx rdy ;test for empty register
= jz buf full 2 iloop until UART is free
mov al, [di] ;signals all clear
out data reg,al ;test to host computer
inc di -~ ;send ++ ack EOT st.ing
cmp al ,eot
3 mov cx,01ffh
slow2: nop
loop slow2
jne buf full 2

KRR R R AR KRR RN RRNR AR AR AR R AR R RRARNR AR R NARR A AR A AR AR AR R A A Ak X

Pass control to main emulator program d
I3 32222 XX X2 2 X222 X222 2222222222222 22X X2 2 XS2XX RS X 03

- we we

jmp far ptr emulator ;pass control t¥® main
semulator program

LA XS SRR R R 222222222 222222222 a2 i s s i X 2 2 R a2 SRR *J*

Return negative acknowledge NACK to Z-100
(222222222222 2228222222222 X2 2 X2 22X 2 X2 222222222 X232 X 2]

-s we we

error: mov bx,dx ;save test number and
s;current xmt count value ‘J!
mov di,offset nack_stg ;load nack character

136

errorl: in

test
jz

mov
out
inc
cmp
mov
slow3: nop
loop

jne
mov

inc
cmp
je
cmp
jne
jmp
skip2: cmp
jne
jmp
skip3: cmp
jmp

; infinite loop which waits for a hardware reset

fail: nop
jmp

;***t*****************t**************************************

reset equ
err chk equ
char_rdy equ

tx_rdy equ

set_mode equ
set_control equ
data_reg equ
msc_reg equ

EOT equ
ETB equ
no_ack equ
ack equ
attn equ
nack equ
portB equ
portAh equ

al,msc_reg
al,tx rdy
errorl

al,[di]
data_reg,al
di

al,eot
cx,01ffh

slow3
errorl
dx,bx

dl
dl,03h
fail
dh,01h
skip2
test_ 64k
dh,02h
skip3
test 2k
dh,03h
emul code

fail

40h
38h
02h

0ih

4eh
37h
50h
51h
2fh
1bh
15h
06h
2bh
15h
41h
40h

;read status register
;test for empty register
;loop until UART is free

:;send ++ nack EOT string

;restore test number and
;current xmt count

stest for three attempts
+go to infinite loop

;test 64k sram again

;reset UART code

;code for PE,OF,FE errors
;test for full input
;register ;Jl
;test for empty transmit
;register

;code for mode select
;control parameters
;data register
;mode,status,control reg

:code for end of file ’J!
;end block transfer

;for error during data read
sacknowledge code
sattention definition
;negative acknowledge code !
;8755 port B -
;8755 port A

137

cseg

ddra
ddrb
portl
porto
step
dwn

bk off
bk_on
ack_stg
down 14
nack stg
emulator

equ
equ
equ
equ
equ
equ
equ
equ
db
db
db
dw

org
jmp
org
nop
ends
end

42h ;18755 port A DDR

43h ;8755 port B DDR

31h :8259 port 1

30h ;18259 port 0

20h ;perform step increment
09h sdown direction flag

10h ijdisable break registers
00h renable break incremnet

attn,attn,ack,eot ;ack string
attn,attn,dwn,eot ;down next from Z-100
attn,attn,nack,eot ;negative ack string

0400h,0000n ;emulator starting address
7f£0h
far ptr start igo to top of program
7ffh
start
p
138

e

TITLE EMULATOR main program

;7 This program must be downloaded tc page zero of the
;7 emulator address space to be functional.

cseg segment
assume cs:cseg,ds:cseg,ss:cseg,es:cseg
org 0
—_ db 0
org 0400h
start: mov ax,cs
mov ds,ax
(N mov ax,0effh ;ss address
mov Ss,ax ;set stack
mov ax,1000h ; segment
mov sp,ax
;setup stack
. ;vector
mov bx,0
mov di,0020h ;type 8 IP
mov ax,offset type8
mov [di] ,ax
mov di,0022h
mov (di] ,bx ;cs to 0000 *
- -
mov di,0024h ;type 9 1P
mov ax,offset type9
mov {di] ,ax
mov di,0026h
mov [di] ,bx ;cs to 0000 _Jﬂ
mov di,0028h ;type A IP
mov ax,offset typeA
mov {di] ,ax
mov di,002Ah
o mov [@ai] ,bx :cs to 0000 _4
mov di,002Ch ;type B IP
mov ax,offset typeB
mov [di] ,ax
mov di,002Eh ;
) mov [di) ,bx ;cs to 0000 o
mov di,0030h 1type C IP

I
mov ax,offset typeC
mov {di),ax
mov di,0032h
n mov [di],bx ;cs to 0000
jmp waiting
;******t***i*t*t'k*******t************t*******i***********t***
reset equ 40h ;reset UART code
err_chk equ 38h ;code for PE,QOF,FE
;errors
char_rdy equ 02h ;test for full input
-— ;jregister
tx_rdy equ 04h ;test for empty
;transmit register
set_mode equ Seh ;jcode for mode select
cet_control equ 37h ;code for control
;parameters
r data_reg equ 50h ;data register
: msc reg equ 51h
- ;mode,status,control
;register address
EOT equ 2fh ;code for end of
1file
nack equ 15h ;code for error
I ;during data read
ack equ 06h ;acknowledge code
plus equ 2bh ;attention definition
rd err equ 18h ;serial read error
- ;code
rdy equ lah ;ready code
- porta equ 40h ;18755 port A
portB equ 41h ;8755 port B
ddra equ 42h ;8755 port A DDR
ddrb equ 43h ;8755 port B DDR
portl equ 31h ;8259 port 1
port0 equ 30h ;18259 port O
step equ 20h ;perform step
;increment
down equ 09h ;down transfer
;direction flag
. up equ 08h sjupload direction
;flag
on equ 4eh ;on flag
off equ 4fh ;off flag
bk off equ 10h ;disable break
- ;registers]
: bk_on equ 00h ;enable break g
i ;detectors
140
o
—~

ack _stg

down_1ld

nack_stg
user_ stg
break_stg
step_stg
port_stg
mode_stg
rdy stg
emulator
target
brk_stat
user

brk buf
work
mode_flg
step flg
u_start

byte_ num
temp_buf

chk_sum
xmt

int_brk num

break la
break_1b
break_2a
break_2b
break_3a
break_3b
break_4da
break 4b
break 5a

déb

db

db

db

db
db
db
db
equ
equ
db
db
aw
db
db
db
dw

dw
db

db
db
db

equ
equ
equ
equ
equ
equ
equ
equ
equ

2bh,2bh,06h,2fh

sacknowledge string
2bh,2bh,09h,2fh

;data from 2-100

;next
2bh,2bh,15h,2fh

;negative ack string
2bh,2bh,55h,2fh

;user memory function flag
2bh,2bh,42h,2fh

;break function flag
2bh,2bh,53h,2fh

:stepper function flag
2bh,2bh,50h,2fh

;port function flag
2bh,2bh,4dh,2fh

;mode function flag
2bh,2bh,lah,2fh

;ready response string
0
1
?

ibreak is initially off
2049 dup (?)

;user memory buffer
5 dup (?) :

;break address buffer
100 dup (?)

;working buffer area
? ;mode flag

;00=emulator, ff=target
? iflag for step or freerun

;00=freerun, ff=stepper
? ;jctarting address

;of user memory download
? ;byte count storage
10 dup (?)

;ruser read buffer
? ;checksum count buffer
? sretransmit count buffer
? ;interrupt type buffer
60h jregister 1 part A
70h ;register 1 part B
80h ;register 2 part A
90h jregister 2 part B
0AOh ;register 3 part A
0BOh ;jregister 3 part B
0COh ;register 4 part A
0DOh :register 4 part B
0EOh ;jregister 5 part A

141

break 5b equ OFOh ;register 5 part B

22 SRR3R RS2 2222222 2222222222222 2 2 81

This macro compares the contents of two strings. The source
and destination offset must be provide and the CX register

must contain the string length. For a match the AX register
will return zero. Any other value means no match.

e WE we We We W wo wo

AEXRRAR R AR R K AR R R AR A R A A A A R R A AR R KT R R A A A AR ARAARAARN AR A A AR A ARk

compare macro stringl,string2

push si

push di

push cX

cld

mov cX,4

lea si,stringl ;point to input string

lea di,string2 ;point to test string

repe cmpsb ;compare strings

mov ax,cx ;set al to the value of
] ;cx. If cx equal zero

:strings match

pop cx ;restore original string

pop di ;length

pop si
: endm

AR RRR R KRR R R R R R R R R R R R AR AR R R AR RN AR R RR AR ARRR AR AARE AR R AR A AN R AR

This macro sets the user memory U-18 to either the emulator
access or target access.

we we ne we w8 o

(2 S 2R 2RSSR R 22222 23222222 X222 2 2R X2

ulg8 to macro system
push ax
call set_step ;halt the target o
mov al,system -
mov mode_flg,al ;iset mode flag
call mode
pop ax

endm

L2222 AR Rt R Rt 222222222222 XX X2 2 X

This macro clears the memory location designated as "slot".

~e wp wme we wg

ARA KRR AR R AR AR AR RN AR AR AR AR ARRRAARRN AR ARARRR R AR RRARR AN AR AR AR AR A&

clear macro slot
mov slot,0
endm

A2 AR RR SRR R R R i a2 2 s 222X 22222222 X2 X £

This macro transmits the designated flag to the Z-100.

e we we we we

L2 S22 RRRRRRRRRdRRR Rt t2222RRZ22RSRX2E22 222222 X2 X 21

send macro flag_name

lea di,flag_name
call send flag

endm

L2222 RR 2R R 2222 222222 2 2 X222 XXX RX X R 8 -

This procedure sets and resets the mode flipflop.
The mode is determined by the value in the mode flag,
which must be set prior to calling this procedure.

we We WO We we we wo

RRERRAR AR A RR R R AR R AR R AR R RA R R R R R R AR RRARRRRR AR AR A AR R AR ARk R - ‘!
mode proc near
push ax]
push bx —
mov bx,0 ;Clear bx ——!!
mov ax,2000h ;set es to page 2
mov es,ax
mov bl,mode flg ;set IP
mov es: [bx],al ;set mode to emulator bl=0h
;or target bl=01h ' ‘
pop bx)
pop ax 4
ret
mode endp 1

;t*t**i***************tt****************************t**t*****

143

i Gt e e M b, e 0 T

FC S SN

.S W NE Wwe w8 we

get_flag proc
push

mov
mov

morel: call
mov
cmp
je
inc
inc
jmp

all done: pop
ret
get flag endp

we e WP we we we e

send_flag proc
push

continue: mov
call
cmp
je
inc
jmp

return: pop

ret
send flag endp

-e we

This procedure reads in a string of characters from the
serial port and stores it in the working buffer. The string
length is returned in the CX register.

RRR R R R R R R R R R R AR R AR R AR RN R R AR R AR A AR R R R A RARRARRRAAANRARR A A AR AR AR A&

near

di

di,offset work ;point to working buffer
cx,0 ;clear character counter
serial rd ;jread serial port
[di],al ;save data

al,eot ;check for end of string
all done

di

cx ;at the end of the string
morel ;cx contains the count
di

AR IR AR KRR AR R R R R R AR R A RAR R RN RR AR AR RRRARNARAA AR R AR A AR AR A AR ARtk

This procedure sends a string of characters from the
serial port to the 2-100. The string offset must be
in the DI register when the call is made.

LA X R RS AR 22222 222 2 2 i i s X 2 2 2 2222222222222 2}

near

ax

al,[di] ;load a byte of data
serial_wr ;transmit the data
al,eot ;check for end of string
return

di ;point to next byte
continue ;repeat process

ax

AR R R R R R R AR AR R AR RN R AR R R AR AR AR R R R AR AR R AR RR AR R A AR R AR AR Ak ok

144

—

we we we wo

set_step proc

£ push
push
mov

R)
3
3]
<

pop

ret
set_step endp

A
33
00
< <

. NE we “e we we

freerun proc

push
push
mov
mov
mov
mov
mov
pop
PoOP

ret
freerun endp

we we we wo we

i. inc_step proc

This procedure sets the emulator to the single-step mode
and updates the stepper status flag

|2 3222222822222 2822222222222 2222222222222 22 22 2222222222222)

near

ax
bx

bx,0
ax,4000h

s . AaAx

eg,ax
es: [bx],al
bl,0ffh
step flg,bl
bx

ax

;set es to page 4
;set stepper to step mode

;set step flag to ff = step

(2222222222222 AR 2R 222222222222 222228222 R

This procedure sets the emulator to the freerun mode and
updates the stepper status flag

RERRKRARRARRRRER R R AR R A ARRN AR R A RAR AR AR AR AN A AR AN AR A AR A AR AN ARk

near

ax
bx

bx,0
ax,3000h
es,ax

es: [bx],al
step flg,bl
bx

ax

;set es to page 3

;set stepper to free run
;set flag to 00 = freerun

(222222222222 RS2 RRi2 R 2224222222222 222222 22222t]

This procedure simply pulses the target ready line.

22222222222 2222222222222 2222222222220 2222222222 X222 Rt 2]

near

145

inc_step

e W we we ws o

brk_off

brk_off

we wme wo we we we

brk _on

brk_on

Ne WE We Ne We Ne we wo

load

out step,al ;pulses the target step
;circuit

ret
endp

2222222222222 222222222 22 222222222222 X222 2222 X

This procedure disables the break detectors and
updates the break status flag

RERAR KA R R R R AR R AR AR R AR AR R A AR AR AR R R AR AR R AR A RN R AR A ANAR R AR TR R AR AR

proc near

push ax

out Bk_off,al ;set break flipflop to off
mov brk stat,off ;store break status

pop ax

ret

endp

I E AR AR RS R RaRER AR R R aX 2 i A X2 X222 X322 2 2

This procedure enables the break detectors and
updates the break status flag.

LA S22 S X222t 22228222 222 i 2 2 i Rt R R 8 2

proc near

out Bk on,al :set break flipflop to on
mov brk_stat,on ;store break status

ret

endp

L2 2 AR RS R 222222 RS2 222222222222 R222s 2

This procedure moves the data pointed to by "Start" and the
amount specified by "Byte" from the user buffer to the
target ram in the same locations. Start and byte# must be
updated prior to the call.

L2232 RS2 2222222222222 222 X2 2 3222222222 22X22 2222222322 X

proc near
push ax
push bx

146

ot At e it o U RS N i L KK . e

push
push

cld
mov
mov
mov

mov
mov
add
repe

pop
pop
pop
pop

ret
load endp

“e we we we we we

user_rd proc

push
push
push
push

Cclear
mov
mov
mov
mov
mov
mov
rd_loop: mov
mov

add
inc
inc
loop

inc
mov

cX

dx

ax,6000h ;point to user ram

es,ax

di,u start ;set starting address of
- ;jmemory in target ram

Ccx,byte_num ;number of bytes to move

si,offset user ;point to starting address

si,u_start ;of user buffer data

movsb ;transfer data

dx

cX

bx

ax

LA S AR RS LSRR 2 22222 022222 22 X2 2 2 2 st 2 e)

This procedure retrieves a specified of number bytes from
user memory and places them in the temporary buffer

LA 2RSSR 22222 X2 XX 22 22 X2 222 22220222222 2222222222222 2

near

ax

di

bx

CcX

chk sum

ax,6000h ;point to user memory

es,ax

cx,0

CX,byte num :load byte counter

bx,offset temp buf ;setup temporary buffer

di,u start ;at the specified location

al,es: [di] ;read the byte

[bx],al ;put data in the holding
sbuffer

chk_sum,al ;update checksum

di

bx

rd_loop

bx :tack on the eot to buffer

al,eot

mov
pop
pop
pop
pop

ret
user_rd endp

we we we “~o

~e ws we

in_8755 proc
push
ul8_to
in
mov

ul8 to
call

pop

ret
in_8755 endp

Ne We we W we we w3

out_ 8755 proc

ulg_to
out
ulg to
call

ret
out_8755 endp

[bx],al
cx
bx
di
ax

AER AR R R R R A AR R AR KRR AR AR AR AR AR R A ARN AR A ARNRNRRR AR R RN A AR AR A AR RN AR

This procedure reads the 8755 ports A and B, and returns
the results in the AL register. Which port to read is
placed in the DX register prior to the call.

LA A S SRR SRR X 22 2 X i X i s s 2 22 2 2R 2 XXX X"

near

ax

emulator shalt target

al,dx ;read 8755 port

chk_sum,al ;save data in checksum
;because in this case
;data = checksum

target ;restart target

freerun

ax

122 R R R 2R X222 222 222 22222 X222 X

This procedure performs output operations to 8755 data and
data direction ports. The port to access is loaded in DX
and the data out is in AL prior to the call.

1222 R R R X2 22222 X222 X 22 22 R 2R X222 X222 22

near

emulator shalt target

dx,al ;write to 8755 port
target ;restart target
freerun

148

(2222222222222 X R g 2 s R 22 X2 2 2222 22 fX22 X222 22222 X 23

This procedure performs a serial read of port 50h. The
data is returned in the AL register. Each data read is
preceded by a status check of the receiver.

w6 We We WO “we we we

REERRR AR R R R RN AR AR R AR R AR AR AR R R AR KR AR RARRR A AR RRARR R AN AR AR R R AR AR

serial_rd proc near
push dx
. get_char_1:
- mov dx,msc_reg
in al,dx ;read status register
test al,char_rdy icheck for a character
jz get char 1 ;loop until character
;available
test al,err_chk icheck for errors
jnz exit
mov dx,data_reg ;read data byte and return
in al,dx ;in al register
jmp exitl
exit: mov al,rd_err ;set read error
;flag
cail serial_wr
jmp get_char 1
exitl: pop dx
ret

serial_rd endp

LA AR RS2 RS R 2R 22222222 R22222 2222222 2222222228322 222 23

This procedure performs a serial output to port 50h. The :]i
data to be transmitted must be in the AL register prior

to the call. Each data output is preceded by a status check
of the UART to ensure its availability.

WE WO W NS Ne Ne we e

(2222222822222 22 X222 22X 22222222 XX 22X XXX 2SXRTXXR XXX
serial wr proc near *ji

push ax ; save data

buf full 1:
in al,msc_reg iread status register j‘
test al,tx rdy ;test for empty transmit -
;register

jz buf full 1 ;loop until UART is free
pop ax ;restore data
. out data_reg,al ;pass the data to 2100
ret
serial_wr endp
:****t******t*tt********************t*t*****t*********ttt****
) ; This procedure loads the break detection registers. The
; Dbreak detect address buffer must be loaded prior to the
; call.
_“ ;******************************t************************t****
brk_addr proc near
push di
push dx
C push cX
mov cx,0Ah
mov di,offset brk buf ;point to break address
;buffer
mov dx,60h ;load first break address
. nextl: mov al, [di] ;output one byte of
;address
out dx,al ;at a time. Two bytes are
s:required for each address
inc di
add dx,10h ;move to next byte
- loop nextl
pop CcX
pop dx
pop di
ret
brk_addr endp
;*********************************i*******t*t*************'k**
;
. ; This procedure handles all emulator functions involving !j
; the user ram Ul18. The user code may be downloaded or the
; user may upload up to ten consecutive bytes.
;*****t******t**t***t
' user_pro proc near !*
send rdy stg ;send the ready string
150]#
—a d

b k3 r ~ e A . -
E:u Ok g el Al A B A el ae ot
{

L

-

leap:

user loop:
K

continuel:
m

no_more:

call

compare
cmp

je

jmp
call

mov
call
mov
mov
clear

Clear
call
mov
call
mov
mov
Xor
send

lea

add

call
mov

add
inc
cmp
je
inc
jmp
call
jmp
cmp
jne

send
ul8 to

call
ul8 to
call
jmp

get flag

work,down_1d
al,o

leap

up_data

serial rd

bh,al
serial_rd
bl,al
u start,bx

xmt

chk_sum
serial rd
bh,al
serial_rd
bl,al

byte num,bx
bx,bx

rdy_stg
di,user

di,u_start

serial _rd
[di] ,al

chk sum,al
bx ~
bx,07ffh
no more
ai
continuel

serial_rd
johnny
chk sum,al
retrans

ack_stg
emulator

load

target
freerun
exit_user_ pro

151

;get the direction flag
:for next operation
;if equal go to upload

;else download was
;requested

;get high byte of user
;start address

;move high byte to AH

1store the starting address
;clear retransmit counter

:clear check sum
;get byte count

;point to top of user
sbuffer

;point to starting location
;of desired data move

;get the data
:store the data in the

;suser buffer
rupdate check sum

;if all done test chk_sum

;get checksum

1 test checksum

;send Z-100 the acknowledge
;allow access to user ram

;move data to user memory
;restart target

;return to waiting loop

N . IS i N
B S T N N

we We we We we we W

P step_pro

proc

near

sincrement xmt counter
;1f three tries exit

sinform 2-100 bad data
;was received

;get high byte of user
;start address

imove high byte to AH
istore the starting address
;get number of bytes
;desired

sand store it

;Clear retransmit counter
;grants emulator access
;get the specified bytes
;and store in buffer

;restart target

;upload Jdata
;send check sum

;read Z-100 response
:1f not ack then error
;transaction complete, exit

sincrement xmt counter
;if three tries exit

;was received

L2 2SS AR R R R RS RR R iR s XXX 2 X2 X228 2

retrans: add Xxmt,1
cmp xmt,3
je exit_user_pro
- send nack_stg
e jmp user_loop
up_data: call serial rd
- mov bx,offset u_start
- mov [bx]+1,al
call serial rd
mov ibx],al
: call serial_rd
mov byte num,ax
clear Xmt
, ul8 to emulator
E call user_rd
call freerun
retransl: send ack_stg
send temp_buf
. mov al,chk_sum
‘ call serial wr
call get flag
compare work,ack_stg
cmp ax,0
jne skip_it
jmp exit user pro
- — —
skip_it: add Xxmt,1
cmp xmt, 3
je exit_user pro
jmp retransl
exit user_pro: ret
user_pro endp
-

This procedure enables or disables the single-step
function and updates the single-step status flag. It
also steps the target upon demand.

LA AR SRS AR R AR R s R S22 2222222 X2 2 2 2

send
call

cmp
-. jne
: call
jmp

skip_over:
cmp
jne
- call
jmp

skip overl:

cmp
. jne
— cmp
jne
call
jmp

step nack:
- send
‘ jmp
exit step pro:
- “send

out pro: ret
step_pio endp

we We wa we we we “o

port _pro proc

send
call
cmp
jne

call
cmp
jne
mov
jmp
read_portb:
mov
read porta:
- call

rdy stg
serial_rd
al,on

skip over
set_step

exit step pro

al,off

skip overl
freerun
exit_step pro

al,step
out_pro
step_flg,on
step nack
inc_step

exit step pro

nack stg
out_pro

ack_stg

near

rdy stg
serial rd
al,up
wr_port

serial_rd
al,porta
read_portb
dx,porta
read_porta

dx,portb

in_ 8755

153

;send ready
;get desired mode
;check for turn on

;set to single-step

;check for turn off

;set to freerun

;check for step
;jmakes sure in single step

;step the target

;return nack signal

;return ack signal

(A2 2RSSR 2222222 22222222222 2222222222 R XXX R R 8 X/

This procedure reads or writes the 8755 I/0 ports and
writes to the data direction ports. The success or
failure of each transaction is returned to the Z-100.

A2 S R E R RS2SRRSR 22222t 2R R R2 R 2 2]

;return ready

;test direction flag
sbranch on down flag

;get port number
;test for port A read

;point to port B

;read port A data

—Y

|

clear
retrans3: send
mov
call
mov
call
mov
call
call

compare

cmp
jne
jmp
bad _try: add
cmp
je
jmp

wr port: clear
retrans4: clear
send
mov
get more: call
mov
cmp
je
add
inc
jmp
thats_it: call
cmp
jne

mov
mov
mov
inc
mov
call
send

jmp
too_bad: send
add
cmp
je
jmp
exit _port pro:

port_pro endp

xmt

rdy stg
al,chk_sum
serial wr
al,eot
serial wr
al,chk sum
serial wr

get flag
work,ack stg
ax,0 -

bad try

exit port pro
xmt,1 -
Xmt,3

'Xit port pro
retrans3

xmt
chk_sum
rdy stg
di,offset work
serial rd
[di] ,al
al,eot
thats_it
chk_sum,al
di

get more
serial rd
al,chk sum
too_bad

di,offset work
dx,0

dl, [di]

di

al, [di]

out_ 8755

ack stg
exit_port_pro

nack stg
xmt,1

Xmt,3

exit port pro
retrans4

ret

154

schecksum = data here
;send data to Z2-100
;send eot

:send checksum

;get response

;data transferred
;increment counter

;return ready

;point to working buffer
;read serial port

;save data

;check for end of string

;get checksum

;Clear dx
;point to port number

:load data byte
;send data byte

;return nack signal
;increment counter

Ia

we We we we we we wo

break_pro proc

push
push

send
call
cmp
jne
call
send
jmp
chk _off: cmp
jne
call
send
jmp
load _brk: mov

clear

load brk 1:
send
mov
mov

next brk: call
mov
add
inc
loop

all here: call
cmp
jne

call
call
call

send
jmp
no_good: send

clear

add
cmp
jne
exit break pro:

detection circuits.

near

ax
di

rdy_stg

serial rd
al,on
chk_off

brk on

ack_stg

exit break_pro
al,off

load brk
brk_off

ack stg
exit_break pro
xmt,0

chk_sum

rdy stg

LE2 RS R RS2SR 22222 R 222222222 2822 X222 X X2

This procedure enables or disables the emulator break
It also downloads the break address
file from the Z2-100 and loads it into the break registers.

L2522 RS2 RS 2RSSR 22 X222 22X 222X 22X 22 R 3

;return ready
sget instruction
;check for turn break on

;turn break on
;return ack signal

;check four turn break off

;turn break off
;return ack signal

;get break addresses

di,offset brk buf ;setup break address

cx,10
serial rd
[di],al
chk_sum,al
di

next brk
serial_rd
chk_sum,al
no_good

brk_off
brk addr
brk on

ack stg
exit_break_pro
nack_stg
chk_sum

xmt, 1

Xmt,3
load_brk 1

155

sbuffer
:1get byte
:store data

:1get checksum
;and test

:disable break circuits
;load break registers
;enable break circuits
;return ack signal

;return nack signal

b AU SRR R e A S N

pop di
pop ax

*' ret

break_pro endp

KRR AR AR AR AR RN AR AR R AR A AR R RN R AR R RN R AR R R AR R AR R AR R AR RN AR AR AR A AR

This procedure processes the emulator break detect

- H
f ; interrupt response. The break address type number is
; passed to the Z-100. The break condition is cleared and
; the break circuits restarted on command.
— ;*******************t**t********t*****t**********************
brk_handler proc near
clear Xxmt
retransll:
send break stg
K call get flag
compare work,ack stg ;get the ack signal
cmp ax,0
jne retransll
. mov al,int_brk num ;get the type number
] mov chk sum,al
call serIal_wr ;send break type
mov al,eot
call serial wr ;send eot
mov al,chk_sum
call serial_wr isend checksum
-
call get flag
compare work,ack stg ;get the ack signal
cmp ax,0 -
je donell)
add xmt, 1 _J‘
cmp xmt,3
jle retransll :
donell: ret ‘
brk_handler endp —;
-

;********t*********************t*****************'k***********
[RAAE SRR R RRS X2 R RS2 2222 X2 XXX XXX X2 X R

function is to monitor the Z-100 and call the approriate _Jg

’
; This is the main waiting loop of the emulator code. Its
;
; subroutine to handle a given request.

156

.
4
-
r

waiting:

more_w:

all _in:

skipl:

skip2:

skip3:

type8:

type9:

mov
mov

call
mov
cmp
je
inc
inc
jmp

compare
cmp

jne
call
jmp

compare
cmp

jne
call

jmp

compare
cmp

jne
call
jmp

compare
cmp

jmp
call
imp

mov
call
iret

mov
call
iret

di,offset work
cx,0

serial rd
[di],al
al,eot
all in

di —

cx

more_w

work,user_stg
al,o

skipl

user pro
waiting

work,break stg
al,o

skip2
break_pro

waiting

work,step stg
al,o

skip3
step_pro
waiting

work,port_stg
al,o

waiting
port_pro
waiting

int_brk num,08h
brk handler

int_brk_num,09h
brk handler

157

AR R KRR AR AR AR AR AR AR RN AR AR AR AR AR R AR R AR R AR R AR A AR AR R AR A AR A kR ko

;point to working buffer
;clear character counter

;read serial port

;save data
;check for end of string

;at the end of the string
;CX contains the count

sdetermine which instr
swas received
;pass control to user

;memory module, the return
;main waiting loop

;pass control to
;break module

;pass control to stepper
s;control module

;pass control to port

;control module

;set pointer

;set pointer

typeA:

typeB:

typeC:

cseg

mov
call
iret

mov
call
iret
mov

call
iret
ends

end

int_brk_num,0Ah
brk_handler

int_brk_num,0Bh
brk_handler

int_brk_num,OCh
brk handler

158

;set pointer

;set pointer

:set pointer

TITLE EMULATOR Z100 CONTROL PROGRAM

page 60,132

dseg segment

;define varibles and labels
;******t**tt*t***t*****t***************t********t***t**i****
cls db 26 dup (13,10), "s"

xlat_ascii_char_2 hex_value label byte ;hex lookup table

db 48 dup (0ffh),0,1,2,3,4,5,6,7,8,9
db 7 dup (0ffh),0ah,0bhk,0ch,0dh,0eh,0£fh
db 26 dup (0ffh),0ah,0bh,0ch,0dh,0eh,0£fh
db 153 dup (0£ffh)
ascii_table label byte :ascii lookup table
db 30h,31h,32h,33h,34h,35h,36h,37h,38h,3%h
db 41h,42h,43h,44h,45h,46h
db 31h,15 dup (?),32h,15 dQup (?),33h
db 15 dup (?),34h,15 dup (?),35h,15 dup (?)
db 36h,15 dup (?),37h,15 dup (?),38h
db 15 dup (?),39h,15 dup (?),41h,15 dup (?)
db 42h,15 dup (?),43h,15 dup (?),44h
db 15 dup (?),45h,15 dup (?),46h
cr equ 13
1f equ 10
EOT equ 2fh ;code for end of file
ETB equ 1bh ;end of block transfer
nack equ 15h ;code for error
;during data read
ack equ 06éh ;acknowledge code
plus equ 2bh ;attention definition
err flg equ 18h ;error code
rdy equ lah :ready code
portA equ 40h ;8755 port A
portB equ 41h ;8755 port B
ddra equ 42h ;8755 port A DDR
ddrb equ 43h : 8755 port B DDR
step equ 20h ;perform step increment
down equ 09h ;down transfer direction
:flag
up equ 08h supload direction flag
on equ 4eh ;on flag
off equ 4fh ;off flag
bk off equ 10h sdisable break registers
bk_on equ 00h ;enable break detectors
159

ack_stg
N down_1d
| nack_stg
- user_stg
L break_stg
g step_stg
port_stg

mode_stg

,'—r-'ﬁ"“

rdy_stg
emulator
target
user_code
char_ct
user_file
filnam
user

brk buf
work
mode_flg
break flg
step_flg
u_startl
u_start
u_stop
byte_ num

temp_buf

db
db
db
db
db
db
db
db
db
equ
equ
label
db
db
db
db
db
db
db
dw
db
db
db
dw
dw
dw
dw

label

2bh,2bh,06h,2fh

;acknowledge string
2bh,2bh,09h,2fh

;data from 2-100 next
2bh,2bh,15h,2fh

;negative ack string
2bh,2bh,55h,2£fh

;user memory function flag
2bh,2bh,42h,2£fh

;break function flag
2bh,2bh,53h,2£fh

;stepper function flag
2bh,2bh,50h,2£fh

;port function flag
2bh,2bh,4dh,2fh

;mode function flag
2bh,2bh,1lah,2fh

;ready response string

Oh ;emulator identification
0lh ;target identification

byte ;user filename buffer
(?) smaximum length
(?) ;actual length
15 dup (?) :filename
sbuffer for user filename

'EMULATOR.BIN', 00
;filename for emulator
2048 dup (?)
(?) ;user memory buffer
10 dup (?)
sbreak address buffer
? ;working buffer area
?
sflag for target or
;jemulator

;break circuit status flag
;on or off
? ;on or off
;0ff = freerun, on =
;: stepper

? :starting address of user
;memory download

? ;stop address of user

;memory download

;byte count storage

LY

byte ; temporary

db (?) ;user read buffer

‘ bytes_in db (?)

h byte 1 db 10 dup (?)
view_buf db 5 dup (" ")
view_addr db 3 dup (?)

db 10 dup (" ")
view_data db 2 dup (?)

db cr,1£,"s"
msg buf db 10 dup (?)

- ;string control buffer
porta_sto db (?) ;parallel port holding
portb sto db (?2) ;buffers
ddra_sto db (?)
ddrb sto db (?)
chk_sum db ? ;Chksum buffer
Xxmt db ? ;retransmit count buffer
addr_hold dw ? ; temporary buffer
break 1 dw ? ;register 1 part A

;register 1 part B

break 2 dw ? ;register 2 part A
;register 2 part B

break 3 dw ? ;register 3 part A
- ;register 3 part B
break_4 dw ? ;register 4 part A
;register 4 part B

break 5 dw ? :register 5 part A
;register 5 part B

; message definition area

;i**************'k************'k******************************

disk_err db "Disk read error: Emulator.bin "

db "must be on the default drive",cr,1f,"$"
port_err db "Port circuit did not respond”,cr,1lf,"$"
chg_ddr db cr,1f,"Change DDR (y/n}): ","s$"
step error db "Step circuit did not respond”,cr,1f,"S$"
bad_step db "Stepper must be enabled",cr,1f,"S$"
stepped db "Step Action Complete",cr,1£f,"S$S"
ddr_out db "DDR downloaded",cr,1£,"s$"
port_cont db cr,1f,1f,"Selected port content is: "
port view db (?)

. 161

db cr,lf,"s"

port_data db cr,1f,"Please enter the port data :","$"
' port_hold db ?
|- brk _head db cr,1f,1f,"Current break address listing"
db cr,l1f,cr,1f
db "Break Number®,10 dup (™ ")
db "Break Address",cr,1f,cr,1£,"s"
* view brk label byte sbreak display format
3 db 5 dup (n ")1"1"120 dup (n n)
brk_addrl db 3 dup (?),cr,1f
E db 5 dup (u "),"2",20 dup (n n)
: brk_addr2 db 3 dup (?),cr,1f
db S dup (l' ll)'ll3"'20 dup (ll ")
brk_addr3 db 3 dup (?),cr,1f
db 5 dup (" "),"4",20 dup (" ")
brk_addr4 db 3 dup (?),cr,lf
. db 5 dup (n ll)'llsll’zo dup (ll n)
h brk_addr5 db 3 dup (?),cr,1f,"S"
edit data db "Enter data for location "
location db 3 dup (?)
db "oy M Ngh
view_head db "User memory buffer contents",cr,1f,cr,lf
' db " Address Data",cr,l£,"s"
view nr db cr,1f,"Please enter the last address to view"
db cr,1f,"Note: Maximum length is 20 bytes!|"
db cr,1£," 2 »,"g"
l. edit_nr db cr,1f,"Please enter the last address to edit"
db cr,1f,"Note: Maximum length is 10 bytes!!"
db cr,lf," : l"llsﬂ
$ dw_err db "ERROR :: During memory download !!!"
db cr,1£,"s"
dw_brk_err db "ERROR :: During break download !!!"
db cr,l1£,"s"
start_addr db cr,1f,"Please enter the starting "
db "address as (XXXh): ","s"
stop_addr db cr,1f,"Please enter the ending " "{
db "address as (XXXh): ","s" 1
file db cr,1£,1£,10 dup (" ")
db "Please enter the name of your file,"]
db cr,1£,10 dup (" ") _.q
db "this must be a binary file: ","s$" i
162

data_out db "User Memory has been downloaded",13,10,"S$"

bad_sel db cr,1£,10 dup (" ")
db "Invalid Selection : Enter <return>","$"
enter_ 3 db cr,1f,"Enter 3 hexidecimal digits only!"
db cr,l1£,"s"
enter 2 db cr,1f,"Enter 2 hexidecimal digits only!"
- db cr,1f£,"s"
standby db " STANDBY EMULATOR INITIALIZING !!!"
db cr,l1f£,"s"
sram_err db "EMULATOR RAM ERROR: RESET EMULATOR",cr,lf
db ll$ll
setup_menu db 10 dup (" "),"SETUP MENU",cr,lf,cr,1f
db 10 dup (" "),"a. Pass User Memory",cr,1lf
db 10 dup (" "),"b. Set Break Address",cr,lf
db 10 dup (" "),"c. Configure Ports",cr,1f
db 10 dup (" "),"d. Main Menu",cr,1f,"S$"
main_menu db 10 Qup (" "),"MAIN MENU",cr,lf,cr,1lf
db 10 dup (" "),"a. Start/Stop Target",cr,lf
db 10 qup (" "),"b. Enable/Disable Break",cr,1f
db 10 dup (" "),"c. Change Break Address",cr,1f
db 10 dup (" "),"d. Access Single-step",cr,lf
db 10 dup (" "),"e. Access User Memory",cr,lf
db 10 dup (" "),"f. Access Parallel Ports",cr,lf
db 10 dup (" "),"g. Exit to Dos",cr,1f,"s"
user_menu db 10 gup (" "), "User Memory Menu",cr,lf,cr,lf
db 10 dup (" "),"a. Download User Memory",cr,lf
db 10 dup (" "),"b. View User Memory",cr,lf
db 10 qup (" "),"c. Edit User Memory",cr,1lf
db 10 dup (" "),"d. Exit ",cr,1f,1£,"S"
select db cr,1£,10 dup (" "),"Make a selection: ","$"
: break menu db 10 dup (" "),"BREAK MENU",cr,lf,cr,1f
f db 10 dup (" "),"a. Enable Break",cr,lf
3 db 10 dup (" "),"b. Disable Break",cr,1f
db 10 dup (" "),"c. View Break Address",cr,lf
db 10 dup ("™ "),"d. Change Break Address",cr,lf
db 10 dup (" "),"e. Exit ",cr,1£,1£,"S"

sel brk regq db cr,1lf,1f,"Select break register (1-5): "

db nsn

new_brk addr db "Enter new break address: ","$"

more_brk db "Change another address (Y/N): ","s$"

brk_now db "Break address " -

163

LA S S JetiD i " N i . v
R

brk_sel db ?
d b LU ”
brk_sel data db 3 dup (?),cr,1f,"$"

port menu db 10 dup (" "),"PORT MENU",cr,1lf,cr,1f
- db 10 dup (" "),"a. Read port A",cr,1f

db 10 dup (" "),"b. Read port B",cr,1f

db 10 dup (" "),"c. Write port aA",cr,lf

db 10 dup (" "),"d. Write port B",cr,1f

db 10 dup (" "),"e. View/Reconfigure DDR-A"

db cr,lf

db 10 dqup (" "),"f. View/Recongigure DDR-B"

db cr,lf

db 10 dup (" "),"g. Exit port menu",cr,l1f,"s"
step_menu db 10 dqup (" "),"SINGLE-STEP MENU",cr,lf,cr,1lf

db 10 dup (" "),"a. Start single-step mode"

db cr,lf

db 10 dup (" "),"b. Step target",cr,lf

db 10 dup (" "),"c. Exit single-step mode",cr,lf

db 10 Qup (" "),"d. Main menu",cr,1£f,1£,"$"
Brk stat off db "Break = Disable",cr,1f,"s$"
Brk_stat on db "Break = Enable",cr,1f,"$"
step_stat_off db "Stepper = off",cr,1f£,1£,1£f,"S"
step stat on db "Stepper = Freerun",cr,1f,1f,1£,"S"
emul stat_on db "Mode = System",cr,1f,"s"
emul stat off db "Mode = Target",cr,1£f,"s"
continue db 1C,13,"Press Enter to continue: ","S"
waiting db 10,13,"Standing by for Emulator data","s"
port_done db "Port data downloaded",cr,1f,"s$"

+ dseg ends

;********t********t***

sseg segment stack
i db 100 dup (?)
sseg ends

;***t*************
] cseg segment

assume cs:cseqg,ds:dseg,ss:sseg,es:Ccseqg

L2222 X2 2222222222222 22222222222 R 2Rt xRt 2R R

’3
’
o
’
-
’

Macro COMPARE - This macro compares the contents of two

164

R —— —

iy .
SO S

e We WMo “e ws we

compare

e we we we wo wo

buf_ size

e Ne we wo we

cmp_strg

chk_it:

strings. The soucre and destination offset must be provide
and the CX register must contain the string length. For a
match the AX register will return zero. Any other value
means no match.

LA EA SRR R R R 2R R R 2 R R R RS2SRSS S

macro stringl,string2

lea si,stringl ;point to input string
lea di,string2 ;point to test string
call cmp_strg

endm

ARRAKA KRR AR AR RN IR AR AR KRR AR R AR AR A AR R AR AR A AR R AR AR R A A kA ARk Ak kkh ok

Macro BUF_SIZE - This macro setups function call 08h by
setting the maximum length and passing the buffer name.

LS AR RS SRR SRR RS R 2R 222 222X X 2]

macro length,identity ;variable lentgh buffer

push ax

push dx

lea dx,identity

mov identity,length ;the max length
mov ah,0ah :1is 255 characters
int 21h

pop dx

pop ax

endm

2 2SR SRR RS X RS2SR 2 XX 2 22 X X 2RSSR RS SRR X SR B

Subroutine CMP_STRG - This procedure compares two strings.

LA AR S22 R 2 22 2 R S R XX R 2 X2 222 X2 S 2RSSR EXSE RS R

proc near
push CcX

mov cx,04
mov ah, [si]
mov al, [di]
cmp ah,al
jne no_match
inc si

inc di

165

loop chk_it

no_match: mov ax,cx ;compare strings
;set al to the value of
;ex. If cx equal zero
. ;strings match
pop cX ;jrestore original string
;length
ret

cmp_strg endp

KRR R AR AR AR AR R R AR AR AR AR R AR AR AR R AR R A RN IR AR AR AR AR AR AR A Ak k kK

Subroutine CLR - This procedure clears the crt display.

we W W W we

L2 A AR SRS SRR RS E s R R s R R R X R R R R R R R R R

clr proc
push dx
push ax
mov dx,offset cls
mov ah,09%h
int 21h
pop ax
pop dx
ret
clr endp

KRR AR R AR R AR AR AR AR R AR RANR AR AR A AR R AR AR AR A A AR ARk k&

Subroutine DISPLAY - This procedure displays the message
string pointed to by the dummy variable "string".

ARRE AR KRR AR R R AR AR AR AR R R R R AR AR AR A AR A AR AR AR AR AR AR AR kA Ak kk

we we wme %o we wo

display macro string

push dx
mov dx,offset string !!
mov ah,09h -
int 21h
pop dx
endm

KRAERKAA KRR AR AR R R RN AR AR AR R R AR AR RN R RR AR AR RA R R A R AR AR Ak k k& _-q

Subrountine READ-KEY - This procedure reads the Z-100
keyboard and echoes it to the crt.

we W WS we “we we

AR RR R AR R R R AR A AR AR R AR R AR AR R AR KRR RN R R RN AR R AN AR AR AR A Ak k®

166

*—

read_key proc

mov ah,01h
int 21h
ret

read_key endp

ARAR AR R RN AR KRR AR AR AR AR AR R R A A AR AR RN AR AR AN A AR AR AR AR AR Ak Ak hkhkkkk

Subroutine RCV_B - This procedure reads the auxillary
serial port and returns the data in the AL register.

.~ ™o we we ws we

KRR KRR AR KRR R AR R AR AR AR A AR A A A A A A AR A AR A A A A A Ak kA Ak ke k%

rcv_B proc
mov ah,03h ;preform serial read
int 21h ;data returned in al
ret

rcv_B endp

A2 2R RS SR RS RR SRR R R R SR S 2R X RSS2SR X

Subroutine SEND B - This procedure outputs the data in the
AL register to the auxillary serial port.

e ™o we we “ws N

LA SRR R RS RsRR RSS2SR 2 22 X222 X2X3X2 XX X3

send_b proc
push cX
push ax
mov dl,al
mov ah,04h ;transmit serial byte
int 21h ;data must be in the dl
mov al,dl ;register
pop ax
pop cX
ret

send b endp

LA 2SR A RR RS RS R R 22 X222 X222 222222222 21

Subroutine DISP_STAT - This procedure checks the current
status of the emulators break, single-step, and mode flags.
It then displays the appropriate status message for each.

AR R AR R AR R R AR AR A AR R AR AR R AR R AR AR R AR R AR AR R AR A ARk Rk k

e We We NE we we we

167

|

||

et A o 3

disp_stat proc near
push ax
mov al,on ;load the on flag
cmp al,mode_flg icheck mode of emulator
jne skip zl
display emul stat on
jmp skip z21
skip_z1l: display emul_stat off
skip_z21: mov al,on
cmp al,break flg
jne skip 22
display brk stat_on
jmp skip_z22
skip z2: display brk stat off
skip_z22: mov al,on
cmp al,step flg
jne skip z3
display step_stat_on
jmp skip_z31
skip_2z3: display step stat off

ax

_—

skip_z31: pop

ret
disp_stat endp

L2 A R R R R RERsRElRRR Rttt il i i s i i s s 2 2222222 SX 2

Macro CONVERT - This macro sets up the parameters
to the hex to_ascii procedure which converts an hex value
to ascii.

w8 mE e me we we we

AR AR KA AR AR AR AR AR AR AR KA AR AAR AR AR A AR R A AR AR AR AR A AR AR RN R

convert macro Dbits,destination,data info

mov bx,data info ;1load the data pointer
mov di,offset destination
:load the destination
*pointer
mov cX,bits
call hex to_ascii ;icall the converter
endm

AR R AR AR R AR AR AR R AR RAN AR AR RRARRRARRRA R R AR AR NI AR R R A A AR A A&

e wo wo

Subroutine GET_FLG - This procedure reads in a string

168

L s

from the emulator and stores it in the message buffer.

e we wo

REARRRRRK R AR R R R AR A AR R R R AR KRR R A AR R RN R A A AR AR R A AR A AR Ak kA Ak Ak k&

get flg proc near
push bx
mov bx,offset msg_buf
get_next_1:
call rcv b ;read emulator port
mov [bx}],al
cmp al,eot ;if not end of string
;store the data
je donel ;and get the next byte
mov dl,al ;look at data
mov ah,02h
int 21h
inc bx
jmp get next 1
donel: pop bx
ret

get flg endp

I Z 222222 S 2222222222222 222222 222222222 22 8]

This macro transmits the designated flag to the emuulator.

we we we we we

IS A RS AR RRR Rt 2l i 2820222t at AR &)

send macro flag_name
lea di,flag_name
call send_flag
endm

22222 REER R R A2 2R 2222222222222 2222222 2 XX 2 X

Subroutine SEND FLAG - This procedure sends a string of
characters from thethe 2-100 to the serial port the string
offset must be in the DI register when the call is made.

22222222222 RSS2 2222222222222 22X 88

w8 ™E ws we we N& g

169

send_flag proc
push

continuel: mov
call
cmp
je

] inc

jmp

= return: pop

ret
send flag endp

MODULE NAME:
FUNCTION:

INPUTS:
OUTPUTS:

MO WME WS N W WE NE W g we “we

F load buf proc
push
push

r lea
_ mov

int
jc

mov
lea
mov
mov
int

mov
int
jmp

load_error:
jmp

no_ld_err:
pop

pop
ret

MODULE NUMBER:

MODULES CALLED:

near
ax

al,[di]
send b
dl,eot
return

di
continuel
ax

L E RS REA SRR RE RS RS RRRRRRZ ARt Al 2t X 2t Ry

LOAD_BUF

This procedure transfer a designated
file from disk to a temporary storage area.

LA SR RS SR RE RS RER R aRXRsRRRs a2 2022222222 2R 8]

near

ax
CcX

dx,user file
ax,3d00h

21h

load _error
bx,ax
dx,user
cx,2048
ah,3fh

21h

ah,3eh
21h
no_1ld err

no_way

CcX
ax

170

:load a byte of data
;transmit the data
;check for end ol string

;point to next byte
;s repeat process

;point to user file
;open the file for reading
;pointer at beginning

1store file handle in BX
tdestination buffer
; load number of bytes

;close the file

load_buf

B AREE RS RAS RS2 X2X2S2XES2XX2RR

WO WP Ne W WE NG N N e e N

send_buf

sendl:

send?2:

send next:

INPUTS:
OUTPUTS:
MODULES CALLED:

endp

MODULE NAME:
MODULE NUMBER:
FUNCTION:

proc

mov
add
send
call
compare
cmp

jne
send
mov

mov
call
mov
call
mov

mov
call
mov
call
call
compare
cmp

jne

mov

lea

mov

mov
call
add
inc
cmp
je
inc
jmp

SEND_BUF

KKK ARAAAAkA R ARk ARk kA kA hkhkkk%k

This procedure transfer a file from the
designated buffer to the emulator.

near

si,offset user

si,u start
user_stg
get flg

msg_buf,rdy stg

ax,0
sendl
down_1d
bx,0
al,bh
send b
al,bl
send b
bx,byte_ num
al,bh
send b
al,kl
send b
get flg

msg_buf,rdy stg

ax,0
send?2
chk_sum,0
si,user
bx,0

al, [si]
send b
chk_sum,al
bx

bx,byte num
x_send_buf
si
send_next

171

(2SR AR RS R R R 2R R R R R R R E R E RS R R R TR

;point to start of data
;call emulator
rget response

;send download flag
;point to start address
;send first byte of
;the start address
;send second byte

;send byte count

:get ready signal

;Clear checksum
;point to code
;1 set counter

:load data

;send data
;update checksum

;point to the next byte

Xx_send buf:

mov al,chk_sum
call send_b ;send checksum
t ret
; send_buf endp
;*****************t*******t******************t************** j
- ’
; MODULE NAME: INPUT_ DATA
; MODULE NUMBER:
; FUNCTION: This procedure gets an ascii data byte }
: from the Z-100 keyboard, converts it to
— : hex and stores it in the location pointed -i
: to by SI. =
; INPUTS:
; OUTPUTS:
; MODULES CALLED:
i ;***************ttt*** d
L .
input_data proc near
push di
push bx
. push cX
I push dx j
again2: buf_size 3,temp_buf ;accept 2 characters + cr
mov al,bvtes in
cmp al,2 - ,
je passed_11 J‘
- display enter 2 ;display an error message
: jmp againl ~
passed_11:
Xor dx,dx
mov cl,4
lea di,byte_1 -
lea bx,xlat ascii char 2 hex value -!
mov al,{dil™ T ;get the first byte
xXlat ;exchange a hex character
;with its binary value
cmp al,0ffh f
. jne passed_12
display enter 2 ;enter 2 hex characters —1
jmp again2
passed 12: i
or dl,al i
shl dx,cl ;shift the byte by one j
;nibble -‘
l mov al,[di+l] ;get second byte —
xlat i
172
| q

cmp
jne
display
{ jmp
- passed_13:
or

mov

pop
- pop
| pop
pop

!—. ret
t_A input data endp

MODULE NAME:
MODULE NUMBER:
FUNCTION:

INPUTS:
OUTPUTS:
MODULES CALLED:

WS WO WA N WA N WE ME e e WE W

» hex_to_ascii proc

push
push
push

mov
lea
push
cmp
je
mov
and

Xlat
mov
inc
byte_only:
b pop
mov

al,0ffh
passed_13
enter 2
again2

dl,al ;shift the byte by one
:nibble

[si],dl ;store the hex data

dx
cx
bx
di

e KRR R AR AR R AR RN AR RN AR RN AR R AR AR AR AR R A AR R AR R AR AR R Ak Ak ke ok

HEX_TO ASCII

This procedure converts the data in the
BX, register from hexidecimal to ascii
and stores it in the location pointed
to by the DI register.

KRR R I AR R AR R R AR AR R R R AR RRA AR AR R AR R AR AR A R Ak A A AR kA k ke k&

near

cX

bx

ax

ax,bx :1load the data in ax

bx,ascii_table

ax ;save the data

cx,2 1test for size of the data

byte only

al,ah

al,O0fh ;convert low nibble of
;high byte

[di] ,al 1save fisrt character

di

ax ;retrieve second byte

ah,al shold low byte

173

3

and
xlat

mov
l inc
mov
and
xlat
mov

. pop
] pop
pop

ret

hex to_ascii endp

MODULE NAME:

MODULE NUMBER:
FUNCTION:

INPUTS:
OUTPUTS:
MODULES CALLED:

NE WE WME NS WE MG ws NP We N NE W wo

al,0f0h ;select high nibble
[di] ,al ; save the character
di

al,ah ;store low byte
al,0fh ;select low nibble
[di] ,al ;save the character
ax

bx

cX

L2222 222 RRRRRRZRRRRRRRRSlRRtl R Rt s it it i 2 s s xR iR R 2

GET_ADDR

This procedure retrieves a three byte hex

address from the key board and converts it

to its binary equivalent. The results are
returned in the addr_hold buffer.

L Z 2R EXEEEREAZEERSR SRR 222X RARRE2 SRS 2R

+ get_addr proc near
push di
push bx
push cX
push dx
againl: buf size 4,temp buf raccept 3 charac.ers + cr
1 mov al,bytes_in
3 cmp al,3
je passed_1
display enter 3 ;display an error message
5 jmp againl —
passed 1:
- xor ax,dx
mov cl,4
lea di,byte 1
lea bx,xlat_ascii_char_2 hex_value
i mov al,[di] ;get the first byte
xlat ;exchange a hex character

174

il

f

;with its binary value

cmp al,0ffh
jne passed_2
’ display enter_3 ;enter 3 hex characters
_ jmp againl
' passed_2:
or dl,al
shl dx,cl ;shift the byte by one
;nibble
mov al,[di+1] ;1get second byte
l- Xlat
. cmp al,0ffh
‘ jne passed 3
| display enter_3
. jmp againl
- passed_3:
or dl,al
shl dx,cl ;shift the byte by one
:nibble
mov al, [di+2] ;get third byte
Xlat
cmp al,0ffh ,JJ
€ jne passed 4 '
display enter_ 3 :
passed 4: or dl,al
mov addr_hold,dx :save the converted .
;address .
; pop dx ’
. pop cx -—q
' pop bx
pop di
ret »
get_addr endp
- o
;*********************************ttt****t******************]
’
; MODULE NAME: USER_PRO
; MODULE NUMBER:
; FUNCTION: This procedure handles the user requests -J‘
: from the 2-100 keyboard. And carries out]
: the required functions with the emulator.
: INPUTS:
; OUTPUTS: 4
. ; MODULES CALLED: i
- . -
;***t*i*i*********************tt**************t****t********
user_pro proc near
user_rep: call clr
P display user_menu ;prompt the user for -
175
v -
{
|

display select ;a selection
call read key ;get the option number
cmp al,'a’
je over_t
. jmp opt user b
call clr
over_t: display file ;request filename
buf size 15,user_code ;get the string
mov bx, offset user_file ;may include drive id
add bl,char_ct
- mov al,o
‘ mov [bx],al ;add zero for dos call
call load_buf ;smove file from disk to
:the buffer area
. mov bx,offset user
— add bx,2049
mov al,eot
mov [bx] ,al ;flag end of user file
mov xmt,0 :clear counter
mov u start,0
_ mov byte num,2048
- used: call send_buf ;download the file
L call get flg ;see if transfer was
;successful
compare msg buf,ack stg
cmp ax,0
jne retry
display data_ out ;jadvise user of the
. sdownload success
display continue
not yet: call read_key
cmp al,cr
jne not yet
jmp exit_user_pro d
H- retry: add xmt,1 ;increment counter -’
cmp xmt, 3]
jne skip_a
jmp err_user_pro
skip_a: jmp used
opt_user_b: J
cmp al,'b'
' S5tPus
c
skip_b: gg?l ? Ser_
display start_addr ;prompt for view address
call get addr ;get the address —j#
mov ax,addr_hold
mov u start,ax ;save the address
mov si,offset user
add si,ax
call clr
display view nr ;get last address to view

call get_addr

™R

176

mov
mov

mov

mov

sub

mov

mov

cmp

jle

jmp

) skip c: call
display

see_it: push
convert

convert

display

inc

add

pop

loop

display
say 1: call

cmp

jne

jmp

opt user c:
~ cmp
jne
call

display
call
mov
mov
s mov
1 mov
add
call
display
call
mov
mov

mov
mov
sub

ax,addr_hold
u_stop,ax

ax,u_start
bx,u_stop
bx,ax

byte num,bx
cX,bx
cx,20
skip ¢
no_no

clr

view head
cx

;:save the converted
;stop address

;calculate byte count
;store byte count
:load byte counter
;see if bytes > 20

;1f so display error msg

3,view_addr,u_start

2,view _data, [si]

view_buf

si

u start,1

cx

see_it
continue

read key
al,cr

say 1

exit user_pro

al,'c’
opt_user_d
Cclr

start_addr
get addr
ax,addr_hold
u_start,ax

u startl,ax
si,offset user
si,ax

clr

edit nr
get_addr
ax,addr hold
u_stop,ax

ax,u_start
bx,u_stop
bx,ax

;convert address to
;display format

1get desired byte

;convert to display format
;display the location
;address and contents

;increment data pointer
;increment address pointer

;wait for continue

;prompt for edit address
;get the address

;save the address

;get last address to edit

;save the converted
;stop address

scalculate byte count

mov
mov
cmp
jg
call
edit in: push
. convert
call
display
call

inc
pop
add
loop
mov
mov
mov
jmp
opt_user_d:
cmp
je
no_no: displa
- calg1 o
cmp
jne
jmp

err_user_pro:
no_way: call
display
display
call
cmp
jne

exit_user pro:
user_pro endp

MODULE NAME:
MODULE NUMBER:
FUNCTION:

INPUTS:
OUTPUTS:

WO ME ME NS We We NP W N6 we

byte num,bx ;Store byte count

CcX,bx ;load byte counter

cx,10 ;see if bytes > 10

no_no ;i1f so display error msg
clr

cX

3,location,u_start ;setup address display

clr

edit_data ;prompt for the data

input_data ;read the data and store
sconvert data from ascii

si ;to hexidecimal format

cX

u start,1

edit _in

xmt,0 ;send user file

ax,u startl ;reset start address

u_start,ax

used ;download new data

al,'a’
exit user pro

bad sel ;display invalid input
real key

al,cr
no_no
user_rep

clr

dw err
continue
read key
al,cr
no_way

ret

LA 2222222222222 222222 2222 2 a2 22222222 X222 22222}

BREAK_PRO

This procedure serves as the interface
between the user and break options. The

user may enable, disable, view or change
the break detectors.

178

P |

i

MODULES

e wo we

break pro

brk_top:

skip d:

skip_e:

skip f:
opt_brk b:

skip_g:

skip_h:

skip i:

CALLED:

proc near
push di
push dx
push cX
call clr
call disp_stat

display break_menu
display select

call read key

cmp al,'a’

jne opt_brk b
cmp break flg,on
jne skip_d

jmp no_go

send break stg

call get flg
compare msg_buf,rdy stg

cmp ax,0

je skip_e

jmp brk_error
mov al,on

call send b

mov break flg,al

call get_flg
compare msg_buf,ack_stg

cmp ax,0

je skip £
jmp brk _error
jmp brk_top
cmp al,'b’

je skip g
jmp opt_brk c
cmp break flg,off
jne skip_h
jmp no_go
send break stg

call get _flg
compare msg_buf,rdy stg

cmp ax,0

je skip i

jmp brk error
mov al,off

call send_b

mov break flg,al

call get flg
compare msg_buf,ack_stg

179

LA 2SR SRR R 2SRt 2222222228222 R 22X X

:get the option number

;see if already enabled

;send string to emulator

;send on flag
supdate the break flag

;check for acknowledge

;see if already off

:send string to emulator

ssend on flag
supdate the break flag

;check for ackncwledge

,,,,,

iS IRt ac

skip j:
opt_brk_c:

no_way b:

opt_brk_d:

back 1:

chk_2:

chk 3:

chk_4:

chk_5:

skip k:

cmp
je

Imp
jmp

cmp
jne
call
display

convert
convert
convert
convert
convert
display
display
call
cmp

jne

jmp

cmp
je

jmp
call
display
call
mov

cmp

jne
convert
mov

jmp

cmp

jne
convert
mov

jmp

cmp

jne
convert
mov

jmp

cmp

jne
convert
mov

jmp

cmp

je

jmp
convert

ax,0
skip_jJ
brk error
brk_top

al,'c

opt brk d
clr
brk head ;display break header
3,brk_addrl,break_1
3,brk_addr2,break 2
3,brk addr3,break 3
3,brk_addr4,break 4
3,brk addrs, break 5
view brk

continue

read_key

al,cr

no _way b

brk top

:load the break
;display with
;current data

al,'qd’
back 1

opt brk e
clr
sel brk reg
read key
brk sel,al

;get break register

_ istore ascii register #
al,'1l? ;determine break address
chk 2 ;to display

3,brk sel data, break 1
dl,offset break 1

put out

al, "2

chk 3

3,brk sel data, break 2
d1 offset break 2

put out

al,'3’

chk 4

3,brk sel data, break 3
di,offset break 3
put_out

al,'4'

chk 5

3,brk sel _data,break_4
di,offset break 4

put out

al,'s:

skip k

no go
3,brk_sel_data,break_5

;set storage addr

180

mov di,offset break 5
put_out: display brk now " ;display current break
;address —
F display new brk addr rprompt for new address
call get addr ;get the address
mov ax,addr_hold
mov [di] ,ax ;store the new data
mov xmt,0 iClear retransmit counter
display more brk -
r’ call read key
cmp al,'y'
| je skip m
. skip 1: cmp al,'yYy’
L_ je skip m
jmp breaking
skip_m: jmp back_1 ;change another break addr
breaking: send break flg ;pass break address
! call get flg
compare msg_buf,rdy stg -
ﬁi cmp ax,0
jne brk error
: mov al,down
§ call send b
retry brk: call get flg
compare msg_buf,rdy stg --
h cmp ax,0
jne retry brk
mov cx,10
mov chk sum,0
lea di,break 1 ipoint to top of break
sstring
+. brk out: wmov al,[di] :send the break buffer
[- call send b
inc di
adc chk sum,al
1 loop brk_out
 § mov al,chk_sum
call send b -
call get flg
compare msg_buf,ack stg ;check for acknowledge
cmp ax,0
jne brk retry
brk retry:
jmp brk top -
add xmt, 1
cmp Xxmt, 3
je brk error
jmp retry brk
opt_brk e:
cmp al,'e’ -
je exit_brk pro

181

no go: call clr
- display bad_sel ;display invalid input
call read key
. cmp al,cr
jne no_go
jmp brk_top
brk_error:
call clr
- display dw brk err ;display error message

no_gol: display continue
call read_key

cmp al,cr
jne no_gol
— jmp brk_top ;try again
exit_brk pro: ret
break_pro endp

E (222222222 222222222 X222 X2 22X 22X 222222 XX2 XXX XX R
MODULE NAME: STEP_PRO
MODULE NUMBER:
FUNCTION: This procedure signals the emulator to

enables or disables the single-step
function and updates the single-step
status flag. It also steps the target
upon demand.

e WE WO W WE NE NI W WP Ne WG NG e e

INPUTS:
OUTPUTS:
MODULES CALLED:
- RERRRRR A RRRRRRARARNRRRARNRNRARARRRARRRRR AR RRRRR RN AR AR A AR ARk R
step_pro proc near
step_top: call clr
call disp stat
display step_menu
display select
call read key ;get the option number
cmp al,'a’
o jne opt_step_b
cmp step flg,on ;see if already on
je step_top
send step_stg
call get flg
wait_ step:
compare msg_buf,rdy stg ;wait for ready signal -
._ cmp ax,0 J;
jne wait_step
182
L L

mov
call
call

compare

cmp
je
jmp

skip_ac: mov
jmp

opt_step b:
cmp
jne
mov
cmp
je
jmp

skip n: send

wait step3:

al,on
send b
get_flg

msg buf,ack_stg

ax,0
skip_ac
step err
step flg,on
step_top

al,'b’
opt_step ¢
bl,on

step flg,bl
skip n

can not do
step_stg

;1load on flag

:check for acknowledge

supdate the step flag

;see if set to on

;contact emulator

call get_flgqg
compare msg_buf,rdy stg ;wait for ready signal

cmp ax,0 - 2
jne wait step3

mov al,step

call send b :send step flag

call get_flg
compare msg_buf,ack_stg ;check for acknowledge

cmp ax,0
je skip o -~
jmp step_err
skip_o: display stepped :target was stepped
display continue
wait_step5:
call read key
cmp al,cr -
jne wait_step5
jmp step_top
opt_step c:
cmp al,'c’
je skip p
jmp opt_step d
skip_p: cmp step_flg,on ;see if already on
je hump
jmp step_top
hump: send step_stg
call get flg

wait_stepl:

compare msg_buf,rdy stg

cmp ax,0

jne wait_stepl

mov al,off :load off flag
call send b

call get flg

183

compare

cmp

jne

mov

jmp
can_not_do:

display

display
wait_step2:

call

cmp

jne

jmp
step_err:

display

display
wait_step2l:

call

cmp

jne

jmp
opt_step_d:

ret
step_pro endp

MODULE NAME:
MODULE NUMBER:
FUNCTION:

INPUTS:
OUTPUTS:
MODULES CALLED:

WO MG ME WG WE WE NE W W6 N WE W wh

port_pro proc

port_top: call
call
display
display
call
cmp
je

opt_port _b:

msg_buf,ack_stg

ax,0

step_err

step flg,off ;update the step flag
step_top

bad_step ; stepper must be enabled
continue ;try again

read key
al,cr
wait_step2
step_top

step_error ;circuit has a problem
continue ;try again

read key
al,cr
wait_step2l
step_top

ARRKRK R AR RRRR AR RRRN AR ARAARRRARRARARRRARRN AR A NA R AN AR AR A AR A Ak

PORT_PRO

This procedure prompts the user for an
selection and then carries out the command.
The user may read, write, or view the
target's 8755 ports.

L2222 2222222222222 2222222222222 22222222222 2222222222 2]

near

clr

disp_stat

port_menu

select

read key ;get the option number
al,'a’

rd_a

184

T

I o s

B e S il > . Lt | S s
OV RPN TIE DI« AP S L SNSRI T ~ T

Tew ey

cmp
je
jmp
skip q: mov
jmp
rd_a: mov
over rd_a:
- mov
send
p_wait: call

compare

cmp
jne
mov
call
cmp
je
mov
jmp
do_rd_a: mov
do_rd b: call
p_waitl: call

compare

cmp
jne
call
mov
call
cmp
je
Jmp

skip_r: call
cmp
je
add
cmp
jne
jmp

skip_s: send
mov
mov
mov

convert
display
display

p_hold: call
cmp
jne
jmp

opt_port c:

mov
cmp

al,'b’
skip_q
opt_port_c
cl,'b’
over_rd_a
cl,'a’

xmt, 0
port_stg
get_flg
msg_buf,rdy_stg
ax,0

p wait

al,up

send b

cl,'a'
do_rd_a
al,portB
do_rd b
al,portA
send b
get_flg
msg_buf,rdy stg
ax,0

p_waitl

rcv_B
chk_sum,al
rcv B

al,eot

skip_r

exit port pro
rcv_B -
al,chk_sum
skip s

xmt, T

xmt,3

p waitl
exit_port pro
ack_stg
ax,0
al,chk_sum
work ,ax

2,port_view,work

port_cont
continue
read_key
al s CY
p_hold
port_top

o ¥
=
~
oo

185

:flag port B

;flag port A

;call emulator board

;send up flag

;set up port B read

;send port identification

;wait for ready signal

;get the data

;save the data

:get checksum

;if no match try again

;display the port data

je
opt_port_d:
cmp
je
jmp
mov
jmp
mov
display
lea
call
send
call
compare
cmp
jne
mov
call
mov
call
compare
cmp
jne
cmp
je
mov
mov
mov
jmp
mov
mov
mov
call
mov
mov
call
add
mov
call
mov
call
call
compare
cmp
je
add
cmp
jne
jmp
display
display
call

skip_t:

wr_a:
over_a:

p_wait4:

p_wait5:

do_a:

do_b:

skip_u:

p_hold2:

cmp

wr_a

al,'d’

skip t
opt_port_e
cl,'b'

over a
cl,'a’

port data
si,port hold
input_data
port_stg

get flg
msg_buf,rdy stg
ax,0

p wait4
al,down
send b
chk_sum,0
get flg
msg_buf,rdy stg
ax,0

p_waitb
cl,’'a'

do a
al,portB
dl,port_hold
portb sto,dl
do b
al,porthA
dl,port_hold
porta_sto,dl
send_b

chk sum,al
al,port_hold
send b

chk sum,al
al,eot
send_b
al,chk sum
send b

get flg

msg buf,ack stg
ax,0 -
skip_u

xmt,1

xmt,3
p_wait5

exit port pro
port done
continue
read_key
al,cr

186

;flag port B
:flag port A
;prompt for new data
;point to data buffer

;get the data
scall emulator board

;send down flag
;clear checksum

;wait for ready signal

;set up port B write
:store new data in the
;port holding buffer B
:send port identification

1store new data in the
;port holding buffer A

:send the data

;send eot

;send checksum

;check for acknowledge

jne p_hold2

jmp port_top
_ opt_port_e:
: cmp al,’'e’
je skip_ad
jmp opt port £
skip ad: mov xmt,0
mov ax,0
mov al,ddra sto
mov work,ax
convert 2,port view,work ;convert ddr data
display port cont ;display the port data
display chg_adr ;do you want to change
call read_key :the ddr
cmp al,'y’
je skip_v
jmp port_top ;display menu
skip v: display port data ;prompt for new data
- lea si,ddra_sto ;point to data buffer
call input_data ;get the data
mov chk sum,0
send port stg ;jcall emulator

p_wait6: call get_flg
compare msg_buf,rdy stg

cmp ax, "
jne p_waité ;ji
mov al,down ;send down flag ,

call send b S

p wait7: call get flg :
compare msg buf,rdy stg ;wait for ready signal]

cmp ax,
jne p_wait?7 ‘*
mov al,ddra :send port identification -
call send b

mov chk_sum,al

mov al,ddra_sto ;send the data

call send b :
add chk_sum,al —~i
mov al,eot

call send b ;send eot ~
mov al,chk_sum

call send b ;send checksum

call get flg i
compare msg_buf,ack stg :

cmp ax,0 ;check for acknowledge
je skip_w
add xmt,1
cmp xmt, 3
jne p_wait?
jmp exit_port_pro
skip w: display ddr_out ;ddr downloaded message

display continue

" y " g B O
s a _ iy rdia, Y e Y

p_hold3:

call
cmp
jne
jmp

opt_port_f£:

skip_x:

skip y:

p_wait8:

p_wait9:

cmp
je
jmp

mov

mov

mov

mov
convert
display
display
call
cmp

je

jmp
display
lea
call
mov
send
call
compare
cmp

jne

mov
call
call
compare
cmp

jne

mov
call
mov

mov
call
add

mov
call
mov
call
call
compare
cmp

jne

add

cmp

jne

read key
al,cr
p_hold3
port_top

al,'f’
skip_x
opt port g

xmt,0

ax,0
al,ddrb_sto
work,ax

2,port_view,work

port cont
chg_ddr
read_key
al,'y'
skip_y
port_top
port data
si,ddrb_sto
input data
chk sum,0
port_stg
get flg

msg_buf,rdy stg

ax,

p_wait8
al,down
send_b
get flg

msg_buf,rdy stg

ax,
p_wait9
al,ddrb
send b
chk_sum,al
al,ddrb sto
send_b
chk_sum,al
al,eot
send b
al,chk_sum
send b

get flg

msg_buf,ack_stg

ax,0
alright
xmt,1
xmt, 3
p_wait9

188

.....

;convert ddr data
;display the port data
;do you want to change
; the ddr

;display menu
;prompt for new data
:point to data buffer
;get the data

;call

; send

swait

: send

: send

:send

; send

emulator

down flag

for ready signal

port identification

the data

eot

checksum

;check for acknowledge

"

I N "

A

alright:

p_hold4:

jmp
display
display
call
cmp

jne

jmp

exit _port pro:

p_holds:

display
display
call
cmp

jne

jmp

opt_port_g:

port_pro

ret

endp

exit port_pro

ddr_out
continue
read key
al,cr
p_hold4
port_top

port err
continue
read_key
al,cr
p_hold5
port_top

;ddr downloaded message

;display error message

;********************t***********t***************************

start:

sram_ok:

well:

send_emul:

humpl:

mov
mov
mov
mov
mov

call
display
call
compare
cmp

je
display

jmp
call
compare
cmp

je
display

jmp
mov

send
mov
lea
mov
int

ax,dseg
ds,ax

mode flg,on

break flg,off
step flg,off

clr
standby
get flg

msg_buf,ack_stg

ax,0
sram_ok
sram_err

dos
get flg

msg_buf,ack_stg

al,o
well
sram_err

dos
Xmt,0

down_1ld
chk_sum,0

dx,filnam

ax,3400h
21h

189

;set data segment
:initialize to emulator
:1break off

;stepin step mode

;display wait message

;1look for first ack signal
;if 0 then SRAM ok

;if ram is bad display
;error message and goto DOS
;look for second ack signal

;if 0 then user RAM ok

:1f ram is bad display
;error message and goto DOS

;send download flag

;point to emulator code
;open the file for reading
;pointer at beginning

skip_ab:
next_set:

emul down:

emul di:

emul gone:

skip_z:

skip_ ae:

window_1:

jnc
jmp
mov
lea
mov
mov
int
mov

mov

cmp
je
mov
call
inc
add
loop
jmp

mov
call
mov
call
mov
call

call
compare
cmp

jne

jmp

add
cmp
jne
jmp
jmp

mov
int

call
call
display
display
call
cmp

jne
call

jmp

skip ab
load err
bx,ax
dx,user
cx,2048
ah,3fh
21h
cx,ax

si,offset user

ax,0

emul gone
al, [si)
send_b

si
chk_sum,al
emul dil
next_set

al,ETB
send b

al ,ETB
send_b
al,chk sum
send b~

get_flg
msg_buf,ack_stg
ax,0

skip 2z

window_1

xmt,1
xmt,3
skip ae
dos
send_emul

ah,3eh
21h

clr
disp_stat
setup_menu
select
read key
al,'a’

opt set b
user_pro

window_1

190

;store file handle in BX

;destination buffer
:load number of bytes

;set counter to actual
;number of bytes
;point to buffer

;update checksum

;place eot at the end
;0f the stored data

;send checksum value

sdisplay setup menu
;else retransmit

:close the file

;display system status
;1display setup menu

1get the option number

1goto user memory
;s subroutine

. .
TEUPE, RTFLVIWR VORE PN 9 SN

opt_set b:
cmp

jne
F call
jmp

opt_set c:

cmp
b jne
call
jmp

[opt_set d:

" cmp
jne
jmp

opt_set e:
display

opt_set_el:
call
cmp
jne
jmp

window 2: call
call
display
display
call
cmp
jne
call
jmp

opt_main b:
cmp
jne
call
jmp

opt_main_c:
cmp
jne
call

jmp

opt _main_d:
cmp
jne
call

al,'b’'
opt_set _c
break pro

window 1

al,'c’
opt_set_d
port_pro
window_1

al,'a’
opt_set_e
window_2

bad_sel

read key
al,cr
opt_set el
window_1

clr
disp_stat
main_menu
select
read_key
al,'a’
opt_main b
step_pro
window_2

al,'b’
opt_main _c
break pro
window_2

al,'c’
opt_main_d
break pro

window_2
al,'a’

opt_main e
step_pro

sgoto break control
; subroutine

;goto port subroutine

;goto main menu

;display invalid input

;display system status
:display main menu
;get the option number

;goto target subroutine

;toggle the break status

sgoto break address
:subroutine

;goto single-step control
:subroutine

jmp window_2
opt_main_e:
. cmp al,'e’
. jne opt_main £
call user_pro
jmp window_2

opt_main_f:

- cmp al,'f'
_ jne opt_main g
call port_pro sgoto to port subroutine
jmp window_ 2
- opt_main_g:
cmp al,'qg’
jne opt_main_h
dos: mov ax,4c00h ;return to DOS
int 21h
opt_main h:
display bad_sel ;display invalid input
opt_set h:
call read_key
cmp al,cr
jne opt set h
jmp window_2
load_err: call clr

display disk err

display continue
load_errl:

call read_key

cmp al,cr

jne load_errl

jmp humpl
cseg ends

end start

192

Appendix E: User Guide

This user guide contains information concerning emulator
system testing which is still pending. For completeness the
interrelationship of untested circuits and the rest of the
system will be discussed.

The only portion of the emulator which has not been
tested is the break detector circuitry. The individual
components of this section have been tested, but the overall
functionality of the circuit is still pending. This circuit
consists of the 74F524 register comparators (U19-U28), the
8259A interrupt controller (U58), and the 74F157 multiplexers
(U42-U44) . These devices are completely wired and respond to
their control and data signal in the proper manner.

Testing of the register/comparators consisted of
preforming read and write operations to ensure proper wiring.
The interrupt controller appears to function properly when
excited manually, but hasn't been verified with software
control. The break disable function is functional and
provides a means of using the emulator in a limited capacity.
The other functions of the emulator do not directly depend on
the break feature and function properly when isolated from
the break section.

Software to support the break circuits consists of an
interface to the user via the host computer and a

corresponding break module in the emulator code. The host

computer portion of the control software has been tested by
performing data aquisition. The emulator portion has some
additional testing to under go. The break handler routine has
not been tested in response to an actual break condition.
This program is currently preventing complete testing of the
break detector hardware as a complete circuit. No additional
hardware errors are expected from the break circuit, but this

is not verifiable at this time.

10.

Bibliography

Bisbee, Lt Col Charles, Associate Professor.
Personal Interview. Air Force Institute of
Technology, Wright-Patterson AFB, OH 21 April 1988.

Intel Corporation. Microsystem Handbook Set.
Intel Literature Department, Intel Corporation,
Santa Clara, CA 1986.

Booch, Grady Software Engineering with Ada
Tokyo: The Benjamin/Cummings Company, 1987.

Dinwiddie, George "An 8031 In-Circuit Emulator",
Byte, Small System Journal, 11: 181-199 (July 1986).

Pedicini, Chris " Engineering on a Micro",
Byte, Small System Journal, 11: 145-170 (July 1987).

Pressman, Roger S. Software Engineering: A
Practitioner's Approach. New York: McGraw-Hill, 1987.

Russo, John P. "A Vic-201 Commodore 64 Terminal
Emulator", Byte, Small System Journal,
9: 379-388 (April 1986).

Stern, Marc "All About Interfacing”,
Radio Electronics, 57: 87-96 (December 1986).

Wilcox, Alan D. Engineering Design: Project
Guidelines. Englewood Cliffs NJ: Prentice-Hall, 1987.

Woodhull, Albert S. "An EPROM Simulator®,
Byte, Small System Journal, 9: 400-410 (March 1985).

195

VITA

Captain John L Woods was born on-
_He graduated from high in Deadwood, South

Dakota, in 1970. He entered the USAF 1n 1972 and served until
July 1981. Upon leaving the Air Force he attend.d the
University of Oklahoma, form which he received the degree of
the Bachelor of Science in Electrical Engineering in May
1984. Upon graduation, he received a commission in the USAF
through the Officer Training School. He received the degree
of Master of Science in Consumer Studies at Cklahoma State
University, Stillwater Oklahoma. He served as an
Elecromagnetic Hazards Engineer at the Engineering
Installation Division, Tinker AFB, Oklahoma, until entering

the School of Engineering, Air Force Institute of Technology,

in June 1987. -

196

’4

s

(Sl

. J 11. TITLE (include Security Classification)

RAECRIET PN NS AP0 S0 SR St S5-I . - P . C e R ~

U LASSIF 10N WIS PA

REPORT DOCUMENTATION PAGE oM N 07040188

Te. REPORT SECURITY CLASSIFICATION To. RESTRICTIVE MARKINGS
UNCLASSIFIED
75, SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION / AVAILABILITY OF REPORT
[- [25. DECLASSIFICATION / DOWNGRADING SCREDULE Approved for Public Release;
Unlimited Distribution
%, PERFORMING ORGANIZATION REFORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S]
" | ——AEIT/GL/ENG/BRD-63

6a. NAME OF PERFORMING ORGANIZATION 6h. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
1 of (if applicable
School o ineeri
Eng ng AFTT

6¢. ADDRESS (City, State, and 2IP Code) 7b. ADDRESS (City, State, and ZIP Code)
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

v - | 8. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMSBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
s ORGANIZATION . (f applicable)
e ————— S —
. 8c. ADORESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
i PROGRAM PROJECT TASK WORK UNIT
i : ELEMENT NO. NO. NO. IACCESSION NO.

8755 EMULATOR DESIGN (UNCIASSIFIED)

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT

13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT

oM ——=T0— 1988 Decerber 205
16. SUPPLEMENTARY NOTATION
7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP
12 6 , Camputers, Camputer Logic

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Charles R. Bisbee, Lt Col, USAF
Associate Professor of Electrical Engineering

Y P T XL "."
Pyon T T “

‘1 _ | S ‘ ‘ (&M

| v Tow VR
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
GJ uncLassiFieounumiTeD [same AS RPT. [OTIC USERS ___UNCIASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL
i £13-955-£013 AFIT/ENG
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

F

ERER VNS A P FIUS S

Item 19.

|

Abstract

This paper discusses the requirements to develop and
build an electronic device to emulate the 8755 microchip. The
design had five basic objectives: (1) Allow the user to
download 8755 emulation memory. (2) Allow control of the
target program from the Z-100. (3) Provide a single step
capability. (4) Provide breaking at a specified address. (5)
Allow the user to set or change the emulated 8755
input/output ports.

It describes the standard memory and input/output
capabilities of the 8755. It describes in detail the emulator
enhancement features to the standard 8755. The hardware
circuits used to implement the emulator are discussed at the
block diagram, component, and signal levels. It concludes
with a detail description of the emulator sotware used to
control the hardware.

[

