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ABSTRACT

Multiple-valued logic is a topic of concern for modeling standards in the

VHSIC Hardware Description Language, VHDL 1076-1987. With the various

forms of layout styles in MOS devices, there exist different strengths of electrical

signals propagated throughout a circuit. Additionally, logic extraction to VHDL of

VLSI layout designs may contain leftover transistors that must be modeled

correctly in VHDL. A multiple-valued logic system can adequately model signals

with different strengths as well as conflicts between signal values. Once a

multiple-valued logic system is defined, a logic extraction system may then

produce VHDL for hardware component representations down to the transistor

level. The goal of this thesis is to present a ten-level multiple-valued logic system

and provide a Prolog-based logic extraction tool for generation of VHDL from a

transistor netlist. The Prolog-based logic extraction system will also provide

groundwork for further research in the area of formal verification with VHDL.

Various tools using symbolic representations and multiple-valued logic are

essential in a CAD environment where logic extraction from layout to VHDL is

incorporated into validation and verification.
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COMMON ABBREVIATIONS

Abbreviation Explanation

AND Operation of logical conjunction
CMOS Complementary Metal-Oxide-Semiconductor
CAD Computer Aided Design
cif Caltech Intermediate Format
DoD Department of Defense
esim Switch level simulator
GND Ground or Zero Volts
HIDL Hardware Description Language
NAND Complemented operation of logical

conjunction (nonassociative)
NOR Complemented operation of logical

disjunction (nonassociative)
OR Operation of logical disjunction
SIF Symbolic Intermediate Form
sim Transistor netlist generated by mextra
STOVE_C Sim to VHDL extraction tool using C
STOVEP Sim to VHDL extraction tool using Prolog
Vdd Supplied Voltage, High or +5 Volts
VHSIC Very High Speed Integrated Circuit
VHDL VHSIC Hardware Description Language
VLSI Very Large-scale Integration
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A MULTIPLE-VALUED LOGIC SYSTEM FOR

CIRCUIT EXTRACTION TO VHDL 1076-1987

I. INTRODUCTION

Background

The VHSIC Hardware Description Language, IEEE standard VHDL

1076-1987, is an important part of the Air Force Institute of Technology CAD

environment. A conceptual view of a general CAD environment is presented in

Figure 1. The initial concept of a hardware design begins as a VHDL behavioral

specification. The VHDL behavioral specification of the circuit may be

decomposed into a VHDL structural description through a schematic capture

system. A structural description is then converted to a layout description in an

intermediate layout representation through a compilation tool or manual layout.

The layout is translated into a mask level description for transmittal to a Silicon

foundry service for fabrication. Tools also exist to perform a switch extraction

from the mask layer description. The transistor netlist description may then be

used for switch level simulation or for extraction to a gate level representation in

VHDL.

In order to provide a concrete example of how multiple-valued logic and

extraction to VHDL may be accomplished, the CAD environment at AFIT. shown

in Figure 2, will be used for discussion. Magic is a manual layout tool from the

Berkeley Distribution of Design Tools (California 1986). The mask level
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description generated in magic is stored and transmitted in the CalTech

Intermediate Format (CIF). The CIF format is sent to the MOS Implementation

Service (MOSIS) for fabrication of VLSI components. The sim transistor netlist

representation is extracted from CWF by a tool called mextra. The sim is an input

form to a switch level simulator called esim, also found in the Berkeley

Distribution of Design Tools.

Switch-level simulators are commonly employed to simulate designs that

have been generated using a manual layout tool. The esim simulator is an

example of a switch-level simulator that uses a sim transistor netlist representation

generated from a magic VLSI layout description. As a result, the simulation of the

design is performed at a switch-level representation of the transistor through a

state model. In this state model, the values on all nodes must converge to a

"steady-state" condition before generating a report of the new values on all nodes.

A common design practice is the use of feedback loops in circuit configurations.

These feedback loops cause problems within switch-level simulators since the

temporal aspect of the design is not considered within the simulator. Effectively,

feedback ioops prevent values on nodes from converging. The solution for

simulation in switch-level simulators is either to convolute the switch-level

representation of the circuit through software or to modify the layout design.

Modification of the switch-level representation through software leads to

perturbations of the modeled circuit that may not truly represent the original layout

design. Modification of the design layout to accommodate the esim simulator also

leads to a design that is difficult to interpret by other engineers and to possible

unforeseen side effects, e.g., race conditions and susceptibility to cross-talk.
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A SIM-to-VHDL (STOVEC) CAD tool is under development at AFIT. Its

purpose is to provide VHDL from circuit designs that have been generated in

magic and translated to the CIF format. The percentage of extraction success

varies from chip to chip. This is due to the multitude of possible transistor

configurations that may exist within a chip design. Therefore, transistors must

have a functional representation in VHDL as part of the full design. Furthermore,

testing of components requires the use of a transistor model for the circuit under

test. However, no requirement exists to represent the entire unit under test at the

transistor level. Portions of a unit under test may be represented at the transistor

level while maintaining a higher level representation of the nontested portion of the

circuit. Esim and other switch-level simulators do not allow abstraction of

hardware above the transistor level. Since VHDL allows for abstraction to a high

level, the efficiency of the simulation is improved.

Efficiency of the VHDL simulator is realized through abstract behavioral

representations of large groups of transistors while maintaining low-level transistor

representations of the circuitry under test. VHDL's treatment of timing overcomes

the convergence problems within esim. Since VHDL is based on a timing model,

the testing phase of the CAD cycle can be enhanced by a simulator that not only

produces the signal values to be observed, but also provides information on when

the signal value changes should occur.

Problem Statement

There are several problems with validation of VLSI designs.

(1) A switch-level simulator does not accurately simulate timing models

and several different forms of VLSI layout style.
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(2) The default two-valued logic system within VHDL is insufficient for

direct simulation of VISI layout designs.

(3) The STOVEC tool that does exist for logic extraction is difficult to

modify.

The purpose of this thesis is to develop a logic extraction system and a

multiple-valued logic system for VHDL. Multiple-valued logic systems are

necessary within the realm of logic extraction, since not all VLSI layout designs are

directly extractable to gate logic representation. A multiple-valued logic system

will allow for the inclusion of transistors in the normal gate-level VHDL

simulation model.

Scope

This thesis is bounded both in the type of problems to which it applies and

in the scope of the solution it presents.

Scope of the Problem. The problem space considered by this thesis is in

the realm of custom MOS layout design that can be extracted to a transistor level

netlist form. Other systems that use semi-custom VLSI design, where the

"black-box" cells are simply wired together, are not considered. Furthermore,

other types of technologies that do not exhibit the behavior of MOS VLSI designs

are also not considered. Such technologies not included in this thesis may be

classified as bipolar.

Since capacitive sharing is also a part of MOS VLSI design, a system for

handling the propagation of these values must also be incorporated into a

multiple-valued logic system. Therefore, it will be important to provide a proper

6
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treatment for bus lines and domino forms of MOS VLSI design. However, analog

circuits, to include switched capacitor circuits, will not be addressed.

The multiple-valued logic system must also work within the VHDL

simulation model. As such, the temporal aspect and simulation cycle of VHDL

simulation will provide the basis for the multiple-valued logic models that are

developed.

Scope of the Solution. Since the application of the software tools

developed in this thesis is aimed at closing the design loop in the ART CAD

environment, the form of the solution will concentrate on custom MOS VLSI

design. Most of the forms of layout styles encountered will generally involve

derivatives of the forms found in (Weste and Eshraghian 1985). The extraction

system will start after the generation of the transistor netlist from Mextra and end

with a VHDL 1076-1987 final output. The intermediate representation developed

will be in Prolog clause form and may provide the basis for a Symbolic

Intermediate Form (SIF).

Summary of Current Knowledge

Very High Speed Integrated Circuit (VHSIC) technology has been a topic of

concern within the Department of Defense since the late 1970's (Barna 1981:2).

The technology regarding this area has advanced, but the design methodologies or

hardware description languages have not. The VHSIC Hardware Description

Language (VHDL) has evolved over the past several years as a whole design

process in response to the gap between VHSIC technology and hardware

description languages.

7



One of the major goals of VI-LDL is the insertion of the latest technology

into new and existing systems. This goal is realized through VHDL's support of

design, documentation, and efficient simulation (Shahdad and others 1985:94).

VHDL supports simulation from gate-level to system-level descriptions.

Intermetrics has developed a VHDL support environment consisting of an

analyzer, design library, library manager, simulator, and reverse analyzer. The

VHDL V7.2 Intermetrics version of the simulator was written in Ada to run on a

VAX system under the VMS operating system. Until 1987, the complete semantics

of VHDL was not supported by the Intermetrics BUILD2 simulator. The

Intermetrics BUILD3 version of the simulator supports all of the features of VHDL

V7.2, but is still very slow. In December, 1987, VHDL 1076-1987 was introduced

by the IEEE as a standard HDL. Intermetrics produced a working analyzer and

simulator in July 1988.

An important part of a complete hardware description language is a

simulator. Since the number of effective devices on an IC chip has increased

beyond the reasonable application of any testing, simulation of the device seems to

be the only valid means of evaluation. However, if a simulator cannot supply an

adequate report of the validity of a device within a reasonable period of time, it is

useless. In order to write an efficient simulator or other CAD tool, it is important

to have an understanding of the hardware description language and the target

system for its use.

In order to gain some background knowledge of VHDL it is important to

review important literature produced over the past several years. The April 1986

issue of IEEE Design & Test contains a considerable collection of articles. Further

information is found within the VHDL User's Manual. A VHDL lecture series

8



produced by the Air Force Institute of Technology (AFIT) supplements the

Intermetrics tutorial.

Most of the articles contained within the IEEE Design and Test magazine

pertain to background knowledge of VHDL. Specifically, the articles (Aylor 1986;

Dewey and Gadient 1986; Gilman 1986; Lipsett and others 1986; Lowenstein and

Winter 1986; Nash and Saunders 1986) contain information on a comparison of

VHDL to other hardware description languages, syntactical features within VHDL,

hardware testing with VHDL, and motivation for VHDL.

VHDL was compared to seven other hardware description languages

available in industry and universities. The criteria of the examination were scope

of hardware design, management of design, timing description, architectural

description, interface description, design environment, and language extensibility.

The scope of hardware design is concerned with the level of the design from the

gate to the system level. The management of the design is encompassed by the

hierarchy, modularity, and control aspects of the design process. Timing

descriptions are most important for specifying inertial timing, transport timing, and

propagation delay. The architectural aspects concern the algorithms, structures,

parallelism, separation of control and data, and components. Interface

descriptions should be defined, strongly typed, and explicitly stated at all levels.

The design environment concerns identification of the external physical influences

on the functional component. Finally, the language extensibility addresses the

description language's ability to maintain user-defined types, design tool support,

multiple technologies, and multiple methodologies. Overall, VHDL incorporates

the most important aspects of these areas (Aylor 1986:17-27).

9



An overview of the design environment and VHDL syntax was provided

(Gilman 1986; Lipsett and others 1986). The features of the design environment

described were the VHDL analyzer, design library, library manager, and simulator.

The hierarchical nature of the VHDL language syntax from design entity down to

the signal assignment statement was reviewed. Aspects of the design language

pertaining to separation of signal types from data types and specification of timing

constraints were discussed with specific references to the VHDL syntax. An

example was provided on how the majority of the VHDL syntax incorporated

constructs of Ada into a hardware description language. As software development

with Ada uses a software support environment and software language, the VHDL

encompasses the support environment described and the VHDL language.

The problems faced by today's gap between technology and description

languages was thoroughly covered by Al Dewey and Anthony Gadient (Dewey and

Gadient 1986). The industry has been relatively incapable of producing

documentation that is current, detailed, and accurate. Technology has enabled the

incorporation of VHSIC structures on chips at a magnitude beyond currently

available description languages. Additionally, military systems have usually been

application specific. "Off-the-shelf" components do not exist for ready use in

these systems. VHDL is supposed to decrease the design time and cost of specific

application components. Furthermore, it should provide for ease in second

sourcing and protect proprietary design system elements (Dewey and Gadient

1986:12-16).

Testing of design components is normally performed differently at specific

levels of the design (i.e., whole system, printed circuit board, chip, etc.).

However, the behavior and mutual effects of separate subcomponents need to be

10



incorporated into the test process. Likewise, different types of tests exist for each

phase of the device life-cycle. These life-cycle phases are design/development,

production, and maintenance. VHDL accounts for the electrical, physical, and

environmental factors necessary for constructing tests to be applied within the

different phases of the product life cycle (Lowenstein and Winter 1986:48-53).

The VHDL User's Manual provides a tutorial on the syntax of VHDL V7.2.

Chapters 2, 3, 5, 6, and 7 provide information on how the constructs of VHDL are

used within the simulator portion of the VHDL design environment. The

description of transactions and how they evolve into events as part of an

event-driven simulation is an important part of the discrete simulation process.

Modeling hardware structures, asynchronous circuits, synchronous circuits, and

complex behaviors are some of the topics important to simulation of hardware

design. The use of sequential signal assignment statements for specification of

concurrent events is important for the simultaneous specification of multiple

drivers on a bus. The cycle of the simulation from time zero to the cessation of

further transactions is also presented (Intermetrics 1985).

The VHDL video lecture series was produced and assembled at AFIT. The

lecture series is currently archived by the Design Group, MicroElectronics Branch,

Air Force Wright Aeronautical Laboratory. It is a tutorial to complement the

Intermetrics VHDL User's Manual. Concrete examples are presented in

conjunction with a comprehensive view of the syntax and modeling aspects of the

VHDL language (Linderman 1986; DeGroat 1986).

11



Assumptions

The logic extraction tool and the ten-level multiple-valued logic system is

to be developed for CMOS design within the AFIT CAD Design Cycle. Therefore,

it is assumed that a transistor netlist representation of a chip design will be

generated in sir format. The sir format will be provided through a software tool

called Mextra even though most any netlist representation for CMOS circuits

should be acceptable. Furthermore, the typical CMOS designs employed will

largely reflect those from Weste and Eshraghian.

The presentation of this thesis also assumes background knowledge in

several areas. The reader should be familiar with VLSI layout design in a CAD

environment. Some knowledge of Prolog and C would also be helpful for

interpreting the examples and portions of the extraction code. A working

knowledge of VHDL is not necessary; however, an appreciation of the various

hardware simulator modeling stratagems is critical to the understanding of the

issues raised in this thesis. A background in abstract algebra and predicate

calculus would also assist the reader. A brief list of sources that would provide

some cursory knowledge is provided in Appendix A.

Approach

This research entailed two efforts that could be pursued in parallel. The

first was to analyze the behavior of CMOS circuits and adopt an appropriate

algebra as a basis for a VHDL multiple-valued logic system. The second involved

the analysis and development of methods for Prolog modeling of VLSI designs in

order to generate a methodology for logic extraction and an approach to the

generation of VHDL.
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In the first effort, involving multiple-valued logic, several multiple-valued

logic systems were surveyed. Afterwards, an algebra was developed that allows

for a simulation model of CMOS design that is more accurate than the current

two-valued logic system. Two methods for incorporating the multiple-valued logic

system into VHDL were studied, one of which was adopted.

The second effort concerned sim-to-VHDL-extraction using a Prolog

symbolic representation. Several techniques for modeling VLSI designs in Prolog

were reviewed. A pattern recognition methodology was adopted that modeled

typical human identification of transistor patterns for extraction to higher level

components. A symbolic intermediate form in Prolog clause form was developed

to accommodate the extraction and VHDL generation tools.

Once the multiple-valued logic system was written in VHDL and the Prolog

based logic extraction system, STOVEP, was generating VHDL using "BIT" types

for signals, the multiple-valued logic system could be incorporated in the

STOVEP system to generate VHDL for any VLSI design in Magic. The final

form produced VHDL V7.2 and VHDL 1076-1987.

Materials and Equipment

Since this effort will involve production of VHDL, a VHDL analyzer and

simulator will be required. Furthermore, a Prolog interpreter will be necessary for

development of the extraction tools. Various cells laid out using the Berkeley VLSI

designtool, (California 1986) Magic, and translated to a netlist representation

through Mextra will be needed to generate the necessary input files for use in this

tool development.

13



The VHDL environment, Prolog, and Berkeley VLSI design tools run on

VAX/VMS, VAX Unix, Elxsi Unix, and SUN Unix. A VAX 8800 and VAX

11/785 running VMS were used at AFWAL for STOVEP and VHDL. A VAX

11/785 running BSD Unix V4.3 was used at AFT for initial design of the Prolog

extraction tools. An Elxsi 6400 running BSD Unix V4.2 at AFIT was used for

Mextra. Finally, a SUN 3 running Unix V4.2, release V3.2, was used at ART for

the layout of several VLSI designs.

Sequence of Presentation

Chapter 1 has provided some background on VHDL in the AFIT CAD

Environment and AFIT VHDL Environment. The problem statement was

presented as well as the scope of the problem and solution. An approach to the

solution was summarized.

Chapter 2 is a review of the current approaches that exist in the academic

community for multiple-valued logic systems and in the AFIT CAD Environment

for logic extraction. Three multiple-valued logic systems are summarized as well

as the work on STOVEC.

Chapter 3 contains a detailed problem analysis concerning logic extraction

and simulation modeling. The problem of using the most appropriate software

approach is discussed. Several issues concerning simulation modeling of

initialization, driver strengths, and logic flow to include their effects are studied.

Chapter 4 details the software design to accomplish both logic extraction

and VHDL modeling with multiple-valued logic. The software process from the

cif representation to simulatable VHDL is presented. An algebra for a ten-level

multiple-valued logic system is presented.

14



Chapter 5 discusses how the ten-level multiple-valued logic system was

incorporated into VHDL. The implementation of the logic extraction system is

also explained.

Chapter 6 details the extraction and simulation of several VLSI designs

from the AFIT CAD Environment. A multiplier chip is used to demonstrate the

parallel processing capability of the logic extraction system.

Finally, Chapter 7 details the findings from logic extraction and simulation

modeling with a ten-level multiple-valued logic system. The relevant application

of the research to further thesis and doctoral work is also discussed.
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II. REVIEW OF CURRENT APPROACHES

Introduction

The purpose of this chapter is to summarize approaches to multiple-valued

logic systems and review the development of STOVE_C. Analysis of the different

views toward multiple-valued logic systems will help identify some of the problems

in hardware simulation of transistor designs, specifically, problems with

initialization, weighting of signal values, and detection of hazard conditions. A

logic extraction tool, STOVE_C, will also be examined to determine what benefits

were realized and what problems were encountered.

Multiple-Valued Logic Systems

There are several multiple-valued logic systems in existence that address

modeling of MOS trarsistors. MOSSIM is one that uses a multiple-valued logic

system based on logical 0, 1, and X (unknown) (Bryant, 1981: 786). The effects

that these logic values cause on the circuit pertain to the gate level and lower

levels. Table 1 shows the values as they are determined by the gate type of

transistor. As a result of using a transistor-level representation of the circuit,

bidirectional flow may be easily modeled. Gate-level simulators only handle

unidirectional flow of signal values and are incapable of handling a typical

transmission gate representation unless some premise is made as to the direction

of logic flow. In addition, devices that use high impedance output are not

simulatable under a two-valued logic system.
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Table 1. Logic Values and Their Effects (Bryant, 1981)

n-type p-type
gate state effect gate state effect

0 open 0 closed
1 closed 1 open
X unknown X unknown

Though Bryant's MOSSIM simulator addressed the initialization problem

inherent with two value logic by using a logical X state, the problems with

capacitive strength levels on signals were not considered. In a later paper (Bryant,

1984), Bryant attempted a solution within the MOSSIM simulator, MOSSIM I. In

this case the circuit network was considered as a collection of nodes and

transistors, where the nodes interconnect the transistors (Bryant, 1984: 161). In

this model, each node was weighted in relation to its expected capacitance and

each transistor was weighted based on its relative conductance (Bryant, 1984: 162).

The network would then be evaluated based upon matrix analysis quite similar to

circuit-level simulators, e.g., Spice. This type of circuit analysis was far from the

evaluation methodology of VHDL, and therefore, impractical for consideration.

To compensate for the problems of dynamic and static charges that can

occur on devices in CMOS, additional levels of logic values were addressed in

another paper. One solution (Watanabeand others, 1980) involved the use of

dynamic and static logic symbols. The logic values are shown in Table 2. The

logical 1 and 0 are derived from signals that are driven by a source, i.e., Vdd and

GND. The logical X is indicative of an uninitialized state. The logical *1 is

commonly the result of capacitive charge which may exist on a given node. The

logical *0 is the absence of charge. Logical Z exists on a node where the charge
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due to a logical *1 or *0 has dissipated after some dynamic holding time. Static

charges have precedence over dynamic charges. Finally, logical E represents a

condition where some electrical rule has been violated. Typically, this occurs when

two static charges are competing for the same node, as might occur when Vdd and

GND are shorted together through a path of low resistance.

Table 2. Seven Value Logic (Watanabe and others, 1980:942)

Symbol Static Dynamic
Logical High 1 * 1
Logical Low 0 *0
Unknown X Z
Error E E

Several aspects of circuit behavior are modeled through this logic value

system. Uninitialized values are unknown, logical X. Static and dynamic charges

are modeled through separate values. Hazard conditions between static charges

are reported through E. Knowledge of the direction of circuit flow is not required

for this model. Thus, this aspect of modeling allows for bidirectional circuits. The

analysis does not encompass the problems of large resistances or resolution of

large capacitive signals over small capacitive signals.

Ullman's multiple-valued logic system is applicable to both NMOS and

CMOS models. The system is based on a Hasse diagram, therefore, there is a

base state where nothing has been initialized. Table 3 is a description of the

multiple-valued logic system used by Ullman (Ullman, 1984: 412). The logical X,

when used with the strength levels denotes an unknown or hazard condition. The 0

represents GND and 1 represents Vdd. The strength levels shown in Table 3 are

18



listed in strength precedence. Thus, a node with logic value SCO would be

overridden by logic value W1 and assigned a new logic value of WI. Likewise, for

a node with a logic value of SCO, competition with a logic value of SC1 would

render a logical SCX.

Table 3. Ullman's Multiple-Valued Logic System

Strength Symbol
Driven DO D1 DX
Weak WO W1 WX
Super Charged SCO SCI SCX
Charged CO C1 CX
Bottom B

The bottom logic value is used to represent an uninitialized state. All nodes

are originally assigned logical values of B until a new value can be computed for

the node based upon the simulation model used. The relative basis of each

strength level from Table 3 is determined by the circuit. For a strength of D, the

source is typically Vdd and GND. The strength of W results from either a driven

or weak source passing through a large resistive transistor. The SC strength level

is the result of a circuit with a large capacitance isolated from a driven or weak

source. Finally, the C strength is described as a small capacitive circuit isolated

from a driven, weak, or super-charged circuit (Ullman, 1984).

Ullman describes several simulation methodologies using this

multiple-valued logic system. Upon creation of the circuit, all nodes are assigned

a logic value of B. Afterwards, all nodes that are connected directly to Vdd and
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GND are assigned logic values of D1 and DO respectively. For those areas that are

not discernible, but are driven, the logic value of DX is assigned. Nodes that are

isolated from driven sources by large resistive loads are assigned the

corresponding weak logic value. For large capacitive sources, a logic value of SCX

is assigned. Finally, for regular capacitive nodes, a logic value of CX is

designated. After the initialization sequence has been executed, the circuitis are

then iteratively evaluated using the relations described above (Ullman,

1984:420-421).

The algorithm described in (Ullman, 1984:408-425) was largely descriptive

of NMOS applications. Further refinement can be made for most CMOS

applications. The description of the modifications will be covered in a later

section.

STOVEC

The STOVE_C project, originated by Captain Richard Linderman, has been

in development for the past 18 months (Gallagher 1987:139-151). The major goal

of STOVEC was to extract VHDL from a sim transistor netlist representation of a

VLSI design. A secondary goal of this routine was to extract descriptions in the

CHIEFS format for fault tolerant design testing. The extraction strategy was to

operate on the transistor file from sim in stages. Each stage represented a further

level of component extraction. The first stage would be to extract inverters,

transmission gates, and clocked inverters; the second stage of this process would

then involve constructing other logic gates and flip-flops that were constructed

from the components of the first stage and leftover transistors (Gallagher

1987:139-140).
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The input to STOVEC is the sim file transistor netlist. For each line, there

exists a predefined field of one character in the first position. If a recognized

value for this field does not exist, then an error message is sent to the terminal.

Currently, lines in the sim file containing capacitivei nformation are ignored

(Gallagher 1987:140-141).

As status information, STOVTEC provides feedback on errors, number of

nodes processed, number of transistors of a given type, number of specific

transistor patterns found, and a percentage of unextracted transistors. A list of

unextracted transistors is provided in a separate file. This list provides the

designer information that may help to analyze possible layout errors. Finally, a

third file is created that contains all of the extracted higher level components in a

format that may be input to CHIEFS. Even though some VHDL is produced, the

VHDL was never analyzed and simulated for correctness as a simulation model

(Gallagher 1987:142-144).

Recognition of various design components is dependent upon the naming

conventions in use at AFT. Therefore, use of IZ, OZ, and BZ, to list a few,

assists the extraction routine. Because of this labeling dependence, designs that do

not provide labeling of nodes in the same manner complicate the extraction

methodology (Gallagher 1987:143). Therefore, some modification would have to

be performed on STOVE_C to integrate it into other CAD environments for VLSI

layout, since it would be far more difficult to completely alter a CAD environment

for the integration of one tool.

Most of the effort in developing STOVE_C centered on the incorporation of

data structures and algorithms that would process the logic extraction by the
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fastest means possible. The structure to define a transistor incorporates the use of

13 fields for pointing to transistors, higher level components, and other identifying

information about the transistor. Further structures are used to define higher level

components and gates (Gallagher 1987:144-145). The extraction process and data

structures were developed for a signal processor environment. No consideration

was made for supporting parallel processing.

Other tools have been incorporated into STOVEC. One tool modifies the

transistor netlist to overcome a problem that esim has with feedback. The nofeed

option for eliminating feedbacks deletes the feedback inverters in master-slave

flip-flops and D flip-flops so that esim can then simulate the design. As discussed

later in this thesis, the problem of feedbacks in esim is due to its state-model

representation. Another tool, fixrom, also modifies the transistor netlist for esim.

The problem with ROMs in esim is in the operation of the senseamp. A portion of

the ROM cell is removed so as to eliminate contention over the proper value of a

signal (Gallagher 1987:147). In essence, these tools modify the design to

accommodate the simulator. However, the nofeed tool does not eliminate all of

the possible feedback loops that are used in VLSI design. A ring oscillator is an

example of a feedback design that will not simulate in esim.

Conclusions

A methodology for logic extraction, STOVE_C, does exist. The system

employed in STOVE_C makes extensive use of fast algorithms to efficiently

perform logic extraction. However, there are still some issues that remain to be

resolved. Inclusion of additional component descriptions requires the production

of additional C functions and data structures. This problem may hinder the

incorporation of new design styles into the AFT CAD environment. No real
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intermediate form exists that can be used for formal verification. Esim is still used

as the primary target for simulating designs from STOVEC rather than looking to

VHDL as the primary simulation tool. The structure of STOVEC is not adaptable

to a parallel processing environment.

Several important points were iterated from one multiple-valued logic

system to the next. Bryant discussed the problem of properly performing

initialization. Watanabe and Ullman were concerned with differentiation between

the relative strength levels of signals based upon the implemented circuit. Finally,

Watanabe's methodology for specifically identifying hazardous conditions as a

means to detect design flaws was identified as a necessity. The following chapter

will analyze the problems in simulation and logic extraction with respect to the

approaches reviewed in this chapter.
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III. PROBLEM ANALYSIS

Introduction

The previous chapter explored approaches to logic extraction and

multiple-valued logic systems. Initialization, signal strength levels, and detection

of hazard conditions were enumerated as necessary elements of a simulator that

models MOS behavior. However, the SIMULATORSTANDARD package of

VHDL does not provide direct support for modeling MOS transistors. Therefore, a

logic extraction system is not completely supported using the

SIMULATORSTANDARD package of VHDL.

A number of problems with STOVE_C and its implementation have been

identified during the course of this thesis effort. An intermediate form is not a

requirement for STOVE C; however, an intermediate form for symbolic

representation may become an important part of formal verification. Another

problem identified with STOVEC is that it does not produce simulatable VI-IDL.

Furthermore, Prolog has been identified as a better language for rapid prototyping

solutions than C. C is also unforgiving when errors occur in logic, whereas

Prolog's clause form is a predicate calculus form of logic. What can be expressed

in a few lines of Prolog require more lines of Lisp or C, thus a Prolog solution will

decrease the burden of ensuring code correctness on the programmer. The

purpose of this chapter is to further detail the points listed above.

Simulation Problems

The issues considered in this section are initialization, conflicts between

power and ground, driver strength levels, and bidirectional flow. A two-valued

logic system inhibits the simulator's potential to identify and model these areas.
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Additionally, logic extraction is increasing in importance in the ART CAD

environment. Gate level treatment of circuits alone is not suitable for circuit

extraction. The following discussion will cover these areas in more detail.

Initialization. The two-valued logic system of 0 and 1 does not account for

uninitialized nodes within a circuit. Though it is possible to establish a priori

values of 0 and 1 on nodes throughout a circuit, nodes that are never stimulated

during the simulation cannot be located. Use of an uninitialized state allows for

identification of nodes within the circuit that do not initialize to a known state. It

also indicates isolated circuitry that might require attention to handle conditions

such as "power up," "reset," or "power up test." This state is necessary to

provide accurate information to the designer.

Conflicts Between 1 and 0. The X state designates nodes that are driven 0

and 1 simultaneously. As such, the X state also indicates areas of a circuit where

power and ground may be "shorted" together due to errors in circuit layout. In

this manner, hazard conditions may be identified throughout the circuit where X

states exist.

Driver Strength Level. Two-valued logic does not differentiate between

strength levels on a signal or a node. Bus resolution functions are used to resolve

conflicts between drivers on a signal; however, without specific knowledge of the

circuit, the bus resolution function performs assignment irrespective of the relative

strength of the drivers. Within logic extraction, there is insufficient knowledge of

the strengths of various drivers for straightforward generation of an accurate bus

resolution function.
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Bidirectional Flow. Logic-level simulators consider logical flow in one

direction, e.g., a gate receives inputs on one set of lines and generates output on a

separate line. For transistors and transmission gates, the input and output may be

observed on any of the interconnecting lines. Within the transistor level

representation of a logic gate, current flows in one direction; however, logical

values may flow in two directions as in Figure 3.

Vdd Vdd Vdd

flogica
current B  OBow

A=I-] A=I- j A= Id

Nl NI Nllogical
B=I current B Oj B=I-j flow

GND GND GND

Figure 3. Logical Value Flow in an nMOS NAND Gate.

In the NAND gate of Figure 3, electrons flow from GND to OUT when A =

B = C = 1 is met; however, when the condition of A = land B = C = 0 occurs, the
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logical I value from Vdd is propagated through the pullup transistor to OUT and

N1. In this case, logical values are propagated downward through the circuit.

When B = C = 1 occurs, the stronger 0 value from GND propagates upward

through NI to change the value of OUT from a weaker 1 to a driven 0 value. In

this case, logical values have propagated in two directions through N1 and the

transistor whose gate is A. A transistor representation in a simulation must be

treated as a bidirectional device even when the actual current flow may be deduced

from the transistor configuration.

Integration with AFIT CAD Environment. The primary goal of a ten-level

multiple-valued logic system is to provide the basis for complete extraction of

VHSIC class components specified in CIF format. Secondary effects within the

AFIT CAD environment include support for observability in testing, formal

verification, and VHDL respecification. Some chip designs in the AFIT CAD

environment were previously designed without a VHDL specification. Some of

these chip designs contain in excess of 100,000 transistors. Even with the

complete custom VLSI cell library, manual logic extraction of VHSIC class

components present a formidable task.

Software Specification

When choosing the appropriate software support environment for

implementation, several issues must be considered. One classic controversy in

software design is "efficiency vs readability." Readability of code also influences

code rapid prototyping, development, and maintenance. With VHSIC class chips

realizing 100,000 upwards to 500,000 transistors currently fabricatable, the issue

of efficiency cannot be completely disregarded for the sake of readability.
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Furthermore, one goal of this thesis is to analyze the feasibility of symbolic

representation for VLSI design. A form of symbolic representation will be

important in the realm of formal verification. Therefore, the language should be

readable, reasonably efficient, and support symbolic representation of VLSI

design.

Figure 4 is an example of the minimal C code data structure that could be

required to represent a p-type transistor and recognize the fact that the drain and

source are interchangeable. Within the structure, fields are identified for pointers

to other possible transistor structures as well as the appropriate node label. The

data structure conveys no further information as to how it will be used. Additional

C coded algorithms must be provided to perform searching and linked list

manipulation.

struct Trans{
NODE *gate, source, *drain;
TRANS *gnext,*snext,*dnext;
int length,width,Txpos,Typos;
char kind,use;
TRANS *team;
int id_num;

Figure 4. C Code Data Structure for Defining a Transistor in STOVE_C
(Gallagher 1987:147).

Figure 5 is an example of an equivalent means of specifying transistors in

Prolog. If the first letter of a label in Prolog is upper case, then a variable is
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specified. First letters in lower-case specify a known value or atom. The Prolog

example conveys several items of information. If an entry specifying a p-type

transistor exists on the database, then its drain and source are interchangeable.

Furthermore, the Prolog code also specifies relations on the database of

transistors. Given any known value for the gate, drain, or source, the Prolog code

shown in Figure 5 will return all possible instantiations that match the prerequisite.

To accomplish this same task in C code would require the use of additional C code

for each type of search, whereas the different searches are implied by the Prolog

code in Figure 5.

ptrans(G,D,S)
p(G,D,S).

ptrans(G,D,S)
p(G,S,D).

Figure 5. Prolog Structure to Define a Transistor.

The point demonstrated in Figures 4 and 5 is that for the pattern matching

types of problems required to perform logic extraction, a few lines of Prolog code

can perform the same operation that would require numerous lines of C code.

However, the pattern of the search performed in Prolog is transparent to the user

as it is inherent in the language. It is possible to construct near optimal searching

sequences in C that are more efficient when compared to specific Prolog

environments. Therefore, an analysis of the Prolog approach for efficiency should

29



be considered only after all requirements have been specified and an enhanced

Prolog support environment is available.

Conclusions

Two main issues were presented. In order to portray a working model of

CMOS design that includes transistors, it will be important to develop a

multiple-valued logic system that handles initialization, bidirectional logic flow,

and the different driver strength levels in MOS design. Even though using C code

for implementing a logic extraction methodology would be highly efficient, its use

in rapid prototyping and modification may impede the necessary requirements

analysis concerning symbolic representation of MOS circuits. Therefore, Prolog

was a primary candidate for constructing the logic extraction system. The

important point within this software approach was to use a language that is best

suited to the problem and not to advocate the strict use of any one language.
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IV. ACTUAL DESIGN

Introduction

In this chapter, the design of the software for logic extraction and

multiple-valued logic will be discussed. Figure 6 shows a system to extract logic

and produce VHDL. The cif file representation of the VLSI design layout is

passed through a software routine called upper. The upper routine normalizes all

labels to upper case letters only. Then the resulting file is passed through mextra

to produce the transistor netlist file in sim format. Afterwards, the sim file is then

converted from sim to Prolog format using a routine called sim2pro. At this point,

a Prolog routine called trans is used to iteratively perform extraction on the

transistor and component databases in Prolog. The fully extracted Prolog form is

then translated to VHDL using a routine called pro2vhdl. Pro2vhdl contains the

necessary component instantiations and ten-level multiple-valued logic to support

the simulation model.

Label Conversion

Mextra and Prolog are case sensitive; therefore, upper and lower case

letters uniquely distinguish labels. VHDL is case insensitive; therefore, upper and

lower case letters within labels offer no further information. Figure 7 is the label

conversion routine written in LEX. The LEX conversion routine simply examines

the cif file for occurrences of a "94 label" pattern. The "94 label" pattern

distinguishes a label record in the cif file from other records that describe the VLSI

design geometry. The whole label is then converted to upper case except for Vdd.

The LEX conversion routine is executed prior to circuit extraction by Mextra.
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Conversion of Switch-Level Representation to Prolog

A software tool was necessary to convert the switch-level representation,

sim, to Prolog clause form. The software tool, called sim2pro, could also be

adapted to recognize other netlist fo ais of representation for transistors. The

Prolog clause form was chosen as an intermediate representation that could be

operated on easily within the Prolog environment.

From the switch-level representation for esim, called sim, a routine written

in C performs a line-by-line translation from the sim format to a Prolog

representation as in Figure 8. In the sim file, the "p" represents a p-type MOS

transistor and the "e" represents an n-type or enhancement MOS transistor.

The"d" for depletion mode and "f" for funny transistors are not implemented

since they are not normally encountered within the VLSI designs at AFIT. The "n"

is added as the first character of a label since a label from a sim file may begin

with an uppercase character. The vdd and gnd labels in the Prolog clause form are

not preceded by an "n" in order to help identify possible labeling problems that

may have occurred in the layout. The Vdd and GND labels are assumed to

represent power and ground within the chip design. Therefore, these labels are

kept as the only reference points for the pattern matching performed later.
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%START AA BB

int i;

%%

/* The following lines pass the Vddl and ONDI labels

-94[ ]Vddl [ ]([0-9] I\-) f\nl */\n ECHO;

-94[ IGNDI[ ] ([0-91 I\-) [^\n */\n ECHO;
/*

/* The following block converts all lower case letters

/* to upper case letters.
/0

^94[] {
ECHO;

BEGIN AA;
}

<AA>[ ^ ]+ {
for (i=0; i<yyleng; i++)

if (yytext[i] >=- 'a' && yytext[i]<='z')

for (i=O; i<yyleng; i++)

printf("%c", (yytext[i]+'A'-'a'));

else

printf("%c",yytext[iJ);

BEGIN BB;

<BB>[^\n] */\n {

ECHO;

BEGIN 0;
}

Figure 7. LEX Routine to Convert Labels.
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sim -> pro
type gate drain source type gate drain source

p labelx labely labelz p(nlabeLx,nlabely,nlabelz).
e labeIx labely labelz n(nlabelx,nlabely,nlabelz),

.sim => p 128 OZ_pql Vdd 300 21596 -26700 -24000

to

.pro => p(n128,nOZpql,vdd).

Figure 8. Sim-to-pro Translation.

Component Extraction

With the transistor information in the Prolog format, the switch-level

representation of the circuit can be read into Prolog as a database. The extraction

process consists of a collection of Prolog clauses that contain pattern matching

rules for components. The pattern matching consists of matching the correct

transistor type, then matching the labels representing the gate, source, and drain.

Figure 9 is an example of how the p and n-type MOS transistors are treated. The

drain and source are interchangeable in MOS. Therefore, it is necessary to define

rules in Figure 9 that accommodate this property.
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ptrans(G,D,S) ntrans(G,D,S)

p(G,D,S). n(G,D,S).
ptrans(GD,S) ntrans(G,D,S)

p(G,S,D). n(G,SD).

Figure 9. Prolog Representation of p and n-type MOS Transistors.

Some basic heuristics were developed to minimize the depth-first search

inherent to Prolog execution. Basically, the areas of greatest concern were the

database input and elimination of redundant transistors, extraction of the most

common low-level components, and extraction of the higher level components

through identification of basic signature subcomponents. Every attempt was made

to exhaust an occurrence of a component in a Prolog clause as soon as possible to

minimize nonessential searches. Furthermore, goals were aligned in the Prolog

clauses such that discovery of the preceding subcomponent would lead to

recognition of the next subcomponent from the database. An example can be

constructed to illuminate this point.

Consider a description for a register cell constructed from two D flip-flops,

a multiplexer, and two inverters. On a chip that performs arithmetic operations,

register cells usually make up a small percentage of the collection of the chip

components. D flip-flops then occur in low numbers, whereas, inverters and

multiplexers exist in relatively large numbers. The number of D flips-flips can be

considered to be less than the number of inverters or multiplexers. If in the

process of extracting a register cell the inverters are examined first, then every
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inverter would be tested for its existence within a register cell. Testing D

flip-flops first would incur fewer number of queries on the database than testing

inverters. Once a D flip-flop is found, its output node may be used to help find

the following D flip-flop and other surrounding inverters and multiplexer. In this

manner, combinations involving two D flip-flops are exhausted rather than

searching all possible combinations of an inverter followed by an interconnecting D

flip-flop. Once two interconnecting D flip-flops are found, then the rest of the

interconnecting components may be found by a direct lookup on the component

database.

The next step was to establish an extraction methodology. Some

components are constructed from lower-level components which are in turn

constructed from components at still lower levels. For efficiency, a preferred

extraction mechanism involves extracting the lowest level components first, so as

to minimize the overall number of queries on the database. The first phase of

extraction generates queries almost entirely on the transistor database. Thus, the

first phase consists of extracting inverters, transmission gates (tgates), clocked

inverters, ROM cells, and RAM cells. These low level elements cannot be

decomposed into lower level representations other than transistors. Figure 10 is an

example of a CMOS inverter and the Prolog code used to identify it.
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inv
ptrans(G,D,vdd),
ntrans(G,gnd,D),
remove-p(G,D,vdd),
remove n(G,gnd,D),
asserta(inv(G,D, 1),
fail.

inv.

Figure 10. CMOS Inverter Circuit with Prolog Description.

The removep and removen procedures remove n and p transistors from the

database irrespective of the orientation of the drain and source. The 1 notation in

the asserta(inv(G,D,1)) statement is used to identify the layout style of the inverter.

The 1 notation serves to provide additional information about the design if it is

necessary to break the component out into its transistor representation. Figure 11

demonstrates various circuit layouts considered for static CMOS design. Figure 12

also provides some circuit layouts for p or nMOS design. Figure 13 displays

circuit configurations for transmission gate logic. Though not depicted in a figure,

another form of layout style commonly generated makes use of precharged logic.

Table 4 is a synopsis of the types of common basic circuit elements that maybe

encountered within a layout style. The reason some basic circuit elements are not

listed under certain layout styles is that they may be either derived from the basic

circuit elements listed in that layout style or they are not usually constructed in that

particular layout style. A
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The second phase of extraction generates the next level of components,

consisting entirely of transistors and components from the first phase. These

components are various flip-flops, logical gates, multiplexers, half adders, full

adders, and subtracters. These components usually make up a complete VLSI

design cell.

Table 4. Logical Elements Categorized by Layout Style.

Static CMOS n/pMOS Tgate MOS Precharged

NAND NAND NAND
NOR NOR NOR

Inverter Inverter "Logical
XNOR XNOR XNOR Networks"
XOR XOR XOR

"Logical OR
Networks" AND

MUX
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-0

B-I A-I B-I sNOT

sNAND sNOR

VA

0 0

AA

B H B

sXNOR sXOR -

Figure 11. Typical Static CMOS Circuits.
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AAH BA
0 0

AHBB

pNAND pXOR

pNOR

pXNOR pNOT

Figure 12. Typical p and nMOS Circuits.
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B

A-A

tNtOR

tXNOR

A-C10

tXOR

Figure 13. Typical Transmission Gate MOS Circuits.
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Since logical gates may handle an "unlimited" number of possible inputs,

the logic gate component construction uses a list for the input. Figure 14 is the

Prolog code used to define a NAND gate in static CMOS. The main clause,

'nand', begins the description process for a NAND gate. It searches for a

p-type transistor and n-type transistor that provide a basis for a NAND gate.

Once an input has been found, 'nand' calls upon another Prolog Horn clause,

'morenand', to collect corresponding n-type and p-type transistors. When only

one set of p-type and n-type transistors is left, the second 'more nand' Prolog

clause will becalled. From this point, the calls to the 'morenand' Prolog

clauses are "unwound," building the list of inputs to the NAND gate. Notice,

too, that the process of identifying transistors begins with an n-type transistor

connected to GND and a neighboring n-type transistor and a p-type transistor

connected to Vdd and any output. The process continues until a p-type and

n-type transistor are discovered sharing a common output.

The third phase of the logic extraction process consists of identifying the

macrocells using previously extracted components. The components created

from this phase may be registers, memories, decoders, n-bit adders, n-bit

subtracters, n-bit multipliers, and counters. A further extraction process may

continue with the identification of macrocells.
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nand
ntraris(A,gnd,X),

ptrans(A,vdd,O),
not(gnd=O),
not(vdd=O),
not(X=O),

more nand(L,X,O,gnd),
removej,(A,vdd,O),
remove n(A,gnd,X),

asserta(nand([AIL],O, 1)),
fail.

nand.

more_nandfiAILl,X,O,P)
ntrans(A,X,Y),
ptrans(A,vdd,O),

not(X=Y) ,not(Y=P),
more nand(L,Y,O,X),
remove n(A,X,Y),
removep(A,vdd,O).

more nand([AXO,j)
ntrans(A,X,O),

ptraris(A,vdd,O),
not(X=O),
remove n(A,X,O),
removep(A,vdd,O).

Figure 14. Static CMOS NAND in Prolog.

Ten-Level Multiple-Valued Logic Algebra

The proposed 10-level multiple-valued logic system accounts for a

logically undefined state, three signal-strength levels, and three logical levels.

A methodology for resolving capacitive charging is also presented. The
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following provides a general description for the ten-level multiple-valued logic

system.

Logically Undefined. The BB or Base state is designated on nodes that

have not been electronically affected by the surrounding circuitry within the

simulation. For MOS transistors, a change that occurs on the drain will effect a

change on the source. The same is also true for changes that occur on the

source inducing changes on the drain. However, changes to the signal value on

the gate of a transistor will not force the drain and source to change if both of

the present values are in the BB state. In this case, the gate is considered to be

electronically isolated from the source and drain.

Three Logical Strength Levels. The three strength levels used are

Driven, D, Weak, W, and Charged, C. Driven nodes are separated from power

or ground by three or less standard channel length transistors for the given

technology (e.g. using a scaled design rule of lambda = 1.5 microns, standard

channel length equals 3 microns). The Weak node is characterized by

separation from power or ground through a resistive pullup or pulldown

transistor. The Charged state is characterized by a node separated from power

and ground due to "off" transistors. The strength relationship is D > W > C.

Three Logical Values. The three logical values are 1, 0, and X. The 1

state designates the existence of a voltage level very close to Vdd on a node.

The 0 state indicates the existence of ground on a node. Finally, the X state

designates the simultaneous existence of 1 and 0 of the same strength level on a

node except as indicated under the definition of the capacitive level.
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Capacitive Level. The capacitive level on a node may be represented in

picofarads. Its use determines the value for interconnected capacitively charged

nodes. The new charged values are calculated from the relation of the

capacitance of one node compared to the capacitance of the surrounding nodes.

The sum of the nodes with a capacitive value equal to or exceeding the sum of

the other values will determine the logical level for the node under

consideration. When neither a 1 nor a 0 condition can be determined from this

method, the X state will be assigned to the node. The summation resolution

method used in the case of capacitive level nodes is necessary to resolve out the

pessimistic view of X states throughout a circuit due to charge sharing designs.

Algebra.

Let P = < M, V, A, BB > denote a partially ordered set (poset) with

carrier M, meet and join relations A and V, and distinguished element BB.

Let M = {BB, C1, CO, CX, WI, WO, WX, D1, DO, DX} be the carrier

and defined by strengths is exhibited by the Hasse diagram shown in Figure 15.

The properties of idempotence, commutativity, associativity hold for the poset,

M, exhibited in Figure 15 (Uliman, 1984:412). Only the join operation will be

considered for the application of the multiple-valued logic system.
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<M, V, BB>
DO1

J for a, b,c e M

aVb=bVa

if c> aVb then

CX (aVb)Vc=aV(bVc)=cCO C1

BB

Figure 15. Strength Lattice for M.

However, for capacitive charges, this algebra exhibits an overly

pessimistic view of actual MOS circuit behavior.

Let S = {BB, C1, CO, CX) and S c M.

However, S is not defined by P. Consider that when the values on all

drivers are contained within S a new relation is defined for capacitive values as

in Figure 16. The Cw notation is a capacitive weighting method where W

defines the weight in units of Farads. The resolution for capacitive charge is

valid iff the values under consideration are contained within S; otherwise the

resolution for M must hold.
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c=Cliff (ZCOk); 2[( zQ oX)+ EcX . O)l
k=1 j=1

OR

c=Coiff (Fcjo)>- 2[(FQ iX)+(o'k'1)
j=1 =k1

otherwise c = CX

Figure 16. Capacitive Relation for S.

Prolog to VHDL

The problem of generating VHDL from Prolog was considered as a less

important goal than a ten-level multiple-valued logic system. Since the problem

was a straight mapping of Prolog components onto VHDL component

instantiations, a simple solution was incorporated into the design of this

software routine. Within the implementation chapter of this thesis, this

consideration will become apparent.

The approach to this problem was to initially test for the existence of

components within the Prolog database and output a VHDL design entity that

represented the Prolog component. Once all of the necessary design entities

were created, the entity for the test bench and architecture was created followed

by the signal declaration statements. The next step involved the creation of the

component specifications, the begin statement, and test bench control process.
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Afterwards, all of the VHDL components were instantiated from components in

the Prolog database. Finally, the end statement for the architecture was placed

at the end of the generated VHDL specification.
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7

V. IMPLEMENTATION

Introduction

This chapter will cover the implementation of the ten-level multiple-valued

logic system in VHDL and the logic extraction system in Prolog. The areas

covered under the ten-level multiple-valued logic system include the

MOSjlogic.package, truth tables for p-type and n-type MOS transistors, a

description of the transistor design entities, and an example of the node resolution

algorithm. The items covered in the software implementation of the logic

extraction system include a description of the heuristics in the extraction routine,

establishment of signature subcomponents within higher level components, and the

conversion from Prolog clause form to VHDL.

Ten-Level Multiple-Valued Logic

The MOSlogic_package package establishes the type definitions used

throughout the VHDL design. Figure 17 is a listing of the types and Figure 18 is a

listing of the functions declared in the MOS-logic_package. The strength lattice is

established as a construction, MOSlogic, of two enumerated types, strength and

value. The MOSnode record also contains the capacitive value for the node.
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type transtype is ('P','N','U','D');

For trans-type the following mean:

-- P: Optimally sized p-type enhancement MOS.
-- N: Optimally sized n-type enhancement MOS.
-- U : Resistively sized p-type enhancement MOS.
-- D : Resistively sized n-type enhancement MOS.

type strength is ('B', 'C', 'W', 'D');

type value is ('B', '0', '1', 'X');

type capacitance is range 0 to 100000;

type MOS-logic is record

S : strength;
V : value;
end record;

type MOSnode record is record
L : MOS logic;
C : capacitance;
end record;

type MOS nodeand time is record
N : MOS noderecord;
T : time;
end record;

type MOS node array is array (Natural range <>) of
MOSnode_andtime;

type mos node resolution array is array (integer range <>)
of M5S_node_record;-

function mosnoderesolution (input : mosnoderesolution array)
return mos-node record;

subtype mos node is mosnoderesolution mos node record;

Figure 17. Basic Package Specification for MOS.
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function snand (A,B MOS node-record)
return MOS-node-recorJc -

function snor (A,B : MOS node_record)
return MOS node recora;

function snot (A : MOS noderecord)
return MOSnoderecord;

function sxnor (A,B : MOS node record)
return MOS node recor; -

function pnand (AB : MOS.nodejrecord)
return MOSnode_record;

function nnand (AB : MOSnode record)
return MOS node_record;

function pnor (A,B : MOS noderecord)
return MOS noderecordf;

function pnot (A : MOS noderecord)
return MOSnoderecord;

function tmux (A,BSSbar : MOSnoderecord)
return MOS node record;

function dff (A, PHI, PHI bar, OUTput: MOS node_record)
return MOSnoderecord;

function binarytoSmulti (A : bit)
return MOS_noderecord;

function multi o ( binary (Sig : bit; A : MOS_node_record)
return bit;

Figure 18. Specification of Supporting Functions for MOS.

This package contains functions for the predefined circuit representations

from Figures 11, 12, and 13. The circuits are defined in terms of their transistor

configurations. Once the transistor configuration is established, the expected

outputs can then be specified in terms of the inputs provided.
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Transistor Function Tables. Once the multiple-valued logic system has

been defined, truth tables may be constructed for the n-type and p-type MOS

transistors. Table 5 and Table 6 are the truth tables for the n-type and p-type

MOS transistors.

NOTE: For Tables 5 and 6, the input and output nodes of the MOS transistor may
be interchanged with the source and the drain depending on the application.

Table 5. Truth Table for n-type MOS Transistor.

Input Gate Output

BB d BB
CO BB,DX,WX,CX CO
Cl BB,DX,WX,CX C1
CX BB,DX,WX,CX CX

DO,WO BB,DX,WX,CX WO
D1,WI BB,DX,WX,CX W1

DX,WX BB,DX,WX,CX WX
DX,D1,DO,WX,WI, DO,WO,CO CX

WO,CX,C1,CO (Capacitive weight of 0.0)
D1 DI,W1,C1 WI
W1 D1,W1,C1 W1
C1 D1,W1,C1 CI
DO D1,WI,C1 DO
WO DI,WI,Cl WO
CO D1,W1,C1 CO
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Table 6. Truth Table for p-type MOS Transistor.

Input Gate Output

BB d BB
CO BB,DX,WX,CX CO
C1 BB,DX,WX,CX C1
CX BB,DX,WXCX CX

DO,WO BB,DX,WX,CX WO
D1,W1 BB,DX,WX,CX W1
DX,WX BB,DX,WX,CX WX

DX,D1,DO,WX,W1, DI,WI,C1 CX
WO,CX,C1,CO (Capacitive weight of 0.0)

DI DO,WO,CO D1
W1 DO,WO,CO W1
C1 DO,WO,CO C1
DO DO,WO,CO WO
WO DO,WO,CO WO
CO DO,WO,CO CO

The truth tables serve to provide a first analysis of the result of a logic

operation through a transistor. Figure 19 is a VHDL design entity used to

calculate the logical result on an output from a transistor. The final resolved value

on a node depends upon resolving the values generated by all surrounding

transistors through a bus resolution function shown in Figure 20.

54



entity ptrans is
port (Gate in mos node;

Drain inout mos node;
en;Source inout mos node);

architecture ptrans of ptrans is

begin
process(Gate, Drain, Source)

variable Drain temp :mos-node-record;
variable Source temp : mos_node-record;
begin
If (Gate.L.V = '0) then

If ((Drain. L. S='D') and (Drain. L. V='0')) then
Source temp.L.S :'W;
Source..yemp.L.V V='0;

else
Source -temp := Drain;
end if;

If ((Source. L.-S=' D') and (Source. L. V='O')) then

Drain wtemp.L.S W;
Drain....emp.L.V V='0;

else
Drain temp := Source;

end if;
elsif ((Gate.L.V ='X')or(Gate.L.V = 'B')) then

If (Source.L.S = 'D') then
Drain wtemp.L.S W;
Drain temp.L.V :=Source.L.V;

else
Drain temp := Source;
end if--

If (Drain.L.S = 'D') then

Source-temp.L.S W;
Sourcejtemp.L.V :=Drain.L.V;

else
Source temp :=Drain;

eleend if;

Drain -temp.L.V Drain.L.V;
Drain -temp.L.S 'C';
Source temp.L.V Source.L.V;
Source-temp.L.S :='C';
end if;

Drain <= Drain temp after 1 ns;
Source <= Source temp after Ins;
end process;

end;

Figure 19. P Transistor Design Entity.
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function mos noderesolution
(input : mos_noderesolutionarray)

return mosnoderecord is

variable output, temp : mos node-record;

begin
output.L.S 'B';
output.L.V 'B';
for i in input'range loop

temp := input(i);
If (temp.L.S > output.L.S) then

output := temp;

elsif ((temp.L.S = output.L.S) and
(temp.L.V /= output.L.V)) then

output.L.V := 'X';
end if;

end loop;
return (output);
end mosnoderesolution;

Figure 20. Node Bus Resolution Function.

Node Resolution Algorithm. Determination of node values is based upon a

sequence of steps that closely maps to the signal value resolution within the VHDL

simulator. Every node has at least one driver. A transistor supplies two drivers,

one for the drain and one for the source.

Step 1: Initialize all nodes to BB.

Step 2: Evaluate all stimuli drivers and post future transactions.

Step 3: If no transactions are due, halt simulation.

Step 4: Compare transactions due at current time to values on appropriate

nodes. If different, change the node value to the new transaction value. Else,

discard the transaction.
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Step 5: Reevaluate drivers changed by node changes in step 3.

Step 6: Resolve future values on nodes modified by drivers in step 5.

Step 7: Post new transactions from resolution in step 6 and return to

step 3.

Node Resolution Example. Consider the simple circuit in Figure 21.

Assume the logical values for all nodes in Table 7 at time T and the list of drivers

in Table 8.

S3
S2 N42

I N3 54

N7 .

S6

Figure 21. Example of Node Resolution
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Table 7. Values for Circuit in Figure 20 at times T to T + 4.

Value and Time
Node

T T+I T+2 T+3 T+4

N1 BB BB D1 D1 D1
N2 BB DO DO DO DO
N3 BB BB BB CX CX
N4 BB DO DO DO DO
N5 BB BB BB BB CX
N6 BB DO DO DO DO
N7 BB BB BB BB CX

Table 8. Table of Drivers.

Node Dri-.'er Node Driver

N1 S1.N1 N4 S3.N4
N1 T1.N1 N5 S4.N5
N2 S2.N2 N5 T2.N5
N3 T1.N3 N6 S5.N6
N3 T2.N3 N7 S6.N7
N3 T3.N3 N7 T3.N7

Si, S2, S3, S4, S5, and S6 are all external stimuli drivers. Assume DO is

assigned to nodes N2 and N6 via the drivers S2.N2 and S3.N4 respectively. No

change will occur to any other nodes since they are electrically isolated from the

circuit. The value on node N4 then changes to DO. Again, no further changes will

occur. Table 7 reflects the values at T + I.

During the T + 2 iteration, N1 is set to a new value of D1 from driver SI.

From the truth table for an n-type MOS transistor the output value on transistor T1
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should be a CX with a weighted capacitance of 0.0 pF. The value on N3 with

respect to transistor T1 may be designated as T1.N3 as may the value on N3 with

respect to T2 may be designated T2.N3 and finally T3.N3. The final value on N3

may be resolved from the following equation as

N3 = T1.N3 V T2.N3 V T3.N3 (1)

N3 = CX V BB V BB (2)

The future value to be assigned to N3 at T + 3 is then CX. Table 7 lists the values

for all nodes at T + 2.

At T + 3, N3 is assigned the new value of CX. At this point new future

values for the connected nodes must be determined. From the truth table for

n-type MOS transistors the new possible future value for N1 is CX. This value

will be stored in a driver called TI.N1 resulting from N3. N1 is the home node for

the following evaluation.

N1 = S1.N1 V TI.NI (3)

From equation 3, the future value of N1 should remain DI. For the

evaluation on node N5, the value for the driver, T2.N5, is evaluated from the truth

table for p-type MOS transistors. The result is CX for T2.N5. The driver, S4.N5,

has a value of BB. The resolved future value for N5 then becomes CX. For node

N7, the driver T3.N7 obtains a new value of CX. The driver S6.N7 is BB. The

resulting future value for N7 is then CX. Table 7 contains the node values at T +

3.

At T + 4, the resolved value for N1 does not cause a change and is

discarded. The new values for N5 and N7 are assigned. Reevaluation of the
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drivers T2.N3 and T3.N3 is performed with a new future value of CX on each.

The three drivers T1.N3, T2.N3, and T3.N3 are then resolved to obtain a new

future value assignment for N3 of CX at T + 5. Table 7 is a list of the node values

at T + 4.

At T + 5, N3 does not change and no further evaluations of driver values is

performed. The simulation would terminate at this point provided no further

stimuli were provided on S1, S2, S3, S4, S5, or S6.

Software Implementation

This section outlines the implementation of the logic extraction process

shown in Figure 6. The order of the discussion follows the order of tool execution

shown in Figure 6 in order to maintain continuity in the discussion. Therefore, the

tools upper, sim2pro, trans, and pro2vhdl will be elaborated in that order. The

pro2vhdl tool will be described in the most detail since generation of simulatable

VHDL is considered the most original portion of STOVEP.

Labeling. In addition to case sensitivity, other labeling problems were

recognized. In some designs, the apostrophe is used to distinguish the inverse of a

signal as part of a designer's labeling convention. Some designers use hyphens as

well as the pound sign and most any spurious character available. VHDL's

character set for labeling conventions (IEEE, 1987: A-5 to A-6) is limited strictly

to

identifier ::= letter {[ underline I letter-or digit }
letter-or digit ::- letter I digit
letter ::= uppercaseletter I lowercaseletter

Within some VLSI designs it is common to also find digits as the first

character of the label. Though these problems exist in the labeling conventions
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used throughout the designs in the AFT CAD Environment, the implementation of

upper only attacked the major problem of upper and lower case letter

normalization. So that mextra could provide the proper numbering suffix for

different nodes with similar labels, the upper routine was designed to operate on

the cif file prior to the use of mextra.

Sim2pro. The sim2pro routine performed the conversion of the transistor

netlist format from a sim file into Prolog clause form. Figure 8 demonstrates the

field by field conversion involved. The language chosen to perform this task was

C. The choice of C was due to the relative simplicity of the problem and the

efficiency of using C in a Unix environment. As such, this routine was more

suited to execution on one of the systems normally used for layout of VLSI

designs. Appendix C is a listing of sim2pro. If necessary, sim2pro may be

modified to accommodate translation from another transistor netlist

representation.

Trans. Once the sim file was converted to Prolog clause form the trans

routine could be executed to perform the extraction of components. This routine

marked the point where a faster CPU was called upon, because of the CPU and

memory intensive nature of the Prolog solution. A VAX 8800, running VMS, was

the host system. Quintus Prolog was employed in the extraction process. An

earlier developmental version of STOVEP was run on a VAX 11/785 running

Unix and CProlog.

The Prolog code produced for the extraction portion of STOVEP is largely

a template-based system as discussed earlier. The order of execution of the

templates is crucial, since some groups of components contain some transistor
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configurations similar to those in smaller designs. A high impedance inverter is

one example of a component that also appears as an inverter followed by a

transmission gate. Even though a high impedance inverter and an inverter

transmission gate combination are similar, the node between the inverter and

transmission gate is typically part of a feedback loop in a D flip-flop. Extracting

high impedance inverters first eliminates the node typically used for the feedback

loop in a D flip-flop.

Several heuristics are incorporated into the execution of the Prolog code to

help improve execution efficiency. Initially, the Prolog clause form of a transistor

netlist was read in completely before eliminating duplicates. Duplicate transistors

were distinguished by two or more transistors of the same type having a common

gate, drain, and source. The connectivity between the drain and source could be

either drain-to-drain and source-to-source or drain-to-source and

source-to-drain. The subsequent elimination of duplicates required a large

amount of stack space and procedure calls, further requiring additional CPU time

and page faults. The input routine for reading the Prolog clause form of the

transistor netlist was therefore changed to query the database for the existence of a

duplicate transistor before adding it to the data base. This procedure now uses

very little stack space and makes fewer procedure calls.

A second an'd highly significant heuristic employed in the extraction process

involved forcing failure on an extraction when failure was imminent. Since a

search for any Prolog routine is largely depth first, a great deal of CPU time and

memory can be spent attempting to resolve every possible combination, whether it

is successful or not. Therefore, critical subcomponents of larger components are

identified as signatures for the larger components. An example of a signature for
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a register cell is a D flip-flop. Another example of a signature for a large

multiple-bit adder macrocell is a full adder.

Once a signature subcomponent is identified for a larger component, the

signature component is the first component to be examined in the components

database. Figure 22 is an example of a Prolog Horn clause for identifying a

particular register cell. The D flip-flops are identified by the dff prefix. The

fields within dff specify clock bar, clock, input, and output. For the buffers, buffer

identifies the component, with fields for input and output respectively. For the

2-to-1 multiplexers, mux identifies the component followed by fields for the

select, select bar, input 1, input 2, and the output. For the inverter, inv identifies

the component, followed by the input and output fields respectively. The

information conveyed by the Prolog Horn clause specifies the existence of a D

flip-flop first. It one does not exist, then failure will occur, eliminating any further

queries on the component database. If one does exist, it must have its output

connected to the input of another D flip-flop as asserted by the second dff

component. Once again, if this condition does not occur, then failure of the

routine will occur. An assumption can be made at this point that the likelihood of

failure is slim if both D flip-flops exist and if the VLSI layout design consists

mostly of register cells of the type specified. That being the case, the buffer,

multiplexer, and inverter should follow very quickly since information from the

instantiations of the D flip-flops may be used to assist in their lookup.
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in_2reg_cell
dff(NLDPQ I barNLD_PQININN27,1).
dff(Nphi2bar,NPQ2,N27,N23, 1),

buffer(N23,NOUT, 1),
mux(N1,Nsbar,N72,NA,NIN, 3),
inv(NlNsbar, 1),
retract(dff(Nphi2bar,NPQ2,N27,N23, 1)),
retract(dff (NLDPQ 1_bar,NLD_PQ1,NIN,N27, 1)),
retract(buffer(N23,NOUT, 1)),
retract(mux(NINsbar,N72,NA,NIN,3)),

retract(inv(N1.Nsbar, 1)),
asserta (in_2regcell(N 1, N72,NA, NPQ2, Nphi2bar,

NLDPQ1,NLDPQ1_bar,NOUT, 1)),
fail.

in_2regcell.

Figure 22. Prolog Definition for a Register Cell.

Once all of the components specified have been found, they are then

removed from the database and a register cell called in_2regcell is inserted. The

last statement, fail, of the Prolog Horn clause is used to force the Prolog Horn

clause to backup and extract more components until all possible solutions have

been attempted. One further heuristic that may be applied in this case is to first

check for signature components that rarely occur in the components database. In

this manner, the number of initial database queries is limited by the

rarely-occurring components.

Pro2vhdl. The pro2vhdl routine was written in Prolog. The reason for the

choice of Prolog was for the ease of expression of the software solution. Figure 23
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is the main procedure that controls the execution of the Prolog code. The main

procedure is written as a Horn clause. 'gol' reads in the SIF of the file. The 'tell'

procedure is defined in Clocksin and Mellish for specification of the output file.

'passi' generates the design entities and architectures for the design components

that will be used within the test bench. 'pass1' also generates the test bench entity,

architecture statement, component specification, test bench control process, and

signal declaration statements.

go
gol,

tell('outfile.vhd'),

pass 1,
pass2,
told,
halt.

Figure 23. Main Procedure for Pro2vhdl.

Figure 24 shows the basic composition of the 'passi' and 'pass2'

procedures. 'passi' and 'pass2' are also Horn clauses. Within 'passi',

'gen basic comp' generates the design entities; 'gen header_1' produces the entity

and architecture statement for the test bench; 'gen-sig' creates the signal

assignment statements; 'genheader_2a' constructs the component specifications

for those design entities referenced in the testbench; and 'gen header_3' generates

the process statement to control the simulation. 'pass2' uses 'genbody' to create
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the componentinstantiation statement (IEEE 1987: A-5). 'gen tail' produces any

further VHDL statements necessary to complete the architecture of the test bench.

passl
gen-basic.comp,
gen header_1,

gensig,
gen header_2a,
gen header_3.

pass2 :-
gen body,
gen tail.

Figure 24. 'passl' and 'pass2' Procedures for Pro2vhdl.

Specifying the generation of VHDL code was performed in a

straightforward manner. Figure 25 is an example of a Prolog Horn clause that

produces a complete design entity description for a transmission gate. For every

design entity that references the transmission gate, a test for the existence of an

adder, xnor, xor, as well as the transmission gate is performed prior to the output

of the design entity. If none of these components exist in the Prolog database, then

the design entity will not be produced in the output file. An example of a Prolog

Horn clause used in the production of a configuration specification for a high

impedance inverter is shown in Figure 26. The configuration specification must

exist in the architecture declarative section of the test design entity in order for

instantiations of high impedance inverters in the architecture body to analyze

correctly.
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genjgate

(adder(_.,- ,,,, ,3);xnor(,,,,, 3);

write ('use work. mosjlogicpackage .afl;') ,nl,

write('entity tgate is'),nl,
write( port (signal p1 in mos_node;'),nl,

write( signal p2 in mos-node;'),nl,

write( signal g inout mos_node;'),nI,
write( signal d inout rnos-node);'),nl,

write('end tgate;'),nl,

write ('architecture tgate of tgate is'),nl,
write(' component ptrans'),nl,
write( port (Gate :in mosj'iode;'),nl,

write( Drain :inout mos node;') ,nl,
write( Source :inout nios -node);') ,nl,

write( end component;'), nI,

write( for all :ptrans'),nl,
write( use entity work.ptrans ( ptrans );'),nI,
write( component ntrans'),nl,
write' port (Gate :in mos-node;'),nl.

write( Drain :inout mos-node;'),nl,
write( Source :inout nios-node);'),nl,

write( end component;'), nl,
write( for all :ntrans'),nl,

write( use entity work.ntrans ( ntrans );'),nl.
write' begin'),nl,
write( PTRANS1:PTRANS port map( Gate =>Pl,'),nl,

write( Drain =>g,'),nI,
write( Source =>d);'),nl,
write(C NTRANS1:NTRANS port map( Gate =>P2,'),nl,

write( Drain =>g,'),nl,
write( Source =>d);'),nl,

write('end tgate;'),nl.
genitgate.

Figure 25. A VHDL Design Entity for a Tgate in Pro2vhdl.
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gen-headclk inv
clk inv( ........ 1),

write( component clk_inv'),nl,
write(' port ( vdd inout rnos-node;'),n],
write(' gnd inout mosjnode;'),nl,

write(' p1 in mosnode;'),nl,

write(' p2 in mos-node;'),ni,

write(' g in mos node;'),nl,

write(' d inout mosnode);'),nl,
write(' end component;'),nl,
write(' for all : clk inv use entity work.clk inv (clk_inv);'),nl.

gen-head clk inv.

Figure 26. A VHDL Component Specification in Pro2vhdl.

Signal statement generation in pro2vhdl is handled through the 'gen-sig'

clause. Figure 27 shows a portion of the 'gen-sig' clause, as well as the

'add-signal', 'gensig_adder', and 'gen-sigstate' clauses. The operation of these

clauses involves building a database of signals and generating the signal

assignment statements for these signals. The database of signal names was

developed so that duplicate signal names from components could be eliminated,

since a signal name may not be declared multiple times in VHDL.
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gen-sig
I ,add-signal(vdd),

add-signal(gnd),
gen-sigjinv,
gen-sigptrans,
gen-sig__adder,
gen-sigstate.

add signal(A)

signal(A), ..

add signal(A)

asserta(signal(A)).

gen-sigadder :
retract(adder(A,B,C,D,E,3)),

add-signal(A),
add-signal(B),
add-Signal(C),

add..signal(D),
add-signal(E),
gen-sigadder,
asserta(adder(A,B,C,D,E,3)).
gen-Sig._adder.

gen-sigstate :-

retract (signal (X)),

write (' signal')
write (X), write(' :mos__node;') ,nl,

gen-sigstate.

gen-sigstate.

Figure 27. Signal Assignment Generation in Pro2vhdl.
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In order for the VHDL simulation model to function within the confines

of the test bench from the SIMULATOR STANDARD package, a process

statement is generated that will start the simulation, initialize VDD and GND to a

D1 and DO respectively, and set a termination time for the simulator. Additional

information may be placed in the process statement pertaining to test vectors and

other initialization information that may be pertinent to the simulator of a

particular model. Figure 28 is a Prolog Horn clause used for generation of the

process statement.

genheader_3

write ('begin'), nl,
write ('process'), nl,

write(' variable highvolt mosnode_record;'),nl,
write(' variable low-volt mosnode record;'),nl,
write(' begin'),nl,
write(' set_rnaximums(10000, 100) ;'),nl,

write(' tracingpn;') ,nl,
write(' high volt.L.S "D";'),nl,
write(' high volt.L.V :="";'),nl,
write(' lowvolt.L.S : D";'),nl,
write(' lowvolt.L.V "0";'),nl,

write(C vdd <= highvolt;'),nl.
write(' gnd <- lowvolt;'),nl,
write(' ait;'),nl,
write(' end process;'),nl.

Figure 28. Process Statement Generation in Pro2vhdl.

Once the process statement for initializing the simulation model has

been generated, the instantiations of the components are generated within the body
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of the architecture. The 'gen body' Prolog Horn clause performs two functions.

The first function is to provide a numbering scheme that will differentiate each

instantiation of a component from others of the same type. As each instantiation

is produced, the number corresponding to its order of occurrence is appended to

the instantiated component's name. The second purpose of the 'gen sig' Prolog

Horn clause is to insure the instantiation of the different types of component within

the architecture body. A description of 'gen body', 'adder__port', and 'gentail'

are included in Figure 29. The 'adder-port' Prolog Horn clause also demonstrates

how the signals within the Prolog component are matched to the correct position

within the port map for the adder.
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-body
X is 0,

ptransport(X),
ntrans_port(X),

adder_ port(X),

in 2reg cell_port(X).

adder.port(Y)

Xis Y + 1,
retract(adder(A,B,C,D,E,3)),

write (' adder'),write(X),

write(':adder port map ( vdd => vdd,'),nl,

write(' gnd => gnd,'),nl,

write(' nA =>'),write(A),write(','),nl,
write(' nB =>'),write (B), write ,'),nl,

write(' ncin =>'),write (C),write (','),nl,
write(' nsum =>'),write (D),write(','), nl,
write(' ncyout =>'),write (E), write(') ;')n 1,

adderjport(X).

adder_port(_).

gentail :-

write('end testor;'),nl.

Figure 29. Generation of the Remaining Architecture Body in Pro2vhdl.

Verification and Validation

Even though generation of a production quality software CAD tool was not

a goal of this research, some form of verification and validation of the software

was necessary in order to maintain the integrity of the proof of concept.

Therefore, it was necessary to test the extraction methodology and the ten-level

multiple-valued logic system for its validity. The subsequent discussion will first
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center on the correctness of the extraction methodology. The cases used to test the

ten-level multiple valued logic system will then follow.

For the sake of arguing logic extraction, consider the construction of a

transmission gate. A transmission gate consists of a p-type transistor and an

n-type transistor that share a common drain and source. A predicate calculus

method for representing this relationship may then consist of:

P(x,y,z) : p-type transistor with gate x, drain y, and source, z.

N(x,y,z) : n-type transistor with gate x, drain y, and source, z.

Tgate(w,x,y,z) : transmission gate with w on the p-type transistor gate, x on
the n-type transistor gate, y as an input/output and z as an
input/output.

In English

IF a p-type transistor has a gate, a, drain b, and source, c, AND an n-type
transistor has a gate, d, drain b, and source, c, THEN the
configuration is a transmission gate with a on the p-type transistor
gate, d on the n-type transistor gate, b as an input/output, and c as
an input/output.

Applying predicate calculus

[ P(a,b,c) A N(d,b,c) I => Tgate(a,d,b,c)

where the A denotes logical conjunction and => denotes logical implication. Of

course, the source and drain are interchangeable and further clauses could be

constructed to support this assertion for the p-type and n-type transistors.

Let :- be logical implication in the opposite direction and modify the

representations to conform to the labeling conventions of Prolog, then
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tgate(A,B,C,D)
ptrans(A,C,D),
ntrans(B,C,D).

and

ptrans(A,B,C)
p(A,B,C).

ptrans(A,B,C)
p(A,C,B).

ntrans(A,B,C)
n(A,B,C).

ntrans(A,B,C)
n(A,C,B).

The Prolog horn clauses for ptrans and ntrans specify the interchangeability of the

drain and source. The assertion for tgate is then true for any transistor netlist of a

CMOS design.

Given that Prolog templates may be constructed in the same fashion as

described above, then only designs with components described with these

templates will be extracted to a level higher than the transistor level. In order to

test the validity of the templates generated in Prolog, several designs were chosen

from the AFIT CAD Environment for extraction. The three designs chosen were a

clock generator, 31-bit register macrocell, and a 31-bit carry select adder of 116,

806, and 2288 transistors respectively. Three weeks were spent analyzing the

design components and extracted output for correspondence. Furthermore, this

time was also spent analyzing the VHDL output from the extraction process.

In order to analyze the VHDL simulation results of the ten-level

multiple-valued logic system, the clock generator and various cells of the register

macrocell and 31-bit carry-select adder were simulated extensively using
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behavioral descriptions and esim output (esim output could be produced for

designs without feedback). Essentially, design units previously laid out and

simulated through another tool, as well as knowledge of the behaviors of these

units, were used to validate the results from using the ten-level multiple-valued

logic.

One caveat that should be mentioned concerns the status of VHDL

1076-1987. At the time of publication of this thesis, Intermetrics had released

their Version 1.0 of VHDL 1076-1987. Reliability problems still persisted in the

simulator concerning the use of composite types and bus resolution functions on

signals. The VHDL functions, design entities, and test bench were originally tested

in VHDL V7.2 using the Intermetrics Version 3.4 VHDL V7.2 environment. All of

the functions, design entities, and test bench were translated to VHDL 1076-1987

and have thus far been used by the Air Force Wright Aeronautical Laboratory to

identify bugs in the Intermetrics VHDL environment. Specifically, problems with

composite types, bus resolution functions, signal labels, and packages are areas

still under software debugging in the new VHDL 1076-1987 tool environment.
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VI. RESULTS

Introduction

Several VLSI designs were used to determine the rate of success and

performance for logic extraction and VHDL generation. Successive test cases

involved VLSI design of increasing size. The reason for performing the test in this

manner was to help limit the size of the problem space. This process localized

possible errors and provided an examination of the efficiency of the logic

extraction for increasingly larger VLSI designs.

At the time of publication of this thesis, VHDL 1076-1987, Intermetrics

Version 1.0, did not fully support composite types and bus resolution functions

reliably. Since most every signal type used the ten-level multiple-valued logic,

every signal was a composite type. Furthermore, every signal had to be resolved

through a bus resolution function. Due to the problems with the current VHDL

1076-1987 simulator, the VHDL V7.2 simulator from Intermetrics was used for

validation.

Clock Generator

The first circuit tested was the clock generator. The clock generator

consisted entirely of inverters, NOR gates, and a NAND gate. All components

were implemented using static CMOS design. Therefore, no additional transistors

remained after logic extraction. This example demonstrated that the transistor

level simulation and gate level simulation of the clock generator in VHDL were

similar in behavior. The inverters, NOR gates, and NAND gate were extracted

correctly, and the behavioral descriptions of the inverter, NOR gate, and NAND
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gate were written correctly in VHDL. The clock generator simulated in VHDL but

not in esim. This is an example of a VLSI design that will not simulate in a

switch-level simulator due to the feedback loop in the ring oscillator.

Figure 30 is a circuit diagram of the clock generator represented at the gate

level. The original transistor file for the clock generator contained 116 transistors.

Figure 31 is the resulting component listing from the logic extraction process. The

VHDL produced for the clock generator is shown in Appendix E. For the

component listing of Figure 31, the inv(nA,nB,1) describes a static CMOS inverter

with input nA and output nB. For the nor and nand gates, the input signals are

listed within the brackets and the output appears by itself. Therefore,

nor([nA,nB,nC],nD,1) would describe a static CMOS nor gate with nA, nB, and nC

as inputs with nD as an output. Notice that the component listing corresponds with

the circuit diagram of the clock generator. The resulting component listing of

Figure 31 implies that only 42 transistors are required to fully describe the clock

generator. Duplicate transistors were eliminated prior to generating the component

output. Multiple transistors in parallel are commonly used to drive output

circuitry. Logic extraction took 10 seconds of CPU time on a VAX 8800.

Production of VHDL took 16 CPU seconds on the same machine.

77



14149 n443 n177 1444 n450

n424 n43n329

n450 0

n584 n533 n128 nOZ..pq I

n277 n233 n53 nOZjpq2

Figure 30. Circuit Diagram of the Clock Generator.
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inv(n4 44,M45 0, 1).
inv(n443,n177, 1).
inv(n177,n444,1).
inv(nIZ~go,n498, 1).
inv(n450,n424,1).
inv(Mn4,n453, 1).

inv(n584,n533, 1).
inv(n277,n233, 1).
inv(n44,n443, 1).
inv(n533,n128, 1).
inv(n447,n584, 1).
inv(n233,n53, 1).
inv(n329,n277, 1).
inv(n53,nOZjpq2, 1).
inv(nl28,nOZjpq 1, 1).
nor([n447,n453] ,n329, 1).

nor([n329,n424] ,n447, 1).
nand(1498,n450] ,n49, 1).

Figure 31. Component Listing of the Clock Generator.

Register Macrocell

The register macrocell consists of D flip-flops, inverters, and multiplexers.

These components were generated using static CMOS and transmission-gate logic.

The D flip-flop is an example of a hierarchically generated component. The D

flip-flop was generated from a transmission gate, high impedance inverter, and an

inverter. As with the clock generator, no transistors remained after logic

extraction. This example demonstrated that inverters, high impedance inverters, D
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flip-flops, and transmission gates were extracted correctly. The hierarchical

extraction method worked correctly, and the behavioral descriptions of the inverter

and D flip-flop were correctly written in VHDL. Like the clock generator, this

design did not simulate in a switch-level simulator due to feedback in the D

flip-flop.

Appendix B contains the resultant Prolog output for the 31-bit register

macrocell that was extracted. A basic register cell for the 31-bit register is

displayed in Figure 32. The labeling shown is also from the Prolog output in

Appendix B. Figure 33 is a synopsis of the Prolog output that represents the

register cell in Figure 32. Each cell has three inputs and one output. The gnd and

GO signal are common to each register cell. The IZY30 signal is one bit of 31 bus

lines that carry a 31-bit number. Depending on GO being high or low, either

IZY30 or gnd will be loaded. There are also signals for phase 1 and phase 2 (PQ1

and PQ2, respectively) on the two D flip-flops (dff) for clocking the inputs and

outputs. The two D flip-flops load on the inverse of the clock signal. The labels

IN30, 1903 and 573 are internal labels that describe how the transmission gates, D

flip-flops, and the buffer are interconnected.

There are 806 transistors in the original register macrocell. The final Prolog

output listed in Appendix B contains 186 components. The extraction process took

54 seconds on a VAX 8800. VHDL generation took 22 seconds.
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nLDPQ 1_bar df nLDPQ1

nPQ2bar nQ
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Figure 32. Basic Register Cell.
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inv(nGO,nsbar3O,1).
tgate(nsbar30,nGO,gnd,nIN30, 1).

tgate(nGO,nsbar30,nIN30,nIZY30, 1).
dff (nLDPQ lbar, nLDPQ 1,nIN30,n 1903, 1).
dff(nPQ2bar, nPQ2,n1903,n573, 1).
buffer(n573,nOZ30, 1).

Figure 33. Prolog Code for Register Cell.

31-Bit Carry Select Adder

The extraction of the 31-Bit Adder was accomplished in several passes.

Figure 34 displays the work performed in each pass. In pass 1, the inverters,

tgates, xor gates, and xnor gates were identified within the basic full adder cell.

This pass exhausted the available knowledge within the extraction routine. A

template of the full adder cell was generated from the Prolog information

extracted. Figure 35 is the template of the full adder cell.

pass 1 ass 2 iass 3 7 inverters

inv 38-0- 3 adderstgates [m e add
radders] rsel3 adder

Iorxnor 1 7 seladders

Figure 34. Extraction Procedure for 31-Bit Carry Select Adder.

82



adder
xor(NA,NAbar,NB,NBbarO,Nxor,3),

xnor(NA, NAbar, NBbarO, NB, Nxnor, 3),
tgate(Nxor,Nxnor,NsumbarNcinbar),
tgate (Nxnor, Nxor, Ncin, Nsumnbar),

tgate(Nxor,Nxnor,Ncybar,NBbarl),
tgate (Nxnor, Nxor, Ncinbar, Ncybar),
inv(Ncin,Ncinbar, 1),
inv(NB,NBbarO. 1),
inv(Nsumnbar,Nsun, 1),
inv(Ncybar,Ncyout, 1),
inv(NA,NAbar, 1),

inv(NB,NBbarl, 1),
retract(xor(NA,NAbar, NB, NBbarO, Nxor, 3)),

retract (xnor(NA, NAbar,NBbarO, NB, Nxnor, 3)),
remove jgate (Nxor,Nxnor,Nsumbar,Ncinbar),

removejtgate(Nxnor,Nxor,Ncin,Nsumbar),
removejtgate (Nxor, Nxnor, Ncybar, NBbar 1),

removetgate (Nxnor, Nxor, Ncinbar, Ncyba r),
retract (inv(Ncin, Nc inbar, 1)),
retract(inv(NB,NBbarO, 1)),
retract (inv(Nsumba r, Nsum, 1)),

retract(inv(Nsumbar,Nsum, 1)),
retract (inv (Ncybar, Ncyout, 1)),
retract(inv(NA,NAbar, 1)),
retract(inv(NB, NB bar 1, 1)),

asse rta (adder (NA, NB, Ncin, Nsun, Nc youth, 3)),
(retract (inv (Nsumnba r,Nsumn, 1))

retract (inv(Nc yba r,Ncyout, 1))),
fail.

adder.

Figure 35. Full Adder Template.

83



All of the labels were converted to variables by replacing the preceding "n"

to "N". The template for the full adder cell was then appended onto the extraction

procedure; and the next level cell, select adder, was extracted during pass 2.

Figure 36 shows a block representation of how the select adder was constructed.

The connectivity was verified for the select adder. The new template for the select

adder was then appended onto the extraction routine.

4 adders:

Selection

Circuitry

4 adders:

IDrivers

Figure 36. Select Adder Layout.

For pass 3, the entire 31-bit carry select adder cell was extracted using

previously acquired knowledge extracted from lower level components. The
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resulting Prolog representation for the circuit is displayed in Figure 37. Figure 38

is a block diagram for the layout of the 31-bit carry select adder. The macrocell

contains 2288 transistors. The total extraction process required 4 minutes, 33

seconds of CPU time on a VAX 8800. Producing VHDL from Prolog took 23

seconds.
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inv(n2676,nIZ-cinbar6, 1).
inv(nOZ-sumI,n19 1, 1).
inv(nOZ-sumO,n192. 1).
inv(nOZ -sum2, n19 0, 1).
inv(n190,nOZ-fsum2, 1).
inv(nl9 l,nOZ-fsuml, 1).
iniv(n192,nOZ-fsumO, 1).
adder (nIZ-fa 2. nIZ_fb2, n2 967, nOZ-sum2, n2 67 6,3).
adder(nIZ_fa l,nlZ_fbl,n2888,nOZ-suml,n2967,3).
adder(nIZ_faO,nIZ_fbO,nIZ fcin,nOZ-sumO,n2888, 3).
seladder(nIZfa6,nZ_fa5,nZ_fa4,nIZ_fa3,nIZ fb6,nIZ_fb5,nIZ-fb4,

nIZ-fb3,nlZ-cinbar6,nOZ-fsum6,nOZ-fsum5,nOZ_fsum4,nOZ_
fsum3,nIZ-cinbar2,3).

seladder(nIZ-falO0,nIZ_fa9,nIZ-fa8,nIZ_fa7.nIZ_fblO,nIZ_fb9,nIZ_fb
8,nlZ-fb7,nlZ-cinbar2,nOZ-fsumlO,nOZ-fsum9,nOZ-fsum8,n
OZ-fsum7,nIZ-cinbar5,3).

seladder(nIZ-fal4,nIZ-fa 13,nIZ_fal2,nIZ_fal l,nIZ_fb4,nIZ_fb13,n
Z-fbl12, nlZ-fbt1, nZ-cibar5, nOZ-fsum 14, nOZ-fsuml13, nOZ-
fsuml2,nOZ_fsumI LlnIZ-cin-barl,3).

seladder(nlZ_fa18,nIZ_fa 17,nIZ_fal16,nIZ-fa 15,nIZ_fbl8,nIZ-fbl7,nl
Z-fbl6,nIZ-fbl5,nlZ-cinbarl,nOZ-fsuml8,nOZ-fsuml7,nOZ-
fsuml6,nOZ-fsuml5,nZ-cinbar4,3).

seladder(nIZ-fa22,nIZ_fa2 l,rIlZ-fa2O,nIZ-fal9,nIZ_fb22,nIZ-fb2l1,nI

Z-fb2,nIZ-fbl9,nIZ-cin-bar4,nOZ_fsumi22,nOZ-fsum2 l nOZ_
fsum2O,nOZ-fsuml19,nlZ-cin-barO,3).

seladder(nIZ_fa?6,nIZ_fa25,nIZ_fa24,nIZ-fa23,nIZ-fb26, nlZ_fb25,n
Z-fb24,nIZ-fb23,nIZ-cinbarO,nOZ-fsum26,nOZ-fsum25,nOZ_
fsum24,nOZ-fsum23, nIZ-cinbar3,3).

seladder(nlZ_fa3O,nlZ_fa29,nlZ_fa28,nIZ-fa27,nlZ_fb3O,nlZ-fb29,nI
Z-fb28,nIZ-fb27,nZ-cinbar3,nOZ-fsum3O,nOZfsum29,nOZ_
fsum28,nOZ-fsum27,nOZ-cout_barO,3).

Figure 37. Prolog Representation for 31-Bit Carry Select Adder.
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4 adders 4 adders 3 adders

Selection Selection
0 * 0

Circuitry Circuitry

4 adders 4 adders

Dr er FTD rJ ers I rive+

Figure 38. Block Diagram of the 31-Bit Carry Select Adder.

Multiplier Chip

The multiplier chip consists of a wide range of components, including many

of those outlined in the previous designs. These components were largely

generated using static CMOS, transistor, and transmission-gate logic. This

example demonstrates the feasibility of the extraction process in a parallel

environment and the functionality of the models for the p and n transistors with
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behavioral descriptions of extracted components. A thorough description of this

chip was included in (Gallagher 1987).

The multiplier chip is a VLSI circuit consisting of 24,097 transistors. It was

developed at AFIT in the AFIT CAD environment and was fabricated at MOSIS.

The CIF file that was transmitted for fabrication was also used for the logic

extraction portion of this project, to examine the utility of a Prolog extraction tool

on VHSIC class components. Once the file was translated to sim format, the

sim2pro routine was run on the multiplier chip sim file to generate the Prolog

representation of the file. Upon first attempting to load the Prolog representation

of the chip into Prolog on the SSC (A VAX system running Berkeley Unix at

AFIT), an error of "Cannot recover from this error -- Bye!" was encountered.

The file was then decomposed into 5 files of 5,000 transistors each. Table 9

lists the CPU time required to process the files when 5,000 transistors were

processed at a time and when the 5,000 transistor files were decomposed further

into 1,000 transistor files and processed. The only components extracted on the

first pass were inverters, transmission gates, clocked inverters, and D flip-flops.
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Table 9. CPU Time to Process Multiplier Chip.

Multl Mult2 Mult3 Mult4 Mult5

Transistors 5000 5000 5000 5000 4097
CPU time 177 min 97 min 107 min 101 min 92 min
per 5000

CPU time 27 min 19 min 21 min 22 mon 24 min
per 1000

Leftover 1880 295 699 483 638
Transistors

Components 1000 2298 2065 2181 1565
Generated

From Table 9, several points become apparent. The smaller the file

operated upon, the less CPU time required for extraction. Furthermore, the

process of extraction can be easily performed in a parallel environment with little

or no interprocess communication. The only process intercommunication that may

be performed involves merging left over transistor files for further extraction of

components.

Transistors that constitute higher level components tend to be located within

close proximity of each other. The tools for generating the switch-level

representation of the layout design do so in a horizontal-first pattern. Within a

given number of contiguous lines of a switch-level representation, there is a fairly

high probability of interconnection between transistors. Therefore, dividing a large

chip file into smaller transistor files will not severely affect the relative success of

component extraction.
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Only 83 percent of the multiplier chip was extracted on the first pass. This

low success rate prompted a closer examination of the multiplier chip. Separate

extractions were performed on the cell libraries that formed the multiplier chip.

There were several nonstandard cell designs implemented on the multiplier chip.

The nonstandard designs were a result of modifications to accommodate the esim

simulator. Some of the cells were then extracted into Prolog templates. On a

second pass of the multiplier chip, an extraction success rate of 94 percent

resulted. The current STOVEC program can only obtain an 84 percent success

rate. No modification or addition of templates to STOVE_C can be accomplished

without a considerable programming effort.

Table 10 contains the results from the logic extraction and VHDL

generation for the multiplier chip on a VAX 8800. Figure 39 is a graph of the

values within Table 10. All values were normalized relative to the total extraction

time for the entire multiplier chip description in one file. The "Extraction of

Leftovers" represents the relative time required to reextract all of the leftover

transistors and components from the parallelized extraction process. The

"Extraction per Processor" graph demonstrates the speedup due to breaking the

multiplier chip description file into several subfiles. The domain of the graph may

be considered as the number of virtual processors involved in the extraction

process. The reason the "processors" label was chosen was that the separate files

could have been processed on separate CPUs without any requirement for

interprocess communication. The "Sum of Leftover and Average per Processor"

represents the average time required to process the files plus the leftover time.

This line may be considered as dividing the extraction process among n processors

then collecting the residuals and extracting again. The final graph, "Linear
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Speedup," is the relative speedup of O(n). The graph demonstrates the advantage

of parallelizing the extraction problem.

Table 10. Extraction times for the Multiplier Chip.

Process Average Leftover Average Leftover Total
Nodes per Proc Time Normal Normal Normal

(Seconds) (Seconds)

1 49331 0 1 0 1
2 7923 6073 0.160 0.123 0.444
4 2282 6167 0.046 0.125 0.310
8 582 6295 0.011 0.127 0.222
16 158 7714 0.0032 0.156 0.208
32 51.5 9669 0.00104 0.196 0.229
64 21 12289 0.000425 0.249 0.276
128 12.5 15894 0.000252 0.322 0.355
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Ratio of n Processors to One Processor

1-

* = Extraction of Leftovers

n = Extraction per Processor

x = Sum of Leftover and Aver. per Proc.

o = Linear Speedup

0.5-

1 2 4 8 16 32 64 128

Processors

Figure 39. Graph of Relative Speedup for Increased Processors.
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VII. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Prolog is considered to be a less efficient language than Lisp. Functionally,

anything performed in Prolog may also be accomplished in Lisp. In order to

increase the efficiency of the extraction, a Lisp form of the tool should be

developed using the proven concepts from the Prolog code. As a rapid prototyping

tool, the use of Prolog permitted production of a working extraction system within

less than two weeks. For this and similar problems, Prolog provides an excellent

software tool for quickly identifying requirements and generating a proof of

concept.

The nature of the pattern matching problem adapted quickly to a parallel

solution. No interprocess communication was required, providing for a completely

decoupled processing environment. The original extraction problem in Prolog was

close to 0(n!). Parallelization of the solution then allowed for greater than 0(n)

speedup. This speedup result was only realizable from the high rate of pattern

matching success within each divided portion of the chip design. However, the

rate of speedup success did not continue to increase as the number of processors

increased. This was attributable to a decrease in the rate of matching success as

each portion of the chip design became smaller. At this point no conclusions can

be made as to the relation between the number of transistors per processor versus

speedup and the number of processors versus speedup.

Work with the multiplier chip shows that a "blind" extraction of an

unknown chip is an unreasonable task without intervention from a VLSI design
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engineer; however, if the extraction tool is used during the layout process of a

chip, the layout of the design can be verified directly against the VHDL structural

specification for the chip. Figure 40 portrays how the extraction tool would be

used during the layout process.

Figure 40 shows that the lowest level of layout on a custom VLSI cell would

be used by the extraction tool to identify the low-level components. The design

engineer would verify the components and their interconnectivity based upon

graphical or textual feedback from the extraction tool. The template generated

from the cell would then be used to extract and verify the higher level macrocell

generated. This process would then be performed iteratively until the hardware

description is completed. The result of the extraction process would generate a

VHDL structural description of the layout. The derived VHDL structural

description would be used for testing, verification against the original VHDL

structural specification, and as the actual VHDL structural description of the

hardware. A recommended thesis including this concept will be discussed in the

recommendations section of this chapter.
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Figure 40. Layout Verification Process.
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For the problem of providing a VHDL structural specification for a chip

without an original VHDL description, this tool would be used in an identification

and extraction mode by a design engineer. For those designs with nonstandard

transistor configurations, the ten-level multiple-valued logic system in VHDL

would simulate the leftover transistors. The result would be a VHDL specification

generated for any CIF formatted chip representation.

For multiple-valued logic systems, specification of the values is insufficient

for proper modeling. The algebra for manipulating the logic values is crucial to

the correct execution of the simulation model. Without a definition for a specific

algebra, the same multiple-valued logic system could be used for the same

hardware specification but produce vastly different simulation results.

The designs used in this thesis, except for the multiplier chip, were

extracted and simulated in VHDL V7.2. The designs simulated correctly. The

clock generator was simulated at the component and transistor level with similar

simulation results. Due to numerous bugs that existed in the recently released

Intermetrics VHDL 1076-1987 V1.0, these models would neither model generate

completely nor would they initialize during simulation. These problems were

documented and submitted to Intermetrics as legitimate software problems with the

analyzer, model generator, and simulator. Considering the success in extraction

and simulation in VHDL V7.2, the ten-level multiple-valued logic system and

Prolog-based logic extraction tool have made a significant contribution to the VLSI

design process.
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Recommendations

From the work performed in this thesis, the benefits of applying

knowledge-based systems to the generation of VHDL for VLSI designs have

become apparent. One portion of a formal verification environment has been

identified within the AFIT CAD cycle. Figure 41 demonstrates a hypothetical view

of a directly related thesis effort that should be pursued from this work.

Additional work on an intermediate representation called Symbolic Intermediate

Form would help to identify requirements to incorporate the use of logic

extraction, formal verification, schematic output, analysis of VHDL, testing, and

production of VHDL. The SIF would also be simulatable, thereby allowing for the

automatic generation of test vectors (Clocksin 1987). Additional information

within sim may be used to help establish positional data, timing information, and

capacitive loading. The positional data would be kept throughout an extraction

process so that a graphical interface would position components relative to their

position in the VLSI layout design. Timing and capacitive information could be

extracted from the transistor sizing data and capacitive data in sim in order to

produce more accurate VHDL timing models. Finally, a future implementation of

this system would provide a generic CAD tool that would allow for conversion to

VHDL for any VLSI CAD environment in industry or university.
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Figure 41. Formal Verification Environment.
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A follow-on thesis to develop a generic VHDL extraction tool should be

based, abstractly, on the system shown in Figure 41. Instead of a specific sim2SIF

routine to convert the sim transistor netlist format to Prolog clause form, a generic

tool should be written that would query the design engineer for a field definition of

the transistor netlist format to be used. Through the extraction process shown in

Figure 40, the design engineer would begin to build a library of templates to

describe the basic cells in the standard cell library. Before a template would be

built, SIF2graph would display the component configuration using as many of the

"known" components to exhibit the composition and connectivity of the selected

VLSI cell. Once the design engineer verifies the composition and connectivity, a

new template would be generated and a graphical symbol selected for storage in

the Symbol Library. The design engineer would be provided the option to have a

VHDL description generated for the cell through SIF2VHDL or to enter a VHDL

behavioral description manually. The VHDL for the new component would then

be entered into the Component Library. The design engineer would also have the

option to request that a set of test vectors be generated from the template.

The above description of a follow-on thesis would provide a means for

translating an existing CAD library to VHDL. The tool would be useful to both

industry and universities. Through the use of Prolog, the tool would be readable,

simple, easy to modify, and easy to maintain. Furthermore, the system shown in

Figure 41 would remove many impediments to the acceptance of VHDL

1076-1987 as a standard hardware description language.
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APPENDIX A: Annotated Bibliography for VHDL

The purpose of this appendix is to provide a brief list of some background

material for this thesis and to provide a summary of some VHDL informational

sources. Therefore, this appendix is divided into two parts. The first part

furnishes a list of several helpful sources the reader may wish to review prior to

reading various portions of this thesis. The second part lists summaries of several

important references regarding VHDL.

Background Sources

listed below are the subject areas encompassed within this thesis. Included

with the subject areas are sources that provide worthwhile information.

VHDL 1076-1987:

IEEE Standard VHDL Language Reference Manual, IEEE STD 1076-1987.

Hardware Simulators:

Rubin, Steven M. Computer Aids for VLSI Design. Reading: Addison-Wesley
Publishing Company, 1987.

VLSI Layout:

Weste, Neil and Kamran Eshraghian. Principles of CMOS VLSI Design.
Reading: Addison-Wesley Publishing Company, 1985.

Prolog:

Bratko, Ivan. Prolog Programming for Artificial Intelligence. Wokingham:
Addison-Wesley Publishing Company, 1987.

Clocksin, W.F. and C.S. Mellish. Programming in Prolog. New York:
Springer-Verlag, 1987.
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C Programming Language:

Waite, Mitchell, Stephen Prata, and Donald Martin. C Primer Plus.

Indianapolis: Howard W. Sams and Company, 1987.

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.

New Jersey:Prentice-Hall, Inc., 1978.

Predicate Calculus and Abstract Algebra:

Chang, Chin-Liang and Richard Char-Tung Lee. Symbolic Logic and Mechanical

Theorem Proving. Boston: Academic Press, 1973.

Stanat, Donald F. and David F. McAllister. Discrete Mathematics in Computer

Science. Englewood Cliffs: Prentice-Hall, Inc., 1977.

Annotated Bibliography

The format of this annotated bibliography lists the bibliographic citation

followed by a summary of the reference. The annotated bibliography is listed in

alphabetical order by author.

Aylor, J.H. "VHDL - Feature Description and Analysis," IEEE Design and Test,

3:17-27 (April 1986).

Eight hardware description languages were examined based on specified

criteria. Some worthwhile terms were extracted and noted here. Behavioral

abstraction: definitions of algorithms at a high-level with respect to lower-level

constructions of primitives. This allows for adders, multipliers, etc., to be

described in terms of algorithms instead of low-level logical functions of AND,

OR, NAND, and NOR. Structural hierarchy: allows for construction of high-level

primitives at any level in the design.

The following figure with definitions was worth reconstructing from the

article.
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Design DescriptionI I

I I
Combinational Function Sequential FunctionI

I I
Synchronous Asynchronous

Logic Logic

The following terms were defined in the article:

(1) Combinational Function: dependent solely on the present input values

for its output values (No memory of prior events).

(2) Sequential Function: output dependent upon current input values and

prior events (Memory of prior events).

(3) Synchronous Logic: Clocked.

(4) Asynchronous Logic: changes at one stage affect the next stage without

any external synchronization.

(5) Generic Structures: components that can be defined by user-set

parameters (M N-bit adders may become four 8-bit adders.

The language should supply documentation for all levels and simulation for

the appropriate level. The language should also allow for specification of

synchronous (clock driven or cycle driven) or asynchronous (event driven) logic.

Thus, simulations can become mixed-level and mixed-mode. It appears that the

hardware description language must possess some of the same salient features as

Ada.

102



Additional terms that were described in this article are listed:

(1) Scope-range of hardware design: Digital-systems, Gate-level,

Digital-circuit, Combinational, Synchronous, Asynchronous, and Mixed-mode.

(2) Management of design: Hierarchy, Modularity, Incremental compile,

Arbitrary decompose, Libraries, Data abstraction, User type, Alternate description,

and Reusable designs.

(3) Timing description: Timing at all levels, Specify timing data,

User-defined data, Timing constraints, Propagation delay, Inertial and transport.

(4) Architectural description: Algorithmic, Architectural, Parallelism,

Control and data separate, Descriptive continuum, User assertions, Explicit

instructions, Implicit structure, Generic components, Regular structures, Recursive

structures.

(5) Interface description: Explicit interface, defined at all levels, functional

equivalence, strongly typed interface.

(6) Design environment: environment info.

(7) Language extensibility: User-defined data types, Design tool support,

Multiple technologies, multiple methodologies.

d'Abreu, Michael. "Gate-Level Simulation," IEEE Design and Test, 2: 63-71
(December 1985).

There are four methods for defining delay models, transport, rise/fall,

ambiguity, and inertial. The transport delay does not show an accurate portrayal

of the circuit's timing performance. Rise/fall allows for specification of the rise

and fall times of the output signal. Ambiguity delay model deals with a range of

103

- I I I- I IA



values for a signal change. Inertial delay examines the minimum pulse width

required to propagate a change in a succeeding gate. Multiple values can be used

to express a signal in reference to several states, 0, 1, or high impedance.

There are two basic types of simulators, compiler-driven and table-driven,

event-directed. The compiler type is among the earlier simulators. The simulation

is compiled into directly executable machine language. Compiler-driven

simulators have a disadvantage in that they do not test for race or hazard

conditions. Therefore, these simulators are suited to simulating synchronous logic.

Since most digital circuits are usually 10-15 percent active, there is no real

need to simulate the whole device. Table-driven, event-directed simulators only

are concerned with those circuits that are active.

DeGroat, Major Joseph W., Instructor of Electrical and Computer Engineering.
Video Tape Lecture. "VHDL Design Entities." School of Engineering, Air
Force Institute of Technology, Wright-Patterson AFB OH, 1987.

VHDL Design entities consist of an interface and design entities. The

interface declaration is made by the reserved word "entity," followed by a design

entity name, port declarations, and an end reserve word. The port declaration

consists of the reserved word "type" and a mode. Modes of type "in," "out," and

"inout" may be described as:

in - driven outside and read in the design entity.

out - driven by the entity and read out of the design entity.

inout - bidirectional.

buffer - driven inside the entity and may be read inside or outside the

design entity.
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linkage - may not be driven or read. This is used for cases where signal

flow is not known.

Generic declarations define constants where values are determined by the

environment when a design entity is used. Generic declaration may include a

default expression.

Alias - gives another name for an object.

Constant - defines a constant value.

Type - defines the type of an object.

Assert directive - specifying required operating conditions and

characteristics of the entity.

Initialize directive - specifies initial values of objects.

Body descriptors specify what goes on inside the design entity. The body

may be behavioral or structural. The body is specified by the reserved word

"architecture" followed by the name, "of," and the linkage name to the interface

described by the body. Structural specifications describe the entity in terms of

gate-level specifications. Behavioral specifications describe the entity in terms of

algorithms and assignment statements. No components are instantiated within a

behavioral specification. Use of the 'CHILDLESS attribute will allow checking for

component instantiations within an architectural specification ('CHILDLESS =

TRUE indicates a purely behavioral specification). Mixed-mode is a combination

of both. More than one body may be used to describe an entity. The configuration

body is at the root of the tree in a hierarchical structure of design entities. Within

the configuration body, a block statement followed by component instantiations of
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lower level design entities describe the root design entity. Hierarchical structures

are realized through component instantiations at the root.

Binding indication binds one port to another through instantiations.

Generics may also be used to temporarily delay specification of where an entity

may reside on a board. Behavioral description contains no components and is a

self-contained description. It specifies data flow and timing delays through

assignment statements. Mixed bodies contain component instantiations and

assignment statements.

Dewey, Al and Anthony Gadient. "VHDL Motivation," IEEE Design and Test, 3:
12-16 (April 1986).

As the title suggests, the article provides the reason for the creation of

VHDL. The need for documentation that is detailed, up-to-date, and accurate is

addressed. VHDL should also decrease design time and cost in an area where

off-the-shelf ICs cannot meet the demands of today's systems. Generic design

components within VHDL allow for repeated use of previous design investments,

providing for more efficient management of the design process. VHDL uses the

specification-and-body concept of Ada, thereby providing for the interface

specifications to be represented separately from the associated bodies. This allows

for top-down, as well as bottom-up, management. Industry currently provides

excellent tools within specific areas. Very little interfacing between these tools is

possible without the use of special data conversion software. Thus, the need for an

open-system design architecture. Semicustom and application-specific ICs are

going to become increasingly popular by 1990. VHDL must provide clearly

defined interfaces, provide user documentation, facilitate design second-sourcing,

and protect proprietary design system elements. Design is falling short of the
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fabrication technology. A hardware description language is necessary to shorten

this gap. VHDL allows for examination of the design process from a structural

and behavioral point of view. The structural design is concerned with the

register-transfer level up to microprocessors, memories, etc. Behavior-oriented

design encompasses the boolean expressions, the algorithms, followed by the

system input/output specification. This enables consideration of software and

hardware within the design process.

Gilman, Alfred S. "VHDL - The Designer Environment," IEEE Design and Test, 3:
42-47 (April 1986).

This article states that TI designed a VHDL simulator. There are no

references to any documentation. VHDL support environment consists of six

components. There are five tools, the analyzer, the reverse analyzer, the design

library manager, the simplifier, and the simulator. The final component is the

design library. The Design Library contains the intermediate VHDL attributed

notation (IVAN) representation for design entities. Also contained within the

Design Library are the relationships between the Package Procedure or Function,

Interface, Architectural Body, and Configuration Body. Other information

pertaining to "contexts" is maintained. The Design Library Manager is the

software that supports accessing the design library. The VHDL simulator may be

thought of as a collection of test bench equipment, data stream playback, signal

generator, test bench control data stream playback, clock, bed of nails, logic

analyzer, and data recorder. The simulator consists of simulation model

generator, the kernel, and report generator. The model generator takes design

library information and converts it into an Ada program. The kernel incorporates

the Ada program, workbench tools, and necessary simulation required constructs.
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The analyzer checks for static design errors and translates VHDL text to IVAN.

The reverse analyzer takes IVAN data in the design library and converts it to

VHDL form for any design entity.

Intermetrics, Inc. VHDL User's Manual: Volume I Tutorial. U.S. Air Force
Contract F33615-83-C-1003. Bethesda, Md., 1 August 1985.

Chapters 2, 3, 5, 6, 7 of this manual explain how the constructs of VHDL

are used in simulations. Volume I is divided into Introduction, followed by

modeling of hardware structures, asynchronous & synchronous circuits, and

complex behaviors. The introduction identifies the design entity as a collection of

information specifying a hardware component. The design entity is made up of an

interface description and a collection of body descriptions. Interface descriptions

are described in terms of input and output ports reflecting their logical function to

the outside world. A port declaration has an associated mode and type. Mode

indicates direction of flow. Types include user-defined and predefined. The

keyword, entity, begins an interface descriptor, followed by end.

Interface descriptions can be looked at as "black-box," whereas body

descriptions can be looked at as a "glass-box" or "clear-box" view. The header,

architecture, followed by block specifies a body description. Three figures are

offered examining body descriptions at a gate-level, RTL-level, and

procedural-level. These figures may also be viewed as gate-level, data-flow, and

algorithmic descriptions.

In chapter 2, Modeling Hardware Structures, defining components, defining

unidirectional data paths, defining bidirectional data paths, and interconnecting

components is discussed. The objective is to be able to interconnect components

in modeling hardware structures. The component declaration has a lot in common
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with the interface descriptor, entity. It is used to define ports for subcomponent

interconnections. When a component is declared, the design entity for that

component need not exist within the library until simulation, since binding does

not occur until that time.

Unidirectional signal paths may be thought of as single-source.

Bidirectional signal paths may be thought of as multi-source. Signal paths are

characterized of the same types as ports, but unlike ports, they are not labeled with

a mode to show direction. The means by which single-source and multi-source

are differentiated is by using tristate logic for multi-source. Furthermore, the

signal is labeled as a bus and a bus resolution function is used to determine which

value is output given several different source's input. The component statement

provides generic descriptions of the design entity. Component instantiation occurs

using the component name with the port reserved word.

Chapter 3 on Modeling Asynchronous Circuits discusses several topics,

describing data transforms, simple signal assignment statements, conditional signal

assignment statements, and selected signal assignment statements. This function

becomes necessary when a hardware device that is needed from the library is

undefined and the internal behavior of the device is known. One or more signal

assignment statements make up a data transform. Signal assignment statements

describe a function to be performed over time. Simple signal assignment

statements consist of a target, assignment operator, operands, function to be

performed, and the time it will take to perform the function (S<= A and B after

10ns;). This is worth considering in scheduling events, possibly, for a simulator.

Conditional signal assignment statements allow for a choice of one of several

functions that may be evaluated to produce a result. The simplest conditional
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signal assignment statement with one function is a signal assignment statement.

The selected signal assignment statement is similar to the Ada case statement in

that a control expression is used to select a function to perform a signal

assignment (with exp select... on p. 3-8 of tutorial).

In chapter 4, modeling synchronous circuits is discussed in three sections,

block statements and guards, memoried signal assignment statements,

memoried-conditional signal assignments, and memoried-selected signal

assignments. The goal of this chapter is to allow for specification of a control

signal that will determine when a selected set of inputs can effect a selected set of

outputs.

The block consists of a declarative part and a statement part. A guard

expression is inserted after the block statement. The guard expression only affects

those signal assignment statements within the statement portion that are designated

with the "memoried" reserved word. Only when the guard condition is TRUE will

the memoried assignment statements be executed. Other assignment statements

within the guarded block that do not contain a "memoried" reserved worc: will be

evaluated when their respective inputs are changed. Attributes may also be used

to further describe guards. The use of an attribute may allow for synchronization

to occur on the edge of a signal (i.e., when clock'stable = FALSE). Conditional

and memoried statements may be used together.

Chapter 5, Modeling Complex Behaviors, sequential statements and the

process statement, enabling and disabling inputs, and using process statements.

Process statements respond to events. Execution of a process statement may

schedule a new event. An event occurs when a signal changes. The process
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statement description consists of the reserved word "process," followed by a

sensitivity list (events that invoke the process), a declarative portion for local

variables, assignment statements with control-flow operations, and the reserved

words "end process." Process statements may also be used to enable and disable

inputs. Use of process statements helps speed up simulations by minimizing the

scheduling of events.

Chapter 6 covers the use of types and objects. The sections covered are

types and subtypes, classes of objects, buses, and atomic vs granular signals. The

type definition is similar to the Ada construct with the Ada strong typing concept.

There are three type of objects: constants, variables, and signals. Signals are

different from variables in that signals contain a collection of "containers" that

may contain values. Signals are only modified by signal assignment statements

and their value-assignments are scheduled to occur at some event. Signals may

also have multiple drivers. The use of the reserved word "atomic" when declaring

a signal type specifies that all subelements must be treated as a whole. For

simulations, it is not necessary to monitor all of the subelements for change since

they can only be changed as a whole. Granular signals can have their subelements

modified independently. Signals that are buses are required to be atomic. These

signals have multiple drivers and use a bus resolution function to convert an

unconstrained array of input values into a single output value.

Chapter 7, Manipulating Objects, explains some of the aspects of how a

simulation proceeds. Sequential and concurrent statements are the two basic

execution sequences of statements. Sequential assignment statements may

perform variable (single target ":=") or signal (multiple target "<=") assignments.

Variable assignments may have only a single evaluation expression. Signal
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assignments may have several evaluation expressions. Delta delay is defined as an

infinitesimally small delay (after Ons). A process statement consists of a collection

of assignment statements that execute in response to an event. An event is the

change in value of a signal. 'rocess statements also define drivers for signals. It

is best to limit the scope of a process to driving only one signal. Conditional

assignment statements can be used to express the same information as process

statements when it is necessary to emphasize the bare essentials of the data

transform. Execution cycles are used to repetitively compute the new signal

values. Since simulations are considered to begin at some "0" time, initialize

directives provide a starting point for all signals.

Each simulation cycle consists of the following three steps.

1. A signal is reevaluated if it is driven by a driver whose
value has just changed.

2. A process statement is executed if a signal to which it is
sensitive received a new value in step 1. Such process statements
may execute signal assignment statements in order to schedule new
future values for drivers.

3. The global simulation time advances until the values of
one or more drivers change.

Step 1 of the first simulation cycle is never executed. Thus,
step 2 of the first simulation cycle is never executed. (Further
exception) If there exist process statements not sensitive to anything,
they will be executed during step of the first simulation cycle.
Simulation cycle will repeat until there are no longer any future
events scheduled or a control stops execution.

Chapter 8 on Design Entities covers much of the information presented in

the video tape lecture entitled, "VHDL Design Entities," presented by Major

DeGroat. The video tape lecture is listed toward the end of the bibliography.
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Chapter 9 discusses the networks and their evaluations. For a given signal

there exists a root node and possibly several drivers and or sinks. A bus resolution

function is necessary when there are several bus drivers. The values of the drivers

are propagated up to the root. Afterwards, the value in the root is propagated

down to the sinks.

Chapter 10, abstraction capabilities, includes information on user-defined

types, packages, and subprograms. The user-defined type may be of the scalar or

composite type. Composite types may be made of records or arrays. Strong

typing is performed much like Ada. Subtypes may be used to limit the range of

type. Subprograms execute a series of instructions in zero simulation-time. A

subprogram may be a function or a procedure. Packages are used for grouping

and storing declarations. This allows for sharing between designers. All of the

items discussed above in chapter 10 may be included within a package. Packages

are made visible much like Ada.

Advanced descriptive capabilities are covered in chapter 11. Areas covered

are attributes, assertions, and generation statements. Attributes are similar to

attributes in Ada except that they are associated with an entity and may be

predefined or user-defined. Assertions allow for operating conditions and

characteristics to be checked. Different levels of severity maybe associated with

the assertion for reporting violations during the course of the simulation. The

generate statement allows for the generation of multiple instantiations of a

component much like a macro in assembler.
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Appendix A covers the VHDL Support Environment and a discussion of its

associated parts. A.4 gives a discussion of the simulator and its similarity to the

test bench concept. Appendix C contains a glossary.

Linderman, Captain Richard, Assistant Professor of Electrical and Computer
Engineering. Video Tape Lecture. "Types and Objects in VHDL." School
of Engineering, Air Force Institute of Technology, Wright-Patterson AFB
OH, 1987a.

Use of types and objects in VHDL allows for error detection to prevent

mismatches between different interface types. It forces implementation of special

functions to convert different types. Types are composed of scalar and composite.

The scalar types are enumerated and numeric. Numeric types may be further

divided into integer, floating, and physical. Physical types maybe time, power, or

any other measurable physical types. The composite types are composed of arrays

and records.

Objects are either signal (associated with time), variables (only current

time), and constants. Some examples of real and integer subtype declarations

were given. Some predefined types are bit, bit-vector, integer, real, boolean,

character, and string.

The classes of signal are Atomic and Granular. Atomic signals are assigned

as a whole and may be a bus (signal with multiple drivers). Granular signals are

partially updated (separately addressed) and are not a bus. Examples of granular

signals were presented. The keyword "Atomic" denoted an atomic signal. If the

keyword is not there then it is granular.

A bus resolution function must be used when a signal has multiple drivers.

Declarations may be explicit or implicit. When explicit, they are declared in the
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declarative part. When implicit, they are declared in the block guard, loop, or

generate statements. Using static in a variable declaration allows for remembering

it between process invocations. Processes, functions, and procedures contain only

sequential statements. Concurrent statements may be block statement, process

statement, etc.

Linderman, Captain Richard, Assistant Professor of Electrical and Computer
Engineering. Video Tape Lecture. "Modeling Circuits in VHDL."
School of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB OH, 1987b.

An expression may be used for logical, relational, or arithmetic operations.

Logical expressions are more bit level (XOR, NOR, AND, etc.). Relational

expressions are used to describe control flow. Arithmetic expressions are used for

integers and floating point operations. An array expression is concatenation,

indexing, or slicing. Static expressions are evaluated at analysis time. Generic

expressions are evaluated at the beginning of the simulation. Dynamic expressions

are evaluated during the simulation.

Signal assignment statements schedule a transaction to occur. A possible

signal assignment statement: "Output <= INI and IN2 after 5ns;" The delta delay

is used when Ons is used or no after clause is specified. Block statement constructs

were also covered.

Linderman, Captain Richard, Assistant Professor of Electrical and Computer
Engineering. Video Tape Lecture. "VHDL Process Statements." School
of Engineering, Air Force Institute of Technology, Wright-Patterson AFB
OH, 1987c.

A good summary of the simulator execution cycle may be found within the

course of this tape. The topics covered in this lecture are signal assignments,

simulator execution cycle, and process statements. Process statements are used to
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optimize simulator performance. Signals have a time dimension (remember past

values). The value of a signal is determined by drivers. A transaction consists of

two dimensions, time and value. Transactions are used for updating the

appropriate driver queue. A signal may be specified by either a transport clause or

as an inertial signal assignment. Only when the actual signal has changed does an

event occur.

Evaluation cycle for a non-bus signal:

1. A non-bus signal has only one driver.

2. As time advances, a transaction may occur on the driver.

3. The value of the driver is assigned to the signal.

4. A change in the signal value causes an event on that signal.

5. Process statements respond to events.

Process statements have sensitivity parameters specified through a list of

signals. Evaluation cycle of a bus signal:

1. A bus signal has multiple drivers.

2. As time advances, a transaction may occur on a driver of the signal.

3. The values of all of the drivers of the signal are resolved together.

4. The resolved value is assigned to the signal.

5. Events are propagated as before.

Execution cycle:
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1. Time advances.

2. Signal values are evaluated.

3. Values are assigned to signals.

4. Process statements are executed.

5. New signal values are projected.

Process statements are "black-box." Simulator optimization can be

accomplished through efficient use of guards and process statements for enabling

and disabling process execution.

Linderman, Captain Richard, Assistant Professor of Electrical and Computer
Engineering. Video Tape Lecture. "VHDL Examples." School of
Engineering, Air Force Institute of Technology, Wright-Patterson AFB
OH, 1987d.

This tape covered a top-down description of an ALU, SIPO, and a CMOS

static latch. The use of gate, logic, board, and system to describe the level of

abstraction were used as attributes for entities. When combining different types in

expression evaluations, parentheses may be used for matching. If two variables of

type power were divided by each other the result would be no unit of measure. It

could then be used to be modified a delay factor in units of time. Failure to use

the parentheses would cause an error. A binary attribute (B'0000) was used as

identify and modify a vector. The language objectives are as follows:

1. Support for hardware techniques.

2. Support for design styles.

3. Support for hardware design methodologies.
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4, Support for design automation tools.

5. Support for management of design data.

Upsett, L., E. Marschner, and M. Shahdad. "VHDL - The Language,"
IEEE Design and Test, 3: 29-41 (April 1986).

A design entity is the principle hardware abstraction. It provides for

separation of interface and function. Design Entity => Interface + Body(s). The

interface is the pinouts, timing assertions, and other factors needed to be known by

component users. The body is the organization and/or operation of a component

(behavior, structure, register-transfer ops, etc.). Interface => Ports + Generics.

Body => Architectural Bodies + Configuration Bodies. Architectural bodies

describe how the input and output ports of a design entity relate. Architectural

Bodies => Structural + Dataflow + Behavioral. A structural body is a schematic

view of subcomponents and interconnections. A dataflow body consists of the data

transforms being performed in terms of concurrently executing RTL statements.

The need is to express "what" is done. Behavioral descriptions specify data

transforms in terms of algorithms. The are delineated by process statements. The

keyword memoried is a reserved word used to allow synchronous operation within

a block. This is a guard condition. Regular descriptions may contain generate

statements. This is considered as taking a subcomponent described by a process

statement and replicating it the number of times specified in the generate

statement. Configuration specifications allow a designer to use already existing

design entities. The design entity may be instantiated and modified as necessary.

Under additional language features, it appears that "typing," "functions and

procedures," and "packages" are much like the Ada constructs.
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Lowenstein, Al and Greg Winter. "VHDL's Impact on Test," IEEE Design and
Test, 3: 48-53 (April 1986).

A VHDL description of a unit under test (UUT) can be input into an

automatic test specification generator (ATSG) to generate a test specification

written in a test description language (TDL). The TDL is then sent through a

postprocessor to generate a test program in the TDL. Products to be tested can

exist at many different levels (whole system, Ics, Pcbs, etc.). Testing requirements

at each level are different. However, each level is interrelated with the next and

testing should allow for incorporation into a package. VHDL allows this. The

emphasis of the article is on testing in the design/development, production, and

maintenance phases of the product life cycle. The article further describes the

rationale for different types of testing encountered during the different phases.

The article provides tables listing the types of tests to be performed during the

different portions of the product life cycle and the types of data required to

perform the tests. The author then gives examples of different VHDL instances

that provide the necessary items to perform some of the tests. Basically, it appears

that VHDL covers the electrical, physical, and environmental factors necessary for

constructing tests in the different phases of the product life cycle.

Nash, J.D. and L.F. Saunders. "VHDL - Critique," IEEE Design and Test, 3: 54-65
(April 1986).

There seems to be some difficulty in determining the best point for a

boundary between technology independent and technology dependent information

in the package description for a design entity. Therefore, the problem arises in

requiring all fully documented designs to rely on the standard package.

Incorporation of a WAIT command within the syntax has been requested as

an enhancement. The WAIT would allow for the suspension of sequentially
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executed statements for a specified period of time before continuing. A problem

can arise in optimizing the VHDL readability over function resolution in memoried

and nonmemoried signals. VHDL does not posses the ability to use dynamic data

like linked lists in Pascal. This leads to misuse of arrays and matrices within

VHDL. VHDL does not posses facilities for data transfer into or out of the design

entity. The ATOMIC statement is compared to the PRAGMA statement in Ada.

Though both provide information to the simulator in the former and compiler in

the latter, the ATOMIC statement cannot be removed as the PRAGMA statement

since it is embedded in the actual hardware description. VHDL does not allow

overloading of operators. Some users expressed a desire for graphics.

Shahdad, M. and others. "VHSIC Hardware Description Language," Computer,

18: 94-103 (February 1985).

VHDL was required to be constructed using Ada constructs whenever

possible. Three apparent goals of VHDL were support of design, documentation,

and efficient simulation from the digital system level to the gate level. The major

goal of VHDL is technology insertion of the latest technology into already

developed systems. After this brief introduction, the paper begins discussion of

the design entity. The design entity consists of the interface and of several bodies.
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APPENDIX B: Component Listing of 31-Bit Register Macrocell

The following is the resulting component representation for the 31-Bit

register macrocell after extraction. The format of several of the component

descriptions is provided.

dff(A,B,C,D,1). := describes a static D flip-flop where A is the enabling clock

pulse high, B is the inverted clock pulse, C is the input, D is the inverted output,

and 1 describes the D flip-flop as a static CMOS design.

buffer(A,B,1). := describes a buffer where A is the input and B is the output. The

1 indicates a CMOS static buffer consisting of two inverters.

inv(A,B,1). := describes an inverter where A is the input and B is the output. The

1 indicates a CMOS static design.

tgate(A,B,C,D,1). := describes a transmission gate where A is the p-type transistor

gate, B is the n-type transistor gate, C is the input/output, and D is the

output/input.

dff(nPQ2bar,nPQ2,n1903,n573,1).
dff(nPQ2bar,nPQ2,n1812,n572,1).
dff(nPQ2bar,nPQ2,n1811,n571,1).
dff(nPQ2bar,nPQ2,nl 81O,n570,1).
dff(nPQ2bar,nPQ2,n 1809,n569,I).
dff(nPQ2bar,nPQ2,nl808,n568,1).
dff(nPQ2bar,nPQ2,n1 807,n567, 1).
dff(nPQ2bar,nPQ2,n1806,n566, 1).
dffr(nPQ2bar, nPQ2,n 1805,n565, 1).
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rf nQbr P2 n 0,n 4 )

dff(nPQ2bar, nPQ2, nl 803, n5 64, 1). -
dff (rPQ2bar, nPQ2, n1 802, n5 62, 1).
dff(nPQ2bar, nPQ2, n 1801, n5621, 1).
dff (nPQ2bar,nPQ2,nl801,n5601 ).
dff (nPQ2bar,nPQ2,n1 799,n559, 1).
dff (nPQ2bar, nPQ2, nl 798, n5598, 1).
dff (nPQ2bar, nPQ2, nl 7987,n5587, 1).
dff (nPQ2bar, nPQ2, nl 796, n5576, 1).
dff (nP02bar, nPQ2, nl 795, n5565, 1).
dff(nPQ2bar,nPQ2,nl 794,n554, 1).
dff (nPQ2bar, nPQ2, n 1793, n5543, 1).
dff (nP02bar, nPQ2, n 1793, n5 5 3, 1).
dff (nPQ2bar,nPQ2,nl 791,n5521, 1).
dff (nPQ2bar,nPQ2,nl 7910,n550, 1).
dff (nPQ2bar,nPQ2,nl 789,n549, 1).
dff (nPQ2bar,nPQ2,nI 788,n548, 1).
dff (nPQ2bar,nPQ2,nl 787,n547, 1).
dff (nPQ2bar,nPQ2,nI 786,n546, 1).
dff (nPQ2bar,nPQ2,n1 785,n545, 1).
dff (nPQ2bar,nPQ2,nl 784,n544, 1).
dff (nPQ2bar,nPQ2,n1 783,n543,1).
dff (nLPQ 1r-nPQ,nlD_783,n43, 90,)
dff (nLD-PQI_bar,nLDPQI ,nIN3O,n19812, 1).
dff (nLD)PQ_bar,nLD_PQ,nN29,n1 811, 1).
dff (nLDPQ1 bar,nLD_I,nIN28,n1 810, 1).
dff (nlLPQI_bar,nLED_P01 ,nIN27,nl 80,1).
dff (nLD -PQ -bar, nLD_PQ, nN26, nl808, 1).
dff(nLDPPQ1 _bar,nLD_PQ, nN25,n1807, 1).
dff (nLD -PQ -bar,nLD_PQ1,nIN24,n1 806, 1).
dff (nLD -PQI -bar nLD_PQI,nIN22, n1805,I1). 4
dff(nLD)PQI _bar, nLDPQ1, nIN22,n1804, 1).
dff (nLD -PQI -bar, nlLPQ1, nIN2l, n1803, 1).
dff (nLD -PQ -bar,nLD_I,nN2O9, n1802, 1).
dff(nLDPQI_bar,nLD_PQ1,nINl9,n1802,I).
dff(nLDPQI -bar,nLD_PQI,nINl, n1800, 1).

dff (nLD-PQ _ bar,nLDPQ ,nNl16, n1799, 1).
dff(nL.DPQI -bar,nLDPQI, nLNl5,n1 798,I1).
dff(nLD)PQI -bar, nLD_PQ1l,nN1 4,n 1797, 1).
dff (nLD-PQ 1_bar,nLD_PQI,nLNI 3,n1 796,I1).
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dff(nLDP_lbar,nLD_PQI, nIN1 2,nl 795, 1).
dff(nLDPQI_ bar,nLD_PQ1,nlNl l,n1 794,1).
dff(nLDPQ1 -bar,nLD_PQ,nNl O,n1 793, 1).
dff(nLDPQ _ bar,nLDPQ1,nIN9,nl 792, 1).
dff(nLDPQ1-bar,nLD_PQ1,nIN8,n1 79 1,1).
dff (nLD3PQ-bar,nLD_PQ1,nIN7,nl 790, 1).
dff (nLD PQI -bar, nLDPQ1, nN6, n1789,I1).
dff (nLPQ 1 _ba r, nLD_PQ1, nN5, n17 88,1).
dff(nLDPQ1 -bar, nLDPPQ, nIN4, n17 87, 1).
dff(nLDPQI_ bar, nLDPQ1, ,nN3, n 17 86,1).
dff (nLDP_lbar, nLD_PQ1, nIN2, n17 85, 1).
dff(nLDPO1_ bar, nLD_P1,nN 1, n 17 84, 1).
dff(nLPQ1-ba r, nLD PQ 1, nNO, n 17 83, 1).
buffe r(n5 73, nOZ3O0, 1).
buffer(n5 72, nOZO, 1).
buffer(n571,nOZ1,1).
buffer(n570,nOZ2,1).
buffer(n569,nOZ3, I).
buffer(n568,nOZ4, 1).
buffer(n567,nOZ5, 1).
buffer(n5 66, nOZ6, 1).
buffer(n565,nOZ7, 1).
buffer(n564,nOZ8, 1).
buffer(n563,nOZ9, 1).
buffer(n562,nOZlO0, 1).
buffer(n561 ,nOZl 1, 1).
buffer(n560, nOZl 2, 1).
buffer(n559,nOZ1 3, 1).
buffer(n558,nOZ1 4, 1).
buffer(n557,nOZ1 5, 1).
buffer(n556,nOZl6,1).
buffer(n555,nOZl 7, 1).
buffer(n554,nOZI 8, 1).
buffer(n553,nOZ19, 1).
buffer(n5 52, nOZ20, 1).
buffer(n55 51,nOZ2 1, 1).
buffer(n550,nOZ22, 1).
buffer(n549,nOZ23, 1).
buffer(n548,nOZ24, 1).
buffe r(n5 47, nOZ2 5, 1)
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buffer(n546,nOZ26, 1).
buffer(n545,nOZ27, 1).
buffer(n544,nOZ28, 1).
buffer(n543,nOZ29, 1).
inv(nGO,nsbarO, I).
inv(nGO,nsbarl ,1).
inv(nGO,nsbar2, 1).
inv(nGO,nsbar3, 1).
inv(nGO,nsbar4, 1).
inv(nGO,nsbar5, 1).
inv(nGO,nsbar6, 1).
inv(nGO,nsbar7, I).
inv(nGO,nsbar8, 1).
inv(nGO,nsbar9, 1).
inv(nGO,nsbarlO, 1).
inv(nGO,nsbarl 1,1).
inv(nGO,nsbarl 2,1).
inv(nGO,nsbarl 3,1).
inv(nGO,nsbarl4, I).
inv(nGO,nsbarl 5,1).
inv(nGO,nsbarl 6,1).
inv(nGO,nsbarl 7,1).
inv(nGO,nsbarl8, 1).
inv(nGO,nsbarl9, 1).
inv(nGO,nsbar2O,1).
inv(nGO,nsbar2l .1).
inv(nGO,nsbar22, 1).
inv(nGO,nsbar23, 1).
inv(nGO,nsbar24, I).
inv(nGO,nsbar25, 1).
inv(nGO,nsbar26, 1).
inv(nGO,nsbar27, 1).
inv(nGO,nsbar28, 1).
inv(nGO,nsbar29, 1).
inv(nGO,nsbar3O, 1).
tgate(nsbarO,nGO,gnd,nNO, 1).
tgate(nsbarl ,nGO,gnd,nINI , 1).
tgate (nsbar2, nGO, gnd, nIN2, 1).
tgate (nsbar3, nGO, gnd, nLN3, 1).
tgate(nsbar4,nGO,gnd,nIN4, 1).
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tgate(nsbar5,nGO,gnd,nN5, 1).
tgate(nsbar6,nGO,gnd,nlN6, 1).
tgate(nsbar7,nGO,gnd,nN7, 1).
tgate(nsbar8,nGO,gnd,nN8, 1).
tgate(nsbar9,nGO,gnd,nIN9, 1).
tgate(nsbarlO,nGO,gnd,nJNl 0, 1).-
tgate(nsbarl l,nGO,gnd,rIJNl 1, 1).
tgate(nsbarl 2,nG;O,gnd,nINl 2, 1).
tgate(nsbarl 3,nGO,gnd,nJNI 3, 1).
tgate(nsbarl 4,nGO,gnd,nINI 4, 1).
tgate(nsbarl 5,nGO,gnd,nIN1 5, 1).
tgate(nsbarl 6,nGO,gnd,nJNl 6, 1).
tgate(nsbarl 7,nGO,gnd,nlNI 7, 1).
tgate(nsbarl 8,nGO,gnd,nINl 8, 1).
tgate(nsbarl 9,nGO,gnd,nJNl 9, 1).
tgate(nsbar20,nGO,gnd,niIN20, 1).
tgate (nsbar2 1, nGO,gnd,nIN2 1, 1).
tgate(nsbar22,nGO,gnd,nIN22, 1).
tgate (nsbar2 3, nGO,gnd, nN2 3, 1).
tgate (nsbar24, nGO, gnd, n1N24, 1).
tgate(nsbar25,nGO,gnd,nIN2S, 1).
tgate(nsbar26,nGO,gnd,nIN26, 1).
tgate(nsbar27,nGO,gnd,nN27, 1).
tgate(nsbar28,nGO,gnd,nIN28, 1).
tgate (nsbar29, nGO,gnd, n1N29, 1).
tgate(nsbar30,nGO,gnd,nIN30, 1).
tgate(nGO,nsbarO,nNO,nIZY29, 1).
tgate(nGO,nsbarl,nlNl ,nIZY28, 1).
tgate(nGO,nsbar2,nLN2,nIZY27, 1).
tgate(nGO,nsbar3,nIN3,nIZY26, 1).
tgate (nGO, nsbar4, nIN4, nIZY25, 1).
tgate (nGO, nsbar5, nN5, nIZY24, 1).
tgate (nGO, nsbar6, nN6, nlZY2 3, 1).
tgate(nGO,nsbar7,nlN7,nJZY22, 1).
tgate(nGO,nsbar8,nIN8,nIZY2I, 1).
tgate(nGO,nsbar9,nIN9,nIZY20, 1).
tgate(nGO,nsbarl O,nJNlO,nIZY19, 1).
tgate(nGO,nsbarl 1,nlNl l,nIZYI 8, 1).
tgate(nGO,nsbarl 2,nLNl2,nIZYI 7, 1).
tgate(nGO,nsbarl 3,nlNI 3,nIZYI 6, 1).
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tgate (nGO,nsbarl 4,nlNl 4,nIZYI 5, 1).
tgate(nGO,nsbarl 5 ,nlNl 5 ,nIZY1 4, 1).
tgate(nGO,nsbarl 6,nINl 6,nIZYI 3,1).
tgate(nGO,nsbarl 7,nlNl 7,nIZY1 2, 1).
tgate(nGO,nsbarl8,nlNl8,nIZYI 1, 1).
tgate (nGO,nsbarl 9,nNl 9,nLZY1 0, 1).
tgate (nGO,nsbar2O,nIN2O,nIZY9, 1).
tgate(nGO,nsbar2 l,nIN2 l,rdZY8, 1).
tgate (nGO, nsbar22, n1N22, nIZY7, 1).
tgate(nGO,nsbar23,nN23,nIZY6, 1).
tgate (nGO, nsbar24, n1N24, nIZY5, 1).
tgate (nGO, nsbar25, nIN25, ,nZY4, 1).
tgate (nGO, nsbar26, nLN26, nIZY3, 1).
tgate (nGO, ns bar2 7, n1N27, nIZY2, 1).
tgate (nGO, nsbar2 8, nLN28, nIZY, ,1).
tgate (nGO, nsbar29 , nIN29, nIZYO, 1).
tgate (nGO, nsbar3 0, nN3O,nIZY3O0, 1).
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APPENDIX C: Code

The following is the code for the sim2pro translation routine.

***** ******** ***** ******* ****** ****** ******************* * ***********

* Date: 16 August 1988
* Version: 1.0

* Title: sim2pro Translation Routine

* Filename: sim2pro.c
* Author: CPT Michael Dukes
* Project: STOVE_P
* Operating System: Unix V4.2, Unix V4.3, MS-DOS V3.2
* Language: C
* Description:
* This routine takes a transistor netlist from a sim file
* generated by mexscp and generates a Prolog formatted
* description for the same file. The fields used from the
* sim file are the transistor type, gate, drain, and source.
* The Prolog output may then be used by any Prolog tool.

* Passed Variables: None
* Returns: None

* Global Variables Used: None
* Global Variables Changed: None
* Files Read: temp.sim
* Files Written: good.pro

* Hardware Input: None
* Hardware Output: None
* Modules Called: None
* Calling Modules: None
* History: None
* Special Instructions: This routine should be executed after upper.

* ** * ** *** ** * ***** * ** * *** *** *** ** ** ** * ** **** * ** *** e* ** ** **** ** * * * *** */

#include <stdio.h>

#define max buf 128

char buffer[max_huf];
char tempbuf[max-buf];
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mnt time count,
iteration,
count,count2;

FILE * fd,*od;

maino

fd=fope n("te mp s im", ,r");
od =fope n(" good pro " , i
for(count=0;count<max-buf ;count++)

tempbuf [count] =0;

fgets (buffer, max-buf,fd);
while (fgets (buffer, max-buf fd) !=NULL)

if (buffer 101 =='e')

count=3;
count2=2;
iteration=0;

tempbuf [0] ='n';
tempbuf[1]='(';

tempbuf[21='n';
while ((buffer [count]! =0) &(i te ration! =3))

if ((buffer [count2] =='V')&(buffer [count2+1] =='d') &
(buffer [count2+i2] =='d'))

-- count;
tempbuf [count++] ='v';
tempbuf [count++]i- ='d';
tempbuf [count] ='d';
count2=count2+.2;

else if
((buffer[count2 =='G')&(buffer[count2+1I]=='N')&

(buffer[count2+21 =='D'))

-- count;
tempbufl[count++]s- ='g';
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tempbuf [count++i] =W n;
tempbuf [count] =V d;
count2=count2+2;
I

else if (buffer [count2]=''

{embf[on+]''
tempbuf [counti] =;

iteration++;

else if(bufferjcount2]=='#')

--count;

else

tempbuf [count] =buffer [count2]

count++;
count2,+;

count=count-2;
tempbuf [count++] =')';

tempbuf [count++] ='.';

tempbuf [count++] =1 0;
tempbuf [count] =0;

for(count=0;count<max-buf;count++)

buffer [count] =te mpbuf [count];

fprintf (od, " %s" ,buffer);
for(count=0;count<max-bufcount++)

tempbuf [count] =0;

I

count=3;
count2=2;
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iteration=O;
tempbuf [0)='p';
tempbuf [1] =(';

tempbuf [21='n';
while ((buffer[count] !=O)&(iteration!= 3))

if ((buffer[count2]=='V')&(buffer[count2+11=='d')&
(buffer [count2+21 ==Vd))

--count;
tempbufl[count++]='V';
tempbuf [count++] =Vd;
tempbuf [count) =Vd;
count2=count2+2;
I

else if((buffer[count2j=='G')&(buffer[count2+ 1 =='N')&
(buffer [count2i-2] =='D'))

-- count;
tempbuf [count++-i] ='g';
tempbuf [count++] ='n;
tempbuf [count] =Vd;
count2=count2i-2;

else if (buffer [count2]=''

tempbuf [count+e+]=',';
tempbuf [count] =W ;
iteration++;

else if (buffer [count2]==A#n

-- count;

else

tempbuf [count] =buffer [count2];

counlt++;
count2++;
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count=count-2;
tempbuf [count++],-=')';

tempbuf [count++] ='.';

tempbuf [count++] =1 0;
tempbuf [count] =0;

for(count=o;countzmax_buf; count++i)
f
buffer[count] =tempbuf [count];

fprintf (od, " %s" ,buffer);
for(count=0; count<max-buf; count++)

tempbuf [count] =0;

fclose(fd);
fclose (od);
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APPENDIX D: Package Body for Some Common MOS Functions

-------------------------------------------------
-------------------------------------------------

-- Date: 1 September 1988
Version: 1.0

-- Title: Package for Some Standard MOS Logic Functions

-- Filename: mos.vhd
-- Author: CPT Michael Dukes
-- Project: STOVE_P
-- Operating System: VMS V 4.5
-- Language: VHDL
-- Contents:
-- mos node resolution

-- snand (A,B: MOSnoderecord)
-- snor (A,B : MOSnode_record)
-- snot (A: MOSnoderecord)
-- sxnor (A,B: MOSnoderecord)
-- pnand (A,B: MOSnoderecord)
-- nnand (A,B: MOSnoderecord)
-- pnor (A,B : MOSnode-record)
-- pnot (A: MOSnoderecord)
-- tmux (A,B,S,Sbar : MOSnoderecord)
-- dff (A, PHI, Pilbar, OUTput : MOSnoderecord)
-- binarytomulti (A : bit)
-- multi to binary (Sig : bit; A : MOS noderecord)

-- Description:
-- This package contains a collection of functions for
-- performing bus resolution, computing logical output
-- for several types of components, and converting
-- between two-valued and ten-valued logic systems.

-- History:
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package body MOSlogicpackage is

-- Bus resolution function used for mos node record

function mos node resolution
(input : mos noderesolutionarray)
return mosnoderecord is

variable output, temp : mos node record;

begin
output.L.S 'B';
output.L.V 'B';
for i in input'range loop

temp := input(i);
If (temp.L.S > output.L.S) then

output := temp;
elsif ((temp.L.S = output.L.S) and

(temp.L.V/= output.L.V)) then
output.L.V W;
end if;

end loop;
return(output);
end mosnoderesolution;
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-- Static CMOS functions used with multiple-valued logic

function snand (A, B :MOS -node -record)
return MOS-node record is

variable temp :MOS_node-record;

begin

-- temp.C :=0.0;
If (A.L.V = '1') and (B.L.V = 'I') then

temp.L.S 'D';
temp.L.V '0;

elsif (B.L.V = '0) or (A.L.V V 0) then
temp.L.S 'D';
temp.L.V 'I';

else
temp.L.S W
temp.L.V X;
end if;

return(temp);

end snand;

function snor (A,B : MOS-node record)
return MOS-node-record is

variable temp MOS_node-record;

begin

-- temp.C :=0.0;
If(A.L.V '0') and (B.L.V = '0) then

temp.L.S 'D'
temp.L.V :='1';

elsif (B.L.V = '1) or (A.L.V =1') then
temp.L.S 'D'
temp.L.V V='0;
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else
temp.L.S 'W;
temp.L.V *'
end if;

return(temp);

end snor;

f unction snot (A: MOS node record)
return MOS-node-record is

variable temp MOS node-record;

begin

-- temp.C 0.0;
If (A.L.V V 0) then

temp.L.S 'D';
temp.L.V TI;

elsif (A.L.V = '1') then
temp.L.S :='D';

temp.L.V '0;
else

temp.L.S W;
temp.L.V WX;
end if;

return(temp);

end snot;

function sxnor (A,B: MOS node record)
return MOS-node-record is

variable temp MOS node-record;

begin

-- temp.C :=0.0;

If ((A.L.V '0) and (B.L.V ='0')) or
((A.L.V T I) and (B.L.V ='1')) then
temp.L.S 'D'
temp.L.V T1;

elsif ((A.L.V T 1) and (B.L.V ='0')) or
((A.L.V V 0) and (B.L.V ='1')) then
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temp.L.V '0';

else
temp.L.S 'W;
temp.L.V W
end if;

return(temp); -

end sxnor;
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-- pnMOS functions used with multiple-valued logic

function pnand (A,B: MOS -node -record)
return MOS-node-record is

variable temp :MOS-node-record;

begin

-- temp.C 0.0;
If (A.L.V ='1') and (B.L.V = '1') then

temp.L.S 'D'
temp.L.V '0;

elsif (A.L.V = V0) or (B.L.V V 0) then
temp.L.S W
temp.L.V '1';

else
temp.L.S W
temp.L.V W
end if;

return (temp);

end pnand;

function nnand (A,B: MOS node record)
return MOS-node-record is

variable temp MOS_node-record;

begin

-- temp.C 0.0;
If (A.L.V ='1') and (B.L.V = '1') then

temp.L.S W;
temp.L.V V0;

elsif (A.L.V = '0) or (B.L.V = '0) then
temp.L.S 'D';
temp.L.V TI;
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else
temp.L.S W
temp.L.V X
end if;

return(temp),

end nnand;

function pnor (A,B: MOS nodejrecord)
return MOS-node-record is

variable temp MOS-node-record;

begin

-- temp.C 0.0;
If (A.L.V ='1') or (B.L.V = '1') then

temp.L.S ''
temp.L.V '0;

elsif (A.L.V = '0) and (B.L.V V 0) then
temp.L.S 'W;
temp.L.V '1';

else
temp.L.S W
temp.L.V 'X;
end if;

return(temp);

end pnor;

function pnot (A: MOS -node record)

return MOS -node-record is

variable temp MOS node record;

begin

-- temp.C :=0.0;

If (A.L.V ='1') then
temp.L.S ''
temp.L.V '0;

elsif (A.L.V = '0) then
temp.L.S W;
temp.L.V TI;
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else
temp.L.S W
temp.L.V X
end if;

return(temp);

end pnot;
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-- transmission-gate functions used with multiple-valued
-- logic

function tmux (A,B,S,Sbar :MOS-node-record)
return MOS-node-record is

variable temp :MOS-node-record;

begin

-- temp.C 0.0;
If ((S.L.V '1') and (Sbar.L.V = '0')) then

If not(A.L.S = 'B') then
temp := A;
end if;

elsif ((S.L.V '0') and (Sbar.L.V ='1')) then
If not(B.L.S = 'B') then

temp := B;
end if;

elsif (A.L.S = B.L.S) then
If (A.L.V =B.L.V) then

temp.L: A.L;
else

temp.L.V ''
temp.L.S :=A.L.S;

eiwl if;
11 tktemp.L-.S ='D') then

it (S.L.V V 0) and (temp.L.V V 0) then
temp.L.S :=W;

elsif (S.L.V = '1') and (temp.L.V ='1') then
temp.L.S :=W;

elsif (S.L.V = 'X) then
temp.L.S := W

end if;
end if;

elsif (A.L.S > B.L.S) then
temp.L: A.L;
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If (temp.L.S - 'D') then
If (S.L.V = '0) and (temp.L.V = '0) then

temp.L.S:=W
elsif (S.L.V = 'I') and (temp.L.V = 'T) then

temp.L.S := 'W;
elsif (S.L.V = WX) then

temp.L.S := 'W;
end if;

end if;
else

temp.L := B.L;
If (temp.L.S 'D)') then

If (S.L.V V 0) and (temp.L.V ='0') then
temp.L.S := 'W;

elsif (S.L.V ='I') and (temp.L.V T 1) then
temp.L.S :=W;

elsif (S.L.V =XW) then
temp.L.S 'W;

end if;
end if;

end if;

return(temp);

end tmux;
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-- precharged functions used with multiple-valued logic
-- (to be implemented)

-- Other logic functions used with multiple-valued logic

function dff (A, PHM, PHI- bar, OUTput :MOS-nodejrecord)
return MOS-node-record is

variable temp :MOS-node-record;

begin

-- temp.C :=0.0;
If ((PHI.L.V ='1' and PHI -bar.L.V ='0')) then

If (A.L.V V 0) then
temp.L.S ''
temp.L.V '1';

elsif (A.L.V = 'V') then
temp.L.S 'D';
temp.L.V '0;

else
temp.L.S W;
temp.L.V X;
end if;

else
temp.L: OUTput.L;
end if;

return(temp);

end dff;
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-- Logic translation for binary to multi and multi to binary

function binary tomulti (A : bit)

return MOS node record is

variable temp : MOSnoderecord;

begin

temp.L.S := 'D';
If (A = '1') then

temp.L.V := '1';
else

temp.L.V := '0';
end if;

return(temp);

end binary tomulti;

function multi to binary (Sig bit;
A :MOS node record)

return bit is

variable temp : bit;

begin

If (A.L.V-- '1') then
temp := '1';

elsif (A.L.V = '0') then
temp '0';

else
temp := Sig;

end if;
return(temp);
end multitobinary;

end MOS-logic_package;
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APPENDIX E: Extracted VHDL Description of the Clock

Generator

The following is a listing of the VHDL code automatically generated by

STOVEP for a clock generator.

use work. mosjlogicjackage all;
entity 11W is

generic(constant tPIJ-:TIME:=O ns;
constant tPHL:TD4VE:=O ns);

port (signal A:in mos-node;
signal B:out mos-node);

end;
architecture INV of INV is

begin
B <= snot(A) after ins;

end;
use work. mos Iogicjpackage. all;
entity NANDGATE is

generic (constant tPLH:TIME:=O ns;
constant tPHL:TIME:=O ns);

port (signal A:in mos -node;
signal B:in mos -node;
signal C:out mos-node);

end;
architecture NAN])_GATE of NAN])_GATE is

begin
C <= snand(A,B) after 2 ns;

end;A
use work. mos Iogicjpackage .all;
entity NORGATE is

generic (constant tPLH:TMLE:=O ns;
constant tPI-L:TvM:=O ns);

port (signal A:in mos-node;
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signal B:in mosnode;
signal C:out mos node);

end;
architecture NORGATE of NORGATE is

begin
C <= snor(A,B) after 2 ns;

end;

entity test is
end test;
use work.mos logic_package.all;
use std.simulatorstandard.all;
architecture testor of test is

signal n444 : mosnode;
signal n177 mosnode;
signal n498 mosnode;
signal nIZgo : mosnode;
signal n450 mosnode;
signal n453 mosnode;
signal n424 mosnode;
signal n443 mosnode;
signal n449 : mosnode;
signal n533 mosnode;
signal n584 mosnode;
signal n447 : mosnode;
signal n233 mosnode;
signal n277 mosnode;
signal n329 mosnode;
signal nOZpq2 : mosnode;
signal n53 : mosnode;
signal nOZ_pql : mos_node;
signal n128 mosnode;
signal gnd : mos_node;
signal vdd : mosnode;

component INV
generic ( constant tPLH: TIME;

constant tPHL: TIME);
port ( signal A: in mos node;
signal B: out mos_node);

end component;
for all : inv use entity work.inv( inv );
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component NANDGATE
generic ( constant tPLH: TIME;

constant tPHL: TIME);
port ( signal A: in mos node;
signal B: in mosnode;
signal C: out mosnode);

end component;
for all : nand_gate use

entity work.nandgate( nandgate );
component NOR-GATE

generic ( constant tPLH: TIME;
constant tPHL: TIME);

port ( signal A: in mosnode;
signal B: in mosnode;
signal C: out mos_node);

end component;
for all : nOr gate use

entity work.norgate( NOrgate );
begin
process

variable highvolt : mos noderecord;
variable lowvolt : mosnoderecord;
begin
set_maximums(0000,100);
tracingon;
high volt.L.S := 'D';
high volt.L.V '1';
lowvolt.L.S :='D';
lowvolt.L.V := 0;
vdd <= high volt;
gnd <= lowvolt;
end process;

INVI :NV

generic map( tPLH => 0 ns,
tPHL => 0 ns)

port map( A =>n128,
B =>nOZpqI);

INV2:INV
generic map( tPLH => 0 ns,

tPHIL => 0 ns)
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port map( A =>n53,
B =>nOZ_.pq2);

INV3:INV
generic map( tPLH => 0 ns,

tPHL => 0 ns)
port map( A =>n329,

B =>n277);
INV4:INV

generic map( tPLH => 0 ns,
tPHL => 0 ns)

port map( A =>n233,
B =>n53);

JNV5:INV
generic map( tPLH => 0 ns,

tPHL => 0 ns)
port map( A =>n447,

B =>n584);
INV6:INV

generic map( tPLH => 0 ns,
tPHL => 0 ns)

port map( A =>n533,
B =>n128);

INV7:INV
generic map( tPLH => 0 ns,

tPHL => 0 ns)
port map( A =>n449,

B =>n443);
INV8:INV

generic map( tPLH => 0 ns,
tPHL => 0 ns)

port map( A =>n277,
B =>n233);

INV9:LNV
generic map( tPLH => 0 ns,

tPHL => 0 ns)
port map( A =>n584,

B =>n533);
INVIO:INV

generic map( tPLH => 0 ns,
tPHL => 0 ns)
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port map( A =>n424,
B =>n453); A

INV11:INV
generic map( tPLH => 0 ns,

tPHL => 0 ns)
port map( A =>n450,

B =>n424);
INV12:INV

generic map( tPLH => 0 ns,
tPHL => 0 ns)

port map( A =>nIZgo,
B =>n498);

INV1 3:INV
generic map( tPLH => 0 ns,

tPHL => 0 ns)
port map( A =>n177,

B =>n444);
INV 14:INV

generic map( tPLH => 0 ns,
tPHL => 0 ns)

port map( A =>n443,
B =>n77);

INV15:JNV
generic map( tPLH => 0 ns,

tPHL => 0 ns)
port map( A =>n444,

B =>n450);
NANDGATEI: NANDGATE

generic map( tPLH => 0 ns,
tPHL => 0 ns)

port map( A => n498,
B => n450,

C => n449);
NORGATEI: NORGATE

generic map( tPLH => 0 ns,
tPHL => 0 ns)

port map( A => n329,
B => n424,

C => n447);
NOR GATE2: NORGATE
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generic map( tPLH => 0 ns,
tPHL => 0 ns)

port map( A => n447,
B => n453,
C => n329);

end testor;
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