
two~ &

.............

4 -A E ECTE

Appmv-: !zt
DX5ibuticn Unahmited

DEPARTMENT OF THE AIR FORCE

I AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

j Wright-Pafferson Air Force Base, Ohio

89 1 17 037

AFIT/GE/ENG/88D-63

OTIC

ECTZ.f

SJAN 1 818

8755 EMULATOR DESIGN

THES IS

John L Woods

Captain, USAF

AFIT/GE/ENG! 88D-63

Approved for public release; distribution unlimited

AFIT/GE/ENG/88D-63 -3J

**

8755 EMULATOR DESIGN

Thesis

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirement for the Degree of

Master of Science in Computer Engineering

John L Woods
i Accesion For

Captain, U.S. Air Force NTIS CRt,&

December 1988 D C T ,

By

By
OTIC D.t ~ '
.OPY

h.. Dist b..ciior

Approved for public release; distribution unlimited

r_

Preface

The purpose of this design project was to design and

build a device which could replace the 8755 microchip in

experimental circuit designs. The 8755 emulator provides the

standard input/output ports and 2048 bytes of memory. It also

provides the ability to load this memory from the Z-100, to

single-step a target circuit, break on a specified address,

and control the I/O ports from the Z-100. ? ,'

In designing and building this device I received

support from several sources. I would like to acknowledge

the members of the AFIT Electrical Engineering office for

their support in helping me to acquire the parts and test

equipment which were imperative to my thesis effort. I would

like to thank LtC Charles Bisbee for his patience and

guidance, as well as LtC Bert Garcia and Major Joe DeGroat

for their support. Most of all I would like to thank my wife

and children for their patience and support.

Captain John L Woods

ii

'p(

Table of Contents

Page

Preface ii

List of Figures v

List of Tables vi

Abstract vii

I. Introduction..................1

Background 1
Problem Statement 2
Thesis Objective 2
Current Knowledge 2
Assumptions 4
Scope 5
Standards 5
Approach 6

User Module 7
Emulator Module 8
Target Module 9

Ii. Literature Review 11

Introduction 11
Emulation Process 12
Hardware Design Techniques 14
Software Design Techniques 16
Conclusion 19

III. Theory of Operation: Hardware 21

Introduction 21
Block Diagram 22
Central Processor Section 23
Emulator Memory 26
Target Memory 27
Serial Port 29
Parallel Port 31
Break Address Section.. 33
Target 40 pin Section 37
Special Function Section 39

iii

IV. Theory of Operation: Software...............42

Introduction.....................42
Bootup Software..................44
Main Emulator Software...............47
User Memory Control....................48
Emulator Mode Control................50
Single-step control..................51
Break Control....................51
8755 I/O Control..................54
Z-100 Control Software.................55
Pass User Memory..................57
Break Control Module.................60
Parallel Port Control................62
Main Menu Control...................64

V. Recommendations......................67

Appendix A: Hardware Diagrams...............69

Appendix B: Net Wiring List................84

Appendix C: Software Flowcharts...............115

Appendix D: Source Code.................131

*Appendix E: User Guide..................193

Bibliograhy..........................195

Vita...........................196

iv

List of Figures

Figure Page

1. Emulator Block Diagram 69

2. Emulator Schematic Diagram 70

3. Bootup Flowchart 115

4. Emulator Main Flowchart 116

5. Emulator User Memory Flowchart 117

6. Emulator Single-step Flowchart 118

7. Emulator Break Control Flowchart 119

8. Emulator Break Interrupt Flowchart 120

9. Emulator Parallel I/O Flowchart 121

10. Z-100 Main Flowchart 122

11. Z-100 User Memory Flowchart 124

12. Z-100 Break Control Flowchart 126

13. Z-100 Parallel Port Flowchart 127

14. Z-100 Single-step Flowchart 128

15. Z-100 Target Control Flowchart 129

..

Lv

List of Tables

Table Page

1. Parts List.......................82

2. Emulator Address Map.................130

3. Register/Comparator Truth Table............35

vi

AFIT/GE/ENG/88D-63

Abstract

y) This paper discusses the requirements to develop and

build an electronic device to emulate the 8755 microchip. The

* design had f-v4&basic objectives: -fi) Allow the user to

download 8755 emulation memory" 2) Allow control of the

target program from the Z-100' 6) Provide a single step
capability; -4) Provide breaking at a specified address.

(5) Allow the user to set or change the emulated 8755

input/output ports. ''

It describes the standard memory and input/output

capabilities of the 8755. It describes in detail the emulator

enhancement features to the standard 8755. The hardware

circuits used to implement the emulator are discussed at the

block diagram, component, and signal levels. It concludes

with a detail description of the emulator sotware used to

control the hardware. . '' ' "

vii

8755 EMULATOR DESIGN

I. Introduction

Background

The Air Force Institute of Technology (AFIT) offers

Advanced Microcomputer Engineering (EENG 687) as a primary

course in its digital engineering curriculum. As a course

requirement students must design and build a coprocessor

board capable of interfacing to a Zenith Z-100 microcomputer.

The coprocessor must be able to take control of the Z-100

upon command from a software routine. During the design and

fabrication of the coprocessor, the software routine must be

programmed into an Intel 8755 microchip. The 8755 is needed

because it provides 16 input/output lines as well as the

memory for the software routine. To program the 8755, the

student must perform the following sequence of operations:

1. Load the software routine into a specified Z-100.

2. Erase the 8755 memory with an ultraviolet light.

3. Set-up the 8755 programming device.

4. Connect and adjust a power supply for the programming

device.

5. Program the 8755.

6. Verify that the 8755 is properly programmed.

If the student finds errors in the 8755 software routine,

the entire process must be repeated. The sequence takes a

minimum of an hour to complete. Over the last several

1

quarters, the instructors have received numerous complaints

regarding the time wasted as a result of this programming

sequence (1). Eliminating this problem will allow EENG 687

students to concentrate on the specific course objectives.

Problem Statement

The current hardware and software available in EENG 687

are inefficient and hinder the students ability to

successfully design and build the required Z-100 coprocessor

within the course time constraints.

Thesis Objective

The purpose of this thesis is to design and build an 8755

emulator. The emulator will be a microprocessor based system

that connects to a host computer v.a an RS232 interface. The

user must be able to download 8755 emulation memory, cause

the target processor to execute, single step, or break on

access of specified memory locations, and set or change the

emulated 8755 input/output ports.

Current Knowledge

Currently, the 8755 is available only from the Intel

corporation. The 8755 provides 16, bit defineable,

input/oru'ut lines and is directly compatible with the

requirements defined for the Z-100 coprocessor board. In as

the 8755 provides 2048 bytes (2 kbytes) of eraseable

programmable read only memory (EPROM) for program storage.

EPROM allows the user to store a program in the device and

remove the device from the power source without a loss of

2

data. In contrast, random access memory (RAM) allows the user

to load a program but will lose its data if the power source

is removed. The coprocessor board will need to be installed

and removed from the Z-100 on a frequent basis to allow all

students equal time on the Z-100 systems. The requirement for

bit definable input/output lines and non-volatile memory can

only be satisfied by the 8755 or an 8755 emulator.

To eliminate the problems associated with the 8755

programming process, the emulator must replace the EPROM

section with RAM. The emulator must appear to be a standard

8755 to the circuit into which it is installed. As a result

the emulator must provide additional control circuitry to

load and modify the target system's memory. Additionally,

circuitry will also be required to provide additional

features, which will further enhance the student's design and

troubleshooting ability. Enhancements to the standard 8755

are transparent to the target system but will be very useful

to the user. All enhancement features will be initialized and

invoked from a host computer, but carried out by the emulator

board. Currently designed enhancement features of the

emulator board are:

1. A means of stopping the target system after the

execution of each instruction. The user is able to

disable this mode via the host computer keyboard.

2. Special registers monitor all address bus accesses

from the target system. When a previously defined address

3

is detected, the emulator will halt the target system and

advise the user of the halt condition and halt ad.ress.

3. The user may edit a software program on the host

computer, while the target system is simultaneously

executing the program in target memory. When the user is

ready to load the new program into the target memory

space, the emulator will halt the target system and

perform the memory download.

4. The ability to change the 8755 port configuration

without modifying the target memory.

Currently, literature from the 8755 manufacturer

indicates that none of the enhanced features are available

(2). The exact means of implementing these enhancements is

discussed in chapters three and four.

Assumptions

The following assumptions have been made with respect to

the design of the 8755 emulator project.

1. Users of the 8755 emulator are thoroughly familiar

with the proper operations of the standard 8755

microchip. This is essential since the emulator will

functionally appear to be an 8755.

2. Users are familiar with the operations of the host

microcomputer and the MS-DOS operating system. This

is required because the emulator will be controlled

via the host computer serial port.

4

3. The user possesses the ability to write software

routines in assembly language code and convert this

code to machine readable format.

Scope

This project will investigate applicable hardware and

software resources, then design and build an 8755 emulator.

The specific goals of this project are to:

1. Provide a device which will meet all timing

constraints of the 8755.

2. Provide two 8 bit input/output ports, with

individual bit direction control.

3. Provide 2048 bytes of random access memory.

4. Provide the ability to perform single-step operations,

with control via the host computer.

5. Provide the ability for the user to download control

software from the host computer to the emulator board.

6. Allow the user to set break addresses to stop program

execution when accessed.

7. Allow the user to reconfigure or read the 16

input/output ports from the host computer.

8. Provide documentation of all hardware and software

associated with the emulator.

Standards

The emulator device and its control software must meet

the following criteria:

5

1. The external electrical functions of the emulator

must:

a. Respond to all 8755 control signals.

b. Meet or exceed the timing parameters of the 8755.

c. Provide the same output power drive capability as

an 8755.

2. The software used to control the emulator must be

properly documented. This will allow future students to

modify or update the device as required.

3. The device must perform each function listed in the

scope section of this paper.

Approach

A practical solution to this problem is to develop an

emulation device using commercially available hardware and

in-house software to mimic all standard 8755 operations.

The emulator board, design is separated into three major

functional sections. Each section is then designed and

implemented with its unique set of hardware and software

resources. The first section is the user module and refers to

the host microcomputer, its operator input keyboard, and its

serial input/output port. The operator issues all commands to

the rest of the system via the computer keyboard and software

routines.

The second section is the emulator module and consists of

the hardware and software used by the 8755 emulator to

communicate with the user as well as with an attached

circuit. The last section is the target module and refers to

6

the hardware which is attached to the emulator via a 40 pin

plug. The 40 pin plug represents a standard 8755 and plugs

directly into the target circuit. Some portions of the

emulator and target module are controlled, mutually

exclusively, by both modules. A three module approach was

selected in order to establish small, functionally cohesive,

manageable modules.

Each module will be self-contained, with limited input

and output paths. Controlling access to each module will ease

the design, troubleshooting, and maintenance of the system. A

brief description of each module and the interrelationship

between modules follows.

User Module:

This section of the emulator consists of software which

resides on a host computer. The hardware used is the host

computer and will not require any modifications. The user

software will provide instructions and menus to control the

emulator module. The host computer will download the emulator

control program to the emulator board automatically. This

software is the emulator system monitor and controls all

aspects of the emulator with the exception of the boot-up

routine. The boot-up routine will reside on the emulator

board at all times. After bootup is finished, a setup menu

will be displayed. Each item on this menu should be invoked

in sequence. The setup menu consists of the following list of

options:

7

a. Pass target memory.

b. Set break addresses.

c. Configure ports.

d. Return to main menu.

Option (a) of the setup menu downloads the 2048 byte

target software to the emulator. This software is used

exclusively by the target system, but may be modified by the

user module. Option (b), the set break address function,

downloads a file containing 1 to 5 memory addresses to the

appropriate registers on the emulator board. Option (c), the

configure port function, defines the direction of data flow

through each bit of the emulated 8755 ports. The last option,

return to main menu, simply displays menu 2.

The main menu will be the starting point of all actions

atfer system startup. The main menu consists of the following

options:

a. Start or stop target system.

b. Enable/disable break detector.

c. Change break addresses

d. Enable/disable single-step

e. Edit/view/download user memory

f. Edit/view parallel ports

g. Exit to DOS

Emulator Module:

This module of the emulator contains all emulator

hardware components. It interfaces with the host computer via

an RS232 serial port and the target system via an extended 40

8

pin ribbon cable. To implement this module, a separate

microcomputer was designed and constructed. This

microcomputer consists of an 8088 central processing unit

(CPU) and its associated memory devices. A read only memory

module contains the software necessary to initialize the -

hardware upon power on. To communicate with the Z-100, a

universal asnychronous serial receiver/transmitter (UART) is

used. The UART receives parallel data from the CPU and

converts it to a serial bit stream. This serial data is

transmitted to the host computer via a serial port. This

process is reversed when data is transmitted from the host

computer to the emulator board. The emulator and user

software, as well as all system commands, are received via

this path. The emulator exercises control over the target

system and the input/output ports. Control of the target

system is implemented by connecting the emulator to the

control lines of the ports and target system. When the

emulator's CPU is controlling the system, the target system

is inhibited. When a requested function is completed, the

target system is restarted. The emulator may communicate with

the host computer while the target system is in its

operational mode without conflict.

Target Module:

This section of the emulator is located on the emulator

board. The break on address function is invoked by the user,

implemented by the emulator, and receives all necessary data

9

from the target. The target module functions in a passive

mode and does not invoke any commands relative to the user

and emulator modules. All control, address, and data lines of

the target are monitored by the emulator. Depending on the

data received, the emulator will invoke a number of responses

and prompt the user for additional input when required.

10

II. Literature Review

Introduction

This literature search reviews an emulation system design

for the Intel 8755 microchip. This device provides erasable

programmable read only memory (EPROM) and input/output ports

to peripheral devices (1). The 8755 is used in microcomputers

and in industrial applications. The compatibility of this

device with the 8088 CPU has prompted its use in educating

students at the Air Force Institue of Technology (AFIT). In

the school environment at AFIT, the 8755 must be programmed --

and reprogrammed during the course of laboratory exercises.

Frequent changes to the software programs waste time because

the 8755 must be erased, reprogrammed, and verified with each

change. The entire process can take a significant amount of

time and if one piece of code is incorrect, the entire

process must be repeated. To increase the effective use of

class time and resources, an 8755 emulator is needed (1). The

emulator must provide program memory, the ability to single-

step through a program, input/output ports, and reduce the

time required to program or reprogram the device. Sound

hardware and software development techniques must be used to

design, fabricate, and test the 8755 emulator. This

literature search addresses digital emulation techniques

currently used.

11i

Emulation Process

The emulation process starts with performing an in-depth

requirement analysis, to ensure that what the user wants is

clearly understood and documented (5:35-36). Pressman states

that the system designer begins with customer-defined goals

and constraints, and devises a representation of function

performance, interfaces, design constraints, and information

structures. Booch believes the systems engineer must bound

the system by determining the scope of what is to be

accomplished (3:76). Wilcox states that the requirement

analysis process is an interactive one which is completed

when the customer and system designer agree on exactly what

is to be done (9:27).

Following the requirement analysis, the requirements are

organized into tasks which Lre then alloted to teams with

specified due dates (6:50). Each task is approached as a

separate module with a set of input and output parameters.

Each module may be accomplished independent of other modules

as long as the boundary specifications are adhered to. If,

during the course of developing the modules, the boundary

parameters must change, then the change must be approved and

coordinated by the system engineer (3:121). Modules may

perform strictly hardware or software functions, but most

perform a combination. Regardless of how the external

processing is accomplished, the system engineer is only

concerned with the system module at the interface level.

12

An alternate process for producing an emulation device is

to perform a preliminary requirement analysis, which

intentionally leaves many questions unanswered. (10:400-402).

The goal is to start working as quickly as possible on a

prototype of the desired system. The customer is then given a

demonstration illustrating the strengths and weaknesses of

the proposed design. Wilcox states that in many cases the

user will make suggestions to add or delete features as a

result of having a real model to base his decision on (9:63-

64). The primary benefit gained from prototyping is the

reduced likelihood of changes in requirements after the

design process has begun. A disadvantage of prototyping is

the cost in time and material to develop, build, and rebuild

the demonstration model. The decision as to which emulation

approach to take is made by the system engineer. The user

only defines the end product performance specifications and

the format of data entering the system from an external

source (10:405). The implementation of the modules is

determined by the hardware and software engineers. The

emulation process suggested by Pressman lends itself to the

8755 emulator design. The time restraints imposed by AFIT

prevent the use of rapid prototyping. A thorough requirement

analysis will prevent late changes to the emulator

performance goals and also save the time and material

required to build a prototype. The requirement analysis is

only the first step in an emulator design project. The

requirement will eventually have to be implemented with

13

hardware and software . When the customer and system engineer

have a firm set of requirements, the design engineer and

software engineer may start system the development process

(8:87-88). Initially, hardware and software engineers must

work together to determine which modules pertain to hardware

and which pertain to software. Both areas have a variety of

design techniques which may be used to develop the modules.

Hardware Design Techniques

Engineering design is a creative process of devising a

* product to fill requirements specified by the customer

(7:379). The problem-solving approach is one creative design

technique and involves defining the problem, selecting a

possible solution, evaluating the solution, generating other

possible solutions, and selecting the best solution. Central

to successfully using the problem-solving approach is the

ability to plan a project. Objectives must be clearly stated,

and time schedules developed and adhered to. Strategies to

achieve objectives must be developed and a specific plan of

action developed (4:185-186).

Top down design is another technique often used in

hardware, as well as software, design (3:76-85). Top down

design decomposes the problem at hand into seperate but

functionally similar modules. Each module is decomposed

further until the original complex task has been reduced to

several small manageable tasks. Top-down design incorporates

14

heuristic design rules when the lowest level modules are

implemented.

Regardless of the design technique used, the actual

hardware components must be selected. This selection process

will again include software engineers since their software

will have to run on the hardware selected (6:100-110). Off-

the-shelf components should be used whenever possible to save

the cost of creating these components. Review and

modifications are recommended at this stage since any change

beyond this point will be costly

The top-down design technique provides an excellent

approach to the 8755 emulator design. At its highest level of

abstraction, the emulator must appear as an 8755 microchip

with enhanced features. This level of abstraction may then be

broken down to a user module, emulator control module, and

target system module. Each module may be broken into still

lower level modules until each subfunction is represented as

a separate module. When this level of abstraction is reached,

the heuristic design rules may be applied to implement each

subfunction. This approach to the problem provides a direct

path to design and implementation.

The hardware design process is an important segment of

the overall design effort, but equally important is the

software needed to control the hardware. Hardware and

software design must take place in parallel and in reaction

to each other. Software design techniques exist which allow

15

mi

the interactive development of software and hardware, but

still addresses the special needs of the software designer.

Software Design Techniques

Any digital emulator project requires the extensive use

of software design techniques and methods. Modern software

design is an outgrowth of hardware and system engineering. It

encompa;ses methods, tools, and procedures that enable the

des-i.ner to control the process of software development

(4:188). Software design methods encompass a broad array of

tasks that include: software requirements analysis, design of

data structures, program architecture and algorithm

procedures, coding, testing and maintenance. Software design

tools provide automated support for these methods. Software

design procedures provide the sequence in which methods will --

be applied, the deliverables that are required, the controls

that help assure quality, and the milestones to assess

progress. The steps necessary for software design are

referred to as software design paradigms (6:110-118). The

paradigm chosen is based on the nature of the project and

application, the methods and tools to be used, and the

controls that are required.

The classic life cycle paradigm is the oldest and most

widely used . Software design using the classic life cycle

demands a systematic sequential approach that begins at the

system level and progresses through analysis, design, coding,

testing, and maintenance. Software analysis starts with the

16

system requirements analysis to allow the software designer

to understand the nature of the programs to be written. The

software designer must also be familiar with hardware to be

sure the system components are compatible. Software design

translates requirements into a representation of the software

that can be assessed for quality before coding begins. During

coding, the software design is translated into machine

readable code. Software testing focuses on the internal logic

of the software and the external functions of the system to

ensure that a defined input will produce the desired output.

Software maintenance applies each of the preceding life cycle

steps to an existing program rather than to a new one.

The classic life cycle paradigm is not without its

criticism in some situations (3:87). Booch points out that

real projects rarely follow the sequential flow proposed by

the classic life cycle, and often it is difficult in the

beginning for the customer to state all requirements

explicitly. Further, Booch suggests using the protyping

paradigm in situations where these criticisms are valid. The

prototype paradigm is best suited for situations where the

customer does not have a complete understanding of system

requirements.

Prototyping is a process that enables the developer to

create a model of the software to be built. The model can

take one of three forms: a paper prototype that depicts

human-machine interaction in a form that enables the user to

understand how such interactions will occur, a working

17

pi

prototype that implements some subset of the functions

required of the software, or an existing program that --

performs part or all of the functions desired but has other

features to be improved upon in the new development effort.

All prototyping approaches begin with the customer and

designer defining overall objectives for the software,

identifying whatever requirements are known, and outlining

areas where further definition will be required.

A quick design is then initiated and focuses on a

representation of those aspects of the software visible to

the user. The quick design leads to the construction of a

prototype. The prototype is evaluated by the customer and is

used to refine requirements for the software to be developed.

A process of interaction occurs as the prototype is refined

to satisfy the needs of the customer, while simultaneously

enabling the designer to better understand what needs to be

done. The prototype is usually a first try, throw away model

and may cause some problems.

A problem associated with the protype paradigm is that

when the customer is informed that the device must still be

built from scratch, he usually objects. The appearance of

needless waste is a problem with this approach. If the

customer demands a few quick fixes to the prototype instead

of a complete design and fabricaton, problems with quality

and reliability may result (9:122-125).

18

The 8755 emulator is well suited to aspects of the

classic life cycle and the prototyping paradigm. A thorough

analysis and design will ensure minimal redesign problems as

the project progresses, and prototyping will ensure that no

important design considerations were overlooked. The combined

application of these techniques provides a direct and

reliable approach to designing the emulator software. When

the software is completed, it must be tested on the hardware

it was designd for, and receive final approval from the

system designer.

Ic Conclusion

A clear need exists for the development of an enhanced

8755 microchip. Currently, there is not a commercially

i available digital device to satisfy the needs of AFIT (1).

The emulator will provide memory to match that available on

the 8755 and a complete set of I/O ports. Enhancement

! features include the ability to reconfiqure ports from an

attached microcompter, to stop the emulater at any given

time, and to allow easy reprogramming of the 8755 memory. The

process of designing the emulator begins with a thorough

requirements analysis involving the customer and system

designer. The requirements will be divided into modules which

6. will be small and manageable. The modules will be implemented

using current hardware and software design techniques.

The engineering design process is a creative process

which involves making all the decisions necessary to

19

implement the design requirements successfully. The designer

could use the problem-solving approach, heuristic design

rules, or top-down design. For the 8755 emulator, the top-

down design is most compatible since this approach requires

fewer initial designs and matches the requirement analysis

process closely. By aligning each requirement with a module

to be implemented and then decomposing the modules into

subfunctions, an accurate design is probable. The

subfunctions are implemented at the hardware interface level

and require close coordination between software and hardware

designers.

The software design must be conducted simultaneously and

interactively with the hardware design. A combination of the

classical life cycle and protyping paradigms provide the most

effective approach to implement the requirements defined in

the requirement analysis. This approach also provides the

interaction needed between the hardware and software

development efforts. Each paradigm individually has problems

and limitations which can be avoided by selective application

at the appropriate time. Together these paradigms provide

rapid but accurate software development and implementation.

20

I=

III. THEORY OF OPERATION: HARDWARE

Introduction

This chapter provides detailed information on the

hardware devices used in the 8755 emulator. The software to

control the system is presented in chapter 4.

The 8755 EPROM/I-0 device is produced by the Intel 7A
corporation. Intel produces a family of micro devices which

are all designed to work together with minimum support logic

and driver chips. To ensure maximum compatibility between the

emulator and the actual timing and power parameters of the

8755, Intel chips are used when possible.

The overall purpose of the emulator system is to provide

all the features available on a standard 8755, and the

additional capability to single step, load the user memory

directly, break on specified memory addresses, and control

this process via an RS232 serial link to a host computer

microcomputer. The user circuit must also be able to use the

standard 8755 features when desired, while the emulator

circuit remains transparent in terms of timing constraints.

In order to accomplish the requirements listed above the

8755 I/O and memory hardware were broken into two separate

sections of hardware. The additonal special features required

were accomplish through the use of several subsections which

are described in the remainder of this chapter. Many of the

devices used in the emulator circuits require software inputs

21

Pr

to initialize and control them. When a device requiring

software is discussed, the discussion will be brief and the

full explaination reserved until chapter 4.

Each major functional section of the emulator will be

discussed separately so that all details of that subsection

are presented as a package to the reader of this paper. The

block diagram (figure 1) and schematic daigram (figure 2)

referred to in this section may be found in Appendix A.

Block Diagram

The block diagram for the 8755 emulator is shown in

figure 1. This diagram breaks the emulator circuit into eight

functional areas. The central processor section processor

exercises control over all over parts of the system. The

emulator memory section contains all system memory which is

used exclusively by the central processor. The target memory

section contains the user 2 kilobyte static ram which is used

primarily by the target, but is also accessible by the

central processor. The serial port section is built around an

Intel 8251A Universal Asynchronous Synchronous Transceiver

(UART) and contains all the hardware necessary to support

serial communications. The parallel port section contains an

8755-2 I/O memory chip and the necessary support devices. The

parallel section is accessible by either the target or

central processor. The break section monitors the target

address bus for memory address loaded from the host computer

via the central processor. Upon detection of a memory access

22

II

by the target which matches any of the stored addresses in

the break registers the target is halted and the central

processor is sent an interrupt request. The break section may

be disabled through software control from the host computer.

If the break section is in its enable mode the interrupt

request will advise the host computer of which address has

been detected. The target system remains halted until

restarted by a command from the host computer. The target

module contains a 40 pin socket plug which replaces the 8755

in the application circuit. All pins are identical and all

8755 features may been accessed by the target through the

plug. The target section also contains additional hardware to

support the enhanced features of the emulator listed in the

introduction. The special features section includes the

harware necessary to provide the emulator single-step, target

single-step, and mode control functions. The mode control

function is used to control whether the emulator or target

system has access to user memory and parallel I/O ports at

any given time. Access to these two section is mutual

exclusive under all circumstances. The remainder of this

chapter provides a detail discussion of each section of the

block diagram.

Central Processor Section

System timing is provided by U9, an 8284A clock generator

and driver. The 8284A is driven by a 14.3 MHZ crystal

oscillator. The CPU operating frequency is 4.77 MHZ at the

23

output of U9 pin 8. The PCLK output is used as the internal

CLK signal to the UART(U3) and is 2.39 MHZ. The 8284 provides

synchronization of the ready input signal and the system

clock. The RDY output is a synchronized signal generated by

the into at pin 4. This input is used to halt the CPU during

single-step operations, by driving U8 (8088) pin 22 low. The

system reset is input to the 8284 as a low on the RES* pin

when switch Si is pressed. This signal is synchronized and

inverted then output at U9 pin 10 as a high. The CPU, UART,

and 8755 are reset by this signal. For a system reset the

signal at U8-21 must be high for a minimum of 50

microseconds. Capacitor Cl and resistor R5 ensure that the

minimum timing requirement is satisfied. When this happens U8

will clear its status flags, DS, SS, and IP registers. The CS

register is set to FFFFh, thus FFFFO is the address at which

the CPU restarts when reset returns to a low state.

The heart of the emulator is the 8088-2 (U8) central

processor unit (CPU). The 8088 provides the address, data,

status, and control signals to direct the emulator

operations. The address lines ADO through AD7 and A16 through

A19 are multiplexed to also function as data and status pins,

respectively. These signals must be latched in order to be

available for an entire machine cycle. Address latches U6

and U7 are used to latch the address bus during T1 of each

cycle. The signal used as a latch strobe is the address latch

enable (ALE). During each bus cycle from the 8088-2, ADO

24

through AD7 and A16 through A19 change to valid data and

status during T2. This data remains valid until the middle of

T4. Address lines A8 - A15 are not multiplexed and are valid

for. the entire machine cycle. This timing arrangement of the

ALE is important in the implementation of the target and

emulator single step features. The ouput of U6 and U7, plus

A8 through A15 form the address bus used to drive all

emulator devices (figure 2a). The latched address remains

valid until the falling edge of the next ALE, at which time

the new address is strobed into U6 and U7.

The 8088-2 control lines used by the emulator include the

RD*, WR*, ALE, IO/M*, Reset, MN/MX*, DT/R*, DEN*, and Ready.

The RD* and WR* controls lines are buffered through U60

(7407), because the fanout capability of both lines is

exceeded, the other control lines of U8 did not require

buffering. The RD* signal is used to turn on the output

drivers of a selected device. When the RD* line is low the

data bus is strobed into U8 (8088). When WR* is low the data

present on ADO through AD7 are strobed into an addressed

device. The ALE is also used to strobe U36 (8755) control

signals and to reset the emulator single step flipflop. If

the current machine cycle is accessing memory the IO/M* pin

will be low. If the machine cycle is an 10 access then this

pin will be high. For the emulator the 8088-2 is configured

to operate in the minimum mode by tying the MN/MX* to VCC.

The DT/R pin controls the direction of data flow through U14

(74F245) and U35 (74F245) during each machine cycle. When

25

DT/R* is high data is transferred from the CPU and when the

pin is low data is moves toward the CPU. The DEN* output is

used to control the outputs of the data transceivers when the

user RAM and 8755 are accessed. Finally, the INTR pin is used

to detect when the break section has detected a break

address. This pin may be disable with a software instruction,

but if it is enabled the CPU outputs a interrupt acknowledge

on INTA. Following each break detection the INTR input is

disabled and must be reset by the interrupt handler routine.

Emulator Memory

The emulator memory space is addressable only by U8, and

therefore does not require any multiplexed address and

controls lines (figure 2c). All addresses discussed in this

paper are in hexidecimal format. The emulator memory is

controlled by U5, an Intel 8205 3-to-8 decoder. Address lines

A16, A17, and AI8 are used to drive the decoder input. Output

U5-15 is ORed with A15 to control U15 (MSM62256) and ORed

with A15* to control U16 (MSM62256) chip enable inputs. These

two static RAM chips form page 0 of the 8088 memory space.

Addresses (00000-07FFF) are located on U16 and addresses

(08000-OFFFF) are located on U15. The emulator memory map is

shown in table 2. Output U5-7 provides the emulator clip

select to U17 (2716), which is page 7 of the memory space. A

2716 EPROM was used because it was readily available in the

engineering laboratory. The system ROM is located on U17

with addresses 70000 - 707FF. Since A16-A18 are all ones

26

after a reset, and the lower 11 address bits are 7F0, the

emulator begins its operation from the address 707F0. Decoder

output U5-13 is used to control the system mode flipflop U39-

B (7474). Decoder output U5-12 and U5-13 control the target

system single-step circuits U65 (7474). Both of these

control lines will be discussed in greater detail later.

Finally, output U5-9 controls U18 (UM6116), which is page 6

of the emulator memory space. Static ram U18 may be addressed

by the target system also and will be discussed in detail in

the next section.

The emulator I/0 address space is controlled by U38

(74154) a 4-to-16 decoder. Each output of U38 will be discuss

in the functional section where it is used. The control

inputs to U38 consist of address lines A4 - A7 and an

inverted IO/M* control signal. The IO/M* signal ensures that

U38 and U5 (8205) are never active at the same time. This

separation of memory and 10 space is necessary since the A4

through A7 are used throughout the emulator.

Target Memory

Another user requirement is for the emulator to eliminate

the 8755 ROM, and to provide the target with equivalent user

RAM. Additionally, access to the user by the emulator system

and the user's CPU ram must be mutually exclusive. To

accomplish this requirement, the address lines AO through AIO

are multiplexed using 74F157A 2-to-i multiplexers. Each

multiplexer has two sets of four inputs and one set of four

27

outputs. Address lines AO through A3, A4 through A7, and A8

through A10, and CS* are applied to U10, U11, and U12,

respectively (figure 2c). One set of these signals come from

the emulator and an identical set comes from the user

circuit. The output of U10, Ull, and U12 are applied to U18

(UM6116). The select line pin 1 of Ul0 through U12 controls

which set of input signals are connected to the output. When

select is high the emulator is in control of the SRAM.

Conversely, when select is low the target system has access

to the SRAM. The select lines of all multiplexers in the

emulator are control by the output of the mode flipflop U39-A

(7474). The write enable input (U18-21) is enabled only by

the emulator. This limited access to the write enable is

necessary because the a real 8755 does not have a write

capability.

The output of U18 is connected to U14 and U13. These

devices are 74F245 transceivers and are required to isolate

the SRAM from the system data bus. The output enable input on

U14 is controlled by the ORing of chip select of U18 and data

enable of U8. The output of U41-A (7432) is low only when

DEN* and CS* are both active. The direction of data flow

through U14 is controlled by the CPU RD* signal. Transceiver

U13 performs a similar function for the target circuit's

access to U18 (UM6116), except data flow is only allowed from

U18 into port B and out of port A. This prevents the user

from inadvertently writing to U18. Output enable of U13

28

L_

(74f245) is controlled by ORing I0/M* (MISC1-7), CEI* (MISCI-

1), and the target RD* (MISCI-9) signals. When all three

inputs are low U40-D will produce a low when U18 is accessed

by the target. The 74F157A and 74F245 devices were selected

to limit the amount of delay introduced, while allowing a

flexible means of gaining access to U18. The multiplexer-

transceiver combination adds only 14 ns delay, and is

transparent to the user.

Serial Port

A primary requirement of the emulator system is the

ability to communicate serially with the host computer

microcomputer. This is accomplished via the serial port J2 on

the rear of the host computer. The emulator uses U3 an 8251A

universal asynchronous receiver transmitter (UART) as its

serial port. The 8251A is capable of being programmed for

asynchronous or synchronous communications. This project uses

only the asynchronous mode, and operates at 9600 baud, with

odd parity, and one stop bit. The specific software required

to configure the UART is discussed in the next chapter. Data

transferred between the CPU and UART is in an eight bit

parallel format. An 8286 transceiver (U4) is used to isolate

the UART from the CPU. The outputs of U4 are tri-stated

unless the UART's chip select is low. The direction of data

flow through U4 (8286) is controlled by an inverted RD* from

the CPU. The UART converts the parallel data to a serial

string and inserts start, stop, and parity bits. This string

29

is transmitted serially on the TXD pin U3-19 (8251A). The

UART output is standard TTL output, which must be converted

to RS232C signal specifications. The 1488 line driver (Ul)

converts the TTL levels OV and 5V to -12 and +12,

respectively. The output of Ul is connected to the RS232C

cable and received by the host computer. Data terminal ready

(DTR*) and request to send (RTS*) signals are also provided

by the UART and passed through the 1488 driver. To receive

data from the host computer the RS232C signals must be

converted to TTL prior to being applied to the UART. Line

receiver U2 (1489) converts the input data string, clear to

send (CTS*), and data set ready (DSR*) signals. The use of

the DTR*, RTS*, CTS*, DSR* handshking signals will be

discussed in the next chapter. The RS232 cable also provides

a ground return path between the host computer and emulator. --

The receive and transmit clock is provided by an external

function generator via connector J2. At 9600 baud the

required clock frequency is 153.6 Khz when the baud rate

factor is programmed for 16 (see chapter 4). For proper

operation U3 (8215A) requires a minimum clock period of 310

ns. The system clock of the cpu has a period of 210ns, but

the PCLK (U9-2) satisfies this requirement with a period of

420ns.

The control signals of the 8251A are the CS*, RD*, WR*,

and C/D* inputs. The CS* and RD* must be low to transfer data

from the UART to the CPU. The CS* and WR* must be low to

transter data from the CPU to the UART. The C/D* input is

30

connected to AO on the address bus and determines which

internal register is being accessed. A detailed description

of register control is covered in the next chapter.

Parallel Port

An 8755 haz 2 kbytes of EPROM and two 8 bit data ports

(figure 2j). The data ports may by used as inputs or outputs

and each bit is individually defineable through software.

Software requirements for the 8755 are covered in the next

chapter. The literature review found that the 8755 is the

only commmercially available device with bit-defineable

ports. To implement this feature the emulator is using an

8755-2 (U36), the the memory section of this device was not

used in this application. Since the emulator and the user

must have access to the 8755 ports three more 74FI57A

multiplexers, U31, U32, and U33 are used to control access to

this chip. Multiplxer U31 directs ALE, RESET, RD*, and WR*;

U32 directs CLK, VDD, AO, and Al; U33 directs CE2, IO/M*,

CEl,and IOR* from the emulator or user CPU control lines. The

active set of inputs at any given time is determined by the

mode flipflop U39-A (7474). All outputs of the multiplexers

go to U36 to allow control of this device by either source.

When CEI* and CE2 are active the 8755 will strobe the

address and IO/M* lines on the falling edge of ALE. To

prevent extraneous data during an access to user ram, the CE2

input is ANDed with the target IO/M* control line before

being applied to U33 (74F157). The output of this gate will

31

drive CE2 low during each memory access by the target

system. This will inhibit the 8755-2, thus preventing an I/O

*operation. The 8755 does not strickly require the use of the

IO/M* line to perform an I/O operation. The I/O may be

accessed by using only the IOR* and IOW* lines. This option

- is still available to the target user, but the emulator was

not designed using these lines. If this approach were taken

the possibility of bus contention would exist when the user

tried to perform a normal memory access. This problem only

exists from the target system, because to it the 8755 uses

the same chip enables for its memory and I/O operations. The

Femulator directly accesses the user memory and the 8755,

because from its perspective theses devices have separate

chip select addresses. The clock input to U36 was routed

through tne multiplexer to allow the user the option of

inserting wait states, but the 8755 typically does not

require wait states with Intel microprocessors. The clock is

* only used to drop the ready line U36-6 during each bus cycle.

The emulator system does not use the ready line with its

operations with the 8755. The 8755 I/O ports are controllable

by the emulator or the target, but the port outputs are

connected only to the target system. Thus when the user

performs an I/O operation through the ports the data is

receive and transmitted directly to his circuit application.

The user may also drive these ports from the emulator, but

the output will still be applied to the target circuit. If

32

the user desires to read the I/O ports via the emulator the

data may be displayed at the host computer terminal. The

emulator may also be used to reconfigure the data direction

registers while the target is in its halt state. This feature

allows the user to trouble shoot a circuit without having to

change the user program which could also be used to do the

reconfiguration.

The key hardware which provides the user with these

flexible features are U34 (74F245) and U35 (74F245). These

are 5 ns maximum delay data transceivers used to provide

isolation between the emulator and target data busses.

Transceiver U34 is connected to the target and is only

enabled when the mode flipflop is set to the target mode and

the target is performing an I/O operation. These two signals

are combined with AND gate U56-C (7400), with this output

applied to the OE* input of U34. The emulator transceiver U35

is controlled by ORing U36 chip select with the DEN* output

of the emulator CPU.

Break Address Section

Another key requirement of the emulator is to provide the

capability for the target system to break (halt) on specified

memory addresses. In order to provide this feature the

emulator must store the break address, monitor the target

system address bus, detect a valid match, halt the target at

before the address changes, and interrupt the emulator so it

can handle the break condition. Additionally, the emulator

33

V

must allow the user to disable the break section if desired,

and clear the break condition on command.

The break circuit consists of two primary hardware

sections. First, the ability to store and monitor the address

bus is provided by a set of ten 74F524 reqister/comparator

chips (figure 2e). These devices are eight bits wide and can

perform serial or parallel reads and writes. The parallel

mode is used in this application, in order to allow direct a

connection between the break circuits and the emulator CPU

data bus. Since the address bus of the target is 11 bits wide

two 74F524s are cascaded to form a 16 bit combination. The

highest five bits are tied to ground and not used. The 74F524

retains the desired break address in an internal register and

compares this address with the target address during each bus

cycle. When a match is detected the equal (EQ) output goes

low. This output is open collector and both cascaded EQ lines

are tied together and connect to VCC through a ik resistor.

The clock input (CP) to the 74F524 is used for internal

synchronization and is applied at pin 11. This signal must be

provided by the CPU that is reading or writing to the chip.

The data inputs which receive the desired break address from

the emulator are also used to monitor the target address bus.

Therefore, the address and clock lines are multiplexed using

U42, U43, and U44 which are 74F157A chips (figure 2d). The

control lines for this type of multiplexer was discussed

earlier. The break addresses are label break_1 through

break_5, but the actual chips are broken out as breakiA and

34

break IB through break_5A and break_5B. This was necessary

because the data bus is only eight bits wide and each break

address requires two write addresses. During the address

monitoring process all address bits are applied simutaneously

to the comparators from the output of U29 (8282) and U30

(8282). In order for each comparator to be individually

addressable, each chip required its own chip enable address.

All chip selects are located in the emulator I/O address

space and controlled by U38 (74154). Each comparator also

requires combinational logic to drive its SO (Pin 1) and S1

(Pin 19) inputs. Figures (2f-2h) shows specific connections

for each control block, but each block performs according to

the following truth table.

Table 3. Register/Comparator Truth Table

SO Si Operation

L L Hold - Retains data in shift register.

L H Read - Read contents in register onto data.
bus.

H L Shift - Allows serial shifting on next clock

H H Load - Load data on bus into register

The second hardware section is the break detect interrupt

circuits (figure 2k). This section is built around an 8259A

(U58) interrupt controller chip. This device is produced by

Intel and is compatible with the emulator CPU. The 8259A is

software programmable and must be intialized by the CPU. The

35

specific software requirements are discussed in chapter 4.

The data bus of the 8259A is connected directly the CPU. It

uses the RD*, WR*, AO lines to determine which internal

register is being accessed. This chip handles a maximum of

eight interrupts based on its programmed priority scheme.

Each cascaded break comparator is connected to the interrupt

controller through an invertor. When a break is detected the

open collector output of the comparator is pulled low,

inverted, and applied to U58 (8251A). The low to high

transition causes the INT pin to go high. If the CPU's

interrupt flag is set the high on its INTR line will initiate

an interrupt sequence. The CPU responses by sending two

interrupt acknowledge pulses on its INTA line. The 8259A will

return a byte after the first interrupt acknowledge

specifying which interrupt type has occurred. The second

interrrupt acknowledge received is used by the 8259A for

internal housekeeping. The CPU uses the interrupt type to

determine the address of the break handling routine.

When any one of the break detectors outputs go low the

target system must be halted. To accomplish this the output

of the break detectors are ANDed together through U62A (7411)

and U62B. The output of these gates is ORed with the break

control flipflop output and fed through an open collector

buffer (U61-B) to the target ready line. If the output of the

break control flipflop is low when a break is detected the

target system is halted by forcing its ready low. The break

control flipflop is controlled by the emulator CPU by setting

36

-.I --i -- . . .- - . - - - t.- - °+

and resetting U66-A (7474). To enable the break section an

I/O operation is performed to address 00h to clear the break

flipflop. To disable the flipflop and I/O operation is

perform to address 10h, which sets the flipflop. When the

flipflop is set its output is high, which makes U63-B (7432)

go high. This prevents the open collector buffer from going

low regardless of what the rest of the break detection

section is doing. After a break operation has occurred the

break detectors automatically clear themselves upon the

arrival of the next target address. The CPU interrupt

clearing process is handled with software and will be discuss

in chapter 4.

Target 40 Pin Section

The address lines from the target plug MISCI (12-19 and

21-23) are the output of the target CPU. The 8755 address

lines are strobed by the ALE signal and normally do not

require latching. Since the 8755 memory section is not being

used, two 8282 latches are placed between the MISCI lines and

U10, U11, and U12 address inputs . Target address lines AO

through A7 flow through U29 (8282) and A8 through A10 flow

through U30 (8282) (figure 2i). Both latches are strobed by

the target CPU ALE (MISCI-Il) at the beginning of each cycle.

Memory access by the target system is similar to I/O circuit

access. When the target system reads memory the control

signals are not directed to the 8755, but instead are fed to

the user memory chip U18 (UM6116). To allow access by the

37

target or the emulator multiplexers Ul0 - U12 (74F157) are

used as described in the user memory section. The output

enable line is multiplexed through U31, using the read line

that also drives the 8755 read input. This provides an

accurate control arrangement because the mode flipflop

ensures that only one set of control lines are applied to the

user memory and 8755 control lines. To ensure that the target

system cannot write to the user static ram, the chip select

CEl is ORed with the IO/M* signal before being applied to the

multiplexer input. This controlled chip select is only active

when the target is performing a memory read cycle. Since the

IOW* is high during a read cycle this ensures that the ram

write enable is at its required inactive state during each

read cycle. The write enable signal must be low when the

emulator performs a memory write cycle, therefore the WR*

control from U8 (8088) must have access to the ram device.

When the mode flipflop is set to allow emulator access, the

emulator may read and write the user ram or the parallel

ports of the 8755. To prevent bus contention when the target

system accesses the ram while the emulator is performing

other operations, separate tranceivers were required at the

data output of the ram device. The data direction control

input to U13 (74F245) is tied to ground so that data may not

be moved from the target system to the ram chip. This

prevents anyone from maliciously performing a memory write

from the target system. The output enable of U13 (74F245) is

38

controlled by the target read line, which is qualified by the

memory chip select described earlier. The normal memory

access time of the 8755 is 450 ns and 300 ns for a 8755-2.

The 8755-2 is used in the emulator design to ensure that the

user may use any currently available version of the 8755 in a

circuit design. The control signals and data from the target

CPU must flow through a number of support devices for either

a memory or I/O operation. For a memory operation U29 and U30

(8282) introduce a 30 ns delay, U10 - U12 (74F157) introduce

a 6.5 ns, and U13 (74F245) introduces a 7.5 ns delay. Since

U18 is a 150 ns access time static ram, the total memory

access time is a maximum of 194 ns. Therefore, the additional

hardware is transparent to the target system. During an I/O

operation to U36 (8755-2) the additional hardware includes

U31 - U33 (74F157) with 6.5 ns delay, and U34 (74F245) with

7.5 ns delay. The 8282 U29 and U30 delay is not encountered

during I/O operations, because U36 only requires the AO

address line and this is taken directly off of the target

plug.

Special Function Section

The final requirement of the emulator is to provide the

user with the ability to single-step the target from the host

computer. This process required both hardware and software

support. The single-step ability of the emulator is limited

to either a step mode or a free-run mode. If the user desires

to single-step from a specific location in memory this must

39

be done by first breaking at that address and then entering

the single-step mode.

The target single-step mode is entered when
the CPU

performs a memory operation to address 40000, thus clearing

the single-step mode flipflop U65-B (figure 21). By placing a

low on the Q output of U65-B and ORing this with the output

of the stepper flipflop U65-A the target is halted after each

bus cycle. The stepper flipflop is stepped by an I/O

operation at address 20h by the emulator CPU. This signal is

used to clock U66-A (7474), which then pulses U63-A (7432).

If the single-step mode flipflop output is low, this signal

will force the target ready line high. The ready line will

remain high until the next target ALE signal goes high. The

ALE signal is inverted and applied to the clear input of

U65A, which drives the stepper output low. When the stepper

output goes low this forces the target ready line low and

halts the target CPU. To put the target system in the free-

run mode, the emulator CPU performs an memory operation to

location 30000. This sets flipflop U65-B and prevents the

stepper flopflip from driving the target ready line low.

An additional single-step circuit was built to allow the

emulator CPU to be single-stepped (figure 21). This circuit

is not used in the normal operation of the emulator, but is

provided for the convenience of maintenance to the system.

The operation of this stepper is similar to that described

for the target. However, the clock pulse for this stepper is

generated by switch S2. When S2 is depressed the pulse is

40

debounced and used to trigger a one-shot multivibrator U45

(74121). Each pulse from S2 produces a positive going

squarewave at the output of U45, which then clocks the

stepper flipflop U39-A. The stepper flipflop is cleared each

bus cycle by the ALE signal. The output of U39-A is Ored

with the output of switch S3. If S3 is set to ground the CPU

is controlled by the stepper flipflop and halts after each

cycle. If S3 is set to VCC the stepper flipflop has no effect

since the output of U41-D (7432) is held high. The output of

U41-D is fed to the clock generator (U9), synchronized, and

applied to the CPU.

The emulator is built on two perforated project boards as

which are connected by a 40 pin ribbon cable. The pin

connections at both ends of the cable, MISC2 and MISC3, are

listed in appendix A. Additionally, table 1 of appendix A

lists the parts used to build the emulator. The net wiring

list is shown in appendix B.

41

IV. THEORY OF OPERATION: SOFTWARE

INTRODUCTION

One of the primary enhancement features of the emulator

when compared to a standard 8755 is its capability to be

controlled from a host computer microcomputer. The hardware

to provide this ability was discussed in the last chapter. In

this chapter the software to control the emulator system is

discussed in detail.

The software necessary to control the emulator may be

broken into three separate sections. The first section to be

discussed is the emulator bootup routine. The software is

situated in the emulator address space such that it is the

first code encountered upon system startup. The bootup

routine has the responsibility to initialize the emulator.

This is accomplished through a series of read and write

operations to the proper pieces of hardware. The bootup

routine also performs a self-test on its static ram prior to

making contact with the host computer. Likewise, the user

static ram is tested and any problems reported to the host

computer. Finally, the bootup routine must download the main

emulator control software and verify to the host computer

that the program was received accurately.

The second section of software is the main emulator

control software. This program is initially located on the

host computer, but is downloaded to the emulator. This

42

section is responsible for all emulator activity after the

initial bootup routine has terminated. The emulator code

contains all the flag and message smybols used between the

emulator and the host computer. It also contains the software

necessary to change any of the hardware originally configured

by the bootup routine. The emulator does not actually alter

any subsystems without receiving instructions from the host

computer. Once the emulator is downloaded it is passed

control by the bootup routine. The emulator then awaits

further instruction from the user via the host computer.

The third section of software is the host computer

emulator control software. This code resides on the host

computer and is only usable by the host computer. This

program contains all the flags used by the emulator and uses

them to pass desired action commands to emulator. Each

transaction between the emulator and host computer is

preceded by an attention signal, contains a positive or

negative acknowledge, and ends with the EOT signal. If the

acknowledge message is negative the appropriate error message

is display to the user by the host computer.

Each software program has a corresponding flowchart in

appendix C and these should be used by the reader during the

discussion which follows. The source code listing for each

section is in appendix D. The source code contains

explanatory comments to aid the reader in interpreting the

assembly language code.

43

Bootup Software

Upon startup the CPU outputs address FFFFO (Table 2) as

described in the hardware discussion. This address equates to

707F0 in the emulator address space. At this location the

emulator branches to address 70000 and begins its

initialization process (figure 3).

The first task accomplished is to halt the target system

to ensure that no interference is created between the two -

CPUs. This is accomplished by performing a memory write

cycle to address 40000, which puts the target in its single-

step mode. Here the single-step mode is equivalent to a halt,

because the target system cannot advance without a step

pulse, which must come from the emulator. The second task to

be accomplished is to put the break circuits into their off

state. This is accomplished by performing an I/O write cycle

to address 0030, which masks out the state of the break

detector circuits. This is done to ensure that an erroneous

break detect does not occur before the break registers are

properly configured. The break section remains disabled

until changed by the main emulator program. At this point the

target circuits are isolated from the emulator.

The bootup routine now begans to initialize itself for

operations with the host computer. The serial port is

programmed for asynchronous communication by writing three

consecutive zero bytes to put the UART in its worst case

44

configuration (2). This causes the UART to be set for

synchronous operation with two zero bytes for SYNC

i characters. At this point the UART is reset by writing 40h

to the control register. Next, the mode register is loaded

with 5Eh, which configures the UART for asynchronous

transmission, one stop bit, odd parity, eight data bits, and

a baud rate factor of 16. The baud rate factor is used to

determine the required clock frequency as:

Clock frequency = baud rate factor X baud rate (1)

For the emulator the baud rate is 9600 baud, therefore the

UART clock frequency is 153.6 Khz. This clock is only used to

clock the serial shift registers in the UART. The next byte

written to UART goes into the control register. The receiver

and transmitter are enabled, error flags cleared, and the

data terminal ready pin activated by outputting 37h. At this

point the UART may be used to communicate with the host

computer.

Before sending or receiving data through the UART its

status register must be read and analyzed. Before each

transmit operation the status register is read and compared

with Olh to see if the transmit register is empty. Prior to

each read operation the status register is compared with 02h

two see if a new data byte has been received. Bits three

four, and five indicate whether a framing, overrun, or parity

error has occurred. These flags are used with any transmit or

45

receive operation to ensure accurate data transfer. For file

transfers, proper transmission and receiption of data is also

P verified by using a checksum counter. The checksum value

follows the end-of-file (EOT) during each communication

between the emulator and host computer.

Following the initialization of the UART, the static ram

on page zero is tested. To test the ram alternate 00h and FFh

bytes are written to all 64 kbytes. At the conclusion of the

write cycles each location is read and tested to see if the

proper data is there. If an error is found an error counter

is incremented and the NACK signal sent to the host computer

at the conclusion of the test. If all is well this is sent to

the host computer and an acknowledge reply is returned. Once

the emulator memory has been tested the user static ram is

scanned in the same manner and the results reported to the

host computer. If problems are reported the host computer is

responsible for advising the user. The bootup routine must

have three failures of a given memory section before an error

message is sent. At this point the emulator should be reset

and the bootup routine run again.

When the all clear is sent to the host computer this is

used as a signal to download the emulator program. The

starting address for storage is set at 00000 and the emulator

will loop until the host computer responds with the download

signal. The next byte to be received by the emulator is

stored at the first memory location. All subsequent bytes are

46

stored sequentially until the EOT signal is detected. Each

byte received must be tested and also added to the checksum

register. When the EOT is found the next byte is compared

with the checksum value an if a match is found an acknowledge

signal is sent to the host computer. If the checksums do not

match the host computer will retransmit the emulator, in

response to a NACK signal, and the process is repeated. After

three attempts to pass the emulator memory the host computer

will display an error message and the emulator resumes

testing its memory. If the acknowledge signal was returned

the emulator passes control to address 00400 and the bootup

routine is terminated.

Main Emulator Software

The emulator routine starts by waiting in a loop for the

host computer to communicate the desires of the user. The

host computer provides a series of menus and prompts to

communicate with the user. The emulator operates in a passive

mode, except that it will signal the host computer if a break

condition occurs.

The emulator software provides four basic functions which

may be requested by the host computer. Figure 4 shows the

basic flow chart arrangement of the emulator code. The

emulator waits for the attention signal (++) followed by an

ascii character. If a 'U', ascii 55h, is received the user

memory procedure is activated and controls the interaction

between the host computer and the user memory. If a 'S',

47

ascii 53h, is received the single-step control procedure is

activated. If a 'B', ascii 42h, is received the break control

procedure is activated. Finally, if a 'P', ascii 50h, is

received the 8755 control procedure is activated. Each

procedure returns control to the wait loop upon termination.

User Memory Control

The user memory procedure allows the user to download the

target program to U18, write to a particular location, or

read a particular location. All user memory functions must be

initiated by and coordinated with the host computer.

When the emulator loop receives a (++U) string the user

memory procedure is called (figure 5). Upon activation the

procedure returns a ready signal to the host computer. The

host computer returns a string which contains a direction

flag and the starting address. The emulator stores this

string in the user instruction buffer. Next, this string is

analyzed to determine what actions to take. If the direction

flag is for a download the emulator clears the transmit

attempt counter and the checksum register. The emulator then

sends the ready signal to the host computer. At this time the

host computer begins to download the data. Each byte received

is stored in a temporary data buffer until the entire file is

verified at the end of the transfer. With each byte received

the value of the data is added to the checksum register. This

process is continued until the EOT is received. When the EOT

48

is received the next byte received is interpreted to be the

checksum value calculated by the host computer. This value is

compared to the emulators checksum and if they match the host

computer is sent the acknowledge signal. The emulator then

stops the target sytem and changes the user ram circuits to

the emulator mode. The data received is transferred to the

user ram and the target restarted. If the checksums do not

match the NACK signal is returned and the transmit counter is

incremented. The transmit counter is compared to three, if

the count exceeds three the user procedure is exited. If the

transmit counter is less than three the download is repeated.

The emulator does not send a retransmit signal to the host

computer, because the host computer keeps a separate count of

its transmission attempts.

If the string stored after the emulator returns its ready

signal is an upload the emulator will follow a course

opposite to the one just described. The start address and

number of bytes to upload are received from the host

computer. The emulator clears its transmit counter and

checksum register. Next, the target is halted and the data

loaded into the temporary buffer area. The purpose of the

buffer is to keep the data on hand for a repeat transmission

if an error occurs during the upload. The data is held in the

buffer until over written by future transfer operations.

After the data is in the data buffer the target is returned

to its previous status. The emulator sends the acknowledge

49

signal to the host computer to indictate that the data is

next. Each byte is sent to the host computer and the checksum

is tabulated until the proper number of bytes have been

uploaded. When the byte limit is reached the emulator will

send the EOT, which is then followed by the checksum value.

The emulator then waits until an ACK or NACK is received. If

the ACK is received the user procedure is exited. If the NACK

is received the emulator will increment the transmit counter.

If the flag now exceeds three the procedure is exited. The

emulator does not handle this error condition since the host

computer handles all errors. If the transmit count is less

than three the ACK is sent and the data retransmitted. This

process is repeated until the data is accurately transferred

or the transmit count exceeds three.

Emulator Mode Control

The emulator mode control procedure is not explicitly

called by a host computer command. This routine is accessible

only by the emulator, but provides service to various host

computer commands. For example, the user memory operation

uses this procedure during the its memory reads and writes to

disable the target section. This procedure simply uses the

mode flag to either put the emulator multiplexers in the

target or emulator mode. If the target mode is desired a

memory 20001 write is executed. Conversely, if the emulator

mode is desired the memory write goes to 20000. In either

case the mode flag is set to the proper status and the

50

procedure is exited, with control returning to the calling

procedure.

Single-step Control

The single-step procedure is called when the emulator

waiting loop receives the (++S) string (figure 6). The

procedure responds by sending the ready signal. The host

computer then sends the desired action code, which may be to

enable the stepper, to put the target in the free-run mode,

or to step the target. If the enable code is received the

emulator performs a memory write to address 40000, updates

the single-step flag, sends the ACK signal, and returns to

the waiting loop. If the free-run code is received the

emulator performs a memory write to address 30000, updates

the single-step flag, sends the ACK signal, and returns to

the waiting loop. If the action code is to step the target

circuit the emulator checks the single-step status to ensure

that the stepper is in the step mode. If the mode is set to

step the emulator writes to I/O address 0020, returns the ACK

signal, and then returns to the waiting loop. If the mode is

set to free-run the emulator returns the NACK signal and

exits the procedure.

Break Control

The emulator break circuits are controlled by a

combination of the bootup routine and this emulator

procedure. The bootup routine took care of initializing the

51

8259A and inhibiting the break circuits. This procedure is

used to load the break registers, enable or disable the break

circuits.

When the emulator waiting loop receives the (++B) string

it calls this procedure (figure 7). A ready signal is

immediately returned to the host computer. The host computer

then sends a code to enable, disable, or download to the

break registers. If the action desired is to enable the break

detection circuits the emulator writes to I/O address 0000.

The break flag is updated and then the ACK signal is

returned. If the action desired is to disable the break

circuits the emulator will write to I/O address 0010. The

break status flag will then be updated and the procedure

exited.

If the user desires to load the break registers the

download signal is used. Following the ready signal to the

host computer the emulator clears its checksum register and

sends another ready signal. The data bytes received will be

placed in the break address buffer until the EOT is detected.

Once this flag is received the next byte will be compared to

the emulator checksum value. If the checksums match the break

circuits are disabled, the break register are loaded, and the

break circuits then enabled. Next, the break status flag is

updated and the ACK signal returned to the host computer. The

procedure then returns to the waiting loop. If the checksums

52

do, not match the NACK signal is returned and the procedure is

exited.

When the 8259A receives an interrupt from the break

detectors it must direct the response of the CPU. Regardless

of which break address is detected the 8259A will respond

with an interrupt request to the emulator CPU. The CPU

responds by sending two interrupt acknowledge signals, which

causes the 8259 to output the interrupt type number. The type

ranges from 8 through 12 and is calculated by the 8259A based

on the setting of its IRO-1R2 bits (figure 8). These bits are

combined with 00001b to indicated the proper type number.

Each interrupt type is used to vector to the interrupt

handler code address. Each interrupt handler simply moves its

type number to the interrupt hold register. The interrupt

hold register is simply a memory location used for parameter

passing. Each interrupt handler then passes control to the

break reporting procedure. This procedure sends the (++B)

string and waits for the ACK signal. When the ACK is received

the emulator sends the interrupt number in the interrupt hold

register. The emulator will wait for instructions from the

emulator before resetting the break circuits. If the host

computer indicates that the break procedure should be left as

is the circuits are disabled and the status flag updated. If

the reset command is received the break circuit is disabled

and then enabled to reset them. The the enable/disable

sequence is required to allow the break address comparators

53

to overwrite the last address. With either of the above

actions the break loading procedure is exited.

8755 I/O Control

The emulator initiates a call to the 8755 control

procedure upon receiving the (++P) control signal. This

procedure is used to read or write to the target circuit

ports and to reconfigure the bit assignments (figure 9). The

procedure responds to its call by returning the ready signal

to the host computer. Next, the host computer sends the

direction flag followed by a port number. If the direction

flag indicates an upload, the port number will be to port A

or B only. In either case the emulator will hold this

infomation in a temporary register. The target system is

halted and the mode changed to the emulator. The selected

port is read, the data is moved to the temporary register,

and the target restarted. The emulator clears its checksum

and the transmit counter, then sends the ready signal. The

data byte is then uploaded, followed by the EOT and checksum.

The emulator then waits for the ACK from the host computer.

If the ACK is received the procedure is exited. In the event

the NACK is received the transmit counter is increment and

compared to three. If the count does not exceed three the

transmission process is repeated. If the count does exceed

three the procedure is simply exited. When the direction flag

indicates a download it is possible for the data to go to the

ports or to the data direction registers. The host computer

54

sends the port number after receiving the ready signal. The

emulator halts the target, clears its checksum, and clears

the transmit counter. The emulator sends the ready signal

again to indicate it is ready for the data byte. The data is

received and held until after the checksum is verified. After

verification the data is loaded into the appropriate register

and the ACK signal is returned. The emulator then restarts

the target and returns control to the waiting loop. If the

checksum is not correct the emulator performs the usual three

tries then terminates.

Host Computer Control Software

The host computer program serves as the interface between

the emulator and the user. Most of the actions taken by the

host computer will be initiated by the user. However, there

are two cases when this is not true. When the system is

started the emulator memory is downloaded without user

intervention. The other case is in the event of a break

address detection. In general the user is prompted for an

input and the response is then transmitted to the emulator.

The flowchart for this portion of the system programs is

located in figure 10.

Upon startup the host computer program displays a welcome

message and advises the user to standby. The program then

monitors the serial port for two ACK signals from the

emulator. One ACK is for the emulator SRAM and the other is

55

for the target SRAM. If either signal is replaced by the NACK

signal the host computer displays an error message and the

user should reboot.

When the ACK signals are received the emulator clears its

transmit and checksum counters. The host computer sends the

download signal, followed by the emulator program. The

emulator program is then verified using the checksum method.

If the program receives the NACK instead of the ACK, the

transmit counter is incremented and the emulator code

retransmitted. This is repeated up to three times before an

error condition is assumed. If an error condition does turn

out to be the case the program displays an error message

advising the user to reset the emulator and host computer

program. If the emulator program is successfully downloaded

the wait prompt is removed and the setup menu is displayed.

The display will also contain the status of the single-step,

system mode, and break circuits. The single-step will be in

the step mode, the system mode set to system, and the break

circuits disabled. This is the initial system configuration.

These statuses will be displayed anytime the setup or main

menus are displayed. They are also displayed individually

when their corresponding submenus are displayed.

The user must address each section of the setup menu that

is intended to be used. Generally, all three areas should be

setup, but this is not required if only partial operations

are planned. In any case the program waits for the user

56

selection and then branches to the proper procedure. Each

procedure will return control to the setup menu and the user

will eventually need to select item (d) to escape the setup

menu. Selections a, b, and c each handle a specific emulator

feature and their operation are discussed next.

Pass User Memory

When item (a) is selected the user memory module is

called (figure 11). The program sets a flag which indicates

which menu was currently in used prior to the call. This flag

will be used later to ensure the user display contains the

same menu when the module is exited. The user is then given

the following set of options.

User Memory Menu:

a. Down load target memory

b. View target memory location

c. Edit target memory location

d. Exit

Which offers the choice of downloading the target memory,

viewing a particular memory location, or edit a target

location. When the download target option is chosen the user

is prompted for the filename, starting and ending addresses.

The starting address is use to inform the emulator of which

address in the user ram to load the program. The ending

address is used to determine when the EOT should be sent to

the emulator, but this address is never sent to the emulator.

57

After receiving this information the procedure uses MS-DOS

function calls to open and read the user program into a

temporary 2 kbyte buffer. This buffer is maintain at all

times after the initial data read. The user must have this

buffer loaded before option (b) may be accurately employed.

The reason for this restraint is that if the view option is

selected the user is shown what is in the temporary user

buffer and not what is in the user memory chip. Once the

buffer is loaded the program will clear its transmit counter

and checksum register. The emulator is sent the (++U) signal

and the program then waits on the ready response. The

emulator responds with the ready signal and then awaits the

direction flag and starting address. When this information is

received the emulator sends another ready and the download is

accomplished. When the byte count has been reached the

program inserts the EOT, and then sends the checksum value.

If all went well the emulator will return the ACK signal and

the transfer is terminated. In this case the calling menu is

displayed. If the NACK signal is received the download is

attemped two more times. If the download still has not

succeeded the user is informed via an error message display.

At this point the entire system should be reset an the

download attempted again.

The view target memory option is provided so that the

user can look at changes which may have been made to the user

memory. It is not designed to alter the user memory since

58

this requires the target to be halted. If the user does

desire to alter the user memory the edit option should be

used. The best way for the user to keep track of all changes

is to keep the code listing available and to annotate all

changes. When the viewing option is selected the user is

aqain prompted for the starting address within the user

memory (buffer) area and ending address. The user may view a

maximum of 20 consecutive locations at a time. The

information will be displayed by location and content. The

edit option allows the user to change the data at a given

location within the target memory. The maximum number of

locations which may be edited is ten. This number is

arbitrary, but should be adequate for testing purposes. If

the user wishes to do extensive editing the most efficient

method is to make the changes at the assembly level and

reload the user program. When the edit option is selected the

user is prompted for the starting address and byte count. The

program setups up the temporary edit buffer and clears its

byte counter. The user is then prompted for the new data,

which must be entered in consecutive locations. If more than

five bytes are attempted the user is informed of the error

and the calling menu is displayed. In order for the user to

accomplish additional editing the same sequence of steps just

described must be accomplished. After the user has entered

the new data the carriage return is require to download the

data. The download procedure is the same from here on as in

59

the case of a total user memory download. The temporary user

buffer is updated with these changes and the procedure

returns control to the calling menu. If the user is

performing the original user download it is suggested that

the break circuits are configured next. This procedure is

discussed in the next section.

Break Control Module

If the user selects item (b) from the setup menu or items

(b) or (c) of the main menu, the break control procedure is

entered (figure 12). The procedure displays the following

break menu.

Break Control Menu:

a. Enable break detection

b. Disable break detection

c. View break addresses

d. Change break addresses

e. Exit break menu

If the user is still setting up the emulator then item

(d) should be selected. This is the option to choose to edit

the the break registers at any time. When item (d) is

selected the user is prompted for the register number, which

ranges from 1 to 5. When the desired register is entered the

user is prompted for the break address. The break registers

consist of two separate registers, but the user may simply

enter a three character hex address. This address will be

60

separated by the program and stored in the break buffer area.

All break addresses must fall within the legal memory space

of the target ram. These addresses range from XX7FF to XXOO

from the target perspective. After each address is entered

the user is asked if further address changes are desired. If

the reply is yes the process is repeated as many times as the

user desires. If the :eply is no the emulator is sent the

(++B) signal and the normal download process is carried out. 77
The break control menu is displayed and the user may select

another option or exit this menu. If the break register

download was unsuccessful the user is informed and the break

menu exited. The user may try again from the original calling

menu. Whenever the break menu is displayed the current status

of the break circuit on the emulator is automatically

displayed and any changes to the status are automatically

updated. To enable the break circuits to monitor the target,

the user simply selects item (a) from the break menu. The

user must ensure that the break registers have be previously

set because the emulator will break on any address match it

detects. To disable the break circuits the user simply

selects item (b) and the rest is handled automatically. For

the enable or disable option the host computer sends the

emulator the break control signal, which is followed by the

desired change flag. If the user desires to view the current

break register contents then option (c) is entered and the

local break addresses are displayed. The user should always

61

note the current status of the break circuits before sending

changes to the emulator. There final option on the setup menu

is to configure the parallel I/O ports. This setup is not

necessary for normal operations, since the user program will

do this. The option is provide to give the user added

flexiblility and is discussed in the next section.

Parallel Port Control

The user of a normal 8755 1/0 chip often uses the device

for its flexible ports, rather than for the memory it

contains. To allow the user full flexibility during circuit

testing, the emulator allows all of the original 8755

capabilities and also permits altering the target ports while

the target CPU is in a halt state. This feature will be

useful for pulsing circuits connected to the target, reading

the data at the ports after execution of an instruction, and

changing the data direction registers.

To access the parallel port procedure the user may select

item (c) of the setup menu or item (d) from the main menu.

When activated the procedure displays the port menu:

Port Menu:

a. Read port A

b. Read port B

c. Write port A

d. Write port B

e. View/Reconfigure port A DDR

62

f. View/Reconfigure port B DDR

g. Exit port control memu

If the user selects items (a) or (b) the host computer

sends the (++P) signal and awaits the ready signal from the

emulator (figure 13). When the ready is received the port

number corresponding to the user selection is sent. The

emulator responds with a byte of data retrieved from the 8755

port. The host computer then sends the ACK signal and

displays the port number and data to the user. If item (c),

(d), (e), or (f) is selected the user is prompted for the

data to send to the emulator. The data is placed in a

S
temporary buffer and the emulator is sent the port operation

flag. The emulator returns the ready flag and waits on the

direction flag and returns the ready signal. The host

computer now sends the data and port number. When the write

operation is complete the emulator returns the ACK and the

transaction is complete. The port menu will be displayed and

the user may enter the next selection. If item (g) is

selected the user is returned to the calling menu. After the

setup process is initially completed the user does not need

to return to this menu. The main menu has access to all the

submenus discussed thus far and this is where normal

operations are initiated.

63

irA

Main Menu Control

The main menu is entered from the setup menu and may

control the entire emulator during a session. The reason for

the setup menu was simply to ensure the user remembers to go

through the setup procedure. The main menu uses the same

procedures as the setup menu, but the user may not go from

the main menu to setup menu. The main menu maintains the

status of the target (system/target) the break detectors

(enabled/disabled), and the stepper circuit (step/free-run).

When the system is brought up the target is halted by the

bootup routine and the break circuits are configured during

the host computer initializtion of the target. Both should be

left disabled until after the setup operation is complete.

Therefore, when the main menu is initially displayed the user

should enable the break detects before enabling the target.

This ensures that the target is still at its starting address

when the break monitoring begans. After the initial start the

breaks may be enabled or disabled at any time, but the user

will have to keep track of the target address. One way to do

this is to enter the single step mode before enabling the

break detectors. Other than these precautions the user may

select from the main menu freely.

Only options (a), (b), and (d) have not been discussed

from the host computer perspective. Option (a) allows the

user to start or stop the target at any time (figure 14). To

do this the user is prompted for the desired action after (a)

64

J

is entered. The command is sent to the emulator and executed.

The emulator returns the ACK signal to verify the completion

of the requested action. The host computer informs the user

of the completion, updates target status flag, and returns to

the main menu. If item (b) is entered the user is again

prompted for the desired mode and the command is carried out.

If item (d) is entered the process is a bit more involved.

In response to the single step selection the host

computer displays the single-step menu:

Single-step Menu:

a. Start single-step mode

b. Step target

c. Exit single-step mode

d. Mair menu

From this menu the user may enable or disable the stepper

circuits, single-step the target if the stepper is enabled,

or return to the main menu. The user should note the status

of the target before attempting to single step it. If the

user selects item (a) or (c) the host computer checks the

status flag and if it is the opposite of the requested mode

the command is executed. If the requested status already

exists the program simply displays the single-step menu. If

the user desires to step the target, the mode should be

checked an set to "step" if not already in that mode. If the

user fails to do this then an error message will be displayed

65

and the single-step menu displayed after a brief delay. If

the target is in the step mode, a request to step will be

executed on command. The host computer sends the (++S) flag

and receives the ready reply. The step flag is then sent to

the emulator, which executes one step and returns the ACK

signal for verification. After each step the host computer

informs the user and loops back to the single-step menu. The

user may select item (d) if other options on the main menu

are desired while in the single-step mode. The other options

may then be executed and the main menu used to get back to

the single-step menu. For example, if the user has entered

the single step mode and now desires to disable the break

circuit the following action is require. Enter (d) on the

single-step menu, select (b) on the main menu, then select

(b) on break menu, select (e) on the break menu, and (d) on

the main menu to return to the single-step menu. This type of

process is necessary if something besides the single-step

options is desired while in the single-step mode. Normally,

the user would only need to enter (b) to step the target from

the single-step mode. Once the user leaves the single-step

mode the single-step menu is removed and control is returned

to the main menu. From the main menu all emulator features

may again be accessed. Figure 15 maintains the current status

of the mode flag and informs the emulator of any desired

change to the emulator's mode setting.

66

V. Recommendations

The 8755 emulator provides the user with several features

which are not available with the standard 8755 device. These

features allow the user of the emulator to test and

troubleshoot circuits more efficiently. The emulator's

usefulness could be increased still further with some

additional changes.

One aspect of using the emulator which needs to be

improved involves its hardware setup. This involves making

connections to several external devices. The +5 VDC, +12 VDC,

and -12VDC power supplies should be built into the emulator

to increase the mobility of the device. The 5 volt supply

requires 4.2 amperes, which has required connecting two power

supplies in parallel in the past. This could be annoying to

students moving the emulator from one work station to

another. The emulator currently does not need forced air

cooling, but this is recommended if a built-in power supply

is added.

The UART's transmit and receive clock signals are also

provided by an external source. These signals are currently

running at the same frequency and are tied together inside

the emulator. For convenience this signal could be derived

from an onboard oscillator or clock chip. For still greater

flexibility the receive and transmit clocks should be

independent of each other. These changes to the serial port

section would allow the emulator to connect to a wider

variety of devices. The emulator hardware and software is not

67

Z-100 dependent and will work with any device which sends the

proper flags and messages. One limitation of the serial port

is the requirement for asynchronous communications. The UART

used is capable of synchronous operations, but this will

require modification to the serial port initialization

routine and minor hardware changes.

The number of break addresses which may be monitored

simultaneously is currently five. While this is a limited

number of addresses, it is not recommend that additional

address monitors be added. Each break address requires the

addition of two register/comparators and ten logic gates.

Additionally, if more than three address monitors are added

an additional interrupt handler is required. Therefore, if a

significant number of new break address handlers are desired

the user should considered a different approach.

Finally, future units of the emulator should use printed

circuit boards instead of the wire wrapping method. The

emulator uses a large number of microchips and the density of

the interconnect wiring is high. This caused crosstalk

problems during the design of the emulator. With a well

designed printed circuit board this problem would be less

noticeable and hence the emulator more reliable.

68

r

PU U El - U II EU EI I IIIEIE up ~71

Appendix A: Hardware Diagram

PW- pwy

Figure 1. Emulator Block Diagram

69

AUU

M/M 8 in

Fiur[:. cemti Daga

70m

F'M

I--

'I

ANLAD

AMam

U52

COMM ow

U2 i M.2 "
-n ax- U

6_-

Figure 2b. Schematic Diagram

71

)-M -A -I

AN A-3 A-pd ARA

-1 Urn U12

U4

U4

-4L

VIS-0

Figur Flc- Scemti Diagra

WCI

72

4 s

7404
15:

GO 00-4

A& 4 s-4 cW f
ja"

Ulm4

5.4-

Ti U39-2 L

U 142

IM ~ IIk

L 3JL
U4
34

73

7M

10 c

I* N

U19- U

7-'

CADC

77U20 U25

-SL

JO c

U21 U26

74

NO Cp

7

10 C10 C

* IQ

UIU23 ___U28

Figure 2e. Schematic Diagram

74

AD IA AD AW

ADM IS -1 1 ADM* 2BGI

to a 2 804 S

Figure 2f Sceai Diagram

75

1 1 2 6

sac 6

W.-

AM- 3BI=4

3111

~4 4

Figure 2g. Schematic Diagram

76

L I t

Figure 2h. Schematic Diagram

77

UP29 MFAM
vl &M C FMI

U30 ("t-cU32.

U31

78

P~F B

797

U M

UMH

C*43

U66A

Figure 2k. Schematic Diagram

80

AL

12r am

CU : a

79481

M p

PART NAME BOARD PINS

Ul 1488 RS232 DRIVER 2 14
U2 1489 RS232 RECEIVER 2 14
U3 8251A UART 2 28
U4 8286 TRANSCEIVER 2 20
U5 8205 DECODER 1 16
U6 8282 LATCH 1 20
U7 8282 LATCH 1 20
U8 8088 CPU 1 40
U9 8284 CLOCK 1 18
Ul0 74F157A 2-TO-1 MULTIPLEXOR 1 16
Ull 74F157A 2-TO-1 MULTIPLEXOR 1 16
U12 74F157A 2-TO-1 MULTIPLEXOR 1 16
U13 74F245 FAST TRANSCEIVER 1 20
U14 74F245 FAST TRANSCEIVER 1 20
U15 MSM51257 32Kx8 SRAM 1 28
U16 MSM51257 32Kx8 SRAM 1 28
U17 2716 2Kx8 EEPROM 1 24
U18 MSM5128 2Kx8 SRAM 1 24
U19 74F524 FAST REG/COMPARATOR 2 20
U20 74F524 FAST REG/COMPARATOR 2 20
U21 74F524 FAST REG/COMPARATOR 2 20
U22 74F524 FAST REG/COMPARATOR 2 20
U23 74F524 FAST REG/COMPARATOR 2 20
U24 74F524 FAST REG/COMPARATOR 2 20
U25 74F524 FAST REG/COMPARATOR 2 20
U26 74F524 FAST REG/COMPARATOR 2 20
U27 74F524 FAST REG/COMPARATOR 2 20
U28 74F524 FAST REG/COMPARATOR 2 20
U29 8282 LATCH 1 20
U30 8282 LATCH 1 20
U31 74F157A FAST 2-TO-1 MUX 1 16
U32 74F157A FAST 2-TO-1 MUX 1 16
U33 74F157A FAST 2-TO-1 MUX 1 16
U34 74F245 FAST TRANSCEIVER 1 20
U35 74F245 FAST TRANSCEIVER 1 20
U36 8755 I/O ROM 1 40
U37 7404 HEX INVERTOR 1 14
U38 74154 4-TO-16 DECODER 2 24
U39 7474 DUAL D-FF 1 14
U40 7432 QUAD-2 INPUT OR 1 14
U41 7432 QUAD-2 INPUT OR 1 14
U42 74F157 2-TO-1 MUX 1 16
U43 74F157 2-TO-1 MUX 1 16
U44 74F157 2-TO-1 MUX 1 16

Table Ia. Parts List

82

U45 74121 ONE SHOT MULTI 1 14
U46 7400 QUAD 2-IN NAND 2 14
U47 7404 HEX INVERTOR 2 14
U48 7404 HEX INVERTOR 2 14
U49 7408 QUAD-2 IN AND 2 14
U50 7408 QUAD-2 IN AND 2 14
USl 7408 QUAD-2 IN AND 2 14
U52 7400 QUAD-2 IN NAND 2 14
U53 7408 QUAD-2 IN AND 2 14
U54 7408 QUAD-2 IN AND 2 14
U55 7408 QUAD-2 IN AND 2 14
U56 7400 QUAD-2 IN NAND 2 14
U57 7408 QUAD-2 IN AND 2 14
U58 8259A INTERRUPT CONTROLLER 2 28
U59 7408 QUAD-2 IN AND 2 14
U60 7407 HEX BUFFER (OC) 2 14
U61 7409 QUAD-2 IN AND (OC) 1 14
U62 7411 TRIPLE-3 IN AND 2 14
U63 7432 QUAD-2 IN OR 1 14
U64 7404 HEX INVERTER 2 14
U65 7474 DUAL D FLIPFLOP 1 14
U66 7474 DUAL D FLIPFLOP 2 14

MISCELLANEOUS PARTS

MISCI 40 PIN USER PLUG SOCKET
MISC2 40 PIN BOARD CONNECTOR # 1
MISC3 40 PIN BOARD CONNECTOR # 2
MISC4 20 PIN COMPONENT HOLDER BOARD 1
MISC5 20 PIN COMPONENT HOLDER BOARD 2
Jl RS232 CONNECTOR
J2 +5 VOLT INPUT
J3 +12 VOLT INPUT
J4 -12 VOLT INPUT
J5 COMMON GROUND INPUT
S1 RESET SWITCH
S2 EMULATOR STEPPER CONTROL
S3 EMULATOR STEPPER SWITCH

Table lb. Parts List

83

Appendix B: Net Wiring List

U-i 1488 DRIVER

1 -12 VDC
2 U3-19
3 RE232-2
4 U3-23
5 U3-23
6 RS232-4
7 GND
8 NC
9 NC
10 NC
11 RS232-20
12 U3-24
13 U3-24
14 +12 VDC

U-2 1489 RECEIVER

1 RS232-5,MISC5-1
2 NC
3 U3-17
4 RS232-3
5 NC
6 U3-3
7 GND
8 NC
9 U3-22
10 RS232-6
11 NC
12 NC
13 NC
14 +12 VDC

U-3 8251A UART

1 U4-3
2 U4-4
3 U2-6
4 GND
5 U4-5
6 U4-6
7 U4-7
8 U4-8
9 153.6 Khz
10 CT2-19
11 U38-6

84

12 CT2-19
13 CT2-20
14 NC
15 NC
16 NC
17 U2-3
18 NC
19 UI-2
20 CT2-16
21 CT2-18
22 U2-9
23 U1-4 ,U-5
24 UI-12,U1-13
25 153.6 Khz
26 +5 VDC
27 U4-1
28 U4-2

U-4 8286 TRANSCEIVER

1 U3-27
2 U3-28
3 U3-1
4 U3-2
5 U3-5
6 U3-6
7 U3-7
8 U3-8
9 U38-6
10 GND
11 U48-10
12 CT2-8
13 CT2-9
14 CT2-10
15 CT2-11
16 CT2-12
17 CT2-13
18 CT2-14
19 CT2-15
20 +5 VDC

U-5 8205 DECODER

1 U7-19
2 U7-18
3 U7-17
4 GND
5 U8-28
6 +5 VDC
7 U17-18

85

8 GND
9 U 12-10

*10 NC
11 NC
12 NC
13 NC
14 NC
15 U40-1, U40-4
16 +5 VDC

U-6 8282 LATCH

1 CT1-15
2 CT1-14
3 CT1-13
4 CT1-12
5 CT1-11
6 CTI-10
7 CT1-9
8 CT1-8
9 GND
10 GND
11 U8-25
12 CT1-28
13 CTI-27

14 CT1-26
15 CT1-25
16 CT1-24
17 CT1-23
18 CT1-22
19 CT1-21

*20 +5 VDC

u-7 8282 LATCH

1 U8-38
2 U8-37
3 U8-36
4 NC
5 NC
6 NC
7 NC
8 NC
9 GND
10 GND
11 UB-25
12 NC
13 NC
14 NC

86

15 NC
16 NC
17 u5-3

18 U5-2
19 U5-i
20 + 5 VDC

- U-8 8088-2 CPU

1 GND
2 U15-1 ,U16-1
3 U15-26 ,U16-26

-4 U15-2,U16-2
5 U15-23 ,U16-23
6 U17-19 ,U15-21 ,U16-21 ,U12-3
7 U17-22,U15-24,U16-24,Ul2-6
8 U17-23 ,U12-13 ,U15-25,U16-25
9 U6-8,U4-12,u14-9 ,U35-9

U 10 U6-7,U4-13 ,U14-8,U35-8
11 U6-6 ,U4-14 ,U14-7 ,U35-7
12 U6-5 ,U4-15 ,U14-6 ,U35-6
13 U6-4 ,U4-16 ,U14-5 ,U35-5
14 U6-3 ,U4-17 ,U14-4 ,U35-4
15 U6-2 ,U4-18 ,U14-3 ,U35-3
16 U6-1 ,U4-19 ,U14-2 ,U35-2

* 17 GN D
18 CT1-22
19 U9-8
20 GND
21 U9-10
22 U 9-5

*23 GND
24 CTI-23
25 U6-11 ,U7-11,U37-11
26 U41-1
27 U35-1 ,U14-1
28 U33-6 ,U5-5 ,CT1-17
29 CT 1-19
30 NC
31 GND
32 CT1-20
33 +5 VDC
34 NC
35 NC
36 U7-1
37 U7-2
38 U 7-3
39 U37-1 ,U40-4
40 +5 VDC

P7

U-9 8284 CLOCK

1 GND
2 CTI-16
3 GND
4 U41-11
5 U8-22
6 GND
7 +5VDC
8 U8-19 ,U32-3
9 GND
10 U8-21 ,U31-6 ,CT1-18
11 MISC4-16 & 17
12 NC
13 GND
14 NC
15 GND
16 CRYSTAL
17 CRYSTAL
18 +5 VDC

U-10 74F157A MULTIPLEXER

1 U39-8
2 U29-19
3 U6-19
4 U18-8
5 U29-18
6 U6-18
7 U18-7
8 GND
9 U18-5
10 U6-16
11 U29-16
12 U18-6
13 U6-17
14 U29-17
15 GND
16 +5VDC

U-11 74F157A MULTIPLEXER

1 U39-8
2 U29-15
3 U6-15
4 U18-4
5 U 29-14
6 U6-14
7 U18-3
8 GND
9 U18-1
10 U36-12

88

r

11 U29-12
12 U18-2
13 u6-13
14 U29-13
15 GND
16 +5VDC

U-12 74F157A MULTIPLEXER

1 U39-8
2 U30-19
3 U8-8
4 U18-23
5 U30-18
6 U8-7
7 U18-22
8 GND
9 U18-18
10 U5-9
11 U40-8
12 U18-19
13 U8-6
14 U30-17
15 GND
16 +SVDC

U-13 74F245 DATA LATCH

1 GND
2 MISCI-12
3 MISCl-13
4 MISCl-14
5 MISCl-15
6 MISCl-16
7 MISCI-17
8 MISCi-is
9 MISCI-19
10 GND
11 U18-17,U34-9
12 U18-16,U34-8
13 U18-15,U34-7
14 U18-14,U34-6
15 U18-13,U34-5
16 U18-11,U34-4
17 U18-10,U34-3
18 U18- 9,U34-2
19 U40-11
20 +5VDC

U-14 74F245 DATA LATCH

89

1 U8-27
2 U8-16
3 U8-15
4 U8-14
5 U8-13
6 U8-12
7 U8-11
8 U8-10
9 U8-9
10 GND
11 U18-17
12 U18-16
13 U18-15
14 U18-1 4
15 U18-13
16 U18-11
17 U18-10
18 U18-9
19 U41-6
20 +5VDC

U-15 MSM51257 SRAM

1 U8-2
2 U8-4
3 U6-12
4 U6-13
5 U6-14
6 U6-15
7 U6-16
8 U6-17
9 U6-18
10 U6-19
11 U8-16
12 U8-15
13 U8-14
14 GND
15 U8-13
16 U8-12
17 U8-I
1.6 U8-10
19 U8-9
20 U40-3
21 U8-6
22 U60-8
23 U8-5
24 U8-7
25 U8-8
26 U8-3
27 U60-4
28 +5VDC

90

U-16 MSM51257 SRAM

1 U8-2
2 U8-4
3 U6-12
4 U6-13
5 U6-14
6 U6-15
7 U6-16
8 U6-17
9 U6-18
10 U6-19
11 U8-16
12 U8-15
13 U8-14
14 GND
15 U8-13
16 U8-12
17 U8-il
16 U8-10
19 U8-9
20 U40-6
21 U8-6
22 U60-8
23 U8-5
24 U8-7
25 U8-8
26 U8-3
27 U60-4
28 +5VDC

U-17 2716 EPROM

1 U6-12
2 U6-13
3 U6-14
4 U6-15
5 U6-16
6 U6-17
7 U6-18
8 U6-19
9 U8-16
10 U8-15
11 U8-14
12 GND
13 U8-13
14 U8-12
15 UB-11
16 U8-10
17 U8-9
18 U5-7
19 U8-6

91

20 U8-32
21 +5VDC
22 U8-7
23 U8-8
24 +5VDC

U-18 MSM5128 SRAM

1 U11-9
2 Ull-12
3 U11-7
4 U11-4
5 U10-9
6 U1O-12
7 U10-7
8 U10-4
9 U13-18,U14-18
10 U13-17,U14-17
11 U13-16,U14-16
12 GND
13 U13-15,U15-15
14 U13-14,U14-14
15 U13-13,U14-13
16 U13-12,U14-12
17 U13-11,U14-11
18 U12-9
19 U12-12
20 U31-12
21 U36-10
22 U12-7
23 U12-4
24 +5VDC

U-19 74F524 REGISTER/COMPARATOR

1 U59-3
2 U42-4
3 U42-7
4 U42-12
5 U42-9
6 U43-4
7 U43-7
8 U43-12
9 U43-9
10 GND
11 U44-9
12 GND
13 NC
14 NC
15 U24-15,U64-13

92

16 U24-17
17 + 5VDC
18 U24-17
19 U49-3
20 + 5VDC

U-20 74F524 REGISTER/COMPARATOR

1 U50-6
2 U42-4
3 U42-7
4 U42-12
5 U42-9
6 U43-4
7 U43-7
8 U43-12
9 U43-9
10 GND
11 U44-9
12 GND
13 NC
14 NC
15 U25-15, U64-3
16 U25-17
17 +5VDC
18 U25-17
19 U50-8
20 +5VDC

U-21 74F524 REGISTER/COMPARATOR

1 U51-3
2 U42-4
3 U42-7
4 U42-12
5 U42-9
6 U43-4
7 U43-7
8 U43-12
9 U43-9
10 GND
11 U44-9
12 GND
13 NC
.14 NC
15 U26-15,U64-5
16 U26-17
17 +5VDC
18 U26-17
19 U53-3

93

20 + 5VDC

U-22 74F524 REGISTER/COMPARATOR

1 U54-6
2 U42-4
3 U42-7
4 U42-12
5 U42-9
6 U43-4
7 U43-7
8 U43-12
9 U43-9
10 GND
11 U44-9
12 GND
13 NC
14 NC
15 U27-15,U64-9
16 U27-17
17 +5VDC
18 U27-17
19 U54-8
20 +5VDC

U-23 74F524 REGISTER/COMPARATOR

1 U55-11
2 U42-4
3 U42-7
4 U42-12
5 U42-9
6 U43-4
7 U43-7
8 U43-12
9 U43-9
10 GND
11 U44-9
12 GND
13 NC
14 NC
15 U28-15, U64-11
16 U28-17
17 5VDC
18 U28-17
19 U57-3
20 +5VDC

94

U-24 74F524 REGISTER/COMPARATOR

1 U49-8
2 U44-4
3 U44-7
4 U44-12
5 GND
6 GND
7 GND
8 GND
9 GND
10 GND
11 U44-9
12 GND
13 NC
14 NC
15 U19-15
16 NC
17 U19-16,U19-18
18 GND
19 U49-11
20 +5VDC

U-25 74F524 REGISTER/COMPARATOR

1 U51-3
2 U44-4
3 U44-7
4 U44-12
5 GND
6 GND
7 GND
8 GND
9 GND
10 GND
11 U44-9
12 GND
13 NC
14 NC
15 U20-15
16 NC
17 U20-16,U20-18
18 GND
19 U51-6
20 +5VDC

U-26 74F524 REGISTER/COMPARATOR

1 U53-8
2 U44-4

95

3 U44-7
4 U44-12
5 GND
6 GND
7 GND
8 GND
9 GND
10 GND
11 U44-9
12 GND
13 NC
14 NC
15 U21-15
16 NC
17 U21-16,U21-18
18 GND
19 U53-11
20 +5VDC

U-27 74F524 REGISTER/COMPARATOR

1 U55-3
2 U44-4
3 U44-7
4 U44-12
5 GND
6 GN D
7 GND
8 GND
9 GND
10 GND
11 U44-9
12 GND
13 NC
14 NC
15 U22-15
16 NC
17 U22-16 ,Ut22-18
18 GND
19 U55-6
20 +5VDC

U-28 74F524 REGISTER/COMPARATOR

1 U57-8
2 U44-4
3 U44-7
4 U44-12
5 GND
6 GND
7 GND
8 GND
9 GND

96

10 GND
11 U44-9

12 GND
13 NC
14 NC
15 U23-15
16 NC
17 U23-16 ,U23-18
18 GND
19 U57-11
20 +5VDC

U-29 8282 LATCH

1 MISCl-12
2 MISCI-13
3 MISCl1-14
4 MISCl-15
5 MISCl-16
6 MISCl-17
7 MISCl-18
8 MISC 1-19
9 GND
10 GND
11 MISCi-li
12 U43-11 ,Ull-il
13 U43-14,U11-14
14 U43-5 ,U11-5
15 U43-2 ,U11-2
16 U42-11,U1Q-11
17 U42-14,U1O-14
18 U42-5 ,U1O-5
19 U42-2 ,U1O-2
20 +5 VDC

U-30 8282 LATCH

1 MISCl-21
2 MISCl-22
3 MISCl-23
4 NC
5 NC
6 NC
7 NC
8 NC
9 GND
10 GND
11 MISCi-li
12 NC
13 NC

97

14 NC
15 NC
16 NC
17 U44-14,U12-14
18 U44-5,U12-5
19 U44-2,U12-2
20 +5 VDC

U-31 74F157A MULTIPLEXER

1 U39-8
2 MISCi-II
3 U8-25
4 U36-11
5 MISC1-4
6 U9-10
7 U36-4
8 GND
9 U36-10
10 U8-29
11 MISCi-lo
12 U36-9
13 U8-32
14 MISCI-9
15 GND
16 +5VDC

U-32 74F157A MULTIPLEXER

1 U39-8
2 MISC1-3
3 U9-8
4 U36-3
5 MISC1-5
6 +5VDC
7 U36-5
8 GND
9 U36-13
10 U8-15
11 MISCl-13
12 U36-12
13 U8-16
14 MISCl-12
15 GND
16 +5VDC

U-33 74F157A MULTIPLEXER

1 U39-8
2 U61-3 -M
3 +5VDC

98

4 U36-2
5 MISCI-7
6 U8-28

m 7 U36-7
8 GND
9 U36-8
10 + 5VDC
11 MISC1-8
12 U36-1
13 U38-5

n 14 MISCI-I
15 GND
16 5VDC

U-34 74F245 LATCH

1 MISCI-9
2 U13-2
3 U13-3
4 U13-4
5 u13-5
6 U13-6
7 U13-7
8 U13-8
9 U13-9
10 GND

* 11 U36-19
12 U36-18
13 U36-17
14 U36-16
15 U36-15
16 U36-14

n 17 U36-13
18 U36-12
19 CT1-4
20 +5 VDC

U-35 74F245 LATCH

1 U8-32
2 U8-16
3 U8-15
4 U8-14

L. 5 U8-13
6 U8-12
7 U8-11
8 U8-10
9 U8-9
10 GND
11 U36-19
12 U36-18

99

I

13 U36-17
14 U36-16
15 U36-15
16 U36-14
17 U36-13
18 U36-12
19 U41-8
20 +5 VDC

U-36 8755 I/O PORTS

1 U33-12
2 U33-4
3 U32-4
4 U31-7
5 U32-7
6 R-16
7 U33-7
8 U33-9
9 U31-12
10 U31-9
11 U31-4
12 U32-12,U34-18,U35-18
13 U32- 9,U34-17,U35-17
14 U34-16,U35-16
15 U34-15,U35-15
16 U34-14,U35-14
17 U34-13,U35-13
18 U34-12,U35-12
19 U34-11,U34-11
20 GND
21 NC
22 NC
23 NC
24 MISCl-24
25 MISCl-25
26 MISCI-26
27 MISCl-27
28 MISCl-28
29 MISC1-29
30 MISCl-30
31 MISCI-31
32 MISCl-32
33 MISCl-33
34 MISCI-34
35 MISCl-35
36 MISCl-36
37 MISCl-37
38 MISCl-38
39 MISCl-39
40 +5 VDC

100

U-37 7404 HEX INVERTER

1 M4ISCI-IIl

2 U65-1
3 U8-39
4 U40-1
5 U37-8,U45-5
6 U37-9,MISC4-7
7 GND8 U37-5,U45-5
9 U37-6,MISC4-7
10 U39-1
11 U7-11
12 U39-11
13 U5-13
14 +5VDC

U-38 74154 4 TO 16 DECODER

1 U66-1
2 U66-4
3 U56-13
4 U58-1
5 U41-10,U33-13
6 U4-9,U3-11
7 U47-1
8 U47-3
9 U47-5
10 U47-9
11 U47-11
12 GND
13 U47-13
14 U48-1
15 U48-3
16 U48-5
17 U48-9
18 GND
19 U48-12
20 CT2-28
21 CT2-27
22 CT2-26
23 CT2-25
24 +5VDC

U-39 7474 DUAL D FLIP-FLOP

1 U37-10
2 U39-4,+5VDC
3 U45-6
4 U39-2,+5VDC

101

5 U41-13
6 NC
7 GND
8 U10-1,UII-I,UI2-1,U32-1

U31-1,U64-1,CTI-2,U33-1
9 U41-5
10 U39-13,+5VDC
11 U37-12
12 U6-19
13 U39-10,+5VDC
14 +5VDC

U-40 7408 QUAD 2-INPUT AND

1 U37-4
2 U5-15
3 U15-20
4 U8-39
5 U5-15
6 U16-20
7 GND
8 012-11
9 MISCI-7
10 MISCI-I
11 U13-19
12 MISCi-9
13 U40-8
14 +5VDC

U-41 7432 QUAD 2-INPUT OR

1 U8-26
2 U12-9
3 U41-4
4 U41-3
5 U39-9
6 U14-19
7 GND
8 U35-19
9 U8-26
10 U38-5
11 U9-4
12 S3
13 U39-5
14 GND

U-42 74F157A MULTIPLEXER

102

1 U60-10
2 U29-19
3 U8-16
4 U (19-23)-2
5 029-18
6 U8-15
7 U(19-23)-3
8 GND
9 U(19-23)-5
10 U8-13
11 029-16
12 U(19-23)-4
13 08-14
14 029-17
15 GND
16 + 5VDC

U-43 74F157A MULTIPLEXER

1 U60-10
2 U29-15
3 U8-12
4 U(19-23)-6
5 U29-14
6 08-11
7 U(19-23)-7
8 GND
9 U(19-23)-9
10 U8-9
11 U29-12
12 U(19-23)-8
13 U8-10
14 U29-13
15 GND
16 +5VDC

0-44 74F157A MULTIPLEXER

1 U60-10
2 U30-19
3 U8-16
4 U(24-28)-2
5 U30-18
6 U8-15
7 U(24-28)-3
8 GND
9 0(19-28)-il
10 U9-8
11 MISC1-3
12 U(24-28)-4
13 U8-14

103

14 U30-17
15 GND
16 +5VDC

U-45 74121 ONE SHOT

1 NC
2 NC
3 U45-4,GND
4 U45-3,GND
5 U37-8
6 U39-3
7 GND
8 NC
9 +5VDC
10 +80 pf cap
11 -80 pf cap
12 NC
13 NC
14 5VDC

U-46 7400 QUAD 2-INPUT NAND

1 U60-8
2 U60-4
3 U59-1
4 U60-8
5 U60-4
6 U49-5
7 GND
8 U50-2
9 U60-4
10 U60-8
11 U50-12
12 U60-4
13 U60-8
14 +5VDC

U-47 7404 HEX INVERTER

1 U38-7
2 U59-1,U49-2
3 U38-8
4 U49-9,U49-12
5 U38-9
6 U50-5,U50-9
7 GND
8 U51-2,U51-5
9 U38-10
10 U51-12,U53-2

104

11 U38-11
12 U53-9 ,U53-12
13 U38-13
14 +5VDC

U-48 7404 HEX INVERTER

1 U38-14
2 U54-5 ,U54-9
3 U38-15
4 U55-2,U55-5
5 U38-16
6 U55-12,U57-2
7 GND
8 U57-9 ,U57-12
9 U38-17
10 U4-11
11 U3-13
12 NC
13 NC
14 +5VDC

U-49 7408 QUAD 2-INPUT AND

1 U46-3
2 U47-2
3 U19-19
4 U60-12
5 U46-6
6 U49-10
7 GND
8 U24-1

a9 U47-4
10 U 49-6
11 U24-19
12 U47-4
13 U46-6
14 +5VDC

U-50 7408 QUAD 2-INPUT AND

1 U 60-12
2 U46-8
3 U50-4
4 U50-3
5 U47-6
6 U20-1
7 GND
8 U20-19
9 U47-6
10 U46-8

105

11 U51-1
12 U46-11
13 U60-12
14 +5VDC

U-51 7408 QUAD 2-INPUT AND

1 U50-11
2 U47-8
3 U25-1
4 U46-11
5 U47-8
6 U25-19
7 GND
8 U51-13
9 U52-3
10 U60-12
11 U21-1
12 U47-10
13 U51-8
14 +5VDC

U-52 7400 QUAD 2-INPUT NAND

1 U60-6
2 U60-2
3 U51-9
4 U60-6
5 U60-2
6 U53-5
7 GND
8 U54-2
9 U60-2
10 U60-6
11 U54-12
12 U60-2
13 U60-6
14 +5VDC

U-53 7408 QUAD 2-INPUT AND

1 U52-3
2 U47-10
3 U21-19
4 U60-6
5 U52-6
6 U53-10
7 GND
8 U26-1
9 U47-12
10 U53-6

106

11 U26-19
12 U47-12
13 U53-6
14 +5VDC

U-54 7408 QUAD 2-INPUT AND

1 U60-12
2 U52-8
3 U54-4
4 U54-3
5 U48-2
6 U22-1
7 GND
8 U22-19
9 U48-2
10 U52-8
11 U55-1
12 U60-2
13 U60-6
14 +5VDC

U-55 7408 QUAD 2-INPUT AND

1 U54-11
2 U48-4
3 U27-1
4 U52-11
5 U48-4
6 U27-19
7 GND
8 U55-13
9 U56-3
10 U60-12
11 U23-1
12 U48-6
13 U55-8
14 +5VDC

U-56 7400 QUAD 2-INPUT NAND

1 U60-8
2 U60-4
3 U55-9,U57-1
4 U60-8
5 U60-4
6 U57-5
7 GND
8 U34-19
9 MISC1-7

107

10 U64-2
11 CT2-24
12 U56-13,U38-3

13 O56-12,O38-3
14 +5VDC

U-57 7408 QUAD 2-INPUT AND

1 U56-3
2 U48-6
3 U23-19
4 U60-12
5 U56-6
6 U57-10
7 GND
8 U28-1
9 U48-8
10 U57-6
11 U28-19
12 U48-8
13 U56-6
14 5VDC

U-58 8259A INTERRUPT CONTROLLER

1 U38-4
2 U60--2
3 U60-6
4 CT2-8
5 CT2-9
6 CT2-10
7 CT2-11
8 CT2-12
9 CT2-13
10 CT2-14
11 CT2-15
12 NC
13 NC
14 GND
15 NC
16 +5V
17 CT2-22
18 U64-12
19 U64-4
20 U64-6
21 U64-8
22 U64-10
23 GND
24 GND

108

25 GND
26 CT2-23
27 CT2-21
28 + 5V

U-59 7408 QUAD 2-INPUT AND

1 U46-3
2 U60-12
3 U59-4
4 U 59-3
5 U47-2
6 U19-1
7 GND
8 NC
9 NC
10 NC
11 NC
12 NC
13 NC
14 +5VDC

U-60 7407 HEX BUFFER

1 CT2-19
2 U52-(2,5,9,12) ,U3-10
3 CT2-19
4 U46-(2,5,9,12),U56-(2,5)
5 CT2-20
6 U52- (1,4,10,13)
7 GND
8 U3-13,U46-(1,4,10,13),

U56- (1,4)
9 CT2-20
10 U42-1,U43-1,U44-.
11 CT 2-2
12 U49-4,U59-2,U50-(1,13) ,U51-10,

U53-4,U54-(1,13) ,U55-10,U57-4
13 CT2-20
14 +5VDC

U-61 7409 QUAD 2-INPUT AND (OC)

1 MISC1-2
2 MISC1-7
3 U33-2
4 U63-6 ,U61-5
5 U63-6,U61-4

109

6 MISC1-6
7 GND
8 !4ISC1-6
10 063-3 ,U61-90

10 U63-3,U61-10

13 NC
14 +5VDC

0-62 7411 TRIPLE-3-INPUT-AND

1 U19-15
2 U20-15
3 U62-12
4 U22-15
5 U23-15
6 CT2-5
7 GND
8 NC
9 NC
10 NC
11 NC
12 062-3
13 U21-5
14 +5VDC

U-63 7432 QUAD-2-INPUT OR

1 U65-5
2 U65-9
3 U61-9 ,U61-10
4 U66-5
5 CT2-5
6 061-4,061-5
7 GND
8 NC
9 NC
10 NC
11 NC
12 NC
13 NC
14 +5VDC

0-64 7404 HEX INVERTER

1 CT2-2
2 U56-10
3 U20-15
4 U58-19

110

5 U21-15
6 U58-20
7 GND
8 U58-21
9 U22-15
10 U58-22
11 U23-15
12 U58-18
13 U19-15
14 +5VDC

U-65 7474 DUAL D FLIPFLOP

1 U37-2
2 +5V,U65-4
3 CT1-24
4 +5V,U64-2
5 U63-1
6 NC
7 GND
8 NC
9 U63-2
10 U5-12
11 GND
12 NC
13 U5-11
14 +5VDC

U-66 7474 DUAL D FLIPFLOP

1 U38-1
2 NC
3 GND
4 U38-2
5 U63-4
6 NC
7 GND
8 NC
9 NC
10 NC
11 NC
12 NC
13 NC
14 +5VDC

MISCI TARGET PLUG

1 U33-14
2 U33-2

1i1

3 U32-2
4 U31-5
5 U32-5
6 U61-8,U61-6
7 U33-5
8 U33-11
9 U31-14
10 U31-11
11 U31-2
12 U32-14,U29-1,u13-2
13 U32-11,U29-2,u13-3
14 U29-3,U13-4
15 U29-4,U!3-5
16 U29-5,U13-6
17 U29-6,U13-7
18 U29-7,U13-8
19 U29-8,U13-9
20 GND
21 U30-1
22 U30-2
23 U30-3
24 U36-24
25 U36-25
26 U36-26
27 U36-27
28 U36-28
29 U36-29
30 U36-30
31 U36-31
32 U36-32
33 U36-33
34 U36-34
35 U36-35
36 U36-36
37 U36-37
38 U36-38
39 U36-39
40 +5 VDC

MISC2 CONNECTOR BOARD-I

1 U33-13
2 U39-8
3 MISC1-7
4 U34-19
5 U63-5
6 U63-4
7 U9-8
8 U8-9,U6-8,U17-8
9 U8-10,U6-7,u17-7
10 U8-11,U6-6,U17-6
11 U8-12,U6-5,U17-5

112

12 U8-13,U6-4,U17-4
13 U8-14,U6-3,u17-3
14 U8-15,U6-2,U17-2
15 U8-16,U6-1,U17-1
16 U9-2
17

U8-2818 U8-21
19 U8-29
20 U8-32
21 U6-19
22 U8-18
23 U8-24
24 U65-15
25 U6-15
26 U6-14
27 U6-1328 U6-12
29 U29-19
30 U29-18
31 U29-17
32 U29-16
33 U29-15
34 U29-14
35 U29-13
36 U29-12
37 U30-19
38 U30-18
39 U30-17
40 MISCi-3

MISC3 CONNECTOR BOARD-2

1 U38-5
2 U60-11P 3 U56-9
4 U56-8
5 U62-6
6 U66-5
7 U44-10
8 U4-12
9 U4-13
10 U4-14
11 U4-15
12 U4-16
13 U4-17
14 U4-18
15 U4-19
16 U3-20
17 U48-13
18 U3-21
19 U60-1,3
20 U60-5,9,13

113

i-

21 U3-10
22 U58-17
23 U58-26
24 U56-11
25 U38-23
26 U38-22
27 U38-21
28 U38-20
29 U 42-2
30 U42-5
31 U42-14
32 U42-11
33 U43-2
34 U43-5
35 U43-14
36 U43-11
37 U44-2
38 U44-5
39 U44-14
40 U44-11

114

Appendix C: Software Flowcharts

ETI
94LT TAR= AND
DMABEE BRFAK
DMmCrm

afnaaw-W
IC14ONEFULEIRIC

RNAL12E ME
UAW FOGMTM
CLW ma CDE)Nr

TEST U9EP AID
EMEMATIOR RAJA
MD4m

+ :,. NO
ASSP

ym
m

REOLMST IMLMAIM 04CREMERr
MEMORY DOIRAO FMANSbCr

CUINM

READ BYM AM NO
STM IN RAM MC > 3
AM M CEECESM

ya
Sim moo=

Wr? I= FAUM
SnW4G

mm
L

1.190cun CHECMW r

AM COWAM _j

MATM ?

PAW am UWW RM
DRUM Dm-
UAD STRM

Figure 3. Bootup Flowcharts

115

T~V

Fin- mm PABAU.E PMl
1VNFUN~n"

PUNCM

Figure 4. Emulator Main Flowchart

116

SOD WADY M up RECESIESUM
Z-100 ADD= &ND

um cam

BECEM C" zff
AM[=; S= %arm GM
cum W MMXA= MM

CIM CHSC37i GET THE
Sm FLOY STWE af%%ER

MM TAFIM

2RMnBr&E
COUMM I ACKNOWUMM

%J

UP14TS CIIECIMM SEND A SM
MW IN BUFFER UPDATE CHECOMN

140 RIOOT

YES
NO

GhET *CHEOSM YES
AND 2C0b&IPABR
CRECSSUM SEND CERCESMI

MIT > 3 C41T ACENOWLEDGE

YES EQUAL

(rCI+ NO 1W loff NO ACE

SLND XAa
RKRUENr XWT

EISTIUMV

NO YES
Wr>3

SM ACK
@- S= DATUA

Figure 5. Emulator User Memory Flowchart

117

UN7D NZ

Igur 6. Emlao Sig-ste Flowhar

M r4118

INKEM

*~T Zu. - LO

'S.-

Figure a. Emulato Brea Contro F Lhr

STM 119E U M WS U

iMDWR
vdRU"IC

CALL2ff-

Figure 8. Emulato Beak nErruptO BFlochr

% CAILUILM CAM M140 CAELWL-9

SIM2064

Mrommn FLA

T!O Z-100

BMAD POWr A BMA POW1 B HI&A U IGC

M. IX

YM M ECOMI

;N4CHE

0i

ACK WT >3 AD COPAV

NO CEMCEM
-M+NO

C
QM1

DR300 SM NCK N
Mff MM xMTtqaA&

Figure 9. Emulator Parallel 1/0 Flowchart

121

. DI YAVRCm

OW

Figure MM ANDZ10 anFlwhr

122UM

7711

'rr'

"~' OM"! "

Ile-

123r TOCLLTR

MW bm COMM iDDU.!E

.~-. S - -- B

*1SLCIIII

MAMPOIT CfcrbmE N P lur &

NOr

STRAG N

TIF PM

N" LN >3

WEIMI

NO SL~rCONNAN

Figue ha Z-10 Uer MmoryFlowhar

NO ESTEL XW>4
SKNDBMYES124

4r-I

B --

9W AND AD

SEND ipPAND MlAD KHYBOAiUWAIT FOR AND CONET
RMEADY omAT

SENDEDI

AD CIM WAxzraR MU0AN

AM CMCWWD MY aU

EOr

"MM x

RDL

Figure llb. Z-100 User Memory Flowchart

125

U

ErMPRMer F~t SEN4D ++B AND

LSUY DATA

IISP!AY M~I~T WE NW VA=U FMU A(X
CFA COK NVW UiMi&T ~aKJffffm IIsurTE RAG

ILSPLY S-mW W
~aft'a

SM r+B
B4

ADM RM

JNON

Figur 12. = Z-1 rek Crl Flowchart .

1 2 6T - -

DOW = IMAY M

IP
DSPAY POET Nr

DATA DAT DaMWI
PCXS11 IRE M(A

SED-UN IOTD O

mm.T

FOCiure 13.G CID0 Parallel PotFowhr

A127

SI PAYbo SELUaION HIrrR TO

SENJD +.S CLEM
EXCHVE WAD0Y RSI
aEAR CmUIL RAG suATm FLAG

SRED cRN ME~ +4.S
AMD CMUSSW RU3VE HEMW~

IMCVE AZSENm SRD Cf m RE
UPDIATE MrXIA1IEWA AMD UMCW
RlAG CLUR CI UM EVE AC

Si, IL(

DISHY ERRO IXVE ACI
STEPMO = OF DISPLAY TARGZF
DELAY 30 SEC SMTSTFPPU

Figure 14. Z-100 Single-step Flowchart

128

DIAY aMIM

COWARE CRW~
AND REES
STAM

Fi u E 15.R MA0 Tareon r l Fl w h r

i~129

Memory Map

Address Use

FFFFO - 80000 Not Used
7FFFF - 70800 Not Used
707FF - 70000 U17 Monitor Rom
6FFFF - 60800 Not Used
607FF - 60000 U18 Target Ram
5FFFF - 50000 Not Used
4FFFF - 40001 Not Used
40000 Enable Stepper Mode
3FFFF - 30001 Not Used
30000 Return Stepper to Freerun
2FFFF - 20002 Not Used
20001 Enable Target Mode
20000 Enable Emulator Mode
1FFFF - 10000 Not Used
OFFFF - 00000 U15 and U16 Emulator Ram

I/O MAP

0OF0 Break Reg 5b, U28
OOEO Break Reg 5a, U23
00DO Break Reg 4b, U27
00CO Break Reg 4a, U22
OOBO Break Reg 3b, U26
OOAO Break Reg 3a, U21
0090 Break Reg 2b, U25
0080 Break Reg 2a, U20
0070 Break Reg 1b, U24
0060 Break Reg la, U19
0050 Serial Data Port
0051 Serial Control Port
0040 Parallel Port A
0041 Parallel Port
0042 Data Direction Reg A
0043 Data Direction Reg B
0030 Interrupt Port 1
0031 Interrupt Port 2
0020 Step Trigger
0010 Break Disable
0000 Break Enable

Table 2. Emulator Address Map

130

Appendix D: Source Code

TITLE EMULATOR BOOTUP PROGRAM

page 60,132

; This program initializes emulator hardware and downloads
; the MAIN EMULATOR program

cseg segment

assume cs:cseg, ds:cseg, ss:cseg, es:cseg

start: mov ax,cs
mov ds,ax

The bootup program starts here

;halt target
mov ax,4000h ;set es to page 4
mov es,ax
mov es:(bx],al ;set stepper to step mode

;(i.e halt target)~;set mode

mov ax,2000h ;set es to page 2
mov es,ax
mov bx,0
mov es:[bx],al ;set mode to emulator

;disable break detectors

out Bk off,al ;set break flipflop to off

;setup 8259A interrupt controller

mov al,13h ;set ICW1
out port0,al
mov al,18h ;set ICW2
out portl,al
mov al,Odh ;set ICW4
out portl,al

;initialize 8251 serial port

131

;configure 8251A
mov al,O ;put UART into worst

;case mode
out 51h,al ;sync mode, with 2

; characters
out 51h,al
out 51h,al
mov al,reset ;reset UART
mov dx,msc_reg
out dx,al
mov al,set mode ;set UART for async mode
out dx,al ;odd parity, 8 bit data

;baud factor 16
mov al,set control ;set control register as
out dx,al ;transmit & receive

;enabled, DTR* enabled,
;clear error bits,
;set RTR*, no reset or
hunt

64k Emulator ram test

mov dx,OlO0h ;clear xmt counter and set
;test tto 64k

test_64k: mov ax,OOO0h ;setup extra segment
mov es,ax
mov bx,O
mov cxO

loopi: mov al,O ;write all zeroes to ram
mov es:rbx],al
inc bx
cmp bx,O ;check for all done
je chk read ;if done then read
mov al,dffh ;write all 1's to ram
mov es:(bx],al
inc bx
cmp bx,OA
je chk read
jmp loopi

chk-read: mov bx,O
loop2: mov al,es:[bx] ;read zero bytes

inc bx
cmp al,O ;test data against zero
je no-err ;skip counter if match is

; found
inc cx

no-err: mov al,es:[bx] ;read all one bytes
inc bx
cmp al,Offh ;test data against ones
je counter ;skip if match is found

132

inc cx
counter: cmp bx,O ;test for end of memory

jne loop2 ;continue if not done

;look at 64k error count and send ack or nack

mov ax,O ;compare total errors
cmp cx,ax
j z skip
imp error

skip: mov di,offset ack-stg
buf full 1:

in al,msc reg ;read status register
test al,tx rdy ;test for empty register
jz buf-full_1 ;loop until UART is free

mov al,(dil ;load acknowledge character
;signals all clear on ram

out data reg,al ;test to Z100
inc di ;send ++ ack EOT string
cmp al,eot
mov cx,Qlffh

slow: nopUloop slow
* me buf-full_1

;test user ram memory

U

mov dx,0200h ;clear xmt counter and set
;test fto 2k

test 2k: mov ax,6000h ;setup extra segment
mov esax
mov bx,O
mov cx,O

loop3: mov al,O ;write all zeroes to ram
mov es:[bx],al
inc bx

L.cmp bx,O7ffh ;check for all done
je chk read2 ;if done then read
mov al,gffh ;write all 1's to ram
mov es:(bx],al
inc bx
cmp bx,O7ffh ;check for all done
je chk-read2
IMP loop3

chk-read2:

133

.......

mov bx,O0
loop4: inov al,es:[bx] ;read zero bytes

inc bx
cinp bx,O7ffh
je eval
cmp al,O ;test data against zero
je no-err2 ;skip counter if match is
inc cx ;found

no-err2: mov al,es:[bx] ;read all one bytes
inc bx
cinp al,Qffh ;test data against ones
je counter2 ;skip if match is found
inc cx

counter2: cmp bx,Q7ffh ;test for end of memory
ji loop4 ;continue if not done

;look at 2k user ram error count and send ack or nack

eval: inov ax,O ;compare total errors
cmp cx,ax
je skip4
imp error

skip4: mov di,offset ack-stg

buf full 3:
in al,mnsc reg ;read status register
test al,tx rdy ;test for empty register
jz buf-full_3 ;loop until UART is free

mov al,[di] ;load acknowledge character
;signals all clear on ramn

out data reg,al ;test to Z100
inc di ;send ++ ack EOT string
cinp al,eot ;when end of string get
mov cx,Olffh

slowi: nop
loop slowi.

jne buf full_3 ;downlo)ad string

;input string then test for ++dw eot, download signal

inov ax,O
mnov es,ax
mov bx,0400h

get_char_1:

134

in al,msc reg ;read status register
test al,char rdy ;check for a character
jz getcha _1 ;loop until character available

skipl: in al,data reg ;read character
mov es:[bx],al ;save Z-100 response
cMp al,EOT
je done

inc bx -

imp getchar_1

done: cld ;test for download string
mov cx,04
lea si,down id ;point to download string
mov di,0400h ;point to received string
repe cmpsb ;compare strings
cmp cx,O
jne error

************************ft*************************************

; Load the emulator memory

mov dx,0300h ;clear xmt counter and
;set test # to emulator

emul code:
mov ax,O ;point to page zero of ram
mov es,ax
mov bx,O ;point to 00000h memory
mov cl,O ;use cl as checksum register

emul: in al,msc reg ;read status register
test al,char_rdy ;check for a character
jz emul ;loop until character

;available

in al,datareg ;read character
cmp al,ETB ;check for end of download
je emul2 ;if end get checksum
mov es:[bx],al ;store the emulator program
add cl,al ;add to checksum
inc bx
imp emul

emul2: mov ah,al ;save first byte of
emul3: in al,mscreg ;terminator

test al,char_rdy
jz emul3
in al,data_reg
cmp al,ETB ;if yes then end of file
je emull
mov es:[bx],ah ;else save the first data

135

inc bx
add cl,ah ;update chk sum
mov es:[bxl,al ;save second byte
add cl,al ;update chk sum
inc bx
jmp emul

emull: in al,msc reg ;read status register
test al,charrdy ;check for a character
jz emull ;loop until character

;available

in al,data_reg ;read character
cmp cl,al ;test checksum
jne error

Send acknowledge to Z-100 for emulator memory download

mov di,offset ackstg ;load ack character
buf full_2:

in al,msc_reg ;read status register
test al,txrdy ;test for empty register
jz buf full_2 ;loop until UART is free

mov al,[di] ;signals all clear
out datareg,al ;test to host computer
inc di ;send ++ ack EOT st-ing
cmp al,eot
mov cx,Olffh

slow2: nop
loop slow2

jne buf full_2

; Pass control to main emulator program

jmp far ptr emulator ;pass control t main
;emulator program

; Return negative acknowledge NACK to Z-100
I

error: mov bx,dx ;save test number and
;current xmt count value

mov di,offset nack_stg ;load nack character

136

errorl: in al,mscreg ;read status register
test al,tx rdy ;test for empty register
jz errori ;loop until UART is free

mov al,[di]
out datareg,al
inc di ;send + nack EOT string
cmp al,eot
mov cx,Olffh

slow3: nop
loop slow3

jne errorl

mov dx,bx ;restore test number and
;current xmt count

inc dl
cmp dl,03h ;test for three attempts
je fail ;go to infinite loop
cmp dh,0lh
jne skip2
imp test 64k ;test 64k sram again

skip2: cmp dh,02h
jne skip3
jmp test 2k

skip3: cmp dh,03h
jmp emul code

infinite loop which waits for a hardware reset

fail: nop
imp fail

reset equ 40h ;reset UART code
err chk equ 38h ;code for PE,OF,FE errors
charrdy equ 02h ;test for full input

;register
txrdy equ 01h ;test for empty transmit

;register
set mode equ 4eh ;code for mode select
set control equ 37h ;control parameters
data_reg equ 50h ;data register
mscreg equ 51h ;mode,status,control reg
EOT equ 2fh ;code for end of file
ETB equ lbh ;end block transfer
no ack equ 15h ;for error during data read
ack equ 06h ;acknowledge code
attn equ 2bh ;attention definition
nack equ 15h ;negative acknowledge code
portB equ 41h ;8755 port B
portA equ 40h ;8755 port A

137

ddra equ 42h ;8755 port A DDR
ddrb equ 43h ;8755 port B DDR
porti equ 31h ;8259 port 1
portO equ 30h ;8259 port 0
step equ 20h ;perform step increment
dwn egu 09h ;down direction flag
bk off equ 10h ;disable break registers
bk on equ 00h ;enable break incremnet
ack -stg db attn,attn,ack,eot ;ack string
down Id db attn,attn,dwn,eot ;down next from Z-100
nack stg db attn,attn,nack,eot ;negative ack string
emulator dw 0400h,OOO0h ;emulator starting address

org 7fOh
jmp far ptr start ;go to top of program
org 7ffh
nop

cseg ends
end start

138

TITLE EMULATOR main program

;This program must be downloaded tc page zero of the
;emulator address space to be functional.

cseg segment

assume cs :cseg ,ds cseg, ss :cseg ,es :cseg

org 0

db 0

org 0400h

start: mov ax,cs
mov ds,ax

Lmay ax,Oeffh ;ss address
mov ss,ax ;set stack
mov ax,lOO0h ;segment
mov sp,ax

;setup stack
;vector

mov bx,0
mov di,0020h ;type 8 IP
mov ax,offset typeB
mov [di] ,ax
mov di,0022h
mov [di] ,bx ;cs to 0000

mov di,0024h ;type 9 IP
mov ax,offset type9
mov [di] ,ax
mov di,0026h
mov (di],bx ;cs to 0000

mov di,0028h ;type A IP
mov ax,off set typeA
mov [dii ,ax
mov di,OO2Ah
mov [di] ,bx ;cs to 0000

mov di,OO2Ch ;type B IP
mov ax,off set typeB
niov [di] ,ax
mov di,0O2Eh
mov [di] ,bx ;cs to 0000

mov di,0030h ;type C IP

139

K

mov ax,offset typeC
mov [di],ax
mov di,0032h
mov [di],bx ;cs to 0000

jmp waiting

reset equ 40h ;reset UART code
err chk equ 38h ;code for PE,OFFE

;errors
charrdy equ 02h ;test for full input

;register
txrdy equ 04h ;test for empty

;transmit register
set mode equ 5eh ;code for mode select
cet control equ 37h ;code for control

;parameters
datareg equ 50h ;data register
mscreg equ 51h

;mode,status,control
;register address

EOT equ 2fh ;code for end of
;file

nack equ 15h ;code for error
; during data read

ack equ 06h ;acknowledge code
plus equ 2bh ;attention definition
rd err equ 18h ;serial read error

code
rdy equ lah ;ready code

M portA equ 40h ;9755 port A
portB equ 41h ;8755 port B
ddra equ 42h ;8755 port A DDR
ddrb equ 43h ;8755 port B DDR
portl equ 31h ;8259 port 1
portO equ 30h ;8259 port 0

step equ 20h ;perform step
;increment

down equ 09h ;down transfer
;direction flag

up equ 08h ;upload direction
;flag

on equ 4eh ;on flag
off equ 4fh ;off flag
bk off equ 10h ;disable break

;registers
bk on equ 00h ;enable break

;detectors

140

ack-stg db 2bh,2bh,06h,2fh
;acknowledge string

down-ld db 2bh,2bh,09h,2fh
;data from Z-100

flack-stg db 2bh,2bh,15h,2fh

user tg db;negative ack string
user~tg db2bh,2bh,55h,2fh

;user memory function flag
break-stg db 2bh,2bh,42h,2fh

;break function flag
step_stg db 2bh,2bh,53h,2fh

;stepper function flag
port-stg db 2bh,2bh,50h,2fh

;port function flag
mode-stg db 2bh,2bh,4dh,2fh

;mode function flag
rdy-stg db 2bh,2bh,lah,2fh

;ready response string

emulator equ 0
target equ 1
brk stat db?

;break is initially off

user db 2049 dup(?
;user memory bufferUbrk buf dw 5 dup(?
;break address buffer

work db 100 dup (?)
;working buffer area

mode-flg db ?;mode flag
;00=emulator, ff=target

*step_flg db ?;flag for step or freerun
;00=freerun, ff=stepper

u start dw ?;starting address
;of user memory download

byte num dw ?;byte count storage
temp_buf db 10 dup (?)

;user read buffer
chk sum db ? ;checksum count buffer
xmt db ?;retransmit count buffer
mnt-brk-num db ?;interrupt type buffer

break la equ 60h ;register 1 part A
break lb equ 70h ;register 1 part B
break 2a equ 80h ;register 2 part A
break-2b equ 90h ;register 2 part B
break_3a equ OAOh ;register 3 part A
break 3b equ OBOh ;register 3 part B
break 4a equ OCOh ;register 4 part A
break-4b equ ODOb ;register 4 part B
break-5a equ OEOh ;register 5 part A

r 141

break_5b equ OFOh ;register 5 part B

; This macro compares the contents of two strings. The source
; and destination offset must be provide and the CX register
; must contain the string length. For a match the AX register
; will return zero. Any other value means no match.

compare macro stringl,string2

push si
push di
push cx

cld
mov cx,4
lea si,stringl ;point to input string
lea di,string2 ;point to test string
repe cmpsb ;compare strings
mov ax,cx ;set al to the value of

;cx. If cx equal zero
;strings match

pop cx ;restore original string
pop di ;length
POP si

endm

; This macro sets the user memory U-18 to either the emulator
; access or target access.

u18 to macro system

push ax

call setstep ;halt the target
mov al,system
mov mode flg,al ;set mode flag
call mode
pop ax

endm

142

; This macro clears the memory location designated as "slot".

clear macro slot

mov slotO

endm

This macro transmits the designated flag to the Z-100.

send macro flagname

lea di,flag name
call sendflag

endm

; This procedure sets and resets the mode flipflop.
; The mode is determined by the value in the mode flag,
; which must be set prior to calling this procedure.

mode proc near

push ax
push bx
mov bx,O ;clear bx
mov ax,2000h ;set es to page 2
mov es,ax
mov bl,mode flg ;set IP
mov es:[bx],al ;set mode to emulator bl=Oh

;or target bl=Olh
pop bx
pop ax

ret
mode endp

I

143

; This procedure reads in a string of characters from the
; serial port and stores it in the working buffer. The string
; length is returned in the CX register.

I

get_flag proc near

push di

mov di,offset work ;point to working buffer
mov cx,O ;clear character counter

morel: call serial rd ;read serial port
mov [di],al ;save data
cmp al,eot ;check for end of string
je all done
inc di
inc cx ;at the end of the string
imp morel ;cx contains the count

all done: pop di
ret

get_flag endp

; This procedure sends a string of characters from the
; serial port to the Z-100. The string offset must be
; in the DI register when the call is made.

sendflag proc near

push ax

continue: mov al,[di] ;load a byte of data
call serial wr ;transmit the data
cmp al,eot ;check for end of string
je return
inc di ;point to next byte
jmp continue ;repeat process

return: pop ax

ret
sendflag endp

144

; This procedure sets the emulator to the single-step mode
; and updates the stepper status flag

p

setstep proc near

push ax
push bx
mov bx,O
mov ax,4000h ;set es to page 4
mov es,ax

mov es:[bxl,al ;set stepper to step mode
mov bl,Offh
mov stepflg,bl ;set step flag to ff = step
POP bx
pop ax

ret
set-step endp

; This procedure sets the emulator to the freerun mode and
; updates the stepper status flag

freerun proc near

push ax
push bx
mov bx,0
mov ax,3000h ;set es to page 3
mov es,ax
mov es:[bx],al ;set stepper to free run
mov stepflg,bl ;set flag to 00 = freerun
pop bx
pop ax

ret
freerun endp

; This procedure simply pulses the target ready line.

inc_step proc near

145

out step,al ;pulses the target step
;circuit

ret
inc step endp

; This procedure disables the break detectors and
; updates the break status flag

brk off proc near

push ax
out Bk off,al ;set break flipflop to off
mov brk stat,off ;store break status
pop ax

ret
brk off endp

; This procedure enables the break detectors and
; updates the break status flag.

brk on proc near

out Bk on,al ;set break flipflop to on
mov brRstat,on ;store break status

ret
brk on endp

; This procedure moves the data pointed to by "Start" and the
; amount specified by "Byte" from the user buffer to the
; target ram in the same locations. Start and byte# must be
; updated prior to the call.

load proc near

push ax
push bx

146

push cx
push dx

cld
mov ax,6000h ;point to user ram
mov es,ax
mov di,ustart ;set starting address of

;memory in target ram
mov cx,byte num ;number of bytes to move
mov si,offset user ;point to starting address
add si,u start ;of user buffer data
repe movsb ;transfer data

pop dx
pop cx
pop bx
pop ax

ret
load endp

; This procedure retrieves a specified of number bytes from
; user memory and places them in the temporary buffer

user rd proc near

push ax
push di
push bx
push cx

clear chk sum
mov ax,000h ;point to user memory
mov es,ax
mov cx,O
mov cx,byte num ;load byte counter
mov bx,offset tempbuf ;setup temporary buffer
mov di,u start ;at the specified location

rd loop: mov al,es:[di] ;read the byte
mov [bx],al ;put data in the holding

;buffer
add chksum,al ;update checksum
inc di
inc bx
loop rdloop

inc bx ;tack on the eot to buffer
mov al,eot

147

mov [bx],al
pop cx
pop bx
pop di
pop ax

ret
user rd endp

; This procedure reads the 8755 ports A and B, and returns
; the results in the AL register. Which port to read is
; placed in the DX register prior to the call.

in 8755 proc near

push ax

u18_to emulator ;halt target
in al,dx ;read 8755 port
mov chk sum,al ;save data in checksum

;because in this case
;data = checksum

u18 to target ;restart target
call freerun

pop ax

ret
in_8755 endp

; This procedure performs output operations to 8755 data and
; data direction ports. The port to access is loaded in DX
; and the data out is in AL prior to the call.

out_8755 proc near

u18 to emulator ;halt target
out dx,al ;write to 8755 port
u18 to target ;restart target
call freerun

ret
out_8755 endp

148

II

; This procedure performs a serial read of port 50h. The
; data is returned in the AL register. Each data read is
; preceded by a status check of the receiver.

I

serial rd proc near

push dx

get char 1:
mov dx,msc_reg
in al,dx ;read status register
test al,char rdy ;check for a character
jz getchar_1 ;loop until character

;available

test al,err chk ;check for errors
jnz exit
mov dx,data_reg ;read data byte and return
in al,dx ;in al register
imp exitl

exit: mov al,rd err ;set read error
;flag

call serial wr
imp getchar_1

exitl: pop dx
ret

serial rd endp

; This procedure performs a serial output to port 50h. The
; data to be transmitted must be in the AL register prior
; to the call. Each data output is preceded by a status check
; of the UART to ensure its availability.

serial wr proc near

push ax ;save data

buf full_1:
in al,mscreg ;read status register
test al,txrdy ;test for empty transmit

;register

149

jz buf full_1 ;loop until UART is free
pop ax ;restore data
out datareg,al ;pass the data to Z100

ret
serial wr endp

This procedure loads the break detection registers. The
break detect address buffer must be loaded prior to the

; call.

brk addr proc near

push di
push dx
push cx

mov cx,OAh
mov di,offset brk buf ;point to break address

;buffer
mov dx,60h ;load first break address

U nextl: mov al,[di] ;output one byte of
;address

out dx,al ;at a time. Two bytes are
;required for each address

inc di
add dx,10h ;move to next byte

M loop nextI

pop cx
pop dx
pop di

ret
brk addr endp

; This procedure handles all emulator functions involving
; the user ram U18. The user code may be downloaded or the
; user may upload up to ten consecutive bytes.

userpro proc near

send rdystg ;send the ready string

150

call getflag ;get the direction flag
;for next operation

compare work,down ld ;if equal go to upload
cmp al,O
je leap
jmp updata ;else download was

;requested
leap: call serial rd ;get high byte of user

;start address
mov bh,al ;move high byte to AH
call serial rd
mov bl,al ;store the starting address
mov u start,bx
clear xmt ;clear retransmit counter

userloop:
clear chk sum ;clear check sum
call serial rd ;get byte count
mov bh,al
call serial rd
mov bl,al
mov byte num,bx
xor bx,bx
send rdystg

lea di,user ;point to top of user
;buffer

add di,ustart ;point to starting location
;of desired data move

continuel:
call serial rd ;get the data
mov [di],al ;store the data in the

;user buffer
add chksum,al ;update check sum
inc bx
cmp bx,07ffh
je no more ;if all done test chk sum
inc di
imp continuel

no more: call serial rd ;get checksum
jmp johnny
cmp chk sum,al ;test checksum
jne retrans

johnny: send ack stg ;send Z-100 the acknowledge
u18 to emulator ;allow access to user ram

call load ;move data to user memory
u18 to target ;restart target
call freerun
jmp exituser_pro ;return to waiting loop

151

retrans: add xmt,l ;increment xmt counter
cmp xmt,3 ;if three tries exit
je exit user pro
send nack-stg ;inform Z-100 bad data
imp user-loop ;was received

updata: call serial rd ;get high byte of user
;start address

mov bx,offset u start
mov [bx]+l,al ;move high byte to AH
call serial rd
mov [bx],aT ;store the starting address
call serialrd ;get number of bytes

;desired
mov byte num,ax ;and store it

clear xmt ;clear retransmit counter

u18_to emulator ;grants emulator access

call user rd ;get the specified bytes
;and store in buffer

call freerun ;restart target
retransl: send ackstg

send tempbuf ;upload data
mov al,chk sum ;send check sum
call serial-wr
call get flag ;read Z-100 response
compare work,ackstg ;if not ack then error
cmp ax,O
jne skip it
imp exituserpro ;transaction complete, exit

skip it: add xmt,l ;increment xmt counter
cmp xmt,3 ;if three tries exit
je exit userpro
jmp retransl ;was received

exit user_pro: ret
user-pro endp

; This procedure enables or disables the single-step
; function and updates the single-step status flag. It
; also steps the target upon demand.

step_pro proc near

152

IV

send rdy stg ;send ready
call serial rd ;get desired mode
cmp al,on ;check for turn on
jne skip over
call set step ;set to single-step
imp exit_step_pro

skipover:
cmp al,off ;check for turn off
jne skip overl
call freerun ;set to freerun
jmp exitstep_pro

skipoverl:
cmp al,step ;check for step
jne outpro
cmp stepflg,on ;makes sure in single-step
jne step nack
call inc step ;step the target
jmp exitsteppro

stepnack:
send nack stg ;return nack signal
jmp outpro

exitsteppro:
send ack stg ;return ack signal

out pro: ret

step_p:o endp

; This procedure reads or writes the 8755 I/O ports and
; writes to the data direction ports. The success or
; failure of each transaction is returned to the Z-100.

portpro proc near

send rdy stg ;return ready
call serial rd
cmp al,up ;test direction flag
jne wrport ;branch on down flag

call serial rd ;get port number

cmp al,porta ;test for port A read
jne readportb
mov dx,porta
jmp readporta

read_portb:
mov dx,portb ;point to port B

read_porta:
call in 8755 ;read port A data

153

clear xmt
retrans3: send rdystg

Mov al,chk sum ;checksum = data here
call serial-wr ;send data to Z-100
mov al,eot ;send eot
call serial wr
mov al,chk sum ;send checksum
call serial wr
call get flag ;get response
compare work,ackstg
cmp ax,O
jne bad try
imp exit portpro ;data transferred

badtry: add xmt,1 ;increment counter
cmp xmt,3
je xit-port-pro
jmp ietrans3

wr port: clear xmt
retrans4: clear chk sum

send rdy-stg ;return ready
mov di,offset work ;point to working buffer

get-more: call serial rd ;read serial port
mov [di],al ;save data
cmp al,eot ;check for end of string
je thats it
add chk sum,al
inc di
jmp get-more

thats it: call serialrd ;get checksum
cmp al,chk sum
jne too bad

mov di,offset work
mov dx,O ;clear dx
mov dl,[di] ;point to port number
inc di
mov al,[di] ;load data byte
call out 8755 ;send data byte
send ack-stg
jmp exit_port_pro

too-bad: send nack stg ;return nack signal
add xmt,1 ;increment counter
cmp xmt,3
je exit port pro
jmp retrans4

exitportpro: ret

port_pro endp

154

; This procedure enables or disables the emulator break
detection circuits. It also downloads the break address
file from the Z-100 and loads it into the break registers.

I

breakpro proc near

push ax
push di

send rdy stg ;return ready
call serial rd ;get instruction
cmp al,on ;check for turn break on
jne chk off
call brk on ;turn break on
send ack stg ;return ack signal
jmp exit break-pro

chk off: cmp al,off ;check fur turn break off
jne load brk
call brk off ;turn break off
send ack stg ;return ack signal
imp exitbreakpro

load brk: mov xmt,O
clear chk sum ;get break addresses

load brk 1:
send rdystg
mov di,offset brk buf ;setup break address
mov cx,10 ;buffer

next brk: call serial rd ;get byte
mov [di],al ;store data
add chksum,al
inc di
loop next brk

all-here: call seriilrd ;get checksum
cmp chk sum,al ;and test
jne no_good

call brk off ;disable break circuits
call brk addr ;load break registers
call brk on ;enable break circuits

L send ack stg ;return ack signal

jmp exit breakpro
nogood: send nack-stg ;return nack signal

clear chk sum
add xmtl
cmp xmt,3
jne load brk 1

exitbreak_pro:

155

I!

pop di
pop ax
ret

breakpro endp

; This procedure processes the emulator break detect
; interrupt response. The break address type number is
; passed to the Z-100. The break condition is cleared and
the break circuits restarted on command.

brk handler proc near

clear xmt
retransll:

send break stg
call get_flag
compare work,ack_stg ;get the ack signal
cmp ax,O
jne retransil

mov al,int brk num ;get the type number
mov chk sum,al
call serial wr ;send break type
mov al,eot
call serial wr ;send eot
mov al,chk sum
call serial wr ;send checksum

call get flag
compare work,ack stg ;get the ack signal
cmp ax,O
je donell

add xmt,l
cmp xmt,3
jle retransli

donell: ret

brk handler endp

I

; This is the main waiting loop of the emulator code. Its
; function is to monitor the Z-100 and call the approriate
; subroutine to handle a given request.

156

waiting: mov di,offset work ;point to working buffer
mov cx,O ;clear character counter

more w: call serial rd ;read serial port
mov [di],al ;save data
cmp al,eot ;check for end of string
je all in
inc di
inc cx ;at the end of the string
jmp more w ;cx contains the count

all-in: compare work,userstg ;determine which instr
cmp al,O ;was received
jne skipl
call user pro ;pass control to user
jmp waiting ;memory module, the return

;main waiting loop

skipl: compare work,breakstg
cmp al,O
jne skip2
call breakpro ;pass control to

;break module
imp waiting

skip2: compare work,step_stg
cmp al,O
jne skip3
call step pro ;pass control to stepper
jmp waiting ;control module

skip3: compare work,portstg
cmp al,O
imp waiting
call port-pro ;pass control to port
jmp waiting ;control module

typeS: mov int brk num,Oh ;set pointer
call brk handler
iret

type9: mov int brk num,09h ;set pointer
call brk handler
iret

157

P.

typeA: mov int brk num,OAh ;set pointer
call brk-handler
iret

typeB: mov int brk num,OBh ;set pointer
call brk-haniler
iret

typeC: mov int brk num,OCh ;set pointer
call brk han'dler
iret

cseg ends

end

158

TITLE EMULATOR Z100 CONTROL PROGRAM

page 60,132

dseg segment

;define varibles and labels

cis db 26 dup (13,10),"$

xlat ascii-char_2_hex-value label byte ;hex lockup table

db 48 dup (Offh),0,1,2,3,4,5,6,7,8,9
db 7 dup (Offh),Oah,Obh,Och,Odh,Oeh,Qfh
db 26 dup (Offh),Oah,Obh,Och,Odh,Oeh,Ofh
db 153 dup (Offh)

ascii table label byte ;ascii lookup table

db 30h,31h,32h,33h,34h,35h,36h,37h,38h,39h
db 41h,42h,43h,44h,45h,46h
db 31h,15 dup (?),32h,15 dup (?),33h
db 15 dup (?),34h,15 dup (?),35h,15 dup (?)
db 36h,15 dup (?),37h,15 dup (?),38h
db 15 dup (?),39h,15 dup (?),41h,15 dup (?)
db 42h,15 dup (?),43h,15 dup (?),44h
db 15 dup (?),45h,15 dup (?),46h

cr equ 13
if equ 10
EOT equ 2fh ;code for end of file
ETB equ lbh ;end of block transfer -

nack equ 15h ;code for error
;during data read

ack equ 06h ;acknowledge code
plus equ 2bh ;attention definition
err flg equ 18h ;error code
rdy equ lah ;ready code
portA equ 40h ;8755 port A
portB equ 41h ;8755 port B
ddra equ 42h ;8755 port A DDR
ddrb equ 43h ;8755 port B DDR

step equ 20h ;perform step increment
down equ 09h ;down transfer direction

; flag
up equ 08h ;upload direction flag
on equ 4eh ;on flag
off equ 4fh ;off flag
bk off equ 10h ;disable break registers
bk on equ 00h ;enable break detectors

159

ackstg db 2bh,2bh,06h,2fh

;acknowledge string
down id db 2bh,2bh,09h,2fh

;data from Z-100 next
nackstg db 2bh,2bh,15h,2fh

;negative ack string
userstg db 2bh,2bh,55h,2fh

;user memory function flag
breakstg db 2bh,2bh,42h,2fh

;break function flag
stepstg db 2bh,2bh,53h,2fh

;stepper function flag
portstg db 2bh,2bh,50h,2fh

;port function flag--

modestg db 2bh,2bh,4dh,2fh
;mode function flag

rdystg db 2bh,2bh,lah,2fh
;ready response string

emulator equ Oh ;emulator identification
target equ Olh ;target identification

user-code label byte ;user filename buffer
db (?) ;maximum length

char ct db (?) ;actual length
user file db 15 dup (?) ;filename

;buffer for user filename

filnam db 'EMULATOR.BIN'oo
;filename for emulator

user db 2048 dup (?)
db (?) ;user memory buffer

brk buf db 10 dup (?)
;break address buffer

work dw ? ;working buffer area
modeflg db ?

;flag for target or
;emulator

break flg db -
;break circuit status flag
;on or off

step_flg db ;on or off
;off = freerun, on =;stepper

u startl dw ? 4
u start dw ? ;starting address of user

;memory download
u_stop dw ? ;stop address of user

;memory download
byte_num dw ? ;byte count storage

temp_buf label byte ;temporary

160

db (?) ;user read buffer
bytes in db (?)
byte_1 db 10 dup (?)

viewbuf db 5 dup (" ")
viewaddr db 3 dup (?)

db 10 dup (" ")
viewdata db 2 dup (?)

db cr,f,"$"
msgbuf db 10 dup (?)

;string control buffer
porta sto db (?) ;parallel port holding
portb sto db (?) ;buffers
ddra sto db (?)
ddrb sto db (?)

chk sum db ? ;chksum buffer
xmt db ? ;retransmit count buffer
addr hold dw ? ;temporary buffer

break_1 dw ? ;register 1 part A
;register 1 part B

break_2 dw ? ;register 2 part A
;register 2 part B

break_3 dw ? ;register 3 part A
;register 3 part B

break_4 dw ? ;register 4 part A
;register 4 part B

break_5 dw ? ;register 5 part A
;register 5 part B

message definition area

disk-err db "Disk read error: Emulator.bin "

db "must be on the default drive",cr,lf,"$"

port_err db "Port circuit did not respond",cr,lf,"$"

chg ddr db cr,lf,"Change DDR (y/n): ",

steperror db "Step circuit did not respond",cr,lf,"$"

badstep db "Stepper must be enabled",cr,lf,"$"

stepped db "Step Action Complete",cr,lf,"$"

ddr out db "DDR downloaded",cr,lf,"$"

port-cont db cr,lf,lf,"Selected port content is: "

port_view db (?)

161

U

db cr, lf,"$
port-data db cr,lf,"Please enter the port data :,$

port hold db?

brk-head db cr,lf,lf,"Current break address listing"
db cr,lf,cr,lf
db "Break Number",10 dup(")
db "Break Address",cr,lf,cr,lf,"$"

view-brk label byte ;break display format

db 5 dup ("f "),"1",20 dup(")
brk-addrl db 3 dup (?),cr,lf

db 5 dup ("1 ") ,"2",20 dup(")
brk-addr2 db 3 dup (?),cr,lf

db 5 dup ("o "),"3",20 dup(""
brk addr3 db 3 dup (?),cr,lf

db 5 dup ("f "),'W",20 dup(""
brk-addr4 db 3 dup (?),cr,lf

db 5 dup (" "),"5",20 dup(")
brk-addr5 db 3 dup (?),cr,lf,"$"

edit data db "Enter data for location"
location db 3 u1?

db $:

view-head db "User memory buffer contents",cr,lf,cr,lf
db " Address Data",rl"$

view-nr db cr,lf,"Please enter the last address to view"
db cr,lf,"Note: Maximum length is 20 bytes!!"
db cr,lf," :1,1$

edit nr db cr,lf,"Please enter the last address to edit"
db cr,lf,"Note: Maximum length is 10 bytes!!"
db cr,lf," i 1#

dw-err db "ERROR During memory download !11!"
db cr,lf,"$"

dw-brk-err db "ERROR :: During break download !1!"
db cr,lf,"$"

start addr db cr,lf,"Please enter the starting"
db "address as (XXXh): ","$"

stop-addr db cr,lf,"Please enter the ending
db "address as (XXXh): ",$

file db cr,lf,lf,1O dup (" "
db "Please enter the name of your file,"
db cr,lf,10 dup (" ")
db "this must be a binary file: ","$"

162

data-out db "User Memory has been downloaded",13,l0,"$"

bad sel db cr,lf,10 dup(""
db "Invalid Selection : Enter <return>","$"

enter_3 db cr,lf,"Enter 3 hexidecimal digits only!"
db cr,lf,"$"

enter 2 db cr,lf,"Enter 2 hexidecimal digits only!"
db rf,$

standby db it STANDBY EMULATOR INITIALIZING !!

db cr,lf,"$"
sram err db "EMULATOR RAM ERROR: RESET EMULATOR",cr,lf

db

setup-menu db 10 dup (" ")SETUP MENU",cr,lf,cr,lf
db 10 dup (""),"a. Pass User Memory",cr,lf
db 10 dup (11 "),"b. Set Break Address",cr,lf
db 10 dup (""),11c. Configure Ports",cr,lf
db 10 dup (""),"d. Main Menu"',cr,lf,"$"

main-menu db 10 dup (""),"MAIN MENU"I,cr-,lf,cr,lf
db 10 dup (""),"a. Start/Stop Target",cr,lf
db 10 dup (n "),nb. Enable/Disable Break",cr,lf
db 10 dup (n "),",c. Change Break Address",cr,lf
db 10 dup (""),I'd. Access Single-step",cr,lf
db 10 dup (""),"e. Access User Memory",cr,lf
db 10 dup ("),"f. Access Parallel Ports",cr,lf
db 10 dup (""),"g. Exit to Dos"I,cr,lf,"$"

user-menu db 10 dup (""), "User Memory Menu",cr,lf,cr,lf
db 10 dup ("W,a. Download User Memory",cr,lf
db 10 dup (""),"b. View User Memory",cr,lf
db 10 dup (""),"c. Edit User Memory",cr,lf
db 10 dup (""),"'d. Exit ",cr,lf,lf,"$"

select db cr,lf,10 dup (" "),"Make a selection: ","$" -

break-menu db 10 dup (""),"BREAK MENU",cr,lf,cr,lf
db 10 dup ("W,a. Enable Break",cr,lf
db 10 dup (""),"b. Disable Break",cr,lf
db 10 dup ("),"c. View Break Address",cr,lf
db 10 dup (""),"d. Change Break Address",cr,lf
db 10 dup ("W,e. Exit ",cr,lf,lf,"$"

sel-brk-reg db cr,lf,lf,"Select break register (1-5):"
db 11$11

new brk addr db "Enter new break address: ","$"

morlgbn1 db "Change another address (YIN):

brk now db "Break address"

163

brk-sel db ?
d b "

brk-sel-data db 3 dup (?),cr,lf,"$"

port menu db 10 dup (" "),"PORT MENU",cr,lf,cr,lf
db 10 dup ("f "),"a. Read port A",cr,lf
db 10 dup, ("),"b. Read port B",cr,lf
db 10 dup (""),"c. Write port A",cr,lf
db 10 dup, ("),"d. Write port B",cr,lf
db 10 dup (")"e. View/Reconfigure DDR-A"
db cr,lf
db 10 dup, ("),"f. View/Recongigure DDR-B"
db cr,lf
db 10 dup ("),"g. Exit port menu",cr,lf,"$"

step-menu db 10 dup ("o "),"SINGLE-STEP MENU",cr,lf,cr,lf
db 10 dup ("1 "),"a. Start single-step mode"
db cr,lf
db 10 dup 1"1),"b. Step target",cr,lf
db 10 dup ("),"c. Exit single-step mode",cr,lf
db 10 dup ("1),"d. Main ienu",cr,lf,lf,"$"

Brk stat off db "Break = Disable",cr,lf,"$"
Brk stat on db "Break = Enable",cr,lf,"$"
step statE off db "Stepper = off",cr,lf,lf,lf,"$"
step stat -on db "Stepper = Freerun",cr,lf,lf,lf,"$"
emul stat on db "Mode = System",cr,lf,"$"
emul-stat-off db "Mode = Target",cr,lf,"$"

continue db 1C,13,"Press Enter to continue:""$
waiting db 10,13,"Standing by for Emulator data",$
port_done db "Port data downloaded",cr,lf,"$"

dseg ends

sseg segment stack

db 100 dup (?

sseg ends

cseg segment

assume cs:cseg,ds :dseg,ss:sseg,es:cseg

;Macro COMPARE - This macro compares the contents of two

164

; strings. The soucre and destination offset must be provide
; and the CX register must contain the string length. For a
; match the AX register will return zero. Any other value
; means no match.

compare macro stringl,string2

lea si,stringl ;point to input string
lea di,string2 ;point to test string
call cmpstrg
endm

; Macro BUF SIZE - This macro setups function call 08h by
; setting the maximum length and passing the buffer name.

buf size macro length,identity ;variable lentgh buffer

push ax
push dx
lea dx,identity
mov identity,length ;the max length
mov ah,Oah ;is 255 characters
int 21h
pop dx
pop ax

endm

; Subroutine CMPSTRG - This proredure compares two strings.

cmp_strg proc near

push cx

mov cx,04
chk it: mov ah,[si]

mov al,[di]
cmp ah,al
jne no match
inc si
inc di

165

loop chk it
no-match: mov ax,cx ;compare strings

;set al to the value of
;cx. If cx equal zero
;strings match

pop cx ;restore original string
;length

ret
cmpstrg endp

; Subroutine CLR - This procedure clears the crt display.

clr proc

push dx
push ax
mov dx,offset cls
mov ah,09h
int 21h
pop ax
pop dx
ret

clr endp

; Subroutine DISPLAY - This procedure displays the message
; string pointed to by the dummy variable "string".

display macro string

push dx
mov dx,offset string
mov ah,09h
int 21h
pop dx
endm

; Subrountine READ-KEY - This procedure reads the Z-100
; keyboard and echoes it to the crt.

166

readkey proc

mov ah,01h
int 21h
ret

readkey endp

; Subroutine RCV B - This procedure reads the auxillary
; serial port and returns the data in the AL register.

rcv B proc

mov ah,03h ;preform serial read
int 21h ;data returned in al
ret

rcv B endp

; Subroutine SEND B - This procedure outputs the data in the
; AL register to the auxillary serial port.

send b proc

push cx
push ax

mov dl,al
mov ah,04h ;transmit serial byte
int 21h ;data must be in the dl
mov al,dl ;register

pop ax
pop cx
ret

send b endp

; Subroutine DISP STAT - This procedure checks the current
; status of the emulators break, single-step, and mode flags.
; It then displays the appropriate status message for each.

167

P

dispstat proc near

push ax

mov al,on ;load the on flag
cmp al,mode_flg ;check mode of emulator
jne skip_z1
display emul-stat on
jmp skip-z21

skip zl: display emul-stat off
skipz21: mov al,on

cmp al,break flg
jne skipz2
display brk stat on
imp skip z22

skipz2: display brkstat off
skipz22: mov al,on

cmp al,step_flg
jne skipz3
display stepstaton
jmp skipz31

skipz3: display stepstat off

skipz31: pop ax

ret
dispstat endp

; Macro CONVERT - This macro sets up the parameters
; to the hex to ascii procedure which converts an hex value

to ascii.

convert macro bits,destination,data info

me bx,data info ;load the data pointer
mov di,offset destination

;load the destination
-pointer

mov cx,bits
call hex to ascii ;call the converter

endm

Subroutine GET FLG - This procedure reads in a string

168

from the emulator and stores it in the message buffer.

get_fig proc near

push bx

mov bx,offset msg buf
get next1:

call rcv b ;read emulator port
mov [bxT,al
cmp al,eot ;if not end of string

;store the data
je donel ;and get the next byte

mov dl,al ;look at data
mov ah,02h
int 21h

inc bx
imp getnext_1

donel: pop bx

ret
get_flg endp

A

This macro transmits the designated flag to the emuuiator.

send macro flagname

lea di,flag name
call send flag

endm

; Subroutine SEND FLAG - This procedure sends a string of
; characters from thethe Z-100 to the serial port the string
; offset must be in the DI register when the call is made.

169

send-flag proc near

push ax

continuel: mov al,[dil ;load a byte of data
call send b ;transmit the data
cmp dl,eot ;check for end uZ string
je return
inc di ;point to next byte
jmp continuel ;repeat process

return: pop ax

ret
send-flag endp

; MODULE NAME: LOAD BUF
MODULE NUMBER:

; FUNCTION: This procedure transfer a designated
file from disk to a temporary storage area.

INPUTS:
; OUTPUTS:
MODULES CALLED:

load buf proc near

push ax
push cx

lea dx,user file ;point to user file
mov ax,3d00h5 ;open the file for reading
int 21h ;pointer at beginning
jc load-error
mov bx,ax ;store file handle in BX
lea dx,user ;destination buffer
mov cx,2048 ;load number of bytes
mov ah,3fh
int 21h

mov ah,3eh ;close the file
int 21h
jmp nold err

load-error:
jmp no-way

nold err:
pop cx
pop ax
ret 170

170

load buf endp

MODULE NAME: SENDBUF
MODULE NUMBER:
FUNCTION: This procedure transfer a file from the

designated buffer to the emulator.
; INPUTS:
; OUTPUTS:
MODULES CALLED:

send buf proc near

mov si,offset user
add si,u start ;point to start of data
send user stg ;call emulator

sendl: call get_flg ;get response
compare msg buf,rdystg
cmp ax,O
jne sendl
send down ld ;send download flag
mov bx,O- ;point to start address
mov al,bh ;send first byte of
call send b ;the start address
mov al,bf ;send second byte
call send b
mov bx,byte num ;send byte count
mov al,bh
call send b
mov al,bT
call send b

send2: call get_flg
compare msg buf,rdystg ;get ready signal
cmp ax,O-
jne send2
mov chk sum,O ;clear checksum
lea si,user ;point to code
mov bx,O ;set counter

send next:
mov al,[si] ;load data
call send b ;send data
add chk sum,al ;update checksum
inc bx
cmp bx,byte num
je x send buf
inc si ;point to the next byte
jmp send next

171

x send buf:
mov al,chk sum
call send b ;send checksum

ret

send buf endp

; MODULE NAME: INPUTDATA
MODULE NUMBER:
FUNCTION: This procedure gets an ascii data byte

from the Z-100 keyboard, converts it to
hex and stores it in the location pointed
to by SI.

INPUTS:
OUTPUTS:
MODULES CALLED:

input_data proc near

push di
push bx
push cx
push dx

again2: buf size 3,temp_buf ;accept 2 characters + cr
mov al,bvtes in
cmp al,2
je passed 11

* display enter_2 ;display an error message
jmp againl

passed 11:
xor dx,dx

mov cl,4
lea di,byte_1
lea bx,xlat ascii char 2 hex value
mov al,[di]- ;get the-first byte
xlat ;exchange a hex character

;with its binary value
cmp al,Offh
jne passed 12
display enter 2 ;enter 2 hex characters
jmp again2

passed 12:
or dl,al
shl dx,cl ;shift the byte by one

;nibble
mov al,[di+1] ;get second byte
xlat

172

..

cmp al,Offh
jne passed 13
display enter 2
imp again2

passed_13:
or dl,al ;shift the byte by one

;nibble

mov [si],dl ;store the hex data

pop dx
pop cx
pop bx
pop di

ret
inputdata endp

; MODULE NAME: HEXTOASCII
MODULE NUMBER:
FUNCTION: This procedure converts the data in the

BX, register from hexidecimal to ascii
and stores it in the location pointed
to by the DI register.

; INPUTS:
OUTPUTS:
MODULES CALLED:

hex to ascii proc near

push cx
push bx
push ax

mov ax,bx ;load the data in ax
lea bx,ascii table
push ax ;save the data
cmp cx,2 ;test for size of the data
je byte_only
mov al,ah
and al,0fh ;convert low nibble of

;high byte
xlat
mov (di],al ;save fisrt character
inc di

byte_only:
pop ax ;retrieve second byte
mov ah,al ;hold low byte

173

and alOfOh ;select high nibble
xlat
mov [di] ,al ;save the character
inc di
mov al,ah ;store low byte
and al,Ofh ;select low nibble
xlat
mov [di],al ;save the character

pop ax
pop bx
pop cx

ret

hex to ascii endp

********* **** ******* ****** *** ********************

; MODULE NAME: GETADDR
; MODULE NUMBER:
; FUNCTION: This procedure retrieves a three byte hex

address from the key board and converts it
to its binary equivalent. The results are
returned in the addr hold buffer.

INPUTS:
; OUTPUTS:
; MODULES CALLED:

get addr proc near

push di
push bx
push cx
push dx

againl: buf size 4,tempbuf ;accept 3 characters + cr
mov al,bytesin
cmp al,3
je passed 1
display enteY 3 ;display an error message
3mp againi

passed 1: -

xor dx,dx
mov cl,4
lea di,byte 1
lea bx,xlat asciichar 2 hex value
mov al,[di] ;get the first byte
xlat ;exchange a hex character

174

;with its binary value
cmp al,Offh
jne passed_2
display enter 3 ;enter 3 hex characters
imp againi-

passed_2:
or dl,al
shl dx,cl ;shift the byte by one

;nibble
mov al,[di+l] ;get second byte
xlat
cmp al,Offh
jne passed 3
display enter 3
imp againT

passed_3:
or dl,al
shl dx,cl ;shift the byte by one

;nibble
mov al,[di+2] ;get third byte
xlat
cmp al,Offh
jne passed 4
display enter

passed_4: or dl,al
mov addr hold,dx ;save the converted

;address
pop dx
pop cx
pop bx
pop di

ret
getaddr endp

MODULE NAME: USERPRO
; MODULE NUMBER:
FUNCTION: This procedure handles the user requests

from the Z-100 keyboard. And carries out
the required functions with the emulator.

INPUTS:
; OUTPUTS:
MODULES CALLED:

userpro proc near

user-rep: call clr
display user menu ;prompt the user for

175

OFq !! I "I II . .

display select ;a selection
call read key ;get the option number
cmp al,'a'
je over_t
jmp optuser_b
call clr

over t: display file ;request filename
buf size 15,user code ;get the string
mov bx,offset user-file ;may include drive id
add bl,charct
mov al,O
mov [bx],al ;add zero for dos call
call load buf ;move file from disk to

;the buffer area
mov bx,offset user
add bx,2049
mov al,eot
mov [bx],al ;flag end of user file
mov xmt,O ;clear counter
mov u start,O
mov bytenum,2048

used: call send buf ;download the file
call getflg ;see if transfer was

;successful
compare msg buf,ackstg
cmp ax,O
jne retry
display dataout ;advise user of the

;download success
display continue

notyet: call read_key
cmp al,cr
jne not yet
jmp exit_userpro

m retry: add xmt,l ;increment counter
cmp xmt,3
jne skip_a
jmp err userpro

skip-a: jmp used
opt_user b:

cmp al,'b'
je skip b3m oyt User c

skip b: ca'l c r c
display start addr ;prompt for view address
call get addr ;get the address
mov ax,addrhold
mov u startax ;save the address
mov sT,offset user
add si,ax
call clr
display view nr ;get last address to view
call get_addr

176

mov ax,addr hold
mov ustop,ax ;save the converttd

;stop address
mov ax,u start
mov bx,u stop
sub bx,ax ;calculate byte count
mov byte num,bx ;store byte count
mov cx,bx ;load byte counter
cmp cx,20 ;see if bytes > 20
jle skip c
jmp no no ;if so display error msg

skipc: call clr
display view head

see it: push cx
convert 3,viewaddr,ustart

;convert address to
;display format

convert 2,view-data,[si]
;get desired byte
;convert to display format

display view buf ;display the location
;address and contents

inc si ;increment data pointer
add u start,1 ;increment address pointer
pop cx
loop see it
display continue ;wait for continue

say 1: call readkey
cmp al,cr
jne say 1
jmp exit_userpro

opt user c:
cmp al,'c'
jne optuser_d
call clr

display start addr ;prompt for edit address
call get addr ;get the address
mov ax,addr hold
mov u startax ;save the address
mov u startl,ax
mov si,offset user
add si,ax
call clr
display edit nr ;get last address to edit
call get addr
mov ax,addr hold
mov u_stop,ax ;save the converted

;stop address

mov ax,u start

mov bx,u stop
sub bx,ax ;calculate byte count

177

mov bytenum,bx ;store byte count
mov cx,bx ;load byte counter
cmp cx,10 ;see if bytes > 10
jg no no ;if so display error msg
call clr

edit-in: push cx
convert 3,location,u start ;setup address display
call clr
display edit data ;prompt for the data
call inputdata ;read the data and store

;convert data from ascii
inc si ;to hexidecimal format
pop cx
add u start,1
loop edit in
mov xmt,O ;send user file
mov ax,u startl ;reset start address
mov u start,ax
jmp used ;download new data

optuserd:
cmp al,'d'
je exit userpro

no no: display bad sel ;display invalid input
call rea-_key
cmp al,cr
jne no no
jmp userrep

err userpro:
noway: call clr

display dw err
display continue
call read key
cmp al,cr
jne noway

exit_ user _pro: ret
user-pro endp

; MODULE NAME: BREAKPRO
MODULE NUMBER:

; FUNCTION: This procedure serves as the interface
between the user and break options. The
user may enable, disable, view or change
the break detectors.

; INPUTS:
; OUTPUTS:

178

; MODULES CALLED:

breakpro proc near

push di
push dx
push cx

brk top: call clr
call disp stat
display break menu
display select
call read key ;get the option number
cmp al,'a'
jne opt brk b
cmp break_flg,on ;see if already enabled
jne skip_d
jmp no go

skipd: send breakstg ;send string to emulator
call get_flg
compare msgbuf,rdystg
cmp ax,O
je skip e
jmp brk error

skip e: mov al,on ;send on flag
call send b
mov break flg,al ;updatt: the break flag
call get_fig
compare msgbuf,ackstg ;check for acknowledge
cmp ax,0
je skip_f
jmp brk error

skip f: jmp brk-top
opt_brkb:

cmp al,'b'
je skip g
jmp opt brk c

skip g: cmp breakfTg,off ;see if already off --

jne skip h
jmp nogo

skiph: send break stg ;send string to emulator
call get_fig
compare msg_buf,rdy stg
cmp ax,O
je skip i
imp brk error

skipi: mov al,off ;send on flag
call send b
mov break_flg,al ;update the break flag
call get_fig
compare msgbuf,ackstg ;check for ackncwledge

179

cmp ax,0
je skip j
jmp brk error

skip j: jmp brk-top
optErkc:

cmp al,'c'
jne optbrk_d
call clr
display brk head ;display break header

convert 3,brk addrl,break 1 ;load the break
convert 3,brk addr2,break 2 ;display with
convert 3,brk addr3,break 3 ;current data
convert 3,brk-addr4,break-4
convert 3,brk addr5,break 5
display view brk
display continue

no wayb: call readkey
cmp al,cr
jne no way_b
jmp brk top

optbrkd:
cmp al,'d'
je back 1
imp opt_brk_e

back 1: call clr
display sel brk reg ;get break register
call read key
mov brk sel,al ;store ascii register #
cmp al,'l' ;determine break address
jne chk 2 ;to display
convert 3,brk sel data,break_1
mov di,offset break_1
jmp put out

chk_2: cmp al,T21
jne chk 3
convert 3,brk sel data,break_2
mov di,offset-break 2
jmp put out

chk_3: cmp al,3'.
jne chk 4
convert 3,brk sel data,break 3
mov di,offset-break 3
jmp put out

chk 4: cmp al,14'
jne chk 5
convert 3,brk sel data,break_4
mov di,offset-break_4 ;set storage addr
jmp put out

chk 5: cmp al,T5 '

je skip k
imp no go

skipk: convert 3,Urkseldata,break 5

180

mov di,offset break_5
putout: display brk now ;display current break

;address
display new brk addr ;prompt for new address
call get-addr ;get the address
mov ax,addr hold
mov [di],ax ;store the new data
mov xmt,O ;clear retransmit counter

display more brk
call read-key
cmp al, yI
je skip m

skip_1: cmp al,'Y'
je skip m
jmp breaking

skipm: jmp back_1 ;change another break addr

breaking: send break flg ;pass break address
call get_flg
compare msgbuf,rdystg
cmp ax,O
jne brk error
mov al,down
call send b

retrybrk: call getflg
compare msg buf,rdystg
cmp ax,O
3ne retrybrk
mov cx,lO
mov chk sum,O
lea di,break_1 ;point to top of break

;string
brk out: mov al,[di] ;send the break buffer

call send b
inc di
add chk sum,al
loop brk out
mov al,chk sum
call send b
call getig
compare msg buf,ackstg ;check for acknowledge
cmp ax,O
jne brkretry

brkretry:
imp brktop
add xmt,1
cmp xmt,3
je brk error
imp retiy_brk

optbrk e:
cmp al,'e'
je exitbrkpro

181

no go: call clr
display bad sel ;display invalid input
call readkey
cmp al,cr
jne no-go
imp brktop

brk error:
call clr
display dw brk err ;display error message

no_gol: display continue
call readkey
cmp al,cr
jne nogol
imp brk_top ;try again

exit brkpro: ret
break_pro endp

MODULE NAME: STEPPRO
MODULE NUMBER:

; FUNCTION: This procedure signals the emulator to
enables or disables the single-step

; function and updates the single-step
status flag. It also steps the target
upon demand.

INPUTS:
OUTPUTS:

; MODULES CALLED:

step_pro proc near

steptop: call clr
call disp_stat
display step_menu
display select
call read key ;get the option number
cmp al,'a'
jne optstep_b
cmp stepflg,on ;see if already on
je step_top
send step_stg
call getflg

wait step:

compare msg_buf,rdy_stg ;wait for ready signal
cmp ax,O
jne waitstep

182

I-A

mov al,on ;load on flag
call send b
call get_flg
compare msg buf,ackstg ;check for acknowledge
cmp ax,U
je skip_ac
jmp steperr

skipac: mov step_flg,on ;update the step flag
imp steptop

opt_step_b:
cmp al,'b'
jne opt_step_c
mov bl,on
cmp stepflg,bl ;see if set to on
je skip n
imp can not do

skipn: send stepstg ;contact emulator
wait step3:

call getflg
compare msgbuf,rdystg ;wait for ready signal
cmp ax,O
jne wait step3
mov al,step
call send b ;send step flag
call get_flg
compare msg buf,ackstg ;check for acknowledge
cmp ax,O
je skip_o
jmp steperr

skipo: display stepped ;target was stepped
display continue

wait step5:
call readkey
cmp al,cr
jne waitstep5
jmp steptop

opt_stepc:
cmp al,'c'
je skip_p
imp opt_step_d

skip_p: cmp step_flg,on ;see if already on
je hump
imp step_top

hump: send step stg
call get_flg

wait stepl:
compare msg_buf,rdy_stg
cmp ax,O
jne wait stepl
mov al,off ;load off flag
call send b
call get_ig

183

IF

compare msg buf,ackstg
cmp ax,O
jne step_err
mov stepflg,off ;update the step flag
jmp step_top

can not do:
display bad step ;stepper must be enabled
display continue ;try again

waitstep2: 3
ps call readkey

cmp al,cr
jne waitstep2
jmp steptop

steperr:
display step_error ;circuit has a problem
display continue ;try again -A

wait step2l:
call readkey
cmp .l,cr
jne wait step2l
jmp step-top

opt_stepd:

ret
steppro endp

MODULE NAME: PORTPRO
MODULE NUMBER:

; FUNCTION: This procedure prompts the user for an
; selection and then carries out the command.

The user may read, write, or view the
target's 8755 ports.

INPUTS:
; OUTPUTS:
; MODULES CALLED:

I

portpro proc near

port_top: call clr
call disp_stat
display port menu
display select
call read key ;get the option number
cmp al,'a'
je rd a

opt_port b:

184

F!

cmp al,'b'
je skip q
jmp optport_c

skip_q: mov cl,'b' ;flag port B
imp over rd a

rd a: mov cl, a ;flag port A
over rd a:

mov
xmt,O

send portstg ;call emulator board
p_wait: call get_flg

compare msg_buf,rdystg
cmp ax,O
jne p wait
mov al,up ;send up flag
call send b
cmp cl,'a'
je do rd a
mov alportB ;set up port B read
jmp do rd b

do rd a: mov al,portA ;send port identification
do-rd b: call send b
p_wait : call get_flg

compare msgbuf,rdystg ;wait for ready signal
cmp ax,O
jne p_waitl
call rcv B ;get the data
mov chk-sum,al ;save the data
call rcv B
cmp al,eot
je skip_r
jmp exit port_pro

skipr: call rcvB ;get checksum
cmp al,chk sum
je skip s
add xmt,l
cmp xmt,3
jne p waitl
jmp exitportpro ;if no match try again

skip_s: send ackstg
mov ax,0
mov al,chksum
mov work,ax
convert 2,port view,work
display port_cont ;display the port data
display continue

p_hold: call readkey
cmp al,cr
jne p_hold
jmp porttop

opt_portc:
mov xmt,0
cmp al,'c'

185

je wr a
opt_portd:

cmp al,'d'
je skip t
imp opt port e

skip_t: mov cl,'b' ;flag port B
imp over a

wr a: mov cl,'a' ;flag port A
over a: display portdata ;prompt for new data

lea si,port hold ;point to data buffer
call inputdata ;get the data
send port_stg ;call emulator board

p_wait4: call get_flg
compare msgbuf,rdy_stg
cmp ax,0
jne p wait4
mov aT,down ;send down flag
call send b
mov chk sum,O ;clear checksum

p_wait5: call get-flg
compare msgbuf,rdystg ;wait for ready signal
cmp ax,
jne pwait5
cmp cl,'a'
je do a
mov alportB ;set up port B write
mov dl,port hold ;store new data in the
mov portb_sto,dl ;port holding buffer B
imp do b

do-a: mov al-portA ;send port identification
mov dl,porthold ;store new data in the
mov portasto,dl ;port holding buffer A

do b: call send b
mov chk suma]
mov alporthold ;send the data
call send b
add chk sum,al
mov aleot
call send b ;send eot
mov al,chk sum
call send b ;send checksum
call get_flg
compare msg buf,ackstg
cmp ax,6 ;check for acknowledge
je skip u
add xmt,T --
cmp xmt,3
jne pwait5
jmp exitportpro

skip_u: display port done
display continue

p_hold2: call readkey
cmp al,cr

186

_U

jne p_hold2
Imp port_top

optporte:
cmp al,'e'
je skipad
jmp opt_port_f

skip-ad: mov xmt,O
mov axO
mov al,ddra sto
mov work,ax
convert 2,port view,work ;convert ddr data
display portcont ;display the port data
display chg ddr ;do you want to change
call readkey ;the ddr
c m p a l , 'y '

--

je skip_v
jmp porttop ;display menu

skipv: display port data ;prompt for new data
lea si,ddra sto ;point to data buffer
call input data ;get the data
mov chk sum,O
send port stg ;call emulator

p_wait6: call getflg
compare msg buf,rdystg
cmp ax,'U
jne p_wait6
mov al,down ;send down flag
call send b

p_wait7: call get_flg
compare msg buf,rdystg ;wait for ready signal
cmp ax,U
jne pwait7
mov al,ddra ;send port identification
call send b
mov chk sum,al
mov al,ddra sto ;send the data
call send b
add chk sum,al
mov al,eot
call send b ;send eot
mov al,chk sum
call send b ;send checksum
call get_flg
compare msg buf,ack stg
cmp ax,O ;check for acknowledge
je skip_w
add xmt,l
cmp xmt,3
jne p_wait7
jmp exit portpro

skipw: display ddr out ;ddr downloaded message
display continue

187

p_hold3: call readkey
cmp al,cr
jne p_hold3
jmp porttop

optport f:
cmp al,'f'
je skip_x
jmp opt_port_g

skipx: mov xmt,O
mov ax,O
mov al,ddrb sto
mov work,ax
convert 2,portview,work ;convert ddr data
display port cont ;display the port data
display chg ddr ;do you want to change
call read key ;the ddr
cmp al,'y'
je skip_y
imp porttop ;display menu

skipy: display port data ;prompt for new data
lea si,ddrb sto ;point to data buffer
call input data ;get the data
mov chk sum,O
send port stg ;call emulator

p_wait8: call getflg
compare msg buf,rdystg
cmp ax,U
jne pwait8
mov al,down ;send down flag
call send b

p wait9: call get flg
M compare msg buf,rdystg ;wait for ready signal

cmp ax,u
jne pwait9
mov al,ddrb ;send port identification
call send b
mov chk sum,al
mov al,ddrbsto ;send the data
call send b
add chk sum,al
mov al,eot
call send b ;send eot
mov al,chksum
call send b ;send checksum
call get_?lg
compare msgbuf,ackstg
cmp ax,O ;check for acknowledge
jne alright
add xmt,l_crop xmt,3
jne pwait9

188

jmp exitportpro
alright: display ddr out ;ddr downloaded message

display continue
p_hold4: call readkey

cmp al,cr
jne p hold4
jmp porttop

exit_portpro:
display port err ;display error message

p_hold5: display continue
call readkey
cmp al,cr
jne phold5
imp porttop

opt_port_g:
ret

port_pro endp

start:
mov ax,dseg
mov ds,ax ;set data segment
mov mode flg,on ;initialize to emulator
mov break flg,off ;break off
mov step_?lg,off ;stepin step mode

call clr
display standby ;display wait message
call getflg
compare msg buf,ackstg ;look for first ack signal
cmp ax,U ;if 0 then SRAM ok
je sram-ok
display sramerr ;if ram is bad display

;error message and goto DOS
jmp dos

sramok: call get flg
compare msgUbuf,ackstg ;look for second ack signal
cmp al,0 ;if 0 then user RAM ok
je well
display sram err ;if ram is bad display

;error message and goto DOS
jmp dos

well: mov xmt,O
send emul:

send down Id ;send download flag
mov chk _um,0

humpl: lea dx,filnam ;point to emulator code
mov ax,3dOOh ;open the file for reading
int 21h ;pointer at beginning

189

jnc skipab
jmp load-err

skip_ab: mov bx,ax ;store file handle in BX
next set: lea dx,user ;destination buffer

mov cx,2048 ;load number ot bytes
mov ah,3fh
int 21h
mov cx,ax ;set counter to actual

;number of bytes
mov si,offset user ;point to buffer

emul down:
cmp ax,O
je emul gone

emul dl: mov al,[sil
call send b
inc si
add chk sum,al ;update checksum
loop emul dl
jmp next set

emulgone:
mov al,ETB ;place eot at the end
call send b ;of the stored data
mov al,ETB
call send b
mov al,chk sum ;send checksum value
call send b

call getflg
compare msg_buf,ackstg
cmp ax,O
jne skip z
imp window 1 ;display setup menu

;else retransmit
skip_z: add xmt,l

cmp xmt,3
jne skip_ae
jmp dos

skipae: jmp send emul

mov ah,3eh ;close the file
•nt 21h

window 1: call clr
call dispstat ;display system status
display setup-menu ;display setup menu
display select
call readkey ;get the option number
cmp al,'a'
jne optset b
call userpro ;goto user memory

;subroutine
jmp window_1

190

optsetb:
cmp al,'b'
jne opt_set c
call break_pro ;goto break control

;subroutine
imp window_1

optsetc:
cmp al,'c'
jne opt_set d
call port pro ;goto port subroutine
imp window 1

optset d:
cmp al,'d'
jne opt set e
imp windowI ;goto main menu

optsete:
display badsel ;display invalid input

opt_setel:
call readkey
cmp al,cr
jne optset el
imp window _

window 2: call clr
call disp_stat ;display system status
display main menu ;display main menu
display select
call read key ;get the option number
cmp al,'a'
jne opt_main b
call step pro ;goto target subroutine
imp window 2

opt_mainb:
cmp al,'b'
jne opt_main_c
call break pro ;toggle the break status
imp window_2

opt main c:
cmp al,'c'
jne opt_main d
call break_pro ;goto break address

;subroutine
imp window_2

optmain d:
cmp al,'d'
jne opt_main_e
call step_pro ;goto single-step control

;subroutine

191

jmp window 2

optmain-e:
cmp al,'e'
jne optmain_f
call user-pro
Imp window 2

optmainf:
cmp al,f'
jne optmain_g
call port pro ;goto to port subroutine
jmp window 2

opt_main_g:
cmp al,Ig'1
jne opt main h

dos: mov ax,4c00h ;return to DOS
int 21h

optmain h:
display badsel ;display invalid input

opt_seth:
call readkey
cmp al,cr
jne opt set h
jmp window_7

load err: call clr
display disk err
display contTnue

load errl:
call readkey
cmp al,cr
jne load errl
jmp humpT

cseg ends
end start

192

ri

Appendix E: User Guide

This user guide contains information concerning emulator

system testing which is still pending. For completeness the

interrelationship of untested circuits and the rest of the

system will be discussed.

The only portion of the emulator which has not been

tested is the break detector circuitry. The individual

components of this section have been tested, but the overall

functionality of the circuit is still pending. This circuit

consists of the 74F524 register comparators (U19-U28), the

8259A interrupt controller (U58), and the 74F157 multiplexers

(U42-U44). These devices are completely wired and respond to

their control and data signal in the proper manner.

Testing of the register/comparators consisted of

preforming read and write operations to ensure proper wiring.

The interrupt controller appears to function properly when

excited manually, but hasn't been verified with software

control. The break disable function is functional and

provides a means of using the emulator in a limited capacity.

The other functions of the emulator do not directly depend on

the break feature and function properly when isolated from

the break section.

Software to support the break circuits consists of an

interface to the user via the host computer and a

corresponding break module in the emulator code. The host

193

F.

computer portion of the control software has been tested by

performing data aquisition. The emulator portion has some

additional testing to under go. The break handler routine has

not been tested in response to an actual break condition.

This program is currently preventing complete testing of the

break detector hardware as a complete circuit. No additional

hardware errors are expected from the break circuit, but this

is not verifiable at this time.

19

tJ

194

I -

Bibliography

1. Bisbee, Lt Col Charles, Associate Professor.
Personal Interview. Air Force Institute of
Technology, Wright-Patterson AFB, OH 21 April 1988.

2. Intel Corporation. Microsystem Handbook Set.
Intel Literature Department, Intel Corporation,
Santa Clara, CA 1986.

3. Booch, Grady Software Engineering with Ada
Tokyo: The Benjamin/Cummings Company, 1987.

4. Dinwiddie, George "An 8031 In-Circuit Emulator",
Byte, Small System Journal, 11: 181-199 (July 1986).

5. Pedicini, Chris " Engineering on a Micro",
Byte, Small System Journal, 11: 145-170 (July 1987).

6. Pressman, Roger S. Software Engineering: A
Practitioner's Approach. New York: McGraw-Hill, 1987.

7. Russo, John P. "A Vic-201 Commodore 64 Terminal
Emulator", Byte, Small System Journal,
9: 379-388 (April 1986).

8. Stern, Marc "All About Interfacing",
Radio Electronics, 57: 87-96 (December 1986).

9. Wilcox, Alan D. EngineerinI Design: Project
Guidelines. Englewood Cliffs NJ: Prentice-Hall, 1987.

10. Woodhull, Albert S. "An EPROM Simulator",
Byte, Small System Journal, 9: 400-410 (March 1985).

195

VITA

Captain John L Woods was born on

He graduated from high in Deadwood, South

Dakota, in 1970. He enterpd the USAF in 1972 and served until

July 1981. Upon leaving the Air Force he attendd the

University of Oklahoma, form which he received the degree of

the Bachelor of Science in Electrical Engineering in May

1984. Upon graduation, he received a commission in the USAF

through the Officer Training School. He received the degree

of Master of Science in Consumer Studies at Oklahoma State

University, Stillwater Oklahoma. He served as an

Elecromagnetic Hazards Engineer at the Engineering

Installation Division, Tinker AFB, Oklahoma, until entering

the School of Engineering, Air Force Institute of Technology,

in June 1987.

196

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE I A8 0~704OIM

is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
MNIASSIC

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABIUITY OF REPORT

2 b. DECLASSIFICATION 'DOWNGRADINGi SCHEDULE Approved for Public Release;
UnLuiied Distrib.ition

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

__Ga. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 70. NAME OF MONITORING ORGANIZATION
I.. Of applicable)

Scbool of Engineering
6c ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Air Force Institute of Ttchr~logy

ho Wight-Patterson MF, OH 45433

111Ba. NAME OF FUNDING /SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Of~ applicable)

S.ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO ,CESSION NO.

11I. TITLE (include Security Classification)

8755 EM41AOR DESIGN __ (LUN SSc3-TT I
12. PERSONAL AUTHOR(S)

John L Wods Cat A U~F
13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month,Dy jIS. PA GE COUNT

MS Thesis FROM _ ___TO - jgpR lWrviir
16. SUPPLEMENTARY NOTATION

17. COSATI CODES IS. SUBJECT TERMS (Cofnu* on reverse if necessary and idcfy, by block number)
FIELD GROUP SUB-GROUP

12 6 1Catputers, Caqpmter Iogic

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Chales R. Bisbee, Lt Col, USAF
Associate Professor of Electrical ~iern

S20. DISTRIBUTION /AVAILABILITY OF ABSTRACT j21. ABSTRACT SECURITY CLASSIFICATION
I1 UNCLASSIFIED/UNLIMITED C SAME AS RPT. Q3 DTIC USERS Q tghMSSJ-I-

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL
T+ rl rarl-- R Riqhp r% 1A-C~r-r'1 IAFIT/EX

DO Form 1473, JUN 36 Previ ous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Item 19.

Abstract

This paper discusses the requirements to develop and
build an electronic device to emulate the 8755 microchip. The
design had five basic objectives: (1) Allow the user to
download 8755 emulation memory. (2) Allow control of the
target program from the Z-100. (3) Provide a single step
capability. (4) Provide breaking at a specified address. (5)
Allow the user to set or change the emulated 8755
input/output ports.

It describes the standard memory and input/output
capabilities of the 8755. It describes in detail the emulator
enhancement features to the standard 8755. The hardware
circuits used to implement the emulator are discussed at the
block diagram, component, and signal levels. It concludes
with a detail description of the emulator sotware used to
control the hardware.

