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I'
* Preface

The efficient calculation of flows with viscous/inviscid

interaction has been the topic of much research over the past

3several years. Three algorithms were developed to solve the

viscous/inviscid problem. The first method uses finite

difference equations with successive line overrrelaxation

(SLOR) sweeps for solving the approximate Navier Stokes

equations in the viscous region and the stream function

equation in the inviscid region. An implicit coupling scheme

is developed to match the two solutions. The second method

uses finite difference approximations for solving the stream

function equation in the inviscid region and a fourth order

Runge-Kutta method for solving the integral boundary layer

equiations in the viscous region. In the third method, the

inviscid flow solution is obtained by a panel method, while

the viscous flow solution is obtained using the finite

difference form for the boundary layer equations

operating in an inverse scheme.

I would like to thank Dr. A. Halim for his extensive

technical assistance with this work and for supervising this

thesis, and Dr. Shang of the Flight Dynamics Laboratory for

his encouragement and insightful comments. Special thanks

goes to Lisa, my fiancee, for her understanding and support

over the last year.
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Abstract

The study of flows with viscous/inviscid interaction has

attracted many researchers over the last decade. These flows

occur whenever the adverse pressure gradient is large enough

to cause flow separation. The current emphasis is to find

efficient ways of solving these types of flows without

solving the full Navier-Stokes equations.

Three methods for solving the viscous/inviscid problem

were studied. The first method uses finite difference

equations to model both the viscous and inviscid regions. A

coupling scheme is developed to match the two solutions. The

second method solves the integral boundary layer equations in

the viscous region and finite difference equations in the

inviscid region. The third method solves the Hilbert

integral to generate a correction to the inviscid velocity

using the boundary layer equations as the viscous model. The

model problem used in this work is Howarth flow over a flat

plate.

The three methods were evaluated in terms of solution

accuracy, memory requirements, and computation times.

)
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II

NUMERICAL STUDY OF THREE

VISCOUS / INVISCID INTERACTION METHODSI
I Introduction

The aerodynamic performance of a flight vehicle is

greatly affected by the accuracy of the computational or

experimental methods used in the design process. Any

successful design must carefully account for the drag. The

viscous calculations have a substantial impact on the drag

estimation. Naturally, the full Navier-Stokes (NS) equations

correctly estimate the drag on a flight vehicle. However,

their use can be costly and in many cases unnecessary.

Recent research has focused on the use of alternative

forms of the NS equations. These approximate sets of

equations are simpler and require fewer computations than the

NS equitions, but are valid only as long as their simplifying

assumptions are not violated. For example, high Reynolds

number flows over a body usually result in the formation of a

thin shear layer close to its surface. For this type of flow

the pressure gradient normal to the body and viscous terms

with derivatives in the streamwise direction can be neglected

by an order of magnitude analysis on the NS equations. The

resulting Boundary Layer (BL) equations are widely used for

many high Reynolds number flows. One of the attractive

, 1



features of the BL equations is that they are parabolic.

This implies that the solution can be marched in the

streamwise direction without iteration.

Another simplified form of the NS equations is the

Approximate Navier-Stokes (ANS) equations. The ANS equations

assume that only the viscous terms with derivatives in the

streamwise direction are small; all other terms are retained.

The ANS equations fall between the Navier-Stokes and the

Boundary Layer equations in terms of accuracy. They are

useful because they are partially parabolized in the case of

3 subsonic flow and are a mixed set of parabolic/hyperbolic

equations for supersonic flow [i]. The parabolized equations

allow for forward marching in the streamwise direction. For

subsonic flow, forward marching is still possible, however,

several iterations may be necessary to achieve convergence

since the equations still contain elliptic inertia type

terms.

Approximate forms of the NS equations are particularly

useful when used in recently developed zonal techniques.

These techniques divide the flow region into distinct zones,

each having a particular set of assumptions about the flow.

For example, when the Reynolds number is large the flow

region can be broken up into a viscous region (where the ANS

or BL equations can be used) and an inviscid region where a

greatly simplified inviscid model is used. If the viscous

region is small in comparison with the inviscid region the

2



computational savings can be substantial. This is true

I because the mathematical model for the viscous flow will be

* solved over a relatively small region while the larger

inviscid region uses a simple inviscid code. A coupling

scheme is employed in the zondl technique t. insuv-e

compatibility between the two regions. The iteration of the

boundary condition at the interface of the two regions is the

mechanism through which the viscous and inviscid flow regions

interact. There are many approaches available for solving

such problems. The interacting boundary layer theory (IBLT)

was used by Carter [21, Vatsa et. al,13], Edwards and Carter

I [4] and Houwink and Veldman [51 to solve the viscous/inviscid

problem. In the IBLT, the viscous region is represented by

the boundary layer equations; the inviscid flow can be

* represented in a number of different ways depending upon the

flow configuration and the Mach number. Rubin et. al.[6] and

I Swanson et. al.[71 used a composite velocity representation

of the inviscid and viscous flow regions. Halim and Hafez

[8-9] solved the viscous and the inviscid regions using a

semi-implicit coupling technique. More recent efforts were

also successful using a fully implicit coupling method to

obtain efficient solutions [10-11] for viscous/inviscid

problems.

3



I Any numerical method developed must be able to generate

regular solutions in the event of an adverse pressure

gradient. If separation occurs there is a restriction on

what can be used as the boundary condition to insure regular

behavior. It is known that the solution of the boundary

layer equations with a prescribed pressure gradient results

in singularity at the point of separation [12]. The

singularity at the separation point is independent of the

form of the equations (i.e. integral or differential). The

work of Carter [13] showed that regular solutions can be

obtained with an inverse approach in which either the

displacement thickness or the skin friction is specified. In

addition, the criterion of Meksyn 114] states that if Ue (the

velocity at the outer edge of the viscous layer) did not

include any correction due to the interaction between the

viscous and inviscid regions, then the boundary layer

solution would be singular at the point of separation.

In the present work, three methods were developed to

solve for subsonic flows with viscous/inviscid interaction; a

finite difference method, an integral boundary layer method,

and a Hilbert integral method. The presence of the boundary

layer is assumed to affect the solution of the inviscid flow

* region.

I
U
I
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I In the first method, the finite difference form of the

ANS equations are solved in the viscous region while

Laplace's equation written in terms of the stream function is

solved in the inviscid region. A coupling scheme is

developed to find the stream function at the interface. One

cycle yields a new stream function distribution as opposed to

reference [4), where many cycles are needed. Each cycle is

I Iequivalent to repeated Successive Line Over-relaxation (SLOR)

sweeps. Edwards and Carter [4) used repeated SLOR sweeps for

each new displacement thickness to determine the solution in

the inviscid region. The critical issues of this method are

the efficiency of the viscous solver and the development of

I the fully implicit coupling.

The second method uses a finite difference scheme for

the inviscid region and an integral approach for the boundary

layer equations in the viscous region. The displacement

thickness now represents the shape of a displaced body over

which the flow is inviscid. A shear transformation is

performed in the inviscid region to allow for a uniform grid

in the computational domain. The inviscid solution will

produce Ue and Ve' The Integral Boundary Layer (IBL)

equations are written in terms of Ve, resulting in two

I equations and two unknowns (6 and Cf) when a velocity profile

is assumed. The displacement thickness can now be found and

used as the next boundary condition to the inviscid solver.

This cycle continues until convergence is achieved.

5I



The ultimate goal of the IBL method is the development

of an integrated solver for the entire flow field. The key

to finding an integrated solver is to find an efficient

method for defining the displaced body.

The third method solves the finite difference form of

the boundary layer equations using the inverse mode. The

streamwise velocity at the boundary layer edge, Ue , is

written as the sum of the inviscid velocity plus a term which

aczounts for the viscous effects. The viscous region is

solved to obtain U e,bl. The Hilbert integral finds the

correction to U e based on the displacement thickness used as

the input to the boundary layer equations. The resulting

velocity, Ue,h , will be compared with Ue,bl. If Ue,h and

Ue,bl are not equal within a set tolerance, then the method

continues until convergence is achieved.

The model problem chosen to develop the current methods

is Howarth [15J flow over a flat plate, which prescribes a

piecewise linear external velocity profile as shown in

Figure 1. The variation of the external velocity with x

implies a pressure gradient in the streamwise direction.

Flow separation can occur if the corner position X0 is chosen

correctly. Briley [16] solved this flow using the full

Navier-Stokes equations, achieving separation with X 0=0.2 for

R e=20800. The current work will also use X0=0.2 and R e=20800.

6
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I The flow region, depicted in Figure 2, consists of a

two-dimensional rectangular area where the flow is subsonic

everywhere in the field. The upstream boundary begins at a

3 i non-dimensional length of x=0.05 along the flat plate where x

is in the streamwise direction and Y is in the direction

normal to the plate. The downstream boundary is at x=0.489

after Briley. The outer boundary used in the present work

was Y = 7.23 where Briley used Y = 5.4 as the outer

boundary. The difference in the two outer boundaries is

present to allow for adequate grid resolution in the current

inviscid solver while also assuring that the interface is

positioned above the boundary layer.

Results of the three methods are presented and compared

to existing work. Solution accuracy, memory requirements,

and computation time are discussed and recommendations for

3 further study are given.

I7
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Figure 1. Howarth velocity profile

Y,= 7.23
Inviscid Region

Y 4.73 Interface

0 Viscous Recion

x 1 .05 xx 2 =.489

Figure 2. Flow Boundaries
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II Analysis

Approximate Navier-Stokes (ANS) Equations

The development of the ANS and IBL equations will start

from the full Navier-Stokes (NS) equations. For 2-D

incompressible, steady flow in the absence of body forces

[17] the NS equations in dimensional form simplify to

U + V = 0 (2.1)

uu x + vuy = -px/P + P (Uxx +u yy) (2.2)

uv x + VVy = -Py/P + t, (Vxx + Vyy) (2.3)

where

u = velocity in x (streamwise) direction

v = velocity in y (normal) direction

p = pressure

p = fluid density (constant)

, = fluid kinematic viscosity (constant)

The subscripts denote partial differentiation with respect to

that variable. The energy equation is not considered here

since Eqns (2.1)-(2.3) and the energy equation are uncoupled for

incompressible flow. Eqs (2.1)-(2.3) can be put in

nondimensional form by defining the quantities

u = u/u.% V' = v/vt.

x' = x/L y' = y/L

p = p/Puy,2  (2.4)

9



I

I where

Iu = free stream velocity

L = characteristic length

Applying Eqn (2.4) to Eqns (2.1)-(2.3) and dropping

the primes yields

u x + Vy = 0 (2.5)

Uu y -px + Re (uxx +Uyy (2.6)

U + vv = -py Re- (Vxx + vyy (2.7)

where the Reynolds number Re is defined by

Re  = uVL/L (2.8)

Equations (2.5)-(2.7) are the NS equations written in

nondimensional form.

The BL equations are obtained by considering the scaling

law of the relative magnitudes of velocity components in the

thin region. This leads to an estimate of the nondimensional

I boundary layer thickness

6 Re-1/ 2  (2.9)

where the symbol - implies order of magnitude. This is a

fundamental result of boundary layer analysis. Notice that

for very large Re the order of magnitude of the boundary

I layer thickness is much less than unity. Therefore terms in

the NS equations that are found to be of order of magnitude 6

can be neglected compared to terms that are of order unity.

First consider Eq (2.5), the continuity equation. The u

i
I
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I

velocity and the streamwise coordinate x are clearly of order

unity by definition. This implies that

v 1 (2.10)

3: and since the normal direction y is of order 6, then

v 6 (2.11)

Since Re-  is ot order b2 from Eq (2.9), the order of

magnitude of each term in Eqns (2.6) and (2.7) can be

determined. The result is that the x momentum equation (2.6)

contains terms of order unity except for the term

Re - U xxI2
which is of order 6 The y momentum equation (2.7) is found

to have all terms of order 6 except for the term

Re- Vxx

which is of order 63  These two terms can be neglected

compared to the relative magnitude of the remaining terms.

The resulting set of equations is

u + v = 0 (2.12)
-1

uu +vuy =-Px + R (2.13)

uvx + vvy = -py + Re vyy (2.14)

The Prandtl boundary layer equations consist of Eqns (2.12)

and (2.13). Since all terms in Eq (2.14) are of order 6, it

is omitted in the classic boundary layer approximation. The

ANS equations retain equation (2.14), allowing for a change

in pressure normal to the streamwise direction. These

equations will now be written in terms of the stream function

T and the vorticity a.

11



The stream function Y is defined for 2-D, incompressible flow

*I such that

U = y (2.15)

v = -P (2.16)x

and the vorticity, u, is defined as

= v x - uy (2.17)

Notice that the continuity equation (2.12) is automatically

satisfied by the definition of T. The pressure can be

eliminated from Eqns (2.13) and (2.14) by taking the partial

derivative of Eq (2.13) with respect to y and subtracting the

partial derivative of (2.14) with respect to x. Four of the

resulting terms are eliminated by the continuity equation,

leaving

U(vxx - u xy) + V(vxy -U) = R (Vxyy - U (2.18)

which can be simplified to

T W -PWy R e-1 : 0 (2.19)yx xy e yy

by taking derivatives of Eq (2.17) and substituting them into

Eq (2.18). The velocities u and v were also expressed in

terms of T from Eqns (2.15) and (2.16). The vorticity can

also be expressed in terms of ' in Eq (2.17) to obtain

I + P + 0 = 0 1 (2.20)

Equations (2.19) and (2.20) are the ANS equations for 2-D

incompressible flow written in terms of T and (a. These

equations are the model for the viscous region in the first

12



I method, where finite difference representations are used.

3 The inviscid model is obtained directly from Eqn (2.20),

where the vorticity is zero. The resulting equation is

* simply

I I =0 (2.211)

Integral Equations

3 The Integral Boundary Layer (IBL) equation can be

obtained by integrating the dimensional form of the x

momentum equation

uu + v u = -px/p + ' u (2.22)uu y xyy

from y=0 to y=6 . The pressure term can be expressed in terms

of the velocity at the edge of the boundary layer, Ue, by

considering the boundary conditions

I Uly=6 = Ue
uy1y=6  0

u yy ly=5 0

3 Imposing these conditions on Eq (2.22) results in

Ue dUe /dx = -px/P (2.23)

Substitute Eq (2.23) into Eq (2.22) and integrate over the

boundary layer to give

f (uu x + Vuy -Ue dUe /dx) dy 0 u yy dy (2.24)

I which simplifies to

I
1 '3

I



wr0 (u u x + vuy - Ue dUe/dX) dy w -/ (2.25)

where r is the shear stress at the wall, defined by

t = pu y= 0  (2.26)

The normal velocity component, v, can be replaced in Eq

(2.25) by

v = -j u x dy (2.27)

which is a result obtained by integrating the continuity

equation. Substitute Eq (2.27) into Eq (2.25) to obtain

(u x - YU x dy - Ue dUe/dX) dy w/P (2.28)

Integrate by parts to obtain the second term

(S y 5 6

(U y Ux dx) dy = U 0 dy-f 0 uux dy (2.29)

and substitute-into Eq (2.28) to get
5

o (2uux - Ueu x - Ue dU e/dx) dy = -rw/P (2.30)

which after rearrangement yields

f 0/ax(u(Ue - u)) dy + dUe/dX f 0(Ue - u) dy = rw/P (2.31)

The displacement thickness 6 and momentum thickness e are

defined as

Ue 6 = f (Ue - u) dy (2.32)
0

and

Ue 2  =f U(Ue- u) dy (2.33)
0

14



Substitute Eqns (2.32) and (2.33) into (2.31) to obtain

d/dx (Ue2e) + 6* Ue dUe/dx = zw/P (2.34)

Now cast Eq (2.34) into nondimensional form by introducing

the skin friction coefficient Cf, which has the definition

Cf r w (2.35)

PUT,

Expanding the first term of Eq (2.34) and writing the entire

equation in nondimensional form gives the final form of the

integral boundary layer equation

dO/dx + 2edUe/dx (2 + /0) = Cf/2 (2.36)

1Ue e

An alternative form to Eqn (2.36) is found by

multiplying it by Ue and rearranging to get

d/dx[ Ue2 e ] + Ue (dUe/dx) * = Ue2 Cf/ 2  (2.37)

Eqn (2.37) is used in the second method. The unknowns are

Cf, 0, and 6*. By assuming a velocity profile, the unknowns

can be reduced to two (Cf and 6). The second equation is a

form of the continuity equation

ux + vy = 0

Add and subtract the term dU e/dx and rearrange to get

vy dU e/dx - dU e/dx -u (2.38)

15



Integrating this equation from y=O to y=6 and using Eqn

(2.32) results in

IVe = d/dx U e  -6 dU/dX (2.39)

Equations (2.37) and (2.39) are solved simultaneously.

Representation of the inviscid flow using a panel method

The Hilbert Integral represents the correction to the

inviscid velocity U e due to the effects of the displacement

thickness. To find an expression for this correction 6u, one

can consider a line of source distribution q(x) at y=O that

is constructed such that the resulting flow takes place over

a displaced body defined by the displacement thickness 6 (x).

Figure 3 shows a typical source distribution that results in

flow over the body defined by 5*(x). The source strength is

defined by the constant mass flow rate it generates. By

considering a circular control volume centered about the

source, the strength can be shown to be related to the flow

velocity at a distance r from the source by

q( ) d = 2nr V (2.40)

The x component of velocity d(6u) for a source of strength

q(,) d located at x= (Fig. 3) is simply

d(6u) = V cos e = q() dE (x - E) / 2nr 2  (2.41)

where

r 2 = (x - )2 + 6*2 (2.42)

16
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Figure 3. Source distribution geometry
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I

I The total 6u considering the range between xI and x2 is
6 u(x) = q(.) (x - ) / 2nr' dE (2.43)

x1

Integrating Eqn (2.43) from zero to y will give the stream

function 9. This integration results in

Jx2 [ q(F) tan-' (y/(x- )) / 2i d + C (2.44)

x1#*
The relation between T at y=6 and W at y=O can be

approximated by considering a Taylor series expansion of 9',

where

3(X,O) W(6) - yly=6* (6) = - Ue 5 (2.45)

since T yly=* = Ue and T6) = 0. Differentiating Eqn (2.45)

with respect to x gives

d9(xO)/dx = -d(Ue )/dx (2.45a)

Differentiating Eqn (2.44) with respect to x and taking the

I limit as y goes to zero and equating the result to Eqn

(2.45a) will give the simple relation

q(1,) = 2 d(Ue6 )/d (2.46)

Substituting Eqn (2.46) into Eqn (2.43) gives the final

Hilbert integral expression for 6u as

6 u(x) -I TX2 [d(Ue6*)/d ] (x-)/r2 dj (2.47)I I Il

The streamwise velocity Ue,h is calculated from

Ueh(X) = PY(x) + 6 u(x) (2.48)

3 which includes the correction 6u due to the viscous effects.
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Boundary Conditions

The boundary conditions will now be discussed in general

for the three methods. Figure 4 shows the computational

domain and governing equations for the viscous and inviscid

regions. The domain consists of a 2-D rectangular region

with subsonic flow throughout. Boundary conditions for T and

are specified at each of the boundaries (a)-(e).

At the outer flow boundary (a) the velocity is specified

by Howarth's profile.

PY(x) = 1 - x , for x < X0

PY'x) = X0  , for x a X0  (2.49)

where X0 is chosen to be 0.2 after Briley [161.

The inlet flow (b) is assumed known from boundary layer

theory. Howarth 115J solved this flow using series

representations to obtain solutions up to the separation

point. The resulting streamwise velocity distribution is

compared in Figure 5 to the distribution obtained from

boundary layer code [181. The variable ETA in Figure 5 is

defined as n, where

n = 0.5 y (Re/X1)l/2 (2.50)

Note the excellent agreement between the data. The velocity

obtained from the boundary layer code can be integrated with

respect to the normal direction to obtain V at the inlet.
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(a)
Y,= 7 .23S73Inviscid Region

(b) 'y +~ = :xx yy
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U J + v L) - w /R= 0
x y yy

Viscous Region

0 ///////I (c)

x1=.05 x x 2=489

Figure 4. Flow boundaries and governing equations
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I The inlet vorticity is obtained from Eqn (2.20) assuming

4xx=0 in the boundary layer, resulting in

WIx=xl = -'%yylx=xl (2.51)

The no slip condition prevails at (c), where

and uly=0 = %F yy=0 = 0 (2.52)

V y=O = -Ifx'yo = 0 (2.53)

and therefore

'V1y=O =0 (2.54)

Also, since T=0 everywhere along the plate surface

T xxly=o = 0 (2.55)

3 and therefore the vorticity is given by

ly=o = -T yyly=o (2.56)

i from equation (2.20).

At the downstream location (d) a boundary condition on T

alone is required since the ANS equations contain the

elliptic term Txx" If the full Navier-Stokes equations were

used, the term w would be present in Eqn (2.19), requiring

a downstream boundary condition for the vorticity in the

viscous region. The boundary condition on T is obtained

i assuming that (d) is far downstream from the pressure

3 gradient disturbance. Uniform flow is assumed where

V1x=x 2 = -'xix=x2 = 0 (2.57)

I
U
I
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I At the interface (e) the stream function is obtained

3 directly from the coupling scheme for the finite difference

method. The integral and Hilbert methods assume that the

interface represents the displaced body over which the flow

is inviscid. For this case T=0 along the interface. The

vorticity is assumed to be zero along the interface. This

represents a departure from normal boundary layer type

c.)nditions where the free stream velocity is allowed to be

satisfied asymptotically at an infinite distance normal to

the wall 116]. In the present work, these conditions are

3 imposed at a finite distance from the body surface.

The placement of the interface from the wall can be

I quite important. Briley's solution to the present case of

X0 =0.2 shows that the maximum value of 3 is about 0.015.

For the simple case of a linear velocity distribution, the

3 boundary layer thickness is equal to twice the displacement

thickness [17]. Thus, for the present work the location of

the interface should be at or greater than approximately

y=.03, which corresponds to Y = 4.32 for Re = 20800.
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III Methods of Solution

Method I

Solution Procedure. The governing equations for this

method are the ANS equations (2.19) and (2.20) for the

viscous region and Laplace's equation (2.21) in the inviscid

region. The flow is initialized everywhere by the inlet

conditions. The finite difference form of Eqns (2.20) and

(2.19), respectively, can be written as

A W + B '' +C CI. +D DI.A1IF1,3-I 13 Yi,3 + ]jI 1,J + 1  + Dli,j-I + ,

+ U = RHS (3.1)

and

A, BI) L R HS
+, - B- ji3 C j : ,j+ I + D2j'i ,j- I E, -w -~

+ F23]. = RHS2,j (3.2)

Where the indices il represent the computational domain grid

points in the streamwise and normal directions respectively.

The finite difference form for Eqn (2.21) can be written as

A 33' +B + C =RHS (3.3)
33 i,j-1 3jli,j 3 ji,j+ S3 ,

The calculation of the above coefficients and right hand

sides is the subject of the next two sections. The results

can be found in Eqns (3.18)-(3.21) for Eqn (3.3). The

coefficients for Eqn (3.1) will be similar to the

coefficients for equation (3.3) since the two equations

differ only by the vorticity term.
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I

I The coefficients for Eqn (3.2) can be found in Eqns

(3.44)-(3.50). For now, only the method of solution is

discussed.

Successive Line Over-Relaxation (SLOR) is used in both

regions. The solution procedure, depicted in Figure 6,

3 starts at the inlet and marches downstream. At each i

location the coefficients of Eqns (3.1)-(3.3) are found. For

the inv7scid region this results in a tridiagonal system of

equations which can be solved using a form of the Thomas

algorithm [19] described in Appendix A. This algorithm puts

a tridiagonal matrix of equations in upper triangular form

and then performs back substitution to find the solution

directly. From this algorithm, the solution at the interface

3 J can be written in terms of the solution at the J+1 point by

the relation3 I (3.4)
i,J+l iJ+1 iJ i,J+(

Where PiJ+. and IiJ+1 are recurrence coefficients. The

boundary conditions are enforced by the definition of the

3 coefficients A3, B3, C3 ' and RHS3 at the boundaries. For

the viscous region Eqns (3.1) and (3.2) result in a block 2x2

set of equations that is solved using a special form of the

Thomas algorithm for two partial differential equations.

This algorithm is also described in Appendix A.
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Figure 6. Solution procedure for Method I
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The solution for the viscous equations will have the form

i,J 1, i,j+1 1, i,j+1 l,j
I'. = R 'j ' + S , + T (3.5)

1,1 2,j i,j+l 2,j i,j+l + ,j (3.6)

where R ... TJ are the recurrence coefficients. With

Eqns (3.4)-(3.6) the solution to both the viscous and

inviscid regions can be found given all of the boundary

conditions. A crucial element of the solution process,

however, is the coupling scheme between the two regions. The

governing equations at the interface is given by Eqn (2.21),

since the vorticity is assumed to be zero. The finite

difference equations at the interface j=J has the form

A T i -I ' + B IF 1 ' + C T i + 1 ' + D T i ' +i,J i,J i+,J i,J+l

+ E T iJ l = 0 (3.7)

where the coefficients A-E are known. The goal is to be able

to solve for T'4J in Eqn (3.7). The value of T i-,J is known

because the solution is sweep downstream. The value of

IFl+,J is approximated to the value from the previous

level. Note that this assumption is valid since the

difference in ' between successive levels goes to zero as the

solution converges. The remaining unknowns are Ti'P. iJ+'P

and TiJ-l. Using Eqns (3.4)-(3.6) the terms 'iPJ+1 and

' can be written in terms of Ti from the recurrence.i ,J-1 i,J

Since the vorticity is assumed to be zero at the interface,

the recurrence relation for ' given by Eqn (3.5) can be

reduced at the interface to
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i 1 - = R Pi, + T 13.-1

Substituting Eqns (3.4) and (3.8) into Eqn (3.7) results in

one equation with one unknown. The stream function at the

I interface, Ti', is calculated and used as the new boundary

condition. The solution in the inviscid region is calculated

directly since it uses a non-recurrence form of the Thomas

algorithm. See Appendix A. Eqns (3.5) and (3.6) are used to

generate the solution in the viscous region once the

recurrence coefficients are known. Both solutions use T at

the interface calculated from Eqn (3.7) as a boundary

condition. The algorithm moves downstream to the next i

location where the process repeats until i reaches IMAX-1.

Residuals are then calculated and compared to a tolerance

value. If the residual tolerance is not satisfied the

iterations continue back at i=2 and the solution process

I continues until convergence is achieved.

Inviscid Region. The model for the inviscid region is

Laplace's equation

l xx + P yy = 0 (3.9)

Appendix B contains all of the finite difference forms of the

i derivatives; allowing for a non-uniform grid. The coordinates

3i (x,y) represent the physical domain and (E,n) represent the

uniform computational domain. The indices of the uniform

grid are denoted by i in the E direction and j in the P

direction.
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I

I Eqn (3.9) written in finite difference form becomes

S3 ,j+ + B 1,) + C 1,3-1 + D i+l,j

I +E3 P1 -I, = 0 (3.10)

A =r= P1, nY3l 2 (3.11)
22

A y,j ny,j-1/2 /Al(.1

B 3  0 - y'! ( n y ,3+1/2 + rfy,j _I/2 / Al

- x, ( X,+I/2 +  x,j-1/2 )/  AE / (3.12)

C rl, QJ-1/2 Al'(3.13)
2

D j XJ x,j+1/2 / (314)

E 3 x'! x,j-1/2 ( 3.15)

as given in Appendix B. It is implied that the stream

function T in Eqn (3.10) is written at the unknown level

denoted as n+1, whereas n represents the current

I level. The n+1 level is implied throughout this report.

Terms at the current level will carry the n superscript.

Rearrange Eqn (3.10) to obtain
'P ( -A* +C C P. +D D*P
i,j A j ij++ j i,j-1 j i+1,)

+ E] 'il,j] / J (3.16)

Relaxation is now introduced to enhance the convergence of

the solution. The relaxation parameter W is defined such

that T at the unknown level is written asI 'V j =( 1-W )'Yi n (3.17)
7 ii I W + W T i, j  (.7

II
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I

I Notice that when W = 1, Eqn (3.17) becomes a simple identity

with no relaxation of the solution. Over-relaxation (W > 1)

can be used to accelerate the convergence if the solution is

relatively stable. Under-relaxation (W < 1) is used mainly

to maintain numerical stability in the iteration process.

I In this case more of the solution at the current value of

is used to help stabilize the solution. Substituting Eqn

(3.16) into Eqn (3.17) and rcarranging gives Eqn (3.3)

I rewritten as

iw 3 ij-1 + Bj IV i,j C3j i,j+l = RHS3,j

I where,

A = W C/j B (3.18)

B3 j = 1 (3.19)

C3j = W A / B (3.20)

I n _W * *

RHS3, j  =( W1 - W ) ,n W D F Ti+,j/ Bj

-W E 'Vilj/ Bj (3.21)

All of the terms in RHS 3 are known. The T in term is known

I since it is at the current level. The stream function at i-I

is known because the solution is marched downstream. The

stream function at i+1 is assumed to be equal to Ti+'j n as

an approximation. The boundary conditions are imposed by

redefining the coefficients of Eqn (3.3) at the boundaries.

I
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I The condition at the outer boundary is given by Eqn (2.49),

rewritten as

V y y~y2 = PY(x) (3.22)

where PY(x) is defined by Howarth's velocity profile as

PY(x) = 1 - x , for x < X 0  (3.23)

PY(x) = X , for x a X0  (3.24)

Writing Eqn (3.22) in finite difference form gives

3 yj2 ( T i,j2 - 'i,3 2-1 U = PY(x) (3.25)

which can be written as

I i,j2 = T i,j2-1 + ( PY(x) an n Y32 (3.26)

Substituting this equation into Eqn (3.3) written at j=j2-1

gives

3,j-1 i,j2-2 3,j2-1 i,j2-1

C3,j2-1 ( Ti,j2-1 + (PY(x) A / qyj2)) = RHS 3,j2-1  (3.27)

which can be cast back into the form of Eqn (3.3). The

resulting coefficients are given in terms of their previous

definitions as

A3,j2-I A 3,j2-1

B 3,j2-1 B 3,j2-1 + C3,j2-1

RHS 3,j21 = RHS3 ,j2-1 - C3,J2-1 PY(x) an / nyj2

C = 0 (3.28)
3, j2-1 -

where the equal sign above implies replacement of the terms

as in the FORTRAN programming language. Also note that

C3,j2-i is set to zero after calculating the other terms.
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The boundary condition for ' at the interface is given by the

solution to Eqn (3.7) as previously discussed. For this case

the coefficients are found to be

B3 J+l = B3 J+l

3,j+J ,+3,j+1
RHS 3,,J l - RHS 3,J+I - A 3,J+l T i,J

A 3,J+ = 0 (3.29)

With all of the coefficients known, the tridiagonal solver is

used to generate the recurrence relation at the interface and

to generate the solution for T. The calculations follow the

solution procedure discussed in the previous section.

Viscous Region. The viscous region is bounded by the

lower plate surface (Y=0), the upstream and downstream

boundaries at x=.05 and x=0.489 respectively, and the

interface at Y=4.73. The ANS equations (2.19) and (2.20)

are the mathematical model for this region. These equations

are scaled in the vorticity to allow for the unknowns ' and w

to be of similar order of magnitude. Define the vorticity as

Sc/(3.30)

where c is the vorticity at the plate at x=0.05. This

scaling only affects Eqn (2.19) since ca will become a common

factor in Eqn (2.20). The remaining discussion will assume

the scaled form of the equations, written as
*

Y +¥ Y + W ) = 0 (3.31)XX yy

Y (a -' x iy - yy /Re = 0 (3.32)
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where the vorticity in (3.31) is the scaled vorticity. The

convention used in the previous section where no superscript

implies the unknown n+I level and the superscript n implies

3: the current level is retained here. Note that Eqn (3.32) is

nonlinear since the n+l level is implied on each term in the

equation. Linearizing Eqn (3.32) results in
n n +. n _ n.

_ /Re = + n . n - n . n (3.33)y x y x x y

The right hand side of Eqn (3.33) as well the n level terms

are known from the current level. Finite difference

expressions for T x/ ' Ix? and iy are obtained from

Appendix B. The finite difference form for Eqn (3.31) is

exactly the result obtained from the previous section with

the exception of the vorticity term. The resulting finite

dIfference equation is simply Eqn (3.1)

A 1,3_ I  + B ji i + C'. C I +D W + E1

+ Flji,j+ 1 = RHSIl (3.1)

where the coefficients A1 j, Bil, and C1, are given by the

right hand sides of Eqns (3.11)-(3.13) respectively and the

remaining coefficients are

DIi = 0 (3.34)

E 1 (3.35)

F =0 (3.36)
* *

RHS, j = -Dj Iti+, j - E *i-l,j (3.37)

33



I

i The finite difference form for Eqn (3.33) will now be

addressed. The solution will be marched in the streamwise

direction. Therefore, Tx and (ax are written as backward

differences. The terms 9' and wy are written as central

differences. When TV is negative, the convective term Ty nx

will be written as upwind difference to honor the local

streamwise direction in the reversed flow area. Now let

1 UP = 1/2 (T n + IT y In ) (3.38)

UM = 1/2 ( T n - Ty n ) (3.39)

and notice that when TV > 0, UP equals TV and UM equals zero.y y

When 'V < 0, UP equals zero and UM equals -T '. The forwardy 'y"

and backward finite difference forms of wx are

I = F ( -) , / (1 (3.40)
x I xi iJ i-l,j3 ,oi~i ,J - )/ A (3.41)X i =  xi i+I j i,](3 41

and therefore the convective term can be written as

y x Xi i,J -i-iJ ) / A

+ UM txi W i+l,)j - /i,j (3.42)

Using Appendix B, Eqn (3.33) in finite difference form is
iPtx ,) -i, -Xi i,) / A3i j -Wi-I,3 ) / gt + UM xi ( ( +l'j

+ Wn (P i ' + p 2 - P3j )
T x 1j i,j+l 2j i,j 3j i,j-13X '  ( P1 ) G i,j~ 1 

+ P23i,j - P3j ' j - )

y E xi ( Ti,j - i-l,j )/ A ]

i- ( QIJ ' i,j+l - Q~ + Q3  , ] / ReI Ql 'ij~l 2J i,j +Q 3j wij-1

f y n . n _ y n y n (3.43)
i Y X X y

I
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The terms P1 ... Q3 are given in Appendix B. Equation

(3.43) is now cast into the form of Eqn (3.2), repeated here

as
A2 'i  +B • +C C~' +D '.. E
A2) ijl B 23 i 2j ,j+l + D2jwij-1 + E ij

+ F 2)a,j+1 = RHS 2 1j (3.2)

by rearrangement of the terms in Eqn (3.43). The

coefficients A ... RHS 2 ,j are given by

A3 x n P33 (3.44)

2j x 2 n

2j =x 2j y/i (3.45)

C )=xn P13 (3.46)

D = V n P3- Q3 R e (3.47)D23xQ 3  /

E 23 = xi ( Up- UM )/ A _ Txn .2j + Q2j / Re (3.48)

F23= -_4, p1) -n/ Re (3.49)

RHS. = ( UP (A)l~ U (n,+

, n xi 4i_1, y + Tnyn .x jn  x n ,yn (3.50)

Eqns (3.1) and (3.2) are solved using a special form of the

Thomas algorithm for two partial differential equations.

This algorithm, which is described in Appendix A, generates

the solution to a block 2x2 set of equations in terms of

recurrence coefficients. For the viscous region, the

solution will have the form

R T +  + T (3.51)
i i i'J+1 1) 'ij+1 +ii
R2j Vi,j+1 + S2j 'i,j+l + T2j (3.52)
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U The terms R ... T2j are the recurrence coefficients.

3 Boundary conditions are written in the form of Eqns (3.51)

and (3.52) to find the recurrence. With the recurrence known

at a boundary, the block tridiagonal algorithm can generate

the remaining recurrence coefficients. There are two ways of

solving the problem. The first way uses the wall boundary

conditions to generate the recurrence and the interface

conditions to generate the solution from Eqns (3.51) and

(3.52). The second way is to use the boundary conditions at

the interface to generate the recurrence and use the wall

conditions to generate the solution. Since the current

coupling scheme finds the solution at the interface, the

first approach is taken. The wall boundary conditions are

3 given by Eqns (2.54) and (2.56). Since IF is zero at the wall

and T and w at j=2 are non-zero, in general, it follows from

Eqn (3.51) that

RI1 = 0 (3.53)

Sl1 = 0 (3.54)

TI1 = 0 (3.55)

The other recurrence at the wall are found by expanding Eqn

(2.56)

y0 -yy'y=O

into the form of Eqn (3.52) and comparing the coefficients of

T and '.
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i The resulting recurrence are *

R22 = -( Q31 + Q11 ) / o (3.56)

S2 2  = 0 (3.57)

T22 =0 (3.58)

With the recurrence known at the wall, the block tridiagonal

solver can generate the remaining recurrence, where each

3 block is a 2x2 matrix. Eqns (3.51) and (3.52) are then used

to find the solution from the boundary condition at the

interface.

Method II

U Solution Procedure. The governing equations for this

method are Eqns (2.37) and (2.39) in the viscous region and

Laplace's equation (2.21) in the inviscid region. The

3 inviscid solver is similar to the inviscid solver of method I

with one exception. The lower boundary for this method

3 takes the shape of the displacement thickness 6* as shown in

Figure 7. The inviscid solver now solves for flow over a

displaced body where 9 = 0. The remaining boundary

conditions are unchanged. A shear transformation is applied

to Laplace's equation to allow for a uniform grid in the

computational domain. The solution procedures is as follows:

1) Assume an initial 6 Solve the inviscid region

using the SLOR algorithm.

2) Evaluate Ue and Ve along the displaced body from the

inviscid solution.
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Y. = '7 .23

Inviscid Flow over

body defined by '

Y,= 4.73

0 1 Viscous Region

x 1=.05 x x2 =.489

Figure 7. Flow geometry for Method II

38



3) Use a Runge-Kutta method [201 to solve for 6 and Cf

in Eqn (2.37) and Eqn (2.39), repeated here as

d/dx[ Ue ] + Ue (dU /dx) = U 2 C /2e e e e f

m e = d/dx ue 6 ]- dUe/dx

The momentum thickness 8, and the displacement thickness 6

are written in terms of 6 and Cf from Eqns (2.32) and (2.33)

assuming a streamwise velocity profile based on the shear

stress at the wall. This results in two equations and two

3 unknowns. Note that Uef Ve and dUe/dx are known from Step 2.

4) Repeat steps (1) through (3) until 6 does not

change.

Inviscid Region. The model for the inviscid region is

T +'I = 0
xx yy

A shear transformation given by

=x (3.59)

y H(x) (3.60)
*

H(x) = Ye - 6 (3.61)

is applied to allow for a uniform grid in the computational

domain. The transformed Laplace equation becomes

IVU + a T + T l + C T ) 0 (3.62)

where

a = 2 H ( 1- ) / H (3.63)
x

= [Hx2 (1- 9 2  + I / 2 (3.64)

I= (1-TI) ( H Hxx - 2 Hx2 ) /H 2  (3.65)
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Finite difference forms of the derivatives in Eqn (3.62) are

given as

Y :(Pi+i - 2 P + ) / AE2  (3.66)

Tq=( 3 T -IF ) / 4 An AF
1,3+I 4 Vi-l,j+l + i-2, j+l

3 4,3 , +

+ T )-2,j-1 / 4 An 6E (3.67)

2 T( ' -2 . + ) / AP2  (3.68)r/r; i.,3+1 ,I, -

If ( -P ) / 2 6n (3.69)
l~j~l ,j-I

where a three point backward difference scheme is used for

Vr, when i > 2. A two point backward difference scheme is

used at i=2. Substituting Eqns (3.66)-(3.69) into Eqn (3.62)

and rearranging gives

A4  1 + B 4 1 + C 4 = RHS4  (3.70)4 ,j-1 4 i,j 4 i,j+1

where
I -3~ __B S

A = x + A 2  ( (3.71)4 4 Lrj A 2~

i -2 2
B 2 Aj (3.72)

i 3a + +C4 4 AT) A r 2  2 Ar) (3.73)

RHS 4  (-T i+l,j)/A 2 - / i-l,j/2 + a 1 iI,]+/wtg

a _- i_2,j+i /4 4A - a Ti-i,j- /A7AE

+ a Ti-2,j-/4AnA& (3.74)

A similar form of the equations are obtained for the case of

i=2.
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I Relaxation is now added in the same manner as the finite

difference inviscid solver. Solve for '3 in Eqn (3.70) andsolver, ~i,J nEn(.0 n

substitute into the right hand side of the relaxation

3 relation

If 1 - W ) n + W Y (3.75)

I to obtain

A4 ij'jI + B4 1i,j + C4 Ti,j+l =RHS4  (3.76)

where

A4 = W A4  B4  (3.77)

B4  = 1 (3.78)

C4 = W C4 /B 4  (3.79)

RHS 4 = ( W RHS 4  B4 ) + ( 1 - W ) 'Pn (3.80)

Boundary conditions are now applied to find the values of

A 4..RHS4 for the special cases of j=2 and j=JMAX-l. At j=2,

IP = 0, and therefore

A 41j= 2 = 0 (3.81)

At the outer boundary the conditions are given by Howarth's

velocity profile, rewritten as

Iyl'P aSAx = PY(I) (3.82)

IEquation (3.82) written in finite difference form in the
3computational domain yields

Ti,JMAX = T i,JMAX-1 + H PY(I) AP (3.83)

UEquation (3.76) written at j=JMAX-1 is simply

A4 Ti,JMAX-2 + B4 Ii,JMAX-1 + C4 Ii,JMAX = RHS4 (3.84)

1
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I Substituting Eqn (3.83) into Eqn (3.84) and rearranging gives

the coefficients A4 . .RHS 4 at j=JMAX-l as

RHS 4 = RHS4 - C4 PY(I) H An (3.85)

B 4 = B4 + C4  (3.86)

C4  = 0 (3.87)

i where the order of these calculations must be honored. With

all the coefficients known, the system solver used in the

other inviscid solver can be used. The solution procedure is

3 identical at this point to the previous inviscid algorithm.

Viscous Region. The solution to the IBL equations

3 (2.37) and (2.39) start by assuming a streamwise velocity

profile written in terms of the wall shear stress. The

general form is given by

u = AU + BUy + CU y2 + DU y3 + EU y4 + FU y5 (3.88)

where AU-FU are determined by the boundary conditions

I (1) ulyo 0 0

3 (2) Ujy=6 Ue

(4) Uyyly=6 = 0

(5) u = tw/P

(6) Uyyyly=0 = 0 (3,89)

A fifth degree polynomial was chosen after it was found that

a fourth degree form did not provide adequate accuracy.
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I Imposing Eqn (3.89) on Eqn (3.88) results in

AU = 0

BU = r lP

CU = (10/3) U 6- - 2(r /P) 6

DU = 0

EU = 2(T w/p) - 5

I FU = (8/3) Ue 3-5 - (w/P) 6 -4 (3.90)

Eqn (3.90) can be put in non-dimensional form using Eqn

(2.35), rewritten here as

3 Cf = 21w/PUt 2

and by considering the non-dimensional forms given in Eqn

j3.4). Eqn (3.90) in non-dimensional form is therefore

* AU = 0
BU = R C f/2

CU = (10/3) Ue 6-2 -R e Cf 6

DU = 0

EU = ef 6 - 5 U 
44

FU = (8/3) U 6 - (Re/2) (3.91)

I Eqn (3.91) substituted into Eqn (3.88) defines the

non-dimensional form of the streamwise velocity u. Eqn

(3.88) can now be substituted into Eqns (2.32) and (2.33) to

obtain expressions for the momentum and displacement

thicknesses in terms of Cf and 6.

I
I
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While these calculations for Cf and 6 are straightforward,

they are also very long and tedious for the case of finding

the momentum thickness e (See Appendix C). The results are

*: given as
-2 -1

SA 5 - B C f5 Ue  (392)

where,

A =4/9 (3.93)

B = R e/30 (3.94)

and

Cf 62 Ue I e E 3 U -2 (3.95)

where,

C = 0.115440115 (3.96)

D = 8.297258e-03 Re  (3.97)

E = 1.695526e-03 Re (3.98)

Eqns (3.92) and (3.95) can now be substituted into the IBL

equations

d/dx[ Ue 20 ] + Ue (dUe/dX) 5* = Ue2 C f/2 (2.37)
6*

Ve = d/dx [ Ue ] - 6 dUe/dx (2.39)

to obtain two equations in two unknowns, 6 and Cf. Once the

equations are solved, 6 can be found from Eqn (3.92) to

obtain the new shape of the displaced body for the next cycle

of the inviscid solver discussed in the previous section.
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Two methods for solving the IBL equations are Newton's

method for finding roots of algebraic equations and the

fourth order Runge-Kutta method for integrating first order,

ordinary differential equations. Both were implemented for

the IBL method, but only the Runge-Kutta method [20] was used

in the final results. The IBL equations are written as

d6/dx = (c , ) (3.99)

d(Cf)/dx = FICf,6) (3.100)

where F and F, are functions of Cf and 6. The integration

starts at x= .05 and ends at x, = .489. The expressions

for F and F2 will now be found. Eqn (2.37) written in terms

of C f and 6 becomes

2UeUexC6 + CUe 26x + DUexCf2 + DUe62Cfx + 2DU eCf 66x

-2ECf6 3Cfx - 3ECf 2626X - Ue2Cf/2 + UeUexA

- BUexCf62 = 0 (3.101)

While Eqn (2.39) becomes

Ve = A6xUe + A6 Uex - 2BCf66x - B62 Cfx - Uex 6  (3.102)

F1 is found by solving for Cfx in Eqn (3.101) and

substituting into Eqn (3.102). This results in an equation

of the form of Eqn (3.99), where

F 1l(Cf') = -Uex - 2BC63U zexZ-I- BDC f6 4 U exZ-

+(1/2)BCf6 2Ue 2 Z-1 - ABUe6 3UexZ'l + B2Cf64UexZ-

+Uex6 + Ve /K (3.103)

45



I and,

z U = D 2 E C 6 (3.104)

K = AUe -2BC f + BC6 2U 2 z-1 + 2BDCf6 3UeZ-1

I - 3BEC (3.105)

F2 (Cf,6) is found by solving for 5x in Eqn (3.102) and

substituting into Eqn (3.101). The result is1 ., (C 5) = [ -2UU c -cu 2QDU co2 -2DU cQ
F.)Cf'5 2 e UexC6 C e 2 Uex Cf 2UeCf6

3ECf 2 52Q + Ue2Cf/ 2 - AbUeUex

+ BUex C ] / M (3.106)

* where,

P = A U - 2 B C f (3.107)

Q =P- (Ve _ A 6 Uex + ) Uex (3.108)

i M p- CUe2B62 + 2BDUeCf3 _3EBC3f.204

+DU e62 - 2ECf 63  (3.109)

With F and F2 determined, Eqns (3.99) and (3.100) are solved

using a fourth order Runge-Kutta algorithm. The solution

produces Cf and 6 for each streamwise location. The

displacement thickness 3 is calculated and used as the input

to the inviscid solver, which produces a new Ue, Uex and Ve

I from the inviscid solution. This cycle continues until the

* convergence criteria on 6* is satisfied.

4I
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i Method III

This method solves the Boundary Layer (BL) equations in

the viscous region and uses the Hilbert Integral, Eqn (2.47),

to obtain the viscous correction to the inviscid velocity.

The ANS equations used in the finite difference method are

reduced to the BL equations by setting xx = 0. The solution

procedure is as follows:I *
(1) Assume the displaced body defined by 6 (x).

(2) Solve the BL equations by solving Eqn (2.19) and

(..20) with Txx = 0. The boundary condition at the outer

boundary is known from prescribing 6 in (1). Calculate

Ue,bl. the streamwise velocity at the BL edge.

(3) Solve the Hilbert integral

i u x-I fx2 [d(Ue6*)/dE] (x- )/r2  dk (2.47)I 1l

using trapezoidal integration. On the first pass Ue in Eqn

(2.47) is set to Howarth's velocity, PY. On later passes Ue

is taken as the current value, which will be denoted as Ue, h*

i Calculate the inviscid BL velocity Ue,h as

Ue,h = PY + 6u (3.110)

(4) Generate a new 6(x) based on Ue,bl and Ue,h using

the following relation

n1= ( * n Uebl / Ue,h) (3.111)

i

i 4

.. .... ... . ..I- m M m m m m a



I

This simple method for updating 6 was used by Carter and is

described in Reference 11]. It was noticed that small

deviations in the local Ue tends to preserve the volume flow

rate per unit width in the BL. Therefore, Ue 6 a constant.

A local decrease in Ue (adverse pressure gradient) causes an

increase in 6* and vice versa. Adding over-relaxation to Eqn

(3.111) results in

6* n+1=6* n l + W( (Ue,bl/Ue,h) - l)] (3.112)

(5) With a new 6*, repeat (2)-(3) until U e,b = Ue,h
within a set tolerance level.
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IV Results and Discussion

The three methods discussed in Chapter 3 were applied to

Howarth's flow over a flat plate. The flow is incompressible

with a Reynolds number of Re =20800. Results are given and

comparisons made where applicable. Discussion on the

significant aspects of each method are also given.

Method I

The flow geometry for this method was shown in Figure

2 of Chapter 2. Briley [161 solved this problem with an

Alternating-Direction-Implicit (ADI) scheme using the full

Navier-Stokes equations. The fundamental difference between

Briley's approach and the current approach is the treatment

of the solution domain. Briley solved the Navier-Stokes

equations within a single region where no distinction is made

between inviscid and viscous flows. The current solver

breaks up the solution domain into a viscous region and an

inviscid region that are implicitly coupled together. The

advantage of the current method is clear if the inviscid

region is much larger than the viscous region. For this

case, the relatively simple inviscid model is solved over

most of the domain while the ANS equations are solved over a

small region of that domain. Using the full Navier-Stokes

equations in such a domain would be quite expensive in terms

of computation time. However, Briley selected an outer

boundary that is very close to the edge of the boundary
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layer. Therefore, a comparison of computation times between

these two methods will not demonstrate the utility of the

current method. It can be said, however, that the larger the

inviscid region, the greater the amount of computational

savings using the current method versus using the

Navier-Stokes equations in a single solution domain.

Briley's work was used as a checkcase for the current

finite difference method. The displacement thickness 6 from

Briley was prescribed at the edge of the current viscous

solver. The resulting coefficient of friction compared very

well to Briley's Cf as shown in Figure 8. The grids used for

this comparison were (35x30) for Briley and (151x74) for the

current viscous solver. The comparison shows that the

viscous solver is working properly. The entire current

method was then run for the case of a coarse (30x35) grid

used by Briley, an intermediate (76x74) grid, and a fine

(151x74) grid. The inviscid grid was the same as the viscous

grid in the number of x points with 4 grid points used in the

y direction. All the grids were uniform. The resulting Cf

and 3 are shown in Figures 9 and 10 respectively. The

difference in the separation region is due to the treatment

of the boundary conditions. With the current zonal technique

the boundary conditions are not imposed the same way as in

Briley's case.
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Briley 116] prescribed zero vorticity and Howarth's velocity

at the outer edge of his solution domain. In Method I, the

condition of zero vorticity is imposed at the edge of the

boundary layer and Howarth's velocity condition is imposed at

the outer boundary of the inviscid region. It is this

distinction in the boundary conditions that accounts for the

differenze in the two solutions. When prescribing 8 at the

edge of the viscous region, as was done for the case shown in

Figure 8. the separation region grows as the grid is refined.

However, as Figure 9 shows, the current method produces a

smaller separation region as the grid is refined. This event

is explained by examining Figure 10, which shows that

refining the grid in the current method produces a lower 6

This results in a lower Cf as well. In Briley's case,

however, the same 6 is prescribed for each refinement of the

grid. The two approaches are fundamentally different.

Streamline contours for the current method are shown in

Figure 11 for the intermediate (76x74) grid. The x axis was

scaled for plotting purposes only, and represents the plate

for x1 =0.05 to x2=0.489. The important result from Figure 11

is that the streamlines at the interface (Y=4.73) are

completely continuous. The coupling scheme produces a smooth,

continuous solution between the viscous and inviscid regions.
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Figure 12 compares the predicted inviscid velocity at the

interface using Method I to Howarth's velocity. The

difference in these two curves is due to viscous effects.

The current method was also run for a higher value of

the corner velocity X0, with the expectation that a higher X0

will result in a longer region of adverse pressure, which

should result in a larger separation region. This was

exactly the case as shown in Figure 13. Here X0 was

increased from 0.2 to 0.21. The resulting increase in the

separation region is apparent from the figure.

The computation times for the current method for the

coarse, intermediate, and fine grids are 55, 579, and 4101

CPU seconds respectively on the ASD CYBER. The convergence

history for the intermediate grid is shown in Figure 14. The

residual tolerance was 10" for all grids. The approximate

memory use is 14600 words for the intermediate grid.
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i Method II

3 The IBL method was described in Chapter 3. The fifth

degree velocity profile, along with the IBL equations, modeled

the viscous region. The inviscid region solved the finite

difference form of Laplace's equation for a non-uniform grid.

The inviscid grid is (76x51), with the outer boundary at the

same location as the finite difference method. The residual

l tolerance value is 10-6. Relaxation was used in the inviscid

region where W was finally chosen to be 1.3.
*

The IBL method was first executed with 6 and U frome

the finite difference method used as the initial conditions.

For this special case, the inviscid solver is not required

since U e is given. The normal velocity can be calculated

knowing 6 and Ue* The resulting Cf for only one iteration

of the method is shown in Figure 15. The excellent agreement

between this Cf and Briley's Cf demonstrates that the method

can be a useful alternative to solving the viscous region.

I The CPU time required to solve the viscous region is 0.122

3 seconds on the ASD CYBER. In addition, Figure 15 shows that

this rather simple method is clearly capable of solving for

flows with an adverse pressure gradient; including flow

separation. Further iterations of the current IBL algorithm

results in an instability in the solution, which result in

very inaccurate values of Cf past x 2 0.3. The primary

reason for this behavior is thought to be the assumption of

the velocity profile.
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Figure 16 shows the resulting Cf for the case of a fourth

degree and a fifth degree velocity profile with the same

inputs of 6 and Ue' Notice that the improvement in the

solution between the two cases is due to the accuracy of the

assumed velocity profile. The fourth degree profile was

generated with the same boundary conditions as the fifth

degree profile, except that u yyy= * 0 for the fourth degree

profile. Further accuracy in the method should be attainable

by specifying a sixth degree profile, where Uyyyy=6 = 0

would provide the additional boundary condition.

An additional run with the IBL method was made to

investigate the small ridge in the Cf of Figure 14 at x=0.2.

This ridge is believed to be caused by a slight irregularity

in the input 6 To confirm this hypothesis, a sixth degree

polynomial was generated to have the approximate shape of the

displacement thickness. This 6 is shown in Figure 17. The

Ue was obtained using the inviscid solver. The resulting Cf?

shown in Figure 18, shows that smooth, continuous output is

obtained from the method when a smooth 6 is used as the

input. This verifies that the small ridge in the Cf of

Figure 15 is due to an irregularity in the displacement

thickness. This is an important point, since the inviscid

solver uses first and second derivatives of 6 to obtain the

transformation parameters of the computational grid.
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The total CPU time for one cycle of the IBL method is

5 38.622 seconds, where 38.5 of this time is due to the

inviscid solver and the calling program. This time can be

greatly reduced by using less grid points, by reducing the

residual tolerance to 10 5, and possibly by using an ADI

method. The memory requirements are approximately 17000

words. of which 11,628 words are used to store the

transformation parameters a, 0, and C over the (76x51) grid.

These parameters are stored to calculate the residuals. A

scheme could be developed to calculate the residuals locally

in the flow by saving only three local columns of the data.

This would reduce the total memory requirements down to

approximately 5500 words.

Method III

Method III was explained in Chapter 3. The boundary

layer equations are solved over the viscous region. The

Hilbert Integral, Eqn (2.47), is then solved to obtain the

correction to the inviscid velocity due to viscous effects.

The method iterates until Ue from the boundary layer

calculation matches Ue obtained from the Hilbert integral

calculation. The resulting Cf for this method is shown in

Figure 19 for two values of X The data near the inlet at

xI and at the corner position X0 required smoothing due to a

weak instability at these points.
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This instability was also noticed by Cebeci and Stewartson

i[211, who added several modifications to their algorithm to

smooth the introduction of the Hilbert integral near the

inlet. The most severe modification was the addition of an

artificial correction term to the Hilbert integral that added

a maximum 5u at the inlet and added less 5u as x increased.

Cebeci also multiplied Re by the term cosec((x-x1 )/2Ax) in

the integration over the first four points to further smooth

the data. The only modification to the current method was to

smooth the data near the inlet and near the corner position

X 0  Adding an artificial term to 6u may help smooth the

resulting data, however it also directly adds an error to the

solution. Indeed, Cebeci's result for Cf showed no

separation at all for the case of X0 = 0.21. Figure 19

clearly shows separation for this case and is in excellent

qualitative agreement with Briley's result. The slight

irregularity of the solution in Figure 19 near the inlet is

of little concern. Additional smoothing can be done but

it will not affect the overall trends in the solution. The

displacement thicknesses for the current method are shown in

Figure 20. They are in qualitative agreement with the 6*

from the finite difference method and from Briley's results.

The resulting boundary layer edge velocities are shown in

Figure 21. UEBL is Ue from the boundary layer analysis and

UEH is from the Hilbert integral calculation. As expected,

the two profiles match for the converged solution.
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The CPU time for this method was 60 seconds. An

over-relaxation of the solution was used where W=1.3. The

convergence criteria specified that the maximum difference

between UEBL and UEH at any x location be less than 15x10

This criteria resulted in 39 iterations to achieve

convergence. The convergence history is shown in Figure 22.

The ordinate represents the error in Ue normalized from the

error of the first iteration. The method required

approximately 14900 words of memory.
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I'
Comparison of Results

The CPU times and memory requirements are summarized in

Table 1. Also presented are the average absolute errors

(taken over five points in x) between Cf of the current

methods and Briley's Cf. For Method I, Cf from the

intermediate grid is used in the comparison since the other

methods have the same number of x points (See Figure 9). The

skin friction coefficient for methods II and III can be found

in Figures 15 and 19 respectively. In Figure 19, the
X= 0. case is used.

CPU Time Memory Mean Cf error

Method I

-course (30x35) 55 sec

-inter. (76x74) 579 sec 14.6 KW 0.096

-fine (151x74) 4101 sec

Method II (I cycle)

-viscous 0.122 sec 0.1

-inviscid (76x51) 38.500 sec 5.5 KW

Method III 60 sec 14.9 KW 0.14

Table 1. Summary data for Methods I,II, and III

* using local scheme to calculate residuals

** after smoothing
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V Conclusions and Recommendations

U Method I uses finite difference equations with SLOR

3 sweeps for solving the ANS equations in the viscous region

and the stream function equation in the inviscid region. An

implicit coupling scheme matches the two solutions. The

solutions obtained from Method I compared well with full

I Navier-Stokes solutions. The coupling scheme developed for

this method provided an efficient means of patching the

viscous and inviscid regions. In addition, an initial

3 displacement thickness is not required to start the solution.

The cycle time for the course grid was the fastest of any of

3 the three methods, with the resulting skin friction

coefficient very close to that of the finer grids.

Method II uses finite difference approximations for

3 solving the stream function equation in the inviscid region

and a fourth order Runge-Kutta method for solving the

3 integral boundary layer equations in the viscous region.

Method II was shown to give very good for the first

iteration. Solutions for Cf past the first iteration become

less accurate. It is recommended that a velocity profile

specified by a higher order polynomial be used to determine

if an improvement in the stability of the solution can be

achieved. The major contribution of this method is the

efficient viscous solver. The solution to the boundary layer

equations was reduced to finding the solution to a coupled

74



set of first order, ordinary differential equations that were

sclved using a simple fourth order Runge-Kutta method.

Method III obtained the inviscid flow solution by a

panel method, while the viscous flow solution is obtained

using the finite difference form of the boundary layer

equations operating in an inverse scheme. The solutions

obtained from Method III were in general agreement with the

known solutions.

For the current model problem and geometry, Method I

provided the best overall performance as evidenced by the

data given in Table 1 of Chapter 4. However, for more

complex geometries, Method II would have the best potential

for providing efficient solutions with a minimal amount of

required memory.

Any further study of these methods should consider the

extension to 3-D flow, compressible flow, and also to flow

over more realistic geometries.
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Appendix A: Tridiagonal System Solvers

Single System of Equations

This algorithm was obtained directly from Appendix A of

Reference [11. It is used in the current work to solve the

3 system of equations resulting from the finite difference form

Qf Laplace's equation, written in general form as

A 'P + B IF+' I 9'j+ RHS 3(lIAj i,3-l j 1,) j i,j+lI (l

where i is fixed and 3 varies from 3=2 near the interface to

3=JMI near the outer boundary. Writing Eqn (al) for all

3 values of j results in the matrix equation

1B , C ,2  . . 0 4i,2 RHS2)

A1,3. . C , = RHS

Bi3 ,MI RHSJMI
0AiJM1 C 1mjiJM1J RSij

where the terms Ai, 2 and C ,JM1 are written in terms of the

remaining coefficients from the boundary conditions. The

algorithm simply takes matrix (a2) and cast it into upper

triangular form by performing a series of row operations,

given as

Bi, 3 = Bi j - Alj Ci,!_I/ Bi,3_ 1  (a3)

RHSj = RHSJ - Ai,j RHSi,jI/ Bi,]_ 1  (a4)

Where the equal sign implies replacement as in the FORTRAN

programming language. The upper diagonal terms remain

unchanged because of the tridiagonal form of the equations.

The equations can now be solved by simple back substitution

starting at j=JMI and marching upwards.
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Block Tridiagonal Solver

This algorithm was obtained from Reference [22]. The

general features of the solver are exactly like that of the

Thomas algorithm described in [1] except for the current case

a block 2x2 set of equations exist.

The finite difference representations of the governing

equations can be written in the following general form

A + B + C +DW +E + F G 1  (a5)A1 J-1 ~ 1 J+1 DIJ- EI F -

J-1 2J C2 J+1 2J-1 2J 2 J-I G 2  (a6)

where the coefficients are functions of the grid and the J

subscripts denote the normal direction. Define the

recurrence relations as

'J = R jIJ+ + S i J+l + T (a7)

W = R2J IFJ+ + S 2JWJ+I + T-j (a8)

Equations (a3) and (a4) were chosen this way to allow for a

marching scheme that calculated the recurrence coefficients

R1 ,SI,T 1 ,R2 ,S2 1T 2 starting at J=O and marching towards

J=JMAX. Then the solution T(, cj are found by knowing the

boundary condition at JMAX and marching the solution towards

J=Q knowing the recurrence coefficients. The marching

direction is arbitrary, but choosing the marching in this way

is compatible with the development of the viscous/inviscid

coupling scheme used in the present work.
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Substitute (a7) and (a8) into (a5) and (a6) to get

AI(R 1 ,j_ 1 I j + SIj_ 1 W + TIlj_1

+ B IT + C 1 TJ+l +DI(R 2 ,J-1 J
+ S 2,J-1 WJ + T2,J-1)

+ E + F w "
I J+l 1 (a9)

and

A2{RIIJ- T + S ,J-I UJ + T1,J-I)

+ B TI + C, T_+D,(R _ + S, + T3 J-1 2 2),J-1 J 2,J-1 ,-

+ E 2 WJ + F 2 WJ+l 2 GI (alO)

Now rearrange (a9) and (alO) into the form

a1 1'J + C1 J+l + b1 IJ + F1  l = dI (all)

a,)J + C2 TJ+l + b2 2 + F2 J+l d2 (a12)

wher a, B I +A I + D 1 R 2 , 1 a 3
a2  B 2 + A 2 R',J1 + D2 R2,J-1 (a14)

bI 2 1 + A P +D ,J-l 2 2,J-l (a14)
b =E 1 + A1 S + D1 S (alS)

2l ,J-1 2,J-1Ib E z + A st~_ + D s2_ (a16)

d G1 - A 1 TI,j_1 - D1 T2,J- 1  (a17)

d2 G 2  A2 T1,J-1 D2 T2,J- 1  (al8)

Now multiply Eqn (all) by b2 and multiply Eqn (a12) by b and

subtract. The resulting equation after some rearranging is

TJ = ((C2 bI - C1 b 2 )/D 0 ) TJ+l + ((F2 b1 - F1 b 2 )/D 0) J+l

+ ((d I b - d2 b,)/D0) (a19)

where

D = a1 b 2 - a2 b1  (a20)
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I Compare Eqn (a19) to Eqn (a7) to find

R = (C2 bI - C 1 b2)/D 0  (a21)

Sj = (F2 b1 - F1 b2)/D 0  (a22)

I Tj = (d b2 - d2 b)/D0  (a23)

The remaining recurrence coefficients are found by

multiplying Eqn (all) by a, and multiplying Eqn (a12) by a1

and subtracting. The vorticity is rearranged in the form of

Eqn (aS) to find the recurrence

= (C1 a2 - C2 a,)/D 0  (a24)

3 Sj = (F1 a2 - F1 aI)/D 0  (a25)

T2J = (aI d2 - a2 dl)/D 0  (a26)

I With the recurrence known, th solution can be obtained from

-I Eqns (a7) and (a8). Notice from Eqns (a13)- (al8) that the

recurrence at the J-1 level are needed to generate the

solution. The specification of the boundary conditions at

the wall (J=1) gives the recurrence for J=1. Knowing this,

I the remaining recurrence are calculated.

I
I

I
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l Appendix B: Finite Difference Expressions

The general finite difference expressions for the

derivatives in the governing equations are presented here.

Because of the marching scheme, the derivatives in the normal

3 ry) direction can be taken as central difference while the

streamwise derivatives are generally taken as either forward

or backward difference depending on the flow direction. The

elliptic T term is taken as central difference.l xx
A non-uniform grid is assumed where the coordinates

l (x,y) represent the physical domain and ( ,Q) represent the

computational domain with indices i,j respectively. The

l metrics of the transformation are calculated as

Yj= 0.5 (ylj+2 + yj-/) (b)

where,

l 3y1/2 = y9/y3+1 - y) (b2)

andln yI-1/2 = Yj -1 )  (b3)

and

lxli : 0.5 ( xli+1/2 + xii-i1/2) (b4)

where,

Exli+1/2 =  /(xi+l - xi) (b5)

E xii-1/2 = 4/(xi - xi-1 ) (b6)

I
l
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The derivatives calculated in the physical domain can now be

expressed in terms of the computational domain by simple

application of the chain rule.

1yjj = 0.5 ( 'ylj+1/2 + "yjj-1/2

= 0.5 ( Pylj+l/2 91ij+1/2 + PyIl/ 2 In _1/2 )

= 0.5 Pylj+1/2 ( j+ -' ) / Ar

+ 0.5 nyjj-1/2 ( 3 - ' ) / A
t-1

= ~ 'y+I - nyjj+l/2 - DyIJ-l/2) '

- ' yIJ-l/2 -l

1I j+I +2 j - P3 j- (b7)

where,

P = 0.5 ry7 J+I12 / n (b8)

P2! = -0.5 ( r ylj+l/2 - PyIJ-1/2 / A (b9)

P 3j = 0.5 y i/2 / Ar? (bl0)

Similarly,

yIj = Ij j+l 2j j p3 j-i (bil)

The first derivative expressions in x are simply

Vixi = cxli ( Ti - 'i-I ) / A (b12)

xii = Exii ( ( i - i-1 ) / A (b13)



U

I The second derivatives are found as follows

=YI fly,) (3/a('Y)

- yIj ( Tylj+I/2 - TY13-1/2 ) l

Q 1y3 (ylj+l/2 IV01+1/2 = 'yj-1/2 'P-1/2)/

I = IV'j+1 - Q '2 + Q3 j j-1 (b14)

where,

Q13 = Yi 'y13+1/2 /  (b15)

I = /Y ylj+I/2 + r)/ Ar2  (b16)

Q3  
= Y13 "y 1 3-1/2 /

Similarly,

I YYI3 = Q11 ) j+ - Q2j L + Q3 j (j3-1 (b18)

p The second derivatives in x will have the same form as the y

derivatives with the metrics interchanged, therefore

i P = K 'P - P + K3 'P (b19)Ixxli =KIi Ti+l - K 2i I i K3 -I b9

I where,

K 1i = xIi xli+I/2 g (b20)

K. = Fli ( li+/2l/2 ) / 2  (b21)

K3i = %xi xli-1/2 / 2 (b22)

I
I
I
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Appendix C: Details of Method II

The calculation of 6 and 6 in Eqns (3.92) and (3.95)

will be shown here in greater detail. The development of the

functions FI(Cf,6! and F2 (Cf,6 ) are also presented. Method

II assumes a velocity profile given by Eqn (3.88) with the

non-dimensional coefficients given in Eqn (3.91).

Substituting (3.88) into Eqn (2.32), repeated here as3

'S = I" ( -uIU dy (cl)|e

yields

1 J 5 - 5f eC-U Iy -((10/3)6--R C 1Ue-)y 2

S(ReCfUe- 16 3-5- 4)y 4 - (.1-5 - 0.5Re fUe-15-4)5]

(c2)

Integrating Eqn (c2) gives

6= y - 0.25Re Cf--l3(1/3)(10/3)

-(1/5)[ReCfUe- 16-3_564]y5
-(1/6)[(8/3)6-5-0.5Re C fUe 0 (c3)

which results in

6 6 -0.25ReCfU e 
16 2 (10/9)6 +(1/3)ReCfUe- 162

-(1/5)ReCfUe- 162 + 6 -(4/9)6 + (1/12)ReCfU e 162  (c4)

Eqn (c4) simplifies to

6* = (4/9)6 -(1/30)R C U 162 (c5)

which is Eqn (3.92) with the terms A and B from Eqns (3.93)

and (3.94) respectively.

I
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To obtain the expression for e in Eqn (3.95), substitute the

velocity profile, Eqn (3.88), into Eqn (2.33), repeated here

as

e 0 [U/Ue) -(u/Ue)2]dy (c6)

where the velocity profile can be written as

u = BU y + CU y2 + EU y4 + FU y5  (c7)

when BU, CU, EU, and FU are given by Eqn (3.91). Squaring

Eqn (c7) results in

2 3 5 6
u = BU y' + 2(BU)CUy +2(BU)EUy +2((BU)FU+(CU)EU)y

+C
2 4 (C)U 7  

'8 9 2 10 (8+ CU y + 2(CU)FUy + EU y + 2(EU)FUy +FU y (c8)

Substituting Eqns (c7) and (c8) into Eqn (c6) results in

9 f"0  [ (BU)Ue-ly 
+ (CU)Ue- I y 2 + (EU)Ue- y4 + (FU)Ue-ly 5

-(BU)2U -2y2 _2BU(CU)U e-2y3 _ 2BU(EU)U e-2y5
e e

-2(BU(FU)+(CU)EU)Ue 2y6 _ (CU) U-2y4 _ 2CU(FU)U e-2y7

-(EU) 2 Ue 2 y8 - 2FU(EU)U e-29 - (FU) 2 0y] dy (c9)

where,

(BU)" = Re Cf /4 (clO)

BU(CU) = (5/3)Re C fU - (1/2)R e2Cf6-1 (cl)

BU(EU) (1/2)Re2 C f26-3 - (5/2)Re C fU e6-4 (c12)

BU(FU) = (4/3)ReCfUe6- 5 - (1/4)Re 2 Cf 26 - 4  (c13)

CU(EU) = (25/3)Re C fUe - R e2C f26-4

-(50/3)Ue266 (c14)

84



BU(FU)+CU(EU) = (29/3)R eCf ue -(5/4)R e2C26-4

-(50/3)U 25- 6  (c15)
2e

(CU)2  = (100/9)Ue16-4 -(20/3)R C Ue( - 3

e ef e

I2~ 2 -2
-Re2Cf26 (c6)

2t-7 (3/)efe-
CU(FU) = (80/9)U e  C U

+(I3 !2)Re2cf26-5 (c17)

(EU)2  R 2 Cf 26-6 -1OReCfUe 6- 7 + 25Ue 26- 8  (c18)

EU(FU) = (31/6)ReCfUe
6 -8 - (40/3)Ue 26 - 9

-(1/2)Re2 Cf26- 7 (c19)I e% f
22 -10 (839

(FU)' = (64/9)Ue (8/3)R efe

+(1/4)R 2f 26-8 (c20)
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Now integrate Eqn (c9) and substitute in Eqns (clO)-(c20)

to obtain

= (1/4) R C 62  + (1/3)U1(10/3 )U e - R e

+ (1/5)Ue 1[RCf - 5Ue5]5

S(1/6)U-[(8/3)U 6
- 5 (1/2)ReCf6-4]66

(1/3)U-
2 [R 2Cf2/4]63

- / Re  ' )--1 4
L '5 3 -- / )R

- Ue [5!3P 'eCf e e f 10

(1/3)Ue-2 (1/2)R eCf - (5/2)R C f64]66

- -2 [(29/3 )R)R e 2e-_  )
2  2 6- 4 _ (50 /3)U 26-6]57(2!7)Ueefe~ 'e e

- (1/5)U-2[(100/9)Ue26-4 (20/3)ReCfUe6- 3 +R e 2Cf26- 2]65

- /4)Ue- 2[(80/9)Ue 2 -(13/3)R Cfe 6 +(1/2)Re 2C f26-5 68

- (1/9)Ue-2 [R e2C f26- 6 10ReCfUe6- 7 +25Ue26 - 81 69

(1/5)Ue-2 [(31/6)Re C fU e6 8 - (40/3)U e2 6 9-(1/2)R 2Cf 61610

-(1/11)U e-2[(64/9)Ue 261
0 -(8/3)R CU e 9 +(1/4)R 2C 2-8]11

(c21)

Collect common terms in Eqn (c21) to obtain

= [(10/9)-1+(4/9)+(100/21)-(100/45)-(80/36)-(25/9)

+(8/3)-(64/99)]6 + [(1/4)-(1/3)+(1/5)-(1/12)-(5/6)+(5/6)
-(58/21)+(4/3)+(13/12)+(1O/9)-(31/30)+(8/33)]R eC f 62 Ue

- 1

+[(-1/12)+(1/4)-(1/6)+(10/28)-(1/5)-(1/8)-(1/9)+(1/10)

-(1/44)]Re2Cf 263U e- 2 (c22)
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Eqn (c22) reduces to

e Q 0.1154401156 + 8.297258e-03 Re C f62U e
- I

2 -1.695526e-03 Re2 263U e-2 (c23)
which is simply Eqn (3.95) with the values of C,D, and E

given by Eqns (3.96)-(3.98) respectively.

The expressions for FI(Cf,6) and F2 (Cf,6) will now be

derived. The process starts be writing Eqns (2.37) and

(2.39) in terms of Cf and 6. This results in Eqns (3.101)

and (3.102), repeated here as

2UU C6+CU 26 + DU exCf62 + DUe62C + 2DUeCf66UeexC +Ce x efe xefx

_2EC f 13Cfx - 3ECf22 x - Ue2Cf/2 + U e UexA6

- BUex Cf62 = 0 (3.101)

and

V e= A6 U + AU - 2BCf66  - B62C - U ex6 (3.102)Ve x e A6ex fx fx e

To find FI(Cf,6), solve for Cfx in Eqn (3.101) and substitute

into Eqn (3.102). The first step results in

C fx = -CUe 26x - 2C6Ue Uex -DCf62Uex -2DCf&6xUe

+3EC f2626 x +(/2)Cf U eUexA6+BU exCf 62 (c24)

where,

z = DU e62 -2EC 63 (c25)
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I Substituting Eqn (c24) into (3.102) results in
V= A6U + A6U -2BCf6 x
ye x e ex f x -

-B()[ -CU e26 x Z- 2C6Ue U exZ-1 -DC f 2U exZ -2DC f66x U eZ-

+3ECf2& 25xZ1+(/2)CfUe2 z -U eU exAz +BU exC f62z]_Uex5

I (c26)

The term 6x can now be solved in terms of Cf and 6 from Eqn

(c.26), yielding

Ax = I -AUex -2BC63UeZ-I Uex-BDCf64Z-IUex+(l/2)BCfS2Ue2z- 1

-U A6 3 Z-1 U ex+B 2C 4 Z 1 U ex+U ex6+Vj /K (c27)

3 where,
K = AUe -2BCf6+BCo2 U e2Z-I+2BDC f63U eZ-I3BECf264z-1 (c28)

I Eqn (c27) is Eqn (3.103) of Chapter 3, where 6 equals
' x

F1 (Cf,,) from Eqn (3.99). F2 (Cf,6) is found by solving for

6 -n Eqn (3.102) and substituting into Eqn (3.101). The

3 first step results in

6 Ve - A6Uex + 6U + B62CfjX/P (c29)

where,

P =A Ue - 2B Cf6 (c30)
Eqn (c29) can be simplified further by grouping the terms

that do not contain Cfx , that is

6 = Q + B6 2CfxP-I (c3)
ex/P(c32)where,

Q = [ e - AbU ex + 6UeJ /P (c32)
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Now substitute Eqn (c3l) into Eqn (3.101) to obtain

+ c u a [ Q B C 1 ] e f 2  e 2 f
2'C6UeUe+U e 'Q+ B)Cfx + DU exC f5+ DU e6Cf

+'.DUe f [Q+ 6)CfxPA - 2EC f 3EC f 6 IQ + B6 Cfx P I

I-(1/2)C fU e2 +UeU exA-EU exC f(2=0 (c33)

Now solve for C fx in Eqn (c33) to obtain

cfx = -2C6U eU ex CU e. Q - DUex Cf ~6 -2DU eC f 8Q + 3EC f 6Q

I+ (1/2)C f U e A5UeU ex+ B62 Cf UeJ/M (c34)

where,

M =BCT e P-+DUe 5+2BDU eC f 63 -E f53BECf (c5

I Eqn (c34) is Eqrn (3.106) of Chapter 3, where Cfx equals

3 F2 (Cfr5) fronm Eqn (3.100).

89



3 Bibliography

1. Anderson, D.A., Tannehill, J.C., and Pletcher, R.H.,
Computational Fluid Mechanics and Heat Transfer.
Hemisphere Publishing Corporation, New York, 1984.

2. Carter, J.E., "A New Boundary Layer Inviscid Iteration
Technique for Separated Flow," AIAA Paper 78-1450, 1978.

3. Vatsa, V.N., Carter, J.E., and Swanson, R.C., "Comparison
of Solutions of the Navier-Stokes and Interacting
Boundary-Layer Equations for Separated Turbulent Flow,"
Proceedings of the ISCME International Conference on
Computational Methods and Experimental Measurements,
Washington, D.C., June 1982, pp. 283-295

4. Edwards, D.E, and Carter, J.E., "A quasi-Simultaneous
Finite Difference Approach for Strongly Interacting
Flow," Third Symposium on Numerical and Physical Aspects
of Aerodynamic Flows, Long Beach, CA., Jan. 1985,
pp. 163-174.

5. Houwink, R. and Veldman, A.E.P., "Steady and Unsteady
Flow Computations for Transonic Airfoils," AIAA Paper
84-1618, 1984.

6. Rubin, S.G., Celestina, M., and Khosla, P.K., "Second
Order Composite Velocity Solution for Large Reynolds
Number Flows," AIAA Paper 84-172, 1984.

7. Swanson, R.C., Rubin, S.G., and Khosla, P.K.,
"Calculation of Afterbody Flows with a Composite Velocity
Formulation." AIAA Paper 83-1736, 1983.

I 8. Halim, A. and Hafez, M., "Calculation of Separation
Bubbles Using Boundary Layer-Type Equations," Recent
Advances in Numerical Methods in Fluids, Vol. 3TChap.
12, Pineridge Press, Swansea, United Kingdom, 1984,
pp. 395-415.

9. Halilm, A. and Hafez, M., "Calculation of Separation
Bubbles Using Boundary Layer-Type Equations," AIAA
Journal, Vol. 24, 1986, pp. 585-590.

10. Halim, A., "Development of an Iterative Boundary
Layer-Type Solver for Axisymmetric Separated Flows,"
AIAA Journal, Vol. 24, Aug. 1986, pp. 1298-1304.

90



I

11. Halim, A., "Global Marching Technique for Predicting
Separated Flows over Arbitrary Airfoils," AIAA Journal,
Vol. 25, Sept. 1987, pp. 1263-1266.

12. Brown, S.N. and Stewartson, K., "Laminar Separation"
Annual Review of Fluid Mechanics, William R. Sears and
Milton Van Dyke, eds., Vol. 1, Annual Reviews, Inc.,
1969, pp. 45-72.

13. Carter, J.E., "Inverse Solutions for Laminar Boundary
Layer Flows with Separation and Reattachment," NASA TR
R-447, 1975.

14. Meksyn, D., "New Methods in Laminar Boundary Layer
Theory," Pergamon Press, Inc., 1961.

15. Howarth, L., "On the Solution of Laminar Boundary Layer
Equations," Proc. Roy. Soc. (London), Ser. A, Vol. 164,
No. 919, Feb. 1938, pp. 547-579.

16. Briley, W.R., "A Numerical Study of Laminar Separation
Bubbles Using The Navier-Stokes Equations," J. of Fluid
Mechanics, Vol. 47, June 1971, pp. 713-736.

17. Schlichting, H., Boundary Layer Theory, McGraw-Hill Book
Company Inc., Fourth Edition, 1951.

18. Cgbeci, T. and Bradshaw, P., Physical and Computational
Aspects of Convective Heat Transfer, Springer-Verlag New
York Inc., 1984.

19. White, F.M., Viscous Fluid Flow, McGraw-Hill Inc., 1974.

20. Chow, C.Y., An Introduction to Computational Fluid
Mechanics, John Wiley and Sons, Inc., 1979.

21. Cebeci, T. and Stewartson, K., "On the calculation of
separation bubbles," J. of Fluid Mechanics, Vol. 133,
1983, pp. 287-296

22. Werle, M.J. and Bernstein, J.M. "A Comparative Numerical
Study of Approximations to the Navier-Stokes Equations
for Incompressible Separated Flow," University of
Cincinnati Report No. AFL 74-7-12, 1974.

91



VITA

Jeffrey C. Tromp

in 1978 *enrolled at Miami University of

Oxford, Ohio the same year. After a year at Miami, he

transferred to the University Of Cincinnati (UC) to pursue an

engineering degree. In 1983, he graduated from UC with a

Bachelors degree in Aerospace Engineering. He is currently

employed at the Flight Dynamics Laboratory at Wright

Patterson Air Force Base. In 1987, he was accepted into the

Long-Term Full-Time Training program at the School of

Engineering, Air Force Institute of Technology.

92



IUNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAC.

~Form Approved

REPORT DOCUMENTATION PAGE OMBNo, 0704-O188

Ia. REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS

UNCLASSIFIED
a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLA $sFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution unlimited

PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GA/AA/88S-1

NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/ENY

c- ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology

Wright Patterson AFB, OH 45433

NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO ACCESSION NO.

1 TITLE (Include Security Classification)

NUMERICAL STUDY OF THREE VISCOUS/INVISCID INTERACTION METHODS (UNCLASSIFIED)

2. PERSONAL AUTHOR(S)
Jeffrey C. Tromp

3a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 1S. PAGE COUNT
MS Thesis FROM TO 1988, September 105

6. SUPPLEMENTARY NOTATION

7. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP COMPUTATIONAL FLUID DYNAMICS, FLUID DYNAMICS,

NAVIER-STOKES EQUATIONS

9 ABSTRACT (Continue on reverse if necessary and identify by block number)

see reverse side

0. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
J]UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. C3 DTIC USERS UNCLASSIFIED

;2a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Jeffrey C. Tromp (513) 255-6526 AFWAL/FIGD

DForm 1473, JUN 86 Previous editions ore obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



ABSTRACT

The study of flows with viscous/inviscid interaction has
attracted many researchers over the last decade. These flows
occur whenever the adverse pressure gradient is large enough to
cause flow separation. The current emphasis is to find efficient
ways of solving these types of flows without solving the full
Navier-Stokes equations.

Three methods for solving the viscous/inviscid problem were
studied. The first method uses finite difference equations to model
both the viscous and inviscid regions. A coupling scheme is developed
to match the two solutions. The second method solves the integral
boundary layer equations in the viscous region and finite difference
equations in the inviscid region. The third method solves the Hilbert
integral to generate a correction to the inviscid velocity using the
boundary layer equations as the viscous model. The model problem used
in this work is Howarth flow over a flat plate.

The three methods were evaluated in terms of solution accuracy,
memory requirements, and computation times.


