
DTIC
f ZLEC.E

A DECISION-BASED METHODOLOGY JAN 1 7 1989FOR

OBJECT ORIENTED-DESIGN &L %5

THESIS
Patrick Denis Barnes

Captain, USAF

AFIT/GCS/ENG/88D-I

[iUITUTION .TAT .ME A
Approved for pu lic releas.M

Distzibutio tn ied

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

{ AFIT/GCS/ENG/88D-1

DTIC
JAN 1 71983

L

A DECISION-BASED METHODOLOGY
FOR

OBJECT ORIENTED-DESIGN
Agcesion For

THESIS NTfS' " ,7
DTIC .

Patrick Denis Barnes L .
Captain, USAF J,

AFIT/GCS/ENG/88D- 1 By

Approved for public release; distribution unlimited

AFIT/GCS/ENG/88D-1

A DECISION-BASED METHODOLOGY

FOR

OBJECT ORIENTED-DESIGN

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Science)

Patrick Denis Barnes, A.A.S, B.S.

Captain, USAF

December 16, 1988

Approved for public release; distribution unlimited

Who am I, 0 Sovereign Lord, and what is my family that you have
brought me this far? King David, 2 Samuel 7:18

Just as David attributed his achievements and position to his Sovereign Lord,

I want to give recognition first and foremost to my God who has brought me so far,

and has made me who and what I am. What I've achieved through this effort is due

primarily to the grace and mercy of a God who loved me enough to rescue me from

my own selfish pursuits, and gave me the heart and desire to become all he wants

me to be through the person of his Son Jesus Christ.

A special note of gratitude belongs to my wife Brenda. Her compassion, per-

severance, sacrifice, and constant encouragement made possible the long nights at

the computer and the many extra hours I was able to devote to this research. I also

thank my four children: Jessica, Jeremy, James, and Jeanette for reminding me of

the importance of making family a top priority in spite of a demanding work load.

I would also like to thank Mike T., Bill, Nick, Mark, Mike F., and Norm who,

while working on similar efforts, were willing to take the time to meet together weekly

for mutual encouragement and prayer. Their friendship, uncompromising standards,

and lifestyle were personally challenging and added a special time of refreshing to

an otherwise mentally and emotionally taxing environment.

Finally, I thank my advisor, Dr. Thomas C. Hatrum, and my committee

members: Captain David Umphress and Captain Bruce George for allowing me the

freedom to follow where the research seemed to lead rather than constraining my

somewhat limited creativity. Their standards for integrity, quality, and perseverance

pushed me to exceed my preconceived limitations anc draw on previously untapped

resources to finish this work.

.(

Table of Contents

Page

Table of Contents. iii

List of Figures. iv

List of Tables v

Abstract. vi

1. Introduction. 1-1

1.1 Background 1-1

1.1.1 The Object-Oriented Paradigm 1-1

1.1.2 Object-Oriented Design (OOD) 1-2

1.2 Statement of the Problem 1-3

1.3 Scope 1-4

1.4 Research Approach. 1-4

1.4.1 Model Definition 1-4

1.4.2 QOD Methodology 1-5

1.4.3 Requirements for a Decision Aid. 1-5

1.4.4 Implementation and Evaluation of the Prototype. 1-6

1.5 Maximum Expected Gain 1-7

11. Models and Concepts. 2-1

2.1 Introduction. 2-1

2.1.1 Concept Mapping. 2-1

2.2 The Object-Oriented Paradigm 2-3

2.2.1 The Object-Oriented Paradigm in the Life cycle. 2-4

Page
2.2.2 Object-Oriented Programming (OOP)..... 2-5

2.2.3 Object-Oriented Design (OOD) 2-10

2.3 The Object Model 2-17

2.3.1 Definition of the Object Model 2-17

2.3.2 Representing The Object Model 2-26

2.4 Requirements Analysis and Specification Techniques.. 2-33

2.5 The Requirements Model 2-35

2.5.1 The Distributed Computing Design System.. 2-35

2.6 Decision Support System Techniques 2-39

2.6.1 Introduction 2-39

2.6.2 The Design Framework 2-39

2.6.3 Adaptive Design 2-41

2.6.4 The Utilization-Shapped Evaluation Model. 2-43

III. An Object Oriented Design Methodology 3-1

3.1 Postulates 3-1

3.2 Methods 3-3

3.2.1 Analyze the Problem to Determine a Solution

Strategy 3-5

3.2.2 Identify the Objects, Attributes, and Operations 3-6

3.2.3 Encapsulate Objects, Attributes, and Operations

into Modules 3-7

3.2.4 Decompose the Modules or Begin Detail Design 3-9

3.3 Rules 3-10

3.3.1 Heuristics for Identification 3-10

3.3.2 Heuristics for Encapsulation 3-15

3.3.3 Heuristics for Decomposition 3-16

3.4 Evaluation of the Methodology 3-17

iv

Page

3.5 A Sample Problem 3-18

3.5.1 Analyze the Problem 3-18

3.5.2 Identify Objects and Operations 3-20

3.5.3 Encapsulate Objects and Operations 3-25

3.5.4 Decompose the Modules or Begin Detail Design 3-31

3.5.5 Conclusion 3-33

IV. Requirements and Design of a Decision Aid 4-1

4.1 Introduction and General Requirements 4-1

4.2 Understanding the Decision Making Process 4-2

4.3 Selecting the Kernel 4-2

4.4 Representing the Kernel 4-4

4.4.1 Requirements for the OOD Entry/Exit Story-

board 4-4

4.4.2 Requirements for the Analysis Storyboard... 4-5

4.4.3 Requirements for the Identification Storyboard. 4-5

4.4.4 Requirements for the Encapsulation Storyboard. 4-6

4.4.5 Requirements for the Decomposition Storyboard. 4-6

4.4.6 Requirements for the Hook Book 4-7

4.5 Detailed Requirements: The Storyboards 4-7

4.6 Supporting the Kernel 4-14

4.6.1 The Database Requirements 4-14

4.6.2 The Modelbase Requirements 4-14

V. Prototype Implementation and Evaluation 5-1

5.1 Introduction 5-1

5.2 Hardware and Software Selection 5-2

5.2.1 Dialogue 5-2

v

5.2. Daabas.......................Page

5.2. Daabas5-3

5.2.3 Modelbase 5-4

5.3 Prototype Implementation. 5-4

5.3.1 Dialogue 5-4

5.3.2 Database. 5-8

5.3.3 Modelbase. 5-10

5.4 Evaluation of the QOD Decision Aid. 5-11

5.4.1 Decisions 5-11

5.4.2 The Mission, Users, and Environment 5-11

5.4.3 Choice of Evaluation Methodology 5-14

5.4.4 Evaluation Results 5-14

5.4.5 Conclusions from the Evaluation 5-23

VI. Conclusions and Recommendations. 6-i

6.1 Summary 6-i

6.2 Conclusions.. 6-3

6.3 Recommendations. 6-4

6.4 Closing Remarks 6-5

Appendix A. Executive Summary. A-i

Appendix B. QOD Decision Aid Programmer's Manual B-1

Appendix C. DCDS Requirements Specification. C-i

CA1 Preliminary System Specification C-2

C.1.1 Description. C-2

C.1.2 System Interface C-2

C.1.3 System Functions. C-4

C.2 DCDS DataDictionary C-6

0.3 DODS Graphic R-Nets and Subnets. C-25

vi

Page

Bibliography

Vita VITA-i

vii

List of Figures

Figure Page

2.1. A Concept Map Describing "The Concept Map" 2-2

2.2. The Software Development Process 2-4

2.3. The Object-Oriented Paradigm 2-6

2.4. The Attributes of Software Development Specifications 2-11

2.5. Software Development Methods 2-12

2.6. Bralick's Theoretical Object Model [10] 2-18

2.7. The Smalltalk Object Model [17] 2-21

2.8. An Object Model for Design 2-25

2.9. Booch Diagram Example (19]. 2-27

2.10. GSFC's Object Diagram Example (42] 2-28

2.11. Modular Design Chart Example [53] 2-29

2.12. APEX Petri Net Graph Example [2] 2-30

2.13. A Language Independent Object-Oriented Design 2-32

2.14. Major RSL Elements [46] 2-36

2.15. A Sample RNet [46]. 2-37

2.16. The DSS Cube. [47] 2-41

3.1. The Relationship Between Object-Oriented Design Decision Steps 3-4

3.2. User's View of the Temperature Monitor/Controller 3-18

3.3. Specification of the Temperature Monitor/Controller 3-19

3.4. The Temperature Monitor/Controller Synthesized View 3-20

3,5. Block Diagram for the Temperature Monitor/Controller 3-26

3.6. Detail Diagram for the Temperature Monitor/Controller 3-27

3.7. Petri Net Diagram for the Temp.-Monitor Module of the TMC 3-32

viii

! i l i___ __I I I i i , u, .

Figure Page

4.1. Feature Chart for the OOD Decision Aid 4-3

4.2. Storyboard: Entry/Exit for the OOD Decision Aid 4-8

4.3. Storyboard: Analyze the Problem 4-9

4.4. Storyboard: Identify the Objects and Operations 4-10

4.5. Storyboard: Encapsulate the Objects with their Operations . . . 4-11

4.6. Storyboard: Decompose the Modcles 4-12

4.7. Storyboard: The Hook Book Browser 4-13

4.8. An E-R Diagram for the Object Model 4-15

4.9. Relations for the Object Model 4-16

5.1. Block Diagram for the OOD Decision Aid 5-5

5.2. Detail Design Chart for the OOD Decision Aid 5-6

5.3. OOD Database Internal Structure 5-10

5.4. User Interface Evaluation by Question 5-21

5.5. User Interface Evaluation by 'tater 5-22

C.1. R.net diagram for TEMP.NET C-25

C.2. Subnet diagram for CONTROL-FAN C-26

C.3. R-net diagram for TIME..NET C-27

C.4. Rjnet diagram for TERM-NET C-28

C.5. Subnet diagram for CREATE.PLOT..FILE C-29

ix

List of Tables

Table Page

2.1. Object Classification [10] 2-19

3.1. Temperature Monitor/Controller Object List 3-21

3.2. Temperature Monitor/Controller Operation List 3-23

3.3. Temperature Monitor/Controller Data-Structures 3-32

5.1. Life Cycle Evaluation 5-12

5.2. Evaluation Methods and Measures 5-15

x

AFIT/GCS/ENG/88D- 1

Abstract

The task of object-oriented development raises a new set of design problems.

Specifically: how to scope a problem based on objects rather than functions; how

to select the best objects; how to encapsulate data structures with the right set of

operations; and when to stop decomposing a system into objects and begin describing

the algorithms that implement those objects' behaviors. The difficulty of making

these decisions is increased when the requirements documentation was not developed

with an object-oriented paradigm in mind.

Within the past few years, several software development environments have

been proposed or developed implementing an object-oriented design methodology.

Many, however, are concerned only with "programming in the small" activities, or

with providing capabilities for capturing, representing, and storing design decisions

once they are made, rather than with helping the designer make sound design deci-

sions. Recognizing the importance of supporting design decision making, the result

of this study was formulation of a methodology for object-oriented design using the

concepts of decision support systems.

This thesis describes an object-oriented design methodology based on the four

problems or decisions stated above. These decisions are summarized as analysis,

identification, encapsulation, and decomposition. An object model structure is also

defined to provide a foundation for organizing design information. The object model

is described by a set of database relations, and includes a three view graphic repre-

sentation providing block, detail and control flow graphs.

A prototype design tool was implemented to evaluate the methodology. Soft-

ware for the tool was developed using a PC based implementation of the Smalltalk

Object-Oriented Programming Language. Maximum use was made of decision sup-

port system techniques such as concept-mapping, storyboarding, the hook book,

xi

and adaptive design. As a decision support system, the tool provides the software

developer with key requirements specification and software engineering qualitative

information to aid in the judgement and design decision making process.

xii

A DECISION-BASED METHODOLOGY

FOR

OBJECT ORIENTED-DESIGN

I. Introduction

Escalating software development and maintenance costs as well as demand

for software solutions to increasingly complex problems have mandated new tech-

niques for engineering reliable, maintainable computer software. One approach to

improving software quality is the use of the object-oriented paradigm for design and

programming. This thesis is concerned with the design problem.

1. 1 Background

1.1.1 The Object-Oriented Paradigm. The term "object-oriented" probably

became best known through the simulation and prototyping languages SIMULA

and Smalltalk developed in the 1970s [37]. The object- oriented paradigm has been

applied widely and can be seen in the techniques of a variety of current software

application areas. Examples are the database entity-relationship-attribute model,

the frame-based approach taken in artificial intelligence, and simulation methods

employing a similar entity-attribute-activity model.

Simply put, to say a method is object-oriented is to say that its representation

of the problem space consists primarily of objects and their related attributes and

operations 110]. This approach may be contrasted with procedural, data-flow, or

data-structure paradigms.

One of the major applications of the paradigm based on the Smalltalk research

is object-oriented programming (OOP). OOP research has involved the development

1-1

of a new generation of languages based on objects, which are organized into classes,

and inherit attributes and operations called methods from other objects [52]. Rather

than relying exclusively on the logic constructs of sequence, selection, and iteration,

the main control structure is the message which instructs an object to perform

some method on its private data. While such languages have not yet entered the

mainstream, the principles discovered and techniques employed in OOP may be

applied to design of systems to be constructed using more general purpose languages.

1.1.2 Object-Oriented Design (OD). The goal of design is to produce a

model or representation of a system at a level of detail such that it can be built [37].

Thus a design of a software system is a model or representation in terms that will

provide sufficient guidance and understanding to the programmer who will write the

program. In addition to the end product, design can also be thought of as either the

process or activity of designing. A methodology for design must therefore describe

both the product and the activity; in our case, an object-oriented representation and

the steps required to develop that representation.

Pressman [37] goes on to further describe the design process as combining

intuition and judgement based on experience in building similar
entities, a set of principles and/or heuristics that guide the way in which
the model evolves, a set of criteria that enables quality to be judged, and a
process of iteration that ultimately leads to a final design representation.

Pressman's definition indicates that in addition to defining a model and some de-

sign steps, an environment is needed to support judgment and choice, embody de-

sign principles and/or heuristics, guide an iterative development process, and enable

qualitative evaluation of the finished product.

Several methodologies have been proposed for an object-oriented approach to

design. Examples are [19], [14], [111, (12], [42], and [2].

When an object-oriented approach is applied to the design of computer soft-

ware, a clean, component level abstraction of the design solution is developed in

1-2

terms of problem space entities rather than data processing constructs. Actual data

structures and algorithms are hidden within the objects and only their outward be-

havior and interrelationships are shown at the architectural level. The desirable

software engineering principles of abstraction, information hiding, and modularity,

are therefore directly embodied within or enhanced by the object-oriented paradigm

[37].

OOD's ability to describe concurrent, complex, and abstract systems has gen-

erated considerable interest in the software engineering community. Of particular

interest to the Department of Defense is the use of object-oriented design for im-

proving the development, reliability, and maintainability of programs written in the

object-based general purpose programming language-Ada [19].

1.2 Statement of the Problem

As a partial life-cycle methodology applying primarily to preliminary design'

[37], OOD's lack of compatibility with established requirements and analysis tech-

niques, such as SADT [40] and Structured Analysis [15], have left it virtually unused

in an otherwise rapidly expanding Ada environment for the DOD. To get OOD out

of the classroom and into the hands of developers, techniques must be developed for

transitioning to OOD from these accepted analysis methods.

While several automated tools have been or are currently being developed for

OOD [14] [22] [2], they are machine and language dependent., and unable to integrate

efficiently into the users' existing environment. Conversely, while many programming

support environments are extensible, they provide mostly implementation-oriented

aids such as code generators and context-sensitive editors [32], rather than aids for

the choices and decisions that must be made during design. Both extensibility and

design decision support are needed.

'Virtually all OOD methodologies use conventional techniques for detail design such as psue-
docode or tow diagrars.

1-3

Finally, since OOD methodologies have yet to be proven over a significant

number or spectrum of software development efforts, it is impossible to say what the

right or beat OOD methodology is. A significant investment has been made by both

the DOD and industry in building expensive software development environments.

Many such products, based on unproven methodologies, are often little used or en-

tirely abandoned. An environment with the capability to adapt to variations in the

methodology is needed. An adaptive approach would take a first cut methodology,

quickly prototype it, then modify it over a period of time until a proven technique

is developed.

1.8 Scope

The problems of transition, integration, and adaptation discussed in the previ-

ous section are the focus of this effort. A methodology is presented for transitioning

to an object-oriented design from a formal requirements specification. The method-

ology is implemented in a prototype environment which emphasizes software design

phase decisions. The environment demonstrates the benefits of on-line access to

the requirements analysis database information. Finally, the user interface is user

adaptive---even to the extent of altering the OOD methodology.

This thesis is not a defense of object-oriented design, nor a proof of concept

for the object-oriented approach in general. Rather, we assume the validity of the

object-oriented and software engineering principles involved, and define and proto-

type a generic, language independent OOD methodology and environment, suitable

for adaptation and research.

1.4 Research Approach

1.4.1 Model Definition. The first step to developing a transition methodology

was to understand and define the requirements and design models to be used. A

(thorough review of the literature was performed to delineate generic design and

1-4

requirements specification models. A definition and representation of the object

model which best applies to design was selected. The resulting model descriptions

and definitions are presented in Chapter II.

1.4.2 OOD Methodology. Once the definitions were established, a methodol-

ogy was developed for OOD with the following objectives:

1. The methodology must provide a framework for implementing current object-
oriented concepts.

2. The methodology must be independent of the paradigm used to state the sys-
tems requirements.

3. The methodology must be independent of the programming language to be
used to implement the system.

4. The methodology must be able to adapt to new advances in object-oriented
design concepts and practices.

5. The methodology must be useful for producing a complete design specification.

6. The methodology must be easy to use.

Validation of the methodology was accomplished through inspection, evalua-

tion of a sample problem, and evaluation by a team of software engineering experts.

1.4.3 Requirements for a Decision Aid. Analysis of the design problem itself

revealed the significance of the decisions involved in software design. That is, to

produce a good design, good decisions must be made. Pressman's definition quoted

earlier confirms this assessment. We concluded then, that an effective support en-

vironment must support the decision aspects of design. This led to the suggestion

that the concepts of decision support systems (DSS) should be used to develop a

prototype Decision Aid for OOD. Applicable DSS concepts are discussed in detail

in Chapter II.

The methodologies for developing DSSs were used to determine the require-

ments for the prototype decision aid. The problem was concept mapped [48] and a

1-5

feature chart (41] and storyboards [51 were developed to represent the user decision

processes embodied in the methodology.

The kernel system to implement as a prototype was chosen based on the concept

maps of the requirements and design models, the storyboards representing the OOD

methodology, and the capabilities of the environment chosen for implementation.

While a formal statement of requirements was produced, in keeping with the

adaptive or iterative design philosophy [25], these requirements were never considered

"final" or "frozen". Built into the DSS was a Hook Book (491 tool which was used

to discover and record possible modifications, problems, and corrections-many of

which were implemented, thus changing requirements. Chapter IV presents detailed

requirements for the decision aid.

1.4.4 Implementation and Evaluation of the Prototype. Design of the deci-

sion aid began with the high level storyboards and feature chart and contined with

the choice of components to be used to build the modelbase, database, and dialogue

portions of the system. The specification for the dialogue component required that it

be easily modifiable, able to support fast prototyping of a window and mouse based

environment, and able to integrate with the existing environment. The Smalltalk/V

Object Oriented Programming System (OOPS) was chosen to support this compo-

nent and was inplemented on a Zenith Data Systems Z-248 micro-computer.

The DCDS [46] software development environment was used to support the

initial requirements specification database. Hardware and software configuration

problems prevented direct integration with the DCDS database, consequently the

requirements were downloaded from the database to text and graphics files for ac-

cess by the Smalltalk environment. The prototype's modelbase only consists of

textual data for the heuristics and consistency checking aspects of the tool; so it was

implemented via Smalltalk text windows. A detailed discussion of the design process

and rationale for specific design decisions are presented in Chapter V.

1-6

Formal evaluation criteria for the Prototype was based on the Utilization-

Oriented Evaluation model presented in [38]. This methodology is based on decisions

which will be made regarding acceptance of the thesis, further research, etc. and

applies specifically to the evaluation of DSS. Evaluation criteria and results are also

presented in Chapter V.

1.5 Maximum Expected Gain

This thesis presents object-oriented design as a practical, and hopefully, us-

able design technique which extends, rather than requires obsolescence of current re-

quirements, design, and programming methods and tools. The definitions and meth-

ods presented will aid a software developer's understanding of the object-oriented

paradigm and its relationship to more familiar software development techniques.

The DSS techniques employed demonstrated their usefulness in developing

software design support systems as well as application to other design environments.

It is hoped this research will spur continued investigation of both OOD methodologies

and DSS techniques by providing a test-bed for such work. Additionally, the tool

may be used to support computer-aided instruction for OOD and related software

engineering concepts.

1-7

II. Models and Concepts

2.1 Introduction

The purpose of this chapter is to describe the concepts and underlying models

foundational to the thesis. We will first look at the object-oriented paradigm and how

it has been applied to programming (OOP) and design (OOD). Next, a general model

for an object-oriented design will be presented. A survey of requirements analysis and

specification techniques follows along with a general model for stating requirements.

Finally, we will describe the decision support techniques used to develop the decision

aid.

Before getting into these concepts, we must describe the technique we used to

understand and present them: concept mapping.

2.1.1 Concept Mapping. A concept map is a simple unstructured entity-

relationship diagram with entities represented by ovals and relationships represented

by directed arrows [34]. Following arrows from entity to entity provides a means

for quickly identifying the relationships between those entities. Concept maps can

describe one or more main entities, identified by directed arrows mostly pointing

away from the entity. The concept maps in this thesis use a darker oval to represent

central concepts for clairity.

The concept map is not only a means of representing an idea or stating a

proposition, but can be used to elicit information from a knowledgeable source.

Concept maps have been used by analysts, for example, in problem understanding

and requirements determination for developing decision support systems [48].

The -oncept map in Figure 2.1 describes ideas about concept maps discussed

by McFarren in [48]. The figures in this chapter, almost all concept maps, present an

excellent insight into the material covered. That the information can be assimilated

2-1

Multiple Decision Expert
Users Maker

ofTime results in created
chOge to from

Persectve imcionConcept Two FormsPesetv ucinMap us"s Of Words

a e whsn ich r cobnd

Figure s 2..A aocptMpie scibn TThe Onct Map" nin

to toEvent Wor2

much quicker via the concept maps than by reading the text is a demonstration of

the value of the tool.

2.2 The Object-Oriented Paradigm

The object-oriented paradigm was introduced briefly in the previous chapter.

We said that it was a model for representing something in terms of its entities or

objects, their attributes, and the operations which they may perform or which they

suffer of other objects.

The object-oriented paradigm can be used to present a static view of the com-

ponents which comprise a problem domain, as well as the behavior of such compo-

nents under various conditions. A functional view, on the other hand, presents the

steps or processes which must be performed to accomplish a single objective. In

a mathematical sense, the object-oriented paradigm is analogous to sets while the

functional paradigm is comparable to algorithms. Which representation to use would

naturally depend on what we are trying to represent and why we want to represent

it.

For four decades our computer software systems have been designed and pro-

gramed functionally. That is, with some objective in mind, a series of steps is arrived

at which accomplishes that objective, i.e., an algorithm. This method works fine for

programs which accomplish a single function, or a sequence of related functions. But

in the real world, events consist of complex interactions between entities performing

possibly many functions simultaneously, each of which affects cae another's state

and subsequent behavior.

Functionally developed software systems that attempt to represent or control

real world entities exhibit weak cohesion regarding the current state or behavior

of those entities. State information is often scattered throughout global storage or

exists only in temporary variables, which then become control flags. The presence

of many such control flags promotes tight coupling. Procedural behaviors are of-

2-3

Figure 2.2. The Software Development Process

ten dependent on the current state of global data which may be modified by other

seemingly unrelated procedures. These problems result in software which is unreli-

able an'd difficult to maintain. An object-oriented approach to software development

shifts the emphasis from the functions to be performed to entities which must be

represented.

In the following sections we will focus on life cycle implications of the paradigm

with emphasis on programming and design.

2.2.1 The Object-Oriented Paradigm in the Life cycle. Figure 2.2 depicts the
classic "waterfall model" of the software development life cycle as a multi-step process

of translating user requirements into a computer language. What this implies is that

2-4

.. . . L_ ,ram m,,, mmm Imi mm m • mmm mmlmwDes-- i- n

there is a semantic gap between the users' view of the problem and the computer's

implementation of a solution. Each of the first several phases presents a new view

or language level representation of the system and requires translation from the

previous language. Many of the problems in software development stem from these

translations. Because translating is a communicative process, it is fraught with

ambiguity and misunderstanding [10].

It is this ambiguity software engineers would like to reduce or eliminate through

use of the object-oriented paradigm. In this attempt, it has been applied to both

design and programming, and researchers are currently exploring object-oriented

requirements analysis techniques. A major concern is where the paradigm can be

applied beneficially, and where it only muddies the water.

Figure 2.3 gives an overview of the application of object oriented concepts to

design and programming. In addition, it shows the desirable software engineering

concepts embodied in the paradigm. In his thesis examining the theoretical founda-

tions for the paradigm, Bralick [10] states, "The object-oriented paradigm provides

a natural structure for describing and decomposing systems." By using this more

natural representation, the object-oriented paradigm lets us simplify translation by

mapping language terminology more closely to that of the user.

Since the paradigm was first articulated in the context of programming, it's

only natural that the first major research emphasis should be in developing object-

oriented programming languages [13]. Because many object-oriented principles stem

from this background, we will take a look at object-oriented programming before

moving on to the design issue.

2.2.2 Object-Oriented Programming (OOP). In OOP an object is "some pri-

vate data and a set of operations that can access that data" [13]. OOP systems

consist primarily of many such objects communicating with one another via mes-

sages which invoke the target object's operations or methods. These messages act

2-5

im terms of Lanuage

requires

Lanuaet Solution
Independent Space Slto

Problem Solution is applied -0ana
Spce0-0 Pornuni

to 0-0 a is applied a ~ aatrzdb

D~gn Data

Modularty Inorato Hiig Iheiac

Hidin can limits
promotespromotes specify access eue

to allows

Abstraction AsrcCoeruntirn

promotes and land

through thoI ' n
Understanding Cileeb

through commuixicating
. ' via

Figure 2.3. The Object-Oriented Paradigm

2-6

like mathematical functions, i.e. they return a value or the result of the operation

and may require one or more parameters. In this sense, they are not very differ-

ent from conventional function calls. In fact, an OOP method's detail code might

look much like that of any modern programming language such as Pascal. We will

soon see, however, that OOP languages possess or apply certain characteristics very

differently than do conventional procedural languages.

It is generally agreed that to be object-oriented, a programming language must

exhibit four characteristics: information hiding or encapsulation, data abstraction,

dynamic binding, and inheritance of attributes and methods [361. The implications

of these principles to the capabilities of the language are what differentiates an OOP

from conventional procedural languages.

Information hiding is more than the ability to modularize code. OOP requires

the ability to represent objects, their state memory and operation code in a single

module. Procedures in most languages cannot retain the state of local variables.

Using global variables or passing pointers to external data only tightens the coupling

between modules which is something we would like to avoid.

Data abstraction is the ability to represent and manipulate data structures in

terms more analogous to their real world counterparts. More than just using mean-

ingful labels for variables, abstraction requires the ability to define new types that

relieve the programmer from having to know or mess with the underlying structure.

Abstraction, as such, can be found in most modern procedural languages such as

Pascal and Ada. However in an OOP language, the idea is carried a step further by

requiring that an object only be manipulated through its operations [52].

Hybrid languages like Ada have been extended to support the structure of

programs such that, at a high level, data structures may be private or hidden from

other objects. However, in an OOP language such as Smalltalk, even the smallest

number or character is an object manipulated through messages invoking its associ-

ated methods. Procedural languages explicitly define most operations through the

2-7

language's syntax rules, and implement them in the compiler's elaboration of the

code. In an object-oriented language, even the simple operations of "+" and "-"

are implemented as methods on objects such as integer or floating point and can be

modified for new classes which might inherit such operations.

Thus while languages like Ada explicitly define constructs to support the rep-

resentation of objects, the object-oriented paradigm is inherent in languages like

Smalltalk. This is not to say one method is preferred over the other, but there

is a clear distinction that must be understood in order to appreciate the concepts

involved in OOP.

Dynamic binding requires that a data structure not be bound to a type or

memory location or even size until program execution. This is just the opposite

of the requirement for strong static binding found in most modern programming

languages such as Ada, and involves a tradeoff between structure and flexibility. Its

primary benefit lies in prototyping and simplifying experimentation when an object's

exact structure or behavior may be initially unknown [52].

Inheritance and class refer to the static relationship between objects. The

concept of objects belonging to some class allows us to categorize objects by their

common structure and behavior as well as to create new classes by altering the

characteristics of some existing class. Inheritance differs from object cloning or

generic code instantiation in that we reuse unchanged behaviors by referencing rather

than reproducing the code. It differs from use of library routines since operations

are localized and automatically available to objects in the class without having to be

explicitly included and called. Localizing code in a class structure and inheritance

effectively reduces code bulk and simplifies program construction and debugging.

However, it achieves this at the expense of increased overhead and tightened coupling

of incrementally defined structures and operations within the classes.

We have highlighted some of the benefits and drawbacks of OOP languages

and indicated why there exists such debate over which languages are object-oriented,

2-8

class-oriented, object-based, or excluded completely [521. Our objective, however, is

to see how OOP work relates to our main interest--design.

Cox states that his intention in using OOP is to try to avoid design altogether

through reuse of code [27]. This would eliminate a level of language in development

by using a programming language at such a high level that user requirements could

be programmed directly. As language constructs become orders of magnitude more

powerful, fewer are needed to build a system. Systems can thus be developed more

quickly, are simpler and more reliable, require less maintenance, and programmers

can become more productive. This goal is similar to the automatic programming

approach which requires a language-based requirements specification which can be

automatically translated into executable code [6].

The problem with both concepts is that historically, as components have be-

come more powerful, rather thai accepting simpler systems, users have wanted even

more powerful and complex products. No one would suggest, for instance, that the

advent of the 80186 microprocessor, which replaced about 20 individual chips, issued

in an age of simple, automatically constructed computers. It merely provided room

for more memory, co-processors, etc. Today's micros are just as crowded inside as

yesterdays were; they just do a lot more. The same can be said for software. A few

years ago, 64 kilobytes of user memory appeared to be an upper bound for micro-

computer applications. Try to find a full featured word processor or spread sheet

program for today's micro that will run in 64 K!

Thus, no matter how high-level we make the languages, there will always be

larger and even more complex systems required whose efficiency and performance

requirements dictate a rigorous software design be performed prior to programming.

The application of OOP has therefore been toward programming in the small, and

design has just not been a significant topic of discussion. Only within the last few

years have we begun to see object-oriented design issues raised [27]. We will explore

some of these issues in the next section.

2-9

2.2.3 Object-Oriented Design (OOD). Referring back to the waterfall model

of Figure 2.2, we see that design is concerned with translating a requirements specifi-

cation into a design specification. As we said in the introduction, both the "product"

of design as well as the "process" must be addressed. We will first look at general

attributes of the products involved in OOD, then explore the principles which apply

to the process. A complete OOD methodology will be presented in Chapter III.

Any methodology for translation must take into account the languages we are

translating from (the requirements specification) and to (the design specification).

Figure 2.4 shows the basic attributes of these products.

In the general sense, all software requirements documents consist of at least a

textual functional specification and an interface description. In addition, they are

often complemented by graphical flow diagrams and/or a data dictionary. In the

same way, software designs, regardless of methodology, must depict the modular

architecture, the interfaces between modules, and the flow of control which describes

the dynamic behavior of the system. A complete object-oriented design specification

must represent all three of these attributes. We will describe the specifics of an OOD

specification later in this chapter.

Knowing the components of the specifications, we can address the design pro-

cess itself. The concept map of Figure 2.5 depicts various methods currently in

use for carrying out the processes of analysis, design, and programming. From this

diagram we can see the various underlying models or paradigms upon which the

methods are based. Several questions are also brought to mind: "Is there a 'best'

method for all problems?" "Are certain methods appropriate only to certain classes

of problems?" "Should a single paradigm be used throughout the lifecycle?" We

may not have definitive answers to these questions, but assuming that the object-

oriented model is good, we hope to answer the question, "Can OOD be used without

requiring object-oriented analysis and programming methods?"

2-10

Petri
Net

Flow

Object Chart's P D L

Oriented represented by

transforms Control Flow
Require- into
specificati

composed of

has one or more

Design
Specification

Data Textual composed of composed of

Dictionary ional S

composed composed of Interfaces
Graphic Of Environmen

Representation Interface
Modules

define
composed of COMPOSerl Df betweer

Nouns encapsulate

Data Flow

Relationships

Modifiers

Functions

Objects

control Verb@
Flow

Attributes

Operations

Figure 2.4. The Attributes of Software Development Specifications

2-11

Logic-Based Procedural

N

Object
Oriented Methods uses various

Progranuni-g

transforms
User Requirements into
Needs Specification Design

transforms Specification

Of
produces into

Design Code

Analysis
uses various

uses various

Methods

Methods

examples

examples

Language
Oriented

Structured Jackson Structured
Analysis Design based

SR M SA T Object based Jackson on

Oriented on

based based based based based
on on on on on based

Data Data Functional on

Flows Struct mpositi Language

Constructs

Software Activities Objects and Data
Functions Operations Structures

are rtpreveril-kina- for the are represeatations for the

User

Figure 2.5. Software Development Methods

2-12

and rationale for specific design decisions are presented in Chapter V.

1-6

Just as there are general characteristics of specifications, there exist general

software engineering principles which apply to the design process. Pressman [37] lists

those specifically addressed by OOD as abstraction, information hiding, and modu-

larity. While the principles themselves are not new, he states, "only OOD provides

a mechanism that enables the designer to achieve all three without complexity or

compromise." We have already seen how these principles can be compromised when

certain classes of systems are developed functionally.

Comparing Pressman's list of principles with OOP characteristics reveals some

parallels and some differences. This can be attributed to the distinction between the

design and programming activities. Dynamic binding and inheritance are excluded

from Pressman's list-presumably due to their strong implementation-orientation

and applicability to experimental development methods which avoid a formal design

phase. However, we believe inheritance may play an important role in design as well.

2.2.3.1 Abstraction. When describing a system, the first step is to sim-

plify or narrow its scope so we can understand it at its highest "level of abstraction.".

As we go into more detail, our abstraction changes. With OOD, our abstraction is

in terms of its natural components-referred to and described in their own prob-

lem domain terminology, rather than as a set of processes needed to carry out the

purpose or objective of the system.

Each component or object is characterized by its behavior and those assertions

which may be made about its state. This state can change when the object suffers

or performs some behavior. Objects, behaviors, and the attributes which represent

types of assertions can be complex and thus composed of simpler sub-components.

Abstraction also lets us take a "black box" view of components of the system

at their highest level. That is, we need not concern ourselves with low level details

contained within the component. This component view enables creation of libraries

2-13

of reusable parts or sub-parts, reducing the number of levels of abstraction needed

when decomposing the system.

2.2.3.2 Modularity. The concept of decomposing a system into simpler

modules has been around for four decades [37]. The problem is not whether or

not to modularize, but how to encapsulate system components into weli structured

modules.

Traditionally, modules were determined by the functional decomposition of

the system, i.e., mapping functional requirements directly to the partitioning of

the design. In OOD, however, a module is identified as a data structure and the

operations that act on it. Both the data structure and its operations are co-located

in that module or object. This gives OOD modules strong cohesion.

Cohesion is strongest when modules perform a single function [37]. In proce-

dural designs, cohesion may be strong at the lowest level, but for large problems,

hierarchical structuring requires combining activities such that at higher levels co-

hesion is weak. These high level functions are often described in such arbitrary and

ambiguous terms as "Process-Message". With OOD we say a module has strong co-

hesion if it represents a single entity. Even at the highest level of a system composed

of a set of communicating objects, the system itself can be considered a single object.

A complex top level object such as "Communications.System" is neither arbitrary

nor ambiguous and describes a very specific problem domain entity.

2.2.3.3 Information Hiding. Not only can details be hidden by levels

of abstraction, they can also be hidden and protected from other components. In

OOD, a component cannot access another's private data structure, only its visi-

ble interface. This promotes the principle of "loose coupling" in that it eliminates

hidden dependencies between modules. Information hiding carries implications for

development and maintenance, as well as reliability of operation.

2-14

Once a module's interface has been determined, lower level design decisions are

isolated to a specific component of the system and do not affect development of other

components. This characteristic, called "functional independence," makes object

behaviors straight forward, simplifies testing, and makes systems more reliable. Since

the effects of a change are localized, debugging and maintenance are also streamlined.

2.2.3.4 Inheritance. In OOD, objects are determined from the prob-

lem domain rather than a solution-space class hierarchy. Operations and attributes

aren't inherited, they are observed through analysis of the object's discernable be-

havior within the scope of the problem. As such, inheritance doesn't seem to apply

in the analysis, identification, and encapsulation of objects. However, once the spec-

ification for an object is developed at its highest level, inheritance may be used in

the decomposition, or rather construction of the object. Seidewitz points out that

inheritance should be hidden in design through this type of bottom-up application

[27].

We are speaking of the reuse of concepts or frameworks here rather than the

reuse of code. That is, if we recognize in an object a familiar structure and behavior,

we need only specify that this new object is an instance of some known class of

objects with possibly some minor modifications. The decision to refer to the known

class is based on the significance of the differences attributed to the new object, i.e.,

the cost/benefit of modification versus redesign.

While Pressman offers an example of design using inheritance involving ge-

ometric shapes [37], many real system involve interacting dissimilar objects which

do not fit into such a neat class hierarchy. The author's experience indicates that

inheritance in design is seldom formally used since supporting resources are not yet

widely available. Formalization would require a library of generic software module

designs which would need to be maintained, cataloged, and readily available in the

designer's environment. Informally however, a software engineer often applies the

2-15

essence of inheritance by recalling a previous design, or retrieving one from some

previous work, and massaging it to fit the new problem. This type of reuse improves

productivity and should be supported in any modern design environment.

2-16

2.3 The Object Model

In this section we will formally define the underlying object model used for

development of the thesis and describe its representation in a design specification.

2.3.1 Definition of the Object Model. All along we have been using the terms

"object", "operation", and "attribute" to describe components of the object model.

We have also mentioned the additional terms "method" and "message". We have

referred to several informal definitions used for these terms based on the author and

context of the discussion. But since definitions vary slightly from author to author,

it is necessary to establish a working definition of the object model for our purposes.

We begin with two definitions of the object model: Bralick's theoretical model

[10] and the Smalltalk model [20], then proceed to define a model appropriate to

design. We chose Bralick's model because it seemed to be the only attempt to

provide a rigorous, firmly founded definition of the paradigm. The Smailtalk model,

on the other hand, seems to be the defacto standard to which all other proposed

implementations of the paradigm are measured.

2.3.1.1 A Theoretical Object Model. Bralick's object model is repre-

sented in Figure 2.6 and the components of the model are defined as follows:

object A unique entity composed of an identifier, a set of attributes, a set of
behaviors, and a set of objects, and having a link to its parent object.

attribute A property of an entity or object which associates a value from a domain
of values with the entity at a point in time. A such, it serves to limit, identify,
or describe an object. An attribute is composed of an identifier, a value, and a
set of attributes, and has a link to its parent attribute.

behavior An action an object can perform which results in a change in the state
of the attribute(s) of some object. A behavior is composed of an identifier, a
set of attributes, and a set of behaviors, has a link to its parent behavior, and
may map to an operation.

identifier An arbitrary string which uniquely identifies an object, behavior or at-
tribute within some context.

2-17

u ren as e a have Ar ma e o somejec i

hav a

likA ascato f netiywthteparentorwnrfth set to whchth

entityfbelon pgs.

dfin revealkhef re ivat Objects &canbe

posi&l aus r Arbutesr strngf

for ae n have abet

constructed ofr decomposed into sub-objects; behaviors can invoke one or more

sub-behaviors; and attributes can be described generally, then gradually broken down

into increasingly complex data structures. The model also supports relationships

2-18

ma b ayb

. ~i a &,m m ~ m| m| i

Table 2.1. Object Classification [10)

Object Affects Affected By
Type Others Self Others

Static N N N
Passive N N Y
Small N Y N
Weak N Y Y
Demon Y N N
Interactive Y N Y
Sovereign Y Y N
Complex Y Y Y

between objects through their attributes. That is, since an attribute's value can be

a string, it can act as a reference to another object's identifier.

Bralick also demonstrated the paradigm's ability to represent any computable

function, i.e., it is at least as powerful as a Turing Machine. This is what we need

in design: a medium powerful enough to represent any problem in its own natural

terms, rather than squeezing it into the restrictions or terminology of a programming

language or methodology.

Rather than limit an object to only representing a state machine, Bralick lists

eight general classifications of objects based on the nature of their behaviors. These

types are listed in Table 2.1. This might be considered an extension of Booch's

classification of objects as actors, agents, and servers, and of operations as construc-

tors, selectors, and iterators [8]. Such classification schemes can be very useful in

determining how to best associate objects with the appropriate operations.

Attempting to use the model for design reveals two significant limitations.

First, is a lack of an explicit means for describing object interactions. Objects exist,

they behave, they have state, they can be complex, but they have no means of

executing the behaviors they require or suffer of other objects.

2-19

Second, the model suffers from being too ambiguous for use in design. For

instance, a single data structure may be described variously as an object with a set

f attributes, a single attribute which itself contains a subset of attributes, a set

of sub-objects which each have attributes or sub-objects, etc. Such flexibility does

not provide a designer with a clear picture of how to proceed in defining an object.

Although this ambiguity may be useful for some purposesi , precise communication

is the objective of design.

2.3.1.2 An Object Model for Programming. The Smalltalk model, shown

in Figure 2.7, is not so clearly spelled out or defended theoretically as Bralick's

model; however, it does effectively accomplish its intended purpose-implementing

an object-oriented language. This is of significance to us since we require a model

capable of representing the real world complex interrelationships between objects.

From [201 and (171 we present the fo[lowing definition:

object A self-describing, protected data structure which encapsulates information
and pro, ides functionality. Every object is an instance of some class.

class A program module which defines the behavior of similar objects by specifying
the variables they contain and the methods available for responding to messages
sent to them. Classes are also objects contained in global variables so they can
be referred to in expressions. Classes are arranged in a hierarchy where each
class is a subclass of some other class or the root class called Object.

subclass A class which inherits the functionality of all its superelasses in the hi-
erarchy. Each class builds on its superclasses by adding its own methods and
variables.

variable A container for a single object which can be of three kinds: instance,
temporary or shared.

instance variables Represent the internal state or private memory of an object
and may be referred to by name or by an integer index. Each member of a class
has its own separate instance variables which exist for the life of the object.

temporary variable Created in and exists for the lifetime of a method; and act
as method arguments, method temporaries, or block arguments.

I Bralick cites human communication as being ambiguous as an example of the value of flexibility
in the model [10]

2-20

Shared Message

is variables Receiver Selector Arguments
global Object

with share consist of
Class other

are
instances Messages

is a of a Objects
we performed

Program m response to

Module have sequence of Expressions
asociated

provides
c ete are Algorithms which may beProblem composed

Solving Of
Capabilit Literals

Instance are

Variables
Code

which
have a Methods Blocks

to
other Type Variable

A are activate Names

MAY
be elementary Message

Temporary Expressions
Pointers Bytes Variables

may be

Words Method Block
Arguments Arguments

Figure 2.7. The Smalltalk Object Modd [171

2-21

shared variable Objects defined in dictionaries or pools which are accessible by
other objects. Global variables are available from every object while class vari-
ables are only available to the class, subclasses, and instances of the class and
its subclasses.

method An algorithm performed by an object in response to receiving a message.
A method may change that object's state or send messages to other objects.
Class methods implement messages sent to the class, while instance methods
implement messages sent to instances of the class.

message A request for an object to perform an operation. Identified by a message
selector, it specifies what to do, but not how an operation should be performed.
The receiver of a message is either the class object or an object that is and
instance of the class that defines the method.

From the definition, we can immediately see the implementation and language

specific features of the model. We can also see most of the elements of the theoretical

model. For example, the instance variables represent both an object's set of sub-

objects and its set of attributes, which, since they themselves represent objects,

provide for a recursive decomposition. An explicit decomposition of methods into

sub-methods is not given. However, since methods may send messages to their own

or other objects, invoking other methods, complex behaviors can be described.

Through messages, Smalltalk provides a means of representing the interrela-

tionship between objects. While Bralick addresses this subject in his thesis, he makes

no explicit provision for this interaction in the model. The problem with the concept

of messages is that it limits object interaction to a single kind, which may not clearly

or easily represent complex interrelationships. Bralick [10] provides an example the

kind of convoluted thinking forced by the message model. He describes the process

of drilling a hole in a piece of metal as follows:

We are left with the counter-intuitive model of, for example, a piece
of sheet metal being asked by a drill press to please punch a hole in itself.
The sheet metal then decides whether to honor the request. Note that
whether a hole is actually made in a piece of sheet metal by a given
drill press is a complex interrelationship among the material of the sheet
metal, the material of the drill, the speed at which the drill bit is rotating,

2-22

the force at which the drill descends onto the sheet metal, and how long
the drill is applied in such a fashion to the sheet metal [10].

2.3.1.3 An Object Model for Design. Both of the previously discussed

models leave something to be desired for application to design. The theoretical model

is too ambiguous and the OOP model to restrictive to implementation constructs.

The theoretical model provides no means for describing object interaction, and even

Smalltalk's message syntax is rather limited. We proceed now to develop an object

model which meets the needs of design.

We begin with the simpler theoretical model, and in the OOP tradition, modify

it to meet our needs. First, we generalize the notion of an attribute. Since an

attribute is "an object closely associated with or belonging to a specific person,

thing, or office," [51], we will use attributes as a means of associating objects with

other objects, other attributes, and operations. This is analogous to the Smalltalk

variable being a pointer to some object.

Thus as we speak of what an object has or does, we are speaking of its at-

tributes. Some attributes are important enough to be considered required. When we

refer to such attributes as being required, we simply mean they must be accounted

for. In some cases, a required attribute may be null, but it is important for the

designer, and later implementers to know that the attribute is null and for what

reason.

We may eliminate the explicit notion of an object having a set of sub-objects

since such a set may be referred to by one or more of the object's attributes. Typi-

cal attributes representing object sets might be component-objects, actorobjects, or

server.objects. An object's name, class, parent, and set of operations are all attributes

of the object which may, in some cases, be null.

We retain the notion that an attribute can represent a set, but we expand that

set to represent objects, other attributes, or operations. Attributes serve to identify

2-23

an object-by its name, class, behavior, and domain; and to associate an object with

other objects, attributes, and operations. We will refer to attributes which relate

objects or operations to other objects and operations as relations.

We reserve the term "behavior" to define a general description of what an

object does in its response to stimulus from other objects, and use "operation" to

tell how it performs that behavior. Thus an object's behavior would be an informal

description of the object's functionality at the highest level of abstraction, while its

operations would be a formally specified set of algorithms. An operation requires a

means of invocation and an interface description. Therefore, we allow an operation

to have attributes, like objects, which associate the operation with the sets of objects

it modifies or requires as arguments, as well as those for which it requires services

and performs services.

Bralick referred to object "cloning" in his thesis as a type of inheritance. This

technique also more closely fits the Ada generic construct. We use the concept

of class or template from which an object may inherit properties such as required

attributes. Which method of class or generic implementation is used would depend

on the programming language of implementation.

The model we have just informally described is pictured in Figure 2.8 and more

formally defined as follows:

object A unique entity defined by attributes which serve to identify the object
and relations which associate it with other objects, relations, and operations.
Required attributes are name, behavior, domain, and class. Relations which
may or may not be null include sets of operations, component objects, actor
objects, and server objects.

attribute Serves to identify an object or operation.

relation Represents an association of an object or operation with other system
objects and operations.

operation Is the description of how an object performs some behavior. Required
attributes are name and algorithm. Relations include sets of actor operations,
server operations, argument objects, and modified objects.

2-24

Nam by Domain

by Attilbut by Bhvo

by by

class A complete design of an object which may be used as a template from which
an object derives its characteristic structure and function.

name A string serving to identify an object or operation which must be unique
within a context.

behavior A text description of an object's function when provided with certain
circumstances.

domain A text description of the set of states to which an object may change.
actors A relation which denotes which objects or operations require services of some

other object and operation.

servers A relation which denotes which objects or operations provide services to
some other object and operation.

2-25

components A relation which denotes which objects can be considered logical parts
of an object.

arguments A relation which denotes which objects are required as arguments in
the interface of an operation. This relation has an attribute: mode which may
be input or output.

modifies A relation which denotes which objects are modified by the execution of
an operation.

We submit that the model presented retains the function of the theoretical

model, and adds the practicality of the programming model, without suffering the

limitations of either. Neither the implementation of an object is specified, nor is

the syntax of the communication between objects limited to a specific method. Yet

provisions are made for describing the interface between objects and operations of

other objects, as well as for representing the fully recursive nature of real world

objects.

2.3.2 Representing The Object Model. Statically, an object-oriented design

consists of a representation of a system in terms of the model described in the

previous section. As such, the object model could be easily represented in a relational

database. However, a static representation is insufficient for fully communicating a

complex behavior or the interrelationship between objects without a correspondingly

complex textual narrative.

As an alternative to text, software developers have produced a plethora of

graphical methods of representing software systems. A number of techniques have

been proposed to represent an object-oriented design, some entirely new, some vari-

ations on more familiar methods. We will look at some of these in the following

section, then offer one of our own.

2.3.2.1 Some Graphical OOD Methodologies. Examples of graphical

OOD methods are shown in Figures 2.9-2.12. Each of the many methods which

2-26

M FibouParuie h LetterP[ck9]

mor viwso teotwredsin

ThrowAway

Figure 2.9. Booch Diagram Example [19]

have been developed has its own strengths and weaknesses and represent one or

more views of the software design.

The Booch diagram [9] [19] of Figure 2.9 identifies the objects and operations

in the visible interface, and the dependencies between objects, but it does not reveal

which objects invoke which operations. Thus the diagram is useful only as a gen-

eral block or overview diagram. Furthermore, attempting to show decompositions

becomes immediately difficult.

Figure 2.10 is an example object diagram of Goddard Space Flight Center's

General Object-Oriented Development methodology [42]. A variation on structure

charts [35], GSFC's object diagrams are even simpler block diagrams. But they add

the capability to show a clean parent-child or a virtual machine hierarchy. At the

lowest level, object diagrams include the procedures and data stores, making them

virtually indistinguishable from structure charts.

2-27

RUN E r El

Figure 2.10. GSFC's Object Diagram Example [42]

Modular design charts [53] and Buhr diagrams [11] go into much greater detail.

The modular design chart, Figure 2.11 shows attribute types and operations within

an object, as well as which components are used by specific object bodies. The Buhr

diagrams link operations together directly through "control sockets" giving the flavor

of a hardware wiring diagram.

The Interactive Ada Workstation (lAW) [22] implements Buhr diagrams and

adds a petri net diagram for describing control flow. The AdaGraph tool [14] which

implements Cherry's PAMELA methodology also uses a petri net based process

2-28

SPECMAiPackage SPECLetterPackage
type Mailbox type Letter

proc Place proc Create

proc Remove proc Send
fn AnyMail proc Read

proc ThrowAway

proc ElectroaicMailSystern ware Bus

Main Program

BODYMailboxZad7W BODY LetterPadrsge

Figure 2.11. Modular Design Chart Example [53]

graph and adds a hierarchical subprogram graph. Both of these systems generate

skeleton Ada code.

APEX, a system in development at the Air Force Wright Aeronautical Labo-

ratories, also adds a petri-net diagram to its block diagram and process connec:ion

graph [2]. An example is shown in Figure 2.12. This system, like AdaGraph and the

lAW, automatically produces an Ada shell.

The SHARP methodology [12] uses a variety of pictographs employing icons

which seem to be an extension of Booch diagrams. Different diagrams are used

for main program abstraction, object implementations, object interactions, object

invocation, task rendezvous, subprogram data flow, data structures, and program

unit operations.

All the methodologies we have referenced were developed specifically for de-

signing Ada programs2, resulting in many Ada unique distinctions. This makes sense

2The modular design charts were developed with both Ada and Modula2 in mind.

2-29

Figure 2.12. APEX Petri Net Graph Example [2]

if one takes the view that a design methodology must support language features and
produce source code-as do the APEX developers [2]. It can also be attributed to

the current emphasis on Ada by the DoD and the need to take advantage of its
object-oriented features. Be that as it may, as more use is made of object-oriented

languages other than Ada, so the need for a generic methodology which can be

mapped into any such language is becoming more apparent.

2.3.2.2 A Graphical Representation For Generic OOD. Synthesis of

the various types of diagrams used by the methodologies described previously yields

an interesting parallel to electronic circuit design. With hardware design, both block

diagrams and detail diagrams are important. Usually a block diagram showing the

static relationship between board components is given, as well as a wiring diagram

revealing exact pin connections. In addition, timing diagrams are often used to de-

2-30

scribe the dynamic behavior of the system by depicting the relationship between the

signals being passed throughout the system. Could it be that electrical engineers

have been using OOD for years and we are only just now catching on in applying it

to software?

Since OOD seems to closely parallel the hardware design methodology just

described, it would seem that a means of representing that design should also parallel

the block, circuit, and timing diagrams used in the hardware design. We submit that

this logic holds and that an OOD representation must consist of three parts: a block

diagram, an interface diagram, and a control flow diagram. Figure 2.13 shows an

example of a proposed design including these three views.

The block diagram we use is similar to the high level object diagram of Fig-

ure 2.10. It depicts the objects in the system (at a particular level of detail) and

the dependency relationships between them. A module dependency is shown by

directed arrows to the servant or component objects in the graph. In the case of

an actor/server relationship, messages or operation calls flow accross the directed

arrows.

The detail diagram is taken from the modular design chart shown in Fig-

ure 2.11. We leave out the constraints of depicting a "software bus" and component

bodies as separate from their specification parts. In lieu of the implementation-

oriented terms "package", "proc", "fn", and "type", we let objects begin with a

capital letter, and operations begin with lower case.

We also agree with using an optional petri net graph to depict a state diagram

or object interaction in the case of concurrent communicating objects. However, we

would not want to require such a representation where it is not needed.

The main purpose of graphics is to communicate the design more clearly than

does the tezt. While we advocate the use of graphics, we do not advocate a method-

ology so rigid that the graphic techniques drive the design, rather than good software

2-31

TMC
TMC
run 4 1

Fan Tew onitor

GMPW Display

Terapmonito GrapiticcsDis a3y
run a run
get ro

a. Block Diagram

Fan Terminal

run run 0
get

I TernpDisplayl b. Detail Diagram

Reading Reading Readin
TempSen r >

Setpoi

On

run Tem Morti Readin
< Fan

SetPoint Setpoi t Off

Setpoint
run TM run Fan

Co.
is

SetPoin
Conunand

run Te nal

Co
is

Profile quest
run Gra NcsDisplay

get Tern Prorde

c. Petri Net Diagram GmpWcsDisplay

Figure 2.13. A Language Independent Object-Oriented Design

2-32

engineering principles. We feel a three view approach to a graphical representation

is sufficient to effectively communicate the design.

2.4 Requirements Analysis and Specification Techniques

Referring back to Figure 2.5 we showed analysis techniques based on functional,

data-flow-oriented, and data-structure-oriented paradigms. While some experts feel

it may be too difficult to get an OOD from a specification not developed with the

object-oriented paradigm in mind [27], Figure 2.4 indicates there may be some form

of mapping from any of these specifications to OOD.

Whatever the paradigm behind the analysis, requirements specifications all

contain some sort of functional text description, written in English or an English-

like language. From the nouns, verbs, and modifiers in the text, objects, operations,

and attributes can be determined using Abbot's semantical analysis methods [1].

Examples of such textual descriptions are the mini-specs of structured analysis and

facing page texts of SADT.

Another common element of many methodologies is the data dictionary. While

varying in format, these contain data items representing potential objects and at-

tributes. Data flow and activity diagrams add the processes and interface descrip-

tions needed to identify operations and visibility requirements. Control flows shown

in SADT diagrams often represent design decisions rather than requirements and

can be used to classify objects and determine object dependencies.

Finally, since most specifications are hierarchically organized, scoping the prob-

lem so a context can be determined is usually straight-forward. Since detail design

uses conventional methods, low level processing requirements may map directly to

low level operations. As simple as this all sounds, there is no absolute or magic in

such a mapping. Each selection of an object, operation, or encapsulation requires

application of the object-oriented and software engineering principles we have been

discussing throughout this document.

2-33

Attempts have been made to provide formal translation techniques from re-

quirements specification methods to ood [3] [42]. However, the formality of such

methods severly limits their usefulness since one is constrained to specific specifi-

cation formats. In addition, we found the cited methodologies significantly more

complex than other more general design methods.

2-34

2.5 The Requirements Model

We define a requirements specification as providing a textual functional de-

scription of the system requirements, a data dictionary of required system entities,

and an interface description depicting the flow of control and/or data through the

system in operation and in conjunction with any external systems. These three

components map well to those produced by common specification techniques such

as Structured Analysis [151 and SADT [40].

However, this general model does not depend on a specific graphic representa-

tion or specification format. Our design methodology, described in the next chapter,

requires only that this information be available to the designer in printed or auto-

mated form. Since we are presenting the methodology in a computer-based interac-

tive form, we have chosen a requirements methodology supported by an automated

tool: the Software Requirements Engineering Methodology (SREM) and the DCDS

Support System.

2.5.1 The Distributed Computing Design System [461.

The DCDS is not just a software requirements methodology but is a unified

environment for systems development. It includes methodologies for developing sys-

tem requirements (SYSREM), software requirements (SREM), distributed top-level

design (DDM), algorithms and unit code (MDM), and complete integrated system

testing (TSM). Each methodology has its own customized language based on an

element-attribute-relationship model. An automated development tool, the DCDS

Support System implements the DCDS database, provides an interactive form-based

user interface and query capability for the database, and provides a graphics interface

for generating flow diagrams.

The Software Requirements Engineering Methodology (SREM) database is

structured by the Requirements Specification Language (RSL) described in part

by Figure 2.14. This database provides both standard data dictionary information

2-35

Figre2.4.MaorRLe Elem es So46]

Subsystem p f u ai

Subnet Entity
Concsto Type

OdeRut ariid pnet poesswih Arepae uporceptofM ssaes

In terface Interface Creat

shown d inwe Figreu.15

Th-U| Outputs 7 Entity-

All of These Recorded by eie

: Elements

Structure Implied Relationships hPoant rn

Key
(Z lmn Refered by*

0 Attribute vaiain Constraine Promne

Figure 2.14. Major RSL Elements [46]

and adds the relationship terminology to generate a complete functional specification

document through the DCDS Support System's powerful query capability.

A SREM software specification is centered around the requirements networks,

or R.Nets, which identify data flow through functional processing steps called Alpha

nodes. R-Nets are independent processes which are enabled upon receipt of Messages

via Input..Interfaces. SREM provides a means of graphically depicting an RNet as

shown in Figure 2.15.

R-Nets and their SubNet8 can be developed strictly through database entries

or through the graphics tool. Both graphic and textual representations can be dis-

2-36

R.NET START
R.NET: SAMPLE
STRUCTURE:

S INPUT INTERFACE INPUT-INTERFACE II
VALIDATION-POINT Vi

ALPHA A
VI) VALIDATION POINT SELECT ENTITY.CLASS IMAGE

SUCH THAT (Y-Z)

A - ALPHA DO

ALPHA B

IMAGE FOR EACH FILE HISTORY

ENTITY SELECTION HISTORY RECORD

DO SUBNET C END

AND
& "AND" ALPHA D

FOR EACH CONSIDER DATA STATUS

B D "CONSIDER IF (READY)

ALPHA E
SHISTORY OR (NOT READY)

SUBNET STATUS ALPHA F

END
(READY) (NOT READY) END

C E IF (X > 5.0)

ALPHA G

VALIDATION-POINT V2

OUTPUT-INTERFACE 01
OR (X = 5.0)

DO

ALPHA H

"OR" "AND" ,REJOIN OUTPUTJINTERFACE 02

AND
(x > 5.0)s (o5.0) OTHERWIZE ALPHA J

G TERMINATE

OTHERWISE

V2 EVENT EVENT Q

H tTERMINATE

END

FND

OUTPUT INTERFACE TERMINATE

Figure 2.15. A Sample R.Net [46]

2-37

played and printed. The combination of graphic data-flow diagrams (RJNets), data

dictionary, and text provide a complete view of the system requirements in terms of

our general requirements specification model.

SREM specifications provide elements which can be used to develop an object-

oriented design. Entity-Classes, Entity-Types, Interfaces, Data, and File elements

might be used to determine system objects and attributes. Since processing functions

map to R.Nets, groups of RNets, SubNets, and Alphas, these may suggest candidate

operations. Additionally, Interfaces and Messages are sources of visible interface

descriptions.

We reiterate that there is no magic formula for mapping requirements elements

to design. We asserted early on that design is a decision making process requiring

judgement and choice. While automated tools, or even expert systems might aid the

design process, such aid must be in the form of providing the right information, in a

user-friendly manner, to help the designer make good design decisions. In the next

section we will present the basic concepts of decision support systems (DSS) used

in subsequent chapters to describe our development of a Decision Aid for Object-

Oriented Design.

2-38

2.6 Decision Support System Techniques

2.6.1 Introduction. As much controversy exists as to the definition of decision

support systems as to that of the object-oriented paradigm. Valusek [49] defines

DSS as "a system (manual or automated) that supports the cognitive processes of

judgement and choice." Ting-Peng Liang [30] adds structure to that basic concept

by describing DSS as follows:

A computer-based decision support system (DSS) is designed to im-
prove unstructured or semi-structured decision making. It has three ma-
jor components: an interactive user interface, a database management
system, and a model management system.

These definitions are useful both for revealing the applicability of DSS to designing

software, and for prescribing an approach to the development of a DSS for OOD.

Structured problems are those which have stable and identifiable components,

easily quantifiable goals and evaluation criteria, and known constraints, assumptions,

and algorithms for their solution. On the other hand, unstructured problems require

intuitive inputs, require a large search space, involve uncertain parameters, and have

no absolute solution.

We postulate that design has some elements of both types of problems; that it

requires enough intuition and judgement in choosing between alternative solutions

to be termed a "semi-structured" decision process. It is with this claim that we

choose the concepts of decision support systems as a framework for developing a

support environment for object-oriented design. The rest of this chapter is devoted

to describing the approach used to build decision support systems. In later chapters,

we describe the requirements, design, and construction of a decision aid for OOD

using these principles.

2.6.2 The Design Frameuwork. In Building Effective Decision Support Sys-

tems, Sprague and Carlson [44] view a DSS from three levels: the user, the designer

2-39

or analyst, and the builder or toolsmith. The user is the prime decision maker, the

designer analyzes user requirements and specifies the high level requirements and

design of the decision aid, and the builder uses computer systems hardware and

software components to develop a system.

The user of a DSS is most concerned with the system's performance in sup-

porting the decision process. Herb Simon [43] describes a model of that process

characterized by the three steps of intelligence, design, and choice. Intelligence in-

volves searching raw data for potential decisions; design requires developing and

analyzing alternative courses of action, and choice is the selection of a particular ac-

tion from those available. To the user, a DSS must support all three of these phases,

plus the implementation of the final decision. But above all else, it must be easy to

use [44].

Due to the unstructured or semi-structured nature of the decisions a DSS

must support, highly structured software requirements methods don't work. Users

are either unwilling or unable to state requirements in advance. In response to

this problem, Sprague and Carlson [44] provide an analysis and design approach to

eliciting DSS capabilities in terms of the following four user-oriented entities:

Representations that decision makers use to conceptualize and communicate the
problem or decision situation,

Operations to analyze and manipulate those representations,

Memory Aids to assist the user in linking the representations and operations, and

Control Mechanisms to handle and use the entire system.

The builder of the DSS must decide which hardware and software components

to use to construct the system. As mentioned previously, these components fall into

the categories of dialogue, database, and modelbase.

Valusek [49] has combined the aspects of the three views of DSS in the three

dimensional cube of Figure 2.16. This DSS Cube depicts the use of ROMC in translat-

2-40

Representations

Deinr Objects Dialogue

Memory Aids Modeibase Builder

control tbs

Inteilegence_

Userr Design

Choice

Figure 2.16. The DSS Cube. [471

ing from the user's world into the builder's world, or in implementing user activities

with builder components.

2.6.3 Adaptive Design. We mentioned that one of the key problems with DSS

development is the inability to acquire complete or accurate requirements. For this

reason, many in the DSS field are espousing an adaptive or iterative design approach.

Rather than require the complete specification of a full-blown system, an adaptive

technique begins with a kernel system, implements it, then lets it grow to meet the

user's needs as determined through actual use.

This method is -;,rin- to a prototypirg approach except that the prototype

is intended to be used, not merely show proof of concept and thrown away. Peter

Keen [25] describes it as a middle-out approach which relies on quickly delivering an

initial system to which users respond and thus clarify their real needs.

But before even an initial system can be delivered, designers must have a

way of determining basic system requirements. Keen [25] calls for beginning with a

"descriptive map of user processes." Early in this chapter we introduced a method

2-41

called concept mapping as a means of understandiug ideas, concepts and propositions.

McFarren [481 has proposed using this technique during interviews with multiple

users to gain a unified view of the decision processes.

Once key decision processes are identified from the concept maps, analysis is

required to determine the set of DSS features which will satisfy the support require-

ments of those processes. Seagle and Belardo [41] propose a synthesis of the ROMC

model and Structured Analysis called a feature chart. It serves the purpose of defin-

ing tasks and showing interfaces, as well as providing a navigational guide through

the system.

After the tasks are defined, they must be modeled and then designed and imple-

mented. To model the tasks, a series of storyboards can be developed which represent

the functions the system may perform when fully implemented. The best presented

storyboards are computer-based, with some interactive controls, communicating to

the intended user the feel of what the operational system will be like. Such models

are easily modified at the user's request so the designer can be reasonably sure of the

validity of the requirements they represent. Thus the storyboards themselves serve

to define the requirements for the system.

Given an easily adaptive dialogue component for developing the storyboards,

the dialogue controls merely need to be extended to provide access to and manipu-

lation of the required modelbase and database to produce a prototype.

A final adaptive concept has to do with how the use' gives feedback to the

designer regarding system problems or modifications. The solution to this problem

is an on-line tool called the hook book [49]. The hook book is built into the dialogue

component of the DSS and allows the user to immediately log problems or suggestions

for modification to the system-as they come to mind through use of the tool. Hook

book entries are stored in the system's database and retrieved by the designer as

data points for needed changes to the system.

2-42

2.6.4 The Utilization-Shapped Evaluation Model. Riedel and Pitz [38 see

evaluation as facilitating or guiding design, and consequently as an integrated pro-

cess throughout the development life cycle. They address the question of what is

done with evaluation results once generated by basing their USE model on the use

of evaluation information. The focus is not on measuring the final impact of the

completed system, but on who will make what decisions given feed back from the

evaluation process throughout the development life cycle.

This approach seems to promise reduced cost and increased benefit. It elim-

inates useless evaluation criteria, thus reducing cost. It also helps designers, users,

and policy-makers make decisions which may produce a better system or prevent

production of a bad one--benefit. The realization that certain windows of opportu-

nity for decision-making open and close throughout the development life cycle, and

therefore gearing the evaluation plan to the decisions and decision-makers involved

at those times is the unique aspect of the USE model.

The USE model is centered on the following four main concepts:

1. Select evaluation methods, measures of effectiveness, and measurement tech-
niques based on mission requirements and DSS development/ deployment tech-
niques.

2. Use a life cycle rather than after-the-fact approach to evaluation.

3. Consider the appropriateness of the DSS for the task it is designed for at each
stage of its development (i.e., before proceeding on to further development).

4. Relate system performance to performance requirements establixhed by the
system's mission.

The USE model provides the following benefits of an evaluation framework. It

is

* comprehensive,

e easy to use and understand,
,r * able to provide a basis for considering and selecting evaluation methods and

procedures,

2-43

e able to produce evaluations that provide useful information for decision making
throughout the development Life cycle.

In Chapter V we discuss the application of the USE model to evaluation of the

decision aid and the OOD methodology.

2-44

III. An Object Oriented Design Methodology

Webster defines a methodology as "a body of methods, rules, and postulates

employed by a discipline: a particular procedure or set of procedures" [51]. In the

previous chapter we offered a number of postulates or 0OD concepts; among those,

an object model for supporting design. In this chapter we will reiterate briefly those

postulates key to an OOD methodology, describe a method of arriving at an object-

oriented design, and present several rules or heuristics applicable during the various

design steps. Finally, we will review evaluation criteria for the methodology and

provide a sample problem designed via the methodology.

3.1 Postulates

The basis for an object-oriented design methodology is our view of what an

object is. From the previous chapter, we restate our object model definition as

follows:

e An object is a unique entity defined by attributes which serve to identify the
object and relations which associate it with other objects, attributes, and op-
erations. Required attributes are name, behavior domain, and class. Relations
include sets of operations, components, actors, and servers.

o An attribute identifies an object or operation.

* An relation represents an association of an object or operation with other
system objects, operations, or relations.

* An operation is the description of how an object performs some behavior.
Required attributes are name and algorithm. Relations include sets of actors,
servers, arguments, and modified objects.

* A class is a complete design of an object which may be used as a template
from which other objects derive their characteristic structure and function.

From this definition and the earlier discussion of QOD, we also state the follow-

ing presuppositions regarding development of an object-oriented design methodology.

3-1

* Design is a decision process requiring intuition, judgement, and choice between
alternatives. Design involves a set of principles and/or heuristics that guide
evolution of the design, and a set of criteria upon which the final design may
be judged. The objective of design is to create a representation of a system
at a level of detail such that it can be built. As such, a design methodology
must identify and support the decisions a designer must make as well as the
creation of the representation itself.

* Object-oriented design is the process of creating a representation of a system in
terms of the entities that exist in the problem space of that system. As such, it
is a partial lifecycle process requiring previous analysis of the proposed system's
requirements and subsequent implementation of the design in a programming
language.

* The requirements specification from which the object-oriented design is devel-
oped will consist of a textual functional specification, a data dictionary, and a
description of the flow of data or control through the system. The paradigm
upon which such specification is based is irrelevant, as long as the specification
is sufficient to fully describe the system's static and dynamic requirements.

* Since object-orientation is a qualitative assessment, and all programming lan-
guages can be said to be object-oriented to some greater or lesser degree 1, a
general methodology for OOD must be language independent. Albeit the more
object-oriented the language, the more straight-forward the implementation.

* An object-oriented design specification must consist of a description of each
system module in terms of the object model and its dependency on the other
modules in the system-at a particular level of detail. Module interface descrip-
tions must depict which operations of an object are invoked by each operation
of the object's dependent objects. In addition, the dynamic behavior of an
object exhibiting a particular operation must be shown by a state diagram,
flow diagram, psuedocode, or other appropriate means.

* Entities or objects represented in each system module are defined in terms of
the assertions which may be made regarding them and their behaviors given
certain defined stimuli. This takes the practical form of associating with each
object a unique identity, the set of objects it has some relation to within the
system, and the operations it requires or suffers of such objects.

'For example, even in assembly languages, statements consist of op-codes or operations which
act on operands or objects.

3-2

3.2 Methods

We claim no special revelation as to the right methodology for OOD, and, in

fact, relied heavily on the work of Abbott [1], Booch [9], EVB [19], Cherry [14],

Lorensen (31], Seidewitz [42], and others in developing our own methodology. Our

proposition is that the methodology should start with a firm foundation on previous

research, but be adaptive to new ideas.

Presupposing OOD to be a decision process, we first determined the decisions

required, then derived the specific steps from those decisions. We did not attempt to

restructure the natural design process; rather we used the concept mapping technique

described in Section 2.1.1 to derive the decision processes from those methods and

from software engineering experts at AFIT. The resulting methodology follows the

same general flow of most other design methods.

Synthesis of the various approaches to object-oriented design described in the

previous chapter yielded the concept map in Figure 3.1. From the concept map,

we identified the following main decision steps required to translate a requirements

document into our object-oriented design specification.

1. Analyze the problem and requirements specification to determine a strategy
for its solution.

2. Identify the abstract objects, operations, and attributes from the solution
strategy and requirements specification.

3. Encapsulate the objects, operations, and attributes into modules and deter-
mine the relationships, or interfaces, between those modules. Modules should
then be classified according to structure and behavior.

4. Decompose complex modules by repeating the process with objects or oper-
ations as separate problems, or begin detail design. Detail design proceeds as
construction of modules from known components such as other objects, library
modules, predefined functions or data types, or as produ-ing an algorithmic
description such as psuedocode or flow diagrams.

OOD is unique in respect to what we're looking for in our analysis of the

problem, how we encapsulate data and algorithms in system modules, and in how

3-3

Polm deterie from Problem

DoanStatement defines next Psuedocode
~level

Human of guided describes
Unena mlys byDcmoiinFntion via

U Analysis

SProblem o
Undertandig ctionso

which

Souin based onSpcfato

Strategytee Modules

Interfacesdeis

Identification eie

tls tells defines Encapsulation

,Solution.
f of based on

--"sti n m pst bj cso Relationships

" " amnong

Attributes
Solution

nmp to

S Operations

Figure 3.1. The Relationship Between Object-Oriented Design Decision Steps

3-4

we can construct system modules from known, more general data types. However, it

soon becomes clear that the decisions involved are basically the same as those found

in any software design methodology-regardless of the paradigm involved.

3.2.1 Analyze the Problem to Determine a Solution Strategy

3.2.1.1 Discussion. The first decision the designer must make is in lim-

iting the scope of the problem to be solved. In this step we set the initial context or

scope for the subsequent steps. We agree with Abbott [1] and others [19 that the

problem must be reduced to a single sentence. A problem too complex to state in a

single sentence simply requires a higher level of abstraction.

The problem statement should be determined from the problem space and

stated in user-oriented terminology. One of the problems in design is the isolation

of the designers from the users. Even the analysts who have developed the require-

ments document are normally not the users, so merely determining a design from the

specification is insufficient. Interaction between designer and user is recommended

for making this decision.

We feel the concept map may be an excellent tool for eliciting such problem-

oriented information. Both the users and the high-level requirements spelled out in

the specification may be used to develop concept maps. The various results may

then be compared and refined to provide a clear understanding and statement of

the problem. Working with the concept map of the problem, a map for a solution

may be developed. We feel the concept map may be a better means of presenting

the solution strategy than the single paragraph proposed by Booch (9] and others,

just as the graphical structured specification [15] has been proven more effective at

communicating high level abstract requirements than a verbose textual document

3-5

3.2-.1.2 Summary of the Analysis Step.

1. Interview one or more users and develop concept maps of the problem.

2. Develop additional concept maps from the portions of the requirements speci-
fication which describe the system's highest level functional requirements and
entities.

3. Synthesize from the concept maps a single sentence statement of the problem.

4. Develop a single concept map which depicts a strategy for solving the problem.

3.2.2 Identify the Objects, Attributes, and Operations

3.2.2.1 Discussion. Dave Bullman [27] states that finding the right ob-

jects is hard. He goes on to say that associating operations with the right objects is

even harder. The implied requirement of intuition and choice here indicates this as

the next decision process.

A number of "rules of thumb" or heuristics have been suggested for both the

identification of objects and encapsulation of objects with their attributes and oper-

ations. Thus this step consists of the application of such heuristics to identify and

define the objects, attributes, and operations which apply within the scope and level

of abstraction we are dealing with. Several such heuristics are described in detail in

Section 3.3. We list them here for completeness:

Object Selection Criteria lists requirements for good objects.

Grammatical Analysis makes selections based on nouns and verbs.

Abstraction Analysis makes selections based on data flow diagrams.

Class Abstraction makes selections based on classes of physical objects.

Concept Analysis makes selections based on concept map entities.

The primary objective of this step is identification along with some basic def-

inition. We reserve associating objects and operations until the encapsulation step.

The elements in this step should come initially from the solution strategy unless the

heuristics used require otherwise. It is difficult to initially scope a problem such that

3-6

the list of objects, attributes, and operations is complete, accurate, and without

some spurious low level objects or operations defined. Normally the analysis and

identification steps will be repeated several times to arrive at a realistic scope of the

problem and a complete set of objects and operations.

As identifiers of objects and operations, attributes should be associated with

appropriate entities after they are identified. Listing object and operation attributes,

then, serves to define those entities in greater detail. In most cases the requirements

document will need to be consulted to fully describe program entities.

3.2.2.2 Summary of the Identification step.

1. Apply one or more identification heuristics to identify the set of objects in the
system at the scoped level of abstraction.

2. Analyze each object and describe its attributes and structure in the solution
strategy. Check the requirements document for completeness and eliminate
redundancy.

3. Apply one or more identification heuristics to identify the set of operations
performed within the system at the scoped level of abstraction.

4. Analyze each operation to determine its stimulus/response attributes.

The end product of this step should be a list of objects and a list of operations,

with attributes describing their structure and effects.

3.2.3 Encapsulate Objects, Attributes, and Operations into Modules

3.2.3.1 Discussion. Deciding which operations should be associated with

which objects is not as straight-forward as it may seem. Objects seldom behave in-

dependently of other objects. Consequently, observed behaviors may represent a

complex interrelationship among objects. In the example quoted in Section 2.3.1.2,

whether the operation drill-hole is an activity of the drill press, drill bit, or sheet

metal depends on the abstraction of those objects in the problem solution. Thus

guidelines, rules, or heuristics are needed to guide the encapsulation of objects and

operations in such a way as to produce good modules.

3-7

In choosing which objects and opera. ions to encapsulate into modules, the

interrelationships between modules are revealed. We specify those relationships or

interfaces by first determining the dependency between modules. A dependency

exists whenever an operation of an actor or agent type object affects or requires an

action by some other object. Rather than depict the dependencies only, we require

diagraming the specific operations of an object required by each operation of each

external object. This includes identifying the attributes or arguments an operation

requires to accomplish its function, and which attributes or internal objects are

affected through such an operation under the stated conditions.

The heuristics for encapsulation are described in detail in Section 3.3 and are

briefly listed as follows:

Modularity Rules include rules defining quality assessment of modules such as
coupling and cohesion.

Object Classification requires identifying an object's operation as one of eight

general types.

Application Classification requires identifying an object's operation as one of a
set of types specified as common to the program application area.

Structural Classification requires identifying a object's structure as one of four
general types.

3.2.3.2 Summary of the Encapsulation Step.

1. Apply one or more encapsulation heuristics to the lists of objects and operations
to determine a set of system modules.

2. Determine the interrelationships between modules and diagram the module
dependencies.

3. Analyze eaca module dependency to determine the detailed interfaces between
each dependent module's operations and the executors of those operations.

4. Refine the descriptions of the operations of each object in view of the various
conditions under which it might be required of some other object.

The end product of the encapsulation step will be a set of modules defined by

the object model, a module dependency diagram, and a module interface diagram.

3-8

3.2.4 Decompose the Modules or Begin Detail Design

3.2.4.1 Discussion. Decomposition deals with the question of how to

construct each module. Should it be further decomposed, constructed from known

components, or algorithmically defined via psuedocode or flow diagrams. This is the

step in which we apply inheritance since, at this point, we have a full description

of each object at a particular level of detail. To apply inheritance any earlier might

result in shaping our solution to a set of preconceived notions rather than really

solving the user's problem.

Inheritance is applied as we consider the object or module classifications made

in the previous step. Such classifications are helpful, not only in determining module

structure and behavior, but in identifying objects as instances of classes in the sys-

tem, or as matching preexisting templates maintained in a class library. The decision

to use inheritance is always a tradeoff between the cost of new development and the

cost of modifications to existing templates.

Should inheritance fail to provide a solution to the design of a particular mod-

ule, the module must be decomposed into smaller modules, or described at its lowest

level as data structures and algorithms. Algorithmic description follows the tradi-

tional methods of using a structured English psuedocode or flow diagrams. Data

structures which are operated on as a whole may be further described in a data

dictionary.

All or part of a module may be decomposed. A module containing sets of

objects and a set of operations, may have elements of those sets at their lowest level,

and other elements of sufficient complexity to warrant decomposition.

Decomposition may take a variety of forms depending on the problem. For

a functionally cohesive operation on a single object, conventional functional de-

composition may be adequate. If aspects of the operation exhibit concurrency, a

process-oriented approach may be better, with each sub-operation representing a

3-9

single concurrent operation. Should the existence of other objects become apparent,

an object-oriented approach might be better. In other words, the problem should

lead to an appropriate design technique, rather than squeezing the problem into an

unnatural methodology.

3.2.4.2 Summary of the Decomposition Step.

1. Analyze the modules in the system for signs of common classes. If such a class
hierarchy is apparent, indicate objects as instances of the class and further
design the class.

2. Analyze the classification of modules in regard to existing generic structures
or functions. Determine unique characteristics of such modules to determine
cost effectiveness of redesign versus reuse.

3. Analyze the complexity of remaining modules and determine which module
components must be further decomposed.

4. For each component which must be decomposed, determine the appropriate
design method and proceed with the design. Appropriate flow diagrams, petri
nets, structure charts etc. should be used to describe the design of components
not accomplished in an object oriented fashion. Those components which re-
quire an object-oriented design, should be treated as new problems and de-
signed using this methodology in an iterative fashion.

5. For each operation which need not be decomposed, describe its operation al-
gorithmically using appropriate psuedocode or flow diagrams.

6. For each object or attribute which need not be decomposed, describe the data
structure it represents.

The end product of this step will be class assignments of objects, low level

operation and attribute descriptions, or non-object-oriented algorithmic designs.

3.3 Rules

3.3.1 Heuristics for Identification

3.3.1.1 Object Selection Criteria. We include the following set of soft-

ware engineering heuristics which may be useful in evaluating the quality of object

selection.

3-10

1. Information Hiding. Objects should act as black boxes to allow easy debug-
ging and maintenance.

2. Minimize Chained Operations. The depth of operations chained in nested
calls-operations which require operations of other objects which require op-
erations of other objects which require..., should be minimized.

3. Abstraction. Objects should usually represent a single problem-domain en-
tity. The types of abstraction, in decreasing preference, are as follows:

9 Entity Abstractions represent useful models of problem domain entities.

* Action Abstractions represent generalized sets of operations which all per-
form similar functions.

* Virtual Machine Abstractions group together operations used by some su-
perior level of control, or which all use some subordinate set of operations.

* Coincidental Abstractions package a set of unrelated operations or data
items.

4. Inheritance. Identify objects which may be of the same or a known class as
possibilities for code reuse. Examples are entities which may be represented
by common data structures such as stacks, sets, collections etc.

5. Overload Identifiers. Use the best term to identify entities ',ithout using
minor misspellings to differentiate between them.

3.3.1.2 Grammatical Analysis. This is the term we give to the method

proposed by Abbott [1] et al foi determining objects and operations from noun and

verb phrases in a text document. The method requires the following steps:

1. Underline noun and noun phrases in the text.

2. List each noun or noun phrase and associate with each an identifier or eliminate
it from the list as redundant or not applicable to the solution. Objects may be
noted as a type or instance.2

3. Describe each object in terms of its attributes.

4. Underline verb and verb phrases in the text.

5. List each verb or verb phrase and associate with each an identifier, or eliminate
it from the list as redundant or not applicable to the solution.

2 Objects may be identified as types or classes if they are derived from are common nouns,
instances if derived from proper nouns. Mass or abstract nouns denote measure or quantity and
represent collections of objects or constraints on objects [37].

3-11

6. Associate the resulting operations with a single object from the solution set of
objects.

7. Describe the operation of each operation in the context of the object it operates
on.

9.9.1.3 Abstraction Analysis. The following method was developed by

Stark and is described in [42] as a means of determining object abstractions from

data flow diagrams. Since Abstraction Analysis is a complete design methodology

in its own right, it may also repalce the encapsulation step.

1. Identify the transform center from the structured specification.

2. Identify the central entity from the transform center and the abstract entities
that support it. These entities are identified by following the afferent and
efferent flows away from the central entity and grouping related processes and
states along these flows.

3. Recast the data flow diagram around the central and supporting entities.

4. Create an entity graph with a single most senior object which calls on a virtual
machine consisting of the central entity and those other entities which directly
support it.

5. Follow the afferent and efferent data flows from the transform center in the
recast DFD, and identify additional abstract entities which support the previ-
ously defined entities.

6. Add the new entities to the entity graph in a new virtual machine layer.

7. Continue adding levels of entities to the entity graph and modifying the DFD
until the ends of the afferent and efferent data flows on the original DFD are

reached.

8. Add directions of control to the entity graph where the problem determines
flow of control.

9. From the seniority relationships on the entity graph and the data stores on the
recast DFD, determine entities that must be on the same virtual machine layer
due to their mutual superiority to other entities or all depend on the same data
store.

10. Note any cyclic graphs in the entity graph denote entities which must be on
the same virtual machine layer.

11. Combine entities into objects which represent common dependencies or func-
tions.

3-12

12. Determine alternative configurations of objects and choose the alternative that
best balances requirements for loosely coupled objects and eliminates data and
control bottlenecks.

13. List the objects, the processes each object implements, the states hidden by
each object, and system considerations not shown.

14. Identify operations within an object which are called by another object and
specify the data flows they pass.

3.3.1.4 Class Abstraction. This method refers to Lorensen's [31] ap-

proach derived more directly from OOP languages such as Smalltalk. Some concepts

on object and operation selection from Lorensen's approach are as follows:

1. Data abstractions are the classes of the system.

2. Classes often correspond to physical objects within the system being modeled.

3. If not explicitly stated in the requirements document, the designer should
determine abstractions from analogies drawn from the designer's experience.

4. Attributes become instance variables for each class. Specification of the data
structures containing such attributes should be deferred until detail design.

5. Operations are the procedures for each class, and either access and update
instance variables of the class or execute operations unique to the class.

6. Operations should only be defined as to their function. Internal design of
operations will be designed by conventional methods during detail design.

7. If the class is a subclass of an existing class, thereby inheriting operations from
it, determine if such operations need to be overridden by the new class.

8. Define the protocol to be used to invoke the operations.

3.3.1.5 Concept Analysis. This is the term we will use for deriving ob-

jects, attributes and operations from concept maps. This method has the following

steps:

1. Generate a first cut list of objects from the entities on the concept map. This is
possible since the concept map is developed by a designer with OOD in mind.

2. Identify from the list of objects which are long-lived and which are transient.
Transient objects tend to be operation arguments or local variables. Long-lived
objects tend to represent abstract state machines.

3-13

3. Identify which objects are subordinate, natural components of, or clearly at-
tributes of other objects and note as such in the object description.

4. Identify the action words in the relationships between entities as candidate
operations. Describe the behavior of these actions as to what objects are
modified, what information is required, which objects invoke the operations,
and what other operations might they naturally require of other objects.

3-14

3.3.2 Heuristics for Encapsulation

3.3.2.1 Modularity Rules

1. Strong Cohesion. Operations should only be coupled with those whose pri-
mary function is the manipulation of the object's private data structures. An
object's set of objects and set of attributes must represent a single entity. Each
operation should accomplish a single function.

2. Loose Coupling. Interfaces between objects should be kept simple, the num-
ber of parameters required to perform an operation minimized, and the use of
global variables minimized or eliminated. Note however that control coupling
is a frequent requirement of real-time systems of state machines where one
object's state affects the behavior of another object.

3. Eliminate Cycles. The directed graph of an object diagram should seldom
contain a cycle.

4. Virtual Machine Layers. Identify objects that support the system such as
error and I/O handlers in virtual machine layers.

3.3.2.2 Object Classification. Bralick [10] lists eight general types an

object's behavior might classify it as. They are listed as follows with our own

explanation.
3

1. Static a system constant.

2. Passive performs a function: server.

3. Small a self determining state machine, only reports its state.

4. Weak a state machine under control of another system entity.

5. Demon controls other Objects: actor.

6. Interactive affects other objects under another's control: agent.

7. Sovereign a state machine actor.

8. Complex a state machine agent.

3.3.2.3 Application Classification. Many applications themselves can

be categorized into classes and so similar applications tend may define sets of common

data structures. For example, the APEX methodology [2] developed primarily for

aircraft avionics systems predefines the following data types:

3 See also Table 2.1.

3-15

1. Status

2. Storage

3. Sensor

4. Device

5. Counter

6. Pointer

3.3.2.4 Structural Classification. In the Ada programming language,

objects are represented by packages. Booch [9] states four possible types of packages

as follows'.

* Abstract Data Type An object which exports a type and a set of operations
which may be performed on that type. The user of the object can define an
instance of the specified type, then pass it as a parameter to the operations
which manipulate the object and return a new instance of the object or some
sub-object. A well defined set of example data structures is described in [8].

* Abstract State Machine An entity with well defined states and operations
for changing from state to state.

" Named Collections of Declarations A logically cohesive grouping of ob-
jects and types. Similar in nature to Smalltalk pools, such common blocks
sometimes can't be avoided and every effort must be made to make them easy
to locate and to document their purpose and users.

" Groups of Related Program Units Booch illustrates this type of object
with a set of mathematical library functions-which is sufficient to describe
the reason for such an otherwise poorly abstracted module.

3.3.3 Heuristics for Decomposition. We listed the primary rules for decompo-

sition in the step-by-step description in the previous section. Examples of additional

heuristics which might be developed to aid the process include the following:

e Descriptions of alternate design methodologies and under what conditions they
should be used.

* A specific syntax for structured-English or psuedocode.

* A description of a specific flow diagram methodology.

* A library of classes or reusable components design descriptions.

3-16

3.4 Evaluation of the Methodology

Our objectives for the stated OOD methodology were as follows:

1. The methodology must provide for recognized object-orientel concepts.
2. The methodology must be independent of the paradigm used to state the sys-

tems requirements.

3. The methodology must be independent of the programming language to be
used to implement the system.

4. The methodology must be able to adapt to new discoveries regarding object-
oriented design concepts and practices.

5. The methodology must be useful for producing a complete design specification.

6. The methodology must be easy to use.

That the first four criteria identified above are met by the methodology pre-

sented in this chapter is self-evident. The last two will require more proof. The next

section is devoted to proof by example of the methodology's usefulness for producing

the desired design specification. We offer the caveat, however, that the usefulness of

any methodology can only be demonstrated over too broad a set of examples to be

accomplished within the time constraints of this study. Such a quality may only be

demonstrated by user acceptance over time.

Ease of use of the methodology must be demonstrated by a significant sample

size of users and is closely tied to the implementation of the methodology in a support

environment. In Chapter V, we present the results of the use of the methodology and

support environment by a graduate level software engineering class as an indication

of the usability of both methodology and tool.

3-17

3.5 A Sample Problem

The following example carries a sample problem completely through the object-

oriented design methodology presented in this chapter. The requirements document

is provided in the appendix.

3.5.1 Analyze the Problem

3.5.1.1 Concept Map the Problem from the User

The concept map of Figure 3.2 represents the user's view of the system. The

user's view here is very data-flow oriented.

3.5.1.2 Concept Map the Problem from the Specification

Figure 3.3 represents the system at the top level as specified in the requirements

document. This view is very hardware and functionally oriented. It specifies the

components, and the functions the software is to perform.

UsrSet Point wch Fan

reerst on n e

Commands t controls aat a change

Terminal Teprtr

Dsly on a odspa is a received
plot of m an dspla yed rom

TepeatreTemperature

Figure 3.2. User's View of the Temperature Moni tor/Con troller

3-18

Termpete gets connected to a

~controls a

fire 3..SecfcinoheTeprtur Moio/onrle

Pr 3 eleRequestgets

displays on a

"Design a temperature monitoring and control program."

3.5.1.4 Concept Map a Solution Strategy

Figure 3.4 represents an abstract view of the system at the top level. This view

is very object-oriented and describes all the objects identified in the specification

concept map, as well as the interfaces between objects indicated in the user s view

of the system.

, 3-19

Grpi

3.5.2 Identify Objects and Operations

We will use Concept Analysis to identify and define objects and operations at

the current level of abstraction.

3.5.2.1 Apply Heuristics to Identify Objects

Table 3.1 shows the objects and their analysis as determined from the solution

strategy and the functional specification.

Termninal

from Fan

SetPon

based t

onof

1Profile get

Request
TM Cge

when

rceive send snd

Reading

TempeatureReading

DisplayD

Figure 3.4. The Temperature Monitor/Controller Synthesized View

3-20

Table 3.1. Temperature Monitor/Controller Object List

Object Durability Classification
TMC longlived main program
Terminal longlived i/o device
TempSensor longlived i/o device
Temp-Display longlived i/o device
Graphics-Display longlived i/o device
Fan longlived i/o device
Set-Point longlived state
Reading longlived state
Request transitory argument
3nOff.Signal transitory argument
Temp.Profile transitory argument

3.5.2.2 Describe the Objects

TMC

" Behavior: The main program.

" Component Objects: Fan, Graphics-Display, TempDisplay, Termi-
nal and Temp-Sensor.

" Server Objects: I/O devices.

" Actor Objects: The System.

Terminal

a Behavior: Accepts keyboard input.

* Component Objects: Command (previously undefined).

* Server Objects: user inputs.

Command

e Behavior: String representing keyboard input.

* Domain: Profile-Request or Set.Point or null.

Temp-Sensor

B Behavior: Implements low level protocol to obtain Reading from physical
device.

3-21

" Component Objects: Reading

" Server Objects: External I/O device.

Temp..Display

" Behavior: Implements low level protocol to send Reading to physical
device.

* Server Objects: Reading

Graphics-Display

" Behavior: Implements low level protocol to display Temp.Profile on the
physical device.

" Server Objects: Temp.Profile

Fan

* Behavior: Implements low level protocol to send OnOffSignal to phys-
ical device.

" Server Objects: OnOff-Signal

Set-Point

" Behavior: Number represents maximum desireable temperature.

" Actor Objects: TMC

" Domain: degrees fahrenheit default: 700

Reading

" Behavior: Number represents current temperature. Temp.Profile

" Domain: degrees fahrenheit.

Profile-Request

* Behavior: Represents a command to display a Temp.Profile.

* Actor Objects: TMC

* Domain: range time hhmms within last 24 hours.

OnOff-Signal

" Behavior: Represents a control signal to the Fan.

" Actor Objects: Fan

" Domain: boolean set by: Reading _: Set-Point

3-22

TempProfile

* Behavior: A set of Time / Readings pairs

" Component Objects: Time, Reading

* Actor Objects: Graphics-Display

" Domain: 8640 max elements

Time

" Behavior: Represents current system time.

" Actor Objects: Temp.Profile

" Domain: hhmrns

3.5.2.3 Apply Heuristics to Identify the Operations

Table 3.2 shows the operations and their analysis as determined from the ac-

tions in solution strategy and the functional specification.

Table 3.2. Temperature Monitor/Controller Operation List

Objects
Operation Suffered of Required of Modifies
get TMC Terminal Set-Point
get TMC Terminal Profile-Request
get TMC Temp.Sensor Reading
send TMC OnOff.Signal
send TMC TempProfile

3.5.2.4 Describe the Operations

get

" Behavior: Retrieves an argument from an abstraction of an input device.

" Set of Actor Objects: (TMC).

* Set of Modified Objects: (Set.Point).

" Set of Argument Objects: (Set-Point).

3-23

e Set of Server Objects: (Terminal).

get

* Behavior: Retrieves an argument from an abstraction of an input device.

* Set of Actor Objects: (TMC).

* Set of Modified Objects: (Profile-Request).

* Set of Argument Objects: (ProfileRequest).

* Set of Server Objects: (Terminal).

get

* Behavior: Retrieves an argument from an abstraction of an input device.

o Set of Actor Objects: (TMC).

9 Set of Modified Objects: (Reading).

* Set of Argument Objects: (Reading)

* Set of Server Objects: (Temp-Sensor).

send

* Behavior: Commands the output device to display an argument.

e Set of Actor Objects: (TMC).

* Set of Modified Objects: (Graphics-Display).

* Set of Argument Objects: (Temp.Profile).

* Set of Server Objects: (0

send

* Behavior: Commands the output device to display an argument.

e Set of Actor Objects: (TMC).

* Set of Modified Objects: (Temp-Display).

* Set of Argument Objects: (Reading).

* Set of Server Objects: (0).

3-24

....... ,,,,,, ,,, ,i a a m B i i l I i II I i I

3.5.3 Ei.capsulate Objects and Operations

3.5.3.1 Apply Heuristics to Determine System Modules

Discussion:

1. To the outside world, the TMC is a software module representing the whole
system. We show it as a separate control object within the system due to
represent the relationship between it as a parent of the other objects in the
system.

2. The classification heuristic indicates the Temp.Sensor and Terminal are
state machines with respective states of Reading and Command.

3. Encapsulating Set..Point with Fan results in a third state machine. Fan must,
however, get Reading to control itself. OnOff-Signal becomes an internal
detail.

4. Since Temp..Display is to be updated based only on Reading, it makes sense
to encapsulate it within TempSensor. Thus it becomes an internal detail.

5. All that is left is the Graphics_-Display and the implied Reading-Record
for the previous 24 hours. The possibly complex functionality of displaying the
TempProfile and its dependence on the display device indicates the need to
make Graphics..Display a separate module. The Reading-Record may log-
ically reside in a separate module, the TempSensor module, or the Graphics
Display module. Since the Graphics Display does not naturally represent
the notion of a collection of Reading/Time pairs of the Reading.Record,
we choose to encapsulate the Reading-Record with the TempSensor.

6. The Temp-Sensor now more accurately represents a TempMonitor at this
level of abstraction so we will use that name.

3.5.3.2 Diagram the Module Dependencies

Figure 3.5 represents our initial module descriptions and dependencies in a
block diagram.

3.5.3.3 Diagram and define Module Interface.-

Figure 3.6 depicts the interfaces between modules and their operations in the
system. The modules are further specified as follows:

TMC

9 Set of Component Objects: (Temp..Monitor, Terminal, Fan,
Graphics-Display)

3-25

Fiur 3..Boc igrmfrth epeaue Monitornrle

* Set of Opeations: (run

Terminall

FigSe of5 CockDpaonen Obet (Commead) Moio/otrle

* Set of Server Objects: (System-Q0 -Driver)

e Set of Actor Objects: (TMC, Faner

* Set of Operations: (run,)

TermiJn

* Set of Component Objects: (Comad).eod epesr ep.

e Set of Server Objects: (SystemiO..-Driver)

0 Se of ctor Objcts:JM3-26n

TMC

rtn

TempMonitor GraphicsDisplay

run 0 t
get -.

Fan Terminal
rtm run 0

get

Figure 3.6. Detail Diagram for the Temperature Monitor/Controller

" Set of Actor Objects: (TMC, Fan, Graphic-Display)

" Set of Operations: (run, get)

Graphic.Display

* Set of Component Objects: (0)

* Set of Server Objects: (SystemiO.Driver)

" Set of Actor Objects: (TMC)

" Set of Operations: (run)

Fan

" Set of Component Objects: (Set-Point)

3-27

e Set of Server Objects: (Temp-Monitor, Terminal)

* Set of Operations: (run)

3.5.3.4 Refine Module Behavioral Descriptions

TMC

1. Operation run

* Set of Input Arguments: (0).

* Set of Output Arguments: (0).

e Behavior:

The TMC causes each of its four component state ma-
chines to begin running upon execution of the system. Halting
the system will result in termination of each of the component
objects.

Terminal

1. Operation run

* Set of Input Arguments: (0).

* Set of Output Arguments: (0).

* Behavior:

The Terminal retains an input character buffer called
Command. When Command is changed via keyboard in-
put, it is examined to determine if it represents either a
Set-Point or a Profile..Request protocol. If it does, the
Command is maintained and a flag is set stating which type
of command it is. Otherwise, the buffer is flushed and the
flag is set to null.

2. Operation get

* Set of Input Arguments: (0).

* Set of Output Arguments: (Profile.Request).

* Behavior:
If the receiver object represents a Profile..Request, the

Command is returned. Otherwise a null string is returned.

3. Operation get

* Set of Input Arguments: (0).

* Set of Output Arguments: (Set-Point).

3-28

9 Behavior:

If the receiver object represents a Set-Point, the Com-
mand is returned. Otherwise a null string is returned.

Temp.Monitor

1. Operation run

* Set of Input Arguments: (0).

" Set of Output Arguments: (0).
" Behavior:

The Temp..Monitor periodically gets a Reading from
the physical input device and sends it to the physical output
device. The Reading is saved in a Reading-Record data
structure.

2. Operation get

" Set of Input Arguments: (Profile-Request)
" Set of Output Arguments:(Reading.Record)

" Behavior:

The set subset of Reading/Time pairs which fall within
the Time range specified in the Profile-Request are re-
turned.

3. Operation get

* Set of Input Arguments: ()

e Set of Output Arguments:(Reading)

* Behavior:

The most current Reading from the Reading-Record
is returned.

Graphic-Display

1. Operation run

* Set of Input Arguments: (0).
* Set of Output Arguments: (0).

* Behavior:

The Graphic- Display gets a Profile-Request from
the Terminal. When it receives one that is not null, it
gets the appropriate Reading-Record set from the Temp.
Monitor and formats the display protocol for the output de-
vice.

3-29

Fan

1. Operation run

" Set of Input Arguments: (0).

" Set of Output Arguments: (0).
" Behavior:

The Fan periodically gets a Reading from the Temp_
Monitor. The Reading is less than its internally maintained
Set-Point, it sends a signal to the physical device to turn it
on, otherwise it sends a signal to turn it off. The Fan also
periodically gets a Set-Point from the Terminal. If it is
not null, it updates its internal state with the new value.

3-30

3.5.4 Decompose the Modules or Begin Detail Design

3.5.4.1 Analyze the Modules for Common Classes

The state machines representing I/O devices may represent instances of a class
like I/O.Drivers. However, the functionality of each seems sufficiently different to
eliminate any implementation benefit.

3.5.4.2 Analyze the Modules for Existing Generic Structures

Most languages should provide interface routines, such as TextAO or predefined
pragmas in Ada, for implementing the external device I/O.

3.5.4.3 Analyze the Module Complexity

The TMC, Fan, and Terminal are obviously at a sufficiently low level of
detail to describe with psuedocode or flow diagrams.

The Graphic-Display and Temp..Monitor may require further decomposi-
tion.

3.5.4.4 Determine the Appropriate Method for Decomposition

The Graphic-Display, might require decomposition if the graphics commands
are not of sufficient power to easily plot the graph without having to calculate the
entire bit-map. Since the functionality of the display operation appears to be pri-
marily calculations, functional decomposition would probably be an adequate means
for carrying out further design.

The Temp...Monitor is clearly more complex than the other objects, and
could be decompos .d in an object oriented fashion. However, the primary objects
represent the external temperature sensor and display, and the Reading-Record
data structure. The !xternal devices need not be represented by separate modules
since the operations and arguments involved would already presumably be defined
by system calls or generic routines. That leaves only the data structure which should
be detail designed by implementing an appropriate data structure such as an array.

3.5.4.5 Describe Operations of Lowest Level Modules

Since each of the specified operations may easily be described with conven-
tional methods, we refer the reader to the appendix for the detail design. But for
completeness of the three view object model representation, a petri net graph of the
Temperature Monitor/Controller is presented in Figure 3.7.

3.5.4.6 Describe Data Structures of Lowest Level Modules

Table 3.3 shows the low level objects and their structural descrip, :ons.

3-31

Graphic)ispla

It't

Figure 3.7. Petri Net Diagram for the TempMonitor Module of the TMC

Table 3.3. Temperature Monitor/Controller Data._Structures

Object Data Structure Doain
Command string character
SetPoint numeric degrees F. a999.99

Reading numeric degrees F. ±:999.999
Request range integer hhmms..hhmms

Temp.Profile array(8640)a Reading

"Since times are specified at 10 second intervals, and the size at 24 hours, the time might be
deduced from the index to the array, so a single dimensional, 8640 element array would be suffcient.

3-32

runb TM run Fan innmn Sl llmllmm

3.5.5 Conclusion

The Temperature Monitor/Controller problem is a typical, although simple
example of a real time system involving concurrent processes. Using the proposed
methodology, we easily identified the required components, described their struc-
tures and relationships in terms of the object model, and presented the information
graphically. Detail design and implementation of the problem can proceed in a
straight-forward fashion via psuedo code or a specific language oriented PDL.

3-33

IV. Requirements and Design of a Decision Aid

4.1 Introduction and General Requirements

In this chapter we discusses the steps taken for determining requirements and

a top level design for a decision aid to implement the previously described OOD

methodology. In the field of decision support, requirements determination requires

four steps: understanding the problem, selecting a kernel system to implement,

developing a representation or model of the system in the form of storyboards, and

describing the database and modelbase requirements to support the system. The

storyboards and associated feature chart then serve as a top level design of the

dialogue, database, and modelbase components of the decision aid.

Before getting to the specific requirements to support OOD, we give the general

requirements for the decision aid as follows:

1. The DSS dialogue shall be a mouse driven, windowed environment.

2. The dialogue shall be easily modifiable.
3. The dialogue shall present standard capabilities in an orthagonal manner. For

example, the help function shall always be accessible in the same manner, and
in the same place in each of the main displays.

4. The dialogue shall support a hook book entry capability.

a. The hook book shall require a date, circumstances, and idea of the user,
and automatically maintain a unique identifier for each entry.

b. The hook book shall be retrievable for display and hard copy.

c. Hook book entries may be deleted or edited.

5. The dialogue shall provide an interactive help function.
6. The dialogue shall support access and control over the modelbase and database

components.

7. The dialogue shall provide a unique entry point providing for initialization of
the database and modelbase and introductory help capability.

8. The dialogue shall provide an exit capability from any point and shall prompt
the user to decide whether changes will be saved.

4-1

i . . ., I i I -

9. The DSS shall allow specific selection and activation of conceptual or mathe-
matical models from the dialogue.

10. The DSS shall provide the capability to interactively modify or add models to
the modelbase from within the DSS.

11. The DSS shall allow retrieval and update to a database or multiple databases
from within the DSS.

12. The DSS shall optionally allow protecting sensitive databases from modifica-
tion by the user of the DSS.

4.2 Understanding the Decision Making Process

Throughout this document we have been using concept maps as a means of

conveying understanding. We said they can also be used as a means of gaining

understanding of a decision process (Figure 2.1). In Chapter II, we used concept

maps to gain and described our understanding of the object-oriented paradigm,

OOP and OOD, and presented general models for both requirements and design

specifications. Then in Chapter III we presented a methodology for OOD based on

those concept maps. Figure 3.1 shows the decision steps involved in OOD and acts

as an overview for the methodology.

4.3 Selecting the Kernel.

The concept map of Figure 3.1 reveals the central decision processes of analysis,

identification, encapsulation, and decomposition. Using these four main steps and

their descriptions from Chapter III, we developed the feature chart and storyboards

we described in this chapter.

The feature chart, Figure 4.1, depicts the support and interaction required by

the four steps in our OOD methodology. Besides the four main decision steps, an

entry/exit storyboard has been added to provide control over initialization and load-

ing and unloading the design database. Features required to support methodology

sub-steps have also been added to complete the systems general requirements.

4-2

-DF

conce Figrbem 4.1rFetue ChartUnfod the User D eonaAid

Map S atect Database staistic Requirement sCree nns

meuVsdfoiiti h trbar t etseci acinsi urtiof fhe

Text Analyze 0-0 Desgn Decompose o Decomposition
the Entry/Exit Modules

View Edit
Graphics Ojc

h iectiona d teetions Dol stObject

View C Diagrae4w mp

IdREtre equirements dniyHo naslt$1

Figure 4.1. Feature Chart for the OOD Decision Aid

On the feature chart, large rectangular boxes represent main screen windows

or storyboards which fill an entire screen. The small rectangular boxes represent

menus used from within the storyboards to select specific actions in support of the

decision step. Boxes with clipped corners represent a function of the storyboard in

support of one of the substeps in the methodology.

The five storyboards are linked together through the main menu which will

be available from each storyboard for switching to any other storyboard. The main

menu will also provide for exiting the system and allow access to a context sensitive

help function and the hook book. Several functions overlap. For instance, the object

4-3

and operation definitions created in the Identification storyboard are used again in

both subsequent storyboards.

The feature chart presents an overview of the features required by the kernel

system. Consequently, only the high level functions are shown. The storyboards and

their descriptions reveal detailed requirements.

4.4 Representing the Kernel

The detail requirements for the decision aid are represented in the storyboards

of this section. First we present general requirements for each storyboard-based

on the methodology of Chapter III and the feature chart. Then, the storyboards

themselves, along with their descriptions, are presented in the final figures of the

section. In addition to the storyboards representing the five main screen displays,

we also show a storyboard for the hook book.

Each storyboard contains at least three sub-windows or panes: a features pane,

an objects pane, and a text pane. Selecting an element in the features pane will cause

a list of files or objects to appear in the objects pane. Selecting an element in the

objects pane will cause initialization of the text pane, or bring up a sub-window-

either one of which the user will use to carry out some sub-step in the methodology.

4.4.1 Requirements for the OOD Entry/Exit Storyboard. The general require-

ments for the Entry/Exit storyboard are as follows:

1. The Entry/Exit display shall support the following activities:

a. Log on to the OOD Decision Aid.

b. Load the design database.

c. Transfer to one of the four main OOD storyboards.

d. Save the design database upon exiting the system.

2. The Entry/Exit display shall provide the capability to browse the disk files
and change the default directory.

3. The Entry/Exit display shall prompt the user for an id and automatically log
user time on the system.

4-4

4. The Entry/Exit display shall provide the capability to selectively list require-
ments database files.

5. The Entry/Exit display shall provide a help file giving adequate instructions
for the first-time user to effectively use the system.

6. Figure 4.2 provides the Entry/Exit storyboard and its detailed description.

4.4.R Requirements for the Analysis Storyboard. The general requirements
for the Analysis Storyboard are as follows:

1. The Analysis display shall support the following activities:

a. Concept map the problem from the user.

b. Concept map the problem from the specification.

c. State the problem.

d. Concept map and state a solution strategy.

2. The Analysis display shall provide the capability to access an on-

line requirements specification.

a. Access to the specification will be in three forms: text, data dictionary,
and graphical flow diagram.

b. Access to the specification shall not corrupt the current state of currently
entered data.

3. The Analysis display shall provide the capability to generate, edit, store, and
retrieve concept maps.

4. The Analysis display shall provide the capability to enter, edit, store, and
retrieve a textual problem statement and solution strategy.

5. Figure 4.3 provides the Analysis storyboard and its detailed description.

4.4.3 Requirements for the Identification Storyboard. The general require-
ments for the Identification storyboard are as follows:

1. The Identification display shall support the following activities:

a. Apply heuristics to identify objects and operations.

b. Analyze the solution strategy and requirements specification.

c. Describe object and operation attributes.

2. The Identification display shall support the same specification access capabil-
ities as the Analysis display.

4-5

3. The Identification display shall provide access to concept maps.

4. The Identification display shall provide access to identification heuristics.
5. The Identification display shall provide the capability to enter objects and

operations into a database and edit their attributes.
6. Figure 4.4 provides the Identification storyboard and its detailed description.

4.4.4 Requirements for the Encapsulation Storyboard. The general require-
ments for the Encapsulation storyboard are as follows:

1. The Encapsulation display shall support the following activities:

a. Apply heuristics to determine system modules.
b. Diagram module dependencies.
c. Diagram module interfaces.
d. Refine object and operational descriptions.

2. The Encapsulation display shall provide access to encapsulation heuristics.
3. The Encapsulation display shall provide a graphic editor to generate, store,

retrieve, and edit block and detail diagrams.
4. The Encapsulation display shall provide the capability to edit object and op-

eration attributes.
5. Figure 4.5 provides the Encapsulation storyboard and its detailed description.

4.4.5 Requirements for the Decomposition Storyboard. The general require-
ments for the Decomposition storyboard are as follows:

1. The Decomposition display shall support the following activities:

a. Analysis of modules for level of detail.

b. Analyze modules for common class or inheritance.
c. Enter psuedocode description of low level operations.
d. Enter data structure descriptions in the data base.

2. The Decomposition display shall provide access to graphical and database ob-
ject and operational descriptions.

3. The Decomposition display shall provide access to decomposition heuristics.
4. The Decomposition display shall provide edit capability of object database.
5. The Decomposition display shall provide the capability to identify a module

to be decomposed and delineate the new level of abstraction in the database.
6. Figure 4.6 provides the Decomposition storyboard and its detailed description.

4-6

4.4.6 Requirements for the Hook Book. The general requirements for the
Hook Book display are as follows:

1. The Hook Book display shall provide the capability to log ideas for changes to

the decision aid.

2. The Hook Book display shall provide the capability to retrieve, edit, and print
Hook Book entries.

3. The Hook Book will automatically record the user, date, time, and storyboard
from which the Hook Book was called.

4. Figure 4.7 provides the Hook Book storyboard and its detailed description.

4.5 Detailed Requirements: The Storyboards

The subsequent figures present detailed requirements for the decision aid in

the form of storyboards and associated descriptive text.

4-7

Design DatabaseObjecOriented Deig Decision AidAnlz

Requir meDtbe filename Unload the Dat4se? Identify

y Encasuae

Decompoe

SBrowseDiak Vie Loa "ook Book

Requirements file text ... ChangeDectory Unload Print

Remove Exit

Enter filenme.OOD):

datJn~ae.ood 01

Enter Userid:

The Entry/Exit display is described as follows:

1. The user will initailly be prompted for a userid. Login/logout times will be automatically recorded.

2. The main menu will allow activating other storyboards, the Hook Book, context sensitive help, or exiting
the system.

3. Selecting entries from the features pane produces the following results:

a. Selecting the DesignDatabase causes database files to be listed in the objects pane.
b. Selecting the Requirements Database causes all requirements files to be listed in the objects pane.

4. the features pane popup will allow the following:

a. Activation of a disk browser facility.

b. Prompting the user for a new default directory for the database, requrements, or help files.

5. The objects pane popup will allow loading and unloading the design database; or printing/viewing require-
ments files.

6. The text pane will provide the following-

a. Initial instructioun on startup. Editing and saving instructions.

b. Viewing requirements files.

Figure 4.2. Storyboard: Entry/Exit for the OOD Decision Aid

4-8

Analyse the Problem

Concept Map Analyze

Solution Srategy Identify

R e nts Text filenames/object names Encapsulate

Requirements Data Dictionary Decompoe

Requirements Graphics Add Hook Book

Edit Help

Problem Statement: Remove Exit

Solution Strategy: Enter Object Name

Requirements Data Dictionr

Move

Concept Map
Move

Th nlyi islyisds Resiz folows

Cloe nClear Resize
Line clsEllpse oe
Copy cocp

P a s t e i n a u -w n d w

zoomcocp

Undo''11.

The Analysis display is described an follows:

1. The main menu may be activated. Exit will return user to Entry/Exit.

2. The user will be promnpted for the name of the object to be designed.

3. Selecting entries in the featcts pane results in the following actions:

a. Selecting the ConceptMap entry causes concept map object names to be listed in the objects pane.

b. Selecting Solution Strategy causes object names to be listed in the objects pane.

c. Selecting EequirementsText, DataDictionry, or Graphics entries causes the corresponding files to be
listed in a sub-window.

4. Selecting entries in the objects pane results in the following actions:

a. Selecting a concept nmp will allow editing, saving or removing concept maps from objects.

b. "_dt will open a graphic drawing window for creating, editing, and saving concept maps.

c. Selecting Edit will bring up a sub-window for editing the concept map.

d. Selecting an object for a Solution Strategy will display the text to the text pane or format the text pane
for creation.

e. Selecting a requirements file will activate a sub-window for viewing requirements data.

5. The concept map sub-window will provide the capability to generate. and edit graphics representations of
concept maps.

Figure 4.3. Storyboard: Analyze the Problem

4-9

Identify Objects and Operations

Heuristics
Analyze

Concept Maps Identify

Requirements Database files/entity names Encapsulate

Objects
Decompose

opatio Hook Book

Inspecting. TMC Add Help

Name e ,Rt
attribute text Enter Name:

Behavior

Domain

OOD Graphics Viewer

The Identification display is described as follows:

I. The main menu may be activated. Exit will return user to Entry/Exit.

2. Selecting entries from the features pane produces the following results:

a. Selecting Heuristics causes a Help window to open for viewing/editing heuristics.

b. Selecting Requirements, or CoticeptMap causes file or object names to be listed in the objects pane.

c. Selecting Object or Operation causes database entries to be listed in the objects pane.

3. Selecting an entry in the objects pane produces the following results:

a. Selecting a concept map, or a requirements source file, will activate the appropriate sub-window for
viewing only.

b. Selecting an object or operation name will activate a popup for Adding, Editing, or Removing entities
from the database. operation.

c. Selecting Add will open a database browser in the text window.

4. The Database Editor will provide the following capabilities:

a. An attribute pane will provide the ability to add, inspect or remove attributes.

b. A text pane will allow editing an entry's attributes.

Figure 4.4. Storyboard: Identify the Objects and Operations

4-10

Encapsulate Objects and Operations into Modules
Heuritiii Analyze

ConceptMaps flies/entity names Identify

Requirements Database Edit Encapsulate

Objects Add Decompose

Operations Remove Hook Book

Block Help
Inspecting: TMCI-BokHl

Detail Exit

The EnasFtldslyiodsrbdasfwos

eatin an object some texi e

Clas
Class Ad
Concept Map Ad

Operations aeBo

objecs a OpetCopy

Components Argument Pa-ste i

Actors Modifies B D , o rams.m

Servers Actors SSrver,, Undo

Svea ers A M

The Encapsulate display is described as follows:

L. The main menu rsy be activated. Exit will return user to Entry/Exit.

2. Selecting entries from the features pane results in the appropriate file or object names being listed in the
features pane.

3. Selecting entries from the objects pane results in activation of the appropriate sub-window-e-cept for
objects and operations.

4. Selecting an object or operation from the objects pane opens a pop-up for selecting Editing the ob-
ject/operation or mcating Block, Detail, or Flow diagrams.

5. Selecting Edit opens Database Browser with an additional l wst pane for forming relations.

6. The Database Browser provides the following additional capabilities:

a. A context sensitive pop-up menu will list the possible relations for either an object or operation.
Object: Operations, Components, Actors, Servers, Classes.
Operation: Objects, Arguments, Modifies, Actors, Servers.

b. Selecting a relation causes & second pop-up to appear for selecting Add, Remove, or Inspect.

c. Selecting Add lists all appropriate objects or operations from wich to select in the list pane.

d. Selecting inspect lists all defined objects or operations in the relation for the selected object. Selecting
one opens an Inspector window on the object.

7. Selecting Block, Detail, or Flow results in activation of a graphics sub-window similar to the concept map
sub-window.

8. Graphics sub-windows will provide for creation of rectangles or circles or other shapes as appropriate to the
type of graphic being developed.

Figure 4.5. Storyboard: Encapsulate the Objects with their Operations

' 4-11

_Dec.om,..,,..,,.e Modules

Heuristics Analyz

Design Objects

Reusable Components Edit Encapsulate
Add Ei Decompose

Namet

Remove Hook Book
Block Load Help

Inspecting: TMC DealUnload E i

Behavior an object some text

Domain Drawing Block Diagram of: TMC
Class
Clas
Concept Map
Block Diagram
Detail Diagram Clear

Box
Fan Copy

Paste

S KI

The Decomposition display is described as follows:

1. The main menu may be activated. Exit will return user to Entry/Exit.

2. Selecting entries from the features pane produces the following results

a. Selecting Heuristics opens a help window for decomposition heurictics.

b. Selecting DesignObjects lists objects in the files pane in a component hierarchy. Selecting objects opens
a Database Browser as with the Encapsulation storyboard.

c. Selecting ReusableComponents lists reusable components database files in the objts pane.

3. The objects pane provides a pop-up for load/unloading reusable componerts databases, and editing objects
and their associated graphics.

Figure 4.6. Storyboard: Decompose the Modules

4-12

Hook B~ook Browsler Move

Im/dd/yy Date: Time. Resize

mm/dd/yy User. Source: Close

Subject:

Idea:

Circumstance:

Add Save

Remove

The Hook Book Browser display is described as follows:

1. A popup menu will provide the ability to move, resize, or close the browser.

2. A Wis pane will list all hook book entries by date and time.

3. Selecting an entry will cause the corresponding mini-panes in the rest of the window to be updated fromn the
hook book entry.

4. Selecting Enter will cause the Date, Time, Userid, and Storyboard called from to automatically be entered
in the labeled mnin-panes.

5. The user will be immediately prompted for a subject.

8. The text pane will provide for entering and saving the idea and circumstances.

Figure 4.7. Storyboard: The Hook Book Browser

4-13

4.6 Supporting the Kernel

4.6.1 The Database Requirements

The database requirements for the OOD decision aid may be divided into

three categories. First will be the existing database representing the requirements

specification used as a source document for design.

e The requirements database to be used in the prototype shall pro-
vide a text functional specification, a data dictionary, and a graphical
representation of the data flow requirements.

The second category consists of those databases supporting existing design

tools, other tools such as text editors, word processors, and software configuration

management libraries available in the environment.

9 The tools database shall provide for storage and retrieval of both
text and graphical images in support of the methodology implemented
in the dialogue. Text files include the help files, heuristic files, and hook
book entries. Graphic images of the block and detail diagrams must be
saved and indexed for retrieval.

The third category is that which supports the object model itself. The under-

lying object model to be used in this methodology was described in Section 2.8. An

entity-relationship (E-R) diagram [29] for this model is presented in Figure 4.8. Fig-

ure 4.9 additionally gives the set of relation skeletons derived from the E-R diagram.

* The object model database shall provide the capability to store and
access descriptive information required by the object model.

4.6.2 The Modelbase Requirements

"Models are active relations and associations that govern decisions and actions

in an organization" [281. For our purposes, the object model of Chapter II and

the heuristics and methodologies listed in Chapter III comprise the "relations and

associations" which govern the design decisions in the OOD process.

4-14

Figure 4.8. An E-R Diagram or the Object Model

The modelbase elements: the object model, the methodology steps, the de-
sign heuristics, and the hook book all require text or graphic tools for editing and
manipulating the images supported by the database component.

F The modelbase component will provide editors for the text and

graphics databases required by the methodology.

4-15

Objects Operations Copnn bet
nae behavior Idomain Jobject Jname jalIgorithm parent cihild..

Argument Objects Modifies Objects
objec t j operation mode joperation component

Class Objects Actor/Server Objects
class I object se r ve r

Figure 4.9. Relations for the Object Model

4-16

V. Prototype Implementation and Evaluation

5.1 Introduction

In the previous chapter we presented the overall objectives, general capabilities,

specific capabilities, and the features required of a Decision Aid for Object-Oriented

Design. We used the feature chart (Figure 4.1) and storyboards (Figures 4.2-4.7) to

represent the top level design of the dialogue component, and discussed initial design

of the database and modelbase. We now turn to the implementation and evalua-

tion of a prototype, which can be used to evaluate the methodology and concepts

presented earlier.

We start by discussing our determination of the hardware and software tools

used to implement the dialogue, database, and modelbase components. Then we

describe the implementation of the selected components. We conclude with an eval-

uation based on key decision points relating to the prototype's development.

Case studies of DSS usage show that "Key factors explaining successful de-

velopment are a flexible design and architecture that permit fast modification and

a phased approach to implementation" [44]. Thus though we've stated the initial

requirements and design somewhat formally, only time will tell whether or not the

ensuing system will be accepted and of value to the users. Consequently, we took a

phased approach to implementation, and evaluation which would allow user response

and feedback before investing in further development.

The first phase, implemented as a part of this thesis, was to implement the

storyboards described in the previous chapter. Only as much functionality as was

necessary to demonstrate the potential value of the methodology was implemented.

However, even this first kernel system must be "a small but usable system to assist

the decision maker" 144]. Additional work is recommended in the final chapter as an

area for future study and research.

5-1

5.2 Hardware and Software Selection

The primary hardware available for prototype development included the En-

gineering Department's VAX 11/780, Sun workstations, and Zenith Z-248 micro-

computers. The following discussion relates the prototype's components to the spe-

cific hardware and software used to support them.

5.2.1 Dialogue

To support a rapid prototyping or experimental development approach to im-

plementing the storyboards, a software environment was needed which would provide

the following capabilities:

1. It must be able to provide representations of the storyboards as screen displays
through which users can access the various required functions.

2. It must support a variety of operations including accessing text and graphics
files, entering text, drawing graphic representations, and selecting from menus.

3. It must support display of context sensitive help and methodology information
as memory aids to the user upon request, without disturbing other work in
progress.

4. It must provide control over the database and model base storage and retrieval
as well as between the various storyboard functions.

5. It must provide a high level of interactive programming such that changes may
be made rapidly and development time is minimized.

6. It must be readily available for use on available hardware.

Based on these requirements, we initially considered the Sunview environment

on the Sun workstations. However, the graphics capabilities seemed too low a level

to be used for a rapid prototyping approach. In addition, the limited availability of

Sun workstations led us to look for a software environment that would run on the

more readily available Zenith Z-248 micro-computer.

Since much of the research for this thesis involved analysis of object-oriented

principles, we supposed an object-oriented programming environment might well suit

our needs. The Smalltalk/V Object-Oriented Programming System (OOPS) [17] was

5-2

obtained and installed on a Zenith Z-248 micro- computer and evaluated as to its

capabilities for implementing the prototype. Smaltalk/V seemed to provide a rich

toolset supporting software reuse, bitmapped graphics, and interpretive compilation

which would enhance rapid development of the prototype.

5.2.2 Database

In Chapter IV we said the database must support the requirements documents,

design tools, and the object model. We use that framework to discuss database tool

selection and implementation.

5.2.2.1 The Requirements Database. The DCDS Support System pro-

vided a database for developing a requirements specification including a data dic-

tionary and graphical representation. Since a major objective of the thesis was that

a design suf port tool should integrate with other development tools, we felt it im-

perative to use an existing system to support requirements analysis. Another factor

in selecting the DCDS Support System was its applicability to developing the kind

of real-time distributed systems for which object-oriented design seems to be best

suited.

5.2.22 The Tools Database. We expected Smalltalk/V to provide com-

plete support for reading and writing text files and saving graphics images. Or-

ganization of internal data would also be provided from within the programming

environment.

5.2.2.3 The Object Model Design Database. Initially we wanted to im-

plement the object model as a new language extension of the DCDS. The DCDS

Support System's entry feature made it quite easy to define the new language, but

the constraints on DCDS access from within Smalltalk precluded implementation.

The alternative was to use Smalltalk/V data structures to implement the object

model.

5-3

I I II I I ll Ii .- • • ,

5.2.3 Modelbase

The help ,rid heuristics files comprising the modelbase were implemented as

text files.

5.3 Prototype Implementation

5.3.1 Dialogue

Implementation of the dialogue component was primarily a matter of writing

Smaltalk programs to display and provide functionality to the storyboards. Gener-

ally following our own OOD methodology, the high level design can be seen directly

in the feature chart of Figure 4.1. Restructuring the feature chart into an OOD

block diagram provides the view shown in Figure 5.1.

From the block diagram, we developed the initial detail diagram based on the

functionality shown in the feature chart. The initial detail diagram was modified as

it became clear which objects would become separate modules and the final diagram

is shown in Figure 5.2. We then proceeded with implementation of system functions

using an incremental approach as follows:

1. Implement the storyboards as windows with the following general format:

a top or title pane, a features pane, an objects pane, and a text pane. Since each of

the storyboards had this general format, we developed a storyboard class and made

each of the five main storyboards a subclass, thus inheriting the basic attributes of

the class.

2. Implement the main menu which would allow movement between story-

boards and access to help and hook book features. The main menu would be the

driving object and keep track of the decision aid's state.

3. Implement the features panes by providing the list of features for each

storyboard, and the mechanism to display the appropriate list of objects for the

selected feature in the objects pane. The mechanism for displaying text in the text

5-4

L -

Help Deig Hook Book

DeiinAid

Entry/Exit the to form Objects and Modules
Problem Modules Operations

Design O0D Heuristics Requirements
Database Drawing Database Database

Figure 5.1. Block Diagram for the OOD Decision Aid

pane was also implemented. As individual features were added from here on, subclass

specific modifications to the general control mechanisms would be added.

4. Implement the hook book as a browser which would be a separately dis-

playable and controllable window. Early implementation of the hook books functions

allowed its use for making notes regarding further development.

5. Implement the design database as a separate abstract data type. Represen-

tation of the database changed several times. Initially it was a complex hierarchical

data structure using recursive algorithms for accessing its components. Eventually

it was changed to the simple set of relations described in Chapter IV. As an abstract

data type, the changes were confined to the database object itself. Initially, opera-

5-5

Identify Enasuae Decompose

heuristics 43.-heuristics W.heuristics 0_
Istcmaps 4PM listCmaps listObjects W

listleqmnts listP, Wmts 0- stRmes --- O not
listObjects listObjects edit implemente
listoperations listOlpe-ations remove
remove 0-edit 0-block
add remove G~detai
edit block flow 40

view deta
nlow
view

__ ~~~run Dehini

EntryExit OO]csini Analyze ,

browseDisk 0-analyze ¢II tcmape .-

chumgeDir 4-- identify 0 solution 0- -
listl)&tabase @.-encapsulate - I UstText .
Ux&tieqmnts e-- decompose o- U stDstaDict -
loadlatabase *.- hook~kook *_ - - i stGraphics
uloadDatasea l- I help Co. a ddCmap G.-
view l eqmts a-- exit a.- - - [editC m ap (- I

removeCmap -
[editSolution .
lviewReqrnnts @

Daabs chnei es J ,

listFiles Requirements OODDraw

load listText 00view G
u oad I stD D 0 0edit ON -
objects fistGraph e

oprtin istAil 0 HookBook

edit hnei

get

Figure 5.2. Detail Design Chart for the OOD Decision Aid

5-6

tions were implemented to load and unload the database from disk. Operations were

added later as they were required by other storyboard features.

6. Implement access to the requirements database. This began as merely

accessing text files as needed. But as redundancy began to appear in several story-

boards, the requirements database became a separate object with its own operations

and window for displaying text. As previously mentioned, graphics files were dis-

played through a DOS shell to the VTEK PLAY program with automatic return to

Smalltalk/V.

7. Implement the design graphics capability. A subclass of the free drawing

application provided with Smalltalk/V was created to provide the specific require-

ments of the decision aid. Rather than limit the features for each application to

the subset required, other useful features were left for further experimentation with

graphics capabilities. The single drawing object developed could be used for both

concept maps, and the three types of design graphs required.

8. Implement the help feature. Initially, help was forced to the main text pane,

but it soon became evident that that might destroy current work in progress. So the

help feature was also made a separate object given browser capabilities similar to

the Hook Book. Additionally, users were given the ability to modify and thus tailor

the help information to their own needs. Since help was to be context sensitive, each

storyboard would maintain a set of help file names for access only by the help object

for that storyboard.

9. Implement the heuristics display capability. Since heuristics text files needed

to be accessible by topic, as with help, it became evident that this was just another

form of user help and so we implemented it as an instance. Being context sensi-

tive, a separate list of heuristic file names would be maintained by each applicable

storyboard.

5-7

10. Implement a database browser to provide a window on the database for

adding, editing, and removing relations. This kept window operations separate from

more general database access operations.

As each decision aid feature was implemented, the controls to access that fea-

ture were put into the appropriate storyboards and tested. In this way we always

had a working model from which we could test new features. This method of in-

cremental development worked very well for single user development and facilitated

experimentation with various design ideas. It also made possible rapid modifications

to the software based on hook book entries.

5.3.2 Database

5.3.2.1 The Requirements Database. The critical task involving imple-

mentation of the DCDS was to be able to access its data from within the dialogue.

Our first alternative was to use the PC version of the DCDS to provide direct

access to the database from within Smalltalk/V. However, the PC version was no

longer supported by the vendor and we could not implement it successfully on the

Zenith Z-248. Our second option was to use Smalltalk/V's communications package

to directly access the VAX VMS version of the DCDS. The extremely slow response

time for the VAX version, combined with the requirement of using a Textronix 4105

emulator to access DCDS graphics eliminated this alternative.

Our final choice was to download DCDS requirements data and access it off-

line. The data dictionary information was listed to text files through the DCDS

Support System's query function and graphics screen displays were captured through

Scientific Endeavors Corporation's VTEK Textronix terminal emulator. Smalltalk/V

was able to input the text files directly and the graphics images were displayed

through a DOS shell escape and execution of VTEK's PLAY program.

5-8

5.3.2.2 The Tools Database. Implementation of Smalltalk/V on the Z-

248 made available the following software development tools:

1. a class browser for accessing source code;

2. a disk browser for accessing text files on disk;

3. a text editor providing screen editin3, search, search and replace, saving changes,
cut and paste between windows, and various other helpful features;

4. a free drawing editor for developing graphic images;

5. a DOS shell for exiting to DOS and executing external programs;

6. access to the entire system source code for use as reusable components or
templates;

7. a project manager for controlling code changes having to do with the applica-
tion;

8. an object unloader for loading/unloading the design database;

9. a complete multiple window and mouse driven environment for maintaining
multiple simultaneous views of the software in development;

10. incremental automatic compilation upon saving source code;

11. a debugger providing a walkback feature for tracing errors in execution.

5.3.2.3 The Object Model Database. Implementation of the object model

in Smaltalk consisted of declaring a new class and selecting the data st:uctures to

represent the model. Initially, a hierarchical model was developed using a directory

to contain the various attributes of each object. This soon became complicated and

cumbersome and a simpler relational approach was taken, more directly implement-

ing the relations of Figure 4.9.

The database was defined as a dictionary of relations with the name of the

relation as the key to the dictionary. Each relation was then implemented as an

ordered collection of arrays with each element of the array containing a string item

or a pointer to an object or operation in the appropriate relation. All these rela-

tions were objects in the database dictionary with the relation names as the keys.

Figure 5.3 graphically depicts this structure.

5-9

Cis Componen Object iArgent A Opertion

Figure 5.3. OOD Database Internal Structure

The standard data structure operations were implemented to hide this struc-

ture from the using storyboard features. Additional special operations were then

added to support unique database accessing requirements to simplify code in the

storyboard operations.

5.3.3 Modelbase

Implementing the modelbase was a simple conversion of the heuristics and

methodology instructions from this document to the text files which could be refer-

enced by the help and heuristics features. These files were then added to the default

lists of help and heuristics files built into the storyboards. The OODDecisionAid con-

troller module maintains the list of help files and these were hard coded as defaults

which could then be edited, removed, or added to by the users. Each storyboard

5-10

contains its own list of heuristic files which was also pre-loaded with defaults from

,the examples provided in Chapter III.

5.4 Evaluation of the OOD Decision Aid

Due to the required flexibility and objectives of the prototype development

effort, Riedel and Pitz's Utilization Shaped Evaluation (USE) model was chosen as

the most effective means of evaluation for the OOD Decision Aid. As we said in

Chapter II, the USE model focuses on what use will be made of evaluation informa-

tion.

First to be considered were what decisions were to be made regarding devel-

opment, who would make those decisions, and what were the critical windows of

decision opportunity. Second, the mission the DSS is to accomplish was defined,

along with its primary users and environment. One or more methods and associated

measures were proposed for each decision point identified. Finally, an evaluation was

performed to answer the evaluation questions. This section describes the results of

each of these four steps and presents our conclusions from the evaluation.

5.4-.1 Decisions

Table 5.1 lists the general decisions which need to be made throughout the

estimated life cycle of the target system. As a thesis project, this life cycle extends

only through the implementation and evaluation of a prototype. Also, the evalua-

tion criteria must concern itself with additional questions regarding basis for future

research and qualitative significance of the proposed thesis

5.4.2 The Mission, Users, and Environment

To determine the decision aid's effectiveness, the system must be evaluated in

terms of its mission objectives and its appropriateness for the user and the opera-

tional environment. The following discussion defines these three elements.

5-11

Table 5.1. Life Cycle Evaluation

Decision
Decision Maker Phase

1. Does the concept map accurately reflect the user RDa

relationship between the decision points in the process?

2. Do the story-boards accurately reflect an user/ RD/RSb
algorithm capable of aiding the decision-making process? designer

3. Is the kernel appropriate for development of designer RAC
a prototype?

4. Is the prototype feasible with available technology? designer RA/PDd

5. What components will be used to build the prototype? builder PD/DD

6. Is the completed prototype technically correct? builder/ PIf/VV-
designer

7. Does the prototype accomplish the user's objectives? designer VV

8. Is the user satisfied with the prototype's usability? user CDh

9. Does the expected value of the DSS justify further policy CD
development? maker

10. Does the approach taken represent a significant policy
contribution to the engineering community? maker CD

'Requirements Determination

bRequirements Specification

eRequirements Analysis
dPreliminary Design

'Detail Design

fPrototype Implementation
lValidation and Verification

'Continued System Development

5-12

5.4.2.1 Mission. The goal of the Object-Oriented Design Decision Aid

is to improve the timeliness and quality of design decisions made by software develop-

ers in producing an object-oriented software design specification. The OOD Decision

Aid will present both methodological and qualitative information to the designer as

needed and in a manner that enhances the object-oriented design process. The aid

will also guide the designer in a structured fashion through the four decision phases

of object-oriented design: analysis, identification, encapsulation, and decomposition.

These phases deal with the following questions:

1. What is the problem and what strategy is proposed for solving it?

2. What are the abstract objects and operations of interest?

3. How should objects and operations be associated in modules and what are the
interfaces between them?

4. Should a module be further decomposed or may it be constructed from known
components?

To support this broad goal, the prototype must meet the following three ob-

jectives as stated in the Scope section of Chapter I. They are as follows:

1. It must emphasize the four decision steps of analysis, identification, encapsu-
lation,and decomposition.

2. It must demonstrate the benefits of on-line access to requirements specification
textual, data dictionary, and graphical information.

3. It must provide a user interface which may be easily adapted by the user--even
to the extent of altering the methodology itself.

5.4.2.2 User. This section might be more appropriately labeled users

since several users are involved in making decisions regarding the development and

use of the DSS. As noted in the section on mission, the end user or person who

works directly with the aid will be a software engineer, programmer, or designer.

But the evaluation must also address decisions made by policy makers and program

managers. The program manager is the one most likely to sponsor development or

5-13

procurement of the DSS and would be in direct management of its implementation in

the software development environment. The policy maker would be at the approval

level for the DSS and have overall control of systems development beyond the target

project or system. In the case of this thesis effort, the policy maker will consist of a

thesis advisor and the members of the thesis committee.

5.4.2.3 Environment. The decision aid is to be placed in a software

development environment consisting of a number of tools and resources already in

place. Its task will be to provide a framework for integration of those tools, resources,

and information bases already in existence which support the OOD process. As a

highly adaptive environment, subject to rapid technological change, the system must

be able to readily integrate new tools and resources in support of a variety of software

development projects.

5.4.3 Choice of Evaluation Methodology,

Considering the factors stated above and the expected questions to be raised

throughout the life cycle, methodologies were chosen to evaluate each question stated

in Table 5.1. For each question and methodology, the proposed general measures of

effectiveness are given in Table 5.2.

5.4.4 Evaluation Results

The following discussion of the results of evaluating the developed prototype

follows the format established by the ten questions outlined in Table 5.1. Each

question's answer provides a summary of the results of the evaluation as well as a

discussion of the method and measures used.

5-14

Table 5.2. Evaluation Methods and Measures

Decision Methodology Measure

1. Attitude Survey Sample of Experts
Subjective Rating

2. Process Evaluation Subjective Rating

3. Feature Analysis Sufficiency

4. Systems Analysis Available Methods
Value Analysis DSS Costs

5. Cost/Benefit Component Cost

6. Systems Analysis Verification

7. Systems Analysis Verification
Attitude Survey Subjective Rating

8. Human Factors Subjective Rating

9. Rating and Weighting Subjective Rating

10. Rating and Weighting Subjective Rating

5.4.4.1 Does the concept map accurately reflect the relationship between

the decision points in the OOD process?.

The OOD methodology concept map was initially developed from the litera-

ture and interviews with three professors in software engineering and object-oriented

development from the institute's School of Engineering Department of Electrical and

Computer Engineering and Department of Mathematics and Computer Sciences. Af-

ter a composite concept map was developed, it was provided to the original three

experts, plus four more for further evaluation. Their comments were used to produce

5-15

the final version which was then accepted by all six reviewers. The resulting concept

map was used to develop the methodology and was shown in Figure 3.1.

The experts were asked whether they strongly agreed, agreed, disagreed, or

strongly disagreed with the proposition put forth by the question. On a four point

scale, the average response was insert numerical rating here with none disagreeing.

We conclude then, based on expert opinion, that the concept map does accurately

reflect the relationships between the key decisions which must be made in the object-

oriented design process.

5.4-4.2 Do the story-boards accurately reflect an algorithm capable of

aiding the decision-making process?

Answering this question required analysis of the OOD process. The process

evaluation method used required linking processes with their desired outcomes. Ac-

cepting the methodology described in Chapter III as an accurate reflection of the

OOD process, we only needed to link the functions reflected in the storyboards with

the steps required by the methodology. In other words, we assumed following the

steps of the methodology would result in the desired outcomes.

By observation, the storyboards directly embody the step- by-step execution of

the proposed OOD methodology. Each step in the methodology is directly supported

by a single window which provides the required functionality of that step. We con-

clude then that the storyboards reflect the algorithm presented in the methodology.

The additional question of to what degree the methodology itself represents

an algorithm beneficial in aiding object-oriented development is addressed in the

evaluation of the methodology presented in Chapter III.

5.-.4.3 Is the kernel appropriate for development of a prototype?

What we needed to determine is if the kernel represented a sufficient set of

features such that a system implementing those features would present a product

5-16

l&f

useful for helping the user make decisions. We show here how the decision aid

supports each step of the methodology.

Analysis Provide the user with access to the three requirements specification views
of graphics, text and data dictionary for use in deciding the scope and solution
to the problem.

Identification Provide the ability to view requirements, the solution strategy, and
concept map for identifying an initial list of objects and operations. Also
provide access to software engineering concepts and heuristics for identifying
objects and operations.

Encapsulation Provide a template for describing objects and operations such that
the relationships among them indicate how they might best be encapsulated
into modules. Also provide access to software engineering principles and mea-
sures to help determine the quality of the resulting modules.

Decomposition Provide access to a set of reusable design modules and the ability
to further describe module functionality as an aid to determining whether
further decomposition is required.

We conclude that the features just described as provided by the storyboards

should provide significant help to the user for making design decisions. The ad-

ditional features supporting maintaining the object model text and graphic repre-

sentations also provide the ability to capture those design decisions once they are

made.

5.4.-4.4 Is the prototype feasible with available technology?

This question was answered in detail in the implementation section of this chap-

ter. While the technology to implement any of the spedified features clearly exists,

the question became more one of availability, appropriateness, and manpower costs

considering the prototyping task to be performed. AnalyFis of the features required

of the prototype, and of the resources in both time and availability of hardware and

software, narrowed our choices to a minimally implemented Sun workstation based

system, or a more fully developed prototype on a Zenith Z-248. We leave further

discussion as to selection of the hardware and software to the next section.

5-17

5.4.4.5 What components will be used to build the prototype?

The cost/benefit analysis was a constraints based approach due to the expected

availability of development resources. Constraints primarily involved manpower costs

(time). Constraints required that the prototype be completed within 60 days of

the completed initial specification using one person relatively unfamiliar with the

software development tools to be used.

Building the kernel required a window based user interface providing powerful

programming tools for rapid experimental development. The only initially available

tool was the Sunview environment on AFIT's Sun workstations. While the Sun would

provide a more powerful workstation level environment, its inability to access the

requirements database graphics and the expected learning curve of the complex set

of fairly low level tools would have limited the breadth of the functions implemented

in the prototype.

As an alternative, we found the Smalltalk/V object-oriented programming en-

vironment adequately met the need for functionality, a powerful and high level tool

set, and at minimal cost. Installed on an IBM-PC/AT class Zenith Z-248 micro

computer, we had full off-line access to the requirements database. Without the

availability of this environment, the functional requirements for the kernel would

have to have been greatly reduced.

5.4.4.6 Is the completed prototype technically correct?

Testing of the software for the prototype was somewhat informal and followed

the incremental development approach discussed earlier in this chapter. Functions

were tested for technical correctness as they were added to the prototype. Walk-

throughs were accomplished periodically testing each of the features specified in the

description of the requirements in Chapter IV.

No attempt was made to formally evaluate the performance characteristics of

the prototype since feature functionality rather than performance was the objective.

5-18

However, it was observed that Smalltalk/V cannot support very large applications

without having to continually swap objects in and out of memory. This object

swapping considerably reduces response time. While this problem was alleviated

somewhat through use of a RAM disk, an operational system would require either

a workstation version of Smalltalk, or possibly the 286 version running in protected

mode and using at least a full megabyte of RAM.

5.4.4.7 Does the prototype accomplish the user's objectives?

The objectives of the prototype were stated in Section 5.4.2.1. We can see

that the first objective is met since the prototype encompasses all four decision steps

and implements the OOD model in a database. The second objective is met through

providing access to requirements specification data from the appropriate storyboards.

Finally, the third is met through implementation of the help and heuristics features.

Since the user can edit, add, or remove heuristics and help files, the details of the

design methodology can be easily altered.

The selection of the Smalltalk/V OOPS as a development environment pro-

vided an additional level of adaptability since the users themselves are expected to

be software engineers. Smalltalk provides an easy to use programming environment

rich with development tools. Such an environment should make it very easy for a

user to customize or extend the decision aid.

5.4 .4.8 Is the user satisfied with the prototype's usability?

A group of sample users from a graduate level advanced software engineering

class was given an hour to play with the user interface of the prototype. They were

then asked to answer the following questions.

1. Rate the content of the information displayed. That is, how well did the system
keep you informed of where you are or what you are doing.

insufficient 1 2 3 4 5 6 7 sufficient

5-19

2. Rate the methods used to communicate with the user.
Inputs:

insufficient 1 2 3 4 5 6 7 sufficient
Outputs:

insufficient 1 2 3 4 5 6 7 sufficient

3. Rate how well you feel the system produced user induced errors.
insufficient 1 2 3 4 5 6 7 sufficient

4. Rate how well you feel the system allowed you to recover from user induced
errors.

insufficient 1 2 3 4 5 6 7 sufficient

5. Rate your expected ease of learning for the system.
difficult 1 2 3 4 5 6 7 easy

6. Rate the ease of use of the system.
difficult 1 2 3 4 5 6 7 easy

7. Rate your ability to direct or control the activities of the system.
insufficient 1 2 3 4 5 6 7 sufficient

8. Rate your overall satisfaction with the interface.
unsatisfied 1 2 3 4 5 6 7 satisfied

The results of that evaluation are displayed in Figure 5.4 and Figure 5.5. The first

graph shows the mean answer by question on a rating scale of one to seven. The graph

shows an average standard deviation per question of 1.25. Such a high standard error

made it very difficult to draw a firm conclusion as to the users satisfaction. We could

only say that we are reasonably confidant that the user is more satisfied than not

satisfied. This statement is based on the hypothesis that the uscr's r:tirg is greater

than the scale's midpoint of 3.5, tested at the .05 level.

The second graph was developed to try to answer the reason for the high stan-

dard error. A low standard deviation here probably indicates a less well considered

answer to specific questions. The graph shows students generally answered each

question relative to their overall impression rather than to the scale. Answers also

reflect the impact of varied backgrounds or preferences of the users.

This aspect of the evaluation proved to be less useful than hoped. What is

needed is a more thorough evaluation by users familiar with the concepts involving

5-20

--LJ"m -ii lia a nH li

7

T
I 4

N

G 3

2 Key

0 Mean

One a range

I I I I I I I I I

I 2a 2b 3 4 5 6 7 8

QUESTION

Figure 5.4. User Interface Evaluation by Question

specific comments rather than a numerical rating. The results in this case do not

even allow us to identify specific areas requiring improvement.

5.4.4.9 Does the expected value of the DSS justify further development?

The finished prototype was demonstrated for the thesis committee which was

asked to provide a subjective evaluation of the prototype regarding justification for

further research and/or development. Their comments are summarized as follows:

e The methodology requires further development before consideration of tool
development is warranted.

* The Smalltalk interface is very nice, but we're not convinced it can support
the amount of data which would need to be processed in even a medium size
project.

5-21

7

[I IR :111 IIi,i

A

1i1

N A
G 3

1 2 3 4 5 6 7 8 9

RATER

Figure 5.5. User Interface Evaluation by Rater

9 The concept mapping idea will be used as the basis for further research in
object-oriented analysis.

Two schools of thought come into play in this analysis. The first says we

shouldn't build anything until we know exactly what we want. This is the traditional

approach and it makes sense considering the high cost of full scale development. The

problem is that in some cases, we really don't know exactly what we want. Such

is the case with most decision support systems. The adaptive design approach lets

us experiment with ideas until we either discover or recognize from experimental

results what it is we are really looking for. This thesis took that second approach.

While the prototype is insufficient for problems of any scale, it should be sufficient

for experimenting with the OOD methodology.

5-22

5.4.4.10 Does the approach taken represent a significant contribution to

the engineering community?

The thesis committee was also asked to provide a subjective response regarding

the contribution of this research to the engineering community. The idea here is to

determine whether or not the application of DSS concepts to deveLping software

support tools and environments is unique, and whether it is of sufficient value to

be of interest to other software engineers. The committee's response is somewhat

qualified. Whether this approach is new, or just the same thing we've been doing-

but with another name-is the argument DSS adherents have been trying to deal

with for years. As to the potential interest to others in the field, the answer is clearly

yes! The ideas demonstrated by this prototype should stimulate others to pursue

research in the application of DSS and OOD concepts.

5.4.5 Conclusions from the Evaluation

The primary conclusion we derived from development and evaluation of the

prototype decision aid was regarding the application of the decision support system

concepts. Using the adaptive design approach, along with the techniques of concept

mapping, storyboarding, and the ROMC model, we were able to develop a prototype

which more than met all of the stated objectives. In addition, development time was

held to less than two months, cost was minimal, and the final product was evaluated

as a successful implementation of our OOD methodology and a valuable tool for

further research.

An unexpected benefit resulted from the opportunity to use the Smalltalk/V

OOPS. Its powerful set of tools and reusable software components made the pro-

gramming task relatively simple as compared to similar systems developed using a

more general purpose language without an extensive support environment. Further

comments and recommendations are provided in the final chapter of the thesis.

5-23

VI. Conclusions and Recommendations

We conclude this thesis with a summary of the work accomplished and how it

related to the specific objectives for the study. Next we present conclusions drawn

from the effort and its results. Finally we include recommendations for continued

research regarding the methodology and development of the decision aid.

6.1 Summary

We began this effort with the primary objective of developing an object-

oriented design methodology which would support transition from a non-object-

oriented requirements specification. We also wanted to implement that methodol-

ogy in a tool which could be used for object-oriented development and research. But

how does one go about coming up with a new methodology? That is where decision

support techniques began to play a role.

The concept mapping technique allowed us to more fully understand the object-

oriented paradigm and the design process itself. Creating and analyzing the concept

maps, and various discussions as to the definition and application of DSS led us to

propose that software design fit the definition of semi-structured decision processes

described in the DSS literature. Following that lead as a means of developing the

methodology, we continued the process of concept mapping numerous object-oriented

development related sources to finally arrive at the concept map of Figure 3.1.

Once the key decisions were identified, describing the steps of the methodology

was a matter of determining what help could be provided the designer to aid the

decision making process. This entailed concept mapping the requirments specifica-

tion methods and consolidating them to form a generic requirements specification

model. Having done that, we still needed to have as a basis a representation of the

object model. Neither the theoretical nor the programming language-oriented model

proved quite adequate for design. Using the adaptive design methodology, we added

6-1

features to the theoretical model as necessary to provide just enough constraints to

formulate a workable model. We then evaluated the finished methodology with a

sample problem and it seems to have produced a sufficient design specification for

implementation.

Our efforts then turned to determining the requirements for a tool. Again the

decision support concepts came into play as we used the feature chart and story-

boarding techniques to specify the requirements for a decision aid. We also used a

DSS evaluation technique to establish life-cycle measures for development of a proto-

type. Several weeks were spent in evaluation determining the appropriate hardware

and software configuration for implementing the prototype. Then, about seven weeks

were spent developing the software for the decision aid.

Finally the prototype was complete and the final evaluation steps were taken.

The prototype more than adequately provided a test-bed for further research and

evaluation of the methodology, as well as an example of the application of DSS

techniques to this type of tool. Unfortunately we were unable to more thoroughly

evaluate the methodology through controlled experiments with the tool.

Our stated goals were to address the problems of transition, integration, and

adaptation as they apply to current development of support environments for object-

oriented development. We developed a methodology for OOD which transcended the

limitations usually placed on requirements specification techniques and programming

languages. In addition, we implemented that methodology in an environment which

included direct access to a multi-view requirements specification, and provided a

user adaptive interface. Additionally, we based our methodology on a unique ap-

proach that promises to help designers make decisions, not just capture decisions

once they're made. We feel the results show we've not only met but exceeded our

original goals.

6-2

6.2 Conclusions

As stated in the evaluation of the prototype, we feel our most significant conclu-

sion from this study has been the applicability of DSS concepts to the development

of software environments. Evaluation of eight software development methodologies

or tools showed no evidence that software environment developers are addressing

techniques that will help the user make good design decisions. We believe drawing

complicated graphics or following rigorous documentation techniques will not greatly

improve the state of current programming practice until we provide the designers

and programmers the on-line tools to help them make better design decisions.

A second conclusion is regarding the use of the concept map. We found the

concept map to be an excellent informal tool for communicating understanding. As

such, we feel it may lead to a better means of representing the user's view of the

problem than many formal specification methods which are often incomprehensible

to the user. We also feel the method presented for using concept maps to describe

the solution strategy is more descriptive and may lead more directly to a set of

candidate objects and operations than the textual paragraph of Abbott, Booch and

others. We caution, however, that the inherent value of the concept map is in its

simplicity and informality. Over formalizing and constraining its use may have a

corresponding negative effect on its ability to communicate understanding.

An observation we made during the course of the research is that methodologies

which are language independent seem to have the most chance of surviving and being

used over the long haul. While language specific features may certainly be very

valuable in a given implementation, too many tools embed such features in the very

essense of the methodology. We found many of the tools with embedded language

features were simply not being widely used as commpared to language independent

methods such as Structured Analysis and Design. A corollary to this observation is

that the more complex the method, the less it seems to be used.

6-3

A final conclusion was drawn from using the rich tool-set and powerful reusable

components available with the Smalltalk/V OOPS. We feel that an OOP environ-

ment might be very successfully used as an interface for developing software support

environments for more traditional target languages such as Ada. While this sugges-

tion is contrary to the Stoneman document [181, that document was written nearly

a decade ago and may not provide the best solution for developing APSEs. Another

application in which Smaltalk should prove beneficial is in the development of deci-

sion support systems in general. The experimental programming approach for which

Smaltalk was developed seems well suited for adaptive design of DSS.

6.3 Recommendations

We hope to continue research into the application of DSS concepts to devel-

opment of environments to support traditional software design. In fact, we think

further research would show that virtually all design requires semi-structured deci-

sions which may well be supported by DSS. To our knowledge, DSS concepts have

not been applied to such applications and research in that direction is clearly needed.

We also recommend continued development of the Decision Aid for Object-

Oriented Design as a promising method for exploring research into object-oriented

development methodologies. We suggest development continue on a higher perfor-

mance system such as a work-station or a non-DOS PC environment without the

suffocating 640 kilobyte memory limitation. The Smalltalk/V 286 version runs in

protected mode and may provide an excellent alternative at minimal cost.

The methodology we developed is only a starting place. We would like to

see an extensive evaluation accomplished using the OOD Decision Aid as a test

bed. A particular area of concern is in decomposition of modules and application of

inheritance and reusable components.

6-4

Finally, we recommend further research into the use of concept maps as a tool

for communicating understanding. An interesting approach based on their use in

requirements determination may be to use concept maps as a basis for an object-

oriented approach to the entire development lifecycle.

6.4 Closing Remarks

This thesis effort was a success in the sense that it demonstrated a unique

approach in the application of decision support systems concepts toward developing

tools and techniques for software support. By approaching formation of the method-

ology and tool from the users' point of view and the decisions which they must make,

the object-oriented design methodology was presented as a technique which should

help in the design of reliable maintainable software. OOD was shown as a bennefi-

cial addition rather than as a threat of drastic change to the software development

environment. Presented as such, OOD should have a much greater chance of being

accepted and used by the software development community.

6-5

Appendix A. Executive Summary

A Decision-Based Methodology

for

Object-Oriented Design

A-1

A Decision-Based Methodology
for

Object-Oriented Design

Captain Patrick D. Barnes and Dr. Thomas C. Hartrum
Department of Electrical and Computer Engineering

Air Force Institute of Technology

December 16, 1988

Abstract

The task of object-oriented development raises a new set of design
problems. Addressing the decisions which must be made in apply-
ing object-oriented principles to design is the focus of this paper. A
structural object model is presented and the concepts of decision sup-
port systems (DSS) are applied to the formulation of a decision-based
methodology for object-oriented design. An overview of the develop-
ment of a decision aid for evolution of the methodology is also given.

Contents

1 Introduction 2

2 An Object Model for Design 3
2.1 Defining the Model 3
2.2 Representing The Model 5

3 Overview of the Methodology 7
3.1 Analyze the Problem to Determine a Solution Strategy . .. 8

3.1.1 Discussion. 8

1

3.1.2 Summary of the Analysis Step 9
3.2 Identify the Objects, Attributes, and Operations 9

3.2.1 Discussion 9
3.2.2 Summary of the Identification Step 11

3.3 Encapsulate Objects, Attributes, and Operations into Modules 11
3.3.1 Discussion 11
3.3.2 Summary of the Encapsulation Step 12

3.4 Decompose the Modules or Begin Detail Design 13
3.4.1 Discussion 13
3.4.2 Summary of the Decomposition Step 14

4 Developing a Decision Aid for OOD 14
4.1 Understanding the Problem 15
4.2 Selecting the Kernel 15
4.3 Representing the Kernel 16
4.4 Supporting the Kernel 16

4.4.1 The Database Requirements 16
4.4.2 The Modelbase Requirements 16

4.5 A Prototype Decision Aid 16

5 Conclusions 18

A Figures 23

1 Introduction

Escalation of software development and maintenance costs as well as demand
for software solutions to increasingly complex problems have mandated new
techniques for engineering reliable, maintainable computer software. One
approach to improving software quality is the use of the object-oriented
paradigm for design. Pressman [371 lists desirable software engineering prin-
ciples specifically addressed by OOD as abstraction, information hiding, and
modularity. While the principles themselves are not new, he states, "only
OOD provides a mechanism that enables the designer to achieve all three
without complexity or compromise."

2

But there is more to design than the paradigm we choose for structuring,
conceptualizing, or representing a system. The design process can be seen as
combining

intuition and judgement based on experience in building
similar entities, a set of principles and/or heuristics that guide
the way in which the model evolves, a set of criteria that enables
quality to be judged, and a process of iteration that ultimately
leads to a final design representatio' [37].

This description indicates that a software design environment must sup-
port judgment and choice, embody design principles and/or heuristics, guide
an iterative development process, and enable qualitative evaluation of the
finished product. While several methodologies have been proposed for an
object-oriented approach to design 1, they seem to focus primarily on the
representation of the design raLher fhan the process.

This paper presents an approach to developing an object-oriented de-
sign methodology based on the concepts of decision support systems. The
OOD process is not redefined; rather it is stated in terms of the decisions a
designer must make while accomplishing OOD tasks. First, a general object-
oriented model for design is presented. The decisions involved in OOD are
then stated and a methodology is elaborated based on those decisions. Fi-
nally, an overview of the first stage development of a decision aid is discussed.

2 An Object Model for Design

2.1 Defining the Model
Two models of the object-oriented paradigm were analyzed for application
to design. The first was a theoretical model [10] based on objects, behav-
iors, and attributes. The second was the Smalltalk language-based model
[17] which adds class, inheritance, messages, and methods. The theoretical
model proved to be too ambiguous to rigorously depict relationships between
objects, and the OOP model too restrictive to implementation constructs.
A new model which would meet the needs of design was needed. Such a

1Examples of OOD support tools are [191, (141, (111, (12], (421, and (2].

3

model was derived by beginning with the more abstract theoretical model
and adding refinements derived from the Smalltalk experience to solve de-
sign related problems.

The resulting object model is pictured in the concept map of Figure 1 in
the appendix and is formally defined as follows:

object A unique entity defined by attributes which serve to identify the
object, and relations which associate it with other objects, relations,
and operations.

operation The description of how an object performs some behavior. As
with objects, attributes serve to identify the operation and relations
associate it with other objects and operations.

attribute Serves to identify an object or operation. Required attributes
for objects are name, behavior, and domain. Required attributes for
operations are name and algorithm.

relation A complex attribute representing an association of an object or op-
eration with other system objects and operations. Relations on objects
include its class as well as sets of operations, component objects, actor
objects, and server objects. Relations on operations include its object
as well as sets of modified objects, argument objects actor operatio s

and server operations.

class A complete design of an object which may be used as a template from
which another object derives its characteristic structure and function.

name A string serving to identify an object or operation which must be
unique within a context.

behavior A text description of an object's function when provided with
certain stimuli.

domain A text description of the set of states to which an object may
change.

actors A relation which denotes which objects or operations require services
of some other object and operation pair.

4

servers A relation which denotes which objects or operations provide ser-
vices to. some other object and operation pair.

components A relation which denotes the parent/child relationships be-
tween objects.

arguments A relation which denotes which objects are required as argu-
ments in the interface of an operation. This relation has the attribute
mode which may be either input or output.

modifies A relation which denotes which objects are modified by the exe-
cution of an operation.

The model presented retains the function of the theoretical model, and
adds the practical aspects of the programming model. The implementation
of an object is not specified, nor is the syntax of the communication between
objects limited to a specific method. Yet provisions are made for describing
the interface between objects and operations of other objects, as well as for
representing the fully recursive nature of real world objects.

2.2 Representing The Model.

Statically, an object-oriented design consists of a representation of a system in
terms of the model previously described. As such, the object model could be
easily represented in a relational database. However, a static representation is
insufficient to fully communicate a complex behavior or the interrelationship
between objects without a correspondingly complex textual narrative.

As an alternative to text, software developers have produced a plethora of
graphical methods of representing software systems. A number of techniques
have been proposed to represent an object-oriented design, some entirely
new, some variations on more familiar methods.

Examples of graphical QOD methods were reviewed in an attempt to
determine which kinds of representations most clearly represent the object-
oriented model. Each method has its own strengths and weaknesses and
represent one or more of the three basic views of a software design. These
views include block diagrams, detail diagrams, and state transition diagrams.

[5

Examples of block diagrams include the Booch diagram [9] [19] which
identifies the objects and operations in the visible interface, and the depen-
dencies between objects, but does not reveal which objects invoke which
operations. The object diagram of Goddard Space Flight Center's General
Object-Oriented Development methodology [42] is an even simpler example
and appears to be a variation on structure charts [351. These diagrams add
the capability to show a clean parent-child or a virtual machine hierarchy of
design objects.

Detail diagrams are typified by Modular design charts [531 and Buhr
diagrams [11]. The former shows attribute types and operations within an
object, as well as which components are used by specific object bodies. The
latter link operations together directly through "control sockets" giving the
flavor of a hardware wiring diagram.

The Interactive Ada Workstation (IAW) [22] implements Buhr diagrams
and adds a petri net diagram for describing state transitions between op-
erational objects. The AdaGraph2 tool [14] which implements Cherry's
PAMELA3 methodology uses a process graph and adds a hierarchical sub-
program graph. APEX, a system in development at the Air Force Wright
Aeronautical Laboratories, also adds a petri-net diagram to its block diagram
and process connection graph (2].

The SHARP methodology [12] uses a variety of pictographs represent-
ing all three views. Different diagrams are used for main program abstrac-
tion, object implementations, object interactions, object invocation, task
rendezvous, subprogram data flow, data structures, and program unit op-
erations.

All the methodologies referenced were developed specifically for designing
Ada programs4 , resulting in many Ada unique distinctions. The graphical
representation presented in this paper takes a more generic approach.

Rather than favor one view of design over another a multi-view approach
is suggested consisting of three parts: a block diagram, an interface diagram,
and a control flow or state diagram. Figure 2 shows an example of a simple
design including these three views.

2 AdaGraph is a trademark of The Analytic Sciences Corporation.
3 PAMELA is a trademark of George W. Cherry
4The modular design charts were developed with both Ada and Modula2 in mind.

6

The block diagram used is similar to the high level object diagram of
[42]. It depicts the objects in the system (at a particular level of detail) and
the dependency relationships between them. Module dependency is shown
by directed arrows to the servant or component objects in the graph. In the
case of an actor/server relationship, messages or operation calls flow across
the directed arrows.

The detail diagram is a modification of the modular design chart [53].
The requirements for depicting a "software bus" and separate component
bodies are left out. In lieu of the implementation-oriented terms "package",
"proc", "fn", and "type", objects begin with a capital letter, and operations
begin with lower case.

A petri-net graph similar to the one found in APEX [2] is used to depict a
state diagram or object interaction in the case of concurrent communicating
objects.

The main purpose of graphics is to communicate the design more clearly
than does the text. While the use of graphics is strongly advocated ("a picture
is worth 1024 words"), a methodology so rigid that the graphic techniques
drive the design, rather than good software engineering principles, can be
counter productive. Thus the graphic representations offered should be im-
plemented informally, rather than with such rigor that documentation costs
exceed their expected benefit.

3 Overview of the Methodology

Webster defines a methodology as "a body of methods, rules, and postulates
employed by a discipline: a particular procedure or set of procedures" [51]. In
the previous sections postulates were offered regarding the decision-oriented
nature of design, applicability of the object-oriented paradigm, and an object
model for software design. This section describes the methods or steps to
deriving a design using the object model. The methodology is based on
providing rules or postulates (design heuristics) to support object-oriented
design decision making.

The specific steps in the methodology were developed by first identifying
the decisions involved in OOD from the literature and from experienced
software engineers at AFIT. Thus the OOD process is not redefined, rather

7

it is presented in terms of decisions rather than the usual set of products
associated with the design specification.

The OOD process is pictured in the concept map in Figure 3. The decision
steps highlighted in the figure are defined as follows:

1. Analyze the problem and requirements specification to decide on an
initial scope and a strategy for its solution.

2. Identify the abstract objects, operations, and their attributes from
the solution strategy and requirements specification; then decide which
are central to the solution strategy.

3. Encapsulate the objects, operations, and attributes into modules and
determine the relationships, or interfaces, between those modules. In
other words, decide which operations naturally go with which objects.

4. Decompose complex modules by repeating the process with objects or
operations as separate problems, r begin detail design. Detail design
requires deciding whether to construct modules from known compo-
nents such as other objects, tibrary modules, predefined functions or
data types; or to produce an algorithmic desciption using psuedocode
or flow diagrams.

OOD is unique in respect to what needs to be identified in analyzing the
problem, how data structures and algorithms are encapsulated into system
modules, and in how system modules are constructed from known, more
general data types or classes. However, it should be clear that the main
thrust of the decisions discussed here are basic to software design-regardless
of the paradigm involved.

The following sections provide a more detailed descriptions to the decision
steps of the methodology.

3.1 Analyze the Problem to Determine a Solution
Strategy

3.1.1 Discussion.

The first decision the designer must make is in limiting the scope of the
problem to be solved. In this step the initial context or scope is determined

8

for the subsequent steps. Abbott [1] and others [19] state that the problem
must be reduced to a single sentence. A problem too complex to state in a
single sentence probably requires a higher level of abstraction.

The problem statement should be determined from the problem space
and stated in user-oriented terminology. It is important for the designer
to interact with the user whenever possible in accomplishing this step. Us-
ing the concept map to elicit such problem-oriented information encourages
this interaction and may communicate more effectively and ensure mutual
understanding.

Concept maps should be developed from both the users and the require-
ments specification. The various results may then be compared and refined
to provide a better understanding and statement of the problem. Working
with the concept map of the problem, a map for a solution may be developed.
The concept map may prove to be a better means of presenting the solution
strategy than the single paragraph of [11 and [9], in the same way that the
graphical structured specification [151 has proved more effective at commu-
nicating high level abstract requirements than a verbose textual document.

3.1.2 Summary of the Analysis Step.

1. Interview one or more users and develop concept maps of the problem.

2. Develop additional concept maps from the portions of the requirements
specification which describe the system's functional requirements and
entities at the desired level of abstraction.

3. Synthesize from the concept maps a single sentence statement of the
problem.

4. Develop a single concept map which depicts a strategy for solving the
problem.

3.2 Identify the Objects, Attributes, and Operations

3.2.1 Discussion.

Dave Bullman [27] states that finding the right objects is hard. He goes on
to say that associating operations with the right objects is even harder. The

9

implied requirement of intuition and choice here indicates this as the next
decision process.

A number of "rules of thumb" or heuristics have been suggested for both
the identification of objects and encapsulation of objects with their attributes
and operations. Thus this step consists of the application of such heuristics
to identify and define the objects, attributes, and operations which apply
within the scope and level of abstraction we are dealing with. Some valuable
heuristics include the following:

Object Selection Criteria lists general software engineering heuristics
such as information hiding, abstraction and inheritance for determining
good objects [37].

Grammatical Analysis makes selections based on nouns and verbs [1].

Abstraction Analysis makes selections based on data flow diagrams [42].

Class Abstraction makes selections based on classes of physical objects
[311.

Concept Analysis makes selections based on concept map entities and
has the following steps:

1. Generate a first cut list of objects from the entities on the concept
map. This is possible since the concept map is developed by a
designer with QOD in mind.

2. Identify from the list of objects which are long-lived and which
are transient. Transient objects tend to be operation arguments
or local variables. Long-lived objects tend to represent abstract
state machines.

3. Identify which objects are subordinate, natural components of, or
clearly attributes of other objects and note these characteristics
in the object's description. such in the object description.

4. Identify the action words in the relationships between entities as
candidate operations. Describe the behavior of these actions as
to what objects are modified, what information is required, which
objects invoke the operations, and what other operations might
they naturally require of other objects.

10

The primary objective of this step is identification along with some basic
definition. Associating objects and operations is reserved until the encapsu-
lation step. The elements in this step should come initially from the solution
strategy unless the heuristics used require otherwise. It is difficult to initially
scope a problem such that the lists of objects, and operations are complete,
accurate, and without some spurious low level objects or operations having
been defined, the analysis and identification steps may be repeated one or
more times to atiive at a realistic scope of the problem and a complete set
of objects and operations.

As identifiers of objects and operations, attributes should be associated
with appropriate entities after they are identified. Listing object and opera-
tion attributes serves to define those entities in greater detail. The require-
ments document will often need to be consulted to fully describe program
entities.

3.2.2 Summary of the Identification Step.

1. Apply one or more identification heuristics to identify the set of objects
in the system at the scoped level of abstraction.

2. Analyze each object and describe its attributes and structure in the
solution strategy. Check the requirements document for completeness
and eliminate redundancy in the object list.

3. Apply one or more identification heuristics to identify the set of oper-
ations performed within the system at the scoped level of abstraction.

4. Analyze each operation to determine and generally define its stimu-
lus/response attributes.

3.3 Encapsulate Objects, Attributes, and Operations
into Modules

3.3.1 Discussion.

Deciding which operations should be associated with which objects is not as
straight-forward as it may seem. Objects seldom behave independently of
other objects. Consequently, observed behaviors may represent a complex

11

interrelationship among objects. A good example is the one hwere a drill is
drilling a hole in a piece of metal [10], whether the operation drill-hole is an
activity of the drilLpress, drilLbit, or sheeLmetal depends on the abstraction
of those objects in the problem solution. Thus guidelines, rules, or heuristics
are needed to guide the encapsulation of objects and operations in such a
way as to produce good modules.

In choosing which objects and operations to encapsulate into modules,
the interrelationships between modules are revealed. Those relationships or
interfaces are specified by first determining the dependency between mod-
ules. A dependency exists whenever an operation of an actor or agent type
object affects or requires an action by some other object. Rather than depict
the dependencies only, the specific operations of an object required by each
operation of each external object need to be diagramed. This includes iden-
tifying the attributes or arguments an operation requires to accomplish its
function; and which attributes or internal objects are affected through such
an operation under the stated conditions.

Heuristics for encapsulation include the following:

Modularity Rules define quality assessment of modules such as coupling
and cohesion [37].

Object Classification requires identifying an object's operation as one of
several general types such as actors or agent3 [101 [9].

Application Classification requires identifying an object or operation
as one of a set of predefined types specified as a set common to the
program application area [2].

Structural Classification requires identifying an object's structure as one
of four general types (e.g. an abstract state machine) [9].

3.3.2 Summary of the Encapsulation Step.

1. Apply one or more encapsulation heuristics to the lists of objects and
operations to determine a set of system modules.

2. Determine the interrelationships between modules and diagram the
module dependencies.

12

3. Analyze each module dependency to determine and diagram the de-
tailed interfaces between each dependent module's operations and the
executors of those operations.

4. Refine the descriptions of the operations of each object in view of the
various conditions under which it might be required of some other ob-
ject and develop a state transition diagram if appropriate.

3.4 Decompose the Modules or Begin Detail Design

3.4.1 Discussion.

Decomposition deals with the question of how to construct each module.
Should it be further decomposed, constructed from known components, or
algorithmically defined via psuedocode or flow diagrams. This is the step in
which inheritance may be applied since, at this point, a full description of
each object at a given level of detail is available. To apply inheritance any
earlier might result in shaping the solution to a set of preconceived notions
rather than really solving the user's problem.

Inheritance is applied based on the object or module classifications made
in the previous step. Such classifications are helpful, not only in determining
module structure and behavior, but in identifying objects as instances of
classes in the system, or as matching preexisting templates maintained in a
class library. The decision to use inheritance is always a tradeoff between the
cost of new development and the cost of modifications to existing templates.

Should inheritance fail to provide a solution to the design of a particular
module, the module must be decomposed into smaller modules, or described
at its lowest level as data structures and algorithms. Algorithmic description
follows traditional methods useing Structured-English psuedocode or flow
diagrams. Data structures which are operated on as a whole may be further
described in a data dictionary.

All or part of a module may be decomposed. A module containing sets of
objects and a set of operations, may have elements of those sets at their lowest
level, and other elements of sufficient complexity to warrant decomposition.

Decomposition may take a variety of forms depending on the problem.
For a functionally cohesive operation on a single object, conventional func-
tional decomposition may be adequate. If aspects of the operation exhibit

13

concurrency, a process-oriented approach would be appropriate, with each
sub-operation representing a single concurrent operation. Should the ex-
istence of other independent objects become apparent, an object-oriented
approach might be better. In other words, the problem should lead to an
appropriate design technique, rather than squeezing the problem into an un-
natural methodology.

3.4.2 Summary of the Decomposition Step

1. Analyze the modules in the system for signs of common classes. If such
a class hierarchy is apparent, indicate objects as instances of the class
and further design the class.

2. Analyze the classification of modules in regard to existing generic struc-
tures or functions. Determine unique characteristics of such modules
to determine cost effectiveness of redesig. versus reuse.

3. Analyze the complexity of remaining modules and determine which
module components must be further decomposed.

4. For each component which must be decomposed, determine the appro-
priate design method and proceed with the design. Appropriate flow
diagrams, petri nets, structure charts etc. should be used to describe
the design of components not accomplished in an object oriented fash-
ion. Those components which require an object-oriented design, should
be treated as new problems and designed using this methodology in an
iterative fashion.

5. For each operation which need not be decomposed, describe its opera-
tion algorithmically using appropriate psuedocode or flow diagrams.

6. For each object or attribute which need not be decomposed, describe
the data structure it represents.

4 Developing a Decision Aid for OOD

This section provides an overview of the steps taken for determining re-
quirements and a top level design for a decision aid to implement the OOD

14

methodology. A brief discussion of a Smalltalk implementation for experi-
mental purposes is also given.

In the field of decision support, requirements determination requires four
steps: understanding the problem, selecting a kernel system to implement,
developing a representation or model of the system in the form of story-
boards, and describing the database and modelbase requirements to support
the system. The storyboards and associated feature chart then serve as a
top level design of the dialogue, database, and modelbase components of the
decision aid.

4.1 Understanding the Problem
The problem is to provide a methodology for object-oriented design which ad-
dresses the decisions a designer must make. A solution was determined from
concept maps of the OOD process and the resulting model and methodology
were proposed.

4.2 Selecting the Kernel
The concept map of Figure 3 was used to show the OOD decision processes
and to derive the feature chart shown in Figure 4. The feature chart depicts
the support and interaction required by the four steps in the methodology.
Storyboards were developed representing decisions and support requirements.
The feature chart also shows supporting windows representing individual
features provided by the storyboards.

The storyboards are linked together through the main menu which is be
available from each storyboard for switching to any other storyboard. The
main menu also provides a means of exiting the system and allows access
to context sensitive help and the hook book. Several functions overlap. For
instance, the object and operation definitions created in the Identification
storyboard are used again in both subsequent storyboards.

The feature chart presents an overview of the features required by the
kernel system. Consequently, only the high level, or external functions are
shown. The storyboards and their descriptions reveal detailed requirements.

15

4.3 Representing the Kernel

Figures 6-10 in the appendix to this paper show the storyboards developed
in the design of the dss kernel. In general, each storyboard contains at least
three sub-windows or panes: a features pane, an objects pane, and a text pane.
Selecting an element in the features pane causes a list of files or objects to
appear in the objects pane. Selecting an element in the objects pane causes
initialization of the text pane, or bring up a sub-window--either one of which
the user will use to carry out some sub-step in the methodology.

4.4 Supporting the Kernel
4.4.1 The Database Requirements.

The database involves the storage, representation, and manipulation of de-
sign objects as well as on-line access to a requirements specification. The
functions described in the storyboards require the ability to display graph-
ics, text, and data dictionary information.

4.4.2 The Modelbase Requirements.

.Models are activc relations and associations that govern decisions and ac-
tions in an organization" [28]. For the purposes oi this paper, the object
model of Section 2 and the heuristics and methodologies listed in Section 3
comprise the "relations and associations" which govern the design decisions
in the OOD process. The system must be able to manage this information
and present it to the user in a meaningful and timely manner.

4.5 A Prototype Decision Aid

Case6 studies of DSS usage show that "Key factors explaining successful de-
velopment are a flexible design and architecture that permit fast modifica-

tion and a phased approach to implementation" [44]. Thus although the
methodology and initial requirements and design for a dss have been stated
somewhat formally, only time and experience will tell whether or not the
ensuing system will be accepted and of value to its users.

16

The suggested evolutionary design approach was applied to developing a
prototype which would allow user response and feedback to determine the
potential of these concepts.

It began with implementing the storyboards using the Smalltalk/V Object-
Oriented Programming System. A single standard windowing style was used
and as much functionality as possible was implemented such that even this
first kernel system can be considered "a small but usable system to assist the
decision maker" [44].

Implementation of the object model in Smaltalk consisted of declaring
several new classes and selecting the data structures to represent the model.
A simple relational approach was taken, directly implementing the relations
implied by Figure 11 derived from the model description.

The primary data structure was implemented as a dictionary of relations
with the name of the relation as the key to the dictionary. Each relation
was then implemented as an ordered collection of dictionaries with two or
more associations of pointers to objects or operations. Figure 12 graphically
depicts this structure.

Standard data structure operations were implemented to hide this struc-
ture from the using storyboard features. Additional special operations were
then added to support unique database accessing requirements to simplify
code in the storyboard operations.

The modelbase was implemented as a context sensitive set of text help files
representing design heuristics and methodology instructions. The executive
control module maintains lists of help files which can be edited, removed, or
added to by the users. Each storyboard contains its own list of heuristic files
developed from the examples discussed previously.

To aid in evolutionary development the Hook Book was fully implemented
as a separate object with its own browser for entering, adding, and removing
entries.

5 Conclusions

This paper has only F--iefly introduced an adaptive approach at developing
software support tools and environments. While the specific target was an
object-oriented design methodology, the concepts regarding adaptive, evolu-

17

tionary design apply to systems supporting many design methods and life
cycle phases. The central hypothesis of this effort is that design is essentially
a decision process and if good systems are to be produced, good decisions
must be made. The software engineering community must take as hard a
look at improving the engineers decision making capabilities as it does in
representing those decisions with flashy graphics and powerful databases.

References

[11 Abbott, R. J. "Program Design by Informal English Descriptions,"
Communications of the ACM, 26, 11: 882-894 (November 1983).

[2] Air Force Wright Aeronautical Laboratories. APEX Users' Guide.
AFWAL, Wright-Patterson AFB, CO., 1987.

[3] Alabiso, 200 Bruno. "Transformation of Data Flow Analysis Models
to Object- Oriented Design," OOPSLA '88 Conference Proceedings,
ACM SIGPLAN Notices, 23, 12: 335-353 (September 1988).

i4j Alford, Mack. "SREM at the Age of Eight; the Distributed Computing
Design System," IEEE Computer, 18, 4: 36-46 (April 1985).

[5] Andriole, Stephen J. and others. Storyboarding for C2 Systems Design:
A Combat Support System Case Study. Unpublished paper, George Ma-
son University & International Information Systems, Inc. 802 Wood-
ward Road, Marshall, VA 22115, undated.

[6] Balzer, R. and others. "Software Technology in the 1990s: A New
Paradigm," IEEE Computer, 16, 11: 39-45 (November 1983).

[7] Bohm, C. and Jocopini, G. "Flow Diagrams, Turing Machines, and
Languages with only Two Formal Rules," Communications of the
ACM, 9, 5: 336-371 (May 1966).

[8] Booch, Grady. Software Components with Ada. Menlo Park: The Ben-
jamin/Cummings Publishing Company, Inc., 1987.

[9] ------. Software Engineering with Ada(Second Edition). Menlo Park:
The Benjamin/Cummings Publishing Company, Inc.,1986.

18

[10] Bralick, William A. Jr. An Examination of the Theoretical Foundations
of the Object-Oriented Paradigm. MS Thesis, AFIT/GCS/MA/88M-
01, School of Engineering, Air Force Institute of Technology (AU),
Wright Patterson AFB OH, March 1988.

[11] Buhr, R. J. A. System Design with Ada. Englewood Cliffs: Prentice-
Hall Inc., 1984.

[12] Byrne, William E. and others. Structured Hierarchical Ada Represen-
tation Using Pictographs (SHARP) Definition, Application, and Au-
tomation. Technical Report Prepared For Electronic Systems Com-

mand, Deputy for Development Plans, Hanscom AFB, Massachusetts.
Cambridge: Arthur D. Little, Inc. Program Systems Management Co.,
September 1986.

[13] Cox, B. Object-Oriented Programming: An Evolutionary Approach.
Reading: Addison-Wesley, 1986.

[14] Crawford, Bard S. and Jazwinski, Andrew H. "The AdaGRAPHT"
Tool for Enhanced Ada Productivity," IEEE Transactions on Software
Engineering, SE-12, 5: 664-670 (May 1986).

[15] Demarco, Tom. Structured Analysis and System Specification. Engle-
wood Cliffs: Prentice-Hall Inc., 1978.

[16] Diedrech, Jim and Milton, Jack. "An Object-Oriented Design System
Shell," OOPSLA '87 Conference Proceedings, A CM SIGPLAN Notices,
22, 12: 61-67 (December 1987).

[17] Digitalk Inc. Smalltalk/V Tutorial and Programming Handbook. Los
Angeles: Digitalk Inc., 1986.

[18] Department of Defense. Requirements for the Programming Environ-
ment for the Common High Order Language (STONEMAN). Washing-
ton: Government Printing Office, 1980.

[19] EVB Software Engineering,Inc. An Object Oriented Design Handbook
for Ada Software. Fredrick: EVB Software Engineering, Inc., 1986.

19

[20] Ewing, Juanita J. and Wirfs-Brock, Rebeccca. "Smalltalk isn't Mean-
ingless Chatter," Computer Design, 26, 1: 76-79 (January 1987).

[21] Freedman, Roy S. "The Common Sense of Object-Oriented Lan-
guages," Computer Design, 22, 2:111-118 (February 1983).

[22] General Electric Corporation Research and Development Division.
Users' Guide : Interactive Ada Workstation, Prototype Version 1.0.
DOD Contract No. F33615-85-C-1755, General Electric Co., August
1986.

[23] Hartrum, Thomas C. and Lamont, Gary B. "Development of a Com-
prehensive Software Engineering Environment," Space Operations A a-
tomation and Robotics Conference, Houston (September 1987).

[24] Jackson, Michael. System Development, Englewood Cliffs: Prentice
Hall Inc., 1983.

[25] Keen, Peter G. W. "Adaptive Design for Decision Support Systems,"
ACM/Database, 12, 2:15-25 (Fall 1980).

[26] Kelly, John C. "A Comparison of Four Design Methods for Real-Time
Systems," Proceedings of the 9th International Conference on Soft-
ware Engineering. 238-251. Washington: Computer Society Press of
the IEEE, 1987.

[27] Kerth, Norman L. and others. "Summary of Discussions from
OOPSLA-87's Methodologies & OOP Workshop," Addendum to the
Proceedings OOPSLA '87, ACM SIGPLAN Notices, 23, 5: 9-16 (May
1987).

[28] Konsynski, Benn and Sprague, Ralph H. Jr. "Future Research Direc-
tions in Model Management," Decision Support Systems, 2: 103-109
(1986).

[29] Korth, Henry F. and Silberschatz, Abraham. Database System Con-
cepts. New York: McGraw-Hill, Inc., 1986.

20

[30] Liang, Ting-peng. "User Interface Design for Decision Support Sys-
tems: A Self-Adaptive Approach," Information &1 Management, 12:
181-193 (December 1987).

(31] Lorensen, W. "Object-Oriented Design," CRD Software Engineering
Guidelines, General Electric Co., 1986.

[32] Magel, Kenneth. "Principles for Software Environments," ACM SIG-
SOFT Software Engineering Notes, 9, 1: 33-35 (January 1984).

[33] Nassi, I. and Schneiderman B. "Flowchart Techniques for Structured
Programming, " SIGPLAN Notices ACM, 8, 8: 12-26 (August 1983).

(34] Novak, Joseph D. and Gowin, D. Bob. Learning How to Learn. Cam-
bridge: Cambridge University Press, 1984.

[35] Page-Jones, Meilir. The Practical Guide to Structured Systems Desigr.
New York: Yourdon Press, 1980.

[36] Pascoe, Geoffrey A. "Elements of Object-Oriented Programming,"
Byte, 11, 8:139-144 (August 1986).

[37] Pressman, Roger S. Software Engineering: A Practitioner's Approach
(Second Edition). New York: McGraw-Hill Book Company, 1987.

(38] Riedel, Sharon L. and Pitz, Gordon F. "Utilization-Oriented Evalu-
ation of Decision Support Systems," IEEE Transactions on Systems,
Man, and Cybernetics, SMC-16, 6: 980-006 (November 1986).

[39] Ross, Douglas T. "Applications and Extensions of SADT," IEEE Com-
puter, 18, 4: 25-34 (April 1985).

[40] -------. "Structured Analysis (SA): A Language for Communicating
Ideas," IEEE Transactions on Software Engineering, SE-3, 1: 16-34
(January 1977).

[41] Seagle, John P. and Belardo, Salvatore. "The Feature Chart: A Tool
for Communicating the Analysis for a Decision Support System," In-
formation & Management, 10, 1:11-19 (January 1986).

21

[42] Seidewitz, Ed and Stark, Mike. "Towards a General Object-Oriented
Software Development Methodology," ACM Ada Letters, 7, 4: 54-67
(August-September 1987).

[43] Simon, H. The New Science of Management Decision. New York:
Harper & Row, 1960.

[44] Sprague, Ralph H. Jr. and Carlson, Eric D. Building Effective Decision
Support Systems. Englewood Cliffs: Prentice-Hall, Inc., 1982.

[45] Stay, J. F. "HIPO and Integrated Program Design," IBM System Jour-
nal, 15, 2: 143-154 (1976).

[46] TRW Defense Systems 7roup. Distributed Computing Design System
(DCDS) Methodology Guide (Ada Version). Huntsville: TRW System
Development Division, October 1987.

[47] Valusek, John R. The DSS Cube. Class lecture in OPER 652, Deci-
sion Support Systems. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 1987.

[48] --- .-- Concept Mapping. Class handout distributed in OPER 652,
Decision Support Systems. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, March 1987.

[49] --- --. The Hook Book. Class lecture in OPER 652, Decision Sup-
port Systems. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, April 1987.

[50] Warnier, J.D. Logical Construction of Systems. New York: Academic
Press, 1975.

[511 Webster. Webster's New Collegiate Dictionary. Springfield: G. & C.
Mirriam Company, 1981.

[52] Wegner, Peter. "Dimensions of Object-Based Language Design," OOP-
SLA '87 Conference Proceedings, ACM SIGPLAN Notices, 22, 12:
168-182 (December 1987).

22

[53] Wiener, Richard and Sincover, Richard. Software Engineering with
Modula-2 and Ada, New York: John Wiley & Sons, Inc., 1984.

[54] Wirth, N. "Program Development by Stepwise Refinement," Comamu-
nications of the ACM, 14, 4: 221-227 (April 1971).

A Figures

23

(:E-:)v byy Attributes by by Domain

-- vior

by by

Algorithm identify identify

Classes

Operations with of

with Relations associate Objects

with of

associate with Component

subset of Objects of
modified

Relations subset of with of
suffered

Actor
subset of Objects

with a required

set of

which
defines the Argument Server

Operational Objects Objects
Interiace

Figure 1. An Object Model for Design

24

TMC TMC
rn i

TFanon r GraphoD p1

Tenninan

Fan Termninal
run rn

a. Block Diagram e

TempDisplayl b. Detail Diagram

SetPoi

rune Tern Profilea

c.~~e~on Petrii Ne DigaOffhcaip

Figure 2. he Three Ves of agug ndpnen

rim TMrun 25

Problem determined from ProblemDoai df
e eS ta tem

e n t Dmi defines next _Psuedocode

Understanding emly Aayi by Dcmoionfunction via

Andrsalysirouc s of

~which

Solution Moue
.StrategyrmMoue

frmInterfaces defines

Identification

tells defines Enaslto

Solution of _... of based on

S Objects Relationships

Attributes

Fucto maps to

Operations

Figure 3. The Relationship Between Object-Oriented Design Decision Steps

26

[0o- .rView 1 0 --Heuisicsfo
Text -- 0 Aayze 0-0 Design Decompose "oDecomposition 1

the Entry/Exit Modules

View PolmEdit

G raphic~s Object

Dictionary Men Help Detail

LReqirementsl) Identify Hook Encapsulate / Dira

Edi_ t J Objects and Book .to form E _dit

tOperaltion) / '- Operat'ion

LIdentification Idea Entries E ncapsulation Requirements

Figure 4. Feature Chart for the COD Decision Aid

27

Object-Oriented Desig Decision Aid

e gn D a a b as filen m e U nload the D atab ae? Identify
Requirements Databae

y -- Encasulate
De-mpose

r BrowseDisk -- E oad -IView Hook Book

Requirements files text ... ChangeDirectory Unload Print

TRemove Exit~E-:e gfil~me.OOD:

database~ood _

Enter Userid:

The Entry/Exit display is described as follows:

1. The user will initailly be prompted for a userid. Login/logout times will be automatically recorded.

2. The main menu will allow activating other storyboards, the Hook Book, context sensitive help, or exiting
the system.

3. Selecting entries from the features pane produces the following results:

a. Selecting the DesignDatabase causes database files to be listed in the objects pane.

b. Selecting the Requirements Database causes all requirements files to be listed in the objects pane.

4. The features pane popup will allow the following:

a. Activation of a disk browser facility.

b. Prompting the user for a new default directory for the database, requrements, or help files.

5. The objects pane popup will allow loading and unloading the design database; or printing/viewing require-
ments files.

6. The text pane will provide the following:

a. Initial instructions on startup. Editing and saving instructions.

b. Viewing requirements files.

Figure 5. Storyboard: Entry/Exit for the OOD Decision Aid

28

Analyze the Problem.

Concept Map Analyze

Solution Strategy Identify

Requirements Text filenames/object names Encapsulate

Requirements Data Dictionary Decompose

Requirements Graphics Add Hook Book

Edit Help

Problem Statement: Remove Exit

Solution Strategy: Enter Object Name

Requirements Data p icatonon
Moesn Concept M cepoveMove

Th nayi dsla deci ed asfolos

iClose
Clear f wetizeoi o
Line Cl se iEllipse
copy

liste in asubPwndow

Zoom
t Save

Undo

The Analysis display is described as follows:

I. The main menu may be activated. Exit will return user to Entry/Exit.

2. The user will be prompted for the name of the object to be designed.

3. Selecting entries in the features pane results in the following actions:

a. Selecting the ConceptMap entry cases concept map object names to be listed in the objects pane.

b. Selecting Solution Strategy causes object names to be listed in the objects pane.
c. Selecting RequirementaText, DataI~ictionay, or Graphics entries cautses the corresponding files to be

listed in a sub-window.

4. Selecting entries in the objects pane results in the following actions.

a. Selecting a concept map will allow editing, saving or removing concept maps from objects.

b. Edit will open a graphic drawing window for creating, editing, and saving concept maps.

c. Selecting Edit will bring up a sub-window for editing the concept map.

d. Selecting an object for a Solution Strategy will display the text to the text pane or format the text pane
for creation.

e. Selecting a requirements file will activate a sub-window for viewing requirements data.

5. The concept map sub-window will provide the capability to generate and edit graphics representations of
concept maps.

Figure 6. Storyboard: Analyze the Problem

29

Identify Objects and Operations

Heuristics Analyze

Concept Maps Identify

Requirements Database files/entity names Encapsulate

Objects Decompose

Operations Edit Hook Book
Inspecting: TMC Add Helpt-

Name
Extt

Behavior

Domain

OOD Graphics Viewer

The Identification display is described as follows:

1. The main menu may be activated. Exit will return user to Entry/Exit.

2. Selecting entries from the features pane produces the following results:

a. Selecting Heuristics causes a Help window to open for viewing/editing heuristics.

b. Selecting Requirements, or ConceptMap causes file or object names to be listed in the objects pane.

c. Selecting Object or Operation causes database entries to be listed in the objects pane.

3. Selecting an entry in the objects pane produces the following results:

&. Selecting a concept map, or a requirements source file, will activate the appropriate sub-window for
viewing only.

b. Selecting an object or operation name will activate a popup for Adding, Editing, or Removing entities
from the database, operation.

c. Selecting Add will open a database browser in the text window.

4. The Database Editor will provide the following capabilities:

a. An attribute pane will provide the ability to add, inspect or remove attributes.

b. A text pane will allow editing an entry's attributes.

Figure 7. Storyboard: Identify the Objects and Operations

30

Encapa.ate Objects and Operations into Modules

Heuristics Analyze

ConceptMaps 745/entity names Identify

Requirements Database Edit Encapsulate

Objects Add Decompose

Operations Remove Hook Book

Block Help
Inspecting: TMC Detail Exit

Name Flow_ _Behavior an object some text

Domain Drawing Block Diagram of: TMC
Clam
class
Concept Map Add
Block Di Inspect TMC
Detail Diaram RemCl

Operations Box

Classes Objects Cp

Components Arguments Paste

Actors Modifies
Soom

Servers Actors Save
Servers

The Encapsulate display is described as follows:

I. The main menu may be activated. Exit will return user to Entry/Exit.

2. Selecting entries from the features pane results in the appropriate file or object names being listed in the
features pane.

3. Selecting entries from the objects pane results in activation of the appropriate sub-window-except for
objects and operations.

4. Selecting an object or operation from the objects pane opens a pop-up for selecting Editing the ob-
ject/operation or creating Block, Detail, or Flow diagrams.

5. Selecting Edit opens a Database Browser with an additional list pane for forming relations.

6. The Database Browser provides the following additional capabilities:

a. A context sensitive pop-up menu will list the possible relations for either an object or operation.
Object: Operations, Components, Actors, Servers, Classes.
Operation: Objects, Arguments, Modifies, Actors, Servers.

b. Selecting a relation causes a second pop-up to appear for selecting Add, Remove, or Inspect.

c. Selecting Add lists all appropriate objects or operations from wich to select in the list pane.

d. Selecting inspect lists all defined objects or operations in the relation for the selected object. Selecting
one opens an Inspector window on the object.

7. Selecting Block, Detail, or Flow results in activation of a graphics sub-window similar to the concept map
sub-window.

8. Graphics sub-windows will provide for creation of rectangles or circles or other shapes as appropriate to the
type of graphic being developed.

Figure 8. Storyboard: Encapsulate the Objects with their Operations

31

Decompospe Module

HeuristicsAnlz

Design O bjects ieettyInif

Reusable Components Edit Encapsulate

Add Decompoae

Remove Hook Book

Block B gHelpInspecting: TMC DealUnload Ei

Detail Diagra

Name o st n ispla isdFeos e Change Dir E

Behavior ted. some text

Domain Drawin Block Diagram of TMC
Cla Dh

_ Concept Map

Block Diagram aTMCra
FyDetail Diagramo Clear

2Box F an C opy
Paste

Zoos
Save

The Decomposition display is described as follows:

I1. The main menu may be activated. Exit will return user to Entry/Exit.

2. Selecting entries from the features pane produces the following results

a. Selecting Heuristics opens a help window for decomposition heurictics.

b. Selecting DesignOhjects lists objects in the tiles pane in a component hierarchy. Selecting objects opens
a Database Browser as with the Encapsulation storyboard.

c. Selecting PesableComponents lists reusable components database files in the objects pane.

3. The objects pane provides a pop-up for load/unloading reusable components databases, and editing objects
and their associated graphics.

Figure 9. Storyboard: Decompose the Modules

32

Hook Book Browser

Move
mm/dd/yy Date: Time-

mm/dd/yy User: Source: Close

Subject:

Idea:

Circumstance:

Add Sa ve

Remove

The Hook Book Browser display is described as follows:

1. A popup menu will provide the ability to move, resize, or close the browser.

2. A list pane will list all hook book entries by date and time.

3. Selecting an entry will cause the corresponding mini-panes in the rest of the window to be updated from the
hook book entry.

4. Selecting Enter will cause the Date, Time, Userid, and Storyboard called from to automatically be entered
in the labeled min-panes.

5. The user will be immediately prompted for a subject.

6. The text pane will provide for entering and saving the idea and circumstances.

Figure 10. Storyboard: The Hook Book Browser

33

n ni

Figure ll . Oje ctD a r m o h O bject M odeltio

34rti

Class Componen Object Modifies [Argument I Server I Operation

Figure 12. OOD Database Internal Structure

35

Appendix B. QOD Decision Aid Programmer's Manual

A Decision-Aid

for

Object-Oriented Design

B-1

A Decision Aid
for

Object-Oriented Design

PROGRAMMER'S MANUAL

Captain Patrick D. Barnes, USAF

December 16, 1988

1 Introduction

The OOD Decision Aid is a decision support system for developing an object-
oriented design of computer software. The system is composed of a dialogue
component, a requirements database, a design database, and a modelbase.

The system's dialogue component is written in the Smalltalk/V Object
Oriented Programming System. The dialogue provides access to and manip-
ulation of the database and modelbase and provides a graphic user intertace.
Tools are provided for browsing the database, hook book, and help informa-
tion, as well as for developing graphic representations of the design.

The dialogue consists of a series of "storyboards" or screen displays repre-
senting decisions which must be made by the user in carrying out the design
process. Each storyboard consists of a top pane with the storyboard label,
a features pane listing the functions which may be performed, an objects
pane listing the objects or files which may be manipulated by executing the
selected feature, and a text pane which acts as a work area for the feature or
for displaying useful information. Each pane has one or more menus which
may be activated to control execution of particular functions.

I

The requirements database is a three view representation of a require-
ments specification developed using the Software Requirements Engineer-
ing Methodology (SREM) with the Distributed Computing Design System
(DCDS). Text, data dictionary, and graphics representations are accessibie
by the dialogue.

The design database is a Smaltalk object which may be loaded, unloaded,
and manipulated by the dialogue. It consists of a set of relations representing
objects and operations and their attributes. Relations also represent various
relationships between objects and other objects and operations.

The modelbase consists of text files representing software engineering
heuristics and methodology guidance for the user. The dialogue reads, dis-
plays, and modifies these files and saves changes to disk. In addition, files
may be created "off line" and made available to the system through the help
and heuristics facilities.

2 Tool Set

The decision aid provides the following central and support tools:

Executive Control: The OODDecisionAid class is implemented as the
controlling class of the decision aid. It provides controlled access to the
storyboards as well as the hook book and help facilities. Each story-
board is implemented as a subclass of the abstract class OODStoryboard
and controls its own sub-windows and features. The OODDecisionAid
class executes the functions of the main menu (accessed from each sto-
ryboard's top pane) and the top menu of most sub-windows to eliminate
redundancy and provide a single point of control over open windows.

User Log: The user is prompted for a userid at start- up and the start
and stop times the user was on the system are automatically recorded.
The User Log can be accessed off-line and can be saved or reloaded if
the software is rehosted.

Hook Book: The user may record problems, suggestions, or comments
during on-line operation through a hook book browser. The browser
automatically logs the userid, time and date, current storyboard, and

2

prompts for a subject. The user can make entries, browse current
entries, and delete outdated entries. Entries are listed in date/time
order.

Help: Context sensitive help and heuristics files are provided via a browser
which allows the user to select, add, or delete specific help information.
File contents may be edited by the user and saved, thus making the
system somewhat user tailorable.

Graphics: A drawing tool is provided for developing, viewing, storing,
and retrieving bit-mapped graphic images of the design. To reduce the
Smaitalk image size, all graphics are loaded and unloaded to disk files.

Requirements Browser: A browser is provided for retrieval and display
of DCDS graphics, text, and data dictionary data. Methods are also
provided to give the decision aid lists of files for display in the objects
pane of a storyboard. Should a different system for requirements be
desired, only this class need be modified or a subclass be developed for
the new methodology.

Database Browser: A browser is provided for retrieval, display and ma-
nipulation of relations between database objects and operations. The
browser can list a selected object's attributes, list related objects, and
show the state of selected attributes. Menus provide the capability to
create or delete relations or modify an attribute's state.

3 Configuration

3.1 Hardware

The system was developed using a Zenith Data Systems Z-248 micro-
computer with a hard disk drive and a Microsoft ccmpatible mouse. EGA
graphics were available but are not required. The system is encumbered
by the 640K DOS limit so 640K is recommended as a minimum. While an
IBM/PC or XT compatible microcomputer should work, an 80286 based ma-
chine is recommended. If available, a two-megabyte RAM disk will improve

3

system performance. The SmaUtalk/V user's manual describes how to run
Smalltalk/V using a RAM disk.

3.2 Software

Smalltalk/V or Smalltalk/V286 may be used with the following appli-
cations loaded: FreeDrawing (provided with Smalltalk/V); Doscall, Loader,
and Zoom (provided with Goodies 1). The Application Browser provided
with Goodies 3 was used to control changes made for the application. How-
ever, it is not required for simply loading and executing the decision aid.

To capture and display DCDS graphics, the VTEK Textronix terminal
emulator was used. The PLAY program and its support files are required
to display the TKF files. As shown in the Files section, these files must be
located in the Smallalk/V execution directory.

The OOD Decision Aid application is loaded from within Smalltalk/V in
the same way as other Smalltalk applications. The disk browser is used to
access the file ooddcsna.prg and the preface in the file contains instructions
for loading the application.

4 Files

The Hard disk should be configured with a specific Smalltalk/V root directory
and three sub-directories with the following files:

smaltalk

Smalltalk/V files
image
sources.sml
go

change.log
doscall.com
v.exe
v2ndpart.exe

4

VTEK files
play.exe
teksetup-dat
config.vtk
matrix.fnt

Global Support Objects
userlog.obj
hookbook-obj
heiplist .obj

help

Help files
entryext .hlp
anlyssst.hlp
idntfcatn.hlp
encpsltn.hlp
dcmpstns.hlp
smalltlk.hlp
cncptmpp.hlp
oodmthdl.hlp

Heuristics files
abstrctn.hlp
addcmpfr.hlp
applctnc.hlp
clssabst .hlp
cncptanl.hlp
detldsgn.hlp
grmmtcla-hip
inhertnc.hlp
mdlrtyrl.hlp
objctcls.hlp
objctslc.hlp
strctri.hlp

5

analysis

Text files
tmc.txt
reqmnts.txt

Data Dictionary files
tmc-.all.rdd
tmc-.alph.rdd
tmc..data.rdd
reqmnts.rdd

Graphics files
tempnet.tkf
terrnnet1. tkf
termnet2.tkf
time-net.tkf
ctrlfan .tkf
crtpltfl.tkf

ood

Design Database
design .ood

Design Graphics Objects
tmc.map
tmc.blk
tmc.dtl
tmc.flw

5 Utilities

The following utilities were written to provide offline access to the system.

QODDecisionAid loadGiobals: Executing this statement will load the
context sensitive help list, hook book entries, and user log from disk

6

files. The message unloadGlobals unloads those objects to the corre-
sponding files named in the previous section. In both cases, files will
be found/saved in the directory from which Smalltalk/V is loaded.

OODDecisionAid userLog: Executing this statement will return the user
log for further manipulation such as printing out system usage.

OODStoryboard database: Executing this statement will return the
current database object for off-line inspection and testing.

OODStoryboard clearDatabase: Executing this statement will set the
database stored in the class variable of the OODStoryboard to nil for
testing the database initialization code.

7

Appendix C. DCDS Requirements Specification

A Temperature Monitor Controller

C-1

C. 1 Preliminary System Specification

C.1.1 Description This specification describes the requirement for a simple
temperature controller. The computer system is connected to a temperature sensor
from which it receives temperature readings. These readings must be displayed
on a connected digital readout device. An ON/OFF signal is required tc control
an attached fan. An attached graphics screen allows temperature profiles to be
displayed upon command. A terminal interface allows the user to input a setpoint
value or to request a temperature profile display for a specified time period. The fan
will be turned on whenever the temperature is above the setpoint, and off when the
temperature is below the setpoint. The scope of this effort is the development of the
software to support the specified hardware.

C.1.2 System Interface

C.1.2.1 Temperature Sensor. This system will receive temperature in
a digital form from an attached temperature sensor subsystem.

1. Sensor Trigger A temperature report will be sent by the temperature sensor
subsystem whenever it receives a temperature request.

2. Physical Interface The temperature sensor subsystem is connected via a 9600
baud full duplex RS-232 connection.

3. Request Format A temperature request to the temperature sensor subsystem
consists of the ASCII sequence ESC]R$ from the computer.

4. Error Handling Any characters received by the temperature sensor subsystem
not in the form ESC R$ will be ignored.

5. Temperature Report Format A temperature report from the temperature sensor
consists of the ASCII sequence

ESC]Txxx.yyy$

where xxx.yyy is a seven digit string comprising the current temperature ex-
pressed in degree C.

6. Response Time The temperature report will be sent (first byte transmitted)
within 1.0 seconds of receipt of a temperature request (last byte received).

C.1. .2 Temperature Display. The system will drive a digital display
of temperature.

1. Physical Interface The digital display subsystem is connected by a 9600 baud
RS-232 connection.

C-2

2. Display Data Format Display data sent to the temperature display must be an
ASCII sequence of the form:

SOH xxx.y EOR

where xxx.y is a five character temperature in degree F.

3. Error Handling Any character sequence not delineated by SOH and EOR will
be ignored. Any string so delineated, but not of the form xxx.y will be ignored.

4. Response Time The temperature display subsystem is fast enough to process
a continuous stream of display data at 9600 baud.

C.1.2.3 Fan Control. The system will provide a simple ON/OFF con-
trol for a cooling fan.

1. Physical Interface The fan will be controlled by the least significant bit (LSB)
of a latching TTL parallel port.

2. Output Format Writing an odd number (LSB = 1) to this port will turn the
fan on. Writing an even number (LSB = 0) to this port will turn the fan off.

C.1.2.4 Graphics Display. The system will drive a "smart" graphics
display.

1. Physical Interface The graphics display will be connected via a 19200 baud
RS-232 full duplex link.

2. Graphics Command Format Graphics commands consist of variable length
ASCII strings of the format:

ESC $ < command >.

Detailed commands are listed in the document "Super Kool Graphics Display
Model 123 Manual."

C.1.2.5 System Clock. A hardware system clock will be available.

1. Physical Interface The clock is readable as a 16-bit parallel port with a 16-bit
command and status register.

2. Clock Resolution The clock has a resolution of 0.1 s-.conds.

3. Clock Format The clock data format is documented in the specification data
sheet "CK-4505 Clock/Calendar Chip Set."

C-3

C. 1.2.6 User Terminal. The computer operating system provides buffered
I/O to the user terminal.

1. Physical Interface The keyboard and CRT interfaces are an integral part of the
computer system. Access is via defined operating system calls.

2. Buffered Keyboard Input Buffered input will provide a string of ASCII char-
acters terminated at the keyboard with a RETURN (ASCII CR). The ASCII
CR will be stored as the last character in the buffer. No additional characters
(such as a NULL) will be added. The buffer is limited to 81 characters. Any
attempt to type beyond 80 characters will result in the buffer being returned
with the first 80 characters plus the ASCII CR.

3. Buffered CRT Output ASCII output for the CRT is written to a 2000-character
(25 line by 80 character) circular buffer. This will update the CRT as fast as
the program can write to it. After the 2000th character, the CRT screen will
either scroll or overwrite from the top line, depending on the CRT output
mode. See the document "XYZ Computer System Manual" for more detail.

C.1.3 System Functions

C.1.3.1 Monitor Temperature. The system shall periodically read and
record internally the time and temperature.

1. Frequency Temperature will be recorded at 10 second intervals.

2. Maximum Amount At least twenty-four hours of data must be stored.

C.1.3.2 Display Temperature. The system will display the current tem-
perature.

1. Format The temperature will be displayed in degree F.

2. Frequency The temperature display will be updated every 20 seconds.

3. Response The temperature display will be updated within 2 seconds after the
latest temperature sample has been read.

C.1.3.3 Control Fan The fan will be turned on or off based on compar-
ison of the latest temperature reading with a setpoint value.

1. Frequency The fan condition output will be updated every 10 seconds.

2. Response The fan control output update will occur within one second of the
latest temperature sample.

C-4

3. Operation The fan will be turned on if the temperature is greater than or equal
to the setpoint to the nearest 0.1 degree F. The fan will be turned off if the
temperature is less than the setpoint.

4. Default Setpoint The initial (default) temperature setpoint shall be 70 degree
F.

5. Setpoint Change The setpoint can be set to the nearest 0.01 degree F by a user
keyboard command. Appropriate input data integrity checks should insure
that an illegal value is not processed.

C.1.3.4 Display temperature Plot. On user command, the temperature
will be plotted as a function of time on the graphics display.

1. Keyboard Command A user keyboard command will cause a new temperature
graph to be displayed. The user keyboard command will specify the start and
stop times for the graph. Both start and stop times must be within the past
twenty-four hours. Stop time must be later than start time. Invalid commands
will be ignored.

2. Vertical Resolution The temperature will be plotted to the nearest 1 degree F.

3. Horizontal Resolution One hundred points will be plotted across the full hori-
zontal width of the display, between the designated start and stop times.

4. Response The entire display will be completed within five seconds of the key-
board RETURN terminating the keyboard command.

C.1.3.5 Process Keyboard Commands. Any keyboard input except the
commands specified in sections ?? and C.1.3.4 will be ignored.

C-5

C.-2 DCDS DataDictionary F.LE: PLOT.DATA.OUT.
DOCUMENTED BY:

SOURCE: GRAPHICSDZSPLAYNODEL.123.JANUAL.
ALPIA: CiLCULTE.GRAPNICSCOORDS. REFERRED BY:

DESCRIPTION : SUBIET: CRETE-PLOT.FILE.
"Calculate graphics coordinates for a TRACED FROM:

given tmp point.". ORIGINATING..REQUIRmEET: B-2-4-2.

EUTBDS. BY: ALPnA: DET'RINE.KJMSGTYPE.
"artr= DESCRIPTION:

INPUTS: "Pumy module because DOCS wouldn't let me
DATA: T.TE1P.F chag an 01-node to a CONSIDER-OR. Sets
DATA: I-SCALE 19TPOIT or PLOT to TRUE if COMAIID-TYPE -1 is
DATA: Y.SCALK. tb.t type.".

OUTPUTS.: UTEREDBY:
DATA: ICODRD.OUT ".artrus".
DATA: YCOORD.OUT. INPUTS:

DOCUMENTED BY: DATA: COMMAND-TYPE._IN.
SOURCE: $88_001. OUTPUTS:

REFERRED BY: DATA: PLOT
SUBSET: CREATEPLOTFILE. DATA: SETPOINT.

TRACED FROM: DOCUMENTED BY:
ORIGINATINGREQUIRmE T: B2-4.2. SOURCE: S88_001.

ALPHA: CONVERT.TOF. REFERRED BY:
DESCRIPTION: Ri-ET: TERIET.

"Converts degrees C to degrees F.". TRACED FROM:
EXTEREDBY: ORIGINATING.REQUIRIMENT 8_33_5

"Kartumr". 01101NOIIGIATITGOREQUIWIENT: B-3-4-1
INPUTS: ORIGIZATIRGREQUIREMENT : R-3-6.

DATA: TEMP.C. ALPHA: DETERIKIESCALE-FACTOR.
OUTPUTS: DESCRIPTION:

DATA: DISPLAYTEMPOUT. "Determine the I and Y scale factors for
DOCUMENTED BY: the temperature plot from the start and stop

SOURCE: $88_001. times asnd the temperature extremes.".
REFERLED BY: ENTERED.BY:

L-Iii: TEMtP.ET. "Rszrtrus".
TRACED FROM: INPUTS:

ORIGINATING_REQUIREMENT: B-3-2-1. DATA: TEKPI(AI
All A: CONVERT.TO.F_.TEMP. DATA: TEMPMI

JESCRIPTION: DATA: TESPSTART.IN
"Converts temp point to degrees F.". DATA: TEMPSTOP-IN.

EMIEREDBY: OUTPUTS:
"Ertra". DATA: I.SCALE

INPUTS: DATA: YSCALE.
DATA: T.TEMP.C. DOCUMENTED BY:

OUTPUTS: SOURCE: S888001.
DATA: T.TEMPF. REFERRED BY:

DOCUMENTED BY: R.NET: TERMIET.
SOURCE: 588_001. TRACED FROM:

REFERRED BY: ORIGINATING.REQUWIENT: B-3-4-2
SUBSET: CREATE.PLOTFILE. ORIGINATITG-REQUIREMEIT: B-3-4-3.

TRACED FROM: ALPHA: FORMFN..MSG.
ORIGINATING.REQU'REMENT: B.3-4. DESCRIPTION:

ALPUA: CREATEWGRUPHICSCOMMAID. "Creates control message to fan.".
DESCRIPTION: ENTERED.BY:

"Creates a graphics format command for "Rtrum"
plot file.". FORKS:

ENTERED-BY: MESSAGE: FAN-MESSAGEOUT.
"srtru ". INPUTS:

INPUTS: DATA: FALiDATA.OUT.
DATA: GRAPRICS.EADOUT DOCU'MENTED BY:
DATA: GiAPSICSTAIL-.OUT SOURCE: S88.001.
DATA: XOORD.OUT REFERRED BY:
DATA: TCOORDOUT. SUBSET: CONTROLFAN.

OUTPUTS: TRACED FROM:

DATA: GRAPGICSCOMMADOUT ORIOZIATIIGREQUIENERT: B-3-3.

C-6

AURNA: FOIMLPLOTSSAGE. O3IGIUATIG.ISQUIRURT: B-2-1-1.
DESCIPTION: LPSA: STFJ1.OFF.

"Creates plot message for display from DESCRIPTION:
plot file.". "Set fan control to OFF (0)..

BUTEDBY: ETZ D.BT:
"lNetr" . "Ilarri".

FOmS: OUTPUTS:
=USAGE: TULPLOTOUT. DATA: FAU.DATA.OUT.

INPUTS: DOCUTID By:
FIUL: PLOT.DATAOUT. SOURCE: 388.001.

DO(UNKUITD BY: RFRD Y:
SOURCE: S88.001. SUBST: CONTRDL.FAR.

IEFERD BY: TRACED FROM:
IL.ET: TEULIT. OIRXGIlATIG.•EQUIRUMDT: B-2.32.

TRACED FROM: ALPIA: SETF3AL .
ORIGIATIG-.RIQUIIUUT: B-.34. DESCRIPTION:

ALPHA: RAIE.DISPLNESSAGE. "Sets fan control to ON.".
DESCRIPTION : ITKRED..BY:

"Creates message to temperature display.. "Bartrum".
ErTUEDUBY: OUTPUTS:

"*tartrum". DATA: FAl.DATA.OUT.
FORMS: DOCONTTED BY:

MESSAGE: DISPLAY-.RSSAGE.OUT. SOURCE: 8.001.
INPUTS: RZFESflU BY:

DATA: DISPLAY.JE*DOUT SUBr : CONTROLFAI.
DATA: DISPLAT.TAIL.OUT TRACED FROM:

DATA: DISPLAT.TEMP.OUT. ORIGIATIDG_.REQUIREMEIT: 9-2-3-2.
DOCUMNTKD BY: MLPRA: SETNOlTIME.

SOURCE: S88.001. DESCRIPTION:
RUERRED BY: "Updates the clock vaeke from the real-

RAT: TERPET. time linterrupt.".
TRAUE FROM: ENTERED-BY:

ORIGTATIIG.REQUIRENT: B-3-2-1. "lartrum".
AIPURA: SEMD.SETPOIT._ACI. INPUTS:

DESCRIPTOI: DATA: SYSTIML II.
"Sends setpoint acknowledge prompt to CRT". OUTPUTS:

EITERDU_BT: DATA: NOV-TIME.
"latr=u". DOCUMENTED BY:

FORKS: SOURCE: 88.001.
MESSAGE: TER/INALCRTRESSAGE.OUT. REFERRED BY:

INPUTS: I-ET: TIML _ET.
DATA: SETPOIDTACK. TRACED FROM:

OUTPUTS: OUIGIUATING.REQUIRUET: B-2-S.1
DATA: ClT.STRINGOUT. ALPIA: STOUE.SETPOINT.

DOCUMENTED UT: DESCRIPTION:

SOURCE: S88.001. "Update the current temperature
REFERRED BY: aetpoint.*.

&IET: TERILUET. ENTERED.BT :
TRACED FROM: "Uirtrum".

ORIGIATIIJIEQUIEDIT: B-3-3-5. INPUTS:
ALPSA: SEND.TEMP.EQ. DATA: SETPOIITVALUEII.

DESCRIPTION: OUTPUTS:
"Send the request sequence to the temp DATA: SETPOIRTVALUE.

sensor.". DOCUMEE BY:
9ITEUE D.T: SOURCE: Sdf.001.

"Urtzam". RZFERRED BY:
FOUS: I.5ET: TERIUIET.

MESSAGE: TNP.IRSQUEST.OUT. TRACED FOR:
INPUTS: OGIATI.NEQUIUEIIT: -.3.35.

DATA: REQUEST..SEQUENCILOUT. ALPRA: STOR-TEMP.
DOCUNTED BY: DESCRIPTION:

SOURCE: S88.001. "Stores a time k temp pair.".
REFBRRED BY: EITERIDBY :

kliT: TIME.NET. "lartrau".
TlACL" MR: CREATES:

C-7

21TITY-CLAS5: TEMP..POINT. DESCRIPTION:
INPUTS: "A PREDEFINED DATA IR 1131CR IS

DATA: NOV..TIME INCREMBTED AT TEE SAMI DATE AS ENfGAGEMENT TINE.
DATA: TIP.C. EXCEPT FOR ITS INITIL-VYALUE 111CE IS ARITRARY.

DOCUMENTED DY: CLOCE..TIRE RAT BE REGARDE AS EHGUENT TIRE.
SOURC~E: 386..OO1. IT HAS 110 CLOCK USD1R.".

hUFRRlED BY: LOCALITY:
1-111: ThU.-NET. GLODAL.

TRAE IROX: TYPE:
ORIGINATING..REQUIREMENT: 9-3-1-2. REAL-.

ALPHA: UPDATE..TKRP1AGS. UNITS:
DESWRPTION: SECONDS.

"For each to"p point,* compare to max I min USE:
and update them if needed.. DOT.

ErfUTDD..T: DATA: ONAND.TTYPEIN.
lsrtrmn". DESCRIPTION:

INPUTS: "Type of keyboard command: sotpo nt ,plat,
DATA: T..TW.C. bad."-.

OUTPUTS: ENTEDED..Y:
DATA: TUIPJIA *Ratrm..
DATA: TMP..RIN. LOCALITY:

DOCUMENTED DY: LOCAL.
SOURCE: $88L001. HUNGE:

REFERRED DY: 11aetpoint * plot".
&-NET: TERILNET. TYPE:

TRACED FROM1: EHUNUA TION.
oDIGIIATING-JEqUIN.DIUT: B3-.4-.2. RANKS:

ALPHA: VALIDATE..TERI.SG. MESSAGE: BAD-.COHAND-Iff
DESCRIPTION: MESSAGE: PLOT..COMMAND..IN

"Validates temperature message ftdumps MESSAGE: SETPOIIT-.COMMANDIJN
Cignores) invalids.". IBPM TO:

ENTIEDD..Y: ALPHA: DETERRI]E...SG.TYPE.
."1artrm. DATA: CIT-JTING..OUT.

INPUTS: DESCRIPTION:
DATA: I M RT-.TEP.II. "Any buffered output string to the

OUTPUTS: terminal CRT.".
DATA: TEMP.C LOCALITY:
DATA: VALID. LOCAL.

DOCUMENTED BY: TYPE:
SOURCE: 588001O. ENURERATZON.

REEREED DY: RAKES:
l-IT: TERP_.NET. MESSAGE: TERRINkL..CRT.MESSAGE-OUT.

TRACED FROM: DOCUMENTE DY:
ORIGINATING..REQUIRMUT: -2-1. SOURCE: 368..OOI.

OUTPUT FR:
ALPHA: SENM..SETPOINT..ACK.

TRACED nR;
RXGrINATXNG..REQUIRUMENT: B-*3-3-.

DATA: RAD..DATA..IN. ORtIGINATING-.REQIJIRVIENT: B-.3-.4-..
DESCRIPTION: DATA: DISPLAY..EKAD..OUT.

"Any keyboard Input except a legal DESCRIPTION:
comand.". "ASCII SON to start display string.".

ErTENED..DT: ENTURED..BT:
f"at..11,tml

LOCALITY: INITIAL-VALUE:
LOCAL. 501.

TYPE: LOCALITY:
ENUMERATION. LOCAL.

RAKES: TYPE:
MESSAGE: BAD..COMAND..I. EIUMERATION.

DOCUMNTED DY: RAKES:
SOURCE: SM.o-0l. MESSAGE: DIsPLAT..RSSAGK.011T.

TRACED FROM: DBUENE Y:
ORIGINATING-.REQUIRUUET: D.-3-5. SOURCE: 586.001.

DATA: CLOCE..TINE. IBPU TO:

C-8

ALPIA: NAILDISPLIESSAGI. RAWN:
TRACE IGN MESSAGE5*0: VAINSSAGILOUT.

O21IG3NATIM..3qUlumuT: B-.2-2-2. DOCUOT3D BY:
DATA: DISPLAY..TAIL..OUT. SOUCE: 588-001.

D13CMMPYI: INPUT TO:
"Ma of ASCII sequence to display.... AkLPIA: FORILTFA SO.

ENTDID..3Y: OUTPU 110:
ft .. ALPIA: SETFkNOWF

INITIAL-YALUX: ALMI: SET-FALON.
sm!. TRCIm 1ROM:

LOCAL!!: ORIGINATING-REQUIRENT B,-2-.3-2.
LOCAL. DATA: FUND.

TYPE: DISCRIPTION:
IUKATIOf. "A PREDEINED DATA ITE 1131CE IS SET TO

1*138: SITNIN TogE
NEAS: DISPLAYJIESAGE..OUT. OIL FALSE AFTER RACE SELECT 01 AN

DOGIUTEDr~ sY: UTT..TYPW OR UNTITY..C.ASS.
BOOMC: 588.001. FOUND 1S SET TO TRUh IF AS INSTANCE

INPUT TO: SATISFYING TIE SEECTION
ALPIA: NUM-DISPL.NUSAGE. CRITERION IS LOCATED; OTERIVIE, FOUND IS

TRAE FROM: ASSIGNE TE VALOE
ORIGINATIS..qUIRET: 3.-2-2-2. FAS. ".

DATA: DISPLAY.ToWJOUT. INITIAL.VALUE:
DESCIPTIION: FALSE.

"ASCII String zx:.y Of temp in degrees F LOCALITY :
to display.". LOCAL.

EXIUZDDY: TYPE:
..Nartrum". BOOLEAN.

LOCALITY: USE:
LOCAL. BOTI.

RAIUR.YALUE: DATA: O3APNICS..COKAND..OUT.
999.9. DESCRIPTION:

HNIUIL VALUE: "A graphics coenand to the dicplay.11
0.0. KITERED.BY:

RESOLUTION: "'Iartru"*.
0.1. LOCALITY:

TYPE: LOCAL.
REAL. INCLUDES:

UNITS: DATA: ORAPNICS..EEAD-DUT
DEG.F. DATA: GIAPEICS..TAIL-OUT

RAZES: DATA: ZCOORD..OW

MESSAGE: DISPtAYJESSAGR..OUT. DATA: YCOORD..OUT.
OOCUNTED BY: CONTAINED IN:

SOURCE: 388.001. FILE: PLOT..DATA..OIT.
IsPm TO: DOCUMENTED 3Y:

ALPIA: NAILDISPL.MESSAGE. SOURCE: GIAPEICS.DISPLAY.RODEL.123..RANUAL
OUTPUT FR01: SOURCE: 588.001.

ALMI: CONYKIT..TO..F. OUTPUT 1101:
TRACED FR0M: ALPIA: CRIATE.aYLAPvICS..CONAwD.

OR!GINATING..31001331U1: -2-2-2. TRACED 7303:
DATA: FAN-.DATA..OU. OR1INATING.XEQUIRIENT: 8-.3-2-1.

DESCIPTION: DATA: G1APIICS..EEADOUT.
"01/OFF control for the fan.",. DESCRIPTION:-

zuYUU.3Y: "ASCII BBC $ header for graphics
"Iartru". comand..

INITIAL-VALUE: ENTSMRED..N
0. "atm.

LOCALITY: LOCALIT:
LOCAL. LOCAL.

MAZINURLYALUE: TYPE:
I1. ORUNATION.

NINIMWILYALUE: DOUITED 3BY
0. SOURCE: GRkAPNICS..DISPLAYJODEL.123-.RAWUAL.

TYPE: INCLUDED IN:
NOOLEAN DATA: GIAPNICS..COIANOUT.

C-9

IBMU TO: &ENPUNED BY:
ALPIA: CRATK..GAPRICS.COMMAND. IJET: TlULN!?.

T1ACED FOM TACED FROM-
OSIINATIU_..3EUIIDTM: B_3_.2_1. ORIOIATIW..NE1flNT: 3-.3_.4-1.

DATA: GRAPRIOS.TAXL..OUf. DATA: SSCORDJOUID.
DESaRIPTIWN: DESCIPTION:

"ASCI ! teziniaating gaphics cemmand."1. "A PREDFINED DATA ITEM VEICS IS SET TO
INTID..Y: WEEK TRUE OR PALSK ArTER ACE SELECT 03 A

"NartrFIL IN h A BETA O01 GAIA. ISCORD..FOUND IS
LOCALITY: SET To TRUE IF A RECORD SATISFYING TUE

LOCAL. SELECTION ORITD.IOE IS LOCATED; OTSEVISE,
TYPE: RRCORDJFOWD 1S ASSIGNED TER VALUE

SNIUNDATIO1. FALSE.".
DOCUIETED BY: IIITIAL_.VALUE:

SOURCE: GURPICS..DISPLAYJIODEL..123..EAEUL. FALSE.
INCLUDD IN: LOCALITY:

DATA: GRAPUICS..CORAID..OUT. LOCAL.
INPUT TO: TYPE:

ALPEA: CMREAE.GRPEICS..CDNNAD. DOOLLI.
TRACED FRON: USE:

ORIGIUATINO..NEQVIREUT: B_.2_.4_2. DOTE.
DATA: NOU..TIjEE. DATA: REPORT..EEAD..IE.

DUSCEIPTIOW: DESCRIPTION:
"Current tinte, last value read from "ASCII ESC3T header for temp report.".

clock.". EITEM-D.BY:
ENTERED..BY: E1. cr"t...

*Eerr".LOCALITY :
INITIAL.VALUE: LOCAL.

0.0. TYPE:
LOCALITY: EEUMERATION.

GLOBAL. RAKES:
NAZINDiLYALUE: MESSAGE: TEMP..DIPORT..IN.

99M9.9. DOBENE y:
NINIMJR.VALUE: SOURCE: 585..001.

0.0. TRACED FROM:
RESOLUTION: O3IGINAThNG-REQUIREMENT: B-.2-1-.5.

0.1. DATA: REPORT-TAIL-.IN.
TYPE : DES C3IPMow:

&MA. "ASCII $ terminating temp report."*.
UNITS: REED.Y:

SECOND. "Eartrume.
DOCUNTED BY: LOCALITY:

SOURCE: 58..0l. LOCAL,
INPUT TO: TYPE:

ALPEA. STORE-TWE. ENUxMETION.
OUTPUT FUON: RAKES:

ALPIA: SET..EOV.TINE. MESSAGE: TUPIP-JEPORT..IN.
TRACED FUNM: DOCURRNTED DY:

O3ISINATING..REQIJRENMT: D._2_6_.1. SOURCE: S88..O01.
DATA: PLOT. TRACED FROM:

DESCRIPTION: ORIGIEATING..EEQI I : B-.2-.1-5.
"Dmy war to indicate that mg type is DATA: RMIOT..TW-1..

Plot.". DESCRIPTIONW:
RITERWD..3Y: "Teimperature in degree C from sensor."

"lartrawl. ENTERRD..BY:
INIIAL-VALUE: "Eartramn.

FALSE. INITIAL.VALUE:
LOCALITY: 0.0.

LOCAL. LOCALITY:
TYPE: LOCAL.

BOOLEAN. NAXIN..VALUE:
DOCOMNTED lay: 990.9.

SOURCE: See-00j. EIII3JVALUE:
OUIPUT ION: 0.0.

ALMA: DfTE3MIZR.SQ-TPI. RESOLUTION:

0.1. SOURCE: 588.001.
TYPE: INPM TO:

REAL.. ALPHA: SEND..SETPOINT..ACK.
UNlm: TRAE 13R3:

DME..C. ORIIATIUG.REQUREET: B-*3-3_5.
M&AES: DATA: SETPOINT..VALUE.

NISME: TREPREPORT.,IN. DESCRIPTION:
DOCOUIENY By: "Carreat values of metpoit..

SOURE: 588..001. ESTrD..3y:
INPUT TO: "at"

ALPHA: VALIDATK-TTIP.MSG. ISITIAL.VALUEZ:
TRACED YAMN: 70.0.

ORIGflATINU.REQUIRNT: B-.2-1-.6. LOCALITY:
DATA: RZGET..SEQUEMOUT. GLOHAL.

DESCRIPTION : EAZIILALUE:
"ASCII 33013* to request tesi report.". 999.9.

ENTDED.JY: NUIN_M.ALUE:

LOCALITY REOLTION:
LOCAL. 0.1.

TYPE: TYPE:
ENUKATION. REAL.

MAIZE: UNITS:
MESAGE: TENP.REqEST..OUT. DES-...

DOCDUTED BY: DCMTED BY:
SOU51CR : 388..001. SOURCE: 588..O01.

INPUT TO: OUTPUT FRON:
ALPHA: SEND..TEMP.REQ. ALPHA: STORE..SETPOINT.

TRACED FROM: TRACED FROM:
ORIIMATING..REQUI.EMENT: B_2_1_.3. ORIGINATINO..REQUIRENT: B-.3-.3-3.

DATA: SEMPINT. DATA: SETPOINT..VALUE-...
DESCRIPTION: DESCRIPTION:

*D=y variable to reflect if message type "Setpoint value in degree F as entered by
is setpint.. user keyboard..

ENMERE..R: ENTERED..BY:
tKartrawl. "at

INITIAL-.VALUE: INITIAL-.VALUE:
FALSE. 70.0.

LOCALITY: LOCALITY:
LOCAL. GLOBAL.

TYPE: NAZINDUMYALUE:
BOOLEAN. 999.9.

DOCUSMENE BY: MINIMIJILVALUE:
SOURCE: 588..0O1. 0.0.

OUTPUT FROM: RESOLUTION:
ALPHA: DETERNE..MSG.TYpE. 0.1.

RUZRD BY: TYPE:
SUBME: CONTROL.FAN REAL.
IM: TEDILNET. UNITS:

TRACED FROM: DEG..F.
ORIGIUATING..R~qUIRSHEST: 8-.3-3-5. EAEES:

DATA: SETPOIMT..ACE. MESSAGE: SErPOINT.COMHAND-IN.
DES CRIPTION: DOCUMENTED BY:

"Acksowl~eienet sent to crt.11. SOURCE: $88..001.
ENTNDED.BY: INPUT TO:

"Nartrm".ALPHA: STORE..SETPOINT.
111TIAk VALUE: TRACED FROM:

IOUL. ORICINATINGU.REnuR: B-.3-3-5.
LOCALITY: DATA: START-NOUR-1N.

LOCAL. DESCRIPTION:
RANGE: "Hour pert of tmp plot start time .".

"Setpoiat alE'. ENTERBD.BY:
TYPE: "Wartr.

INUMD.ATION. INITIAL-VYALUE:
DOCUMNTED By: 0.

C-11

LOCALITY: INmCUo IS:
LOCAL. DATA: TUPSTOP.IN.

NAIMILVALUE: TRACI) FROM:
23. ORIGUIATINGREQUIRENT: .3.4.1.

1N3I .L VALUE: DATA: STDP_MIN..
0. DESCIPTION:

RUOLUTION: "inute portion of plot stop time.".
1. KNTEEDBY:

TYPE: "Naftra".
INTER. INITIAL_VALUE:

UNITS: 0.
3001. LOCALITY:

DOCUMENTED BY: LOCAL.
SOUCE: S88.001. NAXIEJILVALUE:

INCLUDED IN: 59.
DATA: TM.STRT-.I. EIUIJMLYALUI:

TRACED FlON: 0.
OIU1ATINGREQUREMEUT: B.3-4-1. RESOLUTION:

DATA: STAXT..NIN.IN. 1.
DESCIPTIO: TYPE:

'Ninutee portion of plot start tie.". INTEGER.
ENTERD_BY: UNITS:

"N au'. NINUTE.
Z1ITIAL_VAL*,M: DOCUMNTED BY:

0. SOURCE : S88_001.
LOCALITY: INCLUDED IN:

LOCAL. DATA: TEMPSTOPI.
RAXI3UNVALUE: TRACED FRON:

89. OIGINATING.REQUIREIENT: B-3-4-1.
NINII)LNVALUE: DATA: SYS.TINE.I1.

0. DESCRIPTION:
RESOLUTION: "Current systm time, resolution O.ls.".

1. ENTERED.Y:
TYPE: "eartrum".

INTEGER. INITIAL.VALUE:
UNITS: 0.0.

IINUTE. LOCALITY:
DOCUMENTED BY: GLOBAL.

SOURCE: S88.001. RAINUIL ALUE:
INCLUDED IN: 1048576.

DATA: TIP.STAATI. NININULVYALUE:
TRACED FROM: 0.

O1IGINATING.IEQUIRSENT: B.3.4_1. RESOLUTION:
DATA: START.TIIE. 100.
DATA: STOP._NOUR_1.l TYPE:

DESCRIPTION: INTEGER.
"lout portion of plot stop time.". UNITS:

NTEnDEBY : MS.
"artM". RAKES:

INITIAL.VALUE: MESSAGE: TIRE.MESSAGE_1.
0. DOCUMENTED BY:

LOCALITY: SOURCE: S88.001.
LOCAL. INPUT TO:

NAXIINU VALUE: ALPIA: SET-OV_TIMN.
23. TRACED FROR:

MISNIME VALUE: IGINATZIG..EQUIREEXT: B-.2_S3.
0. DATA: TMP.-C.

RESOLUTION: DESCRIPTION:
1. "Latest temperature reading.".

TYPE: E1TEUEDBT:
INTEGER. ,,1tru,.

UITS: INITIAL-VALUE:
101. 0.0.

DOCUMENTED BY: LOCALITY:
SOUIC: Se..O01. GLOBAL.

C-12

EAIIDJEVLUERAED FILM:
9pS.9. C3XGINATING_.3QUIREUEET: B-3-.4-1.

NIIfl.3ALUEK: DATA: T..TEMP.C.
0.0. DESCRIPTION:

RESOLUTION: "A stored tom~rature point.",
0.1. ENTUELD.AY:

TYPE: .1artru".
am. IITIAL-VALUE:

UITS: 0.0.
DII.IIIC. LOCALITY:

DOCUNENTED By: LOCAL.
SOWR(: 1588.0i1. MAINILVALUE:

INPUT TO: 999.9.
ALPHA: CONVRT.TO-.F MNIIL VALUE:
ALPHA: STOW-.TEMP. 0.0.

OUTPUT FROM: RESOLUTION:
ALPHA: VALIDATH..TEMPASG. 0.1.

TRACED FROM: TYPE:
ORIIATING..REqUIIUMENT: B3-.1-.2. RETAL.

DATA: TUMPJ.. UNITS:
IDFERD DY: DbS..C.

SUBlET: CONTRL..FAR. ASSOCIATED VITH:
DATA: TIMPMAI. ENTITY..CLASS: TEMP-.POINT.

INBU TO: DOCUMNUTED DY:
ALPHA: DKTERRINR..SCALE..FACTUR. SOURCE: S88..O01.

OUTPUT FROM: INPUT TO:
ALPHA: UPDATE..TEMP-.XANGE. ALPEA: CONTERT..TO.Y..TERP

DATA: TPJN. ALPHA: UPDATL-TEMP-11ANGE.
INPUT TO: TRACED FROM:

ALPHA: DETURRINH..SCALL-FACTOR. ORIGINATING..REQUIREENT: B-.3-1-2.
OUTPUT FROM: DATA: T..TENP..F.

ALPRA: UPDATE..TEMP..RINGE. DESCRIPTION:
DATA: TEMPSTART..IR. "Fahreakeit tamp for each temp data

DESCRIPTION: point. 1.
"Start time for temperature plot, input by ENTERED-BDY:

noer."1. "Nartre"
ENTERED..3Y: INITIAL-.VALUE:

.."aztzu". 0.0.
INCLUDES: LOCALITY:

DATA: START..NOUR..IN GLOBAL.
DATA: START..RIE.IE. MAXIEJE..VALUE:

mas: 999.9.
MESSAGE: PLOT..COMAND..IN. MINIMUN-VALUE:

DOCUMIENTED BY: 0.0.
SOURCE: 2188-.001. RESOLUTION:

IBPU TO: 0.1.
AURIA: DETERNINE..SCALE..FACTOR. TYPE:

REFERRED BY: BEL.
R_117T: TERMLNIT. UNITS:

TRACEID FROCH: DE..F.
ORIGIUATINS..REQUIREMNT : B_.3_4_1. DOCUMENTED BY:

DATA: TEMP-JOP-.IN. SOURCE: 588..001.
DESCRIPTION: IBPM TO:

"Sad tine for temperature plot.". ALPHA: CALChJLATE..GRAPRICS..COORDS.
ENTMREO..D: OUTPUT FUON:

"Martim.". ALPHA: CO~nVATTO..F.TERP.
INCLUDES: TRACED FROM:

DATA: STOP-.NOUR-11N ORIGIUATING-REQUI.NET: B-3-4.
DATA: UTPJEIN. DATA: T..TIUS.

RUES: DESCRIPTIUR:
MESSAGE: PLOT-.COUIAND.,IN. "A tine at which a temperature in

DOCUNTED BY: stored. ".
SWIMC: 388..001. ENTEREID..Y:

INPUT TO: "ati"
ALPA: DETERIIE.SCALE..FACTOR. INITIAL-.VALUE.

C-i13

0.0. INCLUDED IN:
LOCALITY: DATA: GIAPEICS.COMMAND..OUT.

LOCAL. INPM TO:
RAIUWLVALUE: ALPIA: CEATE.GRAPHICS.COMMAJD.

99999 OUTPUT VICE:
NINIU10LALUE: ALRA: CALCULAT.GIPEICS,.COORDS.

0.0. TRACED F3R:
RESOLUTION: OIGINATNGREQUIEENT:- B3-.4-3.

0.1. DATA: I-CALE.
TYPE: INPUT TO:

REAL. ALPIA: CAICLAE..GRAPEICS..C003DS.
UNlT: OUTPUT F3R:

SECONDS. ALMRA: DETERINE.SCALE-FACTOR.
ASSOCIATED NITS: DATA: TCOOND..UT.

DETITT.CLASS: TEMP..POINT. DESCRIPTION:
DOCUNTED BY: 'T coordinate (1.-300) in device

SOURCE: 986-.001. coordinates for display."*.
I01URSD IT: ENTENED..BT:

IET: TEULIE?. ..Nartrmn..
TRACED F3R: INITIAL-.VALUE:

O3IGIUATIUO..3ZQUIIUMENT: B-.3-1-.2. 0.
DATA: VALID. LOCALITY:

DESCRIPTION: LOCAL.
fPlag indicating validity of tp" RAIIWR..VALUE:

mesaege.". 300.
SITERED...U: RINflWLVALIJE:

"hyrtym". 0.
INITIALVALUE: RESOLUTION:

FALSE. 1.
LOCALITY: TYPE:

LOCAL. INTEGER.
TYPE: UNITS:

BOOLEAN. PIXEL.
DOCUMENTED BY: DOCUMENTED BY:

SOURCE: S88..001. SOU ACE : Se8...01.
OUTPUT FROM: INCLUDED IN:

ALPIA: Y&LIDATLITERP.RSGI. DATA: GRAPHICSCORAID..OUT.
REUSUED BY: IBPM TO:

l..NWI: TERP..IET. ALURA: CUSATE.GPAPEICS.COUIAD.
TRACED 73CR: OUTPUT F3R:

D3IGIATING-.UQUIRNIT: -2-1-5. ALPIA: C&LCULAT-GRAPZICS-COORDS.
DATA: XCOORD-.OUT. TRACED 73R:

DSCIPTION: ORIIATIG.REQUIREKENT: B.-3-.4-2.
"I coord (1. .64) in device coordinates to DATA: Y..SCALE.

display.". INPUT TO:
KNTENED..3V: ALPIA: CALaJI.ATE..ORPICS-COOKDS.

"lastrowl. OUTPUT F3R:
INITIALVALUE: LPNA: DETERNINE..SCALE..FACrOR.

0.
LOCALITY:

LOCAL.
RAIIMUWVALUE:

640. DECISION: PLOT..CUIUAND.
MIIIWL VALUE: ALTERNATIVES:

0. "1. Singe command line including start I
RESOLUTION: atop tines.

1. 2. Single input comand, then prompt
TYPE: user to enter sart and atop tines.".

IwnTEE. CR0101:
UNITS: 11 Alternative I.".

PIXEL. SITESED..BY:
DOZENS: "et

FILE: PLOT..DATA..OUT. PROBLEM:
DOCUMENTED By: "Format A protocol of temperature plot

SWORC: 586..00I. command..".

C-14

I I l l l -... . .

TZAOU TO: TeO:or.'.
NSSAGK: PLOTCOIMANDI. UNTERED.BY:

DO01NIK y-.BY: "artrm".
S0UCE: Sa.001. CONNECTS TO:

TRAED 10M: SUBSYSTEM: TEP-.SERSOI.
ORTGINATING-Q.UIRQmurTr: -.3-4.1. EmABLIS:

DECZSIO: SUTPOINT.cOUIAUD. IE.BT: TEMP.IET.
ALTERNATI VE: PASSES:

"1. Single commmad string including KEBSAKG: TUP_EPOT_13.
setpolat value. DOCUT3D bf:

2. Eater comand and prompt for SOURCE: S88_001.
value... RVERM BY:

CIOIE: I.NT: TEPET.
"Alternative 1., TRACED 130:

ENTIAU.BY: ORXGSIATNG_EQUIXWT: B-2-1
"tr*' •OIt.GrAT136..3QUIlEmEIT: B-.2.5.

PROBLEM: IlPUT-IrTUIAc: F3OU.TEIUrAL.
"ForMat and protocol of setpoint DESCRIPTION:

commnd.**. "Receives keyboard input from the user's
TIACE TO: tertial.,,.

MSSAGE: SETPOIIT.-COIiAND..I. DXTRIDDY:
DOCUSST1D BT: "Iartrum'.

SOU3 : S88.001. COIIECTS TO:
TRACED M1R1: SUBSYSTEM: TERIINAL.

O3XGINATING..QUuwzEJrr: B-.3.3-. EABILES:
EUTITY..CLAS: TEU..POIRT. &-NET: TERMET.

DE IPTION: PASSES:
"A log of an individual temperature MESSAGE: BADCOmuAID.i

point.". MESSAGE: PLOT.COIMAIDIJ
EITI3UD.BT: MESSAGE: SETPOINTCOMMIADIN.

"Bazrm.*. DOCUMENTED BY:
ASSOCIATES: SOURCE: S88.001.

DATA : T.TEP.C RUFED BY :
DATA: T.TI E. IJET: TERLIET.

CREATED BY: TIACED F1M:
ALPIA: STONL.TEMP. O3TGINATING.REQUIREET: B-3_3_5

3N11D BY: OiG INATING.R.EQUIRMJET: B.3-4-1
A.ET: TENNET. OIGIIATINO-REQUIIEIIENT: B-3-5.

TRACED nO: INPUTIrTlRFACE: F1._TrIE.
OlIGINATING.IEQUIET: B-3.1.2. DESCRIPTION:

FILE: PLOT.DATA.OUT. "System timer, interrupt driven, O.is
DESCRIPTION: resolution.".

"Data for a fall temperature plot sent to ENTERIDDBY:
graphics.. "Eartrm.

UTIED.BY: CON5ECT3 TO:
"Bartr,. SUBSYSTEM: SYSTENCLOCK.

LOCALITY: ENABLES:
LOCAL. &_NET: TINE.NET.

CONTAINS: PASSES:
DATA: GRAPEICS.CORAIDOUT. MESSAGE: TINEMESSAGE-IN.

MARS: DOCUMENTED BY:
MSAGN: TNP._PLOT.OUT. SOURCE: 88.001.

DOCUMIg.TD BY: RERED BY:
SOURCE: 586.001. .N T: TINIET.

INPUT TO: TRACED F3OM:
ALPIA: FO3ILPLOTJIESSAGE. ORIGHIAThIN..EQUIRE0qT: B-2.5.1,

ORDEID BY: MESSAGE: BAD.COMMANDIN.
DATA: ICOOIDOUT. DESCRIPTION:

OUTPUT no: "A mealigles terminal keyboard input.".
ALPA: C3EATlGRAPRICS-.COAND. KNTEIID._BY:

TRACED FIN: "laztz'.
ONIGINATINGIEQUIRJxrEm : B-3.4. DOCUMENTED BY:

IBPUTINT A&C: nm.TE . SOUCE: 88.001.
DESCRIPTION: MADE BY:

"Receives temperature reports from DATA: BAD.DATA.IN

C-15

K -, , i ,I I N DH iH

DATA: COMRID.TPS-IN. PASSED T13036:
PASSED T130001: riUPU..ITACEa: FROL-TENIIIIAL.

IMPT..XNTIRFACE: FRONJERRINAL. TRAE MR.N:
TRAE FROM: OuhG!NATING..REQUIIUIU: B33-5

ORXIIATING..EQUUUDMET: B-3-5. DECISION: SETPOinT.COmmmN.
MESSAGE: DISPLAYJESSAGLOUT. MESSE: TUEP..PLOT..OUT.

DUscRIPTX : DECRIPTION:
"ASCII sequence SON zzx.y OR1 to "TMe sequence of graphtics coiands to draw

iplAy."-. a curie.".
EXTERED.JY: UTZD..Y:

Wtarz**"Eartrue.
DOMNTED BY: DOUETED BY:

S03ECS: S88.001. SOUR=: 388-001.
FORMD BT: PUNHD BT:

ALPIA: MAII.DISPL.mmssAG. AUPRA: 7031.PLOT..RESSAOE.
MADE 3Y: RAN BY:

DATA: DISPLAY-IEAD..mT F U.E: PLOT..DATA..OuT.
DATA: DrSPUAYTAIL.OT PASSD 133061:
DATA: DISPLAY..TUP.OUT. OUYPUT..IUTERFACE: TO-GRAPBICSDISPLAY.

PASSED 1330363: TRACED FROM:
OUTPUT.IITRIFACE: TO-.DISPLAY. ORIGINATING..REQUIREMENT: B-2-4.

TRACED FRON: MESSAGE: TMP..IEPOIT..IU.
O3X6I1ATT3G-jEQMIlEMT: 8-32-.2. DCMPT1OE:

MESSAGE: FAS.JESSAGE.OUT. "ASCII sequence ESC J TxxxyyyS from temp
DESCRIPTION: seamer.".

"TTL bit 0 or 1 for OFF or 0N.". ETEIEDJBY:
ENTZD..DY: ..Rartr,..

"Uertr".DOCUMENTED BY:
DOCUMENTED BY: SOURCE: 588-.001.

8031CS: 588.001. KADS BY:
FORMD BY: DATA: REPORT..IEAD..Il

ALPIA: FORM-FUNSG. DATA: REPORT-TAIL..IN
MADE BY: DATA: &SPORT..TW-rP.I

DATA: FAI-DATA..OUT. PASSED 1110001:
PASSED TIMOR6: INUIT..INTUFACE: FROM-.TEMP.

OUTPUT-IUTEEFACE: TO-PAN. TRACED 1M0:
TRACED FROM: O3IGIVATING-REQUILRENIT: 8-2_1.

OIIGINATIIG..REQUIWEIT: B-.2-3-2. MESSAGE: TEMPREQUEST.0(JT.
MESSAGE: PLOT..COAND.II. DESCRIPTION:

DESCRIPTION: "ASCII string ESC)R$ to trigger temp
"Comalmd to draw a temperature ciirve.-. report from sensor.".

ENTERED D: ENTEREDJY:
I"MartIn" . ..Rartr=."

DOCUMENTED BY: DOCUMENTED BY:
SOURCE: 388-.O0i. SOURCE: 588.001.

MADE BY: FORMD BY:
DATA: CORAD.TPLIN AUPRA: SEND..TEP.JEQ.
DATA: TEMP-STAAT..IN NADR BY:
DATA: TEM.STOP.IN. DATA: REQUEST..SEQUENCE..OIU.

PASSED TINE: PASSES THROUGH:
ZNPUT..INTUPACS: FIOM.TERNAL. OUTPUT..ITE1FACE: TO..TERP.

TRACES FI0N: TRACES FROM:
O3IATING_.3QUIIEMT B-.3-.4-1 ORIGINATIDG..3EQUIXENT: B-2-.1-1.
DECISION: PLOT..CORMAND. MESSAGE: TUMIAL..CIT.MESSAGE-UUIT.

MESSAGE: SEIPINTCOUIAND..IN. DESCRIPTION:
DESCRIPTION: "Any buffered ASCII sent to the CRT.".

"omaind sequence to set now astpoint ETERED..Y:
value.. Niie"

EXTRIES.BY: DOCUMENTED BY:
"N1rtinm". SOURE: 388.001.

DOCUMENTED BY: FORMIED BY:
SOURCE: S86.001. AI.PIA: SEND.SETPOINT..ACK.

MADE BT: NADI BY:
DATA: CORADTTPEJN DATA: C1T..STRG..0IJT.
DATA: SETPOINT..VALUEIl. PASSES THE0M0:

C-16

OUTPUT-JNTERFACI: TD-TRKINhL. DESCRIPTION:

TRACED FROM: "Temperature report format.'*.
GRISIUATINs.REQUIRHuY: 33-6.. INTSRED..Y:
ORIGINATINB.RQUIRI: B-.3-.4-.1 rr .
ORIGIUATING-S.RQUIRUNIT: B3-..6. TRACKS TO:

MESSAGE: TJEMSSAOLII. INPUTINTUF ACE: FROM-TEMP

DESCRPTION: DATA: REPORT-WRAD..IN

"Contains current system time.'". DATA: UNRT..TAIL-JN
INTIRID..DT: DATA: RNPOST-TEMP-.IN

"Usrru".DATA: VALID.
DOCUINTED BT: DOCUMENTED BY:

SOUIRCE: 588..OO1. SOURCE: 588.001.
MADE IT: INCORPORATED 1N:

DATA: SYS..TINS-IN. OP103UATING-JEQUIREEIT: B-2-1.
PASSES TIRWISE: ORIGINATIUS..REQUIREMENT: B-.2-2.

IUPUT..IUTUPACE: FROMNJINE. DESCRIPTION:
TRACES FRON: "Provide temperature display."*.

ORISINATING..REQUIRSKIT: B.-2-6-1. ENTERSD..IT:
"IartrM.

INCORPORATES:
OZIGINATINGRSQUIIEET: B-.2-2-2.

TRACES TO:
ORIGrIATIS.JSQU1REEUfT: 2-. OIJTPUJT-INTERFACE: TO-DISPLAY.
ORIGINATING.REQUIREEENT: B-2-1. DOCUMNTED BY:

DESCRIPTION: SOURCE: S88-001.
"Receive temperature.. OIIGIATIUG..REqUIRDEET: B-.2-2-2.

EITERID..31: DESCRIPTION:
"KartW'. Display data format."'.

INCORPORATES: ENTERED-BYT:
ORIGINATING..NZQUIRMUT: B-2-1-1 "Natru'.
ORIGINATING..REQUIRENT: B-2-1-3 TRACES TO:
ORIGIUATINO..REQUIEMIT: B-2-1-5. DATA: DISPLAYBEADOUT

TRACES TO: MESSAGE: DrsPLAY.JIESSAGE..OUT
INPUT-INTERFACE: FRON..TEMP DATA: DISPLAY..TAIL..OUT
INKYT: TEMP-NET DATA: DISPLAY..TEMP.OJT
MESSAGE: TUIP-.REPORT-11I OUTPUT-.INTERFACE: TO-DOISPLAY.
ALPUA: VALIDATE..TENP..NSG. DOCwUtuE BY:

DOCUMNTED BY: SORCE: 388.001.
SOURCE: 588.001. INCORPOATE IN:

ORIGINATINS..REQUIRUENT: B-.2-.1-1. noIINATING..REQUIEMENT: B-.2-2.
DESCRIPTION: ORIIATING_.RQUIRKET: 8_.2-3.

"Provide temperature request.". DESCRIPTION:
SIENTRKD..Y: "Provide fas control.".

"Nartin".ENTERDBY:
TRACES TO: ..Rrtrin.

ALPIA: SSUD.TUIP.RSQ INC~ORPORATES:
M13SAGE: TUMP.RQEST..UT ORIGIUATIUG..REQUIREET: B-2-3-2.
OUTPUTINTEUACE: TO-.TEMP. TRACES TO:

DOCUMENTED BY: OUTPUIT-.IUTEUFACE: TO-FAN.
SOURCE: 38-.001. DOCUMNETD BY:

INCORPORATED IN: SOURCE: 588..00i.
02101NATING-UIQUIREMENT: B-2-. ORIGINATING-.REQUIREENT: B-2-3-2.

ORIGINATIUSJZSQUIREMEUT: B-2-.1-3. DESCRPTION:
DESCRIPTION: "a output format.".

"Temperature request format."'. EUTEaND-BY:
ENTIREDST: .atM

"Naz1tr". TRACES TO:
TRACES TO: DATA: FANDATA..OUT

DATA: REZUUST..SEQUNCILOUT MESSAGE: FANESSAGE..OUT
OUTPUT..INTIRFACE: TO.TfIP. ALPIA: SET-JAN.OFV

DOCUNEUTE NT: ALPNA: SET-.FAN-01O
SOURCE: 586.001. OUTPUT-.INTERFACE: TO-FAN.

INDORPORATED IN: DOCUMENTED BY:
ORIGINATING..REQUIREMENT: B-.2-1. SOURCE: 588..001.

ORIGINATINS...NQUIRUUNT: 9-2-1-6. INCORPORATED IN:

C-17

ORIGIVTIUB.JIQURMUT: B-2-3. DOCUNK3TID BY:
ORGIATIUSJREQOUIEUET: B-2_4. SOURCE: S88-001.

DESCRIPTION: INCORPORATED IN:

"Provide graphics display.". ORIGINTINGREQUIREUT: B-.3-1.
UIIRBD.JY: ORIGIUATIUG..RWJTUIEUT: B3-1-2.

."Rartrum". DESCRIPTION:
IUCORPflRATES: "Store maximum data.".

O3IGINATING.REUI3. ST : B-.2-.4-2. ENTERED-.BY:
TRACES TO: "ate"

MESSAGE: TUP.PLOTOUT. TRACES TO:
DOCU11E3TED BY: ALPHA: STORK..TENP

SOURCE: SM..O0i. DATA: TP-C
ORIGIUATING.REQUIRUUET: B-.2-.4-2. KITITY..a.ASS: TMP..PDINT

DESCRIPTION: DATA: T..TENP..C
"Graphics cosmand format .". DATA: T..TINE.

EUTERED..BY: DOCUMENTED BY:

"Nartru.
SWOURCE: S880.O1.

TRACES TO: IcPORATED IN:
ALPRA: C&L(CJLATE..GRAPHICS..COORDS ORITIEATINO-REQUIRIPIEZT: B-3-1.
AEPEA: CREATEGIAPSICS.COHEAND ORLIGINATIUGNZQUIIUMENT: B_3-.2.

DATA: GRAPUICS..TAIL.OUT. DESCRIPTION:
DOCUNTED BY: "Display Temperature..

SOURCE: 588..OO1. ENTERED..DT:
INCORPORATED IN:- 4Eartrem".

ORIGZNATING.REQUIRUUET: B-.2_4. INCORPORATES:
ORXINTINs..REQUIEMENT: B-.2-5-1. ORIOINATING..REQUIR.EMET: B-3_2_1

DESCRIPTION: ORIGINATINO.JEQUUREN T:B_22

"Respond to clock interrupt.". ORIOINATIRG-JEQtJIREMENT: B_.3_.2_3.
ENTURED-BY: TRACES 10:

1.Nartru".. OUTPIJT...ITS FACE: TO-GRAPHICS-DISPLAY.
TRACES TO: DOCTNETED BY:

INPUT-INUTUFACE: FROM-TIME SOURCE: S88001,
DATA: 1O'd-TIPM ORIGINATING-REQUIREMENT: B-3-2_1.

ALPIA: SET..NOILTXRE DESCRIPTION:
MESSAGE: TIME.NKSSAGE..IU "Provide temperature display format.".
liNT : T IUErE. ENTS RED..-BY:

DOCUMENTED BY: 9Eartr.$
SOURCE: S88..OO1. TRACES TO:

ORIGIuATING-REqUIRMIENT: B_2_6_.3. ALPHA: COIYERT-TO..F
DESCRIPTION: DATA: GRAPEICS.COMMAND..OUT

"Clock format.". DATA: GRAPUICS-NEAD.OF
mnTKRD..Y: ALPHA: NAK-DISPL..NESSAGE

"Uartruf". OUTPUT..INTZRFACE: TO-GRAPHICS-.DISPLAY.
TRACES TO: DOCUMENTED BY:

DATA: STS-TXNE..IN. SOURCE: 588..0O1.
DOCUMENTED BY: INCORPORATED IN:

SOURCE: S88-..O1. ORIGINATING-REqUIREMENT : B_3_2.
ORIGINATINS..REQUIRUNENT : B-3-1. ORIGINATING..REQUREmIENT : 8_3-2_2.

DESCRIPTION: DESCRIPTION:

"Monitor temperature.". "Display temperature frequency.".
ESTE RED.-BY: ENTERED-.BY:

*l1artrwa"l. "Eartr".

INCORPORATES: TRACKS TO:
ORIGINATINS..REQUIRUMENT : B-.3-1-1 PERFORKINCE..REQtIRERIT:
ORIGITINS..REQUIRUUET: B-.3-.1-2. TEMPDISPI.AY.FREQUUNCY.

DOCUMENTED BY: DOCUMENTED BY:
SOURCE: SO8..001. SOURCE: 588..O0t.

ORIaINATINI..REqUIREuET: B-.3-1-1. INCORPORATED IN:
DESCRIPTION: ORIGINATING-REQUIREMENT: B-3-2.

"Monitor temperature frequency.". DRIGINATINO.JEQUIRE EN T: B_3-.2-3.
XTENRED -BY: DESCRIPTION:

1Nartru". "Display temperature rsponse time."'.
TRACES TO: ENTKNED..BY:

Psar1oRRAC.IEQUIRUENT: "Nartr.
TIP..NNITORJTrMVAL. TRACKS TO:

C-18

PflFmEANcEREQUIUUEHT: OflIGIVATING-3EQIIUENT: B-3-3.
TIP.DISP.AY..UUPOUBL-TIN. O3IGIUATIUG..EQIJIIUT: B33.

DOC~UENTED BY: DESCRIPTION:
SCUM : 588.001. "Allow setpoint cheapg.".

INORPORATED 33: ENTUID. I:
OIGINATIUG.UQUIEHT: B-.3-2. 1-Ratru.

O3IGIUATIM-REM&EUIUT: B3-3. TRACES TO:
DECIPTION: DATA: CKT..SThING..OUT

"Control fan". ALPHA: D9TUMKINEISGTYPL
UNTRUEDBT: ISPUT-.IUtUFACH: FUN..TERIUL

*tRartru"-. ALPHA: SIND..SETPOINT-ACK
INCORPORATES: DATA: SETPOINT

ORIGINATING-.REQUIUUUT: B-.3-3-1 DATA: SETPOIXT..ACK
O3XOZNATIUG..mzQUflEKEST- 33-2 DECISION:* SETPOIFT.COMMND
DIINATING.IEQUIWIUT: B_3_.3_3 MESSAGE: SETPOIST..CMADD11

GIGINATING..EqUIE EST: B-.3-.3-4 DATA: SKPOIUT..VALUEIS
OUXGIATIN-REQUIREMENT: B-.3-3-5. ALPHA: STOBSETPOIIT

TRACES TO: MESSAGE: TUNKINAL..CBTJIESSAGEOUT
SUDEE: CONTUOL. FAN A-NET: THIULNET
ALPHA: FORILFAN.USG. OUTPUT..INTERFACE: TO-TEIIAL.

DOCUMENTED BT: DOCUMENTED BY:
SOIUC: 588..O0l. SOURCE: Sag..0i1.

OIIGIUATIU..REQUtnEMENT: B-.3-3-1. INCORPORATED IN:
DESCRIPTION: OUZGINATIN-REQIIEMENT: B-3-3.

"Control fan frequency". ORIGINATING..REQUIRERENT: B-3-4.
ENTERED-BY: DESCRIPTION:

--Hart,=m". "Display temperature setpoint.1.
TRACES TO: ENTEUZD..BT:

PERFORNAUCI..REQUIREMENT: "Hartrua".
FANCONTRDL..FEwUECT. INCORPORATES:

DOCUMENTED BY: ORIGINATING-REQUIREMENT: B-3-4-1

SOURCE: S88.o-0i. OUIGINATING..REQUIREUENT:B_42
INCORPORATED IS; ORIGINATING-REQUIB.EMENT: B-3-.4-3

ORIGrNATING..REQUIN.DIENT: B-3-3. ODXGINATI3G-REQUIREUENT: B-.3-.4-4.
ORIOINATING-NEQUIREUEUF: B_.3_.3_2. TRACES TO:

DESCRIPTION: ALPHA: CONVRT-TO-FTEKP
"Control fan response tine.". ALPHA: FORM-PLOT..NESSAGE

ENTERED..BT: FILE: PLOT..DATA-OUT
"NaRtr=m". DATA: T..TENP_..P

TRACES TO: DOCUMENTED BY:
PD.FORKANCERQUIEIUT: SOURCE: SOS-.01i.

FAN .CDNTUL..RESPOSSE..TIME. ORIOINATING-,REQUIREMEUT: 8-3-4-1.
DOCUNENTED BY: DESCRIPTION:

SOURCE: S880.01. "Process keyboard coand.".
INCORPORATED I1: ENTERED..UT:

OIGINATING.REQUI.NT: B-3-3. "Natru".
ORIGINATING-..EqUTH0IUNT: B-.3-3-3. TRACES TO:

DESCRIPTION: DATA: CRT..STRING..OUT
"Compare temp to Ctpoit.. ALPHA: DETERMIXIE.NSG-TPE

BITS RED -BY: INPUT..INTERFACE: FRONJTERMINAL
*HRartrm".. DATA: PLOT

TRACES TO: DECISION: PLOT-CONRKAD
DATA: SETPINT.YALKJE. MESSAGE: PLOT-.CONMAND-11N

DOCUMNED BY: DATA: START-NOUJR-11
SOURCE: 588.001. DATA: STA1TRIN-If

INCORPORATED IN: DATA: STOP-BOUR-1IE
O3IGINATING-REQUIREMEBT : 9-3-3. DATA: STOP-MN3.IN

01161UATIN-MMRMM.UIT: U.-3-3-4. DATA: TEMP..STAT-INf
DESCRIPTION: DATA: T P..STOP-IN

"Default *etpoit.. MESSAGE: TENNINAL..CRT-IESSAGE-OUT
KNYR2ZD..UT: R..NKT: TERN11

"Nartrin".OUTPUT-.IWTRACE: TO..TERNIIAL.
DOCUMENTED BY: DOCUMENTED BY:

SOURCE: M-8001. SOURCE: S88.-001.
INCORPORATED IN: INCORPORATED IS:

C-19

ORIGINATING. REQUIREtET: .3.4. to allow outputing %he current temperature.".
ORIGINATINS.REqUIRUKNT : B.3-.2. ENTS10LBY:

DESCRIPTION: "Earru".
"Vertical resolution.". CONNECTS TO:

ERTSRKD_BY: SUBSYSTEM: TEMP.DISPLAY.
"Eatrn". PASSES:

TRACS TO: MESSAGE: DISPLAY.MESSAOGE.OUT.
ALIA: DETUIZINIoSCALJ.FACTOR DOCWUTED BY:
ALPeA: UPDATZ_TENP..UEGE SOURCE: $88.001.
DATA: YCOOSD.0UT. REFIRRED BY:

DOCUTD BY: INKT: TOiP..UET.
SOURCE: Se8e001. TRACED F3OM:

INORPOAUTED IN: ORIGIZATING JEQUIREMENT: B.2.2
O1IGINATIN.IREQUIRU1ENT: -.3.4. OIGIRATIN.JU QUIRSENT: B.2.22.

ORIGINATING.REQWIRENNT: B-3-4-3. OUTPUTETERFACE: TO.FAN.
DESCRIPTION: DESCRIPTION:

"NorIsoutal resolution.". "Connects DIPS to fan to allow ON/OFF
ENTERKDJT: signa output.".

"Iartr ". ENTKREDBY:
TRACES TO: "Ertr"m.

°

ALPnI: DETUNINK.SCALEFACTO CONNIECTS TO:

DATA: ICOORD.OUT. SUBSYSTEN: FAN.
DOCOMENTID BY: PASSES:

SOURCE: S88.001. MESSAGE: FAI.MESSAGE.OUT.
INCORPORATED IN: DOCUMENTED BY:

ORIGINATIlG.REQU]UEMEIT: B-.34. SOURCE: S88_001.
ORIGINATING.REQUIREMNT: B-.3-.4. REFERRED BY:

DESCRIPTION: IVET: TEMP-lET.
"Display temperature plot response tine.". TRACED FROM:

ENTEIUDBY: ORIGINATING.iREQUIREIUT: B-2-3
"Nartr'm". OZRIGINATING.-REQUIt.EMENT: B-2-3-2.

TRACES TO: OUTPUT.INTEFACE: TO.GRIPICSDISPLAY.
PERFORMANCE.. REQUIREIlEY: DESCRIPTION:

TEMP.PLOT.I-ESPONSE.TIME. "Allows graphics comands to be sent to
DOCUMENTED BY: the graphics display in order to dra

SOURCE: S88_001. temperature plot.".
INCORPORATED IS: ENTERED.BY:

0O01NATING-REQUIR EN T: B-.34. "Bartrm".
ORIGINATING.REQUIRUIENT: B-3_5. CONNECTS TO:

DESCRIPTION: SUBSYSTEM: GRAPEICSDISPLAY.

"Ignore erroneous keyboard commands.". PASSES:
ENTZZD.BY: MESSAGE: TEMP.PLOTOUT.

"Nartrum". DOCUNENTED BY:
TRACES TO: SOURCE: 388_001.

MESSAGE: BAD.COANID..I3 RIRED BY:
DATA: BADDATA.IN I-ET: TERIM-ET.
ALPIA: DETIMIN..SO.TTPE TRACED FROM:
INPUTINTUZFACE: FROTERMINAL ORIGINATIIG.REQU1REMENT: B-3-2
MESSAGI: TEINAL.CRTMESSAGEOUT ORIGINATIVG.iEQUIREUUT: B.3-2-1.
RUNIT: TERLIET. OUTPUTINTSIFACE: TO.TEP.

DOCUIN BY: DESCRIPTION:
SOURCE: 388.001. "Connects DPS to the temperature sensor.

ORIGINATING...REQUIREENT: S2.1. Allows temperature requests to be sent to the
DESCRIPTION: temperature semsor.".

"The system shall periodically read and EITERED.BY:
record internally the time and temperature.". "Natru".

DOCUN10TD BY: CONNECTS TO:

SOURCE: S88.001. SUBSYSTEM: TEMP.SENSOR.
PASSES:

MSSAGE: TUIP.UQUKSTOUT.
DOCOM BY:

SOURCE: S88_001.
OUTPUTJNTTIACE: TO-DISPLAY. &CFE= BY:

DK CIPTION: 1..NT: TIME.I5ET.
"Comects DPS to the temperature display TRACED FROM:

C-20

o3IIIATus.Dzq~muT 3.2....1"Temperature will be recorded at 10 second
OA3IIINATIG-1 M EN ST B-.2-1-3. intervals.".

OUTlPUT-jrlUVACS: TO..TEMBIAL. ENUTI -BD.D:
DUSC3ZFFIODF: Ntr.

"Allows tort to be sent to the user DOUMET! BY:
teramal's CRT.". SOURCE: S88-001.

ITDIDBT: TRAE 1303:
"Iarru".O3XGINATIG-REQUIXUKINT: B-3-1_1.

f.ONNUOTS TO: PU103RMK-EQUIRIUB3T: TEHPPLOT..RESPONSE-TIKE.
UtSYSI: TEINAL. DESCRIPTION:

PASSIM: "The eatire display will be completed
MESAGE: TUNINAk-CILT.ISSAOE-OUT. within five seeos&s of the keyboard RETURN

DOUSITD BY; terminatiag the keyboard command.".
SOURCE: SM8.001. KUITZILED..?:

3U133D BY:"Ntr.
LI117: TZRX-?. DCUTD DY:

TRACED 1303: SIIEZS: 388-001.
0DX8!3AT130..DQUflUHT: D.-3_.3_5 TRACED FR03:
OIIGIETIUS.JZQ&UIDT B-3_4-1. B-GUTIOIUIUr 3-.4-4.

PUPODAUM-..4UIUW: rAE..COSTR0L-FREQUENCY. 1_11?: TUXP..ET.
DNSC11 PTION: DESCRIPTION:

"The fsa condition output will be updated "Processes temperature reports from temp
every 10 sacs.". sensor. ".

UITILED-Y: UNTERZD.Y:

DOCUITED BY: REFERS TO:

SOURCE: See..0t. SUBMIT: CONTROL-.FIN
TRACED FILCH: ALPEA: CONVEXT.TO-F

OJUIATIIMUI.3QUID.T: B-.3_3-1. IUPUT..INTE3FACE: FRON-TEMP
PEIORAICl.3EQUUUUT: LUNA: HiAKLDISPL-..ESSAGE
FAII-COSTROL..3SPONEK.TrIE. ALPIA: STORE-TRW

DESCRIPTION: OUTPU3T-INTERFACE: TO-.DISPLAY
"The fean control output update will occur OUTPUT-INTERFACE: TO-F&

within one, second from the latest temperature DATA: VALID
samle.... ALPSA: VALIDATE..TEP-ISO.

SUTK3ED-BTD: ENABLED BY:

*'Uartru".INPUT..IITUF ACE: FRO1LTEMP.
DOCUED BY: TRACED F13:

SONUCE: S88..0O1. 031011AT136..3EQUIIDIUNT: B-.2-1.
TRACED MRC: STRUJCTIU:

0OIIGINATflG.IIQUIRflUT: 33-2. IBM-T.NTU3ACE F103.TEII
PEUFORANCl.REQUIRMENT: TW..DISPLAYJREQUEICY. ALpIA vALZD&TzTKUPsaS

DESCIPTION: IF
"Mhe tomerturv display will be updated (VALID

every 20 seconds.'. DO
KUTUD..DY: ALPIA COVURT.TO-F

"Uartrom". ALPRA IAIE.DISPL.JMSS GE
DO0MITDI DY: OUTPUT-INTK1FACE TO..DISPLAY

SOURDCE: 388-001. AD
TRACED 1303: ALPIA STO3E..TEP

0U613AT136...3EIIUIU: D.-3_.2-2. TERKINATR
PUFroUAmK.ZqUTEIUT: AND
TMIP.DISPLAYJZSPOEBLU. SIDE!? COITIOL..FAN

DESCRIPTION: OUflPUT_.IITEIJACE TO-FAN

"The temperature display will be updated MI
within 2 secoads after the latest temperature 01111113
sample has been read". TURNINATI

K1?333D..DT: END
4"Uartzu" MI.

DOCUI D DY: 1.11?: TZlLE!?.
SOURCE: 2118-001. DESCRIPTI:

TRACED I30: "This r..net processes all massages from
O3IGINATN-JEQUIIUUT: D.-3-.2-3. the uer console.".

P91TD311Cl..3UI3U111T: TZW.MXTOI..IETVAL. ZNTUZD..DT:
DUCPIIZl: "at"

C-21

UMZfER TD: TRACED FROM:
SUMIT: CIEATLPLOT-XLE 0RXG!NTIU..DEQUIIUENM-: B-.2-6-1.

ALPIA: 0DTDEIEEh.TYPE STRUCTURE:

ALPSd: DIULSSCALK-JACTOR IIP -TL.IIFlACE PIOLTINE
ALPIA: IOUkLPLO1JMSAGE DO
!3PU-j3TUFlU: 73MTSXEIAL LiFid SIT..IOLTUE
DATA: PLOT TONIATE
ALPRA: UZED.SEIINTACE AND
DATA: SEIPOMN &Lpi sm-m.T.r-in
ALPRd: STORK-SETPOINT OUTPUT..IUTERPACE TO..TUI
MUM-CUa.SS: TSNP-POIIT END
DATA: TMIP..STAAT..II END.
OUTPUT..IU!ERFACE: TO..6IAPI~CS.DISPLAY
0UTPU-INTE3ACE: TO..TMIIL
DATA: TTN
ALPIA: UPDATLTEMP. RANGE.

DOUNTID DY: SOURE: E..4506-.CLOKE SEME.
SOURCE: 388..001. DISCUPTXON:

SNARLED DY: 'This; is the specificat ion shoot for the

IIPUTTIJACE: fliU..TERNIIIL. CE-4506 clock/calender chip set, and contains
TRACED PFROS: the clock data formats."*.

ORZGINATINS..REQUIRENT: B33-6 MITERED-BY:
OIX1AT!36REQUIRKT: 2-3-.4-1Ratt
O3IGINATIUG-AEQURUIENT: 9-3-5. DOCNS:S

STRUCTURE: SUSYSTEM: SYSTER-.CLOCE.
INPUT..INTUFACE FROE.TERMIAL SOURE: GXLAPICS..DISPLAY-NODEL-.123.RAUUAL.
ALP&A DsIEUIIIEJG.TPs DESRXPTIOU:
IF "This is the user anual for the graphics

(SEYPOIN display to be used, and contains the graphics

AURIA STORR..SETPOIUT control sequences.".
AUPRA SEND..SEPINT..ACE ITERED-BY;
OUrPUTJUNTIFACE TO..TERNINAL

OR DOCUNTS:
(PLOT) AUREA: CILEATEGAPICSCMAND
8D.BT ENTITY A 3LS TE11POUIT DATA: GRAPIUCS.CO1NIIAD.OUT

SumZ TEAT DATA: GRAPRICIcS.EEDOUT

(T..TKfhTM1PTAT.1I DATA: GRAPNICS..TAIL..OUT.
FOR SACS 917TTTCLASS TURP.POINT SOURCE: GRAPNICS..DISPLAY..SYSTER-IAVULL.

DO DOCUNTS:
ALPIA UPDATE..TERP-.3ANGE SUBSYSTEM: GEAPHICS.DrSPLAY.

END SOURCE: 588.001.
ALPIA DE!EIIUL9SCALE. FACTOR DESCRIPTION:
FOR EACE ENTITT..CLASS TRNP-POIET "This in the overall source requirement

DO document for the temperature controller

BMWIE CIEATEJPLOT.FlILE softwae.".
ED MITERED..DY:

ALM PORNLPLOT.MESSAGE "Ertrow..

OUTPUTJNTE1FACE TO. ARAPNICS-DISPLAT DOCUETS :
OTIEREISE MESSAGE: BAD..CDNHAID..IN

DATA: BAD-.DATA-11

EN. ORGIATIG-RWURENT: B-2-1

&-SIET: TZILEI. O3X6ZNATI36..3EQUIRENT: B-2-1

DESCRIPTION: ORIGIATIUO..OEQUIRSUENT: ---
"Responds to reel-time clock interrupts.". B-GNT3S.EU3.I 2-.1-S

ENTERED..DT: DRIGINATINS..REQUhIRENT: .-2-.2
."Rat,11W" ORISIZATING.QUIRENT: B-2-2-2

WMEBB TO: DRI6INATING-12MqIREET: B-2-3

ISMPUT..ZNTAOE: Rn..TfiRh ORIGINATINS.REWURUENT: -32

ALME: SUD..TUPMM 02101NATINGUQU EN: -4

ALPRA: SET..NOV..TINZ ORIGIEATING..REQUIREENT: B-2-.4-2

OOUT...XUTISACK: TO-TEP. DNIGINATING-1.9MURUHIT: B-.2-5-1

DoITwUD IT: OIGIEATTIG..RqUIRMIEN: U..2-5-3
SOURC: W86001. ORIIIEATXDGSRUREU!RT: 3-.1

IhAIE By: ORIGINATINS..REQUUIENT: 9-.3-..1
INPUTINIr ACE: FIM..TINK. ORZGINATING.JEQURSNEIT: B3-.1-.2

C-22

OUXIUTT~j~IinT:3-3-2 DATA: START-HfX-131
ORIGIRATIUL3KEUUZINUT: 3-.2-1I DATA: STOPJOIU

ORSZATUS.UWXT:3-.3-.2-2 DATA: STOPMIII
ORIGZBATT=-..3UquRuinT: 3-.2-3 ALM: STORSZTPOX1T
ORISZATISEWUINIT: 3-.3-3 hALFA: ST031..TU
OIOUNATI-UISMUZT: 533-.1 SMSTUIU: SYTTLCLOCK
OUZGZUMATTU-g~l30=n: 3-.3-.3-2 DATA: STS-TIM-15
ORIGINATXII.3u131: 83-.3-3 DATA:- TIMP.C
ORIZIATXN-U33qVET: 3-3-3- 4 SQMSTT: TRW-.DISPLAY
ORIOZATUSJKWXIINT: 3-3-3-6 PRI1UMNAU-jZQUIEUET:
OUIIAT!IS..EQU!UUMT: 3-.3-4 TJI-PLAT3RUU91CY
ORIGIRATING-RuQUIZhINIT: 3-3-4-1 PEURBUAM-19MRSNMU:
ORIGIATISRQIUTUIT: B3-34-2 TIMP-DSPLAT..RSPOSTINE
0UXG1ATZUS..3QURET: 3-3-.4-3 PRIFlRMIE-1..UIUSHET:
OSGNATZ-UqIMMET: 3-.4-4 TRP-MOTOITIVAL
ORXSXATXU..DMIZUTAT: 3-6.. 111046: TIPLOTOUT
ALPIA: CALCJLAT-G3*PUICU.CODDS PIU1OhlASNZQUIflUUNT:
3tUST: COSTROL.3A1 TRIP.PLOTJIESPOSITINI
ALM: CONIUT.TO..P MIUAGI: IUP.WORT.I
ALPIA: C3VE3TTD..?.TM 353*8: TP.ABQOUZTOUT
SOVIET: CIZATILPOT.PIL SUBSYSTM: T1NPSIUSOA
DATA: CRT.STIUGOUT DATA: TUP-.STAIT-11
ALMI: ORTUUNINIJSGTTPI DATA: T W -JTUP..I
ALPKA: DUURUSCAIZ..FACTO& SUBSYST: TEMNEAL
DATA: DISPLA AA-OUT]MESSAGE: TRAMI1AL-CT.KSSAG3..OUT

MSAGE: DISPUY..NZSSGLOUVT IJINT: TIULNI
DATA: DISPLAT..TAU...WT MESSAGE: T!IJSSAGE..If
DATA: DISPLAT.T W -OUT I..UE: TINZUNI
SUSSTIN: FAN OUTPfl.IUTEl1ACl: TO-.DISPLAY
PUPrORMA3CE-I3QUI3UUIT: OUTPUTINTSIACS: TO-FAN

FAN-.23T51..FqUENCY OUTPUUTZ1flCl: TO-GORAPICS-DISPLAY
PIUFUUSANCE..EQUIIUIUST: OUT PUT INTFlACE: TO-.TEMP

FAN-CONTRm...13P0355..TI OUTPUTTFACl: TO..TE1111EAL
DATA: FAALDATAO17! DATA: TTZWC

NEAGI: FAN..USAGI..WT DATA: T..TZXP.F
ALMRA: FO3M3AJ DATA: T..TINK
ALPRA: POVULPLOT-MISSAGE ALPIA: YUPDATI..TENP.RANGE
I3PUT..IUTERFAC: F1Z..TM DATA: VALID
IUPUT..IUTFACE: FROK.TEMIAI ALPIA: VALIDATL-TEVPG
IUPUT.INTERFACS: FI..-TIM DATA: ICODOUT
DATA: GRAPESICO-aAD.OUT DATA: VCOOUDAIIT.
SUMSISTM: GIAPEICS..DISPLAY SOURCE: ITL-CUIPVTER-STUTUJAUAL.
ALPIA: NAIDSPLNNSSAGE DESCRIPTION:
DATA: NO0LTIK "This is the system mural for the
DATA: PLOT com".ter to rum the temperature controller
DUMCI SION: PLDT..COKEAND software. It defines the CRT control modes.".
]SAGE: PLOT-.COMIAD15 UfTERED..1:

FILE: PLOT..DATA..OUT "Rrt,"..
DATA: REPOT-IM-11.I DOUETS:
DATA: 350R1..TAIL..I1 SUSST: TK3NINAL.
DATA: RPOTTP..IN SlimiEr: COUTROL..FAN.
DATA: R840131j39UECZ-OUT DISCRIPTXON:
ORXZ4NATI-UIRRuT: 32-1i "This subset provides fan control.".
ALMI: SUD..SE1POINT.ACK RDTRMD..T:
ALPRA: SUD..TIMPJ- "Rlmtlwl.
DATA: SITPOINT MINE5 TO:
DATA: SalOIIT..ACI ALMU: FORR..FAN.RSG

UMCI SION: SEIYPOIIT-OIEAND DATA: SXTPOZNT
5SA63: SEIPOIIT-CMIUD.IU ALMI: SIT-JAXOFF

DATA: SIPOINT.WALUX ALFRA: SET-FPAR-01
DATA: SCMPIST-.VALUR-11 DATA: TUPJ.
ALPIA: SET-JAMOFF OCUENTED IT:
ALMAU: SRfTJFAI.O1 SOURCE: 586.001.
ALPIA: SRTJO09-TM 331335 BT:
DATA: START..3MLXI 11 TSP..UIT.

C-23

TRACE FROM: SOURC: 588.001.
OUIGINATIlE..UQUI3UDT: B-3-.3. SUBSYST: TZ1PDSPLAY.

STRUCTURE: DESCRIPTION:
17 "This is a digital display to display the

C TXW.V>S1TPOI3T)Current
hlPI& 53T..FALON temerture in degrees F.".

1L1"A 55!JIU..OFF Rhrtrwe.

END CONNECTED TO:
ALMI FOIUJAi.N56 OUTPTJIflEFACE: TO-DISPUAT.

RETURN DOETD BY:

MID. SOURCE: 388-001.
5UBMIT: C3EATE..PLOTJIL. SUBSYSTUR: TRW-SENOR.

DICRUPION: DISCIPTIOR:

"This subset generates records in the plot "This tmperature seamer provides

-file.". tmperature readings in

ENTERED. B: respeass to request message.".
"Bartram". UNTIUEDJY:

REER TO: "Rartrum".
ALPIA: CSLCUTE-GRPICSCO1DS CONNUCT TO:
iLPUA: O3UITERTO..F..TEP ImpuT..IETUhACS: FROILTEUP
ALMI: CREATI-A1APSICS.COURID. OUTPUT..INTERFACE: TO-.TEMP.

DOCUMNTED BY: DOCIZNKUTED 31:

SOURCE: 588.001. Soua: 588.001.

151335S 31: SUSYSTEM: TERMINAL.

1.13?: TUILUIET. DESCUPTION:

STRUCTURE: "This is the us~er terminal used for user

ALPIA CoNNtTU.F 1/0.,,.
ALPIA CALCULAT-GRAPRICS-COOIDS EUTED..Y:

ALPiA CUaT1..GanpoicsCNAFD -- artru'.

DITURN CONNECTD TO:
END. 11 PUT- INT ELFACK: FION-TERMINAL

SUBSYSTEM: PAN. OlflPUT..IITERFACE: TO-TEREIIAL.

DESCRIPTION: DOCUNEUTED BY:

"This is a fan to cool the room on SOURCE: 588.001

command.". SOUCE: XYZ..CONPIJTE1.SYSTER-MANUA'L.

KNTERDD..D:
'NVartum.

COBNCTD TO:

OUTPUT-INTERFACE: TO-.FAN.
DOCUNTED BY:

SOUCE: $88..001.
SUBSYSTEM: G*UPUICS. DISPLAY.

DENCUPTION:
"This Is a artu graphics terminal to

display a plot of
temerature vs. tim, upon command.--.

."atru"..

CONNECED TO:
OUTPTflJUTRFACE: TO-.GUAPRICS.DISPLAY.

DOCUETED BY:
SOURCE: G1*PI~CSDISPLAY..SYSTE.KIUAL
SOURCE: 86-001.

SUBS5STEM: STSTRCLO(Z.
DESCRIPTION:

"Thin is a system clock that interrupts
the softeare

ad cam be read by the software.".

CONNBCT TO:
IUPUT.INTUACU: rRQRTIg.

DOOUNI BT:

C-24

C.3? DCDS Graphic R-Nets and Subnets

The R-Nets and Subnets for the Temperature Controller are provided in th e

following figures.

.EMP

TEMP
MSG

(VALID) OTmERW

TO TEMP NTRO
F FAN

MAKE
DOtsLFA

PA

Figure 0.1. R..net diagram for TEMP-.NET

C-25

FiueF2ARbe iga frCNRLA

OTEMP-F ETPONC-26H

WUE-NET

TIME

NOW TEMP
TWE E

TEMP

Figure C.3. R..net diagram for TIME-.NET

C-27

IRM-.NET

MSG

(8ETPM (PLOT) OTHER"I

I ~TEMP POINT
SETPO INT

SE i NoTEMPYPOINT
SETPO#.ET

ACK

FACTOR

TEMPYPOINT

CREAT
PLOT
FCE

PLOT
MESSAGE

DISPLAY

Figure C.4. R..net diagram for TERM-.NET

0-28

PLOT

TO
F

GRAPHICS
COORDS

GRAPHCS
COMMAND

Figure C.5. Subnet diagram for CREATEYPLOTYFILE

C-29

Vita

Captain Patrick Denis Barnes was born April 16, 1955, in St. Helens Oregon.

He graduated from St. Helens Sr. High School in 1973 and enlisted in the United

States Air Force in 1974. He served three years as an aircraft maintenance specialist

before cross-training into the computer programming specialty in 1977. Serving as

a computer programmer for the Directorate of Logistics, Air Force Data Systems

Design Center, and then as NCOIC of Software Support for the Intelligence Data

Handling System Branch of the Armed Forces Air Intelligence Design Center, he

received both the Air Force Commendation Medal and the Joint Services Commen-

dation Medal.

In 1981 Captain (then Staff Sergeant) Barnes received an Associate in Applied

Science in Data Processing from the Community College of the Air Force and was

selected to complete his undergraduate studies through the Airmen Education and

Commissioning Program. He graduated with "most high honors" from Oregon State

University in 1984 with a B.S. in Computer Science and attended Officer Training

at Lackland AFB Texas that same year. He received both the Air Force Achieve-

ment Medal and Air Force Commendation Medal while serving as Communications

and Simulation Software Programmer/Analyst for the PAVE PAWS System Pro-

gramming Agency, 7th Missile Warning Squadron, from July 1984 through April

1987.

Upon completion of his current graduate studies at the Air Force Institute of

Technology, Captain Barnes will assume new responsibilities as an instructor for the

Department of Computer Science, Naval Post Graduate School, Monterey, California.

Permanent address: 32525 Highland Rd
Deer Island, Oregon 97054

VITA-1

Bibliography

1. Abbott, R. J. "Program Design by Informal English Descriptions," Commu-
nications of the A CM, 26, 11: 882-894 (November 1983).

2. Air Force Wright Aeronautical Laboratories. APEX Users' Guide. AFWAL,
Wright-Patterson AFB, CO., 1987.

3. Alabiso, Bruno. "Transformation of Data Flow Analysis Models to Object-
Oriented Design," OOPSLA '88 Conference Proceedings, ACM SIGPLAN No-
tices, 23, 12: 335-353 (September 1988).

4. Alford, Mack. "SREM at the Age of Eight; the Distributed Computing Design
System," IEEE Computer, 18, 4: 36-46 (April 1985).

5. Andriole, Stephen J. and others. Storyboarding for C2 Systems Design: A
Combat Support System Case Study. Unpublished paper, George Mason Uni-
versity & International Information Systems, Inc. 802 Woodward Road, Mar-
shall, VA 22115, undated.

6. Balzer, R. and others. "Software Technology in the 1990s: A New Paradigm,"
IEEE Computer, 16, 11: 39-45 (November 1983).

7. Bohm, C. and Jocopini, G. "Flow Diagrams, Turing Machines, and Languages
with only Two Formal Rules," Communications of the ACAM, 9, 5: 336-371

(May 1966).

8. Booch, Grady. Software Components with Ada. Menlo Park: The Ben-
jamin/Cummings Publishing Company, Inc., 1987.

9. - - -----. Software Engineering with Ada(Second Edition). Menlo Park: The
Benjamin/Cummings Publishing Company, Inc., 1986.

10. Bralick, William A. Jr. An Examination of the Theoretical Foundations of
the Object-Oriented Paradigm. MS Thesis, AFIT/GCS/MA/88M-01, School of
Engineering, Air Force Institute of Technology (AU), Wright Patterson AFB
OH, March 1988.

11. Buhr, R. J. A. System Design with Ada. Englewood Cliffs: Prentice-Hall Inc.,
1984.

12. Byrne, William E. and others. Structured Hierarchical Ada Representation Us-
ing Pictographs (SHARP) Definition, Application, and Automation. Technical
Report Prepared For Electronic Systems Command, Deputy for Development
Plans, Hanscom AFB, Massachusetts. Cambridge: Arthur D. Little, Inc. Pro-
gram Systems Management Co., September 1986.

13. Cox, B. Object-Oriented Programming: An Evolutionary Approach. Reading:
Addison-Wesley, 1986.

BIB-1

14. Crawford, Bard S. and Jazwinski, Andrew H. "The AdaGRAPHTM Tool for
Enhanced Ada Productivity," IEEE Transactions on Software Engineering,
SE-12, 5: 664-670 (May 1986).

15. Demarco, Tom. Structured Analysis and System Specification. Englewood
Cliffs: Prentice-Hall Inc., 1978.

16. Diedrech, Jim and Milton, Jack. "An Object-Oriented Design System Shell,"
OOPSLA '87 Conference Proceedings, ACM SIGPLAN Notices, 22, 12: 61-67
(December 1987).

17. Digitalk Inc. Smalltalk/V Tutorial and Programming Handbook. Los Angeles:
Digitalk Inc., 1986.

18. Department of Defense. Requirements for the Programming Environment for
the Common High Order Language (STONEMAN). Washington: Government
Printing Office, 1980.

19. EVB Software Engineering,Inc. An Object Oriented Design Handbook for Ada
Software. Fredrick: EVB Software Engineering, Inc., 1986.

20. Ewing, Juanita J. and Wirfs-Brock, Rebeccca. "Smalltalk isn't Meaningless
Chatter," Computer Design, 26, 1: 76-79 (January 1987).

21. Freedman, Roy S. "The Common Sense of Object-Oriented Languages," Com-
puter Design, 22, 2: 111-118 (February 1983).

22. General Electric Corporation Research and Development Division. Users'
Guide : Interactive Ada Workstation, Prototype Version 1.0. DOD Contract
No. F33615-85-C-1755, General Electric Co., August 1986.

23. Hartrum, Thomas C. and Lamont, Gary B. "Development of a Comprehen-
sive Software Engineering Environment," Space Operations Automation and
Robotics Conference, Houston (September 1987).

24. Jackson, Michael. System Development, Englewood Cliffs: Prentice Hall Inc.,
1983.

25. Keen, Peter G. W. "Adaptive Design for Decision Support Systems,"
ACM/Database, 12, 2:15-25 (Fall 1980).

26. Kelly, John C. "A Comparison of Four Design Methods for Real- Time Sys-
tems," Proceedings of the 9th International Confercnce on Software Engineer-
ing. 238-251. Washington: Computer Society Press of the IEEE, 1987.

27. Kerth, Norman L. and others. "Summary of Discussions from OOPSLA-87's
Methodologies & OOP Workshop," Addendum to the Proceedings OOPSLA
'87, ACM SIGPLAN Notices, 23, 5: 9-16 (May 1987).

28. Konsynski, Benn and Sprague, Ralph H. Jr. "Future Research Directions in
Model Management," Decision Support Systems, 2:103-109 (1986).

BIB-2

29. Korth, Henry F. and Silberschatz, Abraham. Database System Concepts. New
York: McGraw-Hill, Inc., 1986.

30. Liang, Ting-peng. "User Interface Design for Decision Support Systems: A
Self-Adaptive Approach," Information & Management, 12: 181-193 (Decem-
ber 1987).

31. Lorensen, W. "Object-Oriented Design," CRD Software Engineering Guide-
lines, General Electric Co., 1986.

32. Magel, Kenneth. "Principles for Software Environments," ACM SIGSOFT
Software Engineering Notes, 9, 1: 33-35 (January 1984).

33. Nassi, I. and Schneiderman B. "Flowchart Techniques for Structured Program-
ming, " SIGPLAN Notices ACM, 8, 8: 12- -26 (August 1983).

34. Novak, Joseph D. and Gowin, D. Bob. Learning How to Learn. Cambridge:
Cambridge University Press, 1984.

35. Page-Jones, Meilir. The Practical Guide to Structured Systems Design. New
York: Yourdon Press, 1980.

36. Pascoe, Geoffrey A. "Elements of Object-Oriented Programming," Byte, 11,
8:139-144 (August 1986).

37. Pressman, Roger S. Software Engineering: A Practitioner's Approach (Second
Edition). New York: McGraw-Hill Book Company, 1987.

38. Riedel, Sharon L. and Pitz, Gordon F. "Utilization-Oriented Evaluation of
Decision Support Systems," IEEE Transactions on Systems, Man, and Cyber-
netics, SMC-16, 6: 980-006 (November 1986).

39. Ross, Douglas T. "Applications and Extensions of SADT," IEEE Computer,
18, 4: 25-34 (April 1985).

40. ------. "Structured Analysis (SA): A Language for Communicating Ideas,"
IEEE Transactions on Software Engineering, SE-3, 1:16-34 (January 1977).

41. Seagle, John P. and Belardo, Salvatore. "The Feature Chart: A Tool for Com-
municating the Analysis for a Decision Support System," Information & Man-
agement, 10, 1:11-19 (January 1986).

42. Seidewitz, Ed and Stark, Mike. -"Towards a General Object- Oriented Soft-
ware Development Methodology," ACM Ada Letters, 7, 4: 54-67 (August-
September 1987).

43. Simon, H. The New Science of Management Decision. New York: Harper &
Row, 1960.

44. Sprague, Ralph H. Jr. and Carlson, Eric D. Building Effective Decision Support
Systems. Englewood Cliffs: Prentice- Hall, Inc., 1982.

45. Stay, J. F. "HIPO and Integrated Program Design," IBM System Journal, 15,
2:143-154 (1976).

BIB-3

46. TRW Defense Systems Group. Distributed Computing Design System (DCDS)
Methodology Guide (Ada Version). Huntsville: TRW System Development Di-
vision, October 1987.

47. Valusek, John R. The DSS Cube. Class lecture in OPER 652, Decision Sup-
port Systems. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, March 1987.

48. -- ---. Concept Mapping. Class handout distributed in OPER 652, Decision
Support Systems. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1987.

49. ------. The Hook Book. Class lecture in OPER 652, Decision Support Sys-
tems. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, April 1987.

50. Warnier, J.D. Logical Construction of Systems. New York: Academic Press,
1975.

51. Webster. Webster's New Collegiate Dictionary. Springfield: G. & C. Mirriam
Company, 1981.

52. Wegner, Peter. "Dimensions of Object-Based Language Design," OOPSLA '87
Conference Proceedings, A CM SIGPLAN Notices, 22, 12: 168-182 (December
1987).

53. Wiener, Richard and Sincover, Richard. Software Engineering with Modula-2
and Ada, New York: John Wiley & Sons, Inc., 1984.

54. Wirth, N. "Program Development by Stepwise Refinement," Communications
of the ACM, 14, 4: 221-227 (April 1971).

BIB-4

Vita

Captain Patrick Denis Barnes

1973 4nlisted in the United

States Air Force in 1974. He served three years as an aircraft maintenance specialist

before cross-training into the computer programming specialty in 1977. Serving as

a computer programmer for the Directorate of Logitics, Air Force Data Systems

Design Center, and then as NCOIC of Software Support for the Intelligence Data

Handling System Branch of the Armed Forces Air Intelligence Design Center, he

received both the Air Force Commendation Medal and the Joint Services Commen-

dation Medal.

In 1981 Captain (then Staff Sergeant) Barnes received an Associate in Applied

Science in Data Processing from the Community College of the Air Force and was

selected to complete his undergraduate studies through the Airmen Education and

Commissioning Program. He graduated with "most high honors" from Oregon State

University in 1984 with a B.S. in Computer Science and attended Officer Training

at Lackland AFB Texas that same year. He received both the Air Force Achieve-

ment Medal and Air Force Commendation Medal while serving as Cormnunications

and Simulation Software Programmer/Analyst for the PAVE PAWS System Pro-

gramming Agency, 7th Missile Warning Squadron, from July 1984 through April

1987.

Upon completion of his current graduate studies at the Air Force Institute of

Technology, Captain Barnes will assume new responsibilities as an instructor for the

Department of Computer Science, Naval Post Graduate School, Monterey, California.

VITA-1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAE-

r REPORT DOCUMENTATION PAGE O No .00"0n

'EPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2s. SECURITY CLA5SFICATION AUTHORITY 3. OISTRIBUTION/AVALABIUTY OF REPORT
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/88D-1

Go. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Engineering AFIT/ENG
c. ADDRESS (City, Stew, oW ZIP Co*) 7b. ADDRESS (Oy, Sate. od ZI Code)

Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

Se. NAME OF FUNDIfIG/SPOW)OING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Strategic Defense (If ApAbe)

Initiative Organization S/PI
Sc. ADDRESS (aty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERSThe Pentagon PROGRAM PROJECT TASK IWORK UNITELEMENT NO. NO. NO, ACCESSION NO.

WASHINGTON, DC 20301-7100r
11. TITLE (fkuoe SeCurfty OW~t)

A DECISION-BASED METHODOLOGY FOR OBJECT-ORIENTED DESIGN

0111 t h' nes, Capt, JSAF
13a. TYPE OF REPORT 1 3b. TIME COVERED 14. DATE OF REPORT (Year, ont t S. PAGE COUNT

MS thesis FROM _ TO = 1988 December 211
16. SUPPLEMENTARY NOTATION

17. COSATI CODES I 18. SUBJECT TERMS (Contnue on reverse if necenmy and idlntIy by block number)
FIELD GROUP I Su-GROUP Computer program documentation Computer systems analysis
12 05 Software engineering Flow charting

19. ABSTRACT (ConOwe on reverse ff nhcery and kh by bloc number)

Thesis Advisor: Thomas C. Hartrum
Associate Professor in Electricial Engineering

0 'V

20 DISTRIBUTION AVAILIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATIONI DNCLSSIIEOJNLMIED ~ SME S RT. D IC SR UNCLASSIFIED

2 28. WEFRSPUI NDIVIDUAL 22. TLEHOE bfud Area Code) 122c. OFFICE SYMBOL
i nomas r.narIrum AFIT/ENG

D0Form 1473, JUN N Prevlow edWtm ae o6ohm. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Abstract

The task of object-oriented development raises a new set of design problems.
Specifically: how to scope a problem based on objects rather than functions; how
to select the best objects; how to encapsulate data structures with the right set of
operations; and when to stop decomposidg a system into objects and begin describing
the algorithms that implement those objects' behaviors. The difficulty of making
these decisions is increased when the requirements documentation was not developed
with an object-oriented paradigm in mind.

Althougheveral software development environments implemen; an object-
oriented desi n methodology, they seem concerned primarily with Acrogramming
in the small activities, or with providing capabilities for capturing, representing,
and storing design decisions once they are made. Recognizing the importance of
supporting design decision making, this study focused on the application of decision
support system concepts to formulating a methodology for object-oriented design.

This thesis describes an object-oriented design methodology based on the four
problems or decisions stated above. An object model structure is also defined to pro-
vide a foundation for organizing design information. The object model is described
by a set of database relations, and includes a three view graphic representation
providing block, detail and control flow graphs. 'c_<

A prototype design tool was implemented to evaluate the methodology. Soft-
ware for the tool was developed using a PC based implementation of the Smalltalk
Object-Oriented Programming Language. Maximum use was made of decision sup-
port system techniques such as concept-mapping, storyboarding, the hook book,
and adaptive design. As a decision support system, the tool provides the software
developer with key requirements specification and software engineering qualitative
information to aid in the judgement and design decision making process.

