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Abstract

-A method of calculating mechanical efficiency was developed as a means

of comparing the performance of different types of manipulators. As an initial

approach to this problem takes into account inertial and gravitational terms of

the robot configurations in addition to a variable payload. The method included

developing a numerical integration algorithm to calculate the work done by each

manipulator at any point in that manipulator's workspace. The efficiencies of

two robotic manipulator configurations that are candidates for the design of the

AFIT, AAMRL, Anthropomorphic Robotic Manipulator, (A:RM), were analyzed.

The two designs were a serial open link direct drive manipulator, and the closed

parallel kinematic chain direct drive manipulator design by Dr. Asada at M. I. T.

The difference between the mainpulators was actual mass and kinematic design.

The efficiency measure used to analyze both manipulators was based on the

magnitude of the total work done by the manipulator to move a payload a pre-

scribed distance. The effects of a variable mass payload on efficiency have now

been individualy examined for the cases when the arm has been $tuned for some

nominal payload by means of compensating for gravity, making the robotic config-

uration invariant, and decoupling the manipulator's dynamic equations of motion.

An algorithm was developed for calculating the mechanical efficiency for dif-

ferent robotic mainipulator configurations. When the manipulators are gravity

compensated for a nominal payload, their efficiency increases dramatically, even

when the payload is varied from nominal. In addition, when the configuration is

tuned for dynamically decoupling and configuration invariance, efficiency is im-

proved. Finally, for most of the reachable workspace .of the manipulators, the

parallel manipulator is the most efficient.

vii

viiiI
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I
5 CONFIGURATION COMPARISION ANALYSIS FOR THE

AFIT/AAMRL

I ANTHROPOMORPHIC ROBOTIC MANIPULATOR

U
3 I. Introduction

3 A method was needed to analyze the performance of different robotic ma-

nipulator configurations. This method will be used to select the configuration

3 used for the AFIT/AAMRL anthropomorphic robotic manipulator (A 3RM), which

will be used for, (one application), research in human telepresence. The goal of

the (A 3RM) is a manipulator system capable of achieving human levels of reach,

speed, and load carrying capacity. An analysis of two mechanical configurations

3 for the design of a general two degree of freedom robot was conducted in order to

determine which configuration would be better suited for the A 3RM system. As

I a "first-look" analysis, the foundation was set to expand this research into more

complex systems.

Through careful selection of the physical configuration and mass distribution

3 characteristics of a robotic mainpulator, greater efficiency and minimal control

complexity can be achieved. Methods of achieving minimal control complexity has

3 been addressed in the literature (1]. These methods have generally been applied to

manipulators with constant or zero payloads. For the general manipulator designed

3 to be flexible enough to handle multiple operations, constant payload assumptions

are not suitable. Therefore, the effects of variable payloads were considered in the

Ianalyisis.

In addition, development of analytical tools to measure the performance of

these types of manipulators has not been presented to any great extent. Shin-Min

I 1-1
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I Song and .lrng-Kil Lee in their paper The Mechanical Efficiency And Kinemat.

ics Of Pantograph Type Manipulators, [141, examine using mechanical work as a

measure of efficiency. Song and Lee's work looked at massless systems in a limited

area of the workspace. Their research did not present a total representation of

the efficiency of the manipulator configurations considered. First, Song and Lee's

conclusion that the parallel was 100% efficient, is true only for a poriton of the

workspace. Second, inertial terms and the mass of the manipulators in the gravita-

3 tional terms, i.e. a massless arm was assumed, in the dynamic equations of motion

were not considered.I
1.1 Background

I The comparison of different type of robotic manipulator configurations re-

quired a somewhat generic tool that could be equally applied to all types of con-

figurations considered. The tool applied was the determination of mechanical effi-

ciency in the workspace of a robot configuration. This efficiency was determined

for a serial and a parallel kinematic configuration. The effects of "tuning" on the

3 efficiency were also considered. These configurations are well known in robotics

and are defined in the following sections.

1 1.1.1 Serial Manipulator The serial manipulator is an open kinematic chain

I with torque producing actuators on each revolute joint, as shown in Figure 1.1.

These robots have one joint and one corresponding link for every degree

1 of freedom. This is the most widely used configuration for robotic applications.

Further discussion on these type of robots can be found in [1], [3], and [13].I
1.1.1 Parallel Manipulator The parallel manipulator configuration, as shown

3 in Figure 1.2, is a closed link kinematic chain robot having at least one redundant

degree of freedom in its structure.

* 1-2

I



y 12

in 2 , 12

Figure 1.1. Serial Manipulator Configuration

Furhter discussion on these configurations can be found in [1] and [131.

1.1.3 Tuning Control of a manipulators position, velocity, and acceleration

is a very complex topic. The equations of motion that model the movement of the

robot are non-linear, coupled, ordinary differential equations. In practice, classical

control of this motion is often inadequate, [1]. A large amount of current research

is directed toward using modern optimal control techniques to compensate for

these inadequacies. However, with careful design analysis these non-linearities

and coupling effects can be reduced to a minimum. Reducing these non-linear

effects is called "tuning". Complete elimination of non-linear and coupling effects

allows the system to be modelled as a single input - single output system for each

actuator. This type of system would be the least complicated and the easiest

to control. The analysis technique for reducing nonlinear and coupling terms in

the equations of motion was developed by Haruhiko Asada and Kamal Youcef-

Toumi in their book Direct-Drive Robots: Theory and Practice [1]. Asada and

1-3
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M2, 1,21

I Figure 1.2. Parallel Configuration

Youcef-Toumni were able to design a manipulator with no dependence on joint

angle, defined as "configuration invariance", and no coupling effects, defined as

i "dynamically decoupled". This resulted in equations of motion that were linear,

uncoupled ordinary second order differential equations with constant coefficients

I for the nominal payload for which the manipulator was tuned. When the payload

varies from the nominal case, all the non-linear terms of the equations of motion

I reappear. The dynamics of the robotic systemr are no longer linear and may require

model based control techniques, [8], to obtain adequate feedback control.

I I1.1.4 Gravityl Compensation. In addition to dynamic decoupling and con-

I ~figuration invariance, the gravitational terms of tihe equations of motion can be

eliminated for some nominal load [131. The "gravity compensation" constraints are

I compatible with the dynamic decoupling and configuration invariance constraints

and can also be included in the term "tuning". Therefore all the constraints can

I be applied to the design of the manipulator simultaneously.

I1-4
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1. 1.5 Definition of Mechanical Efficiency. According to Beer and Johnston,

3 f2, page 411], mechanical efficiency is defined as the amount of work out of a system

divided by the the amonut of work put into the system. Work is defined in the

5 plane as, 1
I where P is a force acting through a displacement dF. When a moment is acting on

a rigid body the work done can be written as,

w = M. dt (1.2)

where Mi is the moment and dO is the angular displacement in radians.

3 In Song and Lee's analysis, [14], the output work was found from moving

the payload parallel to the gravity vector some finite distance. Because the force

5 involved was constant the work was easily integrable to be mgAy, where Ay is the

displacement.

1.2 Method Of Approach

I Using Song and Lee's mechanical work as a measure of efficiency, the serial

I and parallel robotic arm configurations were evaluated. The equations of motion

for these well-known manipulators were readily available, [13], making these con-

3 figurations well suited for this analysis. Inertia and gravitational terms of the

equations of motion were included in the analysis.Structural, dimensional, and

3 motor requirements for the arm design was not a part of this analysis.

A basic design had to be drawn up to set a baseline for the configurations.

I The manipulator is being designed to emulate human arm motion. The dimensions

of the configurations were assumed to be similiar to those of the 50th percentile Air

Force male [4]. Once the basic design was determined, link mass was redistibuted

in order to construct manipulator configurations that were gravity balanced, con-

3 1-5
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figuration invariant. Efficiencies of each configuration were then evaluated for the

following cases:

* Only gravity terms of the equations of motion.

- No arm mass included.

- Arm mass included.

* Inertia terms only.

- No configuration invariance tuning applied.

- Configuration invariance tuning applied.

e All terms of the equations of motion included.

- Nominal case - no tuning.

- Gravity compensated case.

- Gravity compensated and configuration invariant case.

Redistribution of mass to decrease the effects of non-linear terms in the equations

of motion is often refered to as "tuning". The tuning is dependant on a particu-

lar payload. The cases studied here assumed that the manipulator was tuned for

zero payload. The effect of non-zero payload on efficiency was then determined.

Efficiency was found in the first quadrant of the reachable workspace after de-

termining that the other quadrants were symmetrically similiar to quadrant one.

To include inertia terms, the trajectory was assumed to be in a straight line at

constant acceleration.

1.3 Summary

In every case, the parallel manipulator was more efficient than the serial.When

gravity balancing was imposed, efficiency of both the serial and parallel configu-

1-6
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rations increased. Also, configuration invariance tuning made the parallel robot

more efficient.

This document is organized in the following manner. In chapter II, the

5human arm characteristics are defined along with how these characteristics are

applied to the robot arms and how the tuned cases are achieved. Then, chapter III

I presents the analysis of the mechanical efficiency. Finally, chapter IV considers the

conclusion and recommendations. In the appendices A and B, the actual computer

programs developed are included.

1I
II
I
1
U
I

I

I
U
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g HI. Anthropomorphic Manipulator Design

The choice to design a manipulator to emulate the motion of a human arm

Iwas made to be compatible with future research efforts at the Air Force Institute of

Technology (AFIT) and Armstrong Aerospace Medical Research Lab (AAMRL).

One application for using an anthropomorphic robotic manipulator is as a surrogate

in a telepresence application. Making the robot arm anthropomorphic makes the

telepresence task more intiutive to the human operator. In this application the3 human operator is removed from a hostile/hazardous environment and operates

the robot by strapping on a sensored exoskeleton. Movement of the the exoskeleton

3 results in the robot executing the same movement.

Specifically, the design will emulate the motion of a 50th percentile Air Force

3 male which was documented by H. T. E. Hertzberg at AAMRL [4]. The intended

robot design will have three degrees of freedom, all revolute, including two orthog-

I onal degrees of freedom at the shoulder and one degree of freedom at the elbow.

The elbow axis of rotation and one shoulder axis of rotation are parallel. Using

these two rotations as independent coordinates, any reachable position in a plane

can be described by these coordinates. With these two degrees of freedom, any

plane in the robot's work volume can be represented, alieviating the neccessity of

* having to look at the three degree of freedom equations of motion for this first-look

analysis. When gravitational terms are omitted from the equations of motion, a

3 plane perpendicular to gravity is simulated. When gravity is included, a plane

parallel to gravity is simulated.

3 This chapter will address the design requirements for human arm emulation

specifically in terms of dimension, range of motion, speeds, and accelerations. From

3 these specifications, the dimensions, weights, kinematics, and dynamic equations

of motion for both a serial and parallel two degree of freedom anthropomorphic

U configuration are characterized.

3 2-1
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3 2.1 Human-like Specifications

To perform as a human surrogate, the manipulator must be capable of repro-

ducing the movements and load carrying capacity of an average human arm. And

3the manipulator must as a minimum be able to reach what the average arm can.

The intent of this manipulator design is to emulate the motion of a 50th percentile

Air Force male. These specifications, except for velocity and acceleration, were

developed by H. T. E. Hertzberg at the Armstrong Aerospace Medical Research

3 Laboratory [4]. The dimensions of this average male arm are summarized in Table

2.1 [4, page 499]. Arm Section Length

(inches)
Shoulder to Elbow 14.3
Elbow to Handtip 18.9
Wrist to Handtip 7.5

Table 2.1. Average Human Arm Dimensions, [4]

The range of motion specifications are in Table 2.2 [4, page 545].

3 Motion Range
(degrees)

Shoulder Bend 249
Shoulder Twist 182
Elbow Bend 142

UTable 2.2. Average Human Range of Motion, [4]

I JThese specifications of the the range of motion for the average human arm

define the human workspace.The average human arm velocities and accelerations

3 are found in Eugene I. Rivin's book Mechanical Design Of Robots [13, page 10].

The experimental data for these specifications is found in B. A. Petrov's work [121,

I but unfortunately this has never been translated from Russian to English. Human

arm speed and acceleration are summarized in Table 2.3.

* 2-2



I

I Motion Maximum angular Maximm angular
Sspeed (rad/s) acceleration (radio'5)

Shoulder Bend 7.0 70
Shoulder Twist 10.0 120

I Elbow Bend 17.0 300

Table 2.3. Average Human Arm Speed and Acceleration, [13,12]

I The motions described in these Tables 2.2, and 2.3 refer to shoulder bend,

shoulder twist, and elbow bend. These motions are defined as follows:

Shoulder Bend The angle the shoulder joint moves through in a plane parallel

I to the body sagital plane.

3 Shoulder Twist The angle through which the shoulder joint rotates about a

vertical axis, i.e., across the chest.

3 Elbow Bend The angular motion of the elbow joint. Not the twisting motion of

the forearm.I
2.2 Configurations

I From the human arm specifications, the basic design of the serial and parallel

3 configuration can be determined. Inherent to each configuration is a link that goes

from the shoulder to the elbow, which will be called length 11, and a forearm, which

will be called length 12 for the serial arm, as labeled in Figure 1.1, and length 14

for the parallel as labeled in Figure 1.2.

3 To compare the configurations, it was necessary to postulate a design for

each configuration of manipulator to fix parameters of length, mass, centers of

3 gravity, and moments of inertia. For the sake of simplicity, the cross sections

of the manipulators, as shown in Figure 2.1,were assumed to be rectangular and

I hollow, and are the same size for all links. This cross section is based on human

arm dimensions from [4].

I2-3
I
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1 0.005 m~

0.045 m1 0.085 m

0.09 mI
5Figure 2.1. Rectangular Cross Section of Each Link

The m-terial used to construct the links was assumed to be readily obtainable

aluminum with density - 2.8 x 10' -. An aluminum with this density could

reasonably be selected as an inexpensive material to manufacture the arm links.

From this density and volume of the links, the mass of each link is obtained, i.e.,

3 mass = p x cross sectional area x length.

Based on the human arm dimensions, Table 2.1, link 1 is then set equal to

3 0.36322 meters, and link 2 is 0.6705 meters in length. From these lengths the mass

of link 1 was then calculated to be equal to 0.6667 kg, and link 2's mass equals

3 1.3333 kg, twice that of link 1.

All motors were assumed to be of 6 kg. A review of current motor specifi-

U cations showed that the Moog model 304-008 brushless D. C. motor was capable

of achieving near human arm sppeds, see Table 2.3 of more than 10 radians/sec.

The motor is probably slightly undersized for the task at joint one, but is within

3 practical approximation limits.

1I  2-4
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I As a reasonable estimate of the payload, it was assumed that the mass of the

3- payload was equal to 1/5th of the serial arm mass, where the serial arm mass was

made up ot the mass of link 1 and 2, and the mass of the motor at joint 2, as shown

3 in Figure 1.1. The resulting payload was 1.6 kg. Structural integrity was not at

issue for the development of the basis for evaluation of mechanical efficiencies of

3 manipulator configurations.

In order to present a more comprehensive comparison, the variables chosen

I to be independent generalized coordinates will be the joint angles of the serial

manipulator, i.e. 01, and 62, see Figure 1.1. These angles are consistently used for

I both configurations.

3 From this average human arm data, the weights, and dimensions of each

configuration can be determined to within a reasonable proximity. Design specifics

3 can now be discussed.

3 .9-.1 Serial Configuration. Most currently available robotic manipulators

have serial open loop chain kinematics. Serial manipulators are such that each link

3 is attached to the end of the previous link allowing for:

I More reach

* Movement in another degree of freedom

I * More positioning flexibility, multiple paths to same cartesian position. (i.e.

redundant degrees of freedom).

The motors or actuators for serial manipulators can be located at the joint of the

3 the link driving the link as in the case of "direct-drive" robots, remotely located

through some kind of transmission mechanism such as gears and shafts. Direct-

3 drive robots are particulary well-suited for high speed applications. Human arm

emulation requires high joint speeds. Therefore, the A 3RM prototypes' drive sys-

I 2-5
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I tens were assumed to with direct-drive motors. For the serial configuration the

5 motor driving link 2 was assumed to be located at joint 2.

The following notation is used to describe the parameters of the serial ma-

5 nipulator:

Mo: The mass of the payload. (Nominally mo = 1.6 kg)

mil: The mass of link 1. (= 0.6667 kg)

U 11: The length of link 1. (= 0.36322 meters)

3 2n2 : The mass of link 2. (= 1.3333 kg)

12: The length of link 2. (= 0.6705 meters)

I m,: The mass of the motor at joint 2. (= 6.0 kg)

3 This notation will be used throughout this text unless otherwise indicated. The

centers of gravity of each link will additionally subscripted with the letter c.I
2.2.2 Parallel Configuration. The parallel manipulator configuration arises

3from using a mechanical linkage to transmit the torque of a motor physically located

off the joint axis of the joint of a particular link. In addition, the configuration is

I called parallel because the linkage is constructed such that it connects to form a

parallelogram. A parallelogram is chosen to simplify the relationship of the angles

of the links. This method of transmission places the motor weight (which generally

is quite significant) closer to the base of the robot arm, relieving the arm of the

additional torque caused by the motion of the motor.

3 In this analysis, the transmission linkage is used to locate the motor driving

joint 2 at joint 1. Two links are added to the serial configuration to construct the

3 parallel. In order to maintain the reach of the average human arm, the length of

the link extending from the end of link 1 to the payload, is unchanged. This link

3 has been designated as link 4, but is indeed equivalent in length to link 2 of the

5 2-6
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I serial manipulator. The transmission mechanism then makes up the parallelogram.3 The side extending back from the elbow is assumed to be 1/4th of the length of

link 4, which equals the length of link 2. This number was chosen as a reasonableI compromise between the values used in the Asada parallel mechanism ,[1], and

the Kazerooni parallel direct drive robot, [6]. The other additional link, link 3, is3 naturally the same length as link 1 to complete the parallelogram.

The notation used for the serial manipulator is extended to the parallel ma-3 nipulator configuration. When necessary to distinguish between the two, an ad-

dtional subscript p will be used for the parallel case and an s for the serial.

2.3 Forward Kinematics

The forward kinematic equations are used to relate a position in a base co-3 ordinate frame to the rotating and translating body axis coordinate of the payload

or end effector of the robot arm. For the configurations tested, two rotational3 joints in a plane are considered. The kinematic equations are equivalent for each

configuration.

3The kinematic equations are as follows:

lX = Icos(OI) + 12cos(O9 + 02) (2.1)

y = lisin(O1)+ l3sin(Ol + 02) (2.2)

I Knowing the joint angles of the robot arm the position of the end effector3is expressed in the based coordinate frame coordinates (z,y). These equations

describe the points of the z-y plane that are reachable by the manipulator. This

area of the plane is commonly called the robot's "workspace".

3~2.4 Inverse Kinematics

Typically, the position of the end effector is known in base coordinates and3 the joint angles are desired. The kinematics equations that solve for the joint

* 2-7
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i angles given the base coordinate values are called the inverse kinematic equalions.

3 For a two dimensional problem this is easily done in closed form, [13, page 42], [3, r
chapter 3]. For this problem the equations are given in Rivin's book, (13, page 44],

as follows:

02 = cOs( 1  + Y 21112 1 (2.3)

(-(1 2 sin 2 ) + (11 + 12cosO2 )y\

I Because the inverse tangent function is not well behaved for 360 degrees of

revolution, it is more convenient to use a relationship that looks at the signs of both

x and y. In the Fortran programming language this function is known as ATAN2.

3 It requires an input of two arguments, x and y. If the point in question is in

quadrants 1 and 4 of the x-y plane, then Equation 2.4 is sufficient. For quadrant 3,

5 60 equals the result of Equation 2.4 minus 180 degrees. In quadrant 2, 180 degrees

must be added to the result of Equation2.4 to find 01. Using these relationships

3 the joint angles are obtainable from any portion of the manipulators workspace.

3 2.5 Dynamic Fguations of Motion.

The instantaneous torques required for each actuator at a point in the work

I space are found through rigid body dynamics. These relationships are the equations

of motion representing the manipulators. Robot arm dynamic equations depend

onl the joint angles, the velocity, and the acceleration of those angles. In general,

gignoring drive system dynamics, these equations are of the form:

-F = DOh+g (2.5)

where D is the inertial tensor, h is a vector of coriolis and centrifugal terms, and

3 ff is a vector of gravitational terms.

A MACSYMA, [15] program was developed to generate the symbolic equa-

I tions of motion for both serial manipulators and closed link kinematic chain ma-
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I nipulators. The code and its development, implementation, and limitations are

included in appendix A.

uThe equations for each configuration follow

I 2.5.1 Serial Configuration. Based on terms (lengths, masses, and moments

of inerita) defined in Figure 1.1, the equations of motion of the serial manipulator

are as follows:3 1,1 = [mil/c+Il+(m2 +rnm)l+rn2 12,c+I,

+mol + m1 + 2li(Mrl 2 I + mo 2 )cosO2 ]Ol

I +[n~/l + 12 + ml + l 212,  + rn1 2 )cos62162

-211(m 2 2, + mnl 2)OO 2sinO2 - ll(m 2nl 2 + rnl 2)0'sin02

+(m111, + M2
1

1 + Mol) 9 cosO1 + (M212, + mo 2 ) 9 cos(81 + 02) (2.6)

I3r2 [n12  ± 2 + rn 2 + (M2l 2 ,+ rn, 2) cosO2]Oi
+(n 2, + I2 + mol) 2 + l1(mnlt2 mot 2)O sino 2

I +(M 2 l2, + rn.! 2 ) g cos(0
1 + 02) (2.7)

3 2.5.2 Parallel Configuration. Based on terms (lengths, masses, and mo-

ments of inerita) defined in Figure 1.2, the equations of motion of the parallel

manipulator are as follows: (The generalized coordinates used in these equations

are the same common independant coordinates used in the serial manipulator.)

I rI = [mIl2 + I1 + M312 + 13 + M4 12 + rnol2

5 - (rn31213c - 4ll14c - rn. 1 4 ) cos0 2]1i

-[(rn312t3c - M41114, - Ml 1 14 ) cos02102

I +(m31213c - rn41 14c - rnl14) sin.020

+(mllc + m313 + M411 + Moll ) g cosOI (2.8)

r2 [Mpr + 12 + M3t2  + M414 + 14 + mol4 + I-

3 - (rn31213c - M41114, - mol11i 4) C08 2] 1

* 2-9
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I +[m2 4PC + 12 + M32p + m4 14 +14 + 7o04 + Io]i2

3 -(M 3 12 13 - m,,114, - M, 114 ) sin02

-(M212c + M312 - Ml 1
4c - tool 4) g cos(01 + 02) (2.9)

2.6 Achievement of Minimum Control Complexity

As stated earlier, the analysis of these manipulators included enhancing the

efficiency by minimizing control complexity. The efficiency enhancement techniques

U investigated were:

3 * Dynamic Decoupling

* Configuration Invariance

* Gravity Compensation

I These techniques are compatible, i.e. they can be implemented simultaneously

with the exception that the serial configuration can't be dynamically decoupled.

However, unless the configuration of the manipulator can change dynamically with

3 payload, these conditions can only be met for some nominal payload. This research

effort is the first time that the effects of a varying payload, other than the nominal

3 "tuned" payload, have been examined. This section will address the theory behind

minimum control complexity, and how it was applied to the serial and parallel

3manipulators.
5 2.6.1 Design for Dynamic Decoupling and Configuration Invariance Asada

and Youcef-Toumi [1, chapter 4] presented a method for reducing the control com-

3 plexity of a manipulator by simplifying the dynamic equations of motion. These

equations are in general highly coupled, non-linear, second order ordinary differen-

3 tial equations. Asada and Youcef-Toumi have examined how to design a manipu-

lator's mechanical configuration to achieve decoupled dynamics and configuration

3 invariance. The dynamic decoupling eliminates the off-diagonal terms of the inertia

*I  2-10
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tensor and simultaneously eliminates the coriolis and centrifugal terms resulting

in a single input - single output control algorithm for each actuator. The config-

uration invariance reduces the non-linear equations to linear, ordinary differential

equations with constant coefficients.

Dynamic Decoupling. Ignoring the motor dynamics, the equa-

tions of motion for a manipulator with revolute joints can be expressed as [1]:

Di ± + E D, + E (D 1 eD k)O k + ri (2.10)

S=.i k ( 19 8k 2 89i

where Dij is the i-j element of the inertia matrix and rgi is the gravity term. For

dynamic decoupling the off diagonal elements of the inertia matrix are set to zero by

careful configuration design. These constraints are different for each configuration

and are presented in full detail after further deveopment. With the off diagonal

terms equal to zero, the equations of motion reduce to:

~ ODi,,i 1 ODkk i2
= D,,O, + -- k - - Ok + r, (2.11)

k 190k 28 ,

Eliminating the off diagonal inertia terms has significantly reduced the complexity

of the equations of motion. However, there are still non-linear terms arising due

to the dependence of the manipulator on joint orientation.

Configuraiion Invariance. Another simplification that can be done

to the dynamic equations of motion is to make the manipulator independent of spa-

tial orientation. This simplification eliminates the non-linear terms of the equations

of motion, Equation 2.10, except for the gravity terms. This implies from Equation

2.10 that the following relationship must be true:

(, I1 201 = 0 (2.12)
0 0k 2 1 t

Substituting Equation 2.12 into Equation 2.10 the equations of motion become:

i = D,,i, + Djij + ,9, (2.13)
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1 Except for the gravity terms, these equations are linear with constant coefficients.

3 Combining the configuration invariance with the decoupling completes the simpli-

fication process yielding linear (except for gravity terms), decoupled equations of

3 motion.

S~2.6.2 Design for Gravity Compensation In addition the reduction of non-

liearity obtained from configuration invariance and dynamic decoupling, the non-

3 linear gravitational terms in the equations of motion can be completely eliminated.

The basic idea is to balance the manipulator about each actuated pivotal point.

This is usually done by using the weight of the actuator as a counterbalance to

the weight of the link (or set of links) it is driving. In order to do this coun-

3 terbalancing, the link has to be extended beyond its joint of rotation. This may

physically impede the motion of the manipulator, limiting its workspace unless

carefully designed to avoid this problem.

3~2.6.3 Applied Minimal Control In order to conduct a fair comparison of

both manipulators, parameters of length and mass must established. The following

3 conditions were used to establish a baseline configuration:

3 * The human arm dimensions were imposed on each manipulator.

. For the parallel manipulator, the added length, 12, was arbitrarily chosen to

I be 12 = 14/2 for all cases of the analysis.

3 e Any added linkage that was required to implement tuning was added at a

constant mass/unit length.

3 * The weight of the motors was used for balancing when applicable.

e The nominal payload used for tuning was mo = 0.

1.6.4 Serial Manipulator. The tuning conditions were applied to the serial

3 manipulator. Looking at the equations of motion, Equation 2.7, it can be deter-
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m1ined that only configuration invariance and gravity compensation are achieveable.

3 The off-diagonal terms of the inertia tensor are all always positive and hence cannot

be eliminated. Therefore, two tuning conditions have to be met (from Equation

3 2.7).

For configuration invariance the following condition must hold:

I m212c + io1
2 = 0 (2.14)

I This is also the condition for link 2 to be gravity compensated. For the nominal

baseline, however, the payload rno is zero. Therefore, the condition for configura-

tion invariance reduces to:

3 12c = 0 (2.15)

For gravity compensation the condition is:

MlllC + Mn21 1 + moll = 0 (2.16)

I With the all the lengths and masses fixed in the baseline and with mo = 0, the

only variable then is 1l,. Solving for llc the condition becomes:

M2-- ,) 
(2.17)

Note that without the configuration invariance condition imposed, gravity coni-

pensation is not achievable for the serial manipulator.

To enforce the configuration invariance and gravity compensation, the loca-

3 tions of the motors were moved to act as a mass counterbalance. For the serial

manipulator, the physical configuration changed to appear as in Figure 2.2.

In Figure 2.2, the two new lengths introduced, 1, and 12 are the lengths the

3 links had to be extended to put the motors in the location necessary for tuning.

These lengths change the tuning conditions to be; I = 2 .8U mlll. + M 211 + moll - M'11 - mml = 0 (2.18)
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11 22

MI in2, 12

3 lFigure 2.2. Physical Configuration of Tuned Serial Manipulator

and

mrl 1 , + M211 + moll - Mmi,2 - M2 l2c = 0 (2.19)

The addtional mass m, and m2 is added assuming constant cross sectional area

and constant density of the material. Therefore, these masses can be expressed

mathematically in terms of the additional length added. Therefore Equations 2.18

and 2.19 are a system of two equations and two unknowns, 1i and 12. Solving the

3 equations, the lengths are:

011 = 0.4483meters

0 12 = 0.1455meters

This modified configuration was used in the efficiency calculations for the plots in

3 Chapter III.

3 p.6.5 Parallel Manipulator. The tuning conditions for the parallel manip-

ulator are obtained from Equation 2.9. The parallel manipulator can be made

1 2-14

I



completely decoupled, invariant, and gravity compensated. To achieve this tuning,

3 three conditions must be met to balance the centers of gravity of the links. These

conditions are as follows:

I For configuration invariance and dynamic decoupling,

3 mr312 13c - Ml41114c - M0oll 4 = 0 (2.20)

3 For gravity compensation,

3 rMlllc + m 313c + n 4
1

1 + noll = 0 (2.21)

I rm2 12c + M312 - rn414 - tool 4 = 0 (2.22)

For the parallel manipulator, configuration invariance can be achieved independent

3 of gravity competisation and vice versa. The physical configuration of the parallel

arm was changed, consistent with the way the serial was changed, by using the

3 location of the motors to achieve the conditions necessary for configuration invari-

ance and gravity compensation. The physical appearance of this configuration is

shown in Figure 2.3.

The two new lengths defined in the physical alteration process for the parallel

arm were, 11 and 12. Where 1, is additional link length added for tuning, and 12

3 designates the new location of the motor driving link 2. These new parameters

change the tuning constraint equations for gravity compensation of the parallel

3 manipulator. These equations are:

mlll + rn313 + rn4 1 + Moll - M,,,l - in 11C = 0 (2.23)
It

M2!n2 + rn312 - m 4 14 - M.14 + m,12 = 0 (2.24)

Substituting for m, in terms of length l, the equations were solved for 1, and 12. For

3 the case of imposing gravity compensation only without configuration invariance,

14c was assumed to be 14/2. Applying the gravity compensation constraints yielded:
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I -12 ]14 m,i 4, 14
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I y__

I

I Figure 2.3. Physical Configuration of Tuned Parallel Configuration

!t•* 11 = 0.0895 meters

2 = 0.0466 meters

I When imposing tur e configuration invariance constraint along with the gravity co a

pensation constraints, the center of gravity of link 4 had to changed. Through

redistribution of the mass of link 4, the new center of gravity was driven to

5 14c = 0.0629 meters for configuration invariance. The new locations of the

motors to achieve gravity compensation became:

S 11 = 0.0895 meters

50 12 = 0.0419 meters

5 This modified configuration was used in the efficiency calculations for the plots in

Chapter III.

I
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I 2.7 Mechanical Efficiency Comparison

Although there has been much attention given to how to build and tune

manipulators to achieve configuration invariance, dynamic decoupling and gravity

3 compensation, very little attention has been given to evaluating and comparing

the performance of these manipulators. Most of the literature [1], [13], addresses

3 how to tune for a constant payload, and claims that payload, indeed, doesn't vary

appreciably. However, when considering the most general manipulator, where the

I application or task of that manipulator is not well defined, the effects of a varying

payload on performance are of great concern. Song and Lee, [14], present a method

for evaluating the performance of manipulators using mechanical efficiency. Song

and Lee, [14], considered only massless systems with point mass payload. The

research presented here expands on Song and Lee's work breaking new ground to

include inertial and gravitational terms. Coriolis and centrifugal effects have been

neglected assuming they are negligible at low speeds.

1I 2.8 Summary

This chapter has addressed the design considerations of the parallel and se-

rial configurations. The first consideration is the design goal of trying to define

I and emulate human arm motion. Then the physical layout of each configuration

was examined. Finally, the choices made to apply mechanical efficiency analysis

I to each configuration in a nominal and various partially tuned and fully tuned

i configurations were stated.

I
I
I
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Iff. Efficiency Analysis

As a starting point, Song and Lee's work, [14], was recreated. In the analysis,3 the equations of motion were specialized for each configuration to a massless arm

moving the same payload. A vertical trajectory was assumed, with constant x and

I finite y displacement in cartesian coordinates, the inverse kinematic equations,

Equations 2.3 and 2.4, were solved for the angular displacement and substituted

Iinto the work integral. For this specialized case the work can be found in a closed

3 form solution.

Having reproduced Song and Lee's work, see section 3.2 for detailed anal-3 ysis, the next step was to add in the mass of the manipulators and look at the

performance. The payload was still being displaced by the same amount, but the

manipulators were moving their own mass in addition to the payload. A new per-

formance parameter had to be introduced. Both manipulators were moving the3 same payload by the same amount. The comparison of performance was how much

total work had to be done by the manipulators to produce that movement. The

parameter 77 was introduced as a comparison of that work, where ' is defined as,

I Input Work of Parallel Manipulator
7 Input Work of Serial Manipulator (3.1)

This parameter can be greater than one, unlike what we are used to seeing in

efficiency. When q' is greater than one, the serial manipulator has done less total

work to move the payload a prescribed distance than the parallel manipulator.

This would imply that the serial manipulator is more efficient for that movement.

If 7' is less than 1, the parallel manipulator is more efficient. This performance

parameter will be used for the remainder of the analysis.

Even with the mass of the manipulator added in, the gravitational terms of

the work integral expression were still integrable in a closed form. A closed form

3 solution of the work integral was not possible with the inertial terms included.
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I A time varying trajectory was assumed in order to find joint position, velocity,

and acceleration for the constant x, 0.1 meter change in y displacement. Constant

acceleration, a, in the y direction was assumed to yield the following trajectory

I profile:

y=a (3.2)

I = at (3.3)

y = a (3.4)

(3.5)

I Through the manipulator inverse kinematics, Equations 2.3 and 2.4, expressions

for joint velocities and accelerations were found.

= lsin(O1 + 02) l (3.6)

l1 2sin92
[-IsinO, - t2sin(6O + 02)]Y (3.7)

62 11 12sin, 2

32 ! 1sin2m61 + l Icos61 6 + 12sin(61 ± 62)A + 1 2cos(6
1 + 0)(01 + i2)2 (3.8)-l 2 sin( 1 + 12

+ , { 2 l,.in(o + 92)(O1 + 2)2 + [lcoSO,6; + L2cos(81 + 82)(0, + 02)2]

XCot(61 + 62) + 1isin$,j21

+{licosO + 12cos(0, + 02) - cot(oI + 62 )[lsin, + l,9in(69 + 02)]}(3.9)

I Because of the inability to integrate these equations into a closed form solution

of mechanical efficiency, numerical integration was done when the inertial terms

were included. The numerical integration was based upon a standard trapezoidal

3 rule, (5, page 7771, whose accuracy was confirmed by comparing the numerically

integrated gravitational term results to those of the closed form solution. The

integration confirmed accuracy to three significant figures. The detailed MatrixX

[161, program developed for this numerical analysis is included in appendix B.

SThe expressions for 61, i2, 61, and 62 and the equations of motion of the serial
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I and parallel manipulators were evaluated at every step (twenty steps were used to

achieve three significant figure accuracy) in the integration. The efficiency ratio

was determined for over 750 points in the workspace. With these large expressions

3 being calculated, and considering the intense number of iterations required, the

numerical process of evaluating efficiency when including inertial terms became

very time consuming.

Once the method of numerically integrating the work integral expressions was

I checked out for the analysis, the efficiencies, 77', were computed for the following

cases of manipulator dynamics represented by:

* Only including gravitational terms,

- Massless configurations,

- All mass included configurations,

I I. Inertia terms only,

- Without configuration invariance,

I - With configuration invariance,

I e Inertia- and gravity terms included,

- No constraints imposed,

- Configuration invariance constraints imposed,

I - Gravity balance and configuration invariance constraints imposed,

I As stated earlier, the manipulators were tuned for zero payload and the efficiencies

were calculated for a payload of 1.6 kg, in order to show the effects of how the

I manipulators' efficiencies change due to variation in payload.

The problem of how to implement constraints fairly for both manipulators

I had to be addressed. The decision was made to use the weight of the motors to
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balanice the manipulators, which is the coinion practice for robot design, [13].

This decision avoided the problem of having to add mass to each configuration or

changing the baseline dimensions except those required to support the relocated

motors.

3.i 77' Presentation Method

7' data was compared by graphical means. The plots generated show a three

dimensional representation of the efficiency as it varies over the x-y workspace (first

quadrant). All efficiencies were calculated for a small change in the y direction of

0.1 meter of the pointmass payload (1.6 kg) located at the end the manipulator

arm. Initial evaluations determined that quadrants other than the first quadrant

were symmetrically similiar, therefore it was unnecessary to compute efficiency for

the remaining quadrants.

The planar workspace of the manipulators is an annular area with inside

radius equal to (12-l), (0.3073 meters), and outside radius equal to (11 +12), (1.0337

meters). Because the base cartesian coordinates were being used, the numerical

analysis program calculated rectangular sections of the workspace. Shaded areas

of the plots where the efficiency was not calculated are set to be zero. For example,

in Figure 3.1, a region made up of two rectangular areas is shown to have a zero

value.

I Portions of this region are reachable by the manipulator, but because a gen-

eral trend of the efficiency was being sought it was not necessary to compute the

efficiency for these areas. The dotted line enclosing the box of the plot is included3 to give a reference point for the largest magnitude of that graph.

The purpose of these plots is not to be able to interpolate numbers from

them, but rather to see the trend of how the efficiency varies over the workspace,

and to compare the efficiency of the serial and parallel configurations. Therefore,

3 the actual magnitude of any individual point on the workspace is of lessor im-
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Figure 3.1. Example of an Efficiency Ratio Plot

portantance. The line of demarcation for the plots of Y7' is 17' = 1.0. When 7'

I is greater than one, the serial arm is more efficient. When 7' is less than one,

the parallel arm is more efficient. In Figure 3.2, for most of the workspace the

value of j7' is less than one, indicating a more efficient parallel manipulator. But

in one semi-circular region, 1' is equal to one, indicating equal efficiency between

the two configurations. In some cases, Figure 3.5 for example, the demarcation

line is difficult to see because of large magnitude data points causing spikes in

the surface generated. When this occurs, an additional plot is included to show

how the efficiency behaves over a majority of the workspace showing where the

value of one falls. Additional plot generation is done by narrowing the amount of

workspace shown, usually part of the y axis, and eliminating the data causing the

spiked behavior.

I
I
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3.2 Massless Systems

I The first step in this efficiency analysis was to reconfirm the work of Song

and Lee, [14]. This was done by integrating the equations of motion to obtain the

work. The general expression for work is,

W = r -. dO (3.10)

3 In order to evaluate using the Song and Lee assumptions, the equations of motion

had to specialized for a massless system. For the serial manipulator these equations

3 are,

71 = m.ogl1 CosO1 + mrol 2gcos(61 - 02) (3.11)

I r2 = Mgl 2cos(Oi + 02) (3.12)

The total work done by the robot is the sum of the absolute values of work done by

each actuator. The work done by the joint one actuator of the serial manipulator
I is, l

is,- j [m rnoglicosO, + Mrgl2 cos(6 1 + 62 )]d61  (3.13)JII
The trajectory of the payload in the Song and Lee analysis (and for all efficiencies

calculated in this analysis) held x in cartesian coordinates constant. From the

forward kinematic equation:

i = 11cosO1 + 12cos(Om + 02) (3.14)

3 one can solve for cos(01 + 02) and the integrand is then in terms of the variable 01.

The integral, evaluated from initial to final values, becomes:

w = I,[mogicosOi + M1 X2 - COSO,, d (3.15)

U integrating this expression results in,

3 W1. = mogx[Oel - 01i] (3.16)
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which is in agreement with Song and Lee, [14]. The expression work of the joint

3 two actuator of the serial manipulator is,

W2.= f21M912C(l +6 2 )]d82  (3.17)

To integrate this expression the constraint equation, Equatiun 3.14, was differen-

I tiated and solved for dO2.

l1 sinO _

do= -I 2 sin(0l + 02)do - dO1  (3.18)

and from the trigonometric identity sin2 0 + cos 29 = 1,

sin(01 + 62) 1 - COSO 1 ) (3.19)

Now substituting for do2 and sin(01 + 62), the integral becomes,

R m2.= [M(4 - 1cOsOi) inO 1 - (z - 1  (3.20)

-(f - I-Lcoso, ) 2  12 12 coO)

Making use of a common substitution, this integral evaluates to,
mg1 - ) - ( -i 1(sinl - sinOi) (3.21)

{ [sin(Oi +62)1I -X (e2 - 19)10 (in 1

I This is also in agreement with Song and Lee, [14].

The equations of motion for the parallel manipulator can be integrated di-

rectly and result in the following work expressions,

IWl = m.gl(sinOl - sinOl,) (3.22)

3 W 2p = mog12[sin(Oif + 02f) - sin(O1i + 02i)] (3.23)

which again agrees with Song and Lee, [14].

However, Song and Lee make assumptions on signs of the the work expres-

3 sions and draw conclusions from those assumptions. Song and Lee claim that

the parallel manipulator is 100% efficient based on evaluation of one point in the
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workspace where the signs of the work expressions agree with their assumptions.

However, from this analysis it is seen that the parallel manipulator is not 100%

efficient for all the work space. The work done by the two actuators of the parallel

manipulator are not always opposite in sign which would lead to %100 efficiency in

Song and Lee's analysis, [14]. It can be shown that in some parts of the workspace,

I particularly the outer edge, that the efficiency of the massless parallel manipulator

falls below the %100 percent efficient mark.

The first of the three dimensional plots, Figures 3.2, 3.3, and 3.4 show the

mechancial efficiency of the massless serial and parallel configurations for the first

quadrant of the robot workspace. Figures 3.2 and 3.3 are plots of the actual

efficiency, i.e.
outp= UfC(3.24)

input work

I Legend

X Y Z "

E
TA 0.5

xy S
E

R

A 0.0
L 0. 0.

I y 1. 1. X

Figure 3.2. Efficiency of Massless Serial Manipulator

and Figure 3.4 is a plot of the comparison of the efficiency ratio,

7- ?laetal (3.25)

7lparallei

I 3-8

I



I
I z

Legend 1.0I xY zi
E

A 0.5I P

A
L0.
L

I L 0

Figure 3.3. Efficiency of Massless Parallel Manipulator

As seen in Figure 3.3, the parallel manipulator is not 100% efficient for all

I area of the reachable workspace. When the manipulator is near the outer edge of

the workspace, near point y=1.0, x=1.0, the efficiency ratio falls below the 100%

II

mark. This less than perfect efficiency is also seen when the manipulator is bent

back toward its base, i.e., y=0. 3 , x=0.0. Figure 3.4 shows the 17' plot for the

massless case.

This plot shows that the parallel manipulator is more efficient than the serial

for the majority of the workspace. The level spot on the graph, located near

x=0.0, y=0.5, has a magnitude of 1.0. Except on this plane, the magnitude of q' is

mostly less than 1.0. Note that the change in the y direction, used in all the work

I calculations is 0.1 meters.

This efficiency analysis, Figure 3.4, actually tells us more than just confirming

the work of Song and Lee. If the massless manipulators were gravity compensated

for some nominal payload, the contribution of the mass of the manipulator and

the nominal payload would be eliminated by that compensation. Therefore, these
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Figure 3.4. 17' of Massless Configurations

plots also show how the gravity compensated configurations are effected by some

variation in the payload away from the nominal. Note that the efficiency is a

function of the location in the workspace.

In general, looking at the 7' in Figure 3.4, the total work done by the parallel

manipulator, for a delta payload away from some nominal payload used for grav-

ity compensation, is less than the serial manipulator for most of the workspace.

Therefore, Song and Lee's conclusion that the parallel configuration is more effi-

cient than the serial configuration is for a general application correct, except when

the manipulator is operating in linited parts of workspace.

With Song and Lee's work reproduced and expanded for the entire workspace,

the next step was to add in the effects of the mass of the manipulators. For this

analysis, the only performance parameter with real meaning is 17'.
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3.3 Graitational Effects

I The next step was to add in the effects of the mass of the configurations. This

3 addition includes the link's mass and inertia. Initially, only gravitational terms of

the equations were included. The work expressions were still obtainable in closed

form. The integration follows identically. The only changes are the added mass

and length terms of the arm, which are a constant to the integration. The work

3 expressions are as follows:

411, = (MIlc + mmll + M 211  12 (ain61 j - sin8

+ (m 2l2, + M.12) E (81f - 69,) (3.26)

W2. = (m 212c + m1 2g[sin(o, + 2,ii - (oe, - 6910

+ L-( sin~lf -. sin~li)] 1 (3.27)

W13, = (Mnlic + m313c + rn4 11 + mo11 ) g (sinOt - sinO1 ,) (3.28)

W2p = (rn2/ 2c - M 312 + m414c + m.1 4)g[sin (01 + 021)

-sin(Ol, + 02,)] (3.29)

I Figure 3.5 plots the 7' efficiency for the first quadrant of the workspace when only

gravitational effects of manipulator mass were included.

As stated in section 3.1, it is difficult to indicate where the demarcation ine

3 of when q, = 1.0 occurs in Figure 3.5. For clarification, Figure 3.6 is included.

Figure 3.6 shows the majority of quadrant one of the workspace with the data

causing the spiking effect in Figure 3.5 eliminated. From examining Figure 3.6 one

can conclude that when arm gravitational dynamics are included in the 17' analysis

the parallel configuration is more efficient than the serial configuration for a larger

portion of the workspace than when massless configurations were examined. The

serial manipulator is still more efficient when the arm is near the point x=0.3,

1 3-11
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3y=0.0. Comparing Figures 3.4 and 3.6, the conclusion is made that significant

improvement in efficiency is obtained by applying gravity compensation to either

I configuration, serial or parallel. However, even with this improvement in efficiency,

the parallel configuration is still more efficient, except in a very limited region of

I the workspace. This completes the computation of gravitational terms. Now, the

inertial terms of the equations of motion need to be included.

3.4 Inertial Effects

I To determine the work for the the case when inertial terms are included, a

closed form solution was not possible. Therefore, numerical integration had to be

used. The torques could be calculated from the equations of motion at any given

position and acceleration. The acceleration was assumed to be an instantaneous

step of magnitude equal to that of gravity in order to compare the magnitude of

I inertia effects to that of gravity. The numerical integration method used was a

trapezoid rule method, which assumes that torque changes linearly between sub-
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sequent positions, [5]. This method was tested by numerically integrating the

gravity terms and comparing the result to the closed form solution obtained from

that analysis. This method was found to be acccurate to within at least three

significant figures.

3 The efficiency was determined including only inertia terms, without any "tun-

ing", and assuming that the centers of gravity for the links are located half way

Sdown the link and are shown in Figure 3.7.

For all of the workspace in Figure 3.7, the parallel configuration is more effi-

cient than the serial when mass effects for only inertia terms are considered. Figure

I 3.8 represents 77' cosidering only inertia terms when the configuration invariance

constraints were imposed.

I Comparing Figure 3.8 to Figure 3.7, shows that the overall magnitude of 1'

throughout the workspace has decreased. This indicates the efficiency of the par-

I allel configuration has increased more than that of the serial when configuration

I 3-13
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invariance is imposed on the inertial terms of the equations of motion. The next

step in the analysis is to combine the effects of gravity and inertia, look for the

dominate effects, and implement configuration invariance and gravity compensa-

tion.

3.5 Combined Effects

For the purpose of this investigation the combined effects refers to the case

when both the inertial and gravitational terms of the equations of motion are

3 considered together in the computation of efficiency. The baseline for comparison

was the nominal case where no tuning was implemented and all centers of gravity

I of the links were located at link midpoint. The efficiency plot for this baseline

case is in Figure 3.9 and is called the nominal case of the combined efficiency.

Again, the line of demarcation between the efficiencies of the two configurations is

I unclear. Figure 3.10 showing the majority of the workspace and eliminating the

spiked behavior is included in order to better visualize the demarcation line.
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Figure 3.10 shows that the parallel configuration is the most efficient for the

majority of the workspace. The serial manipulator is more efficient near the point

x=0.3, y=0.6, which was previously seen in the case when only gravitational terms

were considered.

5 Using the weights of the motors as counter balances, the link lengths were

adjusted to achieve gravity compensation. For the serial manipulator, Figure 1.1,

3 this meant extending link 2 behind the pivotal point (joint 2) by 0.1455 meters,

satisfying Equation 2.15. Link 1 was extended by 0.4483 meters to satisfy the

i condition of equation 2.17. The additional weight added by the extension was

added at constant mass per unit length equal to 1.9885 kg/meter. This mass per

unit length constant was obtained by using the density of a common aluminum

5 used in manufacturing ( p = 2.8 x 103kg/m s ) multiplied by the cross sectional

area of the links held constant throughout this analysis, see Figure 2.1. The motor

mass was considered constant for all motors (m, = 6 kg).
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For the parallel manipulator, Figure 1.2, link 1 was extended 0.0895 meters

to satisfy the gravity balancing constraint, Equation 2.21. To satisfy the constraint

for link 2, Equation 2.22, link 2 did not have to be extended, but rather the motor

was located 0.0466 meters along the existing link away from the base. With these

3 constraints enforced, the efficiency is plotted in Figure 3.11.

The manipulators are gravity balanced for zero payload, and the efficiency

3 calculated in Figure 3.11, is for a payload of 1.6 kg. Therefore, the plots show

effect of a variable payload on the parameter of comparison 7'. From Figure 3.11

I it is seen that with the improvement afforded by gravity compensation, although

the efficiency of both configurations has improved, (see section 3.2), the parallel

I configuration is the most efficient over all the workspace.

In addition to gravity compensation, the configuration invariance constraint

was imposed on the manipulators and the efficiency calculated. This constraint of

5 tuning for configuration invariance is only an additional constraint to the parallel
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manipulator, Equation 2.20, because satisfying the gravity balancing constraint

for the serial manipulator also gives configuration invariance. With this addition,

I efficiency was computed and is plotted in Figure 3.12.

Comparing Figures 3.11 and 3.12 it is seen that the magnitude of 17' has

5 decreased when configuration invariance was applied to the parallel configuration.

The efficiency of the serial arm was unchanged. Looking again at the definition of

3 efficiency used:
= Input Work of the Parallel Arm (3.30)

Input Work of the Parallel Arm

it is seen the only the work done by the parallel arm has changed. Therefore, if 17'

3 decreases in magnitude, the work done by the parallel arm has decreased making

it more efficient.

I
I
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3.6 Summary

U This chapter looked at how the mechanical efficiency was calculated and ap-

3 plied to the parallel and serial robotic configu rations. The efficiency was detemnined

considering the folowing cases:

I e Only gravity terms of the equations of motion.

3 - No arm mass included.

- Arm mass included.

e Inertia terms only.

I - No configuration invariance tuning applied.

--Configuration invariance tuning applied.

* All terms of the equations of motion included.

- Nominal case - no tuning.
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- Gravity compensated case.

U - Gravity compensated and configuration invariant case.

3 From the analysis of the data generated, one can draw three basic conclusions.

3 1. In general the parallel manipulator performs more efficiently than the serial

manipulator over a majority of the workspace.

1 2. Gravity balancing significantly enhances the performance of a manipulator.

3 3. Trying to achieve minimal control complexity through configuration invari-

ance and dynamic decoupling (achievable only by the parallel manipulator)

3 results in improved efficiency of the manipulator. Miinimal control complex-

ity is not achieved due to the return of non-linear effects arising from carrying

3 a payload other than nominal.

In examination of the plots, Figures 3.2 through 3.12, for the majority of the

workspace the efficiency, ti', is less than one in value. Looking at the definition

1 3-19
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of 1i', Equation 3.1, this data can he interpreted to mean that the magnitude of

the total work done by the parallel manipulator is less than that of the serial

manipulator at those points in the work space. Because the points where the

U value of 1' dominate the workspace for all cases considered, it can be stated, by

this definition of efficiency, that the parallel manipulator is more efficient. This

I statement includes the case of both manipulators "tuned" for a specific payload

and the actual load was not at that specific value, Figure 3.12.

When comparing gravity compensated data, Figures 3.4 and 3.11, to the

3 Iuncompensated data, Figures 3.5 and 3.9, that the total work done by both of tlbo

manipulators decreases significantly. From this data it can be concluded that, if

3 achievable, gravity compensation is a worthwhile prospect.

Finally, when examining Figures 3.12 and 3.11 one can see that the work

I done has decreased for the parallel manipulator when making the change to con-

figuration invariance, all other parameters being the same. The serial manipulator

parameters were not changed because it achieves configuration invariance when the

gravity compensation is applied. Therefore, the lower magnitude of 17' can be at-

tributed to the improvement in parallel manipulator efficiency when the conditions

3 for configuration invariance are applied. The conclusion is that minimum control

complexity can be achieved, and results in the most efficient configuration.

3
I
I
I
I
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3 IV. Conclusions and Recommendations

5 4.1 Conclusions

A method was developed for determining and comparing the efficiencies of

3 different robotic manipulator configurations. Two robotic manipulator configura-

tions have been compared to determine which would be best suited for application

I to the A ' RM project. The project requires a manipulator designed for general ap-

plications, including the ability to handle variable mass payloads. Current research

in efficiency enhancement has generally been applied to manipulator configurations

having constant or zero mass payloads. The mechanical efficiency of a open link

serial kinematic chain manipulator was compared to the mechanical efficiency of a

3 closed link parallel kinematic chain manipulator considering the effects of carrying

a mass payload other than that foi which the manipulator was tuned. The results

3 of that comparison are as follows:

1. The parallel manipulator performs n; re efficiently than the serial over a

majority of the workspace.

5 2. Gravity compensation significantly enhances the efficiency of each manipu-

lator.

1 3. Through configuration invariance minmal control is achieved and the effi-

ciency of the parallel configuration manipulator is enhanced.

a 4.2 Recommendations

Although th s research is significant, this is only the first step. The technique

5 for evaluation technique is now in place, and further studies in this area could be

fruitful.

4
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9 A form of the parallel manipulator would be the best choice of the two con-

figurations considered, in terms of efficiency. Consideration of other configu-

rations before making a final decision may be warranted.

I * Mass balancing to achieve gravity compensation may not be the best ap-

proach. Spring counterbalancing and controlled-force counterbalancing should

also be investigated.

3 * Other trajectories should be investigated, including short trajectories in the

x-direction, and long trajectories in both y and x-directions.

1 * An effort should be made to research other performance measures, such as

power based efficiency.

* The next logical extension would be to add in the coriolis and centrifugal

3 terms to this method of analysis, and then extend to three degrees of freedom.

e A study could be done trading off the size of motor used in the efficiency

3 analysis. (i.e. motors of different weight)

e Contours of constant 17' in the x-y workspace could be used to better quantify

U the analysis.

3 * AFIT would benefit tremendously by having a working copy of the auto-

matic symbolic equations of motion generator in MACSYMA, [15] for the

3 tree structure manipulators. This would benefit instruction, control research,

and computer aided design efforts at AFIT.I
These are the recommendations for further studies in this area for AFIT. This

analysis is very diversified and could be applied in many ways.

I
I
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Appendix A. Dynamics

This appendix looks expressly at the dynamic equations of motion of the

manipulator. The approach of using Lagrange multipliers [10] is used to derive

3 these equations for closed link kinematic chain manipulators. The equations are

derived symbolically using MACSYMA, an mathematical symbolic manipulation

3 programming tool, developed by M. I. T.,(15], to be able to look at the individual

terms of different closed link chain configurations. In examining these individ-

3 ual terms, the manipulator can be designed so that configuration invariance and

dynamic decoupling can be achieved [1].I
A.1 Symbolic Equations of Motion

I Open kinematic chain manipulators have ajoint for every degree of freedom in

the workspace. Closed kinematic chains have at least one redundant joint effecting

the motion of the manipulator. The problem discussed here is one where the

3 closed form solution of the dynamic equations of motion for the closed kinematic

chain manipulator is sought. This closed form solution should be expressed in the

3 least number of coordinates as possible, i.e., equal to the number of degrees of

freedom. This enables the manipulator to be built without actuation or sensing on

3the redundant joints.

The method discussed here, for the formulation of the closed form equations,

3 is based on the Lagrangian formulation which has been developed by J. Y. S. Luh

and Yuan-Fang Zheng in their paper "Computation of Input Generalized Forces for

I Robots with Closed Kinematic Chain Mechanisms", 110]. Using this formulation

requires developing the dynamic equations of motion for serial links which is done

symbolically using the MACSYMA program implementing the Lagrange-Euler for-

mulation developed by M. C. Leu and N. Hemati. This program is found in Leu

and Hemati's paper "Automated Symbolic Derivation of Dynamic Equations of
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U Motion for Robotic Manipulators", [91, and was implemented at AFIT in February

1988.

Using these two papers as a foundation I then had to add addtional MAC-

5 SYMA programming to implement the formulation of Luh and Zheng [10] and

obtain the symbolic equations of motion for closed kinematic chain manipulators.I
A.1.1 Lagrangian Formulation. The Lagrangian formulation presented by

3 Luh and Zheng [10] develops the dynamic equations of motion for the closed kine-

matic chain manipulator using Lagrange multipliers and assuming that each joint

I senses position, velocity, and acceleration.

Going back to first principles [111, the Lagrangian is defined as:

L =_ T - V (A.1)

where T is the total kinetic energy of the system and V is the potential

energy of the system. Using Lagrange's variational calculus techniques to develop

3 the equations of motion, the forces are placed into the categories of conservative

and non-conservative forces. Lagrange's equations can be written in the form:

d d(OL) OL 1

di~,+ Q ±>Aiau (i 1.n) (A.2)di 84 i 49=i

where Qn, is the non-conservative generalized force, At are the Lagrange multipliers,

and the ali are the holonomic constraint equations. The holonomic contraints are

obtained from the physical constraint equations through the relationship:

a i -(A.3)iOqi

I where gi are the physical contraints determined by the system in question. Sub-

stituting equation A.3 back into equation A.2 and using vector notation produces

I the equation consistent with Luh and Zheng 110]:
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Dq+9+ -F+(4 (A.4)

where the left hand side of Equation A.4 is from the conservative force side of La-

grange's equations, i.e., the left hand side of Equation A.2, iF is the non-conservative

control torque vector, and j are the physical constraint equations.

Applying Lagrange's equation, Equation A.4, to the robotic manipulator with

n joints (not necessarily independent) results in n equations. But the joint coor-

dinates are related through the m physical constraint equations, i.e. §. Therefore,

the system of equations we have developed is the n Lagrange's equations with n

+ m unknowns, n unknowns are from the coordinates and in unknowns are from

the Lagrange multipliers, and the m physical constraint equations which have the

n unknowns of the joint coordinates.

Now the system of equations can be solved.

But these equations apply only to open kinematic chain chain manipulators

that are somehow physically constrained. To apply this development to a closed

kinematic chain manipulator Luh and Zheng [10]make a virtual cut at a joint

in the closed chain that is not actuated. This results in two open kinematicc

chains that have a common point at the cut. A position vector from the base to

the cut defines that point. This vector is defined by both open chains through a

series of homogeneous transformations from the base to the cut. The homogeneous

transformation matrix are contructed using the Denavit-Hartenburg representation

[3, page 361 and will be of the form:

T = [ (A.5)

where ii, i, and i, represent the rotation of the coordinate frame of the cut joint

from the base coordinate frame, and I is the position vector vector from the origin

of the base frame to the cut expressed in the base frame coordinate system.

A-3



U

When tlie virtual cut is done at a revolute joint, the fvector and the W vector

is equal for both open chain transformations. The only difference would be some

constant physical offset length between the origins of the coordinate frames at the

3 cut depending on how those coordinate frames are defined.

These two position vectors, j, give us the physical contraint Equations, g,

required for Lagrange's equations, Equation A.4. The components of the fvectors

* are set equal to each other yielding the m constraint equations.

The next step iii the Luli and Zheng application [10] is set the non-conserative

3 torques forunactuated joints equal to zero. The order of the n equations, Equation

A.4, is then changed to reflect that the equations with actuated joints appear in

3 the I through n-m section of the array, and the equations derived with respect to

joints without actuators appear in the n-m+1 through n section of the array. Now

3 the equation array in the n-m+I through n section can be solved for the Lagrange

multiphers:

= I [' d OL O (.6
8j,- di OqJ 49i ,,+ th,,un

Having solved for the Lagrange multipliers, these expression are then substi-

tuted into the I through n equations of motion resulting in an expression for the

5 control torques of the actuated joints, f. This expression can be written as:

[d (OL\ _ L] (g)
Ldt o .)- 1.thru (n-)7

U where F are the generalized or "constrained" equations of motion found in Luh and

Zheng [10]. This is a system of n-m equations of motion with n joint coordinate

I unknowns. The dependent coordinates, n-m of them, can be solved for from the

constraint equations, f. Another method for solving equation A.7 would be to

3 sense position, velocity, and acceleration on all joints.
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The ultimate closed form solution wouild be obtained by eliminating the de-

pendent coordinates. This is done by solving the constraint equations for the

dependent coordinates, their rates, and their accelerations and substituted into

3 Equation A.7.

A.1.2 Implementation. To apply the Lagrangian formulation presented by

Luh and Zheng [10], the Leu and Hemati [9] MACSYMA program was used to

symbolically derive the equations of motion for the open kinematic chains. The

program is included as follows:

/* This program derives the equation of motion of a manipulator

link using the Lagrangian formulation.

~~INPUT-...
DOF : NO. OF DEGREES OF FREEDOM.

JOINT THE TYPE OF JOINT (0 FOR REVOLUTE,

II FOR PRISMATIC).

d,a,alpha : LINK GEOMETRIC PARAMETERS.

R : LINK MASS CENTER POSITION VECTOR.

M LINK MASS.

3MOM: LINK PSEUDO INERTIA MATRIX.
LNK LINK NUMBER.

GF : GRAVITATIONAL FIELD VECTOR.

OUTPUT ---- >

F[I] : GENERALIZED FORCE AT JOTWT I*/

TMATRIX() :=5 PRINT(" ENTER THE NUMBER OF DEGREES OF FREEDOM"),DOF:READo,

FOR I THRU DOF DO (

3PRINT("TTPE 0 IF JOINT IS REVOLUTE AND I IF JOINT IS PRISMATIC"),

PRINT( '. ),JOINT:READo,

IF JOINT=O THEN (

PRINT("INPUT THE PARAMETERS OF THE REVOLUTE JOINT:d,a,alpha"),

PRINT(" ),D[I]:READo,AD[I]:READo,ALF[IJ:READo,PRINT(" .,3 A[I] :MATRIX([COS(Q[I]),-SIN(Q[I])*COS(ALF[I]),

IA-5
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[SIN(Q[I),COs(Q[IJ )*COS(ALF[IJ),I -COS(Q[IJ ).SIN(ALF[IJ) ,AD[I).SIN(Q[I) ),

(o,SIN(ALF(IJ) ,COS(ALF[I]) ,D[I]],

3 [0,0,0,11))

5 ELSE(PRINT("INPUT THE PARAMETERS OF THE PRISMATIC JOINT:theta,a,alpha'9,

PRINT(" "),TH[IJ:READo,AD[IJ:READo,ALF(IJ:READo,PRIIT("'),

A[IJ :MATRII([COS(TH[I)),-SIN(TH[IJ)*COS(ALF[IJ),I SIN(TH(IJ)*SIN(ALF(IJ),AD[IJ*COS(TH[I],

[SIN(TH[I]),COS(TH(I)O)COS(ALF[IJ),

I -COS(TH[I)SIN(ALF[IJ),AD[IJ*SIN(TH[I)J

[O,SIN(ALF[IJ),COS(ALF[IJ),Q[I)),

I [0,0,0,11 ))),I

/* GENERATE THE T MATRICES s/

FOR I THRU DOF DO(3 IF 1=1 THEN T[IJ:A[IJ ELSE T[l) :T(I-1J.A[IJ));

I. TAKE THE FIRST DERIVATIVE OF THE

T MATRICES W.R.T. THE JOINT VARIABLES.*/

DIFFTIO(: (FOR I THRU DOF DO(3 FOR J THRU DOF DO(

IF I>=3 THEN(U[I,3JJ DIFF(T[IJ,Q[3J)))));

/* TAKE THE SECOND DERIVATIVE OF THE T MATRICES *

DIFFT2(): (FOR I THRU DOF DO(

FOR J TU DOF DO(

IF 1>=J THEN(

U FOR K:.) THU DOF DO(

IF I>=K THEN(W[I,JK] DIFF(U(I,J],Q(KJ)))))));

I. INPUT THE MASS PROPERTIES *3 INERTIA() := (FOR I TU DOF DO(
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1 PRINT('ENTER THE INERTIA MATRIX FOR LINK N0. ",I),

MOMEIJ :ENTERMATRII(4,4) ,FRINT(" "),I

PxINT(IENTER THE CENTER OF MASS VECTOR FOR LINK NO. ",I),

R[IJ :ENTERMATRIX(4,1) ,PRINT(" ")),

3 PRINT("ENTER THE GRAVITY FIELD VECTOR"),

GF:ENTERMATRIX(4,1));

/* DERIVE THE DI TERMS *

3TERMDI(): (PRINT(" "),PRINT("ENTER THE LINK NO. "),LNK:READo,

DI O,I:LNK,

FOR PPI:I THRU DOF DOC

IDI DI + (((-M[PPIJ*TRANSPOSE(GF)).U[PPI,I]).R[PPIJ)),

DD[IJ DI);

/* DERIVE THE DIJ TERMS */

TERMDIJo : (I:LNK, L:1,

FOR J:I TIIRU DOF DO3 TRAC :O,NAXIJ:J,

FOR P:MAIIJ TRRU DOF DO

JTQI[PJ M OM[PJ .TRANSPOSE(U[P,I]),

I FOR L THRU 4 DO (

TRACI TRAC +ROW(U[P,JJ,L).COL(JTQI[PJ,L),3TRAC TRACI)),

DIJ[I,3) TRAC))

/* DERIVE THlE DIJK TERMS *

3 TERMDIJKo : (I:LNK, LL:1,

FOR J TERU DOF DOC

FOR K:J TURU DOF DO (

U IF .3=I AND I >= K THEN

DK[I,3,KJ 0

ELSE(IF (34I IND J<K AND K>=1) OR C3>=I OR J>=K) THENC

IF I>K TEEN

(IF 1>3 THEN MAIIJK:I ELSE MAIIJK:3)
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U ELSE MAIIJK:K,

TRACEP :0,

FOR PP:MAXIJK THRU DOF DO(

JTPI[PP] MOM [PPJ .TRANSPOSE(UPP,I)),

3 FOR LL THRU 4 DO (

TftACEP :TRACEP +

3 ROW(W[PP,3,KJ ILL) .COL(JTPI[PP) ,LL))),

DK[I,J,K) TRACEP)))));

U 1* COLLECT THE DI, DIJ, DIJK TERMS TO OBTAIN

THE EQUATION OF MOTION OF LINK I. *

FI(): (TRMDIJ :O.,TRMDIJK :0.,

FOR 3 THRU DOF DO(

3 (IF .<LIK THEN

TRMDIJ :TRMDIJ + DIJ[J,LNKJ*DDQ[3J

ELSE

TRNDIJ :TRMDIJ + DIJ[LIK,JJ*DDQ[3)),3 FOR K:J THRU DOF DO(

IF K=3 THEN

TRNDIJK :TRNDIJK + DK[LNKJ,KJ*DQ[JJ*DQ[KJ

I ELSE IF J<LII( AND 3<K THEN

(IF K>=LNK THEN

3TRXDIJK TRMDIJK + 2*DK[LNK,J,KJ*DQ(JJ*DQ[KJ

ELSE3 TRMDIJK TUJIDIJK - 2*DK[K,J,LNI*DQ[J].DQ[KJ)

ELSE

3 TRNDIJK :TRM1DIJK + 2*DKELIK,J,KJ*DQ(JJ*DQ[K)),

F[LNK] TRKDIJ + IACLI*DDQ(LI + TRNDIJK + DD(LEfK]);

I Having the open kinematic chain dynamic equations of motion, additional MAC-

SYMA programming was necessary to:

1. Isolate the physical constraint equations
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2. Find the partial derivatives of the constraint equations, i.e., find the holo-

nomic constraints

3. Assign the unactuated forces to the proper element position in the force

I vector according to the Luli and Zheng paper [10]

4. Solve for the constrained equations of motion (elminating the Lagrange mul-

tipliers, but still working with an excessive number of coordinates).

3Finding the constrained forces can be done in a general sense as demonstrated in

Luh and Zheng [10]. I have modified the Leu and Hemati program [9] to solve for

the symbolic equations of motion of the closed link kinematic chain manipulator

with the stipulation that the virtual cut in the formulation be made at a revolute3unactuated joint. This program is as follows:

/* Modified version of program developed by Leu and Hemati for

deriveing equations of motion of a manipulator. The modification

implements the method developed by Luh and Zheng for deriving3equations of motion for closed kinematic chains using the method
of Lagrange multipliers. The tools developed for finding the constraint

equations assume that the virtual cut takes place at a revolute joint.*/

3 /* This program derives the equation of motion of a manipulator

link using the Lagrangian formulation.

INPUT ---- >

DOF : NO. OF DEGREES OF FREEDOM.

JOINT : THE TYPE OF JOINT (0 FOR REVOLUTE,

1 FOR PRISMATIC).

d,a,alpha : LINK GEOMETRIC PARAMETERS.

R : LINK MASS CENTER POSITION VECTOR.

M : LINK MASS.3MOM : LINK PSEUDO INERTIA MATRIX.

LI : LINK NUMBER.3GF : GRAVITATIONAL FIELD VECTOR.

OUTPUT ---- >
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FEI) GENERALIZED FORCE AT JOINT I*/

TMATRIX) :=

PRIIT(" EITER THE NUMBER OF DEGREES OF FREEDOM'),DOF:READC),

FOR I THRU DOF DO (

PRINT("TTPE 0 IF JOINT IS REVOLUTE AND 1 IF JOINT IS PRISMATIC"),I PRINT(' "),JOINT:READo,

PRINT("INPUT THE DESIRED JOINT NUMBER"), /*modification*I

3PRINT(' "), DESIRED[IJ: READO, /*Mod*/

QCIJ :QEDESIRED(I)), /*mod*/3 IF 3OINT=0 THEN (

PRINT(IINPUT THE PARAMETERS OF THE REVOLUTE JOINT:d,a,alpha"),

PRINT(" "),D[IJ:READo,ADEIJ:READo,ALF[I):READo,PRIMT(" 1),U AEI) :MATRIX([COS(Q[I)),-SINI(Q[IJ)*COS(ALF[IJ),

SINCQ[IJ )*SINCALF [I]) ,AD(IJ*COS(Q(IJ)],3 ([SIN(Q[EI),COS(Q(IJ )*COS(ALF(I]),

-COS(Q(I))*SIN(ALF[IJ),AD[IJ*SIN(Q[IJ)J,3 [0,SII(ALF[IJ ),COS(ALF[I),DEIJJ,

[0,0,0,11))

U ELSE(PRINT(IINPUT THE PARAMETERS OF THE PRISMATIC JOINT:th~ta,a,alpha"),

PRINT(' "),TH[I):READo,AD(IJ:READo,ALF[I):READo,PRIIT(" ")3 A[l) :MATRIIU[COS(TH[IJ),-SIN(TH[IJ)*COSCALF[IJ),

SIN(TH(I))*SIN(ALF[IJ) ,AD(IJ*COS(TH[IJ)),3 (SIU(TH(IJ) ,COS(TH(I] )*COS(ALF(I]),

-COS(THEIJ )*SIN(ALF[IJ) ,AD (IJ*SIN(TH[IJ )J,3 (o[,SIN(ALFEIJ) ,COS(ALF[IJ ),Q[IJJ,

(0,0,0,11))),

1* GENERATE THE T MATRICES *

FOR I THRU DOF DO(

IF 1=1 THEN T[IJ:A[IJ ELSE T[l) :T[I-1J.A[IJ));

3 /0 TAKE THE FIRST DERIVATIVE OF THE
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T MATRICES W.R.T. THE JOINT VARIABLES.*'

DIFFT1(): (FOR I THRU DOF DO(

FOR J THRU DOF DO(3 IF I>=J THEN(U[I,3J) DIFF(T[I),Q[JJ)))));

/* TAKE THE SECOND DERIVATIVE OF THE T MATRICES *

3DIFFT2(): (FOR I THRU DOF DO(

FOR J THRU DOF DO(3 IF I>=3 THEN(

FOR K:J THRU DOF DO(

IF I>=K THEN(W[I,J,K) DIFF(U[I,JJ,Q[KJ)))))));

/* INPUT THE MASS PROPERTIES *1

INERTIA(): (FOR I THRU DOF DO(

PRINT("ENTER THE INERTIA MATRIX FOR LINK NO. 0"),

MOMLI) :ENTERMATRIX(4,4) ,PRINT(" "),

PRINT('ENTER THE CENTER OF KASS VECTOR FOR LINK NO. ",I),3 R(IJ:ENTERMATRI(4,1) ,PRINT('" )),

PRINT("ENTER THE GRAVITY FIELD VECTOR),3 GF:ENTERMATRI(4,1));

/* DERIVE THE DI TERMS */

TERMDI(): (PRINT(" "),PRINT("ETER THE LINK 10. "),LIK:READo,

DI :O,I:LNK,3 FOR PPI:I THRU DOF DO(

DI: DI + (((-N(DESIRED[PPIJJ*TRANSPOSE(GF)).UPPI,I).R[PPIJ)),3 DD[IJ DI);

/o DERIVE THE DlI TERMS */I TERMDI3(): (I:LNK, L:1,

FOR 3:I THRU DOF DO(I TRAC : O.MAIJ:3,

FOR P:MAXIJ THRU DOF DO(

JTQIEPJ : MOMEP] .TRASPOSE(UP,I]),
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FOR L THRU 4 DOC

TRACI :TRAC + ROW(U[P,JJ,L).COL(JTQI[P),L),

TRAC :TRACM),

DIJ[I,3J TRAC));

1* DERIVE THE DI3K TERMS */I3 TERMDIJK(): (I:LNK, LL:1,

FOR 3 THRU DOF DO(3 FOR K:J THRU DOF DO (

IF J=I AND I >= K THEN

DK[I,J,K) 0

ELSE(IF (J<1 AND J<K AND K>1I) OR (3>=I OR 3>=K) THEN(

IF I>K THENI (IF 1>3 THEN HAIK:I ELSE MAXI3K:J)

ELSE MAXIK:K,I TRACEP :0,

FOR PP:MAIK THRU DOF DO3 3TPI[PP) MOM [PPJ .TRANSPOSE(U [PP ,IJ),

FOR LL THRU 4 DO (3 TRACEP :TRACEP +

ROW(W[PP,3,KJ ,LL) .COL(JTPI[PP) ,LL))),3 DKCI,3,KJ TRACEP)));

/* COLLECT THE DI, DIJ, DIJK TERMS TO OBTAIN3 THE EQUATION OF NOTION OF LINK I. *

FI() (TRNDI3 :O.,TRMDIJK :0.,3 FOR 3 TRUl DOF DO(

(IF 341NK THEN3 TRMDIJ :TRMDIJ + DI3(3,LNKJ*DDQ(DESIRED(3JJ

ELSE

TIJIDIJ :TRMDIJ + DIJELNK,J).DDQ[DESIRED[J]J),I FOR K:3 TRUl DOF DO(

IF K=3 THEN3 TR.NDIJK :TRMDIJK + DK(LNK.3,KJ*DQ[DESIRED[JJJ*
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DQ [DESIRED [K]]

ELSE IF J<LNK AND J<K THEN

(IF K>=LNK THEN

TRMDIJK : TRMDIJK + 2*DK[LNK,J,K]*

DQ [DESIRED [J]] *DQ [DESIRED [K]]

ELSE

TRMDIJK : TRMDIJK - 2*DK[K,J,LNK]*

DQ[DESIRED[J]]*DQ[DESIRED[K])

ELSE

TRMDIJK : TRMDIJK + 2*DK[LNK,J,K]*

DQ[DESIRED[J]]*DQ[DESIRED[KJ])),

F[DESIRED[LNK]] : 3IJ + IA[DESIRED[LNK]]*

DDqrDE.IRED[LKK]] + TRMDIJK + DD[LNK]);

/* END OF THE LEU AND HEMATI MODIFIED CODE, BEGINNING OF CODE DEVELOPED

SPECIFICALLY FOR THE FORMULATION OF THE CLOSED CHAIN EOMS */

/* TOOL TO SAVE THE TMATRIX FROM THE BASE TO THE VIRTUAL CUT

FOR EACH SERIAL CHAIN */

TCUTo:= (PRINT("INPUT JOINT NUMBER AT CUT JOINT"),

PRINT(. "), I:READo,

TCUT[I]: T[DOF]);

/I TOOL FOR CALCULATION OF ALL POSSIBLE CONSTRAINT EQUATIONS.

USER IS RESPONSIBLE FOR FORMING CONSTRAINT MATRIX WITH THE

INDEPENDENT CONSTRAINTS */

CONSTRAINTSo:= (PRINT("INPUT JOINT NUMBERS OF CONNECTING JOINTS: i, j"),

PRINT(" "), i: READO, j: READO,

PRINT("TTPE 0 IF THE JOINT IS REVOLUTE AND I IF PRISMATIC"),

PRINT%" "), JOINT: READO,

IF JOINT= 0 THEN (

PRINT("INPUT THE JOINT OFFSET: d"),
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PRINTC' "), d: READO,

3C[11: TCUT[i) [1,4)-TCUT[j) [1,4),
C[21: TCUT[i) [2,4)-TCUT[j) [2,4),

C[33: TCUT[i113,4)-TCUT[j][3,4) - d

C[43 : TCUTiJ([1,3)-TCUT[j) (1,3),

C[6): TCUT[i) [2,3)-TCUT(j] (2,3),I C[61: TCUT[iJ [3,3)-TCUT(j) [3,3)

ELSE (PRINT("INPUT THE OFFSET ANGLE: THETA"),3 PRINT('"'), THETA: READO,

C[11: TCUT[i) [4,1J-TCUT[j) [4,1),

C[21: TCUT Ei) [4,2J -TCUT EjJ [4,2) ,

C[33 : TCUT[i) [3,1)-TCUT[j) [3,1),

C[4): TCUT~i) [3,2)-TCUT[j) [3,2),

C[61): TCUT[i) [3,3)-TCUT[j) [3,3),

C[6J: TRANSPOSE(COLUNN(TCUT~i) ,1)).3 COLUMN(TCUT[jJ,l) - THETA));

1* TO0iL TO FIND THE HOLONOMIC CONSTRAINT EQUATIONS, THIS IS OILY FOR3 THE CASE WHERE THE VIRTUAL CUT IS A REVOLUTE JOINT*/

HOLCONSTRAINTS():= (

dc[1,1] :diff(c(1],q[1]),

dcli .2):diff(c(2) ,q[lJ),3 dc[2,1J :diff(c[1) ,q[2)),

dc[2,2) :diff(c[2) ,q[2)),3 dc[3,1) :diff(c[1) ,q[3J),

dc[3,2) :diff(c[2) ,q[3)),

dct4,1) :diff(c[1) ,q[4)),

dc[4,2) :diff(c[2) ,q[4))

I I./ TOOL TO REORDER THE EQUATIONS OF MOTION IN LUH AND ZMENG FASHION *

3 REORDEREBNMO:=
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noforce:matrix ( f [3] , [f [41),

actforce:matrix([f[1]],[f[2]]))$

/* TOOL TO BREAK HOLONOMIC CONSTRAINTS INTO ACTUATED AND UNACTUATED

SECTIONS */

DIVIDEHOLONOMICS() : =(

cn:matrix([dc[1,1] ,dc[1,2)],

[dc (2,1 ,dc [2,2] ]),

cm:matrix([dc[3,1] .dc[3,211,

[dc [4,1] ,dc[4,2]]))$

I /* FUNCTION TO SOLVE FOR THE LAGRANGE MULTIPLIERS */

LANBDA(:= (

lambda: invert(cm).noforce)$I
/* FUNCTION TO SOLVE FOR THE GENERALIZED FORCES */

FORCESO: (

fc : actforce-cn. lambda)$

/* END OF PROGRAM */

The last step of reducing the equations of motion to be functions of only the inde-

pendent coordinates is not readily generalized. The constraint equations include

triginometric operations on the coordinates. Therefore, solving for those coordi-

nates results in non-unique solutions, i.e., angles multiplied by factors of 27r.

I However, if all the joints are revolute the sines and cosines of the coordinates

can be solved for. From these expressions the joint rates and accelrations can

be found. Then the equations of motion can be reduced to functions of only their
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independent. coordinates. This development is best shown by means of an example.

Using the manipulator shown in Figure 1.2, the following constraint equations are

derived:

The MACSYMA generated equations of motion are shown in the following
script. This script is the actual MACSYMA transaction of the derivation of the
equations of motion for the parallel bar closed link configuration.

(d2) pbarcoeffscript

(c3) fc[1]:fullratsubst(1,cos(q[l])**2+sin(q[1])**2,fc[1])$

Batching the file /usr/local/lib/macsyma/share/lrats.mac

(c3) /* -*- MACSYMA -*- */

IEVALWHEN(BATCH,TTYOFF:TRUE)$
(c3) /*ASB;LRATS 3
5:05pm Tuesday, 14 July 1981
7:53pm Saturday, 29 May 19823 Added a DIAGEVALVERSION for this file.

1:43pm Saturday, 12 June 1982
Changed loadflags to getversions, DEFINEVARIABLE:'MODE.

EVALWHEN(TRANSLATE,IDEFINEVARIABLE:'MODE,
TRANSCOMPILE:TRUE)$

I(c3) PUT('LRATS,3,'DIAGEVALVERSION)$
3(c3) DEFINEVARIABLE(MESSLRATS2,"Invalid argument to FULLRATSUBST:",ANY)$

/usr/local/lib/macsyma/transl/trmode.o being loaded.

I(c3) DEFINEVARIABLE(FULLRATSUBSTFLAG,FALSE,BOOLEAN)$
(c3) LRATSUBST(LISTOFEQNS,EXP):-BLOCK(

[PARTSWITCH:TRUE,INFLAG:TRUE,PIECE],

IF NOT LISTP(LISTOFEQNS)3THEN IF INPART(LISTOFEQNS,O)"n"
THEN LISTOFEQNS:[LISTOFEQNS]
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ELSE IF FULLRATSUBSTFLAG=TRUE
THEN ERROR(MESSLRATS2, (LISTOFEQNS,EXP)I ELSE ERROR("Invalid argument to LRATSUBST:", [LISTOFEQNS ,EXP)),

FOR IDUM IN LISTOFEQNS DO
IF INPART(IDUM,O)#"="

THEN IF FULLRATSUBSTFLAG=TRUE
THEN ERROR(MESSLRATS2, [LISTOFEQNS,EXPJ)

ELSE ERROR('Invalid argu~ment to LRATSUBST:",CLISTOFEQNS,EXP]),

LRATSUBST1 (LISTOFEQNS,EXP) )

(c3) LRATSUBST1(LISTOFEQNS,EXP) :BLOCK(
[DUM: IF LISTOFEQNS=[)

THEN EXPI ELSE IF REST(LISTOFEQNS)=[J
THEN RATSUBST(INPART(LISTOFEQNS, 12) ,INPART(LISTOFEQNS,11),EXP)
ELSE LRATSUBST1 (REST(LISTOFEQNS),IIF FULLRATSUBSTFLAG=TRUE

THEN FULLRATSUBST1 (INPART(LISTOFEQNS, 1,2),

INPART(LISTOFEQNS,1,1),I EXP)
ELSE RATSUBST(INPART(LISTOFEQNS, 1,2),

INPART(LISTOFEQNS 11,1),

EXP))),
DECLARE(DUM, SPECIAL),
IF FULLRATSUBSTFLAG=TRUE AND DUM#EXP
THEN LRATSUBSTI(LISTOFEQNS ,DUM)

ELSE IF DUM#EXP3 THEN DUM
ELSE EXP)$

I (c3) FULLRATSUBST1 (SUBSTEIP ,FOREXP, EXP):-BLOCK(
[DUM: RATSUBST(SUBSTEXP,FOREXP, EXP) J,
IF DUM=EXPI THEN EXP
ELSE FULLRATSUBST1 (SUBSTEXP ,FOREXP ,DUM) )

I(c3) FULLRATSUBST( (ARGLISTI):-BO
[FULLRATSUBSTFLAG :TRUE ,LARGLISTDUM: LENGTH(ARGLIST) ,FARGLIST,
PARTSWITCH:TRUE, INFLAG:TRUE,PIECE),

IF LARGLISTDUM-2
THEN IF LISTP(FARGLIST:FIRST(ARGLIST)) OR INPART(FARGLIST,O)in"u"3 THEN LRATSUBST(FARGLIST,LAST(ARGLIST))
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H ELSE ERROR(MESSLRATS2 ,ARGLIST)
ELSE IF LARGLISTDUM-3I THEN APPLY( IFULLRATSUBST1 ,ARGLIST)

ELSE ERROR(MESSLRATS2,ARGLIST) )$

I (c3) EVALYHEN(BATCH,TTYOFF :FALSE)$

3 Batching done.

(c4) fc[2] :fullratsubst(l,cos(q~iJ)**2+sin(q~lJ)**2,:fc[23)

H(c5) tc[1Jflrtus~~o~[1)*+i~[1*2:ci)
(c6) fc[2) :fullratsubst(1,cos(q[2])**2+sin(q[2J)**2,ic[2J)$

(cT) fc[1] :fullratsubst(dq~l]-dq(2J ,dq[3J,fc~lJ)*

(c8) fc[2] :fullratsubst(dq[1J-dq[2) ,dq[3 ,:fc[2J)$

I(c9) fc[1] :fullratsubst(ddq[l]-ddq[2) ,ddq[3],f~l)
3(cdO) fc[2] :fullratsubst(ddqtlJ-ddq[2J ,ddq[3)~c2)

(cli) fc~iJ :fullratsubst(-dq(1J+dq(2J ,dq[4J,fc~iJ)*

I(c12) fcE2J:fullratsubst(-dq[lJ+dq[2J~q4,:c2)
3(c13) fc[1J :fullratsubst(-ddq~iJ+ddqE2J ,ddq[4],f[I)

(d13) C(( m + g m + g m ) cou(q ) v
1 14 3 3 1 1 1

+ ((ddq 1 g mn - I ddq g mn sin(q)

1 22334 2 2 44 12

2 2
+(1 dq 1g mn 1 dq1 g mn csz(q ) i~

2 2443 2334
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2
+ (ddq 1 g m -1 ddq g m co5(q))cos(q)+ddq 1 m

I2 2
+(ddq -ddq )ia +ddq g m +ddq izz +(ddq -ddq )ia + ddq g m

1 2 4 1 33 1 3 1 2 3 11 1

+ ddq izz + ddq ia)

(c14) fc[2] :fullratsubst(-ddq[1J+ddq[2J ,ddq[4 ,:fc[2]);

(dl4) [(- g m + 1 m + g m cos(q) v
4 4 2 3 2 2 2

+ ((ddq 1 g m - ddq 1 g m ) sin(q)
1 12 33 11 441

2 2
+ (dq 1 g m - dq 1 g m coo(q))uin(q)

12334 11443 1 2

+((dq 1 g m - dq 1 g m )ui(q )oq)+d gmdqiz
1144 3 12334 1 2 244 2 4

2 2
+(ddq - ddq )ia + ddq 1 m +(ddq -ddq )ia + ddq g m + ddq izz

2 1 4 2 23 2 1 3 2 22 2 2

I + ddq ia
2 2

(c15) fc[1J:fullratsimp(fc[1J);

(diS) [(l m + g m + g m )cos(q )v
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I

+ ((ddq 1gm - 1 ddq g m4) sin(q1)

2 2
+ (1 dq g m - dq 1 g m ) cos(q )) uin(q )

1 244 22 33 1 2

I + ((dql2g - 1 dqg ) uin(q )

2

+ (ddq 1 g m -1 ddq g m ) cos(q )) cos(q ) + ddq 1 m

2 2 3 3 1 2 4 4 1 2 1 1 4

I2 2
+(ddq -ddq )ia +ddq g m +ddq izz *(ddq -ddq )ia +ddq g m

1 2 4 1 3 3 1 3 1 2 3 1 1 1

+ ddq izz + ddq ia]

1 1 1 1

(c16) fc[2] :fullratsimp(fc[2]);

(d16) [(- g m + 1 m + g m ) cos(q ) v

4 4 2 3 2 2 2

+ ((ddq 1 g m - ddq 1 g m ) sin(q )
1 2 3 3 1 1 4 4 1I2 2

+ (dq 1 g m - dq 1 g m ) cos(q )) sin(q )
1 2 3 3 1 1 4 4 1 2

+ ((dq 1 g m - dq 1 g m )sin(q)

1 1 4 4 1 2 3 3 1

+(ddq 1 g m -ddq 1 g m )cos(q ))eos(q )+ ddq g4 m+ddq izz

1 233 114 4 1 2 244 2 4
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2 2I +(ddq - ddq )ia *ddq 1 m +(ddq -ddq )is + ddq g m + ddq izz

N + ddq is]

U(c17) dl1:ratcoeff(fc[1Jdq~D
I2 2 2

(d17) [I m + ia +g m + izz + ia + g m +*izz + ia)
1 14 4 3 3 3 3 1 1 1

(ciB) dl2:ratcooff(fc[1] ,ddq(2]);

I(diB) [(l g m -1 g m) sin(q ) iq
2 33 1 44 1 2

+ ( g m - g m ) cos(q )cos(q )is -is]
2 33 1 44 1 2 4 3

(c19) d21:ratcoeff(fc[2J ,ddq[1]);

I(d19) [(1 g m - 1 gm) iq)snq
2 33 1 44 1 2

I +(I g m - 1 g m ) cos(q ) cou(q) -is -i]
2 33 1 44 1 2 4 3

I(c20) d22:ratcooff(fc[2Jd[2)
2 2 2

(d20 [g m +izz + i+lm +ia+ g m +izz + is
4 4 4 4 2 3 3 2 2 2 2

(c21) gl:ratcooff(fc[1J,V);

(d21) (1 mn + n g *+g m )cos(q)A
1 4 3 3 1 1 1

IM (c22) tof~(f[2,
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(M2) [(g m +1 im + g mn) cou(q)

4 4 2 3 2 2 2

3(c23) hlli:ratcoeiff(IC[1] ,dq[1] .2);
(d23) [0)

I(c24) hl12:ratcoeff(:fc[1),dq[1J 4);
3(d24) [01

(c25) h122:ratcoe~lf(fc[1],dq[21 ,2);

WS2) [(1 g mn- g mn) cos(q ) sin(q)

S14 4 2 33 1 2

+ (1 g mn 1 g m ) sin(q )coo(q )l

2 233 144 1 2

(c26) h211:ratcoefi(:fC[2] ,dqtl) ,2);

I(d26) [(1 g in - 1 g m ) cos(q)sn~

2 33 1 44 1 2

+ +(1 g m - 1 gimn)hin(q cos(q A

(c27) h2l2:ratcoff(:fc[21 ,dq[i) ,i);

3(d27) [0)

3(c28) h222:ratcoff(1fc[2),dq[21,2);
(M2) [0)

I(c29) save("lfcpbarroedc)d'
3(d29) [fcpbarroduced, c

(c30) closet iic 0;
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A.2 Conclusion

I The Leu and Hemati,[91, macsyma program has been modified to compute

the equations of motion for closed link kinematic chain manipulators using the

algorithm as presented by Luh and Zheng, [10]. However, the method of extending

this program to manipulators that have closed link kinematic chains in combina-

tion with open link kinematic chains has not been completely explored. In J. F.

Kleinfinger and W. Khahil's paper "Dynamic Modelling of Closed-Loop Robots",

[7], they state that they too tried to implement Luh and Zheng's algorithm using a

Denavit-Hartenburg convention, but had to develop a new geometric representation

convention to make their software work.

Further research into the work of Kleinfinger and Khalil could enhance

AFIT's capability to model robotic manipulator configurations greatly.

I
I
I
I
I
I
I
I
I
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Appendix B. MatrixX Programming

3 For the numerical integration of the work expressions the following MatrixX

program, [16], was used.

3 This is a typical Vax management system command file used to submit nu-

merical integration jobs in batch mode. It calls up initial conditions needed to

start the program and calculates the work for a large section of reachable points

in the first quadrant of the workspace. Once the work is determined, the efficiency

is then computed.

*Mu8

I define 'atan2hlp.matx'

execute("icconinvar.matx");

for i=1:36;...

k(i)=0.02*i;...

for j=9:20;...

yf=(j*0.7/20.O);...

yi=yf+0.1;...

I yaxis(j)=yi;...

int=20;...3 execute("initialize.matx"); ...

ezecute("integrate.matx");...

etas(i,J)=abm(moeae(yf-yi))/(abs(workls(i,j))+abs(ork2s(i,j)));...

etap(i,J)=abs(mo*a*(yf-yi))/(ab(worklp(i,J))+abs(work2p(i,j)));...

etaprime(i,J)=etas(i,j)/etap(i,j); ...

SJ=J+l; ...
end; ...

3 i=i+l;

end;
I for i=1:20; ...

k(i)=0.02*i; ...

for Jz20:26;...

yf=(J*0.7/20.0);...
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yiyf+O.1;..

yaxix(j)=yi;-

int=2O;..

*xecute('initialize.matx"); ...

execute('intograte.matx'); ...

etas(i ,j )abs(mooa*(yf-yi) )/(abs(uorkls(i ,j) )+abu(uork2s(i ,j))); .

I etap(i,j)=abu(mo*a*(yf-yi))/(abu(worklp(i,j))+abs(vork2p(i,j)));.

etaprime(i,j)=etam(i,j)/etap(i,j); ..

end; ...3 ii+1;

end;

I for i=17:36; ...

k(i)=0.02*i;..

for J=1:9; ...3 yf=(J*O.7/20.O); ..

yi=yf+O.1; ..

3yaxiu(j)=yi;..
int=2O;...

3 *ecute("initialize.matxt);..

execute('intograte.matx'); ...

etau(i,j)=abs(moea*(yf-yi))/(abu(vorklu(i,j))+abs(vork2s(i,J)));.I .otap(i,j)=abs(mosa*(yf-yi))/(ab(vorklp(i,j))+aba(work2p(i,j)));..

.taprime(i,j)=etas(i,j)/etap(i,j);..3 J=J+1;..

end;...

3 i=i41;..

end;

for i=36:43; ...

k(i)=O.02*i; ...

for J=1:12; ...

yf=(J*O.7/20.O);..

yizyf +0.1; ...

3 yaxis(j)=yi; ...
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int=20;...3 execute("initialize.matx"); ...

execute("integrate.matx"); ...

Itas(i,j)=abs(mo*a*(yf-yi))/(abs(workls(i,j))+ab.(work2s(i,j)));...

etap(i,j)=abs(mo*a*(yf-yi))/(abs(orklp(i,j))+abs(work2p(i,j)));...

etaprime(i,j)=etas(i,j)/etap(i,j);...I jj+1;..

end;...

i=i+l;

end;

save 'inertus.mdat'

exit

Sexit

This is the end of the main program. The subroutines called by this command file5 are atan2slp.matx, icconinvar.matx, initialize.matx, and integrate.matx. These will

all be explained as they are presented. The first is atan2slp.matx. This subroutine

requires two arguments, x and y position in the workspace, and finds the arctangent

resolving any quadrant ambiguity that naturally arises using the not well-behaved

inverse tangent function. This is the same as the atan2 function in Fortran.

//theta!atan2s1P(numden);

thta=atan(num/den);

if den<O then;...

if num>O then; theta=pi+theta; end;...

if num<O then; theta=theta-pi; end;...

and;

5 if den=O then;...

if num>O then; theta=pi/2; end;...

if num<O then; theta=-pi/2; end;...

end;

3 retf;

The next subroutine called is icconinvar.matx. This file initializes a number of3 constants used in the equations of motion. These consist mainly of link lengths

and masses. This file is as follows,
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a 9. 8;

g=0;

m2=mo/(6*c);

11=.36322;

12=.6705;

mm=.75*mo/c

llce=(-moa.11-m2*11)/ml;3 12c=(-mo*12)/n2;

13=11;

14=12;I m3=ml;

m4=m2;

m2p~m2/4;

12p=12/4;3 12pc= (mo*14-m3*12) /m2;

14c0O;

13c=(mo*11*14)/(m3*12p);

llcp=(-11*(mo+m4)-m3*13c)/m1;

izzl= .000072917*ml;I izz2= .000072917*m2;

izz3=.000072917*m3;

izz4= .000072917*m4;

izz2p= .0000729 1T*m2p;

U The next subroutine called is initialize.rnatx. This routine initializes the integration

routine by calculating the first quantity of the arrays. Therefore, when integrate

takes the difference of the i- I quantity in the array, it can. This file is as follows,

3 y(1)=yi;

t(1)0O;

workle(i.j)20;

vork29(i,j)=0;
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uorkip(i,j)=O;

work2p(i ,j)0O;

3 num=((-(12*uin(th2(i)))*k(i))+((11+12*cou(th2(1)))*y(1)));

thl(l)=atan2alp(num,den);

ydot(l)=-a*t(1);

thldot(l)=(12*sin(thl(1)+th2(1))*ydot(1))/(11*12*sin(th2()));

thdtI=(1*i~h~)-2si~h~)t2i)*dtl) .
(11*12*sin(th2(1)));3 yddot=-a;

thlddot(1)=(yddot+12*hin(thil)+th2(l))*Cthldot(l)+thidot())**2+..

( thidot ( ) +th2dot (1) )**2)* (cot (thi~i) +th2 ( ) ))+. .

11*sin(thil))*thldot(l)**2)/(11*cos(thl(1))+12* ..

cou(thil)+th2(l))-cot(thl(1)+th2(1))*cl*sinthcl))+..

12*sin(thl(l)+th2(1))));

th2ddot(1)=(11*sin(thl(1) )*thlddot(1)+11*cou(thl (1))*thldot(1)**2+...

12*sin(thl(l)+th2(l))*thlddot(l)+12*cog(thl(l)+th2(l))*..3 (thldot(l)+th2dot(l))**2)/(12*ii(thl()Ith2(i)));

tls(1)=(m1*l1cu**2+izz1+mlpr*l1prc**2+izzlpr+m2pr*12prc*...3 +mm*l2pr**2+izz2pr+mm*llpr**2 ...

+(m2+m+2pr)*11**2+2*12c**2+izz2+mo*ll**2+mo*12**2 ...

+2*11* ...

I(-m*2pr-m2pr*12prc+m2*12c+mo*12)*cos(th2Cl)))*thlddot(i) ...
+(m2*12c**2+izz2+m2pr*12prc*02+izz2pr+=*12r**2+mo*12**2 ...I +11*(-ma*12pr-m2pr*12prc+m2*12c+mo*12)*co(th2()))*th2ddot(1)..

+(-ua*12pr-m2pr*12prc+m2*12c+mo*12)*g*cou(th1(l)+th2(l)) ...3 +(mlllcu+(m2+mm+m2pr)*11+mo*l1-mlpr*tlIprc-mm*llpr) ...

*g*cos(thl(1));3 t2u (1)=(m2*12c**2+izz2+m2pr*l2prc**2.izz2pr+mm*l2pr**2...

+mo*12**2+11*(.-im*12pr-m2pr*12prc+m2*12c+mo*12)*coa(th2(l)))*'.3 thlddot(l)+(m2*12c**2+izz2+m2pr*12prc**2+izz2pr+...

uo*12**2+am*12r**2)th2ddot(1) ...
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tp1)+(-mm*12pr-m2pr*l2prc+m2*12c+mo*12)*g*cos(thil()+th2(1));

+m3*13c**2+izz3+m4*11**2+mo*11**2)*thlddot(1) ...

I-(m2p*11*12pc+m3*12p*13c-m4*11*14c-mo*11*14) ...
*coa(th2(1))*(thlddot(1)+..

th2ddot(l))+(ml*llpc+m3*13c+(m4+m2p)*11+mo*11-nm*llppr ...

-mlppr*11pprc) ...

*g*cos(thI(1));

t2p(1)=-(m3*12p*13c-m4*11*14c-mo*11*14+m2p*11*12pc ...3 )*cos(th2(1))*thlddot(1) ..

+(m2*12pc**2+izz2p+m3*12p**2+mm*l2ppr**2+...

m4*14c**2+izz44mo*14**2)*(thlddot(1) ...I +th2ddot(1) )-(2*m2p*12pc+m3*12p+mm*l2ppr ...

-m4*14c-mo*14)*g*cos(thl(1) ...

+th2(1));

Finally, the numerical integration is able to be executed. This routine is in inte-I grate.inatx and is as follows,

for n=2:21; ...

t(n)=(sqrt((2*(absyf-yi)))/a))*(n-1)/int;..3 y(n)=yi-(a*(t(n)**2)/2); ...

th2(n)=acos(((k(i)**2)+(y(n)**2)-(11**2+12**2))/(2*11*12)); ..3 num=((-(12*sin(th2(n)))*k(i))+((11+12*cos(th2(n)))*y(n))); ...

den=((12*sin(th2(i))*y~n))+((11+12*cou(th2Cn)))*k(i)));..

thI(n)=tmn2slp(num,den); ...I ydot(n)=-a*t(n); ...

thldot(n)=(12*uin~thl(n)+th2(n))*ydot(n))/(11*12*uin~th2(n)));...3 th2dot(n)=((-11*sin(thl(n))-12*sin(thl(n)+th2(n)))*ydot (n))/ ...

(11*12*9in(th2(n))); ...

yddot=-a; ...

thlddot(n)=(yddot+12*sin(thl(n)+th2(n))*(thldot(n)+th2dot(n))**2+...

(11*cou(thl(n))*(thldot(n)**2)+12*cou(thl(n)+tb2(n))* ...I (thldot(n)+th2dot(n))**2)*(cot(thl (n)+th2(n)))+...
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11*sin(thl(n))*thldot(n)**2)/(11*cos(thl(n))+12* ..

cos(thl(n)+th2(n))-cot(thl(n)+th2(n))*(11*sin(thl(n))+...

12*hin(thl(n)+th2(n))));..

th2ddot(n)=(11*sin~thl(n))*thddot(n)+11*cou(thl(n))*thldot(n)**2+...I ~ ~~12*sin(thl (n) +th2 (n) )*thlddot (n) +12*cou (thi (n) +th2 (n) ) *...

(thldot(n)+th2dot(n))**2)/(-12*sin(thl(n)+th2(n)));...

tis (n)=(ml*llcs**2+izzl+mlpr*11prc**2+izzlpr+m2pr*12prc**2...

+mm*l2pr**2+izz2pr+mm*llpr**2 ...

* +(m2+m+m2pr)*11**2+2*12c**2+izz2+mo*11**2+mo*12**2 ...

+2*11* ...

3(-mm*12pr-m2pr*l2prc+m2*12c+mo*12)*cou(th2(n)))*thlddot(n) ...
+(m2*12c**2+izz2+m2pr*l2prc**2+izz2pr+mm*l2pr**2+mo*12**2 ...

+11*(-mm*l2pr-m2pr*l2prc+m2*12c+mo*12)*cou(th2(n) ))*th2ddot(n)..

+(-mz*l2pr-m2pr*l2prc+m2*12c+mo*12)*g*cou(thl(n)+th2(n)) ...

+(ml*llcs+(m2+mm+m2pr)*11+mo*11-mlpr*llprc-mm*llpr) ...3 *g*coo(thl(n)); ..

t2 (in) =(m2*12c**2+izz2+mpr*12prc**2+izz2pr+mm*12r**2...3 +mo*12**2+11*(-mm*12pr-m~r12rc+2*2c+u*02)*co(t2()))* ...

thiddot (n) +(m2*12c**2+izz2+32pr*12prc**2+izz2pr+...3 mo*12**2+mm*l2pr**2) *th2ddot(n) ...

+(-nm*12pr-m2pr*12prc+m2*12c+mo*12)*g*cos(thl(n)+th2(n));..

* tip(n)=(m1*11pc**2+izzl+mlppr*11pprc**2+izzlppr+=*11pr**2...

+m2p*l1**2 ...

+m3*13c**2+izz3+m4*11**2+mo*11**2)*thlddot(n) ...

3-(m2p*11*12c+m3*12p*13c-4*11*14c-no*11*14) ...
*cos(th2(n) )*(thldc'ot(n)+...3 th2ddot(n))+(ml*llpc+m3*13c+(m4+m2p)*11+mo*11-=*llppr...

-mlppr*11pprc) ...

*g*cos(thl(n)); 
...

t2p(n)- (m3*2p*3c-m4*11*14c-mo*11*14+m2p*11*l2pc ...

)*coo(th2(n) )*th1ddot(n) ...3 +(m2*l2pc**2+izz2p+m3*12p**2+m.*l2ppr**2+...

m4*14c**2+izz4+mo*14**2)*(thlddot(n) ...5 +th2ddot(n))-(2*32p*l2pc+m3*12p+mm*12ppr ...
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-m4*14c-mo*14)*gecos(thl (n) ...

+th2(n));..

uis(n)=.6*(tls(n-i)+tls(n))*(thl(n)-th(n-1));..3 2s(n)=.6*(t2s(n-l)+t2s(n))*(th2(n)-th2(n-1));..

wlp(n)=.6*(tlp(n-1)+tlp(n))*(thl (n)-thl (n-i)); ...

w2p(n)= .&*(t2p(n-l)+t2p(n))*( (thl(n)+th2(n) )-(thl (n-i)+th2(n-1))); ...

workls(i,j)=vorkIx(i,j)+wls(n);..

work2u(i,J)=vork2s(i,j)+w2s(n); ...3 orkIP(i,j)=vorkIp(i,j)+wlp~n); ...

vork2p(i,j)=work2p(i,j)+v2p(n);..

nn+i;..

end; ...

U These are the algorithms used to perform the numerical integration of work ex-

pression for this analysis.
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A method of calculating mechanical efficiency was developed as a means
of comparing the performance of different types of manipulators. As an ini-
tial approach to this problem takes into account inertial and gravitational
terms of the robot configurations in addition to a variable payload. The
method included developing a numerical integration algorithm to calculate
the work done by each manipulator at any point in that manipulator's
workspace. The efficiencies of two robotic manipulator configurations that
are candidates for the design of the AFIT, AAMRL, Anthropomorphic
Robotic Manipulator, (A3 RM), were analyzed. The two designs were a
serial open link direct drive manipulator, and the closed parallel kinematic
chain direct drive manipulator design by Dr. Asada at M. I. T. The differ-
ence between the mainpulators was actual mass and kinematic design.

The efficiency measure used to analyze both manipulators was based
on the magnitude of the total work done by the manipulator to move a
payload a prescribed distance. The effects of a variable mass payload on
efficiency have now been individually examined for the cases when the arm
has been "tuned" for some nominal payload by means of compensating
for gravity, making the robotic configuration invariant, and decoupling the
manipulator's dynamic equations of motion.

An algorithm was developed for calculating the mechanical efficiency
for different robotic mainipulator configurations. When the manipulators
are gravity compensated for a nominal payload, their efficiency increases
dramatically, even when the payload is varied from nominal. In addition,
when the configuration is tuned for dynamically decoupling and configura-
tion invariance, efficiency is improved. Finally, for most of the reachable
workspace of the manipulators, the parallel manipulator is the most effi-
cient.
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