£y ‘&
2,7 N\
v/ 1\
!
2000
CIREIO

DTIC

A DECISION-BASED METHODOLOGY
FOR
OBJECT ORIENTED-DESIGN

THESIS

Patrick Denis Barnes
Captain, USAF

R ZLEC = pm
o\ JANT 71983 |
. %D

AFIT/GCS/ENG/88D-1

s e e

DISTRIBUTION STATEMENT A ’
Approved for putlic release
D‘lij_i{mtion Unijimited

. DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

Wright-Patterson Air Force Base, Ohio

onNn

AIR FORCE INSTITUTE OF TECHNOLOGY -

. - . NnonnNn

AFIT/GCS/ENG/88D-1

A DECISION-BASED METHODOLOGY
FOR
OBJECT ORIENTED-DESIGN

THESIS

Patrick Denis Barnes
Captain, USAF

AFIT/GCS/ENG/88D-1

Approved for public release; distribution unlimited

Azcesion fFor
NTIS' CRA&]
DNiIC 1ag r
Vranae - A ;7
J P S LJ !
il o . N
o T e
By . '
Dt o
. . . el ‘j
AV Ty RLIS
b—— .]
Dist 5" v‘lv o
H f l
-~] B
‘ i

AFIT/GCS/ENG/88D-1

A DECISION-BASED METHODOLOGY
FOR
OBJECT ORIENTED-DESIGN

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science (Computer Science)

Patrick Denis Barnes, A.A.S, B.S.
Captain, USAF

December 16, 1988

Approved for public release; distribution unlimited

Who am I, O Sovereign Lord, and what is my family that you have
1 14
brought me this far King David, 2 Samuel 7:18

Just as David attributed his achievements and position to his Sovereign Lord,
I want to give recognition first and foremost to my God who has brought me so far,
and has made me who and what I am. What I’ve achieved through this effort is due
primarily to the grace and mercy of a God who loved me enough to rescue me from
my own selfish pursuits, and gave me the heart and desire to become all he wants

me to be through the person of his Son Jesus Christ.

A special note of gratitude belongs to my wife Brenda. Her compassion, per-
severance, sacrifice, and constant encouragement made possible the long nights at
the computer and the many extra hours I was able to devote to this research. I also
thank my four children: Jessica, Jeremy, James, and Jeanette for reminding me of

the importance of making family a top priority in spite of a demanding work load.

I would also like to thank Mike T., Bill, Nick, Mark, Mike F., and Norm who,
while working on similar efforts, were willing to take the time to meet together weekly
for mutual encouragement and prayer. Their friendship, uncompromising standards,
and lifestyle were personally challenging and added a special time of refreshing to

an otherwise mentally and emotionally taxing environment.

Finally, I thank my advisor, Dr. Thomas C. Hartrum, and my commttee
members: Captain David Umphress and Captain Bruce George for allowing me the
freedom to follow where the research seemed to lead rather than constraining my
somewhat limited creativity. Their standards for integrity, quality, and perseverance
pushed me to exceed my preconceived limitations anc draw on previously untapped

resources to finish this work.

i

Table of Contents

Tableof Contents,
Listof Figures
Listof Tables it
Abstract e e e e e e
I Introduction e
1.1 Background,

1.1.1 The Object-Oriented Paradigm.

1.1.2 Object-Oriented Design (OOD).

1.2 Statement of the Problem

1.3 Scope e

14 Research Approach

1.4.1 Model Definition.

142 OOD Methodology.

1.4.3 Requirements for a Decision Aid.

1.4.4 Implementation and Evaluation of the Prototype.

1.5 Maximum Expected Gain

I1. Models and Concepts
2.1 Introduction.

2.1.1 Concept Mapping.
2.2 The Object-Oriented Paradigm

2.2.1 The Object-Oriented Paradigm in the Life cycle.

iil

Page
il

iv

vi

2-3
2-4

2.2.2 Object-Oriented Programming (OOP).
2.2.3 Object-Oriented Design (OOD).
23 TheObject Model
2.3.1 Definition of the Object Model.
2.3.2 Representing The Object Model.

2.4 Requirements Analysis and Specification Techniques . .
2.5 The Requirements Model
2.5.1 The Distributed Computing Design System . .

2.6 Decision Support System Techniques
2.6.1 Introduction.
2.6.2 The Design Framework.
2.6.3 AdaptiveDesign.

2.6.4 The Utilization-Shapped Evaluation Model.

III. An Object Oriented Design Methodology
3.1 Postulates L.
32 Methods

3.2.1 Analyze the Problem to Determine a Solution
Strategy

3.2.2 Identify the Objects, Attributes, and Operations
3.2.3 Encapsulate Objects, Attributes, and Operations

intoModules

3.2.4 Decompose the Modules or Begin Detail Design

33 Rules 0
3.3.1 Heuristics for Identification
3.3.2 Heuristics for Encapsulation
3.3.3 Heuristics for Decomposition.
3.4 Evaluation of the Methodology

iv

Page
2-5

2-10
2-17
2-17
2-26
2-33
2-35
2-35
2-39
2-39
2-39
2-41
2-43

3-1
3-1

3-5
3-6

3-7

3-10
3-10
3-15
3-16
3-17

Iv.

V.

35 ASampleProblem
3.5.1 Analyze the Problem
3.5.2 Identify Objects and Operations
3.5.3 Encapsulate Objects and Operations

3.5.4 Decompose the Modules or Begin Detail Design
355 Conclusion.
Requirements and Design of a Decision Aid
4.1 Introduction and General Reqhirements
4.2 Understanding the Decision Making Process
4.3 Selectingthe Kernel.
4.4 Representing the Kernel

4.4.1 Requirements for the OOD Entry/Exit Story-

board. L o o
4.4.2 Requirements for the Analysis Storyboard. . .

4.4.3 Requirements for the Identification Storyboard.

4.4.4 Requirements for the Encapsulation Storyboard.

4.4.5 Requirements for the Decomposition Storyboard.
4.4.6 Requirements for the Hook Book.
4.5 Detailed Requirements: The Storyboards
4.6 Supporting theKernel
4.6.1 The Database Requirements
4.6.2 The Modelbase Requirements
Prototype Implementation and Evaluation
51 Introduction.
5.2 Hardware and Software Selection
52.1 Dialogue

v

Page
3-18

3-18
3-20
3-25
3-31
3-33

4-1
4-2

4-2
4-4

522 Database.
523 Modelbase
5.3 Prototype Implementation
531 Dialogue L.
532 Database.
533 Modelbase
5.4 Evaluation of the OOD Decision Aid
54.1 Decisions.
5.4.2 The Mission, Users, and Environment

5.4.3 Choice of Evaluation Methodology

54.4 EvaluationResults
5.4.5 Conclusions from the Evaluation.
Conclusions and Recommendations
6.1 Summary e
6.2 Conclusions e
6.3 Recommendations.
6.4 Closing Remarks
Appendix A. Executive Summary
Appendix B. OOD Decision Aid Programmer’s Manual
Appendix C. DCDS Requirements Specification
C.1 Preliminary System Specification
C.1.1 Description
C.1.2 SystemInterface
C.1.3 System Functions
C.2 DCDS DataDictionary
C.3 DCDS Graphic R-Nets and Subnets
vi

......................................

vil

Figure

2.1
2.2,
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.
2.11.
2.12.
2.13.
2.14.
2.15.
2.16.

3.1
3.2.
3.3.
3.4
3.5.
3.6.
3.7.

List of Figures

A Concept Map Describing “The Concept Map”
The Software Development Process
The Object-Oriented Paradigm
The Attributes of Software Development Specifications
Software Development Methods
Bralick’s Theoretical Object Model {10}
The Smalltalk Object Model {17}
An Object Model for Design
Booch Diagram Example [19]
GSFC'’s Object Diagram Example [42]
Modular Design Chart Example 53]
APEX Petri Net Graph Example [2]
A Language Independent Object-Oriented Design
Major RSL Elements {46]
ASample RNet {46]
TheDSSCube. 47} o

The Relationship Between Object-Oriented Design Decision Steps
User’s View of the Temperature Monitor/Controller
Specification of the Temperature Monitor/Controller
The Temperature Monitor/Controller Synthesized View
Block Diagram for the Temperature Monitor/Controller
Detail Diagram for the Temperature Monitor/Controller

Petri Net Diagram for the Temp_Monitor Module of the TMC

viii

Page

2-2

2-4

2-6
2-11
2-12
2-18
2-21
2-25
2-27
2-28
2-29
2-30
2-32
2-36
2-37
2-41

3-18
3-19
3-20
3-26
3-27
3-32

-

Figure
4.1.

4.2
4.3.
4.4,
4.5.
4.6.
4.7.
4.8.
4.9.

5.1.
5.2,
5.3.
5.4.
5.5.

C.1.
C.2.
C.3.
C4.
C.5.

Feature Chart for thg: OOD Decision Aid

Storyboard:
Storyboard:
Storyboard:
Storyboard:
Storyboard:
Storyboard:

Entry/Exit for the OOD Decision Aid
Analyze the Problem
Identify the Objects and Operations
Encapsulate the Objects with their Operations . . .
Decompose the Modales

The Hook Book Browser

An E-R Diagram for the Object Model
Relations for the Object Model

Block Diagram for the OOD Decision Aid
Detail Design Chart for the OOD Decision Aid

OO0OD Database Internal Structure

User Interface Evaluation by Question

User Interface Evaluation by Rater

R.net diagram for TEMP.NET
Subnet diagram for CONTROL.FAN
R.net diagram for TIMENET
R.net diagram for TERMNET
Subnet diagram for CREATE_ PLOT.FILE

ix

Page
4-3
4-8
4-9

4-10
4-11
4-12
4-13
4-15
4-16

5-6
5-10
5-21
5-22

C-25
C-26
c-27
C-28
C-29

Table

2.1.

3.1.
3.2.
3.3.

5.1.
5.2.

List of Tables

Object Classification (10]

.................

Temperature Menitor/Controller Object List

Temperature Monitor/Controller Operation List

Temperature Monitor/Controller Data_Structures

Life Cycle Evaluation

Evaluation Methods and Measures

.................

.................

Page
2-19

3-21
3-23
3-32

5-12
5-15

AFIT/GCS/ENG/88D-1

Abstract

The task of object-oriented development raises a new set of design problems.
Specifically: how to scope a problem based on objects rather than functions; how
to select the best objects; how to encapsulate data structures with the right set of
operations; and when to stop decomposing a system into objects and begin describing
the algorithms that implement those objects’ behaviors. The difficulty of making
these decisions is increased when the requirements documentation was not developed
with an object-oriented paradigm in mind.

Within the past few years, several software development environments have
been proposed or developed implementing an object-oriented design methodology.
Many, however, are concerned only with “programming in the small” activities, or
with providing capabilities for capturing, representing, and storing design decisions
once they are made, rather than with helping the designer make sound design deci-
sions. Recognizing the importance of supporting design decision making, the result
of this study was formulation of a methodology for object-oriented design using the

concepts of decision support systems.

This thesis describes an object-oriented design methodology based on the four
problems or decisions stated above. These decisions are summarized as analysis,
identification, encapsulation, and decomposition. An object model structure is also
defined to provide a foundation for organizing design information. The object model
is described by a set of database relations, and includes a three view graphic repre-

sentation providing block, detail and control flow graphs.

A prototype design tool was implemented to evaluate the methodology. Soft-
ware for the tool was developed using a PC based implementation of the Smalltalk
Object-Oriented Programming Language. Maximum use was made of decision sup-

port system techniques such as concept-mapping, storyboarding, the hook book,

X1

ot

and adaptive design. As a decision support system, the tool provides the software
developer with key requirements specification and software engineering qualitative

information to aid in the judgement and design decision making process.

xi

A DECISION-BASED METHODOLOGY
FOR
OBJECT ORIENTED-DESIGN

I. Introduction

Escalating software development and maintenance costs as well as demand
for software solutions to increasingly complex problems have mandated new tech-
niques for engineering reliable, maintainable computer software. One approach to
improving software quality is the use of the object-oriented paradigm for design and

programming. This thesis is concerned with the design problem.
1.1 Background

1.1.1 The Object-Oriented Paradigm. The term “object-oriented” probably
became best known through the simulation and prototyping languages SIMULA
and Smalltalk developed in the 1970s [37]. The object- oriented paradigm has been
applied widely and can be seen in the techniques of a variety of current software
application areas. Examples are the database entity-relationship-attribute model,
the frame-based approach taken in artificial intelligence, and simulation methods

employing a similar entity-attribute-activity model.

Simply put, to say a method is object-oriented is to say that its representation
of the problem space consists primarily of objects and their related attributes and
operations {10]. This approach may be contrasted with procedural, data-flow, or

data-structure paradigms.

One of the major applications of the paradigm based on the Smalltalk research
is object-oriented programming (OOP). OOP research has involved the development

1-1

of a new generation of languages based on objects, which are organized into classes,
and inherit attributes and operations called methods from other objects {52]. Rather
than relying exclusively on the logic constructs of sequence, selection, and iteration,
the main control structure is the message which instructs an object to perform
some method on its private data. While such languages have not yet entered the
mainstream, the principles discovered and techniques employed in OOP may be

applied to design of systems to be constructed using more general purpose languages.

1.1.2 Object-Oriented Design (OOD). The goal of design is to produce a
model or representation of a system at a level of detail such that it can be built [37).
Thus a design of a software system is a model or representation in terms that will
provide sufficient guidance and understanding to the programmer who will write the
program. In addition to the end product, design can also be thought of as either the
process or activity of designing. A methodology for design must therefore describe
both the product and the activity; in our case, an object-oriented representation and

the steps required to develop that representation.
Pressman [37] goes on to further describe the design process as combining

... intuition and judgement based on experience in building similar
entities, a set of principles and/or heuristics that guide the way in which
the model evolves, a set of criteria that enables quality to be judged, and a
process of iteration that ultimately leads to a final design representation.

Pressman’s definition indicates that in addition to defining a model and some de-
sign steps, an environment is needed to support judgment and choice, embody de-
sign principles and/or heuristics, guide an iterative developiment process, and enable

qualitative evaluation of the finished product.

Several methodologies have been proposed for an object-oriented approach to
design. Examples are [19], {14], [11], [12], [42], and [2].

When an object-oriented approach is applied to the design of computer soft-

ware, a clean, component level abstraction of the design solution is developed in

1-2

gy

terms of problem space entities rather than data processing constructs. Actual data
struciures and algorithms are hidden within the objects and only their outward be-
havior and interrelationships are shown at the architectural level. The desirable
software engineering principles of abstraction, information hiding, and modularity,
are therefore directly embodied within or enhanced by the object-oriented paradigm
[37).

OOD’s ability to describe concurrent, complex, and abstract systems has gen-
erated considerable interest in the software engineering community. Of particular
interest to the Department of Defense is the use of object-oriented design for im-
proving the development, reliability, and maintainability of programs written in the

object-based general purpose programming language—Ada [19].

1.2 Statement of the Problem

As a partial life-cycle methodology applying primarily to preliminary design !
[37], OOD’s lack of compatibility with-established requirements and analysis tech-
niques, such as SADT [40] and Structured Analysis [15], have left it virtually unused
in an otherwise rapidly expanding Ada environment for the DOD. To get OOD out
of the classroom and into the hands of developers, techniques must be developed for
transitioning to OOD from these accepted analysis methods.

While several automated tools have been or are currently being developed for
OOD (14] [22] (2], they are machine and language dependent,, and unable to integrate
efficiently into the users’ existing environment. Conversely, while many programming
support environments are extensible, they provide mostly implementation-oriented
aids such as code generators and context-sensitive editors [32], rather than aids for
the choices and decisions that must be made during design. Both extensibility and
design decision support are needed.

1Virtually all OOD methodologies use conventional techniques for detail design such as psue-
docode or flow diagrama.

1-3

q |

Finally, since OOD methodologies have yet to be proven over a significant
number or spectrum of software development efforts, it is impossible to say what the
right or best OOD methodology is. A significant investment has been made by both
the DOD and industry in building expensive software development environments.
Many such products, based on unproven methodologies, are often little used or en-
tirely abandoned. An environment with the capability to adapt to variations in the
methodology is needed. An adaptive approach would take a first cut methodology,
quickly prototype it, then modify it over a period of time until a proven technique
is developed.

1.8 Scope

The problems of transition, integration, and adaptation discussed in the previ-
ous section are the focus of this effort. A methodology is presented for transitioning
to an object-oriented design from a formal requirements specification. The method-
ology is implemented in a prototype environment which emphasizes software design
phase decisions. The environment demonstrates the benefits of on-line access to
the requirements analysis database information. Finally, the user interface is user

adaptive-—even to the extent of altering the OOD methodology.

This thesis is not a defense of object-oriented design, nor a proof of concept
for the object-oriented approach in general. Rather, we assume the validity of the
object-oriented and software engineering principles involved, and define and proto-
type a generic, language independent OOD methodology and environment, suitable

for adaptation and research.

1.4 Research Approach

1.4.1 Model Definition. The first step to developing a transition methodology
was to understand and define the requirements and design models to be used. A

thorough review of the literature was performed to delineate generic design and

1-4

J—y

requirements specification models. A definition and representation of the object
model which best applies to design was selected. The resulting model descriptions
and definitions are presented in Chapter II.

1.4.2 OOD Methodology. Once the definitions were established, a methodol-
ogy was developed for OOD with the following objectives:

1. The methodology must provide a framework for implementing current object-
oriented concepts.

2. The methodology must be independent of the paradigm used to state the sys-
tems requirements.

3. The methodology must be independent of the programming language to be
used to implement the system.

4. The methodology must be able to adapt to new advances in object-oriented
design concepts and practices.

5. The methodology must be useful for producing a complete design specification.

6. The methodology must be easy to use.

Validation of the methodology was accomplished through inspection, evalua-

tion of a sample problem, and evaluation by a team of software engineering experts.

1.4.3 Requirements for a Decision Aid. Analysis of the design problem itself
revealed the significance of the decisions involved in software design. Thati is, to
produce a good design, good decisions must be made. Pressrnan’s definition quoted
earlier confirms this assessment. We concluded then, that an effective support en-
vironment must support the decision aspects of design. This led to the suggestion
that the concepts of decision support systems (DSS) should be used to develop a
prototype Decision Aid for OOD, Applicable DSS concepts are discussed in detail
in Chapter I

The methodologies for developing DSSs were used to determine the require-
ments for the prototype decision aid. The problem was concept mapped [48] and a

1-5

feature chart [41] and storyboards [5] were developed to represent the user decision
processes embodied in the methodology.

The kernel system to implement as a prototype was chosen based on the concept
maps of the requirements and design models, the storyboards representing the OOD

methodology, and the capabilities of the environment chosen for implementation.

While a formal statement of requirements was produced, in keeping with the
adaptive or iterative design philosophy [25], these requirements were never considered
“final” or “frozen”. Built into the DSS was a Hook Book [49] tool which was used
to discover and record possible modifications, problems, and corrections—many of
which were implemented, thus changing requirements. Chapter IV presents detailed

requirements for the decision aid.

1.4.4 Implementation and Evaluation of the Prototype. Design of the deci-
sion aid began with the high level storyboards and feature chart and contined with
the choice of components to be used to build the modelbase, database, and dialogue
portions of the system. The specification for the dialogue component required that it
be easily modifiable, able to support fast prototyping of a window and mouse based
environment, and able to integrate with the existing environment. The Smalltalk/V
Object Oriented Programming System (OOPS) was chosen to support this compo-

nent and was inplemented on a Zenith Data Systems Z-248 micro-computer.

The DCDS [46] software development environment was used to support the
initial requirements specification database. Hardware and software configuration
problems prevented direct integration with the DCDS database, consequently the
requirements were downloaded from the database to text and graphics files for ac-
cess by the Smalltalk environment. The prototype’s modelbase only consists of
textual data for the heuristics and consistency checking aspects of the tool; so it was

implemented via Smalltalk text windows. A detailed discassion of the design process

and rationale for specific design decisions are presented in Chapter V.

e 2 Sea o

Formal evaluation criteria for the Prototype was based on the Utilization-
Oriented Evaluation model presented in [38]. This methodology is based on decisions
which will be made regarding acceptance of the thesis, further research, etc. and
applies specifically to the evaluation of DSS. Evaluation criteria and results are also

presented in Chapter V.

1.5 Mazimum Ezpected Gain

This thesis presents object-oriented design as a practical, and hopefully, us-
able design technique which extends, rather than requires obsolescence of current re-
quirements, design, and programming methods and tools. The definitions and meth-
ods presented will aid a software developer’s understanding of the object-oriented

paradigm and its relationship to more familiar software development techniques.

The DSS techniques employed demonstrated their usefulness in developing
software design support systems as well as application to other design environments.
It is hoped this research will spur continued investigation of both OOD methodologies
and DSS techniques by providing a test-bed for such work. Additionally, the tool
may be used to support computer-aided instruction for OOD and related software

engineering concepts.

1-7

II. Models and Concepts

2.1 Introduction

The purpose of this chapter is to describe the concepts and underlying models
foundational to the thesis. We will first look at the object-oriented paradigm and how
it has been applied to programming (OOP) and design (OOD). Next, a general model
for an object-oriented design will be presented. A survey of requirements analysis and
specification techniques follows along with a general model for stating requirements.
Finally, we will describe the decision support techniques used to develop the decision
aid.

Before getting into these concepts, we must describe the technique we used to

understand and present them: concept mapping.

2.1.1 Concept Mapping. A concept map is a simple unstructured entity-
relationship diagram with entities represented by ovals and relationships represented
by directed arrows [34]. Following arrows from entity to entity provides a means
for quickly identifying the relationships between those entities. Concept maps can
describe one or more main entities, identified by directed arrows mostly pointing
away from the entity. The concept maps in this thesis use a darker oval to represent

central concepts for clairity.

The concept map is not only a means of representing an idea or stating a
proposition, but can be used to elicit information from a knowledgeable source.
Concept maps have been used by analysts, for example, in problem understanding

and requirements determination for developing decision support systems [48].

The -oncept map in Figure 2.1 describes ideas about concept maps discussed
" by McFarren in [48]. The figures in this chapter, almost zll concept maps, present an

excellent insight into the material covered. That the information can be assimilated

2-1

m) (oD
created

Maker
ta i
chl:nguw from

and

Linking
Words

which are combined

Time) 1
C t Two Forms
of isa
3 is
Communication) a representing
Technique
applies Objects or
}to Events
Problem i
Definition
to Network of
reveals Understanding
shows
y
new
and

Proposition

Figure 2.1. A Concept Map Describing “The Concept Map”

much quicker via the concept maps than by reading the text is a demonstration of

the value of the tool.

2.2 The Object-Oriented Paradigm

The object-oriented paradigm was introduced briefly in the previous chapter.
We said that it was a model for representing something in terms of its entities or
objects, their attributes, and the operations which they may perform or which they

suffer of other objects.

The object-oriented paradigm can be used to present a static view of the com-
ponents which comprise a problem domain, as well as the behavior of such compo-
nents under various conditions. A functional view, on the other hand, presents the
steps or processes which must be performed to accomplish a single objective. In
a mathematical sense, the object-oriented paradigm is analogous to sets while the
functional paradigm is comparable to algorithms. Which representation to use would
naturally depend on what we are trying to represent and why we want to represent
it.

For four decades our computer software systems have been designed and pro-
gramed functionally. That is, with some objective in mind, a series of steps is arrived
at which accomplishes that objective, i.e., an algorithm. This method works fine for
programs which accomplish a single function, or a sequence of related functions. But
in the real world, events consist of complex interactions between entities performing
possibly many functions simultaneously, each of which affects c.ae another’s state

and subsequent behavior,

Functionally developed software systems that atterpt to represent or control
real world entities exhibit weak cohesion regarding the current state or behavior
of those entities. State information is often scattered throughout global storage or
exists only in temporary variables, which then become control flags. The presence

of many such control flags promotes tight coupling. Procedural behaviors are of-

2-3

R

requirements
feasibility
System document
L] software
requirements

Requirements specification
design

Software specification

Design
unit
Progr .| code
delivered
code
Testing
Maintenance
) } ' ' y

Figure 2.2. The Software Development Process

ten dependent on the current state of global data which may be modified by other
seemingly unrelated procedures. These problems result in software which is unreli-
able and difficult to maintain. An object-oriented approach to software development
shifts the emphasis from the functions to be performed to entities which must be

represented.
In the following sections we will focus on life cycle implications of the paradigm

with emphasis on programming and design.

2.2.1 The Object-Oriented Paradigm in the Life cycle. Figure 2.2 depicts the
classic “waterfall model” of the software development life cycle as a multi-step process

of translating user requirements into a computer language. What this implies is that

2-4

there is a semantic gap between the users’ view of the problem and the computer’s
implementation of a solution. Each of the first several phases presents a new view
or language level representation of the system and requires translation from the
previous language. Many of the problems in software development stem from these
translations. Because translating is a communicative process, it is fraught with

ambiguity and misunderstanding [10].

It is this ambiguity software engineers would like to reduce or eliminate through
use of the object-oriented paradigm. In this attempt, it has been applied to both
design and programming, and researchers are currently exploring object-oriented
requirements analysis techniques. A major concern is where the paradigm can be

applied beneficially, and where it only muddies the water.

Figure 2.3 gives an overview of the application of object oriented concepts to
design and programming. In addition, it shows the desirable software engineering
concepts embodied in the paradigm. In his thesis examining the theoretical founda-
tions for the paradigm, Bralick [10] states, “The object-oriented paradigm provides
a natural structure for describing and decomposing systems.” By using this more
natural representation, the object-oriented paradigm lets us simplify translation by

mapping language terminology more closely to that of the user.

Since the paradigm was first articulated in the context of programming, it’s
only natural that the first major research emphasis should be in developing object-
oriented programming languages [13]. Because many object-oriented principles stem
fromn this background, we will take a look at object-oriented programming before

moving on to the design issue.

2.2.2 Object-Oriented Programming (OOP). In OOP an object is “some pri-
vate data and a set of operations that can access that data” [13]. OOP systems
consist primarily of many such objects communicating with one another via mes-

sages which invoke the target object’s operations or methods. These messages act

2-5

ooP
in terms of Language
requires
Representation an
Language Salution
Independent Space
is somewhat is an geared implements
abstract to a
Problem is applied 0-0
Space o0 as Programming
derives /
gear °dm s characterized by
is applied as
0-0 o
Desi
o= Data Dynamic
leads to Abstraction Binding
Information
. Hiding
Modularity Inforn?auon
Hiding can .
. limits
specify access reuses
promotes b promotes to allows
runtime
Abstraction Abstract
Types
promotes y and
Garb
Stron‘; Looce Impiementation) & aige
Cohesion Coupling Details Collection
through y
through i (Operations and
Understanding a
by
through commnunicating
via
Functional Object
i M
Localization essages Creation

Figure 2.3. The Object-Oriented Paradigm

2-6

like mathematical functions, i.e. they return a value or the result of the operation
and may require one or more parameters. In this sense, they are not very differ-
ent from conventional function calls. In fact, an OOP method’s detail code might
look much like that of any modern programming language such as Pascal. We will
soon see, however, that OOP languages possess or apply certain characteristics very

differently than do conventional procedural languages.

It is generally agreed that to be object-oriented, a programming language must
exhibit four characteristics: information hiding or encapsulation, data abstraction,
dynamic binding, and inheritance of attributes and methods [36]. The implications
of these principles to the capabilities of the language are what differentiates an OOP

from conventional procedural languages.

Information hiding is more than the ability to modularize code. OOP requires
the ability to represent objects, their state memory and operation code in a single
module. Procedures in most languages cannot retain the state of local variables.
Using global variables or passing pointers to external data only tightens the coupling

between modules which is something we would like to avoid.

Data abstraction is the ability to represent and manipulate data structures in
terms more analogous to their real world counterparts. More than just using mean-
ingful labels for variables, abstraction requires the ability to define new types that
relieve the programmer from having to know or mess with the underlying structure.
Abstraction, as such, can be found in most modern procedural languages such as
Pascal and Ada. However in an OOP language, the idea is carried a step further by

requiring that an object only be manipulated through its operations [52].

Hybrid languages like Ada have been extended to support the structure of
programs such that, at a high level, data structures may be private or hidden from
other objects. However, in an OOP language such as Smalltalk, even the smallest
number or character is an object manipulated through messages invoking its associ-

ated methods. Procedural languages explicitly define most operations through the

2-7

e

language’s syntax rules, and implement them in the compiler’s elaboration of the
code. In an object-oriented language, even the simple operations of “+” and “-”
are implemented as methods on objects such as integer or floating point and can be

modified for new classes which might inherit such operations.

Thus while languages like Ada explicitly define constructs to support the rep-
resentation of objects, the object-oriented paradigm is inherent in languages like
Smalltalk. This is not to say one method is preferred over the other, but there
is a clear distinction that must be understood in order to appreciate the concepts

involved in OOP.

Dynamic binding requires that a data structure not be bound to a type or
memory location or even size until program execution. This is just the opposite
of the requirement for strong static binding found in most modern programming
languages such as Ada, and involves a tradeoff between structure and flexibility. Its
primary benefit lies in prototyping and simplifying experimentation when an object’s

exact structure or behavior may be initially unknown [52].

Inheritance and class refer to the static relationship between objects. The
concept of objects belonging to some class allows us to categorize objects by their
common structure and behavior as well as to create new classes by altering the
characteristics of some existing class. Inheritance differs from object cloning or
generic code instantiation in that we reuse unchanged behaviors by referencing rather
than reproducing the code. It differs from use of library routines since operations
are localized and automatically available to objects in the class without having to be
explicitly included and called. Localizing code in a class structure and inheritance
effectively reduces code bulk and simplifies program construction and debugging.
However, it achieves this at the expense of increased overhead and tightened coupling

of incrementally defined structures and operations within the classes.

We have highlighted some of the benefits and drawbacks of OOP languages

and indicated why there exists such debate over which languages are object-oriented,

2-8

class-oriented, object-based, or excluded completely [52]. Our objective, however, is

to see how OOP work relates to our main interest—design.

Cox states that his intention in using QOP is to try to avoid design altogether
through reuse of code [27]. This would eliminate a level of language in development
by using a programming language at such a high level that user requirements could
be programmed directly. As language constructs become orders of magnitude more
powerful, fewer are needed to build a system. Systems can thus be developed more
quickly, are simpler and more reliable, requiré less maintenance, and programmers
can become more productive. This goal is similar to the automatic programming
approach which requires a language-based requirements specification which can be

automatically translated into executable code [6].

The problem with both concepts is that historically, as components have be-
come more powerful, rather thau accepting simpler systems, users have wanted even
more powerful and complex products. No one would suggest, for instance, that the
advent of the 80186 microprocessor, which replaced about 20 individual chips, issued
in an age of simple, automatically constructed computers. It merely provided room
for more memory, co-processors, etc. Today’s micros are just as crowded inside as
yesterdays were; they just do a lot more. The same can be said for software. A few
years ago, 64 kilobytes of user memory appeared to be an upper bound for micro-
computer applications. Try to find a full featured word processor or spread sheet

program for today’s micro that will run in 64 K!

Thus, no matter how high-level we make the languages, there will always be
larger and even more complex systems required whose efficiency and performance
requirements dictate a rigorous software design be performed prior to programming.
The application of OOP has therefore been toward programming in the small, and
design has just not been a significant topic of discussion. Only within the last few
years have we begun to see object-oriented design issues raised {27]. We will explore

some of these issues in the next section.

. 4

2.2.8 Object-Oriented Design (OOD). Referring back to the waterfall model
of Figure 2.2, we see that design is concerned with translating a requirements specifi-
cation into a design specification. As we said in the introduction, both the “product”
of design as well as the “process” must be addressed. We will first look at general
attributes of the products involved in OOD, then explore the principles which apply
to the process. A complete OOD methodology will be presented in Chapter III.

Any methodology for translation must take into account the languages we are
translating from (the requirements specification) and to (the design specification).

Figure 2.4 shows the basic attributes of these products.

In the general sense, all software requirements documents consist of at least a
textual functional specification and an interface description. In addition, they are
often complemented by graphical flow diagrams and/or a data dictionary. In the
same way, software designs, regardless of methodology, must depict the modular
architecture, the interfaces between modules, and the flow of control which describes
the dynamic behavior of the system. A complete object-oriented design specification
must represent all three of these attributes. We will describe the specifics of an OOD

specification later in this chapter.

Knowing the components of the specifications, we can address the design pro-
cess itself. The concept map of Figure 2.5 depicts various methods currently in
use for carrying out the processes of analysis, design, and programming. From this
diagram we can see the various underlying models or baradigms upon which the
methods are based. Several questions are also brought to mind: “Is there a ‘best’
method for all problems?” “Are certain methods appropriate only to certain classes
of problems?” “Should a single paradigm be used throughout the lifecycle?” We
may not have definitive answers to these questions, but assuming that the object-
oriented model is good, we hope to answer the question, “Can OOD be used without

requiring object-oriented analysis and programming methods?”

2-10

-

. A

g

Graphic
Representation

y

Data

Dictionary '

Objects

Rehtlonslups

Figure 2.4. The Attributes of Software Development Specifications

2-11

vy

2 e 2

Programming
transforms
Requirements into
Specification Design
transforms Specification
of \
produces into
Design Code
@ uses various
uses various
S
examples
examples
Language
Oriented
Structured
Analysis Jackson based
- on
SREM SADT oobject. Jackson
bued bued
based yon based on based based
on on on
Data Data on \
Flows Structures D mpontl
Language
b Constructs
Software
Functions

s Ob, and Data
Activities Q ;mmm @
are representations for the

are re’prenenhtlma for the

=

Figure 2.5. Software Development Methods

2-12

and rationale for specific design decisions are presented in Chapter V.

Just as there are general characteristics of specifications, there exist general
software engineering principles which apply to the design process. Pressman [37] lists
those specifically addressed by OOD as abstraction, information hiding, and modu-
larity. While the principles themselves are not new, he states, “only OOD provides
a mechanism that enables the designer to achieve all three without complexity or
compromise.” We have already seen how these principles can be compromised when

certain classes of systems are developed functionally.

Comparing Pressman’s list of principles with OOP characteristics reveals some
parallels and some differences. This can be attributed to the distinction between the
design and programming activities. Dynamic binding and inheritance are excluded
from Pressman’s list—presumably due to their strong implementation-orientation
and applicability to experimental development methods which avoid a formal design

phase. However, we believe inheritance may play an important role in design as well.

2.2.9.1 Abstraction. When describing a system, the first step is to sim-
plify or narrow its scope so we can understand it at its highest “level of abstraction.”.
As we go into more detail, our abstraction changes. With OOD, our abstraction is
in terms of its natural components—referred to and described in their own prob-
lem domain terminology, rather than as a set of processes needed to carry out the

purpose or objective of the system.

Each component or object is characterized by its behavior and those assertions
which may be made about its state. This state can change when the object suffers
or performs some behavior. Objects, behaviors, and the attributes which represent

types of assertions can be complex and thus composed of simpler sub-components.

Abstraction also lets us take a “black box” view of components of the system
at their highest level. That is, we need not concern ourselves with low level details

contained within the component. This component view enables creation of libraries

2-13

T —

of reusable parts or sub-parts, reducing the number of levels of abstraction needed

when decomposing the system.

2.2.8.2 Modularity. The concept of decomposing a system into simpler
modules has been around for four decades [37]. The problem is not whether or
not to modularize, but how to encapsulate system components into weli structured

modules.

Traditionally, modules were determined by the functional decomposition of
the system, i.e., mapping functional requirements directly to the partitioning of
the design. In OOD, however, a module is identified as a data structure and the
operations that act on it. Both the data structure and its operations are co-located

in that module or object. This gives OOD modules strong cohesion.

Cohesion is strongest when modules perform a single function [37]. In proce-
dural designs, cohesion may be strong at the lowest level, but for large problems,
hierarchical structuring requires combining activities such that at higher levels co-
hesion is weak. These high level functions are often described in such arbitrary and
ambiguous terms as “Process_Message”. With OOD we say a module has strong co-
hesion if it represents a single entity. Even at the highest level of a system composed
of a set of communicating objects, the system itself can be considered a single object.
A complex top level object such as “Communications_System” is neither arbitrary

nor ambiguous and describes a very specific problem domain entity.

2.2.8.8 Information Hiding. Not only can details be hidden by levels
of abstraction, they can also be hidden and protected from other components. In
OOD, a component cannot access another’s private data structure, only its visi-
ble interface. This promotes the principle of “loose coupling” in that it eliminates
hidden dependencies between modules. Information hiding carries implications for

development and maintenance, as well as reliability of operation.

2-14

Once a module’s interface has been determined, lower level design decisions are

isolated to a specific component of the system and do not affect development of other
components. This characteristic, called “functional independence,” makes object
behaviors straight forward, simplifies testing, and makes systems more reliable. Since

the effects of a change are localized, debugging and maintenance are also streamlined.

2.2.3.4 Inheritance. In OOD, objects are determined from the prob-
lem domain rather than a solution-space class hierarchy. Operations and attributes
aren’t inherited, they are observed through analysis of the object’s discernable be-
havior within the scope of the problem. As such, inheritance doesn’t seem to apply
in the analysis, identification, and encapsulation of objects. However, once the spec-
ification for an object is developed at its highest level, inheritance may be used in
the decomposition, or rather construction of the object. Seidewitz points out that
inheritance should be hidden in design through this type of bottom-up application
[27].

We are speaking of the reuse of concepts or frameworks here rather than the
reuse of code. That is, if we recognize in an object a familiar structure and behavior,
we need only specify that this new object is an instance of some known class of
objects with possibly some minor modifications. The decision to refer to the known
class is based on the significance of the differences attributed to the new object, i.e.,

the cost/benefit of modification versus redesign.

While Pressman offers an example of design using inheritance involving ge-
ometric shapes (37}, many real system involve interacting dissimilar objects which
do not fit into such a neat class hierarchy. The author’s experience indicates that
inheritance in design is seldom formally used since supporting resources are not yet
widely available. Formalization would require a library of generic software module
designs which would need to be maintained, cataloged, and readily available in the

designer’s environment. Informally however, a software engineer often applies the

essence of inheritance by recalling a previous design, or retrieving one from some

previous work, and massaging it to fit the new problem. This type of reuse improves

productivity and should be supported in any modern design environment.

2-16

ey

2.8 The Object Model

In this section we will formally define the underlying object model used for

development of the thesis and describe its representation in a design specification.

2.8.1 Definition of the Object Model. All along we have been using the terms
“object”, “operation”, and “attribute” to describe components of the object model.
We have also mentioned the additional terms “method” and “message”. We have
referred to several informal definitions used for these terms based on the author and
context of the discussicn. But since definitions vary slightly from author to author,

it is necessary to establish a working definition of the object model for our purposes.

We begin with two definitions of the object model: Bralick’s theoretical model
(10] and the Smalltalk model [20], then proceed to define a model appropriate to
design. We chose Bralick’s model because it seemed to be the only attempt to
provide a rigorous, firmly founded definition of the paradigm. The Smalltalk model,
on the other hand, seems to be the defacto standard to which all other proposed

implementations of the paradigm are measured.

2.3.1.1 A Theoretical Object Model. Bralick’s object model is repre-

sented in Figure 2.6 and the components of the model are defined as follows:

object A unique entity composed of an identifier, a set of attributes, a set of
behaviors, and a set of objects, and having a link to its parent object.

attribute A property of an entity or object which associates a value from a domain
of values with the entity at a point in time. A such, it serves to limit, identify,
or describe an object. An attribute is composed of an identifier, a value, and a
set of attributes, and has a link to its parent attribute.

behavior An action an object can perform which results in a change in the state
of the attribute(s) of some object. A behavior is composed of an identifier, a
set of attributes, and a set of behaviors, has a link to its parent behavior, and
may map to an operation.

identifier An arbitrary string which uniquely identifies an object, behavior or at-
tribute within some context.

2-17

R —— e S et ettty

isa to
parent
< - - (=
‘ have a
parent to

parent
have a
Behaviors
have a have a
set of have an set of
have an
have a
<D @ o
may be

Operation

isa
@ @ iy

Figure 2.6. Bralick’s Theoretical Object Model [10]

value Represented as either a numeric value, a selection from a discrete set of
possible values, or an arbitrary string.

operation The algorithmic description or sequence of executable statements per-
formable on some object.

link An association of an entity with the parent or owner of the set to which the
entity belongs.

This definition reveals the fully recursive nature of objects. Objects can be
constructed of, or decomposed into sub-objects; behaviors can invoke one or more
sub-behaviors; and attributes can be described generally, then gradually broken down

into increasingly complex data structures. The model also supports relationships

2-18

s comemin

"y
W r—

T

Table 2.1. Object Classification [10]

Object Affects Affected By
Type Others | Self Others
Static N N N
Passive N N Y
Small N Y N
Weak N Y Y
Demon Y N N
Interactive Y N Y
Sovereign Y Y N
Complex Y Y Y

between objects through their attributes. That is, since an attribute’s value can be

a string, it can act as a reference to another object’s identifier.

Bralick also demonstrated the paradigm’s ability to represent any computable
function, i.e., it is at least as powerful as a Turing Machine. This is what we need
in design: a medium powerful enough to represent any problem in its own natural
terms, rather than squeezing it into the restrictions or terminology of a programming

language or methodology.

Rather than limit an object to only representing a state machine, Bralick lists
eight general classifications of objects based on the nature of their behaviors. These
types are listed in Table 2.1. This might be considered an extension of Booch’s
classification of objects as actors, agents, and servérs, and of operations as construc-
tors, selectors, and iterators [8]. Such classification schemes can be very useful in

determining how to best associate objects with the appropriate operations.

Attempting to use the model for design reveals two significant limitations.
First, is a lack of an explicit means for describing object interactions. Objects exist,
they behave, they have state, they can be complex, but they have no means of

executing the behaviors they require or suffer of other objects.

Second, the model suffers from being too ambiguous for use in design. For
instance, a single data structure may be described variously as an object with a set
of attributes, a single attribute which itself contains a subset of attributes, a set
of sub-objects which each have attributes or sub-objects, etc. Such flexibility does
not provide a designer with a clear picture of how to proceed in defining an object.
Although this ambiguity may be useful for some purposes!, precise communication

is the objective of Jesign.

2.3.1.2 An Object Model for Programming. The Smalltalk model, shown
in Figure 2.7, is not so clearly spelled out or defended theoretically as Bralick’s
model; however, it does effectively accomplish its intended purpose—implementing
an object-oriented language. This is of significance to us since we require a model
capable of representing the real world complex interrelationships between objects.

From (20] and [17] we present the following definition:

object A self-describing, protected data structure which encapsulates information
and provides functionality. Every object is an instance of some class.

class A program module which defines the behavior of similar objects by specifying
the variables they contain and the methods available for responding to messages
sent to them. Classes are also objects contained in global variables so they can
be referred to in ezpressions. Classes are arranged in a hierarchy where each
class is a subclass of some other class or the root class called Object.

subclass A class which inherits the functionality of all its superclasses in the hi-
erarchy. Each class builds on its superclasses by adding its own methods and
variables.

variable A container for a single object which can be of three kinds: instance,
temporary or shared.

instance variables Represent the internal state or private memory of an object
and may be referred to by name or by an integer index. Each member of a class
has its own separate instance variables which exist for the life of the object.

temporary variable Created in and exists for the lifetime of a method; and act
as method arguments, method temporaries, or block arguments.

!Bralick cites human communication as being ambiguous as an example of the value of fiexibility
in the model [10]

2-20

may
be elementary

Words

Block
Arguments

Figure 2.7. The Smalltalk Object Model [17]

2-21

i

shared variable Objects defined in dictionaries or pools which are accessible by
other objects. Global variables are available from every object while class vari-
ables are only available to the class, subclasses, and instances of the class and
its subclasses.

method An algorithm performed by an object in response to receiving a message.
A method may change that object’s state or send messages to other objects.
Class methods implement messages sent to the class, while instance methods
implement messages sent to instances of the class.

message A request for an object to perform an operation. Identified by a message
selector, it specifies what to do, but not how an operation should be performed.
The receiver of a message is either the class object or an object that is and
instance of the class that defines the method.

From the definition, we can immediately see the implementation and language
specific features of the model. We can also see most of the elements of the theoretical
model. For example, the instance variables represent both an object’s set of sub-
objects and its set of attributes, which, since they themselves represent objects,
provide for a recursive decomposition. An explicit decomposition of methods into
sub-methods is not given. However, since methods may send messages to their own

or other objects, invoking other methods, complex behaviors can be described.

Through messages, Smalltalk provides a means of representing the interrela-
tionship between objects. While Bralick addresses this subject in his thesis, he makes
no explicit provision for this interaction in the model. The problem with the concept
of messages is that it limits object interaction to a single kind, which may not clearly
or easily represent complex interrelationships. Bralick [10] provides an example the
kind of convoluted thinking forced by the message model. He describes the process
of drilling a hole in a piece of metal as follows:

We are left with the counter-intuitive model of, for example, a piece

of sheet metal being asked by a drill press to please punch a hole in itself.

The sheet metal then decides whether to honor the request. Note that

whether a hole is actually made in a piece of sheet metal by a given

drill press is a complex interrelationship among the material of the sheet
metal, the material of the drill, the speed at which the drill bit is rotating,

2-22

the force at which the drill descends onto the sheet metal, and how long
the drill is applied in such a fashion to the sheet metal [10).

2.8.1.8 An Object Model for Design. Both of the previously discussed
models leave something to be desired for application to design. The theoretical model
is too ambiguous and the OOP model to restrictive to implementation constructs.
The theoretical model provides no means for describing object interaction, and even
Smalltalk’s message syntax is rather limited. We proceed now to develop an object
model which meets the needs of design.

We begin with the simpler theoretical model, and in the OOP tradition, modify
it to meet our needs. First, we generalize the notion of an attribute. Since an
attribute is “an object closely associated with or belonging to a specific person,
thing, or office,” {51], we will use attributes as a means of associating objects with
other objects, other attributes, and operations. This is analogous to the Smalltalk

variable being a pointer to some object.

Thus as we speak of what an ob‘ject has or does, we are speaking of its at-
tributes. Some attributes are important enough to be considered required. When we
refer to such attributes as being required, we simply mean they must be accounted
for. In some cases, a required attribute may be null, but it is important for the
designer, and later implementers to know that the attribute is null and for what

reasoin.

We may eliminate the explicit notion of an object having a set of sub-objects
since such a set may be referred to by one or more of the object’s attributes. Typi-
cal attributes representing object sets might be component_objects, actor.objects, or
server_objects. An object’s name, class, parent, and set of operations are all attributes

of the object which may, in some cases, be null.

We retain the notion that an attribute can represent a set, but we expand that

set to represent objects, other attributes, or operations. Attributes serve to identify

2-23

an object—by its name, class, behavior, and domain; and to associate an object with
other objects, attributes, and operations. We will refer to attributes which relate

objects or operations to other objects and operations as relations.

We reserve the term “behavior” to define a general description of what an
object does in its response to stimulus from other objects, and use “operation” to
tell how it performs that behavior. Thus an object’s behavior would be an informal
description of the object’s functionality at the highest level of abstraction, while its
operations would be a formally specified set of algorithms. An operation requires a
means of invocation and an interface description. Therefore, we allow an operation
to have attributes, like objects, which associate the operation with the sets of objects
it modifies or requires as arguments, as well as those for which it requires services

and performs services.

Bralick referred to object “cloning” in his thesis as a type of inheritance. This
technique also more closely fits the Ada generic construct. We use the concept
of class or template from which an object may inherit properties such as required
attributes. Which method of class or generic implementation is used would depend

on the programming language of implementation.

The model we have just informally described is pictured in Figure 2.8 and more

formally defined as follows:

object A unique entity defined by attributes which serve to identify the object
and relations which associate it with other objects, relations, and operations.
Required attributes are name, behavior, domain, and class. Relations which
may or may not be null include sets of operations, component objects, actor
objects, and server objects.

attribute Serves to identify an object or operation.

relation Represents an association of an object or operation with other system
objects and operations.

operation Is the description of how an object performs some behavior. Required
attributes are name and algorithm. Relations include sets of actor operations,
server operations, argument objects, and modified objects.

2-24

s

W

—a aa o

y Attributes

which
defines the Argument \ . Server
Operational Objects Objects
Interface

Figure 2.8. An Object Model for Design

class A complete design of an object which may be used as a template from which
an object derives its characteristic structure and function.

name A string serving to identify an object or operation which must be unique
within a context.

behavior A text description of an object’s function when provided with certain
circumstances.

domain A text description of the set of states to which an object may change.

actors A relation which denotes which objects or operations require services of some
other object and operation.

servers A relation which denotes which objects or operations provide services to
some other object and operation.

2-25

components A relation which denotes which objects can be considered logical parts
of an object.

arguments A relation which denotes which objects are required as arguments in
the interface of an operation. This relation has an attribute: mode which may
be input or output.

modifies A relation which denotes which objects are modified by the execution of
an operation.

We submit that the model presented retains the function of the theoretical
model, and adds the practicality of the programming model, without suffering the
limitations of either. Neither the implementation of an object is specified, nor is
the syntax of the communication between objects limited to a specific method. Yet
provisions are made for describing the interface between objects and operations of
other objects, as well as for representing the fully recursive nature of real world

objects.

2.3.2 Representing The Object Model. Statically, an object-oriented design
consists of a representation of a system in terms of the model described in the
previous section. As such, the object model could be easily represented in a relational
database. However, a static representation is insufficient for fully communicating a
complex behavior or the interrelationship between objects without a correspondingly

complex textual narrative.

As an alternative to text, software developers have produced a plethora of
graphical methods of representing software systems. A number of techniques have
been proposed to represent an object-oriented design, some entirely new, some vari-
ations on more familiar methods. We will look at some of these in the following

section, then offer one of our own.

2.3.2.1 Some Graphical OOD Methodologies. Examples of graphical
OOD methods are shown in Figures 2.9-2.12. Each of the many methods which

2-26

R

Figure 2.9. Booch Diagram Example [19]

have been developed has its own strengths and weaknesses and represent one or

more views of the software design.

The Booch diagram (9] [19] of Figure 2.9 identifies the objects and operations
in the visible interface, and the dependencies between objects, but it does not reveal
which objects invoke which operations. Thus the diagram is useful only as a gen-
eral block or overview diagram. Furthermore, attempting to show decompositions

becomes immediately difficult.

Figure 2.10 is an example object diagram of Goddard Space Flight Center’s
General Object-Oriented Development methodology [42]. A variation on structure
charts [35], GSFC’s object diagrams are even simpler block diagrams. But they add
the capability to show a clean parent-child or a virtual machine hierarchy. At the
lowest level, object diagrams include the procedures and data stores, making them

virtually indistinguishable from structure charts.

2-27

5.0 E3 4.0 Simulation

Simulation Ephemerides Results
Timer File Database

) Figure 2.10. GSFC’s Object Diagram Example [42]

Modular design charts [53) and Buhr diagrams [11] go into much greater detail.
The modular design chart, Figure 2.11 shows attribute types and operations within
an object, as well as which components are used by specific object bodies. The Buhr
diagrams link operations together directly through “control sockets” giving the flavor

of a hardware wiring diagram.

The Interactive Ada Workstation (IAW) [22] implements Buhr diagrams and
adds a petri net diagram for describing control flow. The AdaGraph tool {14] which
implements Cherry’s PAMELA methodology also uses a petri net based process

2-28

A A am e T

SPECMailPackage SPECLetterPackage ¢
type Mailbox type Letter
proc Place proc Create
proc Remove proc Send
fn AnyMail proc Read

proc ThrowAway

proc ElectronicMailSystem Js“""“—a“'___i_L

Main Program

BODY MailboxPackage BODY LetterPackage

Figure 2.11. Modular Design Chart Example [53]

graph and adds a hierarchical subprogram graph. Both of these systems generate
skeleton Ada code. '

APEX, a system in development at the Air Force Wright Aeronautical Labo-
ratories, also adds a petri-net diagram to its block diagram and process connection
graph [2]. An example is shown in Figure 2.12. This system, like AdaGraph and the
IAW, automatically produces an Ada shell.

The SHARP methodology [12] uses a variety of pictographs employing icons
which seem to be an extension of Booch diagrams. Different diagrams are used
for main program abstraction, object implementations, object interactions, object
invocation, task rendezvous, subprogram data flow, data structures, and program

unit operations.

All the methodologies we have referenced were developed specifically for de-

signing Ada programs?, resulting in many Ada unique distinctions. This makes sense

¥The modular design charts were developed with both Ada and Modula2 in mind.

2-29

U Pulse

D Pulse

L Pulse

R Pulse

Status

Figure 2.12. APEX Petri Net Graph Example 2]

if one takes the view that a design methodology must support language features and
produce source code—as do the APEX developers [2]. It can also be attributed to
the current emphasis on Ada by the DoD and the need to take advantage of its
object-oriented features. Be that as it may, as more use is made of object-oriented
languages other than Ada, so the need for a generic methodology which can be

mapped into any such language is becoming more apparent.

2.3.2.2 A Graphical Representation For Generic OOD. Synthesis of
the various types of diagrams used by the methodologies described previously yields
an interesting parallel to electronic circuit design. With hardware design, both block
diagrams and detail diagrams are important. Usually a block diagram showing the
static relationship between board components is given, as well as a wiring diagram

revealing exact pin connections. In addition, timing diagrams are often used to de-

2-30

scribe the dynamic behavior of the system by depicting the relationship between the
signals being passed throughout the system. Could it be that electrical engineers
have been using OOD for years and we are only just now catching on in applying it

to software?

Since OOD seems to closely parallel the hardware design methodology just
described, it would seem that a means of representing that design should also parallel
the block, circuit, and timing diagrams used in the hardware design. We submit that
this logic holds and that an OOD representation must consist of three parts: a block
diagram, an interface diagram, and a control flow diagram. Figure 2.13 shows an

example of a proposed design including these three views.

The block diagram we use is similar to the high level object diagram of Fig-
ure 2.10. It depicts the objects in the system (at a particular level of detail) and
the dependency relationships between them. A module dependency is shown by
directed arrows to the servant or component objects in the graph. In the case of
an actor/server relationship, messages or operation calls flow accross the directed

arrows.

The detail diagram is taken from the modular design chart shown in Fig-
ure 2.11. We leave out the constraints of depicting a “software bus” and component
bodies as separate from their specification parts. In lieu of the implementation-
oriented terms “package”, “proc”, “fn”, and “type”, we let objects begin with a
capital letter, and operations begin with lower case.

We also agree with using an optional petri net graph to depict a state diagram

or object interaction in the case of concurrent communicating objects. However, we

would not want to require such a representation where it 1s not needed.

The main purpose of graphics is to communicate the design more clearly than
does the tezt. While we advocate the use of graphics, we do not advocate a method-

ology so rigid that the graphic techniques drive the design, rather than good software

2-31

Fan] TempMonitor
GraphicsDisplay
TempMonitos GraphicsDispjay
ran © n 1
Terminal gt ow— —1
a. Block Diagram
Fan Terminal
nun o b run O
get
TempDisplay . .
b. Detail Diagram
3
p
Reading .)
TempSensor Reading Rea>dm
Setpoi
On
run TempMoni Readin)
: < Fan
SetPoint SetPoipdt off
SetPoint
run TM run Fan
Cor
is
SetPoin
Command
run Terrfunal
Co
is
ProfileR£quest
run GraphicsDisplay
get Tem, gl-e\
c. Petri Net Diagram GraphicsDisplay

Figure 2.13. A Language Independent Object-Oriented Design

2-32

P

Y

engineering principles. We feel a three view approach to a graphical representation

is sufficient to effectively communicate the design.

2.4 Requirements Analysis and Specification Techniques

Referring back to Figure 2.5 we showed analysis techniques based on functional,
data-flow-oriented, and data-structure-oriented paradigms. While some experts feel
it may be too difficult to get an OOD from a specification not developed with the
object-oriented paradigm in mind [27}, Figure 2.4 indicates there may be some form

of mapping from any of these specifications to OOD.

Whatever the paradigm behind the analysis, requirements specifications all
contain some sort of functional text description, written in English or an English-
like language. From the nouns, verbs, and modifiers in the text, objects, operations,
and attributes can be determined using Abbot’s semantical analysis methods [1].
Examples of such textual descriptions are the mini-specs of structured analysis and

facing page texts of SADT.

Another common element of many methodologies is the data dictionary. While
varying in format, these contain data items representing potential objects and at-
tributes. Data flow and activity diagrams add the processes and interface descrip-
tions needed to identify operations and visibility requirements. Control flows shown
in SADT diagrams often represent design decisions rather than requirements and

can be used to classify objects and determine object dependencies.

Finally, since most specifications are hierarchically organized, scoping the prob-
lem so a context can be determined is usually straight-forward. Since detail design
uses conventional methods, low level processing requirements may map directly to
low level operations. As simple as this all sounds, there is no absolute or magic in
such a mapping. Each selection of an object, operation, or encapsulation requires
application of the object-oriented and software engineering principles we have been

discussing throughout this document.

2-33

Attempts have been made to provide formal translation techniques from re-
quirements specification methods to ood [3] [42]. However, the formality of such
methods severly limits their usefulness since one is constrained to specific specifi-
cation formats. In addition, we found the cited methodologies significantly more

complex than other more general design methods.

2-34

2.5 The Requirements Model

We define a requirements specification as providing a textual functional de-
scription of the system requirements, a data dictionary of required system entities,
and an interface description depicting the flow of control and/or data through the
system in operation and in conjunction with any external systems. These three
components map well to those produced by common specification techniques such

as Structured Analysis [15] and SADT ([40].

However, this general model does not depend on a specific graphic representa-
tion or specification format. Our design methodology, described in the next chapter,
requires only that this information be available to the designer in printed or auto-
mated form. Since we are presenting the methodology in a computer-based interac-
tive form, we have chosen a requirements methodology supported by an automated
tool: the Software Requirements Engineering Methodology (SREM) and the DCDS
Support System.

2.5.1 The Distributed Computing Design System [46].

The DCDS is not just a software requirements methodology but is a unified
environment for systems development. It includes methodologies for developing sys-
tem requirements (SYSREM), software requirements (SREM), distributed top-level
design (DDM), algorithms and unit code (MDM), and complete integrated system
testing (TSM). Each methodology has its own customized language based on an
element-attribute-relationship model. An automated development tool, the DCDS
Support System implements the DCDS database, provides an interactive form-based
user interface and query capability for the database, and provides a graphics interface

for generating flow diagrams.

The Software Requirements Engineering Methodology (SREM) database is
structured by the Requirements Specification Language (RSL) described in part
by Figure 2.14. This database provides both standard data dictionary information

2-35

L B

Associates

Traces
Originating To All of These
Requirements Elements

*Structure Implied Relationships

Key
-) Element
o] Attribute
— Relationship

Figure 2.14. Major RSL Elements [46]

and adds the relationship terminology to generate a complete functional specification

document through the DCDS Support System’s powerful query capability.

A SREM software specification is centered around the requirements networks,
or R_Nets, which identify data flow through functional processing steps called Alpha
nodes. R_Nets are independent processes which are enabled upon receipt of Messages
via Input_Interfaces. SREM provides a means of graphically depicting an R_Net as
shown in Figure 2.15.

R_Nets and their SubNets can be developed strictly through database entries
or through the graphics tool. Both graphic and textual representations can be dis-

2-36

N /-— RNET START
R.NET: SAMPLE

STRUCTURE:
Q «— INPUT INTERFACE INPUT.INTERFACE II
VALIDATION_POINT V1
ALPHA A
(v1)=— VALIDATION POINT SELECT ENTITY.CLASS IMAGE
SUCH THAT (Y-2)
Do
ALPHA B
IMAGE FOR EACH FILE HISTORY
ENTITY SELECTION HISTORY RECORD
DO SUBNET C END
AND
ALPHA D
CONSIDER DATA STATUS
“CONSIDER IF (READY)
OR” ALPHA E
/ OR (NOT READY)
STATUS ALPHA F
END
END
E [F IF (X > 5.0)
ALPHA G
VALIDATION_POINT V2
OUTPUTINTERFACE O1

A |-« ALPHA

FOR EACH

A

HISTORY

(READY) (NOT READY)

OR (X = 5.0)
DO
\ ALPHA H
“AND” .REJOIN OUTPUTINTERFACE 02
AND
OTHERWIZE ALPHA J
e Q TERMINATE
OTHERWISE
\ EVENT EVENT Q
TERMINATE
END
FND

A

OUTPUT INTERFACE TERMINATE

Figure 2.15. A Sample R_Net [46]

2-37

played and printed. The combination of graphic data-flow diagrams (R_Nets), data
dictionary, and text provide a complete view of the system requirements in terms of

our general requirements specification model.

SREM specifications provide elements which can be used to develop an object-
oriented design. FEntity.Classes, Entity.Types, Interfaces, Data, and File elements
might be used to determine system objects and attributes. Since processing functions
map to R_Nets, groups of R_Nets, SubNets, and Alphas, these may suggest candidate
operations. Additionally, Interfaces and Messages are sources of visible interface

descriptions.

We reiterate that there is no magic formula for mapping requirements elements
to design. We asserted early on that design is a decision making process requiring
judgement and choice. While automated tools, or even expert systems might aid the
design process, such aid must be in the form of providing the right information, in a
user-friendly manner, to help the designer make good design decisions. In the next
section we will present the basic concepts of decision support systems (DSS) used
in subsequent chapters to describe our development of a Decision Aid for Object-

Oriented Design.

2-38

ety i

2.6 Decision Support System Techniques

2.6.1 Introduction. As much controversy exists as to the definition of decision
support systems as to that of the object-oriented paradigm. Valusek [49] defines
DSS as “a system (manual or automated) that supports the cognitive processes of
judgement and choice.” Ting-Peng Liang [30] adds structure to that basic concept
by describing DSS as follows:

A computer-based decision support system (DSS) is designed to im-
prove unstructured or semi-structured decision making. It has three ma-

jor components: an interactive user interface, a database management
system, and a model management system.

These definitions are useful both for revealing the applicability of DSS to designing

software, and for prescribing an approach to the development of a DSS for OOD.

Structured problems are those which have stable and identifiable components,
easily quantifiable goals and evaluation criteria, and known constraints, assumptions,
and algorithms for their solution. On the other hand, unstructured problems require
intuitive inputs, require a large search space, involve uncertain parameters, and have

no absolute solution.

We postulate that design has some elements of both types of problems; that it
requires enough intuition and judgement in choosing between alternative solutions
to be termed a “semi-structured” decision process. It is with this claim that we
choose the concepts of decision support systems as a framework for developing a
support environment for object-oriented design. The rest of this chapter is devoted
to describing the approach used to build decision support systems. In later chapters,
we describe the requirements, design, and construction of a decision aid for OOD

using these principles.

2.6.2 The Design Framework. In Building Effective Decision Support Sys-

tems, Sprague and Carlson [44] view a DSS from three levels: the user, the designer

2-39

or analyst, and the butlder or toolsmith. The user is the prime decision maker, the
designer analyzes user requirements and specifies the high level requirements and
design of the decision aid, and the builder uses computer systems hardware and

software components to develop a system.

The user of a DSS is most concerned with the system’s performance in sup-
porting the decision process. Herb Simon [43] describes a model of that process
characterized by the three steps of intelligence, design, and choice. Intelligence in-
volves searching raw data for potential decisions; design requires developing and
analyzing alternative courses of action, and choice is the selection of a particular ac-
tion from those available. To the user, a DSS must support all three of these phases,
plus the implementation of the final decision. But above all else, it must be easy to

use [44].

Due to the unstructured or semi-structured nature of the decisions a DSS
must support, highly structured software requirements methods don’t work. Users
are either unwilling or unable to state requirements in advance. In response to
this problem, Sprague and Carlson [44] provide an analysis and design approach to

eliciting DSS capabilities in terms of the following four user-oriented entities:

Representations that decision makers use to conceptualize and communicate the
problem or decision situation,

Operations to analyze and manipulate those representations,
Memory Aids to assist the user in linking the representations and operations, and

Control Mechanisms to handle and use the entire system.

The builder of the DSS must decide which hardware and software components
to use to construct the system. As mentioned previously, these components fall into

the categories of dialogue, database, and modelbase.

Valusek [49] has combined the aspects of the three views of DSS in the three
dimensional cube of Figure 2.16. This DSS Cube depicts the use of ROMC in translat-

2-40

Figure 2.16. The DSS Cube. [47]

ing from the user’s world into the builder’s world, or in implementing user activities

with builder components.

2.6.3 Adaptive Design. We mentioned that one of the key problems with DSS
development is the inability to acquire complete or accurate requirements. For this
reason, many in the DSS field are espousing an adaptive or iterative design approach.
Rather than require the complete specification of a full-blown system, an adaptive
technique begins with a kernel system, implements it, then lets it grow to meet the

user’s needs as determined through actual use.

This method is «imilar to a prototypirg approach except that the prototype
is intended to be used, not merely show proof of concept and thrown away. Peter
Keen [25] describes it as a middle-out approach which relies on quickly delivering an

initial system to which users respond and thus clarify their real needs.

But before even an initial system can be delivered, designers must have a
way of determining basic system requirements. Keen [25] calls for beginning with a

“descriptive map of user processes.” Early in this chapter we introduced a method

2-41

called concept mapping as a means of understandiug ideas, concepts and propositions.
McFarren [48] has proposed using this technique during interviews with multiple

users to gain a unified view of the decision processes.

Once key decision processes are identified from the concept maps, analysis is
required to determine the set of DSS features which will satisfy the support require-
ments of those processes. Seagle and Belardo [41] propose a synthesis of the ROMC
model and Structured Analysis called a feature chart. It serves the purpose of defin-
ing tasks and showing interfaces, as well as providing a navigational guide through

the system.

After the tasks are defined, they must be modeled and then designed and imple-
mented. To model the tasks, a series of storyboards can be developed which represent
the functions the system may perform when fully implemented. The best presented
storyboards are computer-based, with some interactive controls, communicating to
the intended user the feel of what the operational system will be like. Such models
are easily modified at the user’s request so the designer can be reasonably sure of the
validity of the requirements they represent. Thus the storyboards themselves serve

to define the requirements for the system.

Given an easily adaptive dialogue component for developing the storyboards,
the dialogue controls merely need to be extended to provide access to and manipu-

lation of the required modelbase and database to produce a prototype.

A final adaptive concept has to do with how the user gives feedback to the
designer regarding system problems or modifications. The solution to this problem
is an on-line tool called the hook book [49]. The hook book is built into the dialogue
component of the DSS and allows the user to immediately log problems or suggestions
for modification to the system—as they come to mind through use of the tool. Hook
book entries are stored in the system’s database and retrieved by the designer as

data points for needed changes to the system.

2-42

. A e

i

2.6.4 The Utilization-Shapped Evaluation Model. Riedel and Pitz [38] see
evaluation as facilitating or guiding design, and consequently as an integrated pro-
cess throughout the development life cycle. They address the question of what is
done with evaluation results once generated by basing their USE model on the use
of evaluation information. The focus is not on measuring the final impact of the
completed system, but on who will make what decisions given feed back from the

evaluation process throughout the development life cycle.

This approach seems to promise reduced cost and increased benefit. It elim-
inates useless evaluation criteria, thus reducing cost. It also helps designers, users,
and policy-makers make decisions which may produce a better system or prevent
production of a bad one—benefit. The realization that certain windows of opportu-
nity for decision-making open and close throughout the development life cycle, and
therefore gearing the evaluation plan to the decisions and decision-makers involved

at those times is the unique aspect of the USE model.

The USE model is centered on the following four main concepts:

1. Select evaluation methods, measures of effectiveness, and measurement tech-
niques based on mission requirements and DSS development/ deployment tech-
niques.

2. Use a life cycle rather than after-the-fact approach to evaluation.

3. Consider the appropriateness of the DSS for the task it is designed for at each
stage of its development (i.e., before proceeding on to further development).

4. Relate system performance to performance requirements establixhed by the
system'’s mission.

The USE model provides the following benefits of an evaluation framework. It
is
e comprehensive,

e easy to use and understand,

e able to provide a basis for considering and selecting evaluation methods and
procedures,

2-43

e able to produce evaluations that provide useful information for decision making
throughout the development life cycle.

In Chapter V we discuss the application of the USE model to evaluation of the
decision aid and the OOD methodology.

2-44

III. An Object Oriented Design Methodology

Webster defines a methodology as “a body of methods, rules, and postulates
employed by a discipline: a particular procedure or set of procedures” [51]. In the
previous chapter we offered a number of postulates or OOD concepts; among those,
an object model for supporting design. In this chapter we will reiterate briefly those
postulates key to an OOD methodology, describe a method of arriving at an object-
oriented design, and present several rules or heuristics applicable during the various
design steps. Finally, we will review evaluation criteria for the methodology and

provide a sample problem designed via the methodology.

8.1 Postulates

The basis for an object-oriented design methodology is our view of what an
object is. From the previous chapter, we restate our object model definition as

follows:

e An object is a unique entity defined by attributes which serve to identify the
object and relations which associate it with other objects, attributes, and op-
erations. Required attributes are name, behavior domain, and class. Relations
include sets of operations, components, actors, and servers.

e An attribute identifies an object or operation.

e An relation represents an association of an object or operation with other
system objects, operations, or relations.

¢ An operation is the description of how an object performs some behavior.
Required attributes are name and algorithm. Relations include sets of actors,
servers, arguments, and modified objects.

¢ A class is a complete design of an object which may be used as a template
from which other objects derive their characteristic structure and function.

From this definition and the earlier discussion of OOD, we also state the follow-

ing presuppositions regarding development of an object-oriented design methedology.

3-1

o Design is a decision process requiring intuition, judgement, and choice between
alternatives. Design involves a set of princirles and/or heuristics that guide
evolution of the design, and a set of criteria upon which the final design may
be judged. The objective of design is to create a representation of a system
at a level of detail such that it can be built. As such, a design methodology
must identify and support the decisions a designer must make as well as the
creation of the representation itself.

e Object-oriented design is the process of creating a representation of a system in
terms of the entities that exist in the problem space of that system. As such, it
is a partial lifecycle process requiring previous analysis of the proposed system’s
requirements and subsequent implementation of the design in a programming
language.

e The requirements specification from which the object-oriented design is devel-
oped will consist of a textual functional specification, a data dictionary, and a
description of the flow of data or control through the system. The paradigm
upon which such specification is based is irrelevant, as long as the specification
is sufficient to fully describe the system’s static and dynamic requirements.

e Since object-orientation is a qualitative assessment, and all programming lan-
guages can be said to be object-oriented to some greater or lesser degree !, a
general methodology for OOD must be language independent. Albeit the more
object-oriented the language, the more straight-forward the implementation.

e An object-oriented design specification must consist of a description of each
system module in terms of the object model and its dependency on the other
modules in the system—at a particular level of detail. Module interface descrip-
tions must depict which operations of an object are invoked by each operation
of the object’s dependent objects. In addition, the dynamic behavior of an
object exhibiting a particular operation must be shown by a state diagram,
flow diagram, psuedocode, or other appropriate means.

o Entities or objects represented in each system module are defined in terms of
the assertions which may be made regarding them and their behaviors given
certain defined stimuli. This takes the practical form of associating with each
object a unique identity, the set of objects it has some relation to within the
system, and the operations it requires or suffers of such objects.

1For example, even in assembly languages, statements consist of op-codes or operations which
act on operands or objects.

8.2 Methods

We claim no special revelation as to the right methodology for OOD, and, in
fact, relied heavily on the work of Abbott (1}, Booch [9], EVB [19], Cherry [14],
Lorensen (31], Seidewitz (42], and others in developing our own methodology. Our
proposition is that the methodology should start with a firm foundation ou previous

research, but be adaptive to new ideas.

Presupposing OOD to be a decision process, we first determined the decisions
required, then derived the specific steps from those decisions. We did not attempt to
restructure the natural design process; rather we used the concept mapping technique
described in Section 2.1.1 to derive the decision processes from those methods and
from software engineering experts at AFIT. The resulting methodology follows the

same general flow of most other design methods.

Synthesis of the various approaches to object-oriented design described in the
previous chapter yielded the concept map in Figure 3.1. From the concept map,
we identified the following main decision steps required to translate a requirements

document into our object-oriented design specification.

1. Analyze the problem and requirements specification to determine a strategy
for its solution.

2. Identify the abstract objects, operations, and attributes from the solution
strategy and requirements specification.
3. Encapsulate the objects, operations, and attributes into modules and deter-

mine the relationships, or interfaces, between those modules. Modules should
then be classified according to structure and behavior.

4. Decompose complex modules by repeating the process with objects or oper-
ations as separate problems, or begin detail design. Detail design proceeds as
construction of modules from known components such as other objects, library
modules, predefined functions or data types, or as producing an algorithmic
description such as psuedocode or flow diagrams.

OOD is unique in respect to what we're looking for in our analysis of the

problem, how we encapsulate data and algorithms in system modules, and in how

3-3

Problem
Domain
Human)
Understanding employs
gains

Solution
Strategy

tells

tells

Solution
Composition

Solution
Function

determined from

Analysis

produces

based on

from

maps to
Objects
maps to
-
maps to

Problem
Statement

guided
by

of

defines next
level

describes

function via

of

Requirements

Specification

between

from

Identification

of
of

defines

|

]

Attributes

Abstractions

which

defines

Encapsulation

based on

Relationships

v,

Operations

among

Figure 3.1. The Relationship Between Object-Oriented Design Decision Steps

3-4

s
L Gun 2 oo

B . — g -

- ——— e -

we can construct system modules from known, more general data types. However, it
soon becomes clear that the decisions involved are basically the same as those found

in any software design methodology—regardless of the paradigm involved.
3.2.1 Analyze the Problem to Determine a Solution Strategy

3.2.1.1 Discussion. The first decision the designer must make is in lim-
iting the scope of the problem to be solved. In this step we set the initial context or
scope for the subsequent steps. We agree with Abbott [1] and others [19] that the
problem must be reduced to a single sentence. A problem too complex to state in a

single sentence simply requires a higher level of abstraction.

The problem statement should be determined from the problem space and
stated in user-oriented terminology. One of the problems in design is the isolation
of the designers from the users. Even the analysts who have developed the require-
ments document are normally not the users, so merely determining a design from the
specification is insufficient. Interaction between designer and user is recommended

for making this decision.

We feel the concept map may be an excellent tool for eliciting such problem-
oriented information. Both the users and the high-level requirements spelled out in
the specification may be used to develop concept maps. The various results may
then be compared and refined to provide a clear understanding and statement of
the problem. Working with the concept map of the problem, a map for a solution
may be developed. We feel the concept map may be a better means of presenting
the solution strategy than the single paragraph proposed by Booch [9] and others,
just as the graphical structured specification [15] has been proven more effective at

communicating high level abstract requirements than a verbose textual document

3.2.1.2 Summary of the Analysis Step.

1. Interview one or more users and develop concept maps of the problem.

2. Develop additional concept maps from the portions of the requirements speci-
fication which describe the system’s highest level functional requirements and

entities.
3. Synthesize from the concept maps a single sentence statement of the problem.

4. Develop a single concept map which depicts a strategy for solving the problem.
3.2.2 Identify the Objects, Attributes, and Operations

3.2.2.1 Discussion. Dave Bullman [27] states that finding the right ob-
jects is hard. He goes on to say that associating operations with the right objects is

even harder. The implied requirement of intuition and choice here indicates this as

the next decision process.

A number of “rules of thumb” or heuristics have been suggested for both the
identification of objects and encapsulation of objects with their attributes and oper-
ations. Thus this step consists of the application of such heuristics to identify and
define the objects, attributes, and operations which apply within the scope and level
of abstraction we are dealing with. Several such heuristics are described in detail in

Section 3.3. We list them here for completeness:

Object Selection Criteria lists requirements for good objects.
Grammatical Analysis makes selections based on nouns and verbs.
Abstraction Analysis makes selections based on data flow diagrams.
Class Abstraction makes selections based on classes of physical objects.

Concept Analysis makes selections based on concept map entities.

The primary objective of this step is identification along with scme basic def-
inition. We reserve associating objects and operations until the encapsulation step.
The elements in this step should come initially from the solution strategy unless the

heuristics used require otherwise. It is difficult to initially scope a problem such that

3-6

AR P

the list of objects, attributes, and operations is complete, accurate, and without
some spurious low level objects or operations defined. Normally the analysis and
identification steps will be repeated several times to arrive at a realistic scope of the

problem and a complete set of objects and operations.

As identifiers of objects and operations, attributes should be associated with
appropriate entities after they are identified. Listing object and operation attributes,
then, serves to define those entities in greater detail. In most cases the requirements

document will need to be consulted to fully describe program entities.

3.2.2.2 Summary of the Identification step.

1. Apply one or more identification heuristics to identify the set of objects in the
system at the scoped level of abstraction.

2. Analyze each object and describe its attributes and structure in the solution
strategy. Check the requirements document for completeness and eliminate
redundancy.

3. Apply one or more identification heuristics to identify the set of operations
performed within the system at the scoped level of abstraction.

4. Analyze each operation to determine its stimulus/response attributes.

The end product of this step should be a list of objects and a list of operations,

with attributes describing their structure and effects.
3.2.3 [Encapsulate Objects, Attributes, and Operations into Modules

3.2.8.1 Discussion. Deciding which operations should be associated with
which objects is not as straight-forward as it may seem. Objects seldom behave in-
dependently of other objects. Consequently, observed behaviors may represent a
complex interrelationship among objects. In the example quoted in Section 2.3.1.2,
whether the operation drill_hole is an activity of the drill press, drill bit, or sheet
metal depends on the abstraction of those objects in the problem solution. Thus
guidelines, rules, or heuristics are needed to guide the encapsulation of objects and

operations in such a way as to produce good modules.

3-7

In choosing which objects and operziions to encapsulate into modules, the

interrelationships between modules are revealed. We specify those relationships or
interfaces by first determining the dependency between modules. A dependency
exists whenever an operation of an actor or agent type object affects or requires an
action by some other object. Rather than depict the dependencies only, we require
diagraming the specific operations of an object required by each operation of each
external object. This includes identifying the attributes or arguments an operation
requires to accomplish its function, and which attributes or internal objects are

affected through such an operation under the stated conditions.

The heuristics for encapsulation are described in detail in Section 3.3 and are

briefly listed as follows:

Modularity Rules include rules defining quality assessment of modules such as
coupling and cohesion.

Object Classification requires identifying an object’s operation as one of eight
general types.

Application Classification requires identifying an object’s operation as one of a
set of types specified as common to the program application area.

Structural Classification requires identifying a object’s structure as one of four
general types.

3.2.8.2 Summary of the Encapsulation Step.

1. Apply one or more encapsulation heuristics to the lists of objects and operations
to determine a set of system modules.

2. Determine the interrelationships between modules and diagram the module
dependencies.

3. Analyze eaca module dependency to determine the detailed interfaces between
each dependent module’s operations and the executors of those operations.

4. Refine the descriptions of the operations of each object in view of the various
conditions under which it might be required of some other object.

The end product of the encapsulation step will be a set of modules defined by

the object model, a module dependency diagram, and a module interface diagram.

3-8

E g oo i

e o

3.2.4 Decompose the Modules or Begin Detail Design

3.2.4.1 Discussion. Decomposition deals with the question of how to
construct each module. Should it be further decomposed, constructed from known
components, or algorithmically defined via psuedocode or flow diagrams. This is the
step in which we apply inheritance since, at this point, we have a full description
of each object at a particular level of detail. To apply inheritance any earlier might
result in shaping our solution to a set of preconceived notions rather than really

solving the user’s problem.

Inheritance is applied as we consider the object or module classifications made
in the previous step. Such classifications are helpful, not only in determining module
structure and behavior, but in identifying objects as instances of classes in the sys-
tem, or as matching preexisting templates maintained in a class library. The decision
to use inheritance is always a tradeoff between the cost of new development and the

cost of modifications to existing templates.

Should inheritance fail to provide a solution to the design of a particular mod-
ule, the module must be decomposed into smaller modules, or described at its lowest
level as data structures and algorithms. Algorithmic description follows the tradi-
tional methods of using a structured English psuedocode or flow diagrams. Data
structures which are operated on as a whole may be further described in a data
dictionary.

All or part of a module may be decomposed. A module containing sets of
objects and a set of operations, may have elements of those sets at their lowest level,

and other elements of sufficient complexity to warrant decomposition.

Decomposition may take a variety of forms depending on the problem. For
a functionally cohesive operation on a single object, conventional functional de-
composition may be adequate. If aspects of the operation exhibit concurrency, a

process-oriented approach may be better, with each sub-operation representing a

3-9

single concurrent operation. Should the existence of other objects become apparent,
an object-oriented approach might be better. In other words, the problem should
lead to an appropriate design technique, rather than squeezing the problem into an

unnatural methodology.
3.2.4.2 Summary of the Decomposition Step.

1. Analyze the modules in the system for signs of common classes. If such a class
hierarchy is apparent, indicate objects as instances of the class and further
design the class.

2. Analyze the classification of modules in regard to existing generic structures
or functions. Determine unique characteristics of such modules to determine
cost effectiveness of redesign versus reuse.

3. Analyze the complexity of remaining modules and determine which module
components must be further decomposed.

4. For each component which must be decomposed, determine the appropriate
design method and proceed with the design. Appropriate flow diagrams, petri
nets, structure charts etc. should be used to describe the design of components
not accomplished in an object oriented fashion. Those components which re-
quire an object-oriented design, should be treated as new problems and de-
signed using this methodology in an iterative fashion.

5. For each operation which need not be decomposed, describe its operation al-
gorithmically using appropriate psuedocode or flow diagrams.

6. For each object or attribute which need not be decomposed, describe the data
structure it represents.

The end product of this step will be class assignments of objects, low level

operation and attribute descriptions, or non-object-oriented algorithmic designs.

3.3 Rules

3.3.1 Heuristics for Identification

3.3.1.1 Object Selection Criteria. We include the following set of soft-
ware engineering heuristics which may be useful in evaluating the quality of object

selection.

3-10

1. Information Hiding. Objects should act as black boxes to allow easy debug-

ging and maintenance.

. Minimize Chained Operations. The depth of operations chained in nested

calls—operations which require operations of other objects which require op-
erations of other objects which require.. ., should be minimized.

. Abstraction. Objects should usually represent a single problem-domain en-

tity. The types of abstraction, in decreasing preference, are as follows:

o Entity Abstractions represent useful models of problem domain entities.

e Action Abstractions represent generalized sets of operations which all per-
form similar functions.

o Virtual Machine Abstractions group together operations used by some su-
perior level of control, or which all use some subordinate set of operations.

e Coincidental Abstractions package a set of unrelated operations or data
items.

Inheritance. Identify objects which may be of the same or a known class as
possibilities for code reuse. Examples are entities which may be represented
by common data structures such as stacks, sets, collections etc.

. Overload Identifiers. Use the best term to identify entities without using

minor misspellings to differentiate between them.

3.8.1.2 Grammatical Analysis. This is the term we give to the method

proposed by Abbott 1] et al for determining objects and operations from noun and

verb phrases in a text document. The method requires the following steps:

1.
2.

Underline noun and noun phrases in the text.

List each noun or noun phrase and associate with each an identifier or eliminate
it from the list as redundant or not applicable to the solution. Objects may be
noted as a type or instance.?

3. Describe each object in terms of its attributes.

4. Underline verb and verb phrases in the text.

5. List each verb or verb phrase and associate with each an identifier, or eliminate

it from the list as redundant or not applicable to the solution.

20bjects may be identified as types or classes if they are derived from are common nouns,
instances if derived from proper nouns. Mass or abstract nouns denote measure or quantity and
represent collections of objects or constraints on objects [37).

3-11

6. Associate the resulting operations with a single object from the solution set of

7.

objects.

Describe the operation of each operation in the context of the object it operates
on.

3.8.1.8 Abstraction Analysis. The following method was developed by

Stark and is described in [42] as a means of determining object abstractions from

data flow diagrams. Since Abstraction Analysis is a complete design methodology

in its own right, it may also repalce the encapsulation step.

1. Identify the transform center from the structured specification.

. Identify the central entity from the transform center and the abstract entities

that support it. These entities are identified by following the afferent and
efferent flows away from the central entity and grouping related processes and
states along these flows.

3. Recast the data flow diagram around the central and supporting entities.

Create an entity graph with a single most senior object which calls on a virtual
machine consisting of the central entity and those other entities which directly
support it. '

. Follow the afferent and efferent data flows from the transform center in the

recast DFD, and identify additional abstract entities which support the previ-
ously defined entities.

. Add the new entities to the entity graph in a new virtual machine layer.

7. Continue adding levels of entities to the entity graph and modifying the DFD

10.

11.

until the ends of the afferent and etferent data flows on the original DFD are
reached.

. Add directions of control to the entity graph where the problem determines

flow of control.

From the seniority relationships on the entity graph and the data stores on the
recast DFD, determine entities that must be on the same virtual machine layer
due to their mutual superiority to other entities or all depend on the same data
store.

Note any cyclic graphs in the entity graph denote entities which must be on
the same virtual machine layer.

Combine entities into objects which represent common dependencies or func-
tions.

3-12

12.

13.

14.

Determine alternative configurations of objects and choose the alternative that
best balances requirements for loosely coupled objects and eliminates data and
control bottlenecks.

List the objects, the processes each object implements, the states hidden by
each object, and system considerations not shown.

Identify operations within an object which are called by another object and
specify the data flows they pass.

3.8.1.4 Class Abstraction. This method refers to Lorensen’s [31] ap-

proach derived more directly from OOP languages such as Smalltalk. Some concepts

on object and operation selection from Lorensen’s approach are as follows:

1.
2.
3.

4.

5.

(=2

-3

Qo

jects,

steps:
1.

2.

Data abstractions are the classes of the system.
Classes often correspond to physical objects within the system being modeled.

If not explicitly stated in the requirements document, the designer should
determine abstractions from analogies drawn from the designer’s experience.

Attributes become instance variables for each class. Specification of the data
structures containing such attributes should be deferred until detail design.

Operations are the procedures for each class, and either access and update
instance variables of the class or execute operations unique to the class.

Operations should only be defined as to their function. Internal design of
operations will be designed by conventional methods during detail design.

If the class is a subclass of an existing class, thereby inheriting operations from
it, determine if such operations need to be overridden by the new class.

Define the protocol to be used to invoke the operations.

3.3.1.5 Concept Analysis. This is the term we will use for deriving ob-

attributes and operations from concept maps. This method has the following

Generate a first cut list of objects from the entities on the concept map. This is
possible since the concept map is developed by a designer with OOD in mind.

Identify from the list of objects which are long-lived and which are transient.
Transient objects tend to be operation arguments or local variables. Long-lived
objects tend to represent abstract state machines.

3-13

e 2m e

3. Identify which objects are subordinate, natural components of, or clearly at-
tributes of other objects and note as such in the object description.

4. Identify the action words in the relationships between entities as candidate
operations. Describe the behavior of these actions as to what objects are
modified, what information is required, which objects invoke the operations,
and what other operations might they naturally require of other objects.

3-14

3.8.2 Heuristics for Encapsulation

3.8.2.1 Modularity Rules

. Strong Cohesion. Operations should only be coupled with those whose pri-

mary function is the manipulation of the object’s private data structures. An
object’s set of objects and set of attributes must represent a single entity. Each
operation should accomplish a single function.

Loose Coupling. Interfaces between objects should be kept simple, the num-
ber of parameters required to perform an operation minimized, and the use of
global variables minimized or eliminated. Note however that control coupling
is a frequent requirement of real-time systems of state machines where one
object’s state affects the behavior of another object.

. Eliminate Cycles. The directed graph of an object diagram should seldom

contain a cycle.

. Virtual Machine Layers. Identify objects that support the system such as

error and I/O handlers in virtual machine layers.

3.3.2.2 Object Classification. Bralick [10] lists eight general types an

object’s behavior might classify it as. They are listed as follows with our own

explanation.?

I B o A e

Static a system constant.

Passive performs a function: server.

Small a self determining state machine, only reports its state.
Weak a state machine under control of another system entity.
Demon controls other Objects: actor.

Interactive affects other objects under another’s control: agent.
Sovereign a state machine actor.

Complex a state machine agent.

3.3.2.8 Application Classification. Many applications themselves can

be categorized into classes and so similar applications tend may define sets of common

data structures. For example, the APEX methodology (2] developed primarily for

aircraft avionics systems predefines the following data types:

3See also Table 2.1.

3-15

AN S o A

Status
Storage

Sensor
Device
Counter

Pointer

3.3.2.4 Structural Classification. In the Ada programming language,

objects are represented by packages. Booch 9] states four possible types of packages

as follows:

e Abstract Data Type An object which exports a type and a set of operations

which may be performed on that type. The user of the object can define an
instance of the specified type, then pass it as a parameter to the operations
which manipulate the object and return a new instance of the object or some
sub-object. A well defined set of example data structures is described in (8].

Abstract State Machine An entity with well defined states and operations
for changing from state to state.

Named Collections of Declarations A logically cohesive grouping of ob-
jects and types. Similar in nature to Smalltalk pools, such common blocks
sometimes can’t be avoided and every effort must be made to make them easy
to locate and to document their purpose and users.

Groups of Related Program Units Booch illustrates this type of object
with a set of mathematical library functions—which is sufficient to describe
the reason for such an otherwise poorly abstracted module.

3.8.3 Heuristics for Decomposition. We listed the primary rules for decompo-

sition in the step-by-step description in the previous section. Examples of additional

heuristics which might be developed to aid the process include the following:

o Descriptions of alternate design methodologies and under what conditions they

should be used.

e A specific syntax for structured-English or psuedocode.

o A description of a specific flow diagram methodology.

o A library of classes or reusable components design descriptions.

3-16

3.4 Evaluation of the Methodology

Our objectives for the stated OOD methodology were as follows:

1. The methodology must provide for recognized object-oriented concepts.

2. The methodology must be independent of the paradigm used to state the sys-
tems requirements.

3. The methodology must be independent of the programming language to be
used to implement the system.

4. The methodology must be able to adapt to new discoveries regarding object-
oriented design concepts and practices.

5. The methodology must be useful for producing a complete design specification.

6. The methodology must be easy to use.

That the first four criteria identified above are met by the methodology pre-
sented in this chapter is self-evident. The last two will require more proof. The next
section is devoted to proof by example of the methodology’s usefulness for producing
the desired design specification. We offer the caveat, however, that the usefulness of
any methodology can only be demonstrated over too broad a set of examples to be
accomplished within the time constraints of this study. Such a quality may only be

demonstrated by user acceptance over time.

Ease of use of the methodology must be demonstrated by a significant sample
size of users and is closely tied to the implementation of the methodology in a support
environment. In Chapter V, we present the results of the use of the methodology and
support environment by a graduate level software engineering class as an indication

of the usability of both methodology and tool.

3-17

3.5 A Sample Problem

The following example carries a sample problem completely through the object-
oriented design methodology presented in this chapter. The requirements document

is provided in the appendix.

3.5.1 Analyze the Problem

3.5.1.1 Concept Map the Problem from the User

The concept map of Figure 3.2 represents the user’s view of the system. The

user’s view here is very data-flow oriented.

3.5.1.2 Concept Map the Problem from the Specification

Figure 3.3 represents the system at the top level as specified in the requirements
document. This view is very hardware and functionally oriented. It specifies the

components, and the functions the software is to perform.

controls a
given the

Temperature
Reading

received

displayed from
on a

Temperature
Digital Sensor
Readout

Graphic
Display to display a .
isa

plot of many

Figure 3.2. User’s View of the Temperature Monitor/Controller

3-18

Temperature
Display
displays reading

ona

connected to a

Graphic
Display

‘ Figure 3.3. Specification of the Temperature Monitor/Controller

3.5.1.3 State the Problem

“Design a temperature monitoring and control program.”

3.5.1.4 Concept Map a Solution Strategy

Figure 3.4 represents an abstract view of the system at the top level. This view
is very object-oriented and describes all the objects identified in the specification
ﬁ concept map, as well as the interfaces between objects indicated in the user’s view

of the system.

3.5.2 Identify Objects and Operations

We will use Concept Analysis to identify and define objects and operations at

the current level of abstraction.

3.5.2.1 Apply Heuristics to Identify Objects

Table 3.1 shows the objects and their analysis as determined from the solution

strategy and the functional specification.

‘Vr:‘f

@ from °

. based to

1 from on
get
OnOff
send Signal
Profile get
Request
>
4 get
when
receive

i send N
)
Temperature Reading
Profile
to

from
to
Graphic
Display
Temperature
Sensor

Figure 3.4. The Temperature Monitor/Controller Synthesized View

3-20

Table 3.1. Temperature Monitor/Controller Object List

Object Durability | Classification

T™MC longlived | main program
Terminal longlived | i/o device
Temp_Sensor longlived | i/o device

Temp_Display longlived | i/o device
Graphics_Display | longlived | i/o device

Fan longlived | i/o device
Set_Point longlived | state
Reading longlived | state
Request transitory | argument
OnOff Signal transitory | argument
Temp_Profile transitory | argument

3.5.2.2 Describe the Objects

TMC

¢ Behavior: The main program.

e Component Objects: Fan, Graphics_Display, Temp_Display, Termi-
nal and Temp_.Sensor.

o Server Objects: I/O devices.
e Actor Objects: The System.

Terminal

e Behavior: Accepts keyboard input.
¢ Component Objects: Command (previously undefined).

e Server Objects: user inputs.
Command

¢ Behavior: String representing keyboard input.
¢ Domain: Profile_Request or Set_Point or null.

Temp_Sensor

¢ Behavior: Implements low level protocol to obtain Reading from physical
device.

3-21

g

e Component Objects: Reading
e Server Objects: External I/O device.

Temp_Display

e Behavior: Implements low level protocol to send Reading to physical
device.

e Server Objects: Reading
Graphics_Display

¢ Behavior: Implements low level protocol to display Temp_Profile on the
physical device.

e Server Objects: Temp_Profile

Fan
e Behavior: Implements low level protocol to send OnOff_Signal to phys-
ical device.
e Server Objects: OnOff_Signal
Set_Point
e Behavior: Number represents maximum desireable temperature.
e Actor Objects: TMC
o Domain: degrees fahrenheit default: 70°
Reading
e Behavior: Number represents current temperature. Temp_Profile
e Domain: degrees fahrenheit.
Profile_ Request
e Behavior: Represents a command to display a Temp_Profile.
e Actor Objects: TMC
¢ Domain: range time hhmms within last 24 hours.
OnOff_Signal

e Behavior: Represents a control signal to the Fan.
o Actor Objects: Fan
e Domain: boolean set by: Reading > Set_Point

3-22

Py

T

Temp_Profile

Time

o Component Objects: Time, Reading
e Actor Objects: Graphics Display

e Domain: 8640 max elements

e Behavior: Represents current system time.
e Actor Objects: Temp_Profile

e Domain: hhmms

e Behavior: A set of Time / Readings pairs

3.5.2.8 Apply Heuristics to Identify the Operations

Table 3.2 shows the operations and their analysis as determined from the ac-

tions in solution strategy and the functional specification.

get

Table 3.2. Temperature Monitor/Controller Operation List

8.5.2.4 Describe the Operations

3-23

Objects
Operation | Suffered of | Required of Modifies
get T™MC Terminal Set_Point
get TMC Terminal Profile_Request
get T™MC Temp_Sensor | Reading
send T™MC OnOff Signal
send TMC Temp_Profile

o Behavior: Retrieves an argument from an abstraction of an input device.
e Set of Actor Objects: (TMC).

o Set of Modified Objects: (Set_Point).
o Set of Argument Objects: (Set_Point).

get

get

send

send

Set of Server Objects: (Terminal).

Behavior: Retrieves an argument from an abstraction of an input device.
Set of Actor Objects: (TMC).

Set of Modified Objects: (Profile_Request).

Set of Argument Objects: (Profile_Request).

Set of Server Objects: (Terminal).

Behavior: Retrieves an argument from an abstraction of an input device.
Set of Actor Objects: (TMC).

Set of Modified Objects: (Reading).

Set of Argument Objects: (Reading)

Set of Server Objects: (Temp_Sensor).

Behavior: Commands the output device to display an argument.
Set of Actor Objects: (TMC)

Set of Modified Objects: (Graphics_Display).

Set of Argument Objects: (Temp_Profile).

Set of Server Objects: (0).

Behavior: Commands the output device to display an argument.
Set of Actor Objects: (TMC).

Set of Modified Objects: (Temp.Display).

Set of Argument Objects: (Reading).

Set of Server Objects: ().

3-24

aELA aa

3.5.3 FEicapsulate Objects and Operations

3.5.8.1 Apply Heuristics to Determine System Modules

Discussion:

1. To the outside world, the TMC is a software module representing the whole
system. We show it as a separate control object within the system due to
represent the relationship between it as a parent of the other objects in the
system.

2. The classification heuristic indicates the Temp_Sensor and Terminal are
state machines with respective states of Reading and Command.

3. Encapsulating Set _Point with Fan results in a third state machine. Fan must,
however, get Reading to control itself. OnOff_Signal becomes an internal
detail.

4. Since Temp_Display is to be updated based only on Reading, it makes sense
to encapsulate it within Temp_Sensor. Thus it becomes an internal detail.

5. All that is left is the Graphics_Display and the implied Reading_Record
for the previous 24 hours. The possibly complex functionality of displaying the
Temp_Profile and its dependence on the display device indicates the need to
make Graphics_Display a separate module. The Reading_Record may log-
ically reside in a separate module, the Temp_Sensor module, or the Graphics
Display module. Since the Graphics Display does not naturally represent
the notion of a collection of Reading/Time pairs of the Reading Record,
we choose to encapsulate the Reading_Record with the Temp_Sensor.

6. The Temp_Sensor now more accurately represents a Temp_Monitor at this
level of abstraction so we will use that name.

3.5.3.2 Diagram the Module Dependencies

Figure 3.5 represents our initial module descriptions and dependencies in a
block diagram.

3.5.3.8 Diagram and define Module Interface.

Figure 3.6 depicts the interfaces between modules and their operations in the
system. The modules are further specified as follows:

TMC

e Set of Component Objects: (Temp.Monitor, Terminal, Fan,
Graphics_Display)

3-25

P

TMC

Fan TempMonitor

GraphicsDisplay

Figure 3.5. Block Diagram for the Temperature Monitor/Controller

e Set of Server Objects: (System_IO Drivers)
o Set of Actor Objects: (OS_Scheduler)

e Set of Operations: (run)
Terminal

e Set of Component Objects: (Command)
o Set of Server Objects: (System_ IO _Driver)

e Set of Actor Objects: (TMC, Fan,
Graphic_Display)

e Set of Operations: (run, get)
Temp_Monitor

o Set of Component Objects: (Reading_Record, Temp_Sensor, Temp.
(4]Display, Reading)

o Set of Server Objects: (System_IO_Driver)

3-26

TempMonitor GraphicsDisplay
run o run ? 1
get Gn——J—ﬁ=
——
' Fan Terminal
run O— — run o
get r
L
J

Figure 3.6. Detail Diagram for the Temperature Monitor/Controller

e Set of Actor Objects: (TMC, Fan, Graphic_Display)

e Set of Operations: (run, get)
Graphic_Display

o Set of Component Objects: (0)

o Set of Server Objects: (System_IO Driver)

e Set of Actor Objects: (TMC)

o Set of Operations: (run)
Fan

e Set of Component Objects: (Set_Point)

3-27

o Set of Server Objects: (Temp_Monitor, Terminal)

e Set of Operations: (run)
3.5.8.4 Refine Module Behavioral Descriptions

T™MC

1. Operation run

e Set of Input Arguments: (9).
e Set of Output Arguments: (9).
e Behavior:

The TMC causes each of its four component state ma-
chines to begin running upon execution of the system. Halting
the system will result in termination of each of the component
objects.

Terminal

1. Operation run

e Set of Input Arguments: (0).

e Set of Output Arguments: (0).

e Behavior:

The Terminal retains an input character buffer called

Command. When Command is changed via keyboard in-
put. it is examined to determine if it represents either a
Set_Point or a Profile_Request protocol. If it does, the
Command is maintained and a flag is set stating which type
of command it is. Otherwise, the buffer is flushed and the

flag is set to null.
2. Operation get

¢ Set of Input Arguments: (@).
o Set of Output Arguments: (Profile_Request).
¢ Behavior:
If the receiver object represents a Profile_ Request, the
Command is returned. Otherwise a null string is returned.
3. Operation get

e Set of Input Arguments: (9).
e Set of Output Arguments: (Set_Point).

3-28

e

e Behavior:

If the receiver object represents a Set_Point, the Com-
mand is returned. Otherwise a null string is returned.

Temp_Monitor

1. Operation run

o Set of Input Arguments: (@).
o Set of Output Arguments: (0).
e Behavior:

The Temp_Monitor periodically gets a Reading from
the physical input device and sends it to the physical output
device. The Reading is saved in a Reading_Record data
structure.

2. Operation get

¢ Set of Input Arguments: (Profile_Request)
e Set of Output Arguments:(Reading_Record)
¢ Behavior:

The set subset of Reading/Time pairs which fall within
the Time range specified in the Profile_Request are re-
turned.

3. Operation get

e Set of Input Arguments: (0)
e Set of Output Arguments:(Reading)
¢ Behavior:

The most current Reading from the Reading_Record
is returned.

Graphic_Display

1. Operation run

e Set of Input Arguments: (@).
o Set of Output Arguments: (0).
e Behavior:
The Graphic. Display gets a Profile_Request from
the Terminal. When it receives one that is not null, it
gets the appropriate Reading_Record set from the Temp..

Monitor and formats the display protocol for the output de-
vice.

3-29

Fan

1. Operation run
¢ Set of Input Arguments: (0).
r e Set of Output Arguments: (8).

e Behavior:

The Fan periodically gets a Reading from the Temp.
Monitor. The Reading is less than its internally maintained
Set_Point, it sends a signal to the physical device to turn it
on, otherwise it sends a signal to turn it off. The Fan also
periodically gets a Set_Point from the Terminal. If it is
not null, it updates its internal state with the new value.

3-30

3.5.4 Decompose the Modules or Begin Detail Design

3.5.4.1 Analyze the Modules for Common Classes

The state machines representing I/O devices may represent instances of a class
like I/O Drivers. However, the functionality of each seems sufficiently different to
eliminate any implementation benefit.

3.5.4.2 Analyze the Modules for Existing Generic Structures

Most languages should provide interface routines, such as Text_IO or predefined
pragmas in Ada, for implementing the external device 1/0.

3.5.4.3 Analyze the Module Complezity

The TMC, Fan, and Terminal are obviously at a sufficiently low level of
detail to describe with psuedocode or flow diagrams.

The Graphic_Display and Temp_Monitor may require further decomposi-
tion.

3.5.4.4 Determine the Appropriate Method for Decomposition

The Graphic_Display, might require decomposition if the graphics commands
are not of sufficient power to easily plot the graph without having to calculate the
entire bit_map. Since the functionality of the display operation appears to be pri-
marily calculations, functional decomposition would probably be an adequate means
for carrying out further design.

The Temp_Nfonitor is clearly more complex than the other objects, and
could be decompos .d in an object oriented fashion. However, the primary objects
represent the external temperature sensor and display, and the Reading_Record
data structure. The =xternal devices need not be represented by separate modules
since the operations and arguments involved would already presumably be defined
by system calls or generic routines. That leaves only the data structure which should
be detail designed by implementing an appropriate data siructure such as an array.

3.5.4.5 Describe Operations of Lowest Level Modules

Since each of the specified operations may easily be described with conven-
tional methods, we refer the reader to the appendix for the detail design. But for
completeness of the three view object model representation, a petri net graph of the
Temperature Monitor/Controller is presented in Figure 3.7.

3.5.4.6 Describe Data Structures of Lowest Level Modules

Table 3.3 shows the low level objects and their structural descrip’‘ons.

3-31

T

— -

T v -

TempDisplay

TempSensor Reading @

Fan

GraphicsDisplay

Figure 3.7. Petri Net Diagram for the Temp_Monitor Module of the TMC

Table 3.3. Temperature Monitor/Controller Data_Structures

Object Data Structure Domain
Command string character
Set_Point numeric degrees F. 1:999.99
Reading numeric degrees F. £999.999
Request range integer hhmms..hhmms
Temp_Profile | array(8640)° Reading

*Since times are specified at 10 second intervals, and the size at 24 hours, the time might be
deduced from the index to the array, so a single dimensional, 8640 element array would be sufficient.

3-32

R

8.5.5 Conclusion

The Temperature Monitor/Controller problem is a typical, although simple
example of a real time system involving concurrent processes. Using the proposed
methodology, we easily identified the required components, described their struc-
tures and relationships in terms of the object model, and presented the information
graphically. Detail design and implementation of the problem can proceed in a
straight-forward fashion via psuedo code or a specific language oriented PDL.

3-33

IV. Reguirements and Design of a Decision Aid

4.1 Introduction and General Requirements

In this chapter we discusses the steps taken for determining requirements and
a top level design for a decision aid to implement the previously described OQOD
methodology. In the field of decision support, requirements determination requires
four steps: understanding the problem, selecting a kernel system to implement,
developing a representation or model of the system in the form of storyboards, and
describing the database and modelbase requirements to support the system. The
storyboards and associated feature chart then serve as a top level design of the

dialogue, database, and modelbase components of the decision aid.

Before getting to the specific requirements to support OOD, we give the general

requirements for the decision aid as follows:

1. The DSS dialogue shall be a mouse driven, windowed environment.
2. The dialogue shall be easily modifiable.

3. The dialogue shall present standard capabilities in an orthagonal manner. For
example, the help function shall always be accessible in the same manner, and
in the same place in each of the main displays.

4. The dialogue shall support a hook book entry capability.
a. The hook book shall require a date, circumstances, and idea of the user,
and automatically maintain a unique identifier for each entry.
b. The hook book shall be retrievable for display and hard copy.
c. Hook book entries may be deleted or edited.

5. The dialogue shall provide an interactive help function.

6. The dialogue shall support access and control over the modelbase and database
components.

7. The dialogue shall provide a unique entry point providing for initialization of
the database and modelbase and introductory help capability.

8. The dialogue shall provide an exit capability from any point and shall prompt
the user to decide whether changes will be saved.

4-1

9. The DSS shall allow specific selection and activation of conceptual or mathe-
matical models from the dialogue.

10. The DSS shall provide the capability to interactively modify or add models to
the modelbase from within the DSS.

11. The DSS shall allow retrieval and update to a database or multiple databases
from within the DSS.

12. The DSS shall optionally allow protecting sensitive databases from modifica-
tion by the user of the DSS.

4.2 Understanding the Decision Making Process

Throughout this document we have been using concept maps as a means of
conveying understanding. We said they can also be used as a means of gaining
understanding of a decision process (Figure 2.1). In Chapter II, we used concept
maps to gain and described our understanding of the object-oriented paradigm,
OOP and OOD, and presented general models for both requirements and design
specifications. Then in Chapter III we presented a methodology for OOD based on
those concept maps. Figure 3.1 shows the decision steps involved in OOD and acts

as an overview for the methodology.

4.3 Selecting the Kernel,

The concept map of Figure 3.1 reveals the central decision processes of analysis,
identification, encapsulation, and decomposition. Using these four main steps and
their descriptions from Chapter III, we developed the feature chart and storyboards

we described in this chapter.

The feature chart, Figure 4.1, depicts the support and interaction required by
the four steps in our OOD methodology. Besides the four main decision steps, an
entry/exit storyboard has been added to provide control over initialization and load-
ing and unloading the design database. Features required to support methodology

sub-steps have also been added to complete the systems general requirements.

/ / N
Concept Problem Browse Load/Unload Log User View
Map Statement Disk Database Statistics Requirements Reusable
\ K \ = / J Compc t
View Heuristics for
Text Analyze 0-0 Design Decompose] Decomposition
the Entry/Exit Modules
Problem
View Edit
Graphics Object
View Data Main Flow
Dictionary
Menu Detail
Block
View Cmap & Diagram
Requirements
Identify Hook Encapsulate
Objects and Book to form Edit
Operations Modules Object
dOpemion / \ hOpcration
Heuristics for Change Browse Heuristics for View Cmap &
Identification Idea Entries Encapsulation Requirements

Figure 4.1. Feature Chart for the OOD Decision Aid

On the feature chart, large rectangular boxes represent main screen windows
or storyboards which fill an entire screen. The small rectangular boxes represent
menus used from within the storyboards to select specific actions in support of the
decision step. Boxes with clipped corners represent a function of the storyboard in

support of one of the substeps in the methodology.

The five storyboards are linked together through vhe main menu which will
be available from each storyboard for switching to any other storyboard. The main
menu will also provide for exiting the system and allow access to a context sensitive

help function and the hook book. Several functions overlap. For instance, the object

4-3

and operation definitions created in the Identification storyboard are used again in

both subsequent storyboards.

The feature chart presents an overview of the features required by the kernel
system. Consequently, only the high level functions are shown. The storyboards and

their descriptions reveal detailed requirements.

4.4 Representing the Kernel

The detail requirements for the decision aid are represented in the storyboards
of this section. First we present general requirements for each storyboard—based
on the methodology of Chapter III and the feature chart. Then, the storyboards
themselves, along with their descriptions, are presented in the final figures of the
section. In addition to the storyboards representing the five main screen displays,

we also show a storyboard for the hook book.

Each storyboard contains at least three sub-windows or panes: a features pane,
an objects pane, and a text pane. Selecting an element in the features pane will cause
a list of files or objects to appear in the objects pane. Selecting an element in the
objects pane will cause initialization of the text pane, or bring up a sub-window—
either one of which the user will use to carry out some sub-step in the methodology.

4.4.1 Requirements for the OOD Entry/Erit Storyboard. The general require-
ments for the Entry/Exit storyboard are as follows:

1. The Entry/Exit display shall support the following activities:

a. Log on to the OOD Decision Aid.
b. Load the design database.
c. Transfer to one of the four main OOD storyboards.
d. Save the design database upon exiting the system.
2. The Entry/Exit display shall provide the capability to browse the disk files
and change the default directory.

3. The Entry/Exit display shall prompt the user for an id and automatically log
user time on the system.

4-4

4. The Entry/Exit display shall provide the capability to selectively list require-
ments database files.

5. The Entry/Exit display shall provide a help file giving adequate instructions
for the first-time user to effectively use the system.

6. Figure 4.2 provides the Entry/Exit storyboard and its detailed description.

4.4.2 Requirements for the Analysis Storyboard. The general requirements
for the Analysis Storyboard are as follows:

1. The Analysis display shall support the following activities:

a. Concept map the problem from the user.
b. Concept map the problem from the specification.
c. State the problem.

d. Concept map and state a solution strategy.

2. The Analysis display shall provide the capability to access an on-
line requirements specification.
a. Access to the specification will be in three forms: text, data dictionary,
and graphical flow diagram.
b. Access to the specification shall not corrupt the current state of currently
entered data.
3. The Analysis display shal' orovide the capability to generate, edit, store, and
retrieve concept maps.

4. The Analysis display shall provide the capability to enter, edit, store, and
retrieve a textual problem statement and solution strategy.

5. Figure 4.3 provides the Analysis storyboard and its detailed description.

4.4.8 Requirements for the Identification Storyboard. The general require-
ments for the Identification storyboard are as follows:

1. The Identification display shall support the following activities:

a. Apply heuristics to identify objects and operations.
b. Analyze the solution strategy and requirements specification.
c. Describe object and operation attributes.

. 2. The Identification display shall support the same specification access capabil-
ities as the Analysis display.

3. The Identification display shall provide access to concept maps.
4. The Identification display shall provide access to identification heuristics.

5. The ldentification display shall provide the capability to enter objects and
operations into a database and edit their attributes.

6. Figure 4.4 provides the Identification storyboard and its detailed description.

4.4-4 Requirements for the Encapsulation Storyboard. The general require-
ments for the Encapsulation storyboard are as follows:

1. The Encapsulation display shall support the following activities:

a. Apply heuristics to determine system modules.
b. Diagram module dependencies.
c. Diagram module interfaces.

d. Refine object and operational descriptions.

2. The Encapsulation display shall provide access to encapsulation heuristics.

3. The Encapsulation display shall provide a graphic editor to generate, store,
retrieve, and edit block and detail diagrams.

4. The Encapsulation display shall provide the capability to edit object and op-
eration attributes.

5. Figure 4.5 provides the Encapsulation storyboard and its detailed description.

4.4.5 Requirements for the Decomposition Storyboard. The general require-
ments for the Decomposition storyboard are as follows:

1. The Decomposition display shall support the following activities:

a. Analysis of modules for level of detail.

b. Analyze modules for common class or inheritance.

c. Enter psuedocode description of low level operations.

d. Enter data structure descriptions in the data base.
2. The Decomposition display shall provide access to graphical and database ob-

ject and operational descriptions.

3. The Decomposition display shall provide access to decomposition heuristics.
4. The Decomposition display shall provide edit capability of object database.

5. The Decomposition display shall provide the capability tc identify a module
to be decomposed and delineate the new level of abstraction in the database.

6. Figure 4.6 provides the Decomposition storyboard and its detailed description.

4-6

4.4.6 Requirements for the Hook Book. The general requirements for the
Hook Book display are as follows:

1. The Hook Book display shall provide the capability to log ideas for changes to
the decision aid.

2. The Hook Book display shall provide the capability to retrieve, edit, and print
Hook Book entries.

3. The Hook Book will automatically record the user, date, time, and storyboard
from which the Hook Book was called.

4. Figure 4.7 provides the Hook Book storyboard and its detailed description.

4.5 Detailed Requirements: The Storyboards

The subsequent figures present detailed requirements for the decision aid in

the form of storyboards and associated descriptive text.

Object-Oriented Design Decision Aid

Analyze o
Design Database
filename | Unload the Database? | | Identify
Requirements Database
Yy — Encapsulate
Decompose
BrowseDisk Load View :ook Book |
Requirements files text ... ChangeDirectory Unload Print elp
Remove Exit
Save Enter filename.OOD:

database.cod —

Enter Userid:

The Entry/Exit display is described as follows:

1. The user will initailly be prompted for a userid. Login/logout times will be automatically recorded.

2. The main menu will allow activating other storyboards, the Hook Book, context sensitive help, or exiting
the system.

3. Selecting eniries from the features pane produces the following results:

a. Selecting the DesignDatabase causes database files to be listed in the objects pane.
b. Selecting the Requirements Database c all requirements files to be listed in the objects pane.

4. the [eatures pane popup will allow the following:

a. Activation of a disk browser facility.
b. Frompting the user for a new default directory for the database, requrements, or help files.

5. The objects pane popup will allow loading and unloading the design database; or printing/viewing require-
ments files.

6. The text pane will provide the following:

a. Initial instructions on startup. Editing and saving instructiona.

b. Viewing requirements files.

Figure 4.2. Storyboard: Entry/Exit for the OOD Decision Aid

4-8

m— et ol
Analyse the Problem
Concept Map Ana.lyze
Solution Sirategy Identify
Requirements Text filenames /object names Encapsulate
Requirements Data Dictionary Decompose
Requirements Graphics Add Hook Book
Edit Help
Problem Statement: - -
Solution Strategy: Enter Object Name
Requirements Data Dictionary
Move o i,
t
Rexe oncey Mop |
ove
Close Clear Resize
Line
Copy @ relation
Paste
Zoom @
Save
-] Undo

The Analysis display is described as follows:

1. The main menu may be activated. Exit will return user to Entry/Exit.

2. The user will be prompted for the name of the object to be designed.

3. Selecting entries in the features pane results in the following actions:

a. Selecting the ConceptMap entry causes concept map object names to be listed in the objects pane.

b. Selecting Solution Strategy causes object names to be listed in the objects pane.

c. Selecting RequirementsText, DataDictionary, or Graphics entries causes the corresponding files to be

listed in a sub-window.

4. Selecting entries in the objects pane results in the following actions:

a. Selecting a concept map will allow editing, saving or removing concept maps from objects.

b. Edit will open a graphic drawing window for creating, editing, and saving concept maps.

c. Selecting Edit will bring up a sub-window for editing the concept map.

d. Selecting an object for a Solution Strategy will display the text to the text pane or format the text pane

for creation.

e. Selecting a requirements file will activate a sub-window for viewing requirements data.,

S. The concept map sub-window will provide the capability to generats and edit graphics representations of

concept maps.

Figure 4.3. Storyboard: Analyze the Problem

. —r—

Identify Objects and Operations

Heuristics Analyze
+ Mape Identify
Requi te Datal files/entity names Encapsulate
Objects Decompose
tions Edit Hook Book
Add Help]
Inspecting: TMC
Remove Exit]
Name attribute text Enter Name:
Behavior _
Domain
Save OOD Graphics Viewer

The Identification display is described as follows:

1. The main menu may be activated. Exit will return user to Entry/Exit.

2. Selecting entries from the features pane produces the following results:

a. Selecting Heuristics causes a Help window to open for viewing/editing heuristics.
b. Selecting Requirements, or CouceptMap causes file or object names to be listed in the objects pane.

c. Selecting Object or Operation causes database entries to be listed in the objects pane.
3. Selecting an entry in the objects pane produces the following results:

a. Selecting a concept map, or a requirements source file, will activate the appropriate sub-window for
viewing only.

b. Selecting an object or operation name will activate a popup for Adding, Editing, or Removing entities
from the database. operation.

c. Selecting Add will open a database browser in the text window.
4. The Database Editor will provide the following capabilities:

a. An attribute pane will provide the ability to add, inspect or remove attributes.
b. A text pane will allow editing an entry’s attributes.

Figure 4.4. Storyboard: Identify the Objects and Operations

Fm

Encapsulate Objects and Operations into Modules

Heuristics Analyze]
ConceptMaps files/entity names Identify
Requirements Database Edit Encapsulate
Objects Add Decompose
i Operations Remove Hook Book
- Block Help 1
] Inspecting: TMC Detail - a
\ xit
N‘;:eh,vio, an object some text Flow
Opmain Drawing Block Diagram of. TMC
ass
Class
Concept Map Add)
Block Diagram | Inspect TMC
Detail Diagram! R ve Clear
Operations Box
Classes Copy
Components Paste
Actors Zoom
Servers Save
Undo

1
The Encapsulate display is described as follows:

1. The main menu may be activated. Exit will return user to Entry/Exit.

2. Selecting entries from the features pane results in the appropriate file or object names being listed in the
features pane.

3. Selecting entries from the objects pane results in activation of the appropriate sub-window—e-cept for
objects and operations.

4. Selecting an object or operation from the objects pane opens a pop-up for selecting Editing the ob-
ject/operation or ~reating Block, Detail, or Flow diagrams.

5. Selecting Edit opens a Database Browser with an additional list pane for forming relations.
6. The Database Browser provides the following additional capabilities:
a. A context sensitive pop-up menu will list the possible relations for either an object or operation.

Object: Operations, Components, Actors, Servers, Classes.
Operation: Objects, Arguments, Modifies, Actors, Servers.

b. Selecting a relation causes a second pop-up to appear for selecting Add, Remove, or Inspect.
c. Selecting Add lists all appropriate objects or operations from wich to select in the list pane.
d. Selecting inspect lists all defined objects or operations in the relation for the selected object. Selecting
one opens an Inspector window on the object.
7. Selecting Block, Detail, or Flow resuits in activation of a graphics sub-window similar to the concept map
sub-window.

8. Graphics sub-windows will provide for creation of rectangles or circles or other shapes as appropriate to the
type of graphic being developed.

Figure 4.5. Storyboard: Encapsulate the Objects with their Operations

4-11

cpnages e e e S e R e

-

Decompose Modules
Heuristics Analyze
Design Objects files/entity names Identify
Reusable Components Edit Encapsulate
Add - Decompose
Remove Edit Hook Book
] Block Load Help —
Inspecting: TMC Detail Unload Exi
Change Dir xit
N‘;:lmvior an object some text Flow
Dc’onmin Drawing Block Diagram of: TMC
Class
Concept Map
Detail Diagram \ Clear
Box
Fan Copy
Paste
] Zoom
Terminak
| Save
Undo
1

The Decomposition display is described as follows:

1. The main menu may be activated. Exit will return user to Entry/Exit.

2. Selecting entries from the features pane produces the following results

a. Selecting Heuristics opens a help window for decomposition heurictics.

b. Selecting DesignObjects lists objects in the files pane in a component hierarchy. Selecting objects opens
a Database Browser as with the Encapsulation storyboard.

c. Selecting ReusableComponents lists reusable components database files in the objects pane.

3. The objects pane provides a pop-up for load/unloading reusable componerts databases, and editing objects
and their associated graphics.

Figure 4.6. Storyboard: Decompose the Modules

4-12

v

—

ey

Hook Book Browser Move
mm/dd/yy Date: Time: - Resize
mm/dd/yy User: Source: Close

Subject:
Idea:
Circumstance:

Add Save

The Hook Book Browser display is described as follows:

1. A popup menu will provide the ability to move, resize, or close the browser.
2. A list pane will list all hook book entries by date and time.

3. Selecting an entry will cause the correaponding mini-panes in the rest of the window to be updated from the
hook book entry.

4. Selecting Enter will cause the Date, Time, Userid, and Storyboard called from to automatically be entered
in the labeled min-panes.

5. The user will be immediately prompted for a subject.
6. The text pane will provide for entering and saving the idea and circumstances.

Figure 4.7. Storyboard: The Hook Book Browser

4-13

PO

s o A

Ty

4.6 Supporting the Kernel
4.6.1 The Database Requirements

The database requirements for the OOD decision aid may be divided into
three categories. First will be the existing database representing the requirements
specification used as a source document for design.

o The requirements database to be used in the prototype shall pro-

vide a text functional specification, a data dictionary, and a graphical
representation of the data flow requirements.

The second category consists of those databases supporting existing design
tools, other tools such as text editors, word processors, and software configuration

management libraries available in the environment.

o The tools database shall provide for storage and retrieval of both
text and graphical images in support of the methodology implemented
in the dialogue. Text files include the help files, heuristic files, and hook
book entries. Graphic images of the block and detail diagrams must be
saved and indexed for retrieval.

The third category is that which supports the object model itself. The under-
lying object model to be used in this methodology was described in Section 2.8. An
entity-relationship (E-R) diagram [29] for this model is presented in Figure 4.8. Fig-

ure 4.9 additionally gives the set of relation skeletons derived from the E-R diagram.

o The object model database shall provide the capability to store and
access descriptive information required by the object model.

4.6.2 The Modelbase Requirements

“Models are active relations and associations that govern decisions and actions
in an organization” ({28]. For our purposes, the object model of Chapter II and
the heuristics and methodologies listed in Chapter III comprise the “relations and

associations” which govern the design decisions in the OOD process.

4-14

gy

| Operation

=
Mode

Figure 4.8. An E-R Diagram for the Object Model

The modelbase elements: the object model, the methodology steps, the de-
sign heuristics, and the hook book all require text or graphic tools for editing and

manipulating the images supported by the database component.

¢ The modelbase component will provide editors for the text and
graphics databases required by the methodology.

4-15

e am

Objects

Operations

Component Objects

name | behavior | domain || object

name | algorithm

parent child

Argument Objects

Modifies Objects

object | operation | mode || operation | component

Class Objects

Actor/Server Objects

class | object

actor server

Figure 4.9. Relations for the Object Model

4-16

- ———— —

R N]

e

V. Prototype Implementation and Evaluation

5.1 Introduction

In the previous chapter we presented the overall objectives, general capabilities,
specific capabilities, and the features required of a Decision Aid for Object-Oriented
Design. We used the feature chart (Figure 4.1) and storyboards (Figures 4.2-4.7) to
represent the top level design of the dialogue component, and discussed initial design
of the database and modelbase. We now turn to the implementation and evalua-
tion of a prototype, which can be used to evaluate the methodology and concepts

presented earlier.

We start by discussing our determination of the hardware and software tools
used to implement the dialogue, database, and modelbase components. Then we
describe the implementation of the selected components. We conclude with an eval-

uation based on key decision points relating to the prototype’s development.

Case studies of DSS usage show that “Key factors explaining successful de-
velopment are a flexible design and architecture that permit fast modification and
a phased approach to implementation” {44]. Thus though we’ve stated the initial
requirements and design somewhat formally, only time will tell whether or not the
ensuing system will be accepted and of value to the users. Consequently, we took a
phased approach to implementation, and evaluation which would allow user response

and feedback before investing in further development.

The first phase, implemented as a part of this thesis, was to implement the
storyboards described in the previous chapter. Only as much functionality as was
necessary to demonstrate the potential value of the methodology was implemented.
However, even this first kernel system must be “a small but usable system to assist
the decision maker” [44]. Additional work is recommended in the final chapter as an

area for future study and research.

5.2 Hardware and Software Selection

The primary hardware available for prototype development included the En-
gineering Department’s VAX 11/780, Sun workstations, and Zenith Z-248 micro-
computers. The following discussion relates the prototype’s components to the spe-

cific hardware and software used to support them.

5.2.1 Dialogue

To support a rapid prototyping or experimental development approach to im-
plementing the storyboards, a software environment was needed which would provide
the following capabilities:

1. It must be able to provide representations of the storyboards as screen displays
through which users can access the various required functions.

2. It must support a variety of operations including accessing text and graphics
files, entering text, drawing graphic representations, and selecting from menus.

3. It must support display of context sensitive help and methodology information
as memory aids to the user upon request, without disturbing other work in
progress.

4. It must provide control over the database and model base storage and retrieval
as well as between the various storyboard functions.

5. It must provide a high level of interactive programming such that changes may
be made rapidly and development time is minimized.

6. It must be readily available for use on available hardware.

Based on these requirements, we initially considered the Sunview environment
on the Sun workstations. However, the graphics capabilities seemed too low a level
to be used for a rapid prototyping approach. In addition, the limited availability of
Sun workstations led us to look for a software environment that would run on the

more readily available Zenith Z-248 micro-computer.

Since much of the research for this thesis involved analysis of object-oriented
principles, we supposed an object-oriented programming environment might well suit

our needs. The Smalltalk/V Object-Oriented Programming System (OOPS) [17] was

5-2

obtained and installed on a Zenith Z-248 micro- computer and evaluated as to its
capabilities for implementing the prototype. Smalltalk/V seemed to provide a rich
toolset supporting software reuse, bitmapped graphics, and interpretive compilation

which would enhance rapid development of the prototype.

5.2.2 Database

In Chapter IV we said the database must support the requirements documents,
design tools, and the object model. We use that framework to discuss database tool

selection and implementation.

5.2.2.1 The Requirements Database. The DCDS Support System pro-
vided a database for developing a requirements specification including a data dic-
tionary and graphical representation. Since a major objective of the thesis was that
a design suf port tool should integrate with other development tools, we felt it im-
perative to use an existing system to support requirements analysis. Another factor
in selecting the DCDS Support System was its applicability to developing the kind
of real-time distributed systems for which object-oriented design seems to be best

suited.

5.2.2.2 The Tools Database. We expected Smalltalk/V to provide com-
plete support for reading and writing text files and saving graphics images. Or-
ganization of internal data would also be provided from within the programming

environment.

5.2.2.3 The Object Model Design Database. Initially we wanted to im-
plement the object model as a new language extension of the DCDS. The DCDS
Support System’s entry feature made it quite easy to define the new language, but
the constraints on DCDS access from within Smalltalk precluded implementation.
The alternative was to use Smalltalk/V data structures to implement the object

model.

5.2.8 Modelbase

The help »nd heuristics files comprising the modelbase were implemented as

text files.

5.3 Prototype Implementation
5.8.1 Dialogue

Implementation of the dialogue component was primarily a matter of writing
Smalitalk programs to display and provide functionality to the storyboards. Gener-
ally following our own OOD methodology, the high level design can be seen directly
in the feature chart of Figure 4.1. Restructuring the feature chart into an OOD

block diagram provides the view shown in Figure 5.1.

From the block diagram, we developed the initial detail diagram based on the
functionality shown in the feature chart. The initial detail diagram was modified as
it became clear which objects would become separate modules and the final diagram
is shown in Figure 5.2. We then proceeded with implementation of system functions

using an incremental approach as follows:

1. Implement the storyboards as windows with the following general format:
a top or title pane, a features pane, an objects pane, and a text pane. Since each of
the storyboards had this general format, we developed a storyboard class and made
each of the five main storyboards a subclass, thus inheriting the basic attributes of

the class.

2. Implement the main menu which would allow movement between story-
boards and access to help and hook book features. The main menu would be the

driving object and keep track of the decision aid’s state.

3. Implement the features panes by providing the list of features for each
storyboard, and the mechanism to display the appropriate list of objects for the

selected feature in the objects pane. The mechanism for displaying text in the text

5-4

Object-Oriented
Help Desi Hook Book
J Decision Aid

0-O Design Analyze Identify Encapsulate Decompose
Entry/Exit the to form Objects and Modules
Problem Modules Operations
'..
, <Y

Heuristics Requirements
Database Database

Figure 5.1. Block Diagram for the OOD Decision Aid

pane was also implemented. As individual features were added from here on, subclass

specific modifications to the general control mechanisms would be added.

4. Implement the hook book as a browser which would be a separately dis-

playable and controllable window. Early implementation of the hook books functions

allowed its use for making notes regarding further development.

5. Implement the design database as a separate abstract data type. Represen-

tation of the database changed several times. Initially it was a complex hierarchical

data structure using recursive algorithms for accessing its components. Eventually

it was changed to the simple set of relations described in Chapter IV. As an abstract

data type, the changes were confined to the database object itself. Initially, opera-

5-5

— -

] [} Y
Identify Encapeulate Decompase
heuristics o heuristics o heuristics Ot
listCMape o listCmaps o listObjects o
listRequnts o listReqmnts listReuse o - not
listObjects o listObjects edit o implemented
listOperations o listOperations remove o]
remove o edit block o
add o remove detail
edit o block flow o
view o detail
flow
view
Disk
Browser
run ———
Y '
EntryExit OODDecisionAid Analyze
browseDisk o analyze o listCmaps o
changeDir o identify o~ solution o
listDatabase o encapsulate o listText =
listReqmnts o decompose o] listDataDict o
loadDatabase o- hookBook o listGraphics o
unloadDatabasar-] help o- m addCmap o
viewRegmnts o exit o editCmap a4
removeCmap o
editSolution o~
viewReqmnts o
1
L
[
Help
changeDir o
Requirements| OODDraw
listText @owd view o
listDD [edit - Y%
listGraph e
listAll po HookBook
changeDir o=
view ou

Figure 5.2. Detail Design Chart for the OOD Decision Aid

5-6

tions were implemented to load and unload the database from disk. Operations were

added later as they were required by other storyboard features.

6. Implement access to the requirements database. This began as merely
accessing text files as needed. But as redundancy began to appear in several story-
boards, the requirements database became a separate object with its own operations
and window for displaying text. As previously mentioned, graphics files were dis-
played through a DOS shell to the VTEK PLAY program with automatic return to
Smalltalk/V.

7. Implement the design graphics capability. A subclass of the free drawing
application provided with Smalltalk/V was created to provide the specific require-
ments of the decision aid. Rather than limit the features for each application to
the subset required, other useful features were left for further experimentation with
graphics capabilities. The single drawing object developed could be used for both
concept maps, and the three types of design graphs required.

8. Implement the help feature. Initially, help was forced to the main text pane,
but it soon became evident that that might destroy current work in progress. So the
help feature was also made a separate object given browser capabilities similar to
the Hook Book. Additionally, users were given the ability to modify and thus tailor
the help information to their own needs. Since help was to be context sensitive, each
storyboard would maintain a set of help file names for access only by the help object

for that storyboa.rd.

9. Implement the heuristics display capability. Since heuristics text files needed
to be accessible by topic, as with help, it became evident that this was just another
form of user help and so we implemented it as an instance. Being context sensi-
tive, a separate list of heuristic file names would be maintained by each applicable

storyboard.

5-7

10. Implement a database browser to provide a window on the database for
adding, editing, and removing relations. This kept window operations separate from

more general database access operations.

As each decision aid feature was implemented, the controls to access that fea-
ture were put into the appropriate storyboards and tested. In this way we always
had a working model from which we could test new features. This method of in-
cremental development worked very well for single user development and facilitated
experimentation with various design ideas. It also made possible rapid modifications

to the software based on hook book entries.
5.8.2 Database

5.3.2.1 The Requirements Database. The critical task involving imple-

mentation of the DCDS was to be able to access its data from within the dialogue.

Our first alternative was to use the PC version of the DCDS to provide direct
access to the database from within Smalltalk/V. However, the PC version was no
longer supported by the vendor and we could not implement it successfully on the
Zenith Z-248. Our second option was to use Smalltalk/V’s communications package
to directly access the VAX VMS version of the DCDS. The extremely slow response
time for the VAX version, combined with the requirement of using a Textronix 4105

emulator to access DCDS graphics eliminated this alternative.

Our final choice was to download DCDS requirements data and access it off-
line. The data dictionary information was listed to text files through the DCDS
Support System’s query function and graphics screen displays were captured through
Scientific Endeavors Corporation’s VTEK Textronix terminal emulator. Smalltalk/V
was able to input the text files directly and the graphics images were displayed

through a DOS shell escape and execution of VTEK’s PLAY program.

3-8

5.3.2.2 The Tools Database. Implementation of Smalltalk/V on the Z-

248 made available the following software development tools:

1. a class browser for accessing source code;

2. a disk browser for accessing text files on disk;

3. atext editor providing screen editing, search, search and replace, saving changes,

cut and paste between windows, and various other helpful features;

4. a free drawing editor for developing graphic images;

5. a DOS shell for exiting to DOS and executing external programs;

6. access to the entire system source code for use as reusable components or

templates;

. a project manager for controlling code changes having to do with the applica-

tion;

8. an object unloader for loading/unloading the design database;

9. a complete multiple window and mouse driven environment for maintaining

10.
11.

multiple simultaneous views of the software in development;
incremental automatic compilation upon saving source code;

a debugger providing a walkback feature for tracing errors in execution.

5.3.2.8 The Object Model Database. Implementation of the object model

in Smalltalk consisted of declaring a new class and selecting the data structures to

represent the model. Initially, a hierarchical model was developed using a directory

to contain the various attributes of each object. This soon became complicated and

cumbersome and a simpler relational approach was taken, more directly implement-

ing the relations of Figure 4.9.

The database was defined as a dictionary of relations with the name of the

relation as the key to the dictionary. Each relation was then implemented as an

ordered collection of arrays with each element of the array containing a string item

or a pointer to an object or operation in the appropriate relation. All these rela-

tions were objects in the database dictionary with the relation names as the keys.

Figure 5.3 graphically depicts this structure.

5-9

e N ———

Actor/
Argument Server Operation

text|text|text textl textl

Figure 5.3. OOD Database Internal Structure

The standard data structure operations were implemented to hide this struc-
ture from the using storyboard features. Additional special operations were then
added to support unique database accessing requirements to simplify code in the

storyboard operations.

5.8.8 Modelbase

Implementing the modelbase was a simple conversion of the heuristics and
methodology instructions from this document to the text files which could be refer-
enced by the help and heuristics features. These files were then added to the default
lists of help and heuristics files built into the storyboards. The OODDecisionAid con-
troller module maintains the list of help files and these were hard coded as defaults

which could then be edited, removed, or added to by the users. Each storyboard

5-10

contains its own list of heuristic files which was also pre-loaded with defaults from

the examples provided in Chapter III.

5.4 Evaluation of the OOD Decision Aid

Due to the required flexibility and objectives of the prototype development
effort, Riedel and Pitz’s Utilization Shaped Evaluation (USE) model was chosen as
the most effective means of evaluation for the OOD Decision Aid. As we said in
Chapter II, the USE model focuses on what use will be made of evaluation informa-

tion.

First to be considered were what decisions were to be made regarding devel-
opment, who would make those decisions, and what were the critical windows of
decision opportunity. Second, the mission the DSS is to accomplish was defined,
along with its primary users and environment. One or more methods and associated
measures were proposed for each decision point identified. Finally, an evaluation was
performed to answer the evaluation questions. This section describes the results of

each of these four steps and presents our conclusions from the evaluation.

5.4.1 Decisions

Table 5.1 lists the general decisions which need to be made throughout the
estimated life cycle of the target system. As a thesis project, this life cycle extends
only through the implementation and evaluation of a prototype. Also, the evalua-
tion criteria must concern itself with additional questions regarding basis for future

research and qualitative significance of the proposed thesis.

5.4.2 The Mission, Users, and Environment

To determine the decision aid’s effectiveness, the system must be evaluated in
terms of its mission objectives and its appropriateness for the user and the opera-

tional environment. The following discussion defines these three elements.

5-11

-

gy

Table 5.1. Life Cycle Evaluation

Decision
Decision Maker Phase
1. Does the concept map accurately reflect the user RD®
relationship between the decision points in the process?
2. Do the story-boards accurately reflect an user/ RD/RS?
algorithm capable of aiding the decision-making process? designer
3. Is the kernel appropriate for development of designer RAS
a prototype?
4. Is the prototype feasible with available technology? designer RA/PD¢
5. What components will be used to build the prototype? builder = PD/DD¢
6. Is the completed prototype technically correct? builder/ PIf/VV?
designer
7. Does the prototype accomplish the user’s objectives? designer VV
8. Is the user satisfied with the prototype’s usability? user CD*
9. Does the expected value of the DSS justify further policy CD
development? maker
10. Does the approach taken represent a significant policy
contribution to the engineering community? maker CD

%Requirements Determination
YRequirements Specification
“Requirements Analysis
dPreliminary Design

¢Detail Design

/Prototype Implementation

9Validation and Verification
hContinued System Development

5-12

e e

5.4.2.1 Mission. The goal of the Object-Oriented Design Decision Aid
is to improve the timeliness and quality of design decisions made by software develop-
ers in producing an object-oriented software design specification. The OOD Decision
Aid will present both methodological and qualitative information to the designer as
needed and in a manner that enhances the object-oriented design process. The aid
will also guide the designer in a structured fashion through the four decision phases
of object-oriented design: analysis, identification, encapsulation, and decomposition.

These phases deal with the following questions:

1. What is the problem and what strategy is proposed for solving it?
2. What are the abstract objects and operations of interest?

3. How should objects and operations be associated in modules and what are the
interfaces between them?

4. Should a module be further decomposed or may it be constructed from known
components?

To support this broad goal, the prototype must meet the following three ob-

jectives as stated in the Scope section of Chapter I. They are as follows:

1. It must emphasize the four decision steps of analysis, identification, encapsu-
lation,and decomposition.

2. It must demonstrate the benefits of on-line access to requirements specification
textual, data dictionary, and graphical information.

3. It must provide a user interface which may be easily adapted by the user—even
to the extent of altering the methodology itself.

5.4.2.2 User. This section might be more appropriately labeled users
since several users are involved in making decisions regarding the development and
use of the DSS. As noted in the section on mission, the end user or person who
works directly with the aid will be a software engineer, programmer, or designer.
But the evaluation must also address decisions made by policy makers and program

managers. The program manager is the one most likely to sponsor development or

5-13

ﬁ,mv;x_,

procurement of the DSS and would be in direct management of its implementation in
the software development environment. The policy maker would be at the approval
level for the DSS and have overall control of systems development beyond the target
project or system. In the case of this thesis effort, the policy maker will consist of a

thesis advisor and the members of the thesis committee.

5.4.2.83 Environment. The decision aid is to be placed in a software
development environment consisting of a number of tools and resources already in
place. Its task will be to provide a framework for integration of those tools, resources,
and information bases already in existence which support the OOD process. As a
highly adaptive environment, subject to rapid technological change, the system must
be able to readily integrate new tools and resources in support of a variety of software

development projects.

5.4.83 Choice of Evaluation Methodology

Considering the factors stated above and the expected questions to be raised
throughout the life cycle, methodologies were chosen to evaluate each question stated
in Table 5.1. For each question and methodology, the proposed general measures of

effectiveness are given in Table 5.2.

5.4.4 Evaluation Results

The following discussion of the results of evaluating the developed prototype
follows the format established by the ten questions outlined in Table 5.1. Each
question’s answer provides a summary of the results of the evaluation as well as a

discussion of the method and measures used.

5-14

Table 5.2. Evaluation Methods and Measures

Decision Methodology Measure

1. Attitude Survey Sample of Experts
Subjective Rating

2. Process Evaluation Subjective Rating

3. Feature Analysis Sufficiency

4, Systems Analysis Available Methods

Value Analysis DSS Costs

5. Cost /Benefit Component Cost

6. Systems Analysis Verification

7. Systems Analysis Verification

Attitude Survey

Subjective Rating

F’ 8. Human Factors Subjective Rating
9. Rating and Weighting Subjective Rating
\ 10. Rating and Weighting Subjective Rating

- 5.4.4.1 Does the concept map accurately reflect the relationship between

the decision points in the OOD process?

j The OOD methodology concept map was initially developed from the litera-
ture and interviews with three professors in software engineering and object-oriented

development from the institute’s School of Engineering Department of Electrical and
ﬁ Computer Engineering and Department of Mathematics and Computer Sciences. Af-
H ter a composite concept map was developed, it was provided to the original three

experts, plus four more for further evaluation. Their comments were used to produce

5-15

Py

':‘ s

the final version which was then accepted by all six reviewers. The resulting concept

map was used to develop the methodology and was shown in Figure 3.1.

The experts were asked whether they strongly agreed, agreed, disagreed, or
strongly disagreed with the proposition put forth by the question. On a four point
scale, the average response was insert numerical rating here with none disagreeing.
We conclude then, based on expert opinion, that the concept map does accurately
reflect the relationships between the key decisions which must be made in the object-

oriented design process.

5.4.4.2 Do the story-boards accurately reflect an algorithm capable of

aiding the decision-making process?

Answering this question required analysis of the OOD process. The process
evaluation method used required linking processes with their desired outcomes. Ac-
cepting the methodology described in Chapter III as an accurate reflection of the
OOD process, we only needed to link the functions reflected in the storyboards with
the steps required by the methodology. In other words, we assumed following the

steps of the methodology would result in the desired outcomes.

By observation, the storyboards directly embody the step- by-step execution of
the proposed OOD methodology. Each step in the methodology is directly supported
by a single window which provides the required functionality of that step. We con-

clude then that the storyboards reflect the algorithm presented in the methodology.

The additional question of to what degree the methodology itself represents
an algorithm beneficial in aiding object-oriented development is addressed in the

evaluation of the methodology presented in Chapter III.

5.4.4.3 Is the kernel appropriate for development of a prototype?

What we needed to determine is if the kernel represented a sufficient set of

features such that a system implementing those features would present a product

5-16

* useful for helping the user make decisions. We show here how the decision aid

supports each step of the methodology.

Analysis Provide the user with access to the three requirements specification views
of graphics, text and data dictionary for use in deciding the scope and solution
to the problem.

Identification Provide the ability to view requirements, the solution strategy, and
concept map for identifying an initial list of objects and operations. Also
provide access to software engineering concepts and heuristics for identifying
objects and operations.

Encapsulation Provide a template for describing objects and operations such that
the relationships among them indicate how they might best be encapsulated
into modules. Also provide access to software engineering principles and mea-
sures to help determine the quality of the resulting modules.

Decomposition Provide access to a set of reusable design modules and the ability
to further describe module functionality as an aid to determining whether
further decomposition is required.

We conclude that the features just described as provided by the storyboards
: should provide significant help to the user for making design decisions. The ad-
ditional features supporting maintaining the object model text and graphic repre-

sentations also provide the ability to capture those design decisions once they are

p made.

5.4.4.4 Is the prototype feasible with available technology?

This question was answered in detail in the implementation section of this chap-
4 ter. While the technology to implement any of the specified features clearly exists,
1 the question became more one of availability, appropriateness, and manpower costs
considering the prototyping task to be performed. Analysis of the features required
of the prototype, and of the resources in both time and availability of hardware and
software, narrowed our choices to a minimally implemented Sun workstation based
system, or a more fully developed prototype on a Zenith Z-248. We leave further

discussion as to selection of the hardware and software to the next section.

5-17

5.4.4.5 What components will be used to build the prototype?

The cost/benefit analysis was a constraints based approach due to the expected
availability of development resources. Constraints primarily involved manpower costs
(time). Constraints required that the prototype be completed within 60 days of
the completed initial specification using one person relatively unfamiliar with the

software development tools to be used.

Building the kernel required a window based user interface providing powerful
programming tools for rapid experimental development. The only initially available
tool was the Sunview environment on AFIT’s Sun workstations. While the Sun would
provide a more powerful workstation level environment, its inability to access the
requirements database graphics and the expected learning curve of the complex set
of fairly low level tools would have limited the breadth of the functions implemented
in the prototype.

As an alternative, we found the Smalltalk/V object-oriented programming en-
vironment adequately met the need for functionality, a powerful and high level tool
set, and at minimal cost. Installed on an IBM-PC/AT class Zenith Z-248 micro
computer, we had full off-line access to the requirements database. Without the
availability of this environment, the functional requirements for the kernel would

have to have been greatly reduced.

5.4.4.6 Is the completed prototype technically correct?

Testing of the software for the prototype was somewhat informal and followed
the incremental development approach discussed earlier in this chapter. Functions
were tested for technical correctness as they were added to the prototype. Walk-
throughs were accomplished periodically testing each of the features specified in the

description of the requirements in Chapter IV.

No attempt was made to formally evaluate the performance characteristics of

the prototype since feature functionality rather than performance was the objective.

5-18

However, it was observed that Smalltalk/V cannot support very large applications
without having to continually swap objects in and out of memory. This object
swapping considerably reduces response time. While this problem was alleviated
somewhat through use of a RAM disk, an operational system would require either
a workstation version of Smalltalk, or possibly the 286 version running in protected

mode and using at least a full megabyte of RAM.

5.4.4.7 Does the prototype accomplish the user’s objectives?

The objectives of the prototype were stated in Section 5.4.2.1. We can see
that the first objective is met since the prototype encompasses all four decision steps
and implements the OOD model in a database. The second objective is met through
providing access to requirements specification data from the appropriate storyboards.
Finally, the third is met through implementation of the help and heuristics features.
Since the user can edit, add, or remove heuristics and help files, the details of the

design methodology can be easily aitered.

The selection of the Smalltalk/V OOPS as a development environment pro-
vided an additional level of adaptability since the users themselves are expected to
be software engineers. Smalltalk provides an easy to use programming environment
rich with development tools. Such an environment should make it very easy for a

user to customize or extend the decision aid.

5.4.4.8 Is the user satisfied with the prototype’s usability?

A group of sample users from a graduate level advanced software engineering
class was given an hour to play with the user interface of the prototype. They were

then asked to answer the following questions.

1. Rate the content of the information displayed. That is, how well did the system
keep you informed of where you are or what you are doing.
insufficient 1 2 3 4 5 6 7 sufficient

5-19

B A am o

2. Rate the methods used to communicate with the user.
Inputs:
insufficient 1 2 3 4 5 6 7 sufficient

Outputs:
insufficient 1 2 3 4 5 6 7 sufficient

3. Rate how well you feel the system produced user induced errors.
insufficient 1 2 3 4 5 6 7 sufficient

4. Rate how well you feel the system allowed you to recover from user induced

errors.
insufficient 1 2 3 4 5 6 7 sufficient

5. Rate your expected ease of learning for the system.
dificult 1 2 3 4 5 6 7 easy

6. Rate the ease of use of the system.
difficult 1 2 3 4 5 6 7 easy

7. Rate your ability to direct or control the activities of the system.
insufficient 1 2 3 4 5 6 7 sufficient

8. Rate your overall satisfaction with the interface.
unsatisfied 1 2 3 4 5 6 T satisfied

The results of that evaluation are displayed in Figure 5.4 and Figure 5.5. The first
graph shows the mean answer by question on a rating scale of one to seven. The graph
shows an average standard deviation per question of 1.25. Such a high standard error
made it very difficult to draw a firm conclusion as to the users satisfaction. We could
only say that we are reasonably confidant that the user is more satisfied than not
satisfied. This statement is based on the hypothesis that the uscr’s rating is greater

than the scale’s midpoint of 3.5, tested at the .05 level.

The second graph was developed to try to answer the reason for the high stan-
dard error. A low standard deviation here probably indicates a less well considered
answer to specific questions. The graph shows students generally answered each
question relative to their overall impression rather than to the scale. Answers also

reflect the impact of varied backgrounds or preferences of the users.

This aspect of the evaluation proved to be less useful than hoped. What is

needed is a more thorough evaluation by users familiar with the concepts involving

5-20

g

[
R 5
A
T
1 4
N
G 3
2 Key

O Mean

I One o range

[1 L 1 | l _— | - i

— T f =T I T L o

1 2a 2b 3 4 5 6 7 8
QUESTION

Figure 5.4. User Interface Evaluation by Question

specific comments rather than a numerical rating. The results in this case do not

even allow us to identify specific areas requiring improvement.

5.4.4.9 Does the expected value of the DSS justify further development?
The finished prototype was demonstrated for the thesis committee which was
asked to provide a subjective evaluation of the prototype regarding justification for

further research and/or development. Their comments are summarized as follows:

o The methodology requires further development before consideration of tool
development is warranted.

e The Smalltalk interface is very nice, but we’re not convinced it can support
the amount of data which would need to be processed in even a medium size
project.

5-21

0 Z ~"» D
s
—
—O0—q

2 Key

O Mean

I One o range

I 1 ! 1 1 4 ! 1 |
T T T | B 1 — 1 1
1 2 3 4 5 6 7 8 9
RATER

Figure 5.5. User Interface Evaluation by Rater

e The concept mapping idea will be used as the basis for further research in
object-oriented analysis.

Two schools of thought come into play in this analysis. The first says we
shouldn’t build anything until we know exactly what we want. This is the traditional
approach and it makes sense considering the high cost of full scale development. The
problem is that in some cases, we really don’t know exactly what we want. Such
is the case with most decision support systems. The adaptive design approach lets
us experiment with ideas until we either discover or recognize from experimental
results what it is we are reaily looking for. This thesis took that second approach.
While the prototype is insufficient for problems of any scale, it should be sufficient
for experimenting with the OOD methodology.

5-22

e e .

5.4.4.10 Does the approach taken represent a significant contribution to

the engineering community?

The thesis committee was also asked to provide a subjective response regarding
the contribution of this research to the engineering community. The idea here is to
determine whether or not the application of DSS concepts to deveiuping software
support tools and environments is unique, and whether it is of sufficient value to
be of interest to other software engineers. The committee’s response is somewhat
qualified. Whether this approach is new, or just the same thing we’ve been doing—
but with another name—is the argument DSS adherents have been trying to deal
with for years. As to the potential interest to others in the field, the answer is clearly
yes! The ideas demonstrated by this prototype should stimulate others to pursue
research in the application of DSS and OOD concepts.

5.4.5 Conclusions from the Evaluation

The primary conclusion we derived from development and evaluation of the
prototype decision aid was regarding the application of the decision support system
concepts. Using the adaptive design approach, along with the techniques of concept
mapping, storyboarding, and the ROMC model, we were able to develop a prototype
which more than met all of the stated objectives. In addition, development time was
held to less than two months, cost was minimal, and the final product was evaiuated
as a successful implementation of our OOD methodology and a valuable tool for

further research.

An unexpected benefit resulted from the opportunity to use the Smalltalk/V
OOPS. Its powerful set of tools and reusable software components made the pro-
gramming task relatively simple as compared to similar systems developed using a
more general purpose language without an extensive support environment. Further

comments and recommendations are provided in the final chapter of the thesis.

5-23

VI. Conclusions and Recommendations

We conclude this thesis with a summary of the work accomplished and how it
related to the specific objectives for the study. Next we present conclusions drawn
from the effort and its results. Finally we include recommendations for continued

research regarding the methodology and development of the decision aid.

6.1 Summary

We began this effort with the primary objective of developing an object-
oriented design methodology which would support transition from a non-object-
oriented requirements specification. We also wanted to implement that methodol-
ogy in a tool which could be used for object-oriented development and research. But
how does one go about coming up with a new methodology? That is where decision

support techniques began to play a role.

The concept mapping technique allowed us to more fully understand the object-
oriented paradigm and the design process itself. Creating and analyzing the concept
maps, and various discussions as to the definition and application of DSS led us to
propose that software design fit the definition of semi-structured decision processes
described in the DSS literature. Following that lead as a means of developing the
methodology, we continued the process of concept mapping numerous object-oriented

development related sources to finally arrive at the concept map of Figure 3.1.

Once the key decisions were identified, describing the steps of the methodology
was a matter of determining what help could be provided the designer to aid the
decision making process. This entailed concept mapping the requirments specifica-
tion methods and consolidating them to form a generic requirements specification
model. Having done that, we still needed to have as a basis a representation of the
object model. Neither the theoretical nor the programming language-oriented model

proved quite adequate for design. Using the adaptive design methodology, we added

6-1

e e . et R

e

features to the theoretical model as necessary to provide just enough constraints to
formulate a workable model. We then evaluated the finished methodology with a
sample problem and it seems to have produced a sufficient design specification for

implementation.

Our efforts then turned to determining the requirements for a tool. Again the
decision support concepts came into play as we used the feature chart and story-
boarding techniques to specify the requirements for a decision aid. We also used a
DSS evaluation technique to establish life-cycle measures for development of a proto-
type. Several weeks were spent in evaluation determining the appropriate hardware
and software configuration for implementing the prototype. Then, about seven weeks

were spent developing the software for the decision aid.

Finally the prototype was complete and the final evaluation steps were taken.
The prototype more than adequately provided a test-bed for further research and
evaluation of the methodology, as well as an example of the application of DSS
techniques to this type of tool. Unfortunately we were unable to more thoroughly

evaluate the methodology through controlled experiments with the tool.

Our stated goals were to address the problems of transition, integration, and
adaptation as they apply to current development of support environments for object-
oriented development. We developed a methodology for OOD which transcended the
limitations usually placed on requirements specification techniques and programming
langdages. In addition, we implemented that methodology in an environment which
included direct access to a multi-view requirements specification, and provided a
user adaptive interface. Additionally, we based our methodology on a unique ap-
proach that promises to help designers make decisions, not just capture decisions
once they’re made. We feel the results show we’ve not only met but exceeded our

original goals.

6.2 Conclusions

As stated in the evaluation of the prototype, we feel our most significant conclu-
sion from this study has been the applicability of DSS concepts to the development
of software environments. Evaluation of eight software development methodologies
or tools showed no evidence that software environment developers are addressing
techniques that will help the user make good design decisions. We believe drawing
complicated graphics or following rigorous documentation techniques will not greatly
improve the state of current programming practice until we provide the designers

and programmers the on-line tools to help them make better design decisions.

A second conclusion is regarding the use of the concept map. We found the
concept map to be an excellent informal tool for communicating understanding. As
such, we feel it may lead to a better means of representing the user’s view of the
problem than many formal specification methods which are often incomprehensible
to the user. We also feel the method presented for using concept maps to describe
the solution strategy is more descriptive and may lead more directly to a set of
candidate objects and operations than the textual paragraph of Abbott, Booch and
others. We caution, however, that the inherent value of the concept map is in its
simplicity and informality. Over formalizing and constraining its use may have a

corresponding negative effect on its ability to communicate understanding.

An observation we made during the course of the research is that methodologies
which are language independent seem to have the most chance of surviving and being
used over the long haul. While language specific features may certainly be very
valuable in a given implementation, too many tools embed such features in the very
essense of the methodology. We found many of the tools with embedded language
features were simply not being widely used as commpared to language independent
methods such as Structured Analysis and Design. A corollary to this observation is

that the more complex the method, the less it seems to be used.

6-3

A final conclusion was drawn from using the rich tool-set and powerful reusable
components available with the Smalltalk/V OOPS. We feel that an OOP environ-
ment might be very successfully used as an interface for developing software support
environments for more traditional target languages such as Ada. While this sugges-
tion is contrary to the Stoneman document [18], that document was written nearly
a decade ago and may not provide the best solution for developing APSEs. Another
application in which Smalltalk should prove beneficial is in the development of deci-
sion support systems in general. The experimental programming approach for which

Smalltalk was developed seems well suited for adaptive design of DSS.

6.3 Recommendations

We hope to continue research into the application of DSS concepts to devel-
opment of environments to support traditional software design. In fact, we think
further research would show that virtually all design requires semi-structured deci-
sions which may well be supported by DSS. To our knowledge, DSS concepts have

not been applied to such applications and research in that direction is clearly needed.

We also recommend continued development of the Decision Aid for Object-
Oriented Design as a promising method for exploring research into object-oriented
development methodologies. We suggest development continue on a higher perfor-
mance system such as a work-station or a non-DOS PC environment without the
suffocating 640 kilobyte memory limitation. The Smalltalk/V 286 version runs in

protected mode and may provide an excellent alternative at minimal cost.

The methodology we developed is only a starting place. We would like to
see an extensive evaluation accomplished using the OOD Decision Aid as a test
bed. A particular area of concern is in decomposition of modules and application of

inheritance and reusable components.

6-4

Finally, we recommend further research into the use of concept maps as a tool
for communicating understanding. An interesting approach based on their use in
requirements determination may be to use concept maps as a basis for an object-

oriented approach to the entire development lifecycle.

6.4 Closing Remarks

This thesis effort was a success in the sense that it demonstrated a unique
approach in the application of decision support systems concepts toward developing
tools and techniques for software support. By approaching formation of the method-
ology and tool from the users’ point of view and the decisions which they must make,
the object-oriented design methodology was presented as a technique which should
help in the design of reliable maintainable software. OOD was shown as a bennefi-
cial addition rather than as a threat of drastic change to the software development
environment. Presented as such, OOD should have a much greater chance of being

accepted and used by the software development community.

6-5

Appendix A. FEzecutive Summary

A Decision-Based Methodology
for

Object-Oriented Design

A-1

| A Decision-Based Methodology
for
Object-Oriented Design

. Captain Patrick D. Barnes and Dr. Thomas C. Hartrum
Department of Electrical and Computer Engineering
Air Force Institute of Technology

December 16, 1988

Abstract

The task of object-oriented development raises a new set of design
problems. Addressing the decisions which must be made in apply-
ing object-oriented principles to design is the focus of this paper. A
structural object model is presented and the concepts of decision sup-
port systems (DSS) are applied to the formulation of a decision-based
methodology for object-oriented design. An overview of the develop-
ment of a decision aid for evolution of the methodology is also given.

Contents
1 Introduction

2 An Object Model for Design
L 2.1 DefiningtheModel
2.2 Representing TheModel.

3 Overview of the Methodology
3.1 Analyze the Problem to Determine a Solution Strategy
3.1.1 Discussion.

ey

3.1.2 Summary of the Analysis Step. 9

3.2 Identify the Objects, Attributes, and Operations 9
321 Discussion. 9

3.2.2 Summary of the Identification Step. 11

3.3 Encapsulate Objects, Attributes, and Operations into Modules 11
331 Discussion. e 11

3.3.2 Summary of the Encapsulation Step. 12

3.4 Decompose the Modules or Begin Detail Design 13
34.1 Discussion. 13

3.4.2 Summary of the Decomposition Step 14

4 Developing a Decision Aid for OOD 14
4.1 Understanding the Problem 15
4.2 Selecting the Kernel 15
4.3 RepresentingtheKernel 16
4.4 SupportingtheKernel 16
44.1 The Database Requirements.. 16

4.4.2 The Modelbase Requirements. 16

4.5 A Prototype Decision Aid 16

5 Conclusions 18
A Figures 23

1 Introduction

Escalation of software development and maintenance costs as well as demand
for software solutions to increasingly complex problems have mandated new
techniques for engineering reliable, maintainable computer software. One
approach to improving software quality is the use of the object-oriented
paradigm for design. Pressman [37)] lists desirable software engineering prin-
ciples specifically addressed by OOD as abstraction, information hiding, and
modularity, While the principles themselves are not new, he states, “only
OOD provides a mechanism that enables the designer to achieve all three
without complexity or compromise.”

y-sspenio

e aa

But there is more to design than the paradigm we choose for structuring,
conceptualizing, or representing a system. The design process can be seen as
combining

... intuition and judgement based on experience in building
similar entities, a set of principles and/or heuristics that guide
the way in which the model evolves, a set of criteria that enables
quality to be judged, and a process of iteration that ultimately
leads to a final design representation [37).

This description indicates that a software design environment must sup-
port judgment and choice, embody design principles and/or heuristics, guide
an iterative development process, and enable qualitative evaluation of the
finished product. While several methodologies have been proposed for an
object-oriented approach to design!, they seem to focus primarily on the
representation of the design rather than the process.

This paper presents an approach to developing an object-oriented de-
sign methodology based on the concepts of decision support systems. The
OOD process is not redefined; rather it is stated in terms of the decisions a
designer must make while accomplishing OOD tasks. First, a general object-
oriented model for design is presented. The decisions involved in OOD are
then stated and a methodology is elaborated based on those decisions. Fi-
nally, an overview of the first stage development of a decision aid is discussed.

2 An Object Model for Design
2.1 Defining the Model

Two models of the object-oriented paradigm were analyzed for application
to design. The first was a theoretical model [10] based on objects, behav-
iors, and attributes. The second was the Smalltalk language-based model
(17] which adds class, inheritance, messages, and methods. The theoretical
model proved to be too ambiguous to rigorously depict relationships between
objects, and the OOP model too restrictive to implementation constructs.
A new model which would meet the needs of design was needed. Such a

'Examples of OOD support tools are [19], [14], [11], [12], (42], and [2].

-

model was derived by beginning with the more abstract theoretical model
and adding refinements derived from the Smalltalk experience to solve de-

sign related problems.
The resulting object model is pictured in the concept map of Figure 1 in
the appendix and is formally defined as follows:

object A unique entity defined by attributes which serve to identify the
object, and relations which associate it with other objects, relations,

and operations.

operation The description of how an object performs some behavior. As
with objects, attributes serve to identify the operation and relations
associate it with other objects and operations.

attribute Serves to identify an object or operation. Required attributes
for objects are name, behavior, and domain. Required attributes for
operations are name and algorithm.

relation A complex attribute representing an association of an object or op-
eration with other system objects and operations. Relations on objects
include its class as well as sets of operations, component objects, actor
objects, and server objects. Relations on operations include its object
as well as sets of modified objects, argument objects actor operatio- s
and server operations.

class A complete design of an object which may be used as a template from
which another object derives its characteristic structure and function.

name A string serving to identify an object or operation which must be
unique within a context.

behavior A text description of an object’s function when provided with
certain stimuli.

domain A text description of the set of states to which an object may
change.

actors A relation which denotes which objects or operations require services
of some other object and operation pair.

4

ety

servers A relation which denotes which objects or operations provide ser-
vices tq some other object and operation pair.

components A relation which denotes the parent/child relationships be-
tween objects.

arguments A relation which denotes which objects are required as argu-
ments in the interface of an operation. This relation has the attribute
mode which may be either input or output.

modifies A relation which denotes which objects are modified by the exe-
cution of an operation.

The model presented retains the function of the theoretical model, and
adds the practical aspects of the programming model. The implementation
of an object is not specified, nor is the syntax of the communication between
objects limited to a specific method. Yet provisions are made for describing
the interface between objects and operations of other objects, as well as for
representing the fully recursive nature of real world objects.

2.2 Representing The Model.

Statically, an object-oriented design consists of a representation of a system in
terms of the model previously described. As such, the object model could be
easily represented in a relational database. However, a static representation is
insufficient to fully communicate a complex behavior or the interrelationship
between objects without a correspondingly complex textual narrative.

As an alternative to text, software developers have produced a plethora of
graphical methods of representing software systems. A number of techniques
have been proposed to represent an object-oriented design, some entirely
new, some variations on more familiar methods.

Examples of graphical OOD methods were reviewed in an attempt to
determine which kinds of representations most clearly represent the object-
oriented model. Each method has its own strengths and weaknesses and
represent one or more of the three basic views of a software design. These
views include block diagrams, detail diagrams, and state transition diagrams.

Examples of block diagrams include the Booch diagram [9] [19] which
identifies the objects and operations in the visible interface, and the depen-
dencies between objects, but does not reveal which objects invoke which
operations. The object diagram of Goddard Space Flight Center’s General
Object-Oriented Development methodology [42] is an even simpler example
and appears to be a variation on structure charts (35]. These diagrams add
the capability to show a clean parent-child or a virtual machine hierarchy of
design objects.

Detail diagrams are typified by Modular design charts [53] and Buhr
diagrams [11]. The former shows attribute types and operations within an
object, as well as which components are used by specific object bodies. The
latter link operations together directly through “control sockets” giving the
flavor of a hardware wiring diagram.

The Interactive Ada Workstation (IAW) [22] implements Buhr diagrams
and adds a petri net diagram for describing state transitions between op-
erational objects. The AdaGraph? tool [14] which implements Cherry’s
PAMELA?® methodology uses a process graph and adds a hierarchical sub-
program graph. APEX| a system in development at the Air Force Wright
Aeronautical Laboratories, also adds a petri-net diagram to its block diagram
and process connection graph [2].

The SHARP methodology {12] uses a variety of pictographs represent-
ing all three views. Different diagrams are used for main program abstrac-
tion, object implementations, object interactions, object invocation, task
rendezvous, subprogram data flow, data structures, and program unit op-
erations.

All the methodologies referenced were developed specifically for designing
Ada programs*, resulting in many Ada unique distinctions. The graphical
representation presented in this paper takes a more generic approach.

Rather than favor one view of design over another a multi-view approach
is suggested consisting of three parts: a block diagram, an interface diagram,
and a control flow or state diagram. Figure 2 shows an example of a simple
design including these three views.

2AdaGraph is a trademark of The Analytic Sciences Corporation.
3SPAMELA is a trademark of George W. Cherry
4The modular design charts were developed with both Ada and Modula2 in mind.

6

e 3

The block diagram used is similar to the high level object diagram of
[42]. It depicts the objects in the system (at a particular level of detail) and
the dependency relationships between them. Module dependency is shown
by directed arrows to the servant or component objects in the graph. In the
case of an actor/server relationship, messages or operation calls flow across
the directed arrows.

The detail diagram is a modification of the modular design chart {53].
The requirements for depicting a “software bus” and separate component
bodies are left out. In lieu of the implementation-oriented terms “package”,
“proc”, “In”, and “type”, objects begin with a capital letter, and operations
begin with lower case.

A petri-net graph similar to the one found in APEX [2} is used to depict a
state diagram or object interaction in the case of concurrent communicating
objects.

The main purpose of graphics is to communicate the design more clearly
than does the text. While the use of graphics is strongly advocated (“a picture
is worth 1024 words”), a methodology so rigid that the graphic techniques
drive the design, rather than good software engineering principles, can be
counter productive. Thus the graphic representations offered should be im-
plemented informally, rather than with such rigor that documentation costs
exceed their expected benefit.

3 Overview of the Methodology

Webster defines a methodology as “a body of methods, rules, and postulates
employed by a discipline: a particular procedure or set of procedures” [51]. In
the previous sections postulates were offered regarding the decision-oriented
nature of design, applicability of the object-oriented paradigm, and an object
model for software design. This section describes the methods or steps to
deriving a design using the object model. The methodology is based on
providing rules or postulates (design heuristics) to support object-oriented
design decision making.

The specific steps in the methodology were developed by first identifying
the decisions involved in OOD from the literature and from experienced
software engineers at AFIT. Thus the OOD process is not redefined, rather

R R RS EImE———

it is presented in terms of decisions rather than the usual set of products
associated with the design specification.

The OOD process is pictured in the concept map in Figure 3. The decision
steps highlighted in the figure are defined as follows:

1. Analyze the problem and requirements specification to decide on an
initial scope and a strategy for its solution.

2. Identify the abstract objects, operations, and their attributes from
the solution strategy and requirem.ents specification; then decide which
are central to the solution strategy.

3. Encapsulate the objects, operations, and attributes into modules and
determine the relationships, or interfaces, between those modules. In
other words, decide which operations naturally go with which objects.

4. Decompose complex modules by repeating the process with objects or
operations as separate problems, ur begin detail design. Detail design
requires deciding whether to construct modules from known compo-
nents such as other objects, iibrary modules, predefined functions or
data types; or to produce an algorithmic description using psuedocode
or flow diagrams.

OOD is unique in respect to what needs to be identified in analyzing the
problem, how data structures and algorithms are encapsulated into system
modules, and in how system modules are constructed from known, more
general data types or classes. However, it should be clear that the main
thrust of the decisions discussed here are basic to software design—regardless
of the paradigm involved.

The following sections provide a more detailed descriptions to the decision
steps of the methodology.

3.1 Analyze the Problem to Determine a Solution
Strategy

3.1.1 Discussion.

The first decision the designer must make is in limiting the scope of the
problem to be solved. In this step the initial context or scope is determined

8

e
L2 Bk amn oo

— -

e o= iy At Ay ety e i

—~y

for the subsequent steps. Abbott [1] and others [19] state that the problem
must be reduced to a single sentence. A problem too complex to state in a
single sentence probably requires a higher level of abstraction.

The problem statement should be determined from the problem space
and stated in user-oriented terminology. It is important for the designer
to interact with the user whenever possible in accomplishing this step. Us-
ing the concept map to elicit such problem-oriented information encourages
this interaction and may communicate more effectively and ensure mutual
understanding.

Concept maps should be developed from both the users and the require-
ments specification. The various results may then be compared and refined
to provide a better understanding and statement of the problem. Working
with the concept map of the problem, a map for a solution may be developed.
The concept map may prove to be a better means of presenting the solution
strategy than the single paragraph of (1] and [9], in the same way that the
graphical structured specification {15] has proved more effective at commu-
nicating high level abstract requirements than a verbose textual document.

3.1.2 Summary of the Analysis Step.

1. Interview one or more users and develop concept maps of the problem.

2. Develop additional concept maps from the portions of the requirements
specification which describe the system’s functional requirements and
entities at the desired level of abstraction.

3. Synthesize from the concept maps a single sentence statement of the
problem.

4. Develop a single concept map which depicts a strategy for solving the
problem.

3.2 Identify the Objects, Attributes, and Operations
3.2.1 Discussion.

Dave Bullman [27] states that finding the right objects is hard. He goes on
to say that associating operations with the right objects is even harder. The

implied requirement of intuition and choice here indicates this as the next
decision process.

A number of “rules of thumb” or heuristics have been suggested for both
the identification of objects and encapsulation of objects with their attributes
and operations. Thus this step consists of the application of such heuristics
to identify and define the objects, attributes, and operations which apply
within the scope and level of abstraction we are dealing with. Some valuable
heuristics include the following:

Object Selection Criteria lists general software engineering heuristics
such as information hiding, abstraction and inheritance for determining
good objects [37].

Grammatical Analysis makes selections based on nouns and verbs (1].
Abstraction Analysis makes selections based on data flow diagrams {42].

Class Abstraction makes selections based on classes of physical objects
[31].

Concept Analysis makes selections based on concept map entities and
has the following steps:

1. Generate a first cut list of objects from the entities on the concept
map. This is possible since the concept map is developed by a
designer with OOD in mind.

2. Identify from the list of objects which are long-lived and which
are transient. Transient objects tend to be operation arguments
or local variables. Long-lived objects tend to represent abstract
state machines.

3. Identify which objects are subordinate, natural components of, or
clearly attributes of other objects and note these characteristics
in the object’s description. such in the object description.

4. Identify the action words in the relationships between entities as
candidate operations. Describe the behavior of these actions as
to what objects are modified, what information is required, which
objects invoke the operations, and what other operations might
they naturally require of other objects.

10

The primary objective of this step is identification along with some basic
definition. Associating objects and operations is reserved until the encapsu-
lation step. The elements in this step should come initially from the solution
strategy unless the heuristics used require otherwise. It is difficult to initially
scope a problem such that the lists of objects, and operations are complete,
accurate, and without some spurious low level objects or operations having
been defined. the analysis and identification steps may be repeated one or
more times to aiiive at a realistic scope of the problem and a complete set
of objects and operations.

As identifiers of objects and operations, attributes should be associated
with appropriate entities after they are identified. Listing object and opera-
tion attributes serves to define those entities in greater detail. The require-
ments document will often need to be consulted to fully describe program
entities.

3.2.2 Summary of the Identification Step.

1. Apply one or more identification heuristics to identify the set of objects
in the system at the scoped level of abstraction.

2. Analyze each object and describe its attributes and structure in the
solution strategy. Check the requirements document for completeness
and eliminate redundancy in the object list.

3. Apply one or more identification heuristics to identify the set of oper-
ations performed within the system at the scoped level of abstraction.

4. Analyze each operation to determine and generally define its stimu-
lus/response attributes. '

3.3 Encapsulate Objects, Attributes, and Operations
into Modules

3.3.1 Discussion.

Deciding which operations should be associated with which objects is not as
straight-forward as it may seem. Objects seldom behave independently of
other objects. Consequently, observed behaviors may represent a complex

11

e

s,

oy

er—r—

interrelationship among objects. A good example is the one hwere a drill is
drilling a hole in a piece of metal [10], whether the operation drill_hole is an
activity of the drill_press, drill_bit, or sheet_metal depends on the abstraction
of those objects in the problem solution. Thus guidelines, rules, or heuristics
are needed to guide the encapsulation of objects and operations in such a
way as to produce good modules.

In choosing which objects and operations to encapsulate into modules,
the interrelationships between modules are revealed. Those relationships or
interfaces are specified by first determining the dependency between mod-
ules. A dependency exists whenever an operation of an actor or agent type
object affects or requires an action by some other object. Rather than depict
the dependencies only, the specific operations of an object required by each
operation of each external object need to be diagramed. This includes iden-
tifying the attributes or arguments an operation requires to accomplish its
function; and which attributes or internal objects are affected through such
an operation under the stated conditions.

Heuristics for encapsulation include the following:

Modularity Rules define quality assessment of modules such as coupling
and cohesion [37].

Object Classification requires identifying an object’s operation as one of
several general types such as actors or agents [10] [9].

Application Classification requires identifying an object or operation
as one of a set of predefined types specified as a set common to the
program application area [2].

Structural Classification requires identifying an object’s structure as one
of four general types (e.g. an abstract state machine) [9].

3.3.2 Summary of the Encapsulation Step.

1. Apply one or more encapsulation heuristics to the lists of objects and
operations to determine a set of system modules.

2. Determine the interrelationships between rodules and diagram the
module dependencies.

12

3. Analyze each module dependency to determine and diagram the de-
tailed interfaces between each dependent module’s operations and the
executors of those operations. -~

4. Refine the descriptions of the operations of each object in view of the
various conditions under which it might be required of some other ob-
ject and develop a state transition diagram if appropriate.

3.4 Decompose the Modules or Begin Detail Design
3.4.1 Discussion.

Decomposition deals with the question of how to construct each module.
Should it be further decomposed, constructed from known components, or
algorithmically defined via psuedocode or flow diagrams. This is the step in
which inheritance may be applied since, at this point, a full description of
each object at a given level of detail is available. To apply inheritance any
earlier might result in shaping the solution to a set of preconceived notions
rather than really solving the user’s problem.

Inheritance is applied based on the object or module classifications made
in the previous step. Such classifications are helpful, not only in determining
module structure and behavior, but in identifying objects as instances of
classes in the system, or as matching preexisting templates maintained in a
class library. The decision to use inheritance is always a tradeoff between the
cost of new development and the cost of modifications to existing templates.

Should inheritance fail to provide a solution to the design of a particular
module, the module must be decomposed into smaller modules, or described
at its lowest level as data structures and algorithms. Algorithmic description
follows traditional methods useing Structured-English psuedocode or flow
diagrams. Data structures which are operated on as a whole may be further
described in a data dictionary.

All or part of a module may be decomposed. A module containing sets of
objects and a set of operations, may have elements of those sets at their lowest
level, and other elements of sufficient complexity to warrant decomposition.

Decomposition may take a variety of forms depending on the problem.
For a functionally cohesive operation on a single cbject, conventional func-
tional decomposition may be adequate. If aspects of the operation exhibit

13

concurrency, a process-oriented approach would be appropriate, with each
sub-operation representing a single concurrent operation. Should the ex-
istence of other independent objects become apparent, an object-oriented
approach might be better. In other words, the problem should lead to an
appropriate design technique, rather than squeezing the problem into an un-
natural methodology.

3.4.2 Summary of the Decomposition Step

1.

4

Analyze the modules in the system for signs of common classes. If such
a class hierarchy is apparent, indicate objects as instances of the class
and further design the class.

Analyze the classification of modules in regard to existing generic struc-
tures or functions. Determine unique characteristics of such modules
to determine cost effectiveness of redesigi. versus reuse.

. Analyze the complexity of remaining modules and determine which

module components must, be further 2ecomposed.

. For each component which must be decomposed, determine the appro-

priate design method and proceed with the design. Appropriate flow
diagrams, petri nets, structure charts etc. should be used to describe
the design of components not accomplished in an object oriented fash-
ion. Those components which require an object-oriented design, should
be treated as new problems and designed using this methodology in an
iterative fashion.

For each operation which need not be decomposed, describe its opera-
tion algorithmically using appropriate psuedocode or flow diagrams.

For each object or attribute which need not be decomposed, describe
the data structure it represents.

Developing a Decision Aid for OOD

This section provides an overview of the steps taken for determining re-
quirements and a top level design for a decision aid to implement the OOD

14

— s

methodology. A brief discussion of a Smalltalk implementation for experi-
mental purposes is also given.

In the field of decision support, requirements determination requires four
steps: understanding the problem, selecting a kernel system to implement,
developing a representation or model of the system in the form of story-
boards, and describing the database and modelbase requirements to support
the system. The storyboards and associated feature chart then serve as a
top level design of the dialogue, database, and modelbase components of the
decision aid.

4.1 Understanding the Problem

The problem is to provide a methodology for object-oriented design which ad-
dresses the decisions a designer must make. A solution was determined from
concept maps of the OOD process and the resulting model and methodology
were proposed.

4.2 Selecting the Kernel

The concept map of Figure 3 was used to show the OOD decision processes
and to derive the feature chart shown in Figure 4. The feature chart depicts
the support and interaction required by the four steps in the methodology.
Storyboards were developed representing decisions and support requirements.
The feature chart also shows supporting windows representing individual
features provided by the storyboards.

The storyboards are linked together through the main menu which is be
available from each storyboard for switching to any other storyboard. The
main menu also provides a means of exiting the system and allows access
to context sensitive help and the hook book. Several functions overlap. For
instance, the object and operation definitions created in the Identification
storyboard are used again in both subsequent storyboards.

The feature chart presents an overview of the features required by the
kernel system. Consequently, only the high level, or external functions are
shown. The storyboards and their descriptions reveal detailed requirements.

15

w——

4.3 Representing the Kernel

Figures 6-10 in the appendix to this paper show the storyboards developed
in the design of the dss kernel. In general, each storyboard contains at least
three sub-windows or panes: a features pane, an objects pane, and a tezt pane.
Selecting an element in the features pane causes a list of files or objects to
appear in the objects pane. Selecting an element in the objects pane causes
initialization of the text pane, or bring up a sub-window-—either one of which
the user will use to carry out some sub-step in the methodology.

4.4 Supporting the Kernel
4.4.1 The Database Requirements.

The database involves the storage, representation, and manipulation of de-
sign objects as well as on-line access to a requirements specification. The
functions described in the storyboards require the ability to display graph-
ics, text, and data dictionary information.

4.4.2 The Modelbase Requirements.

“Models are activc relations and associations that govern decisions and ac-
tions in an organization” [28]. For the purposes of this paper, the object
model of Section 2 and the heuristics and methodologies listed in Section 3
comprise the “relations and associations” which govern the design decisions
in the OOD process. The system must be able to manage this information
and present it to the user in a meaningful and timely manner.

4.5 A Prototype Decision Aid

Case studies of DSS usage show that “Key factors explaining successful de-
velopment are a flexible design and architecture that permit fast modifica-
tion and a phased approach to implementation” [44]. Thus although the
methodology and initial requirements and design for a dss have been stated
somewhat formally, only time and experience will tell whether or not the
ensuing system will be accepted and of value to its users.

16

The suggested evolutionary design approach was applied to developing a
prototype which would allow user response and feedback to determine the
potential of these concepts.

It began with implementing the storyboards using the Smalltalk/V Object-
Oriented Programming System. A single standard windowing style was used
and as much functionality as possible was implemented such that even this
first kernel system can be considered “a small but usable system to assist the
decision maker” [44].

Implementation of the object model in Smalltalk consisted of declaring
several new classes and selecting the data structures to represent the model.
A simple relational approach was taken, directly implementing the relations
implied by Figure 11 derived from the model description.

The primary data structure was implemented as a dictionary of relations
with the name of the relation as the key to the dictionary. Each relation
was then implemented as an ordered collection of dictionaries with two or
more associations of pointers to objects or operations. Figure 12 graphically
depicts this structure.

Standard data structure operations were implemented to hide this struc-
ture from the using storyboard features. Additional special operations were
then added to support unique database accessing requirements to simplify
code in the storyboard operations.

The modelbase was implemented as a context sensitive set of text help files
representing design heuristics and methodology instructions. The executive
control module maintains lists of help files which can be edited, removed, or
added to by the users. Each storyboard contains its own list of heuristic files
developed from the examples discussed previously. '

To aid in evolutionary development the Hook Book was fully implemented
as a separate object with its own browser for entering, adding, and removing
entries.

5 Conclusions
This paper has only hriefly introduced an adaptive approach at developing

software support tools and environments. While the specific target was an
object-oriented design methodology, the concepts regarding adaptive, evolu-

17

Y

tionary design apply to systems supporting many design methods and life
cycle phases. The central hypothesis of this effort is that design is essentially
a decision process and if good systems are to be produced, good decisions
must be made. The software engineering community must take as hard a
look at improving the engineers decision making capabilities as it does in
representing those decisions with flashy graphics and powerful databases.

References

1]

2]

(3]

4]

(5]

[6]

(7]

(8]

Abbott, R. J. “Program Design by Informal English Descriptions,”
Communications of the ACM, 26, 11: 882-894 (November 1983).

Air Force Wright Aeronautical Laboratories. APEX Users’ Guide.
AFWAL, Wright-Patterson AFB, CO., 1987.

Alabiso, 200 Bruno. “Transformation of Data Flow Analysis Models
to Object- Oriented Design,” OOPSLA ’88 Conference Proceedings,
ACM SIGPLAN Notices, 23, 12: 335-353 (September 1988).

Alford, Mack. “SREM at the Age of Eight; the Distributed Computing
Design System,” IEEE Computer, 18, 4: 36-46 (April 1985).

Andriole, Stephen J. and others. Storyboarding for C2 Systems Design:
A Combat Support System Case Study. Unpublished paper, George Ma-
son University & International Information Systems, Inc. 802 Wood-
ward Road, Marshall, VA 22115, undated.

Balzer, R. and others. “Software Technology in the 1990s: A New
Paradigm,” IEEE Computer, 16, 11: 39-45 (November 1983).

Bohm, C. and Jocopini, G. “Flow Diagrams, Turing Machines, and
Languages with only Two Formal Rules,” Communications of the
ACM, 9, 5: 336-371 (May 1966).

Booch, Grady. Software Components with Ada. Menlo Park: The Ben-
jamin/Cummings Publishing Company, Inc., 1987.

----- . Software Engineering with Ada(Second Edition). Menlo Park:
The Benjamin/Cummings Publishing Company, Inc.,1986.

18

[10] Bralick, William A. Jr. An Ezamination of the Theoretical Foundations
of the Object-Oriented Paradigm. MS Thesis, AFIT/GCS/MA/88M-
01, School of Engineering, Air Force Institute of Technology (AU},
Wright Patterson AFB OH, March 1988.

(11] Buhr, R. J. A. System Design with Ada. Englewood Cliffs: Prentice-
Hall Inc., 1984.

(12] Byrne, William E. and others. Structured Hierarchical Ada Represen-
tation Using Pictographs (SHARP) Definition, Application, and Au-
tomation. Technical Report Prepared For Electronic Systems Com-
mand, Deputy for Development Plans, Hanscom AFB, Massachusetts.
Cambridge: Arthur D. Little, Inc. Program Systems Management Co.,
September 1986.

[13] Cox, B. Object-Oriented Programming: An Evolutionary Approach.
Reading: Addison-Wesley, 1986.

[14] Crawford, Bard S. and Jazwinski, Andrew H. “The AdaGRAPHTM
Tool for Enhanced Ada Productivity,” IEEE Transactions on Software
FEngineering, SE-12, 5: 664-670 (May 1986).

[15] Demarco, Tom. Structured Analysis and System Specification. Engle-
wood Cliffs: Prentice-Hall Inc., 1978.

(16] Diedrech, Jim and Milton, Jack. “An Object-Oriented Design System
Shell,” OOPSLA ’87 Conference Proceedings, ACM SIGPLAN Notices,
22, 12: 61-67 (December 1987).

{17] Digitalk Inc. Smalitalk/V Tutorial and Programming Handbook. Los
Angeles: Digitalk Inc., 1986.

(18] Department of Defense. Requirements for the Programming Environ-
ment for the Common High Order Language (STONEMAN). Washing-
ton: Government Printing Office, 1980.

(19] EVB Software Engineering,Inc. An Object Oriented Design Handbook
Jor Ada Software. Fredrick: EVB Software Engineering, Inc., 1986.

19

[20) Ewing, Juanita J. and Wirfs-Brock, Rebeccca. “Smalltalk isn’t Mean-
ingless Chatter,” Computer Design, 26, 1: 76-79 (January 1987).

(21] Freedman, Roy S. “The Common Sense of Object-Oriented Lan-
guages,” Computer Design, 22, 2: 111-118 (February 1983).

[22] General Electric Corporation Research and Development Division.
Users’ Guide : Interactive Ada Workstation, Prototype Version 1.0.
DOD Contract No. F33615-85-C-1755, General Electric Co., August
1986.

[23] Hartrum, Thomas C. and Lamont, Gary B. “Development of a Com-
prehensive Software Engineering Environment,” Space Operations A a-
tomation and Robotics Conference, Houston (September 1987).

[24]) Jackson, Michael. System Development, Englewood Cliffs: Prentice
Hall Inc., 1983.

[25] Keen, Peter G. W. “Adaptive Design for Decision Support Systems,”
ACM/Database, 12, 2: 15-25 (Fall 1980).

(26] Kelly, John C. “A Comparison of Four Design Methods for Real-Time
Systems,” Proceedings of the 9th International Conference on Soft-

ware Engineering. 238-251. Washington: Computer Society Press of
the IEEE, 1987.

[27] Kerth, Norman L. and others. “Summary of Discussions from
OOPSLA-87’s Methodologies & OOP Workshop,” Addendum to the
Proceedings OOPSLA 87, ACM SIGPLAN Notices, 23, 5: 9-16 (May
1987). ‘

[28] Konsynski, Benn and Sprague, Ralph H. Jr. “Future Research Direc-
tions in Model Management,” Decision Support Systems, 2: 103-109
(1986).

(29] Korth, Henry F. and Silberschatz, Abraham. Database System Con-
cepts. New York: McGraw-Hill, Inc., 1986.

20

et

aea aa oo

[30] Liang, Ting-peng. “User Interface Design for Decision Support Sys-
tems: A Self-Adaptive Approach,” Information & Management, 12:
181-193 (December 1987).

(31] Lorensen, W. “Object-Oriented Design,” CRD Software Engineering
Guidelines, General Electric Co., 1986.

[32] Magel, Kenneth. “Principles for Software Environments,” ACM SIG-
SOFT Software Engineering Notes, 9, 1: 33-35 (January 1984).

(33] Nassi, I. and Schneiderman B. “Flowchart Techniques for Structured
Programming, ” SIGPLAN Notices ACM, 8, 8: 12-26 (August 1983).

(34] Novak, Joseph D. and Gowin, D. Bob. Learning How to Learn. Cam-
bridge: Cambridge University Press, 1984.

[35] Page-Jones, Meilir. The Practical Guide to Structured Systems Desigr.
New York: Yourdon Press, 1980.

[36] Pascoe, Geoffrey A. “Elements of Object-Oriented Programming,”
Byte, 11, 8: 139-144 (August 1986).

(37] Pressman, Roger S. Software Engineering: A Practitioner’s Approach
(Second Edition). New York: McGraw-Hill Book Company, 1987.

(38] Riedel, Sharon L. and Pitz, Gordon F. “Utilization-Oriented Evalu-
ation of Decision Support Systems,” IEEE Transactions on Systems,
Man, and Cybernetics, SMC-16, 6: 980-006 (November 1986).

[39] Ross, Douglas T. “Applications and Extensions of SADT,” IEEE Com-
puter, 18, 4: 25-34 (April 1985).

[40] - - - - - . “Structured Analysis (SA): A Language for Communicating
Ideas,” IEEE Transactions on Software Engineering, SE-3, 1: 16-34
(January 1977).

(41] Seagle, John P. and Belardo, Salvatore. “The Feature Chart: A Tool
for Communicating the Analysis for a Decision Support System,” In-
formation & Management, 10, 1: 11-19 (January 1986).

21

[42] Seidewitz, Ed and Stark, Mike. “Towards a General Object-Oriented
Software Development Methodology,” ACM Ada Letters, 7, 4: 5467
(August-September 1987).

[43] Simon, H. The New Science of Management Decision. New York:
Harper & Row, 1960.

44] Sprague, Ralph H. Jr. and Carlson, Eric D. Building Effective Decision
p
Support Systems. Englewood Cliffs: Prentice-Hall, Inc., 1982.

(45] Stay, J. F. “HIPO and Integrated Program Design,” IBM System Jour-
nal, 15, 2: 143-154 (1976).

[46] TRW Defense Systems “roup. Distributed Computing Design System
(DCDS) Methodology Guide (Ada Version). Huntsville: TRW System
Development Division, October 1987.

(47] Valusek, John R. The DSS Cube. Class lecture in OPER 652, Deci-
sion Support Systems. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 1987.

(48} - - - - - . Concept Mapping. Class handout distributed i OPER 652,
Decision Support Systems. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, March 1987.

[49) - - - - - . The Hook Book. Class lecture in OPER 652, Decision Sup-
port Systems. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, April 1987.

[50] Warnier, J.D. Logical Construction of Systems. New York: Academic
Press, 1975.

[51] Webster. Webster’s New Collegiate Dictionary. Springfield: G. & C.
Mirriam Company, 1981.

[52] Wegner, Peter. “Dimensions of Object-Based Language Design,” OOP-
SLA ’87 Conference Proceedings, ACM SIGPLAN Notices, 22, 12:
168-182 (December 1987).

22

ey

[53] Wiener, Richard and Sincover, Richard. Software Engineering with
Modula-2 and Ada, New York: John Wiley & Sons, Inc., 1984.

~ [54] Wirth, N. “Program Development by Stepwise Refinement,” Coiamu-
nications of the ACM, 14, 4: 221-227 (April 1971).

A Figures

23

ot

>

Attributes by

Domain

by
by by
Algorithm identify
identify

Relations

which

defines the Argument
Operational Objects
Interface

Behavior

Classges

of

Objects

Figure 1. An Object Model for Design

24

T

mm

T™MC T™MC
nm ¢
GraphicsDisplay
TempMonitor GraphicsDsplgy
un e
plorgibe run Qe
Fan Terminal —J
nun N Gug—
. get
a. Block Diagram

TempDisplay b. Detail Diagram

TempSensor

Fan

SetPoint

bhicsDisplay

c. Petri Net Diagram GraphicsDisplay

Figure 2. The Three Views of a Language Independent OOD

25

ﬁ*ﬂf e et g

Problem
Statement

level

function via

which

nmenu
based on pecification

between
from
from ‘
Identification

Problem
Understanding

produces

tells defines Encapsulanon
tells .
of
Solution of
Composition A maps to of {
Objects Relationships
maps to '
y

Attributes

Operations

Figure 3. The Relationship Between Object-Oriented Design Decision Steps

26

—-ri—-‘--

/ —\ /
Concept Probfem Browse Load/Unload Log User View
Map Statement Disk Database Statistics || Requirements Reusable
\— N\ Components
) S | \
View Heuristics for
Text \ Analyze 0-0 Design Decompose Decomposition
the Entry/Exit Modules
N Problem
View
Graphics
View Data Main Help Flow
Dictionary
Menu Detail
Block
View Cmap & Diagram
Requi ts /
Identify Hook Encapsulate
Objects and Book to form
Operations Modules Object
Operation
Heuristics for Change Browse Heuristics for View Cmap &
Identification Idea Entries Ercapsulation Requirements

Figure 4. Feature Chart for the OOD Decision Aid

27

Object-Oriented Design Decision Aid

: Analyze
RDwg.n D.“:.l;‘ abase filename | Unload the Database? Identify
Yy — Encapsulate
Decompose
BrowseDisk Load [View Hook Book }—
Requirements files text ... ChangeDirectory Unload | | prine Help
Remove Exit

| Save Enter filename.OOD:

database.ood —

Enter Userid:

L The Entry/Exit display is described as follows:

1 1. The user will initailly be prompted for a userid. Login/logout times will be automatically recorded.

2. The main menu will allow activating other storyboards, the Hook Book, context sensitive help, or exiting

the system.
{ 3. Selecting entries from the features pane produces the following results:
4 a. Selecting the DesignDatabase causes database files to be listed in the objects pane.

b. Selecting the Requirements Database causes all requirements files to be listed in the objects pane.
4. The features pane popup will allow the following:

a. Activation of a disk browser facility.

b. Prompting the user for a new default directory for the database, requrements, or help files.

5. The objects pane popup will allow loading and unloading the design database; or printing/viewing require-
ments files.

6. The text pane will provide the following:

a. Initial instructions on startup. Editing and saving instructions.

b. Viewing requirements files.

Figure 5. Storyboard: Entry/Exit for the OOD Decision Aid

28

=
Analyze the Problem
Concept Map Axuly.ze
Solution Strategy Identify
Requi ts Text filenames/object names Encapsulate
Requirements Data Dictionary Decompose
Requirements Graphics Add Hook Book
Edit Help
Problem Statement: R e Exit
Solution Strategy: Enter Object Name
Requirements Data Diction
Move c M
. oncept Map
Resize Move —
Close Clear Resize
Line
N Close
Ellipse
gOPY @ relation
aste
Zoom @
Save
Undo

The Analysis display is described as follows:

1. The main menu may be activated. Exit will return user to Entry/Exit.

2. The user will be prompted for the name of the object to be designed.

©

Selecting entries in the features pane results in the following actions:

a. Selecting the ConceptMap entry causes concept map object names to be listed in the objects pane.

b. Selecting Solution Strategy causes object names to be listed in the objects pane.

c. Selecting RequirementsText, DataDictionary, or Graphics entries causes the corresponding files to be

listed in a sub-window.

-

Selecting entries in the objects pane results in the following actions:

a. Selecting a concept map will allow editing, saving or removing concept maps from objects.

b. Edit will open a graphic drawing window for creating, editing, and saving concept maps.
c. Selecting Edit will bring up a sub-window for editing the concept map.

d. Selecting an object for a Solution Strategy will display the text to the text pane or format the text pane

for creation.

e. Selecting a requirements file will activate a sub-window for viewing requirements data.

5. The concept map sub-window will provide the capability to generate and edit graphics representations of

concept maps.

Figure 6. Storyboard: Analyze the Problem

29

Identify Objects and Operations _J
Heuristics
Concept Maps Identify
Requi ts Datal files/entity names Encapsulate
Objects Decompose
Operations Edit Hook Book
Help LT
Inspecting: TMC Add
Remove Exit 'T
Name .
attribute text Enter Name:
Behavior
Domain
Save OOD Graphics Viewer

The Identification display is described as follows:

1. The main menu may be activated. Exit will return user to Entry/Exit.

2. Selecting entries from the features pane produces the following results:

a. Selecting Heuristics causes a Help window to open for viewing/editing heuristics.
b. Selecting Requirements, or ConceptMap causes file or object names to be listed in the objects pane.

c. Selecting Object or Operation causes database entries to be listed in the objects pane.
3. Selecting an entry in the objects pane produces the following results:

a. Selecting a concept map, or a requirements source file, will activate :he appropriate sub-window for
viewing only.

b. Selecting an object or operation name will activate a popup for Adding, Editing, or Removing entities
from the database. operation.

c. Selecting Add will open a database browser in the text window.
4. The Database Editor will provide the following capabilities:

a. An attribute pane will provide the ability to add, inspect or remove attributes.
b. A text pane will allow editing an entry’s attributes.

Figure 7. Storyboard: Identify the Objects and Operations

30

Encapsc.ate Objects and Operations into Modules

|

|

Heuristics ‘“'l’_' *
ConceptMaps files/entity names Identify
Recui ts Datal Edit Encapsulate
Objects Add Decompose
Operations Remove Hook Book
MG Block Help
Inspecting: "
Detail Exit

Name . Flow

Behavior an object some text

CD;':.M Drawing Block Diagram of: TMC

Class

Concept Map Add

Block Diagram | Inspect T™C

Detail Diagram ve ‘ Clear _

\ T

Operations Box

Classes Objects Fan Copy

Components }| Argurnents \ Paste

Actors Modifies Terminal Zoom

Save
Servers Actors Undo
Servers

The Encapsulate display is described as follows:

1. The main menu may be activated. Exit will return user to Entry/Exit.

2. Selecting entries from the features pane results in the appropriate file or object names being listed in the

features pane.

objects and operations.

ject/operation or creating Block, Detail, or Flow diagrams.

. Selecting entries from the objects pane results in activation of the appropriate sub-window—except for
. Selecting an object or operation from the objects pane opens a pop-up for selecting Editing the ob-

. Selecting Edit opens a Database Browser with an additional list pane for forming relations.
. The Database Browser provides the following additional capabilities:

a. A context sensitive pop-up menu will list the possible relations for either an object or operation.
Object: Operations, Components, Actors, Servers, Classes.
Operation: Objects, Arguments, Modifies, Actors, Servers.

b. Selecting a relation causes a second pop-up to appear for selecting Add, Remove, or Inspect.

¢. Selecting Add lists all appropriate objects or operations from wich to szlect in the list pane.

d. Selecting inspect lists all defined objects or operations in the relation for the selected object. Selecting

one opens an Inspector window on the object.

sub-window.

type of graphic being developed.

Selecting Block, Detail, or Flow results in activation of a graphics sub-window similar to the concept map

Graphics sub-windows will provide for creation of rectangles or circles or other shapes as appropriate to the

Figure 8. Storyboard: Encapsulate the Objects with their Operations

31

e e .

W‘t‘l‘:—ﬁ“

Heuristics
Design Objects

R bl Com;,

Inspecting: TMC

Name
Behavior
Domain
Class

Concept Map
Block Diagram
Detail Diagram

an object

some text

Analyze

files/entity names Identify

Edit Encapsulate

Add Decomp

Remove Edie Hook Book

Block Load Help

Detail Unload Exit

Flow Change Dir i

Drawing Block Diagram of: TMC

T™MC

Cleu

Box

Fan

N

| Copy

Paste

Terminal

Zoom

Save
Undo

1

The Decomposition display is described as follows:

1. The main menu may be activated. Exit will return user to Entry/Exit.

2. Selecting entries from the features pane produces the following results

a. Selccting Heuristics opens a help window for decomposition heurictics.

b. Selecting DesignObjects lists objects in the files pane in a component hierarchy. Selecting objects opens

a Database Browser as with the Encapsulation storyboard.

c. Selecting ReusableComponents lists reusable components database files in the objects pane.

3. The objects pane provides a pop-up for load/unjoading reusable components databases, and editing objects
and their associated graphics.

Figure 9. Storyboard: Decompose the Modules

32

Hook Book Browser

Move
mm/dd/yy Date: Time: Resize
Cl
mm/dd/yy User: Source: -
Subject:
Idea:
Circumstance:
Add Save
Remove

The Hook Book Browser display is described as follows:

- A popup menu will provide the ability to move, resize, or close the browser.

2. A list pane will list all hook book entries by date and time.

. Selecting an entry will cause the corresponding mini-panes in the rest of the window to be updated from the
hook book entry.

. Selecting Enter will cause the Date, Time, Userid, and Storyboard called from to automatically be entered
in the labeled min-panes.

The user will be immediately prompted for a subject.

. The text pane will provide for entering and saving the idea and circumstances.

Figure 10. Storyboard: The Hook Book Browser

33

e

Mode

Name

Operation

Algorithm

34

Figure 11. An E-R Diagram for the Object Model

e etree

g
Database
i
Actor/
Class Component| Object Modifies Argument Server Operation
r I & i
L’ ° 2 | ONtext
1
\
| od.os
[,
text)text|text © jtext|text

Figure 12. OOD Database Internal Structure

35

y

| Appendix B. OOD Decision Aid Programmer’s Manual

A Decision-Aid
for

Object-Oriented Design

B-1

g

A Decision Aid
for
Object-Oriented Design

PROGRAMMER’S MANUAL

Captain Patrick D. Barnes, USAF
December 16, 1988

1 Introduction

The OOD Decision Aid is a decision support system for developing an object-
oriented design of computer software. The system is composed of a dialogue
component, a requirements database, a design database, and a modelbase.

The system’s dialogue component is written in the Smalltalk/V Object
Oriented Programming System. The dialogue provides access to and manip-
ulation of the database and modelbase and provides a graphic user intertace.
Tools are provided for browsing the database, hook book, and help informa-
tion, as well as for developing graphic representations of the design.

The dialogue consists of a series of “storyboards” or screen displays repre-
senting decisions which must be made by the user in carrying out the design
process. Each storyboard consists of a top pane with the storyboard label,
a features pane listing the functions which may be performed, an objects
pane listing the objects or files which may be manipulated by executing the
selected feature, and a text pane which acts as a work area for the feature or
for displaying useful information. Each pane has one or more menus which
may be activated to control execution of particular functions.

e —

e

The requirements database is a three view representation of a require-
ments specification developed using the Software Requirements Engineer-
ing Methodology (SREM) with the Distributed Computing Design System
(DCDS). Text, data dictionary, and graphics representations are accessivie
by the dialogue.

The design database is a Smalltalk object which may be loaded, unloaded,
and manipulated by the dialogue. It consists of a set of relations representing
objects and operations and their attributes. Relations also represent various
relationships between objects and other objects and operations.

The modelbase consists of text files representing software engineering
heuristics and methodology guidance for the user. The dialogue reads, dis-
plays, and modifies these files and saves changes to disk. In addition, files
may be created “off line” and made available to the system through the help
and heuristics facilities.

2 Tool Set

The decision aid provides the following central and support tools:

Executive Control: The OODDecisionAtd class is implemented as the
controlling class of the decision aid. It provides controlled access to the
storyboards as well as the hook book and help facilities. Each story-
board is implemented as a subclass of the abstract class OODStoryboard
and controls its own sub-windows and features. The OODDecisionAid
class executes the functions of the main menu (accessed from each sto-
ryboard’s top pane) and the top menu of most sub-windows to eliminate
redundancy and provide a single point of control over open windows.

User Log: The user is prompted for a userid at start- up and the start
and stop times the user was on the system are automatically recorded.
The User Log can be accessed off-line and can be saved or reloaded if
the software is rehosted.

Hook Book: The user may record problems, suggestions, or comments
during on-line operation through a hook book browser. The browser
automatically logs the userid, time and date, current storyboard, and

i
l

prompts for a subject. The user can make entries, browse current
entries, and delete outdated entries. Entries are listed in date/time
order.

Help: Context sensitive help and heuristics files are provided via a browser
which allows the user to select, add, or delete specific help information.
File contents may be edited by the user and saved, thus making the
system somewhat user tailorable.

Graphics: A drawing tool is provided for developing, viewing, storing,
and retrieving bit-mapped graphic images of the design. To reduce the
Smalltalk image size, all graphics are loaded and unloaded to disk files.

Requirements Browser: A browser is provided for retrieval and display
of DCDS graphics, text, and data dictionary data. Methods are also
provided to give the decision aid lists of files for display in the objects
pane of a storyboard. Should a different system for requirements be
desired, only this class need be modified or a subclass be developed for
the new methodology.

Database Browser: A browser is provided for retrieval, display and ma-
nipulation of relations between database objects and operations. The
browser can list a selected object’s attributes, list related objects, and
show the state of selected attributes. Menus provide the capability to
create or delete relations or modify an attribute’s state.

3 Configuration

3.1 Hardware

The system was developed using a Zenith Data Systems Z-248 micro-
computer with a hard disk drive and a Microsoft ccmpatible mouse. EGA
graphics were available but are not required. The system is encumbered
by the 640K DOS limit so 640K is recommended as a minimum. While an
IBM/PC or XT compatible microcomputer should work, an 80286 based ma-
chine is recommended. If available, a two-megabytc RAM disk will improve

system performance. The Smalltalk/V user’s manual describes how to run
Smalltalk/V using a RAM disk.

3.2 Software

Smalitalk/V or Smalltalk/V286 may be used with the following appli-
cations loaded: FreeDrawing (provided with Smalltalk/V); Doscall, Loader,
and Zoom (provided with Goodies 1). The Application Browser provided
with Goodies 3 was used to control changes made for the application. How-
ever, it is not required for simply loading and executing the decision aid.

To capture and display DCDS graphics, the VTEK Textronix terminal
emulator was used. The PLAY program and its support files are required
to display the TKF files. As shown in the Files section, these files must be
located in the Smallalk/V execution directory.

The OOD Decision Aid application is loaded from within Smalltalk/V in
the same way as other Smalltalk applications. The disk browser is used to
access the file ooddcsna.prg and the preface in the file contains instructions
for loading the application.

4 Files

The Hard disk should be configured with a specific Smalltalk/V root directory
and three sub-directories with the following files:

smaltalk
Smalltalk/V files

image
sources.sml
go
change.log
doscall.com
v.exe
v2ndpart.exe

et

L

VTEK files
play.exe
teksetup.dat
config.vtk /
matrix.fnt

Global Support Objects
userlog.obj

hookbook.obj
helplist.obj

help

Help files
entryext.hlp
anlyssst.hlp
idntfcatn.hlp
encpsltn.hlp
dcmpstns.hlp
smalltlk.hlp
cncptmpp.hlp
oodmthdl.hlp

Heuristics files
abstrctn.hlp
addcmpfr.hlp
applctnc.hlp
clssabst.hlp
cncptanl.hlp
detldsgn.hlp
grmmtcla.hlp
inhertnc.hlp
mdIrtyrl.hlp
objctcls.hlp
objctslc.hlp
strctrl.hlp

analysis

Tezt files
tme.txt
reqmnts.txt

ood

5

OODDecisionAid loadGlobals: Executing this statement will load the
context sensitive help list, hook book entries, and user log from disk

Data Dictionary files
tmc.all.rdd
tmcalph.rdd
tmc._data.rdd
reqmnts.rdd

Graphics files
tempnet.tkf
termnet1.tkf
termnet2.tkf
time_net.tkf
ctrifan.tkf
crtpltfl.tkf

Design Database
design.ood

Design Graphics Objects

tmc.map

tmec.blk
tme.dtl
tme.flw

Utilities

The following utilities were written to provide offline access to the system.

6

files. The message unloadGlobals unloads those objects to the corre-
sponding files named in the previous section. In both cases, files will
be found/saved in the directory from which Smalltalk/V is loaded.

OODDecisionAid userLog: Executing this statement will return the user
log for further manipulation such as printing out system usage.

OODStoryboard database: Executing this statement will return the
current database object for off-line inspection and testing.

OODStoryboard clearDatabase: Executing this statement will set the
database stored in the class variable of the OODStoryboard to nil for
testing the database initialization code.

Appendix C. DCDS Reguirements Specification

A Temperature Monitor Controller

C-1

e

g

C.1 Preliminary System Specification

C.1.1 Description This specification describes the requirement for a simple
temperature controller. The computer system is connected to a temperature sensor
from which it receives temperature readings. These readings must be displayed
on a connected digital readout device. An ON/OFF signal is required tc control
an attached fan. An attached graphics screen allows temperature profiles to be
displayed upon command. A terminal interface allows the user to input a setpoint
value or to request a temperature profile display for a specified time period. The fan
will be turned on whenever the temperature is above the setpoint, and off when the
temperature is below the setpoint. The scope of this effort is the development of the
software to support the specified hardware.

C.1.2 System Interface

C.1.2.1 Temperature Sensor. This system will receive temperature in
a digital form from an attached temperature sensor subsystem.

1. Sensor Trigger A temperature report will be sent by the temperature sensor
subsystem whenever it receives a temperature request.

2. Physical Interface The temperature sensor subsystem is connected via a 9600
baud full duplex RS-232 connection.

3. Request Format A temperature request to the temperature sensor subsystem
consists of the ASCII sequence ESC |R$ from the computer.

4. Error Handling Any characters received by the temperature sensor subsystem
not in the form ESC JR$ will be ignored.

5. Temperature Report Format A temperature report from the temperature sensor
consists of the ASCII sequence

ESC |Txxx.yyy$

where xxx.yyy is a seven digit string comprising the current temperature ex-
pressed in degree C.

6. Response Time The temperature report will be sent (first byte transmitted)
within 1.0 seconds of receipt of a temperature request (last byte received).

C.1.2.2 Temperature Display. The system will drive a digital display
of temperature.

1. Physical Interface The digital display subsystem is connected by a 9600 baud
RS-232 connection.

2. Display Data Format Display data sent to the temperature display must be an

ASCII sequence of the form:
SOH xxx.y EOR
where xxx.y is a five character temperature in degree F.

Error Handling Any character sequence not delineated by SOH and EOR will
be ignored. Any string so delineated, but not of the form xxx.y will be ignored.

Response Time The temperature display subsystem is fast enough to process
a continuous stream of display data at 9600 baud.

C.1.2.83 Fan Control. The system will provide a simple ON/OFF con-

trol for a cooling fan.

1.

Physical Interface The fan will be controlled by the least significant bit (LSB)
of a latching TTL parallel port.

2. Output Format Writing an odd number (LSB = 1) to this port will turn the

fan on. Writing an even number (LSB = 0) to this port will turn the fan off.

C.1.2.4 Graphics Display. The system will drive a “smart” graphics

display.

1.

Physical Interface The graphics display will be connected via a 19200 baud
RS-232 full duplex link.

Graphics Command Format Graphics commands consist of variable length
ASCII strings of the format:

ESC $ < command >.

Detailed commands are listed in the document “Super Kool Graphics Display
Model 123 Manual.”

C.1.2.5 System Clock. A hardware system clock will be available.

. Physical Interface The clock is readable as a 16-bit parallel port with a 16-bit

command and status register.

2. Clock Resolution The clock has a resolution of 0.1 s=conds.

3. Clock Format The clock data format is documented in the specification data

sheet “CK-4505 Clock/Calendar Chip Set.”

C.1.2.6 User Terminal. The computer operating system provides buffered
I/0O to the user terminal.

1. Physical Interface The keyboard and CRT interfaces are an integral part of the
computer system. Access is via defined operating system calls.

2. Buffered Keyboard Input Buffered input will provide a string of ASCII char-
acters terminated at the keyboard with a RETURN (ASCII CR). The ASCII
CR will be stored as the last character in the buffer. No additional characters
(such as a NULL) will be added. The buffer is limited to 81 characters. Any
attempt to type beyond 80 characters will result in the buffer being returned
with the first 80 characters plus the ASCII CR.

3. Buffered CRT Output ASCII output for the CRT is written to a 2000-character
(25 line by 80 character) circular buffer. This will update the CRT as fast as
the program can write to it. After the 2000th character, the CRT screen will
either scroll or overwrite from the top line, depending on the CRT output
mode. See the document “XYZ Computer System Manual” for more detail.

ey

C.1.83 System Functions

C.1.3.1 Monitor Temperature. The system shall periodically read and
- record internally the time and temperature.

1. Frequency Temperature will be recorded at 10 second intervals.

2. Mazimum Amount At least twenty-four hours of data must be stored.

1 C.1.8.2 Display Temperature. The system will display the current tem-
perature.

1. Format The temperature wiil be displayed in degree F.
2. Frequency The temperature display will be updated every 20 seconds.

3. Response The temperature display will be updated within 2 seconds after the
1 latest temperature sampie has been read.

C.1.3.3 Control Fan The fan will be turned on or off based on compar-
[ison of the latest temperature reading with a setpoint value.

1. Frequency The fan condition output will be updated every 10 seconds.

2. Response The fan control output update will occur within one second of the
latest temperature sample.

C-4

3. Operation The fan will be turned on if the temperature is greater than or equal
. to the setpoint to the nearest 0.1 degree F. The fan will be turned off if the
temperature is less than the setpoint.

4. Default Setpoint The initial (default) temperature setpoint shall be 70 degree
F.

5. Setpoint Change The setpoint can be set to the nearest 0.01 degree I by a user
keyboard command. Appropriate input data integrity checks should insure
that an illegal value is not processed.

C.1.3.4 Display temperature Plot. On user command, the temperature
will be plotted as a function of time on the graphics display.

1. Keyboard Command A user keyboard command will cause a new temperature
graph to be displayed. The user keyboard command will specify the start and
stop times for the graph. Both start and stop times must be within the past
twenty-four hours. Stop time must be later than start time. Invalid commands
will be ignored.

’\ 2. Vertical Resolution The temperature will be plotted to the nearest 1 degree F.

3. Horizontal Resolution One hundred points will be plotted across the full hori-
zontal width of the display, between the designated start and stop times.

4. Response The entire display will be completed within five seconds of the key-
board RETURN terminating the keyboard command.

C.1.3.5 Process Keyboard Commands. Any keyboard input except the
commands specified in sections ?? and C.1.3.4 will be ignored.

C-5

iy

e

v - -

-

-

C.2 DCDS DataDictionary

ALPHA: CALCULATE_GRAPEICS_COORDS.
DESCRIPTION:
"Calculate graphics coordinates for a
given temp point.".
ENTERED_BY:
“Hartrum".
INPUTS:
DATA: T_TEMP_F
DATA: X_SCALE
DATA: Y_SCALE.
OUTPUTS:
DATA: XICOORD_OUT
DATA: YCOORD_OUT.
DOCUMENTED BY:
SOURCE: S88_001.
REFERRED BY:
SUBBET: CREATE_PLOT_FILE.
TRACED FRON:
ORIGINATING _REQUIREMENT: B_2_4_.2.
ALPHA: CONVERT_TO_F.
DESCRIPTION:
"Converts degrees C to degrees F.".
ENTERED_BY:
“Hartram”.
INPUTS:
DATA: TEMP_C.
OUTPUTS:
DATA: DISPLAY_TENP_OUT.
DOCUMERNTED BY:
SOURCE: S88_001.
REFERRED BY:
R_NET: TEMP_NET.
TRACED FROM:
ORIGINATING _REQUIREMENT: B_3_2_.1.
AL} A: CONVERT_TO_F_TEMP.
JESCRIPTION:
“Converts temp point to degrees F.".
EFTERED_BY:
“Hartrum".
INPUTS:
DATA: T_TEMP_C.
OUTPUTS:
DATA: T_TENP_F.
DOCUMENTED BY:
SOURCE: $88_001.
REFERRED BY:
SUBNET: CREATE_PLOT_FILE.
TRACED FRONM:
ORYGINATING _REQUIREMENT: B_3.4.
ALPHA: CREATE_GRAPHICS_COMMAND.
DESCRIPTION:
"Creates a graphics format command for
plot file.".
ENTERED_BY:
“Hartrumm".
INPUTS:
DATA: GRAPHICS_HEAD_OUT
DATA: GRAPHICS_TAIL_OUT
DATA: XCOORD_OUT
DATA: YCOORD_OQUT.
OQUTPUTS:
DATA: GRAPEICS_COMNAND_OUT

FILE: PLOT_DATA_OUT.
DOCUMENTED BY:
SOURCE: GRAPHICS_DISPLAY_NMODEL_123_MANUAL.
REFERRED BY:
SUBNET: CREATE_PLOT_FILE.
TRACED FRON:
ORIGINATING _REQUIREMENT: B_2_4_2.
ALPHA: DETERMINE_MSG_TYPE.
DESCRIPTION:

“Dusmy module because DCDS wouldn’t let me
change an OR-node to a CONSIDER-QR. Sets
JETPOINT or PLOT to TRUE if COMMAND_TYPE I¥N is
thet type.“.

ESTERED_BY:
“Hartrum".
INPUTS:

DATA: COMMAND_TYPE_IN.
OUTPUTS:

DATA: PLOT

DATA: SETPOINT.
DOCUMENTED BY:

SOURCE: 588_001.
REFERRED BY:

R_NET: TERM_NET.
TRACED FRON:

ORIGINATING _REQUIREMENT: B_3

ORIGIBATING _REQUIREMENT: B_3

ORIGIZATING _REQUIREMENT: 2.3
ALPHA: DETERMINE_SCALE_FACTOR.

DESCRIPTION:

"Determine the X and Y scale factors for
the temperature plot from the start and stop
times and the temperature extremes.'.

ENTERED_BY:

"Hartyrum" .

IFPUTS:

DATA: TEMP_MAX

DATA: TEMP_NIN

DATA: TEMP_START_IN

DATA: TEMP_STOP_IN.

OUTPUTS:
DATA: X_SCALE
DATA: Y_SCALE.
DOCUNEBTED BY:
SOURCE: $88_001.
REFERRED BY:
R_EET: TERM_NET.
TRACED FROM:

QRIGINATING REQUIREMENT: B_3_4

ORIGINATING _REQUIREMENT: B_3_4
ALPHA: FORM_FAN_NSG.

DESCRIPTION:
“Creates control message to fan.".
EFTERED_BY:
"Hartrum" .
FORNS:
WESSAGE: FAN_MESSAGE_OUT.
INPUTS:
DATA: FAN_DATA_OUT.
DOCUMENTED BY:
SOURCE: $88_001.
REFERRED BY:
SUBNET: CONTROL_FAFN.
TRACED FRON:
ORIGINATING _REQUIRENEET: B_3.3.

.2
3.

C-6

ALPHA: FORN_PLOT_MESSAGE. ORIGINATING REQUIREMENT: B_2_1_1.
DESCRIPTION: ALPHA: SET_FAN_OFF.
“Creates plot message for display from DESCRIPTION:
plot file.". “Set fanr control to OFF (0).“.
ENTERED_BY: EFTERED_PY:
“Hartrum". “Eartram".
FORNS: OUTPUTS:
NESSAGE: TEMP_PLOT_OUT. DATA: FAN_DATA_OUT.
INPUTS: DOCUNENTED BY
FILE: PLOT_DATA_OUT. SOURCE: S88_001
Y DOCUMENTED BY: REFERRED BY:
SOURCE: S88_001. SUBNET: CONTROL_FAN.
REFERRED BY: TRACED FROK:
ﬁ R_NET: TERM_BET. ORIGINATING REQUIREMENT: B_2.3_2.
TRACED FRON: ALPHA: SET_FAN_ON.
ORIGINATING_REQUIREMENT: B_3_4. DESCRIPTION:
1 ALPHA: MAKE_DISPL_NESSAGE. “Sets fan control to ON.".
DESCRIPTION: ESTERED_BY:
“Creates message to temperature display.”. “Hartrum".
1 ENTERED_BY: OUTPUTS:
b "Hartrum”. DATA: FAN_DATA_OUT.
FORNS: DOCUNENTED BY:
ﬂ MESSAGE: DISPLAY_NESSAGE_OUT. SOURCE: $88_001.
INPUTS: REFERRED BY:
DATA: DISPLAY_HEAD O0UT SUBSET: CONTROL_FAN.
DATA: DISPLAY_TAIL_OUT TRACED FROM:
DATA: DISPLAY_TEWP._OUT. ORIGINATING _REQUIREMENT: B_2_3_.2.
\ DOCUNESTED BY: ALPHA: SET_WOVW_TINE.
SOURCE: $88_001. DESCRIPTION:
REFERRED BY: “Updates the clock vakue from the real-
R_EET: TEMP_BET. time interrupt.”.
TRACED FRONM: ENTERED_BY:
! ORIGINATING_REQUIREMENT: B_3.2_1. "Hartrum" .
ALPEA: SEWD_SETPOIRT_ACK. INPUTS:
DESCRIPTION: DATA: SYS_TIME_IN.
"Sends setpoint acknowledge prompt to CRT". OUTPUTS:
ENTERED_BY: DATA: NOV_TINME.
"Hartrum". DOCUMENTED BY:
FORNS: SOURCE: 888_001.
9 MESSAGE: TERMINAL_CRT_MESSAGE_OUT. REFERRED BY:
INPUTS: R_BET: TIME_NET.
4 DATA: SETPOINT_ACK. TRACED FROM:
OUTPUTS: ORIGINATING REQUIRENEWT: B_2_5_1
DATA: CRT_STRING_OUT. ALPHA: STORE_SETPOINT.
DOCUREFNTED BY: DESCRIPTION:
SQURCE: S88_001. “Update the current temperature
b REFERRED BY: setpoint.*.
R_NET: TERM_NET. ENTERED_BY:
TRACED FRON: "Hartrum”.
{® ORIGINATING_REQUIREMENT: B_3.3.5. IHPUTS :
ALPHA: SEND_TENP_REQ. DATA: SETPOINT_VALUE_IN.
DESCRIPTION: OQUTPUTS :
"Send the request sequence to the temp DATA: SETPOINT_VALUE.
b sensor.". DOCUMENTED BY:
ENTERED_BY: SOURCE: Su8_001.
“Hartrum". REFERRED BY:
1 FORNS: A_NET: TERM_NET.
NESSAGE: TEMP_REQUEST_OUT. TRACED FRON:
INPUTS: ORIGINATING _REQUIREMENT: B_3_.3_S.
DATA: REQUEST_SEQUENCE_OUT. ALPEA: STORE_TENMP.
DOCUNENTED BY: DESCRIPTION:
SOURCE: $88_001. "Stores a time & temp pair.".
REFERRED BY: ENTERED_BY:
R_SET: TINE_NET. “"Hartrom".
TRACED FROM: CREATES:
C-1

o

R o

ENTITY_CLASS: TEWP_POINT.
INPUTS:

DATA: NOW_TINE

DATA: TEMP_C.
DOCUNENTED BY:

SOURCE: $88_001.
REFERRED BY:

R_NET: TEMP_BET.
TRACED FRON:

ORIGINATING_REQUIREMENT: B_3_.1_2.

ALPHA: UPDATE_TERP_RANGE.

DESCRIPTION:

“For each temp point, compare to max & min

and update them if needed.".
ENTERED_BY:
“Sartrum”.
INPUTS:
DATA: T_TEWNP_C.
OUTPUTS:
DATA: TEMP_MAX
DATA: TEMP_MIN.

ORIGINATING _REQUIREMENT: B_3_4_2.
ALPHA: VALIDATE_TEMP_NSG.
DESCRIPTION:
“Validates temperature message & dumps
(ignores) invalids.".
ENTERED_BY:
Il.mmll‘
INPUTS:
DATA: REPORT_TEMP_IN.
OUTPUTS:
DATA: TEMP_C
DATA: VALID.

ORIGINATING _REQUIRENENT: B_2_1.

DATA: BAD_DATA_1X.
DESCRIPTION:
“dny keyboard input except a legal
command.*.
ENTERED_BY:
“Hartrom" .
LOCALITY:

HESSAGE: BAD_CONNAND_IE.
DOCUMESTED BY:
SOURCE: $88_001.
TRACED FRON:
ORIGINATING REQUIRENERT: B_3.5.
DATA: CLOCK_TINE.

DESCRIPTION:

"A PREDEFINED DATA ITEM VHICE IS
INCAEMENTED AT THE SAME RATE AS ENGAGEMENT TINE.
EXCEPT FOR ITS INIYIAL_VALUE WHICH IS ARBITRARY,
CLOCK_TINE HAY BE REGARDED AS ENGAGENEET TINE.
IT HAS §O CLOCK ERROR.".

LOCALITY:
GLOBAL.
TYPE:
REAL.
UNITS:
SECONDS .
USE:

BOYR.

DATA: COMMAND_TYPE_IEN.
DESCRIPTION:

“Type of keyboard command:setpoint,plot,

bad.*.
ENTERED_BY:
“Hartrum".
LOCALITY:
LOCAL.
RANGE:
"setpoint, plot".
TYPE:

MAKES :
MESSAGE: BAD_COMMARND_IN
NESSAGE: PLOT_COMMAND_IN
MESSAGE: SETPOINT_COMMAND_IN.
IFPUT T0:
ALPEA: DETERMINE MSG_TYPE.
DATA: CRT_STRING_OUT.
DESCRIPTION:
"Any buffered output string to the
terminal CRT.".
LOCALITY:
LOCAL.
TYPE:
ENUMERATION.
MAKES:
NESSAGE: TERMINAL _CRT_MESSAGE_QUT.
DOCUNENTED BY:
SOURCE: S88_001.
OUTPUT FRON:
ALPHA: SEND_SETPOINT_ACK.
TRACED FRON:
ORIGINATING REQUIRENENT:
ORIGINATING REQUIRENERT:
DATA: DISPLAY_HEAD_OUT.
DESCRIPTION:
"ASCII S0H to start display string.".
EFNTERED_BY:
“!mml'.
INITIAL_VALUE:
SON.
LOCALITY:
LOCAL.
TYPE:
ENUNERATION.
NAKES:
MESSAGE: DISPLAY_NESSAGE_OUT.
DOCUMENTED BY:
SQURCE: $88_001.
INPUT TO:

-

B_3.3.5
B_3.4.1.

C-8

.y

MESSAGK: DISPLAY_NMESSAGE_OUT.
DOCUNESYED BY:

SOURCE: $88_001.
INPUT T0:

ALPNA: NMARE_DISPL_NESSAGE.
TRACED FROM:

v —— — - =
ALPEA: RAKE_DISPL_NESSAGE. NAKES:
TRACED FRON: NESSAGE: FAN_NESSAGE_OUT.
ORIGIFATING _REQUIREMENT: B_2_2.2. DOCUMKSTED BY:
DATA: DISPLAY_TAIL_OUT. SOURCR: 388_001.
DESCRIPTION: IEPUT TO:
"End of ASCII sequence to display.”. ALPEA: FORM_FAN _MSe.
ENTERED_BY: OUTPUT FRON:
"“Eartrum”. ALPEA: SET_FAN_OFF
INITIAL_VALUE: ALPNA: SET_FAN_OS.
EOR. TRACRD FROK:
LOCALITY: ORIGINATING _REQUIREMENT: B_2_3.2.
LOCAL. DATA: FOUED.
TYPE: DESCRIPTION:
KNUNERATION. “A PREDEFINED DATA ITEM WHICE IS SET T0
HBAKES: EITHER TRUE

OR FALSE AFTER EACH SELECT OF AN
ENTITY_TYPE OR EFNTITY_CLASS.

FOURD IS SET TO TRUE IF AN INSTANCE
SATISFYING TEE SELECTION

CRITERION IS LOCATED; OTHERWISE, FOUWD IS
ASSIGEED TEE VALUE

ORIGINATING _REQUIREMENT: B_2_2_2. FALSE.".
DATA: DISPLAY_TENP_OUT. INITIAL_VALUE:
DESCRIPTION: FALSE.
“"ASCII string xxx.y of temp in degrees F LOCALITY:
to display.”. LOCAL.
EFTERED_BY: TYPE:
"Hartrom". BOOLEAN.
LOCALITY: USE:
LGCAL. BOTH.
NAXINUN_VALUE: DATA: GRAPHICS_CONMARD_OUT.
999.9. DESCRIPTION:
NIFINUR_VALVE: “A graphics command to the dicplay.”.
0.0. ENTERED_BY:
RESOLUTION "Hartrum".
0.1. LOCALITY:
TYPE: LOCAL.
REAL. INCLUDES:
UNITS: DATA: GRAPHICS_HEAD_OUT
DEG_F DATA: GRAPRICS_TAIL_OUT
KAKES: DATA: ICOORD_OUT

ALPEA: NAKE_DISPL_MESSAGE.
OUTPUT FROA:

ALPEA: COBVERT_TO.F.
TRACED FROK:

ORIGINATING _REQUIREMEAT: B_2_2.2.

DATA: FAR_DATA_OUT.

DESCRIPTION:

"OR/OFF conmtrol for the fan.".

ENTERERD_BY:
“Eartrm".

INITYAL_VALUE:
]

ann.n'r :
LOCAL.

NAXINUN_VALUE:
1

NIBINUN_VALUE:
0.

TYPE:
BOOLEAS.

DATA: YCOORD_OUT.
CONTAINED IX:
FILE: PLOT_DATA_OUT.
DOCUMENTED BY:
SOURCE: GRAPEICS _DISPLAY_MODEL_123_MANUAL
SOURCE: 888_001.
QUTPUT FRON:
ALPNA: CREATE_GRAPEICS_COMMAND.
TRACED FRON:
ORIGINATING REQUIRENENT: B8_3_.2.1.
DATA: GRAPHICS_HEAD_ QOUT.
DESCRIPTION:
“ASCII ESC $ header for graphics
command." .
ENTERED_BY:
ummu.
LOCALITY:
LOCAL.
TYPE:
EFURERATION.
DOCUMENTED BY:
SOURCE: GRAPHICS_DISPLAY_MODEL_123_MANUAL.
INCLUDED IN:
DATA: GRAPHICS_COMMARD_OUT.

C-9

e
N Sy

~ w v -
g~ ~————
I¥PUT TO: REFERRKD BY:
ALPEA: CREATE_GRAPHICS_CONMAND. R_FET: TERM_BET.
TRACED FRON: TRACED FRON:

ORIGINATING _REQUIREMENT: B_.3.2_.1.
DATA: GRAPEICS_TAIL_OUT.
DRSCRIPTION:
“ASCII ! terminmating graphics command.".
ENTERED_BY:
"Hartrem” .
LOCALITY:
LOCAL.
TYPR:
ENUNERATION.
DOCUMENTED BY:

SOURCK: QRAPNICS_DISPLAY_MODEL_123_MANU°L.

INCLUDED 1B:
DATA: QRAPRICS_COMMASD_OUT.
INPUT TO:
ALPEA: CREATE_GRAPHICS_COMMAND.
TRACED FRON:
ORIGIFATING REQUIREMENT: B_2_4_2.
DATA: NOW_TINE.
DESCRIPTION:
"Current time, last value read from
clock.®.
ENTERED_BY:
"Mr_".
INITIAL_VALUE:
0.0.
LOCALITY:
GLOBAL.
MAXINUN_VALUE:
99999.9.
NININUR_VALUE:
0.0.
RESOLUTION:
0.1.
TYPE:
REAL .
UNITS:
SECOND.
DOCURENTED BY:
SOURCE: $88_001.
INPUT TO:
ALPEA: STORE_TEWP.
OUTPUT FRON:
ALPEA: SET_NOV_TINE.
TRACED FRON:
ORIGINATING REQUIRENENT: B_2.5_1.
DATA: PLOT.
DESCRIPTION:
“Dummy var to indicate that msg type is
plot.™.
EFTERRD_BY:
"Hartram" .
INITIAL_VALUE:
FALSE.
LOCALITY:
LOCAL,.
TYPE:
BOGLEXAN.
DOCURKNTED BY:
SOURCE: 588_001.
QUTPUT FRON:
ALPEA: DETERNINE_NSG_TYPR.

@]

ORIGINATING REQUIRENENT: B_3 _4_1.

DATA: RECORD_FOUND.
DESCRIPTION:

“A PAEDEFINED DATA ITEM WHICH IS SET TO
EITEER TRUR OR FALSE AFTER EACH SELECT ON A
FILE IN 4 BETA OR GANMA. RECORD_FOUND IS
SET TG TRUR IF A RECORD SATISFYIEG THE
SELECTION CRITERIOE IS LOCATED; OTHERVISE,
RECORD_FOUND IS ASSIGNED THE VALUE

FALSE.".

INITIAL_VALUK:

FALSE.

LOCALITY:
LOCAL.
TYPE:
BOOLEAN.
USE:
BOTH.
DATA: REPORT_READ_IN.
DESCRIPTION:
“ASCII ESC]T header for temp report.”.
ESTERED_BY:
“Hartrum”.
LOCALITY:

RAKES:
MESSAGE: TEMP_REPORT_IN.
DOCUMERTED BY:

DATA: REPORT_TAIL_IN.
DESCRIPTION:
“ASCII § terminating temp report.".
ENTERED_BY:
“Hartrum".
LOCALITY:
LOCAL.
TYPE:
ENUNERATION.
NAKES:
WESSAGE: TEMP _REPORT_IN.
DOCUMENTED BY:
SOURCE: 888_001.
TRACED FRON:
ORIGINATING REQUIREMENT: B_2.1.5.
DATA: REPORT_TENP_IF.
DESCRIPTION:
“Temperature in degree C from semsor.".
ESTERRD_BY:
"Eartrum".
ISITIAL_VALUE:

-10

ALPSA: VALIDATE_TEMP_NSG.
L TRACED FRON:
ORIGINATING REQUIRENEST: B_2_1_5.
DATA: REQUEST_SEQUENCE_OUT.
DESCRIPTION:
“ASCII ESCIR$ to request temp report.".
ENTERED_BY:
...“tr-"-
LOCALITY:
LOCAL.
TYPE:
4 ENUNERATION.
MAKES :
NESSAGE: TENP_REQUEST_OUT.
? DOCUMERNTED BY:
SOURCE: $88.001.
INPUT TO:
ALPEA: SEND_TEMP_REQ.
TRACED FROA:
ORIGINATING REQUIREMENT: B_2_1_3.
DATA: SETPOINT.
DESCRIPTION:
“Dummy variable to reflect if message type
is setpeint.”.
X ENTERED_BY:
ll.mr_l'.
INITIAL_VALUE:
FALSE.
LOCALITY:
LOCAL.
TYPE:
b BOOLEAS.
. DOCUMENTED BY:
1 SOURCE: $88_001.
OUTPUT FRON:
ALPNA: DETERMINE_MSG_TYPE.
REFERRED BY:
SUBNET: CONTROL_FAX
R_BET: TERM_FNET.
TRACED FRON:
ORIGINATING REQUIREMERET: B_3_3_5.
} DATA: SETPOINT_ACK.
1 DESCRIPTION:
"Acknowledgement sent to crt.”.
ENTERED_BY:
“Bartrmm”.
INITIAL_VALUE:
WULL.

¥

f LOCALITY:

LOCAL.
RABGE:

“setpoint OK".
TYPK:
ENUNERATION.
DOCUNENTED BY:

C-11

SOURCEK: 388_001.

INPUT TO:
ALPEA: SEND_SETPOIST_ACK.

TRACED FRON:
ORIGINATING_REQUIREMENT: B_3_3_S.

DATA: SETPOIFT_VALUE.

DESCRIPTION:
“Current value of setpoint.”.
EFTERED_BY:
“Hartrum” .
INITIAL_VALUE:
70.0.
LOCALITY:
GLOBAL.
NAXTNUN_VALUE:

UNITS:
DEG_F.
DOCURENTED BY:
SOURCE: 388_001.
OUTPUT FRON:
ALPEA: STORE_SETPOINT.
TRACED FRON:
ORIGIFATING REQUIREMENT: B_3_3_3.

DATA: SETPOINT_VALUE_IN.

DESCRIPTION:
"Setpoint value in degree F as entered by

user keyboard.".

ENTERED_BY:
llm‘r_ll .
INITIAL_VALUE:
70.0.
LOCALITY:
GLOBAL.
NAXINUN_VALUE:
999.9.
RIFIMUN_VALUE:
0.0.
RESOLUTION:
0.1.
TYPE:
REAL.
UNITS:
DEG_F.
MAKES:
NESSAGE: SETPOIBT_COMMAND_IN.
DOCUNENTED BY:
SOURCE: $88_001.
INPUT TO:
ALPEA: STORE_SETPOINT.
TRACED FRON:
ORIGINATING REQUIREMENT: B_3_3_S.

DATA: START_ROUR_IN.

DESCRIPTIOB:

"Hour part of temp plot start time.".
GETERED_BY:

"Hartram".
INITIAL_VALUE:

0.

-

—y

DATA: TEMP_START_IN.
TRACED FRONM:
ORIGINATING _REQUIREMENT: B_3_4_1.
DATA: START_NIN_IN.
DESCRIPTION:

"“Niautes portion of plot start time.".

ENTERED_BY:
"Hartrom",

INTTIAL _VALDE:
0.

LOCALITY:

DATA: TEMP_START_IN.
TRACED FRON:
ORIGINATING _REQUIREMENT: B_3_4_1.
DATA: START_TIME.
DATA: STOP_HOUR_IN.
DESCRIPTIOR:
“Nour portion of plot stop time.".
ENTERED_BY:
“Hartram" .
INITIAL_VALUE:
0.
LOCALITY:
LOCAL.
NAXTMUN_VALUE:
23.
NIEINUN_VALUE:
0.
RESOLUTION:
1.
TYPE:
ISTEGER.
UBITS:
HOUR .
DOCUNRNTED BY:
SOURCE: 3$88_00t.

INCLUDED IN:
DATA: TEWMP_STOP_IN.
TRACED FRON:
ORIGIFATING _REQUIREMENT: B_3_4_1.

DATA: STOP_NIE_IN.

DESCRIPTION:
“Minute portion of plot stop time.".

ENTERED_BY:
“Hartrum".

INITIAL_VALUE:
0.

LOCALITY:
LOCAL.

MAXTMUN_VALUE:
69.

NIBINON_VALUE:
(]

RESOLUTION:
1.
TYPE:
IFNTEGER.
UBITS:
NINUTE.
DOCUMERTED BY:
SOURCE: 388_001.
ISCLUDED IN:
DATA: TEMP_STOP_IN.
TRACED FRON:
ORIGINATING _REQUIREMENT: B_3.4_1.

DATA: SYS TINE_IN.

DESCRIPTION:
“Cuxrrent system time, resolution 0.1s.".
ENTERED_BY:
“Hartrum”.
IRITIAL_VALUE:
0.0.
LOCALITY:
GLOBAL .
NAXIMUM_VALUE:
1048576 .
NIBINUN_VALUE:
0.
RESOLUTION:
100,
TYPE:
INTEGER.
UNITS:
NS.
MAKES:
NESSAGE: TINE_KESSAGE_IN.
DOCUMENTED BY:
SOURCE: S88_001.
INPUT TO:
ALPHA: SET_NQW_TINE.
TRACED FROM:
ORIGIFATIRG_REQUIREMENT: B_2_5_3.

DATA: TEWP_C.

C-12

DESCRIPTION:
"Latest temperature reading.”.
ENTERED_BY:
"Mm".
IFITIAL_VALUE:
0.0.
LOCALITY:
GLOBAL .

DRa_C.
DOCUNENTED BY:
SOURCE: $88_001.
INPUT TO:
ALPEA: CONVERT_TO_F
ALPEA: STOAE_TEMP.
OUTPUT FROK:
ALPRA: VALIDATE_TEMP_NSG.
TRACED FROM:

ORIGINATING _REQUIREMENT: B_3_1.2.

DATA: TENP_F.
REFERRED BY:
SUBNET: CONTROL_FAN.
DATA: TEMP_MNAX.
INPUT TO:
ALPRA: DETERNINE_SCALE_FACTCR.
OUTPUT FRON:
ALPHA: UPDATE_TEMP_RANGE.
DATA: TEMP_NIN.
INPUT TO:
ALPHA: DETERMINE_SCALE_FACTOR.
OUTPUT FRON:

TRACED FROR:
ORIGINATING _REQUIREMENT: B_3_4_1.
DATA: T_.TENP_C.
DESCRIPTION:
“4 stored temperature point.".
ESTERED_BY:
“Hartrum".
IFITIAL_VALUE:
0.0.
LOCALITY:
LOCAL.
MAXTMUN_VALUE:
999.9.
HININUN_VALUE:
0.0.
RESOLUTION:
0.1.
TYPE:
REAL.
UNITS:
DEG_C.
ASSOCIATED VITH:
ENTITY_CLASS: TENP_POINT.
DOCUMENTED BY:
SOQURCE: $88_001.
INPUT TO:
ALPHA: CONVERT_TO_F_TEMP
ALPHA: UPDATE_TEMP_RANGE.
TRACED FRON:
ORIGINATING _REQUIREMENT: B_3_.1_2.
DATA: T_TENP_F.

ALPEA: UPDATE_TENP_RANGE. DESCRIPTION:
DATA: TEMP_START_IX. “Fahrenheit temp for each temp data
DESCRIPTION:) point.”.
"Start time for temperature plot, input by ENTERED_BY:
user.". "Hartrum".
EFTERED_BY: INITIAL_VALUE:
“Hartrmm" . 0.0.
IBCLUDES : LOCALITY:
DATA: START_BOUR_ 1IN GLOBAL.
DATA: START_NRIN_IN. MAXINUM_VALUE:
NAKES: 999.9.
NESSAGE: PLOT_COMMAND_IN. NINIMUN_VALUE:
DOCUNMESTED BY: 0.0.
SOURCE: $S88_001. RESOLUTION:
IFPUT TO: 0.1,
ALPEA: DETERNINE_SCALE_FACTOR. TYPE:
REFERRED BY: REAL.
R_EET: TERM_NET. UNITS:
TRACED FROM: DEF_F.
ORIGINATING _REQUIRENEST: B_3_4_1. DOCUNENTED BY:
DATA: TEMP_STOP_IE. SOURCE: $88_001.
DESCRIPTION: INPUT 10:
“End time for temperature plot.". ALPHA: CALCULATE_GRAPHICS_COORDS.
ENTERED_BY: OUTPUT FRON:
“Rartrmm”. ALPEA: CONVEAT_TO_F_TEMP.
INCLUDES : TRACED FRON:

DATA: STOP_EOUR_IN

DATA: STOP_NIN_13.
NAKES :

HESSAGE: PLOT_COMMAND_IX.
DOCURERTED BY:

SOURCE: $88_001.
INPUT TO:

ALPEA: DETERNINE_SCALE_FACTOR.

ORIGINATING _REQUIREMENT: B_3_4.
DATA: T_TIME.
DESCRIPTIUN:
"A time at which a temperature is
stored.".
ENTERED_BY:
"Hartrmm".
INITIAL_VALUE:

C-13

———— - -

i bl

0.0. INCLUDED IN:

LOCALITY: DATA: GRAPHICS_COMMARD_OUT.
LOCAL. INPUT T0:

MAXINUN_VALUK: ALPRA: CREATE_GRAPHICS_CONMAND.
99999.9. OUTPUT FRON:

MININUN_VALUE: ALPRA: CALCULATE_GRAPHICS _COORDS.
0.0. TRACED FRON:

RESOLUTION: ORIGINATING_REQUIREMENT: B_3_4_3.
0.1. DATA: X_SCALE.

TYPE: INPUT TO:
REAL. ALPRA: CALCULATE_GRAPHICS_COORDS.

UNITS: QUTPUT FRON:
SECONDS. ALPRA: DETERNINE_SCALE_FACTOR.

ASSOCIATED WITH:
ESTITY_CLASS: TENP_POINT.

ORIGINATING _REQUIREMENT: B_2_.1_S.

DATA: XCOORD_OUT.

DATA: YCOORD_OUT.
DESCRIPTION:

DOCUNENTED BY: "Y coordinate (1..300) in device
SOURCE: $88_001. coordinates for display.".
REFERRED BY: EFTERED_BY:
R_BET: TERN_BET. “Haxtrum".
TRACED FRON: INITIAL_VALUE:
ORIGINATING_REQUIRENENT: B_3.1_.2. 0.
DATA: VALID. LOCALITY:
DESCRIPTION: LOCAL.
"Flag indicating validity of temp NAXTMUN_VALUE:
message.”. 300.
ENTERED_BY: NININUM_VALUE:
"Hartrum". 0.
INITIAL_VALUE: RESOLUTION:
FALSE. 1.
LOCALITY: TYPE:
LOCAL. INTEGER.
TYPR: USITS:
BOOLEAS. PIXEL.
DOCUMESTED BY: DOCUNMENTED BY:
SOURCE: S88_001. SOURCE: $S88_001.
OUTPUT FRON: INCLUDED IN:
ALPHA: VALIDATE_TENMP_MSG. DATA: GRAPHICS_COMMAND_OUT.
REFERRED BY: IBPUT TO:
R_NET: TENP_BET. ALPSA: CREATE_GRAPHICS_CONMAND.
TRACED FRON: QUTPUT FRON:

ALPEA: CALCULATE_GRAPHICS_COORDS.
TRACED FROM:

Y

DESCRIPTION: ORIGINATISG_REQUIREMENT: B_3_4_2.
"X coord (1..640) in device coordinates to DATA: Y_SCALE.
display.”. INPUT TO:
ESTERED_BY: ALPEA: CALCULATE_GRAPHICS_COORDS.
"Hartrem”. OUTPUT FRON:
INITIAL_VALUE: ALPHA: DETERNINE_SCALE_FACTOR.
0.
LOCALITY:
LOCAL. .
NAXIMUM_VALUE:
640. DECISION: PLOT_CUMMAND.
NININUN_VALUE: ALTERRATIVES:
0. "1. Single command line including start &
RESOLUTION: stop times.
1. 2. Single input command, then prompt
TYPE: user to enter start and stop times.".
INTEGER. CHOICE:
UNIYS: “ Alternative 1.".
PIXEL. ESTERED_BY:
ORDERS : “Sartrm” .
FILE: PLOT_DATA_QUT. PROBLEN:
DOCUMENTED BY: "Format & protocol of temperature plot
SOURCE: S88_001. command.” .

C-14

TRACES TO: sensor.”.
RESSAGE: PLOT_COMMAND_IN. ENTERED_BY:
DOCUNENTED BY: “Rartrem".
SOURCE: 388_001. COBNECTS TO:
TRACED FRoN: SUBSYSTEN: TENP_SENSOR.
ORIGINATING _REQUIREMENT: B_3_4_1. ENABLES:
DECISIOS: SETPOINT_COMMAND. R_DET: TENP_NET.
ALTERBATIVES : PASSES :
“1. Single command string including HBESSAGE: TEMP_REPORT_IN.
setpoint value. DOCUNERNTED bY:
2. Enter command and prowpt for SOURCE: $88_001
value.". REFERRED BY:
CHOICE: R_NET: TEMP_NET
“Alternative 1.". TRACED FROM:
ENTERED_BY: ORIGIFATING_REQUIREMENT: B_2_1
“Hartrum". ORIGINATING _REQUIREMENT: B_2_1_5.
PROBLEN: INPUT_INTERFACE: FRON_TERMINAL.
“Format and protocol of setpoint DESCRIPTION:
command. . "Receives keyboard input from the user’s
TRACES TO: terminal .*.
RESSAGE: SETPOINT_COMMAND_IN. ENTERED_BY:
DOCUNESTED BY: “Hartram".
SOURCE: $88_001. CONNECTS TO:
TRACED FRON: SUBSYSTEM: TERMINAL.
ORIGINATING_REQUIREMERT: B_3_3_5. EDABLES:
ENTITY_CLASS: TEMP_POINT. R_NET: TERM_NET.
DESCRIPTION: PASSES:
"4 log of an individual temperature NESSAGE: BAD_COMMAND_IN
point.". MESSAGE: PLOT_COMMAND_IN
ESTERED_BY: NESSAGE: SETPOINT_COMMAND_IN.
“Hartrom". DOCUMENTED BY:
ASSOCIATES: SOURCE: $88_001.
DATA: T_TENP_C REFERRED BY:
DATA: T_TINE. R_NET: TERM_NET.
CREATED BY: TRACED FRON:
ALPRA: STORE_TEMP. ORIGINATING REQUIREMENT: B_3_3_5
REFEARED BY: ORIGINATING REQUIREMENT: B_3_4_1
R_NET: TERN_NET ORIGINATING _REQUIREMENT: B_3_5.
TRACED FRON: INPUT_INTERFACE: FRON_TINE.

ORIGINATING _REQUIREMENT: B_3_1_2.
FILE: PLOT_DATA_OUT.

DESCRIPTION: resolution.”.

"Data for a full temperature plot sent to ENTERED_BY:

graphics.". "Hartrum" .

ESTERED_BY: CONNECTS TO:

“Hartrom" . SUBSYSTEN: SYSTEM_CLOCK.
LOCALITY: EFABLES:

LOCAL. R_NET: TINE_NET.
CONTAIRNS: PASSES:

DATA: GRAPBICS_CUMMAND_OUT. MESSAGE: TINE_NESSAGE_IN.
MAKES: DOCUMERTED BY:

HESSAGE: TEMP_PLOT_OUT. SQURCE: S88_001.
DOCUMENTED BY: REFERRED BY:

SOURCE: $88_001. R_BET: TINME_BET.
INPUT TO: TRACED FRON:

ALPEA: FORM_PLOT_NESSAGE. ORIGINATING _REQUIREMENT: B_2_5_1.
ORDERED BY: NESSAGE: BAD_COMMAND_IE.

DATA: ICOORD_OUT. DESCRIPTION:
OUTPUT FRON: "4 meaningless terminal keyboard input.”.

ALPEA: CREATE_GRAPHICS_COMMAND. ENTERED_BY:
TRACED FRON: "Hartrm".

ORIGIBATING REQUIRENENT: B_3.4. DOCUMEETED BY:

INPUT_INTERFACE: FROM_TENP. SOURCE: 8$88_001.

DESCRIPTION: NADE BY:

“Receives temperature reports from

C-15

DESCRIPTION:
“System timer, interrupt driven, 0.1s

DATA: BAD_DATA_IN

s e e e AR anay - o o o Ll >
DATA: COMMAND_TYPE_IN. PASSED THROUGH:
PASSED TEROUGH: INPUY_INTERFACE: FROM_TERMINAL.
INPUT_INTERFACE: FROM_TERMINAL. TRACKD FRONM:

TRACED FRON:
ORIGINATING REQUIREMENT: B_3_S.
MESSAQE: DISPLAY_MESSAGE_OUT.
DESCRIPTION:
“4SCII sequence SOH xxx.y EOR to
display.”.
ENTERED_BY:
"Hartzum" .
DOCUNENTED BY:
SOURCE: $88_001.
FORMED BY:
ALPEA: MAKE_DISPL_NESSAGE.
MADE BY:
DATA: DISPLAY_READ_OUT
DATA: DISPLAY_TAIL_OUT
DATA: DISPLAY_TEMP_OUT,
PASSED TEROUGK:
OUTPUT_INTERFACE: TO_DISPLAY.
TRACED FRONM:
ORIGINATING _REQUIRENENT: B_2_.2.2.
MESSAGE: FAN_RESSAGE_OUT.
DESCRIPTION:
"TTIL bit O or 1 for OFF or ON.".
ENTERED_BY:
lil.rtr-".
DOCUNEFTED BY:
SOURCE: $88_001.
FORNED BY:
ALPEA: FORM_FAN_NSG.
MADE BY:
DATA: FAN_DATA_OUT.
PASSED THROUGE:
OUTPUT_INTERFACE: TO_FAN.
TRACED FRON:
ORIGINATING REQUIREMERT: B_2_3.2.
MESSAGE: PLOT_COMMAND_IV.
DESCRIPTION:
"Command to drav a temperature curve.".
EFTERED_BY:
"lmr_ll.
DOCUMESTED BY:
SOURCE: $88_001.
NADE BY:
DATA: COMMAND_TYPE_IN
DATA: TEMP_START_IN
DATA: TEWP_STOP_IN.
PASSED TEROUGH:
INPUT_INTERFACE: FROM_TERNINAL.
TRACED FRON:
ORIGINATING _REQUIREMENT: B_3_4_1
DECISIOS: PLOT_COMMAND.
NESSAGE: SETPOINT _COMNAND_IN.
DESCRIPTION:
“"Command sequence to set new setpoint
valae.",
ENTERED_BY:
"Hartrm"”.
DOCUMENTED BY:
SOURCE: $88_001.
MADE BY:
DATA: COMMAND_TYPE_IN
DATA: SETPOXINT_VALUE_IN.

ORIGINATING REQUIREMENT: B_3_3_§
DECISION: SETPOINT_COMMAND.
NESSAGK: TEMP_PLOT_OUT,
DESCRIPTION :
“The sequence of graphics commands to draw
a curve.”.
ENTERED _BY:
“Eartrum” .
DOCUMENTED BY:
SOURCE: $88_001.
FORNED BY:
ALPRA: FORM_PLOT_NESSAGE.
NADE BY:
FILE: PLOT.DATA_OOUT.
PASSED THROUGE:
OUTPUT_INTERFACE: TO_GRAPHICS_DISPLAY.
TRACED FRON:
ORIGINATING REQUIREMENT: B_2 4.
NESSAGE: TENP_REPORT_IN.
DESCRIPTION:
“ASCII sequence ESC]Txxx.yyy$ from temp
sensor.".
ENTERED_BY:
“lntr_"-
DOCUMENTED BY:
SOURCE: $88_001.
NADE BY:
DATA: REPORY_HEAD_IN
DATA: REPORT_TAIL_IN
DATA: REPORT_TEWP_IN.
PASSED THROUGH:
INPUT_INTERFACE: FROM_TEMP,
TRACED FRONM:
ORIGINATING _REQUIREMENT: B_2_1.
NESSAGE: TEMP_REQUEST_OUT.
DESCRIPTION:
“ASCII string ESC]R$ to trigger temp
report from sensor.".
ENTERED_BY:
Illmr-ll.
DOCUNERTED BY:
SOURCE: S88_001.
FORMED BY:
ALPRA: SEND_TENP_REQ.
NADE BY:
DATA: REQUEST_SEQUENCE_OUT.
PASSED THROUGH:
OUTPUT_INTERFACE: TO_TENP.
TRACED FROM:
ORIGINATIFG _REQUIREMENT: B_2_1.1.
NESSAGE: TERMINAL_CRT_MESSAGE_OUT.
DESCRIPTIOS:
“iny buffered ASCII sent to the CRT.".
ESTERED_BY:
I"mmll‘
DOCUMENTED BY:
SOURCE: $88_001.
FORMED BY:
ALPHA: SEND_SETPOINT_ACK.
KADE BY:
DATA: CRT_STRING_OUT.
PASSED THROUQGH:

C-16

OQUTPUT_INTERFACE: TO_TERNIFAL. DESCRIPTION:
TRACED FROM: “Temperature report format.".
ORIGINATING _REQUIRENEEY: B_3_3_5 ENTERED_BY:
ORIGINATING _REQUIREMEST: B_3_4_1 "Hartrmm".
ORIGINATING .REQUIREMENT: B_3.5. TRACES TO:
NESSAGE: TINK_MESSAGE_IN. INPUT_INTERFACE: FRON_TENP
DESCRIPTION: DATA: REPORY_HEAD_IB
"“Contains current system time.". DATA: REPORT_TAIL_IN
ENTERED_BY: DATA: REPORT_TENP_IN
“Hartrum". DATA: VALID.
DOCUNESTED BY: DOCUNENTED BY:
SOURCE: 388_001. SOURCE: S88_001.
RADE BY: IBCORPORATED IN:
DATA: SYS_TINE_IN. ORIGIFATING_REQUIREMENT: B_2_1.
PASSED TEROUGH: ORIGINATING _REQUIRENENT: B_2_2.
INPUT_ISTERFACE: FROM_TINME. DESCRIPTION:
TRACED FRON: “Provide temperature display.”.
ORIGINATING REQUIREMENT: B_2_5_1. ENTERED_BY:
Hmr_“.
INCORPORATES :
ORIGIBATING_REQUIRENENT: B_2_2_2.
TRACES TO:
ORIGINATING_REQUIRBMENT: 2_.1. QUTPUT_INTERFACE: TQ_DISPLAY.
ORIGINATING REQUIREMENT: B_2_1. DOCUMENTED BY:
DESCRIPTION: SOURCE: $88_001.
“Receive temperature.”. ORIGINATING_REQUIREMENT: B_2_2.2.
ENTERED_BY: DESCRIPTION:
“Haxrtrum" . "Display data format.".
INCORPORATES : ENTERED_BY:
ORIGINATING REQUIREMENT: B_2_1_1 “Hartrum" .
ORIGINATING REQUIRENMERT: B_2_1_3 TRACES TO:
ORIGIFATING REQUIREMEET: B_2_1_S. DATA: DISPLAY_HEAD_OUT
TRACES TO: MESSAGE: DISPLAY_MESSAGE_OUT
INPUT_INTERFACE: FROM_TEMP DATA: DISPLAY_TAIL_OUT
R_NET: TEMP_BET DATA: DISPLAY_TEMP_OUT
NESSAGE: TEMP_REPORT_IN OUTPUT_IBTERFACE: TO_DISPLAY.
ALPEA: VALIDATE_TEMP_NSG. DOCUMENTED BY:
DOCUNENTED BY: SOURCE: S88_001.
SOURCE: 888_001. IBCORPORATED IN:
ORIGINATING REQUIREMENT: B_2_1.1. ORIGINATING_REQUIREMENT: B_2_2.
DESCRIPTION: ORIGINATING _REQUIREMENT: B_2_3.
"Provide temperature request.". DESCRIPTION:
ESTERED_BY: "Provide fan control.".
"Hartrum”. ESTERED_BY:
TRACES TO: “Hartrum”.
ALPEA: SESD_TEMP_REQ INCORPORATES:
HESSAGE: TEMP_REQUEST_OUT ORIGINATING_REQUIREMENT: B_2_3.2.
OUTPUT_INTERFACE: TO_TEMP. TRACES T0:
DOCUNENTED BY: OUTPUT_INTERFACE: TO_FAN.
SOURCR: $88_00%. DOCUMENTED BY:
ISCORPORATED 1B5: SOURCE: 3$88_001.
ORIGIFATING _REQUIRENENT: B_2_1. ORIGINATING REQUIRENENT: B_2_3_2.
ORIGIBATING_REQUIREMENT: B_2_1. 3. DRSCRIPTIOH:
DESCRIPTION: “Fan output format.".
"Temperature request format.". ENTERED_BY:
ENTERED_BY: "Hartrum".
“Hartram”. TRACES T10:
TRACES TO: DATA: FAB_DATA_OUT
DATA: REQUEST_SEQUENCE_OUT NESSAGE: FAN_NESSAGE_OUT
OUTPUT_INTERFACE: TO_TENP. ALPEA: SET_FAN_OFF
DOCUMEETED BY: ALPHA: SET_FAN_OX
SOURCE: $88_001. OUTPUT_INTERFACE: TO_FAN.
INCORPORATED IN: DOCUMENTED BY:
ORIGINATING _REQUIREMENT: B_2_1. SOURCE: $88_001.
ORIGINATING _REQUIREMENT: B_2_1_5. IBCORPORATED 1N:
C-17

ORIGINATING_REQUIREMEST: B_2_3.
ORIGINATING _REQUIREMENT: B_2_4.
DESCRIPTION:
“Provide graphics display.".
EFTERED_BY:
"'.rt!-"-
INCORPORATES :

ORIGIBATING_REQUIREMENT: B_2_4_2.

TRACES T0:
MESSAGE: TEMP_PLOT_OUT.
DOCUMESTED BY:
SOURCE: S88_001.
ORIGINATING _REQUIRENENT: B_2_4.2.
DESCRIPTION:
"“Graphics command format.".
ENTERED_BY:
“Bartrum".
TRACES T0:
ALPHA: CALCULATE_GRAPHICS_COORDS
ALPHA: CREATE_GRAPHICS_COMMAND
DATA: GRAPHICS_TAIL_OUT.
DOCUMENTED BY:
SOURCE: $88_001.
IECORPORATED IN:
ORIGINATING _REQUIREMENT: B_2_4.
ORIGINATIWG _REQUIREMERT: B_2_S_.1.
DESCRIPTION:
“Respond to clock interrupt.".
EFTERED_BY:
“Hartrmm" .
TRACES T10:
INPUT_INTERFACE: FROM_TIME
DATA: BOVU_TINE
ALPEA: SET_NOV_TINE
NESSAGE: TIME_NESSAGE.IN
R_NET: TIME_NET.
DOCUMENTED BY:
SOURCE: S88_001.
ORIGINATING REQUIREMENT: B_2_5_3.
DESCRIPTION:
*"Clock format.".
ENTERED_BY:
“Hartrum".
TRACES TO:
DATA: SYS_TINE_IN.
DOCUMENTED BY:
SOURCE: $88_001.
ORIGINATIBG _REQUIREMENT: B_3_1.
DESCRIPTION:
"Nonitor temperature.".
ENTERED_BY:
"lmmll.
INCORPORATES :
ORIGINATING _REQUIREMENT: B_3_.1_
-1

1
ORIGINATING _REQUIREMENT: B_3_.1.2.

DOCURENTED BY:
SOURCE: $88_001.
ORIGINATING _REQUIREMEST: B_3.1_1.
DESCRIPTION:

"Nonitor temperaturs frequency.".

ENTERED_BY:
"Hartrom".
TRACES TO:
PERFORNMANCE _REQUIREMERT :
TENP_NONITOR_INTERVAL.

DOCUNENTED BY:

SOURCE: $88_00:.
INCORPORATED IN:

ORIGINATING _REQUIREMENT: B_3_1.

ORIGINATING _REQUIREMENT: B_3_1_.2.

DESCRIPTION:

“Store maxiwum data.".
ENTERED_BY:

llmtmll.
TRACES TO:

ALPHA: STORE_TENP

DATA: TEMP_C

EBTITY_CLASS: TENP_POINT

DATA: T_TENP_C

DATA: T_TIME.
DOCURENTED BY:

SOURCE: $88_001.
INCOPPORATED IN:

ORIGINATING _REQUIRFMENT: B_3.1.

ORIGINATING _REQUIREMENT: B_3_2.

DESCRIPTION:

"Display Temperature.™.
ESTERED_BY:

“Hartrum" .
INCORPORATES:

ORIGINATING _REQUIREMENT: B

ORIGINATING REQUIREMENT: B

ORIGINATING_REQUIRENENT: B
TRACES 7T0:

23,201
23,222
23.2.3.

OUTPUT_INTERFACE: TO_GRAPHICS_DISPLAY.

DOCUMENTED BY:
SOURCE: S88_001.
ORIGIBATING _REQUIREMENT: B_3_2_1.
DESCRIPTION:

“Provide temperature display format.".

ENTERED_BY:
"Hartrum'.

TRACES TO:
ALPHA: COBVERT_TO_F
DATA: GRAPHICS_COMMAND_OUT
DATA: GRAPRICS_HEAD_OUT
ALPHA: MAKE_DISPL_MESSAGE

OUTPUT_INTERFACE: TO_GRAPHICS_DISPLAY.

DOCUMENTED BY:
SOURCE: 888_001.
ISCORPORATED IN:
ORIGINATING REQUIREMENT: B_3_2.
ORIGINATING _REQUIREMENT: B_3.2_2.
DESCRIPTION:
"Display temperature frequency.".
ENTERED_BY:
“Hartrum”.
TRACES T0:
PERFORMABCE _REQUIREMENT:
TEMP_DISPLAY_FREQUENCY.
DOCUMENTED BY:
SOURCE: S88_001.
IBCORPORATED IN:
ORIGINATING _REQUIREMENT: B_3.2.
ORIGINATING_REQUIREMENT: B_3_2.3.
DESCRIPTION:

“Display temperature response time.".

ESTERED_BY:
"“"Hartrum" .
TRACES TO:

C-18

k PERFORBANCE _REQUIREMENT:
TENP_DISPLAY_RESPONSE_TIME.
DOCUMEETED BY:
SCURCE: $83_001.
IBCORPORATED IN:
ORIGINATING _REQUIREMERT: B_3_.2.
ORIGINATING _REQUIREMENT: B_3_3.
4 DESCRIPTION:
“Comtxol fan".
EFTERED_BY:
ll.mr-ll'
1 IBCORPORATES :
ORIGINATIBG_REQUIREMENT: B_3_3_1
ORIGIBATING REQUIREMENT: B_3.3_2
ORIGINATING REQUIREMENT: B _3_3.3
B.3.3.4
B_3_3_5

ORIGIBATING REQUIRENENT:
ORIGINATING REQUIREMENT:
TRACES TO:
SUBNET: CONTROL_FAN
ALPHA: FORNM_FAN_NMSG.
DOCUMENTED BY:
SOURCE: S88_001.
ORIGINATING _REQUIREMENT: B_3_3_1.
DESCRIPTION:
“Control fan frequency".
ENTERED_BY:
“Hartrum" .
TRACES TO:
PERFORMANCE _REQUIREMENT:
FAN_CONTROL_FREQUENCY.
DOCUMENTED BY:
SOURCE: S88_001.
INCORPORATED IX:
ORIGINATING REQUIREMENT: B_3_3.
ORIGINATING _REQUIREMENT: B_3.3_.2.
DESCRIPTION:
“Control fan response time.'.
EFTERED_BY:
“Bartrum".
TRACES TO:
PERFORMANCE _REQUIREMENT:
FAN_CONTROL _RESPONSE_TIME.
DOCUMENTED BY:
SOURCE: $88_001.
INCORPORATED IN:
ORIGINATING REQUIREMENT: B_3_3.
ORIGINATING REQUIREMENT: B_3_3_3.
DESCRIPTION:
“Compare temp to setpoint.".
ENTERED_BY:
“Hartrmm".
TRACES TO:
DATA: SETPOINT_VALUE.
DOCUNEWTED BY:
SOURCE: $88_001.
INCORPORATED IN:
ORIGINATIBG_REQUIREMENT: B_3_3.
ORIGINATING REQUIRENENT: B_3.3.4.
DESCRIPTION:
"Default setpoint.".
ENTERED_BY:
"lmr-"‘
DOCUNEFTED BY:
SOURCE: $88_001.
INCORPORATED IN:

ORIGINATING _REQUIREMENT: B_3.3.
ORIGIBATING_REQUIREMENT: B_3_3.5.
DESCRIPTION:
"Allow setpoint change.".
ENTERED_BY:
Illmr-ll.
TRACES TO:
DATA: CRY_STRING_OUT
ALPHA: DETERNINE_MSG_TVFa
INPUT_INTERFACE: FRONM_TERNINAL
ALPHA: SEBD_SETPOINT_ACK
DATA: SETPOINT
DATA: SETPOINT_ACK
DECISION: SETPOINT_COMMAND
MESSAGE: SETPOINT_COMMAND_IN
DATA: SETPOINT_VALUE_IB
ALPEA: STORE_SETPOINT
MESSAGE: TERMINAL_CRT_MESSAGE_OUT
R_NET: TERM_NET
OUTPUT_INTERFACE: TO_TERNINAL.
DOCUMESTED BY:
SOURCE: $88_0601.
INCORPORATED IN:
ORIGINATING _REQUIREMENT: B_3_3.
ORIGINATING_REQUIRENENT: B_3_4.
DESCRIPTION:
“Display temperature setpoint.".
EFTERED_BY:
“Hartrum".
IBCORPORATES :
ORIGINATING _REQUIREMENT: B_3_4
ORIGIBATING _REQUIREMENT: B_3_4_
ORIGINATING _REQUIREMENT: B_3_4
ORIGINATING _REQUIREMENT: B_3_4
TRACES TO:
ALPHA: CONVERT_TO_F_TEMP
ALPHA: FORM_PLOT_MESSAGE
FILE: PLOT_DATA_OUT
DATA: T_TENP_F.
DOCUMENTED BY:
SOURCE: $88_001.
ORIGINATING .REQUIREMENT: B_3_4_1.
DESCRIPTIODN:
“Process keyboard command.".
ENTERED_BY:
“Hartrum".
TRACES TO:
DATA: CRT_STRIRG_OUT
ALPHA: DETERMINE_MSG_TYPE
INPUT_INTERFACE: FRON_TERMINAL
DATA: PLOT
DECISION: PLOT_COMMAND
MESSAGE: PLOT_COMMARD_IR
DATA: START_HOUR_IN
DATA: START_MNIN_IN
DATA: STOP_BOUR_IN
DATA: STOP_NIN_IN
DATA: TEMP_START_IN
DATA: TEMP_STOP_IN
NESSAGE: TERNMINAL _CRT_MESSAGE_OUT
R_NET: TERN_EET
OUTPUT_INTERFACE: TO.TERNINAL.
DOCUMENTED BY:
SOURCE: $88_001.
IBCORPORATED IN:

C-19

ORIGINATING_REQUIREMENT: B_3_4.
ORIGINATING _REQUIREMERT: B_3_4.2.
DESCRIPTION:
“Yertical resolutiom.”.
ERTERED_BY:
“Hartrmm".
TRACES T0:
ALPEA: DETERNINE_SCALE_FACTOR
ALPEA: UPDATE_TEMP_RANGE
DATA: YCOORD_OUT.
DOCUNENTED BY:
SOURCE: $88_001.
INCORPORATED IN:
ORIGINATING REQUIRENENT: B_3_4.
ORIGINATING .AEQUIREMENT: B_3_4_3.
DESCRIPTION:
"Horizontal resolution.”.
EFTERED_BY:
“Hartrmm".
TRACES TO:
ALPHA: DETERMINE_SCALE_FACTOR
DATA: XCOORD_OUT.
DOCUMENTED BY:
SOURCE: $88_001.
INCORPORATED IN:
ORIGINATING _REQUIREMENT: B_3_4.
ORIGIBATING REQUIRENENT: B_3_4_4.
DESCRIPTION:

“Display tempersture plot response tinme.".

ENTERED_BY:
ll.mr-"‘
TRACES T0:
PERFORMABCE _REQUIREMENT:
TEMP_PLOT_RESPONSE_TINE.
DOCUNENTED BY:
SOURCE: $88_001.
INCORPORATED IN:
OAIGINATING_REQUIREMENT: B_3_4.
ORIGINATIEG_REQUIREMENT: B_3_5.
DESCRIPTION:
“Ignore erronecus keyboard commands.".
ENTERED_BY:
".mr-".
TRACES TO:
NESSAGE: BAD_COMMAND_IN
DATA: BAD_DATA_IN
ALPEA: DETERNINE _MSG_TYPE
INPUT_INTERFACE: FROM_TERNINAL
NESSAGE: TERNINAL_CRT_MESSAGE_OUT
R_BET: TERM_BET.
DOCUMENTED BY:
SOURCE: $88.001.
ORIGINATING _REQUIRENENT: S2.1.
DESCRIPTION:
“The system shall periodically read and
record imtermally the time and temperature.”.
DOCUMENTED BY:
SOURCE: $88_001.

OUTPUT_INTERFACE: TO_DISPLAY.
DESCRIPTION:

“Conmnects DPS to the temperature display

to allow outputing the current temperature.".
EFTERED_BY:
"Hartrum".
CONEECTS TO:
SUBSYSTEN: TEMP_DISPLAY.
PASSES:
NESSAGE: DISPLAY_NESSAGE_OUT.

ORIGIFATING REQUIRENENT:

ORIGINATING_REQUIRENENT:
OUTPUT_INTERFACE: TO_FAN.

DESCRIPTION:
"Connects DPS to fan to allow ON/OFF
signal output.“.

ENTERED_BY:

l.mmll'
CONNECTS TO:

SUBSYSTEN: FAN.
PASSES:

MESSAGE: FAN_NESSAGE_OUT.
DOCUMENTED BY:

SOURCE: 888_001.
REFERRED BY:

R_NET: TEMP_NET.
TRACED FROM:

ORIGINATING _REQUIREMENT: B_2_3

ORIGINATING_REQUIREMENT: B_2_3_2.
OUTPUT_INTERFACE: TO_GRAPHICS_DISPLAY.

DESCRIPTION:

“Allows graphics commands to be sent to
the graphics display in order to draw
temperature plot.".

ENTERED_BY:

“"Hartrum".
CONNECTS TO:

SUBSYSTEN: GRAPHICS_DISPLAY.
PASSES:

MESSAGE: TEMP_PLOT_OUT.
DOCUMENTED BY:

SOURCE: S88_001.
REFERRED BY:

R_NET: TERM_NET.
TRACED FRON:

ORIGINATING _REQUIREMENT: B_3_2

ORIGINATING _REQUIREMENT: B_3_2_1.
OUTPUT_INTERFACE: TO_TEMP.

DESCRIPTION:

"Connects DPS to the temperature sensor.
Allows temperature requests to be sent to the
temperature semsor.".

ENTERED_BY:

“Eartrum".
CONNECTS TO:

SUBSYSTEN: TENP_SENSOR.
PASSES:

NESSAGE: TEMP_REQUEST_OUT.
DOCUMESNTED BY:

SOURCE: $88_001.
REFERRED BY:

R_BET: TINE_NET.
TRACED FRON:

-2.2
-2.2.2.

C-20

P

b

P

ORIGINAYING REQUIREMENT: B_2_1_1

ORIGINATING _REQUIRENEST: B_2.1_3.
OUTPUT_INTERFACE: TO_TERNINAL.

DESCRIPTION :
"Allows text to be seat to the user
terminal’s CRY.".

ENTERKD_BY:

“Eartrmm” .
COFNECTS T0:

SUBSYSTEN: TERNIBAL.
PASSES:

NESSAGE: TERNINAL_CRT_NESSAGE_OUT.
DOCUMRETED BY:

SOURCE: S88_001.
REFERRED BY:

A_NET: TERM_NET.
TRACED FRON:

ORIGINATING_REQUIREMEET: B8_3.3_5

ORIGINATING REQUIRENMENT: B_3_4_1.
PERFORNANCE _REQUIRENENT: FAN_CONTROL_FREQUENCY.

DESCRIPTION:
"The fan condition output will be updated
every 10 secs.”.
ENTERED_BY:
“Bartrum”.
DOCURENTED BY:
SOURCE: $88_001.
TRACED FRON:

ORXGINATING _REQUIREMEST: B_3.3_1.
PERFORNANCE_REQUIREMENT :

FAN_CONTROL RESPONSE_TIME.
DESCRIPTION:

“The fan comtrol output update will occur
within one second from the latest temperature
sample.”.

ENTERED_BY:
l'lmr-".

DOCUMESTED BY:
SOURCE: $88_001.

TRACED FRONM:

ORIGIFATING _REQUIREMENT: B_3_.3.2.
PERFORNANCE _REQUIRENMENT: TENP_DISPLAY_FREQUEECY.

DESCRIPTION:
“The temperature display will be updated
every 20 seconds.”.
ENTERED_BY:
"Eartram".
DOCUMENTED BY:
SOURCE: $88_001.
TRACED FRON:

ORIGIBATING REQUIRENENT: B_3_2_2.
PERFORRANCE _REQUIREMENT :
TENP_DISPLAY_RESPONSE_TINE.

DESCRIPTION:

"The temperature display will be updated
within 2 seconds after the latest temperature
sample has been read”.

ENTERED_BY:

"Rartrum” .

DOCUNESTED BY:
SOURCE: $88_001.
TRACED FROK:

ORIGINATING_REQUIRENERT: B 3.2.3.

PERFORNANCE_AEQUIRENENT: TENP_MONITOR_INTERVAL.
DESCRIPTION:

“Tempsrature will be recorded at 10 second
intervals.”.
ENTERED_BY:
“Bartrem”.
DOCUMESTED BY:
SOURCE: $88_001.
TRACED FRON:

ORIGINATING REQUIREMENT: B_3_1.1.

PERFORMARCE_REQUIREMENT: TEMP_PLOT_RESPONSE_TINME.
DESCRIPTION:

“The entire display will bde completed
within five seconds of the keyboard RETURE
terminating the keyboard cosmand.".

ENTERED_BY:

“Eartrmm" .

DOCUNENTED BY:
SOURCE: $88_001.
TRACED FROM:

ORIGIBATING _REQUIREMEST: B_3_4_4.

R_SET: TEMP_NET.
DESCRIPTION:
"Processes temperature reports from temp
sensor.".
ENTERED_BY:
“Hartrmm".
REFERS TO:

SUBNET: CONTROL_FAN

ALPEA: CORVERT_TO_F

INPUT_INTERFACE: FROM_TEMP

ALPHA: MAKE_DISPL_NESSAGE

ALPHA: STORE_TENMP

OUTPUT_INTERFACE: TO_DISPLAY

OUTPUT_ISTERFACE: TO_FAX

DATA: VALID

ALPEA: VALIDATE_TEMP_MSG.

ENABLED BY:
INPUT_INTERFACE: FROM_TEMP.
TRACED FRON:
ORIGINATING _REQUIRENENT: B_2_1.
STRUCTURE :
IBPUT_INTERFACE FRON_TEMP
ALPEA VALIDATE_TEMP_NSG
IF
(VALID)
Do
ALPHA CONVERT_TO_F
ALPEA MAKE _DISPL _MNESSAGE
QUTPUT_INTERFACE TO_DISPLAY
ABD
ALPHA STORE_TENP
TERMIRATE
AND
SUBNET CONTROL_FAJN
OUTPUT_INTERFACE TO_FAN
END
OTHERVWISE
TERNINATE
END
END

R_NET: .ml.m.

DESCRIPTIOR:
“This r_net processes all messages from

the user comsole.".

ENTERED_BY:
“Hartrom".

C-21

et

e e . . e —

2

! REFERS TO:

SUBSET: CREATE.PLOT_FILE
ALPEA: DETERNINE _NSG_TYPE
ALPEA: DETERNINE_SCALE_FACTOR
ALPEA: FORN_PLOT _MESSAGE
INPUT_ISTRAFACK: FROM_TERNINAL
DATA: PLOT
ALPEA: SEND_SETPOIST_ACK
DATA: SETPOINT
ALPEA: STORK_SKTPOINT
EETITY_CLASS: TEWP_POINT
DATA: TEMP_START_IB
OUTPUT_INTERFACE: TO_GRAPHICS _DISPLAY
OUTPUT_INTERFACE: TO_TERMINAL
DATA: T.TINE
ALPEA: UPDATR_TENP_RANGE.
DOCUNENTED BY:
SOURCE: $88_001.
ENABLED BY:
INPUT_INTERFACE: FROM_TERNINAL.
TRACED FROA:
ORIGIBATING_REQUIREMENT: B_3_3_5
ORYGINATING REQUIRENENT: B_3_4_1
ORIGINATING _AEQUIREMENT: B_3_5.
STRUCTURE :
INPUT_INTERFACE FRON_TERMINAL
ALPEA DETERNINE_MSG_TYPE
IF
(SETPOINT)
ALPHA STORE_SETPOINT
ALPRA SEND_SETPOINT_ACK
OUTPUT_INTERFACE TO_TERMINAL
oR
(PLOT)
SELECT ENTITY_CLASS TENP_POINT
SUCE THAT
¢ T_TINE>TEMP_START_IN)
FOR EACH EFTITY_CLASS TEMP_POINT
DO
ALPHA UPDATE_TENP_RANGE
EFD
ALPNA DETERMINE_SCALE_FACTOR
FOR EACE ESTITY_CLASS TENP_POINT
Do
SUBRET CREATE_PLOT_FILE
END
ALPEA FORM_PLOT_MESSAGE

OUTPUT_INTERFACE TO_GRAPHICS_DISPLAY

OTHERVISE
END
EWD.
R_NET: TINME_NET.
DESCRIPTION:

“Responds to real-time clock interrupts.".

ENTERED_BY:
“Rartrmm”.
REFERS TO:
INPUT_INTERFACE: FRON_TINE
ALPEA: SEED_TENP_REQ
ALPEA: SET_ROV_TINE
OQUTPUT_INTERFACE: TO.TENP.
DOCUNENTED BY:
SOURCK: $88_001.
ESABLED BY:
INPUT_INTERFACE: FRON_TINE.

TRACED FRON:
ORIGINATING _REQUIRENENT: B_2_5_1.
STRUCYURE:
INPUT_INTERFACE FAOR_TIKE
Do
ALPEA SET_NOVW_TINE
TERRIBATE
AND
ALPNA SEFND_TENP_REQ
OUTPUT_INTERFACE TO_TENP
£ D
END.

SOURCE: CK_4505_CLOCK_SPEC_SHEET.
DESCRIPTION:

"This is the specification sheet for the
CK-4505 clock/calander ckip set, and comtains
the clock data formats.".

ENTERED_BY:

“Rartrum”.

DOCURESTS :

SUBSYSTEN: SYSTEN_CLOCK.

SQURCE: GRAPEICS_DISPLAY_MODEL_123_MANUAL.
DESCRIPTION:

“This is the user manual for the graphics
display to be used, and contains the graphics
control sequences.".

ENTERED_BY:

“Hartrum".

DOCURENTS :

ALPEA: CREATE_GRAPHNICS_CONMARD

DATA: GRAPEICS_CONNMAND_OUT

DATA: GRAPHICS_HEAD_OUT

DATA: GRAPEICS_TAIL_OUT.

SOURCE: GRAPHICS_DISPLAY_SYSTEM_NARNUAL.
DOCUMESTS :

SUBSYSTEN: GRAPHICS_DISPLAY.

SOURCE: $88,_001.
DESCRIPTIOS:

“This is the overall source requirement
document for the temperature controller
software.".

ENTERED_BY:

"Hartrom".

DOCUMENTS :

NESSAGE: BAD_COMMAND_IN

DATA: BAD_DATA_IN

ORIGINATING REQUIREMENT:

ORIGINATING_REQUIREMENT:

ORIGINATING REQUIREMENT:

ORIGINATING REQUIREMENT:

ORIGINATING REQUIRENENT:

ORIGIBATING .EQUIREMENT:

ORIGINATING REQUIREMENT:

ORIGIBATING REQUIREMENT:

ORIGINATING REQUIREMENT:

ORIGINATING REQUIREMENT:

ORIGINATING REQUIREMENT:

ORIGINATING REQUIREMENT:

ORIGINATING REQUIRENENT:

ORIGINATING REQUIREMEST :

ORIGINATING REQUIREMENT:

C-22

ORIGINATING AREQUIRENEST: B 3.2 DATA: START_NIN_IN
ORIGINATING _REQUIRENENT: B_3_.2.1 DATA: STOP_ROUR_IN
ORIGIBATING REQUIRKRENT: B_3.2.2 DATA: STOP_MYN_IN
ORIGINATING REQUIRENRST: B.3.2.3 ALPEA: STORK_SETPOINY
ORIGIBATING REQUIRKNENT: B_3.3 ALPEA: STORK_TENP
CRIGINATING _REQUIRBENENT: B_3_3.1 SUBSYSTEN: SYSTEN_CLOCK
ORIGIBATING REQUIREMKST: B_3_3.2 DATA: SYS_TINE_IN
ORIGYNATING REQUIRENENT: B_3.3.3 DATA: TENP.C
ORIGINATING _REQUIRENKST: B_3.3.4 SUBSYSTEN: TENP_DISPLAY
ORIGYNATING REQUIRENENT: B_3.3.5 PRRFORNABCE _REQUIREMENT :
ORIGIBATING _REQUIREMESNT: B_3_4 TEWP_DISPLAY_FREQUENCY
ORIGINATING _REQUIREMENT: B_3.4.1 PRRFORNASCE _REQUIRENMENT:
ORIGIBATING REQUIRENKNT: B_3_.4.2 TENP_DISPLAY_RESPONSE_TINE
ORIGINATING _REQUIRENENTY: B_3_4.3 PERFORRANCE_REQUIRENENT :
ORIGINATING AEQUIREMENT: B_3_4._4 TENP_NOSITOR_INTERVAL
ORIGINATING_REQUIREMENT: B_3_5 HES3AGE: TENP_PLOT_OUT
ALPEA: CALCULATE_GRAPRICS_COORDS PEAFORMASCE_REQUIREMENT:
SUBNET: CONTROL_FAR TENP_PLOT_RESPOBSE_TINE

ALPEA: CONVERT.TO_F NESSAGE: TENP_REPORT_IB

ALPEA: CONVERT_TO_F_TEMP
SUBNET: CREATE_PLOT_FILE
DATA: CRT_STRING_OUT

ALPEA: DETERNINE NSG_TYPE

NESSAGE: TENP_REQUEST_OUT
SUBSYSTEN: TENP_SENSOR
DATA: TENP_START.IX
DATA: TENP_STOP_IR
SUBSYSTEN: TERNINAL

ALPEA: DEYERNMIBE_SCALE_FACTOR
DATA: DISPLAY_READ OUT
NESSAGE: DISPLAY_MESSAGE_OUT
DATA: DISPLAY_TAIL_OUT NESSAGE: TINE_NESSAGE_IN
DATA: DISPLAY_TENP_OUT R_NET: TINE_BET
SUBSYSTEN: FARN OUTPUT_INTERFACE: TO_DISPLAY
PERFORMANCE _REQUIREMENT : OUTPUT_INTERFACE: TO_FAJ
FAE_CONTROL_FREQUENCY OUTPUT_INTERFACE: TO_GRAPEBICS_DISPLAY
PERFORRANCE_REQUIREMENT: OUTPUT _INTERFACE: TO_TENP
FAN_COFTROL_RESPONSE_TINE OUTPUT_IFTERFACE: TO_TERMINAL

HESSAGE: TERNINAL_CRT_NESSAGE_OUT
R_FET: TERM_FET

DATA: FAN_DATA_OUT DATA: T_TENP.C
y NESSAGE: FAN_MESSAGE_OUT DATA: T_TENP_F
ALPRA: FORN_FAN_NSG DATA: Y_TINE
ALPHA: FORM_PLOT_NESSAGE ALPNA: UPDATE_TENP_RANGE

ISPUT_INTERFACE: FRON_TENP DATA: VALID

INPUT_INTERFACE: FROM_TERNIBAL ALPEA: VALIDATE_TEMP_NSG
INPUT_INTERFACE: FROM_TINE DATA: ICOORD_OUT

DATA: GRAPEICS_COMMAND_OUT DATA: YCOORD_QOUT.

SUBSYSTEN: GRAPRICS_DISPLAY SOURCE: XYZ_CONPUTER_SYSTEN_MANUAL.

4 ALPEA: MAKE_DISPL_NESSAGE DESCAZPTION:

h DATA: BONW_TIME "This is the system manual for the

DATA: PLOT computer to rua the temperature controller
DECISION: PLOT.COMMAND software. It defines the CRT control modes.".
] NESSAGE: PLOT_COMMAND_IN ESTERED_BY:
b FILE: PLOT_DATA_OUT “Bartrum".
DATA: REPORT_NEAD_IN DOCUMESTS :

DATA: REPORT_TAIL_IR SUBSYSTEN: TERMINAL.

J DATA: REPORT_TENP_IN SUBEET: CONTROL_FAN. .
DATA: REQUEST_SEQUENCE_OUT DESCRIPTIDE:

l ORIQIBATING REQUIREMEST: S2_1 “This submet provides fam control.“.
ALPNA: SKED_SETPOINT_ACK ESTERED_BY:

! ALPEA: SEWD_TENP_REQ "Nartres”.
DATA: SETPOINT REFERS TO:
DATA: SETPOINT_ACK ALPEA: FORN_FAN_NSG

{ DECISIOS: SETPOIST_CORNAND DATA: SETPOINT
NES3AGE: SETPOXINT_COMMARD_IN ALPRA: SET_FAN_OFF
DATA: SETPOINT_VALUR ALPEA: SET_FAN_OX

DATA: SETPOINT_VALUR_IN DATA: TENP_F.

ALPEA: SET_FAN_OFF DOCUMENTED BY:

ALPNA: SET_FAN_ON SOURCE: S88_001.

ALPEA: SET_NOV_TINE REFERRED BY:

DATA: START_ROUR_IN R_NET: TENP_NET.
C-23

— - y

e e

TRACKD FROA:
ORIGINATING REQUIREMENT: B_3_3.
STRUCTURE :
IF
(TENP_P>SETPOINT)
ALPEA SET_FAN_ON
OTNERWISK
ALPEA SET_FAN_OFF
B
ALPNA FURM_FAN_NSG
AFTURE
KED.
SUBNET: CREATE_PLOT_FILE.
DESCRIPTION:
“This subnet generates records in the plot
file.".
ENTERED_BY:
“Bartrum”.
REFERS TO:
ALPEA: CALCULATE_GRAPHICS_COORDS
ALPEA: CONVERT_TO_F_TEMP
ALPEA: CREATE_GRAPHICS_COMMAND.

ALPEA CALCULATE_GRAPHICS_COORDS
ALPEA CREATE_GRAPHICS_COMMAND
RETURN
EED.
SUBSYSTEN: FAR.
DESCRIPTION:
“This is a fan to cool the room on
command.” .
ENTERED_BY:
"Naxtrum".
CONNECTED TO:
OUTPUT_INTERFACE: TO_FAN.
DOCUMENTED BY:
SOURCE: $88_001.
SUBSYSTEN: GRAPRICS_DISPLAY.
DESCRIPTION:
“This is a smart graphics terminal to
display a plot of
temperature vs. time upon command.".
ENTERED_BY:
“Hartrum”.
COBUECTED TO:
OUTPUT_INTERFACE: TO_GRAPNICS_DISPLAY.
DOCUMENTED BY:
SOURCE: GRAPHICS_DISPLAY_SYSTEN_NANUAL
SOURCE: S88_001.
SUBSYSTEN: SYSTEM_CLOCK.
DESCRIPTION:
“This is a system clock that interrupts
the software
sad caa be read by the software.”.
ENTERED_BY:
"Eartrum”.
CONSECTED TO:
INPUT_INTERFACK: FROM_TIRE.
DOCUMESNTED BY:
SOURCE: CK_45606_CLOCK_SPEC_SEEET

SOURCE: $888_001.
SUBSYATEN: TENP_DISPLAY.
DESCRIPTION:
“This is a digital display to display the
curreat
temperature iz degrees F.".
EXTERED_BY:
“Bartraa” .
CONNECTED TO:
OUTPUT_INTERFACE: TO_DISPLAY.
DOCUNESNTED BY:
SOURCE: 588_001.
SUBSYSTEN: TENP_SEESOR.
DESCRIPTION:
“This temperature sensor provides
temperature readings in
responss to request message.".
ENYERED_BY:
"Hartxrum" .
COSWECTED TO:
IEPUT_INTERFACE: FRON_TENP
OUTPUT_INTERFACE: TO_TEMP.
DOCUNENTED BY:
SOURCE: $88_001.
SUBSYSTEN: TERNINAL.
DESCRIPTION:
“This is the user terminal used for user
I/0.".
ENTERED_BY:
"Hartrum" .
CONNECTED TO:
INPUT_IBTERFACE: FROM_TERMINAL
OUTPUT_INTERFACE: TO_TERMINAL.
DOCUMERTED BY:
SOURCE: 888_001
SOURCE: XYZ_COMPUTER_SYSTEM_MANUAL.

C-24

C.8 DCDS Graphic R-Nets and Subnets

The R-Nets and Subnets for the Temperature Controller are provided in the

following figures.

LA
| (VALD) OTHEAW

Sl
- @

Figure C.1. Rnet diagram for TEMP_NET

C-25

L

PP

Ty

Figure C.2. Subnet diagram for CONTROLFAN

C-26

TEMP
TME REQ

Figure C.3. R.net diagram for TIMENET

C-27

SZie . Sulhe Bhe audumsssens 4

TERM_NET
MSG
TveE
N ,
U/ (SETPOINT) (PLOT) OTHERWIS
TEMP_POINT
SETPONT

TEMP_POINT

Figure C.4. R_net diagram for TERM_NET

C-28

dli. e

GRAPHICS
COORDS

GRAPHICS

COMMAND

Figure C.5. Subnet diagram for CREATE_PLOT_FILE

C-29

Vita

Captain Patrick Denis Barnes was born April 16, 1955, in St. Helens Oregon.
He graduated from St. Helens Sr. High School in 1973 and enlisted in the United
States Air Force in 1974. He served three years as an aircraft maintenance specialist
before cross-training into the computer programming specialty in 1977. Serving as
a computer programmer for the Directorate of Logistics, Air Force Data Systems
Design Center, and then as NCOIC of Software Support for the Intelligence Data
Handling System Branch of the Armed Forces Air Intelligence Design Center, he

received both the Air Force Commendation Medal and the Joint Services Commen-

dation Medal.

In 1981 Captain (then Staff Sergeant) Barnes received an Associate in Applied
Science in Data Processing from the Community College of the Air Force and was
selected to complete his undergraduate studies through the Airmen Education and
Commissioning Program. He graduated with “most high honors” from Oregon State
University in 1984 with a B.S. in Computer Science and attended Officer Training
at Lackland AFB Texas that same year. He received both the Air Force Achieve-
ment Medal and Air Force Commendation Medal while serving as Communications
and Simulation Software Programmer/Analyst for the PAVE PAWS System Pro-
gramming Agency, 7th Missile Warning Squadron, from July 1984 through April
1987.

Upon completion of his current graduate studies at the Air Force Institute of
Technology, Captain Barnes will assume new responsibilities as an instructor for the

Department of Computer Science, Naval Post Graduate School, Monterey, California.

Permanent address: 32525 Highland Rd
Deer Island, Oregon 97054

VITA-1

10.

11.

12.

13.

Bibliography

. Abbott, R. J. “Program Design by Informal English Descriptions,” Commu-

nications of the ACM, 26, 11: 882-894 (November 1983).

Air Force Wright Aeronautical Laboratories. APEX Users’ Guide. AFWAL,
Wright-Patterson AFB, CO., 1987.

. Alabiso, Bruno. “Transformation of Data Flow Analysis Models to Object-

Oriented Design,” OOPSLA '88 Conference Proceedings, ACM SIGPLAN No-
tices, 23, 12: 335-353 (September 1988).

. Alford, Mack. “SREM at the Age of Eight; the Distributed Computing Design

System,” IEEE Computer, 18, 4: 36—46 (April 1985).

Andriole, Stephen J. and others. Storyboarding for C2 Systems Design: A
Combat Support System Case Study. Unpublished paper, George Mason Uni-
versity & International Information Systems, Inc. 802 Woodward Road, Mar-
shall, VA 22115, undated.

. Balzer, R. and others. “Software Technology in the 1990s: A New Paradigm,”

IEEE Computer, 16, 11: 39-45 (November 1983).

. Bohm, C. and Jocopini, G. “Flow Diagrams, Turing Machines, and Languages

with only Two Formal Rules,” Communications of the ACM, 9, 5: 336-371
(May 1966).

Booch, Grady. Software Components with Ada. Menlo Park: The Ben-
jamin/Cummings Publishing Company, Inc., 1987.

----- . Software Engineering with Ada(Second Edition). Menlo Park: The
Benjamin/Cummings Publishing Company, Inc.,1986.

Bralick, William A. Jr. An Ezamination of the Theoretical Foundations of
the Object-Oriented Paradigm. MS Thesis, AFIT/GCS/MA /88M-01, School of
Engineering, Air Force Institute of Technology (AU), Wright Patterson AFB
OH, March 1988.

Buhr, R. J. A. System Design with Ada. Englewood Cliffs: Prentice-Hall Inc.,
1984.

Byrne, William E. and others. Structured Hierarchical Ada Representation Us-
ing Pictographs (SHARP) Definition, Application, and Automation. Technical
Report Prepared For Electronic Systems Command, Deputy for Development
Plans, Hanscom AFB, Massachusetts. Cambridge: Arthur D. Little, Inc. Pro-
gram Systems Management Co., September 1986.

Cox, B. Object-Oriented Programming: An Evolutionary Approach. Reading:
Addison-Wesley, 1986.

BIB-1

14.

15.

16.

17.

18.

19.

20.

24.

25.

26.

27.

28.

Crawford, Bard S. and Jazwinski, Andrew H. “The AdaGRAPHTM Tool for
Enhanced Ada Productivity,” IEEE Transactions on Software Engineering,
SE-12, 5: 664-670 (May 1986).

Demarco, Tom. Structured Analysis and System Specification. Englewood
Cliffs: Prentice-Hall Inc., 1978.

Diedrech, Jim and Milton, Jack. “An Object-Oriented Design System Shell,”
OOPSLA ’87 Conference Proceedings, ACM SIGPLAN Notices, 22,12: 61-67
(December 1987).

Digitalk Inc. Smalitalk/V Tutorial and Programming Handbook. Los Angeles:
Digitalk Inc., 1986.

Department of Defense. Requirements for the Programming Environment for
the Common High Order Language (STONEMAN). Washington: Government

Printing Office, 1980.

EVB Software Engineering,Inc. An Object Oriented Design Handbook for Ada
Software. Fredrick: EVB Software Engineering, Inc., 1986.

Ewing, Juanita J. and Wirfs-Brock, Rebeccca. “Smalltalk isn’t Meaningiess
Chatter,” Computer Design, 26, 1: 76-79 (January 1987).

. Freedman, Roy S. “The Common Sense of Object-Oriented Languages,” Com-

puter Design, 22, 2: 111-118 (February 1983).

. General Electric Corporation Research and Development Division. Users’

Guide : Interactive Ada Workstation, Prototype Version 1.0. DOD Contract
No. F33615-85-C-1755, General Electric Co., August 1986.

. Hartrum, Thomas C. and Lamont, Gary B. “Development of a Comprehen-

sive Software Engineering Environment,” Space Operations Automation and
Robotics Conference, Houston (September 1987).

Jackson, Michael. System Development, Englewood Cliffs: Prentice Hall Inc.,
1983.

Keen, Peter G. W. “Adaptive Design for Decision Support Systems,”
ACM/Database, 12, 2: 15-25 (Fall 1980).

Kelly, John C. “A Comparison of Four Design Methods for Real- Time Sys-
tems,” Proceedings of the 9th International Confercnce on Software Engineer-
ing. 238-251. Washington: Computer Society Press of the IEEE, 1987.

Kerth, Norman L. and others. “Summary of Discussions from OQOOPSLA-87’s
Methodologies & OOP Workshop,” Addendum to the Proceedings OOPSLA
‘87, ACM SIGPLAN Notices, 23, 5: 9-16 (May 1987).

Konsynski, Benn and Sprague, Ralph H. Jr. “Future Research Directions in
Model Management,” Decision Support Systems, 2: 103-109 (1986).

BIB-2

k 33

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

29.

30.

32.

Korth, Henry F. and Silberschatz, Abraham. Database System Concepts. New
York: McGraw-Hill, Inc., 1986.

Liang, Ting-peng. “User Interface Design for Decision Support Systems: A
Self-Adaptive Approach,” Information & Management, 12: 181-193 (Decem-
ber 1987).

. Lorensen, W. “Object-Oriented Design,” CRD Software Engineering Guide-

lines, General Electric Co., 1986.

Magel, Kenneth. “Principles for Software Environments,” ACM SIGSOFT
Software Engineering Notes, 9, 1: 33-35 (January 1984).

. Nassi, I. and Schneiderman B. “Flowchart Techniques for Structured Program-

ming, ” SIGPLAN Notices ACM, 8, 8: 12- -26 (August 1983).

Novak, Joseph D. and Gowin, D. Bob. Learning How to Learn. Cambridge:
Cambridge University Press, 1984.

Page-Jones, Meilir. The Practical Guide to Structured Systems Design. New
York: Yourdon Press, 1980.
Pascoe, Geoffrey A. “Elements of Object-Oriented Programming,” Byte, 11,
8: 139-144 (August 1986).

Pressman, Roger S. Software Engineering: A Practitioner’s Approach (Second
Edition). New York: McGraw-Hill Book Company, 1987.

Riedel, Sharon L. and Pitz, Gordon F. “Utilization-Oriented Evaluation of
Decision Support Systems,” IEEE Transactions on Systems, Man, and Cyber-
netics, SMC-16, 6: 980~-006 (November 1986).

Ross, Douglas T. “Applications and Extensions of SADT,” IEEE Computer,
18, 4: 25-34 (April 1985).

----- . “Structured Analysis (SA): A Language for Communicating Ideas,”
[EEE Transactions on Software Engineering, SE-3, 1: 16-34 (January 1977).

Seagle, John P. and Belardo, Salvatore. “The Feature Chart: A Tool for Com-
municating the Analysis for a Decision Support System,” Information & Man-
agement, 10, 1: 11-19 (January 1986).

Seidewitz, Ed and Stark, Mike. -“Towards a General Object- Oriented Soft-
ware Development Methodology,” ACM Ada Letters, 7, 4: 54-67 (August-
September 1987).

Simon, H. The New Science of Management Dec.sion. New York: Harper &
Row, 1960.

Sprague, Ralph H. Jr. and Carlson, Eric D. Building Effective Decision Support
Systems. Englewood Cliffs: Prentice- Hall, Inc., 1982.

Stay, J. F. “HIPO and Integrated Program Design,” IBM System Journal, 15,
2: 143-154 (1976).

BIB-3

e

A,

N A A e e &

46.

47.

48.

49,

50.

51.

52.

53.

54,

TRW Defense Systems Group. Distributed Computing Design System (DCDS)
Methodology Guide (Ada Version). Huntsvillee TRW System Development Di-
vision, October 1987.

Valusek, John R. The DSS Cube. Class lecture in OPER 652, Decision Sup-

port Systems. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, March 1987.

----- . Concept Mapping. Class handout distributed in OPER 652, Decision
Support Systems. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1987.

----- . The Hook Book. Class lecture in OPER. 652, Decision Support Sys-
tems. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, April 1987.

Warnier, J.D. Logical Construction of Systems. New York: Academic Press,
1975.

Webster. Webster’s New Collegiate Dictionary. Springfield: G. & C. Mirriam
Company, 1981.

Wegner, Peter. “Dimensions of Object-Based Language Design,” OOPSLA ‘87
Conference Proceedings, ACM SIGPLAN Notices, 22, 12: 168-182 (December
1987).

Wiener, Richard and Sincover, Richard. Software Engineering with Modula-2
and Ada, New York: John Wiley & Sons, Inc., 1984.

Wirth, N. “Program Development by Stepwise Refinement,” Communications
of the ACM, 14, 4: 221-227 (April 1971).

BIB-4

Vita

Capiin Pasick D Pacves (R
A . 1573 @knlisted in the United

States Air Force in 1974. He served three years as an aircraft maintenance specialist
before cross-training into the computer programming specialty in 1977. Serving as
a computer programmer for the Directorate of Logi-tics, Air Force Data Systems
Design Center, and then as NCOIC of Software Support for the Intelligence Data
Handling System Branch of the Armed Forces Air Intelligence Design Center, he

received both the Air Force Commendation Medal and the Joint Services Commen-

dation Medal.

In 1981 Captain (then Staff Sergeant) Barnes received an Associate in Applied
Science in Data Processing from the Community College of the Air Force and was
selected to complete his undergraduate studies through the Airmen Education and
Commissioning Program. He graduated with “most high honors” from Oregon State
University in 1984 with a B.S. in Computer Science and attended Officer Training
at Lackland AFB Texas that same year. He received both the Air Force Achieve-
ment Medal and Air Force Commendation Medal while serving as Communications
and Simulation Software Programmer/Analyst for the PAVE PAWS System Pro-
gramming Agency, Tth Missile Warning Squadron, from July 1984 through April
1987.

Upon completion of his current graduate studies at the Air Force Institute of
Technology, Captain Barnes will assume new responsibilities as an instructor for the

Department of Computer Science, Naval Post Graduate School, Montcrey, California.

——.

VITA-1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THE PAGE
REPORT DOCUMENTATION PAGE pirrdanpt- ooy SN
y EPORT SECURITY CLASSIFICATION 10, RESTRICTIVE MARKINGS
- UNCLASSIFIED
2». SECURI W CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

Approved for public release;

ey
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE . . . « .
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/GCS/ENG/88D-1
0. NAME OF PERFORMING ORGANIZATION Wﬁ' 7a. NAME OF MONITORING ORGANIZAT!
School of Engineering AFIT/ENG
[6c ADORESS (Crty, State, and ZiP Code) 75. ADORESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

Y T T T YT YTy BT YT &Y VYT R E TV TR YT YW YT Tt P Y T YR T ST Ty —ar T
8s. NAME OF FUNDI ISPONSORbNGf 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
eiense

ORGANIZATION Strategic (i applicable)
Initiative Organization S/PI
% ADORESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUM.BERS

. The Pentagon

W T"“AOSK WORK UNIT
WASHINGTON, DC 20301-7100 ' ‘

PROGRAM
ELEMENT NO. ACCESSION NO.

11. TITLE (incluce Security Classification)
A DECISION-BASED METHODOLOGY FOR OBJECT-ORIENTED DESIGN

lgatnckmﬁles, Capt, USAF

et ——— A — - S ——
13a. TYPE OF RE_’ORT 13b. TIME COVERED 14. DATE OF REPORT _(Yoor, Month, Day) [15. PAGE COUNT
thesis FROM TO 1988 December 211

16. SUPPLEMENTARY NOTATION

17, COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and ld(ntiﬁ by block number)
FIELD GROUP SUB-GROUP Computer program documentation Computer systems analysis
12 05 Software engineering Flow charting

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: Thomas C. Hartrum
Associate Professor in Electricial Engineering

[20 DRSTRIBUTION AVARABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O uncLassiricounumiTed (X1 sAME As RPT. [oTIC USERS UNCLASSIFIED

| m Y T A S - TN

s e € Hartra RS Th) ZERLASHE™ A oM [TS P NG
DO Form 1473, JUN 86 Previous editions are obsolete. ¢ THIS PA
UNCLASSIFIED

S

e e e

e Am e

Abstract

The task of object-oriented development raises a new set of design problems.
Specifically: how to scope a problem based on objects rather than functions; how
to select the best objects; how to encapsulate data structures with the right set of
operations; and when to stop decomposirig a system into objects and begin describing
the algorithms that implement those objects’ behaviors. The difficulty of making
these decisions is increased when the requirements documentation was not developed
with an object-oriented paradigm in mind.

ni; object-

Althouga’/ several software development environments impleme
oriented design methodology, they seem concerned primarily with J‘f)rogramming
in the small” activities, or with providing capabilities for capturing, representing,
and storing design decisions once they are made. Recognizing the importance of
supporting design decision making, this study focused on the application of decision

support system concepts to formulating a methodology for object-oriented design.

This thesis describes an object-oriented design methodology based on the four
problems or decistons stated above. An object model structure is also defined to pro-
vide a foundation for organizing design information. The object model is described
by a set of databaserelations, and includes a three view graphic representation
providing block, detail and control flow graphs. 7~ (rp_) —

A prototype design tool was implemented to evaluate the methodology. Soft-
ware for the tool was developed using a PC based implementation of the Smalltalk
Object-Oriented Programming Language. Maximum use was made of decision sup-
port system techniques such as concept-mapping, storyboarding, the hook book,
and adaptive design. As a decision support system, the tool provides the software
developer with key requirements specification and software engineering qualitative
information to aid in the judgement and design decision making process.

