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Preface

The efficient calculation of flows with viscous/inviscid

interaction has been the topic of much research over the past

several years. Three algorithms were developed to solve the

viscous/inviscid problem. The first method uses finite
di1fference eguations with successive line over;relaxation
{SLOR) sweeps for solving the approximate Navier-Stokes
eguations 1n the viscous region and the stream function

Il eguation in the inviszid region. An implicit coupling scheme
is developed to match the two solutions. The second method

l uses finite difference approximations for solving the stream
function equation in the inviscid region and a fourth order
Runge-Kutta method for solving the integral boundary layer
equations 1in the viscous region. In the third methed, the
inviscid flow solution is obtained by a panel method, while
the viscous flow soluticn is obtained using the finite
difference form for the boundary layer equations
operating in an inverse scheme.

I would like to thank Dr. A. Halim for his extensive
technical assistance with this work and for supervising this
thesis, and Dr. Shang of the Flight Dynamics Laboratory for
his encouragement and insightful comments. Special thanks
goes to Lisa, my fiancee, for her understanding and support

over the last year.
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Abstract

The study of flows with viscous/inviscid interaction has
attracted many researchers over the last decade. These flows
occur whenever the adverse pressure gradient is large enough
to cause flow separation. The current emphasis is to find
efficient ways of sclving these types of flows without
sclving the full Navier-Stokes equations.

Three methods for solving the viscous/inviscid problem
were studied. The first methcd uses finite difference
equations tc model both the viscous and inviscid regions. A
coupling scheme 1s developed tco match the two solutions. The
second method solves the integral boundary layer equations in
the viscous region and finite difference equations in the
inviscid region. The third method solves the Hilbert
integral to generate a correction to the inviscid velocity
using the boundary layer equations as the viscous model. The
mocdel problem used in this work is Howarth flow over a flat
plate.

The three methods were evaluated in terms of solution

accuracy, memory requirements, and computation times. f1~ﬂawhd .
{}1\#}’};.
n
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NUMERICAL STUDY OF THREE

VISCOUS / INVISCID INTERACTION METHODS

I 1Introduction

The aerodynamic performance of a flight vehicle is
greatly affected by the accuracy of the computational or
experimental methods used in the design process. Any
successful design must carefully account for the drag. The
viscous calculations have a substantial impact on the drag
estimation. Naturally, the full Navier-Stokes (NS) egquations
correctly estimate the drag on a flight vehicle. However,
their use can be costly and in many cases unnecessary.

Recent research has focused on the use of alternative
forms of the NS equations. These approximate sets of
equations are simpler and require fewer computations than the
NS equitions, but are valid only as long as their simplifying
assumptions are not violated. For example, high Reynolds
number flows over a body usually result in the formation of a
thin shear layer close to its surface. For this type of flow
the pressure gradient normal to the body and viscous terms
with derivatives in the streamwise direction can be neglected
by an order of magnitude analysis on the NS equations. The
resulting Boundary Layer (BL) equations are widely used for

many high Reynolds number flows. One of the attractive




features of the BL equations is that they are parabolic.
This implies that the solution can be marched in the
streanwise direction without iteration.

Another simplified form of the NS equations is the
Approximate Navier-Stokes (ANS) equations. The ANS equations
assume that only the viscous terms with derivatives in the
streamwise directicn are small; all other terms are retained.
The ANS equations fall between the Navier-Stokes and the
Boundary Layer equations in terms of accuracy. They are
useful because they are partially parabolized in the case of
subsconic flow and are a mixed set of parabolic/hyperbolic
equations for supersonic flow {(1]. The parabolized equations
allow for forward marching in the streamwise direction. For
subscnic flow, forward marching is still possible, however,
several iterations may be necessary to achieve convergence
since the equations still contain elliptic inertia type
terms.

Approximate forms of the NS equations are particularly
useful when used in recently developed zonal techniques.
These techniques divide the flow region into distinct zones,
each having a particular set of assumptions about the flow.
For example, when the Reynolds number is large the flow
region can be broken up into a viscous region (where the ANS
or BL equations can be used) and an inviscid region where a
greatly simplified inviscid model is used. If the viscous

region is small in comparison with the inviscid region the




computational savings can be substantial. This is true
because the mathematical model for the viscous flow will be
solved over a relatively small region while the larger
inviscid region uses & simple inviscid code. A coupling
scheme 1s employed in the zonal technigue to insure
compatibility between the two regions. The iteration of the
boundary condition at the interface of the two regions is the
mechanism through which the viscous and inviscid flow regions
interact. There are many approaches available for scolving
such probiems. The interacting boundary layer theory (IBLT)
was used by Carter |2), Vatsa et. al.{3), Edwards and Carter
{4} and Houwink and Veldman {5] to solve the viscous/inviscid
problem. 1In the IBLT, the viscous region is represented by
the boundary layer equations; the inviscid flow can be
represented in a number of different ways depending upon the
flow configuration and the Mach number. Rubin et. al.|[6] and
Swanson et. al.[7] used a composite velocity representation
of the inviscid and viscous flow regions. Halim and Hafez
{8-9}] solved the viscous and the inviscid regions using a
semi-implicit coupling technique. More recent efforts were
also successful using a fully implicit coupling method to
obtain efficient solutions (10-11] for viscous/inviscid

problems.




Any numerical method developed must be able to generate
regular solutions in the event of an adverse pressure
gradient. If separation occurs there is a restriction on
what can be used as the boundary condition to insure regular
behavior. It is known that the solution of the boundary
layer equations with a prescribed pressure gradient results
in singularity at the point of separation {12). The
gingularity at the separation point 1is independent of the
form cf the equations (i.e. integral or differential). The
work of Carter [(13] showed that regular solutions can be
obtained with an inverse appreoach in which either the
displacement thickness or the skin friction is specified. 1In
addition, the criterion of Meksyn [14] states that if Ue (the
velocity at the outer edge of the viscous layer) did not
include any correction due to the interaction between the
viscous and inviscid regions, then the boundary layer
solution would be singular at the point of separation.

In the present work, three methods were developed to
solve for subsonic flows with viscous/inviscid interaction; a
finite difference method, an integral boundary layer method,
and a Hilbert integral method. The presence of the boundary

layer is assumed to affect the solution of the inviscid flow

region.




In the first method, the finite difference form of the
ANS equations are solved in the viscous region while
Laplace's equation written in terms of the stream function is
solved in the inviscid region. A coupling scheme 1is
developed to find the stream function at the interface. One
cycle yields a new stream function distribution as opposed to
reference [4), where many cycles are needed. Each cycle is
equivalent to repeated Successive Line Over-relaxation (SLOR)
sweeps. Edwards and Carter [4] used repeated SLOR sweeps for
each new displacement thickness to determine the solution in
the inviscid region. The critical issues of this method are
the efficiency of the viscous solver and the development of
the fully implicit coupling.

The second method uses a finite difference scheme for
the inviscid region and an integral approach for the boundary
layer equations in the viscous region. The displacement
thickness now represents the shape of a displaced body over
which the flow is inviscid. A shear transformation is
performed in the inviscid region to allow for a uniform grid
in the computational domain. The inviscid solution will
produce Ue and Ve' The Integral Boundary Layer (IBL)
equations are written in terms of Ve, resulting in two
equations and two unknowns (& and Cf) when a velocity profile
is assumed. The displacement thickness can now be found and
used as the next boundary condition to the inviscid solver.

This cycle continues until convergence is achieved.




The ultimate goal of the IBL method is the development
of an integrated solver for the entire flow field. The key
to finding an integrated solver 1s to find an efficient
method for defining the displaced body.

The third method solves the finite difference form of
the boundary layer equations using the inverse mode. The
streamwis2 velocity at the boundary layer edge, Ue' is
written as the sum of the inviscid velocity plus a term which
accounts for the visccus effects. The viscous region is
solved tc¢ obtain Ue,bl‘ The Hilbert integral finds the
correction to Ue based on the displacement thickness used as
the input tc the boundary layer equations. The resulting
e h’ e,bl’ 1f Ue,h and
are not equal within a set tolerance, then the method

velocity, U will be compared with U

Ue,bl
continues until convergence is achieved.

The model problem chosen to develop the current methods
is Howarth (15) flow over a flat plate, which prescribes a
piecewise linear external velocity profile as shown in
Figure 1. The variation of the external velocity with x
implies a pressure gradient in the streamwise direction.
Flow separation can occur if the corner position XO is chosen
correctly. Briley [16] solved this flow using the full
Navier-Stokes equations, achieving separation with x0=o.2 for

Re=20800. The current work will also use xo=o.2 and Re=20800.
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The flow region, depicted in Figure 2, consists of a
two-dimensional rectangular area where the flow is subsonic
everywhere in the field. The upstream boundary begins at a
ron-dimensional length cf x=0.05 along the flat plate where x
1s in the streamwise direction and Y is in the direction
normal to the plate. The downstream boundary is at x=0.489
after Brailey. The outer boundary used in the present work
was Y = 7.23 where Briley used Y = 5.4 as the outer
boundary. The difference in the two outer boundaries is
present to allow for adequate grid resolution in the current
inviscid solver while also assuring that the interface is
pesitioned above the boundary layer.

Results of the three methods are presented and compared
to existing work. Solution accuracy, memory requirements,
and computation time are discussed and recommendations for

further study are given.
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II Analysis

Approximate Navier-Stokes (ANS) Equations

The develcopment of the ANS and IBL equations will start
from the full Navier-Stokes (NS) equations. For 2-D
incompressible, steady flow in the absence of body forces

[17) the NS eguations in dimensional form simplify to

U, * vy = 0 (2.1)
uu, + vug = =P /P + P o(u .+ uyy) (2.2)
uvX + va = -py/p + v (vxx + vyy) (2.3)

where

u = velocity in x (streamwise) direction

v = velocity in y (normal) direction

p = pressure

¢ = fluid density (constant)

v = £luid kinematic viscosity (constant)
The subscripts denote partial differentiation with respect to
that variable. The energy equation is not considered here
since Eqns (2.1)-(2.3) and the energy equation are uncoupled for
incompressible flow. Egs (2.1)~-(2.3) can be put in

nondimensional form by defining the quantities

u' = u/u v = v/vg

X' = X/L y' = y/L

p' = p/pu"2 (2.4)
9




where

free stream velocity

U,

L

characteristic length

Applying Eqn (2.4) to Egns (2.1)-(2.3) and dropping

the primes yields

ux+vy:0 (2.5)
_ -1
. + vuy = -P, * R, (uxx + uyy) (2.6)
= - - -1 2>
uv, o+ vvy = -Py Rg (Vex * yy) (2.7)

where the Reynolds number Re is defined by

R, = uL/v (2.8)
Equations (2.5)-(2.7) are the NS equations written in
nondimensional form.

The BL equations are obtained by considering the scaling
law of the relative magnitudes of velocity components in the
thin region. This leads to an estimate of the nondimensional
boundary layer thickness

T S (2.9)
where the symbol ~ implies order of magnitude. This is a
fundamental result of boundary layer analysis. Notice that
for very large Re the order of magnitude of the boundary
layer thickness is much less than unity. Therefore terms in
the NS equations that are found to be of order of magnitude &

can be neglected compared to terms that are of order unity.

First consider Eq (2.5), the continuity equation. The u

I SR ER W N EE GE SR B G O BE I O BE N B o
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velcecity and the streamwise coordinate x are clearly of order
unity by definition. This implies that

v., 1 .10
y {2.10)

and since the normal direction y is of order ¢, then

v ~ 96 (2.11)
since Re_l 1s of order 8% from EqQ (2.9), the order of
magnitude cf each term in Egns (2.6) and (2.7) can be
determined. The result is that the x momentum egquation (2.6)

contains terms of order unity except for the term

-1
Re uXX

e
which 1s 0of order 6. The y momentum equation (2.7) is found

to have all terms of order & except for the term

-1
Re vxx

which 1s of corder 53. These two terms can be neglected

compared to the relative magnitude of the remaining terms.

The resulting set of equations is

ux + vy =0 (2.12)
- -1

uu, + vuy = <Py * Re uyy (2.13)
- -1

uvx + vvy = py + Re vyy {2.14)

The Prandtl boundary layer equations consist of Eqns (2.12)
and (2.13). Since all terms in Eg (2.14) are of order 8, it
is omitted in the classic boundary layer approximation. The
ANS equations retain equation (2.14), allowing for a change
in pressure normal to the streamwise direction. These
equations will now be written in terms of the stream function

¥ and the vorticity w.

11




The stream function Y 1s defined for 2-D, incompressible flow

such that
u-=-1Y 2.15
y { )
v = =¥ (2.16)

X
and the vorticity, ©, is defined as

© = vx - uy (2.17)
Notice that the contilnuity equation (2.12) is automatically
satisfied by the definition of ¥. The pressure can be
eliminated from Egns (2.13) and (2.14) by taking the partial
derivative of Eq (2.13) with respect to y and subtracting the

partial derivative of (2.14) with respect to x. Four of the

resulting terms are eliminated by the continuity equation,

leaving
- -1 -
u(vxx uxy) + v(vxy uyy) = Re (vxyy uyyy) (2.18)
which can be simplified to
Yo =Yu =R Yu =0 (2.19)
Yy X Xy e YY :

by taking derivatives of Eg (2.17) and substituting them into
Eq (2.18). The velocities u and v were also expressed in
terms of ¥ from Egns (2.15) and (2.16). The vorticity can

alsc be expressed in terms of Y in Egqg (2.17) to obtain

+ ¥ +w=0 (2.20)

Equations (2.19) and (2.20) are the ANS equations for 2-D
incompressible flow written in terms of ¥ and w. These

equations are the model for the viscous region in the first

12




method, where finite difference representations are used.
The inviscid model is obtained directly from Eqn (2.20),
where the vorticity is zero. The resulting equation is

simply

Integral Egquations

The Integral Boundary Layer (IBL) equation can be
obtained by integrating the dimensional form of the x
momentum egquation

uux + Vv uy = -px/p + v uYY {2.22)

from y=0 to y=6. The pressure term can be expressed in terms

of the velocity at the edge of the boundary layer, Ue' by

considering the boundary conditions

uly_:(s = Ue
=0

uy y=56
=0

ugyly=s

Imposing these conditions on Eq (2.22) results in
Ue dUe/dx = -px/p {2.23)
Substitute Eq (2.23) into Eq (2.22) and integrate over the

boundary layer to give
5 o]
IO (uux + vuy -Ue dUe/dx) dy = DIO uYY dy (2.24)

which simplifies to

13




J (uux + vuY - Ue dUe/dx) dy = -tw/p (2.25)

where T is the shear stress at the wall, defined by

T, = H uy y=0 (2.26)
The normal velocity compcnent, v, can be replaced in Eg
{2.2%) by
Y
v = -J u, dy (2.27)
g X
which 1s a result obtained by integrating the continuity
equation. Substitute Eq (2.27) into Eq (2.25) to obtain
O Y
Jo(uux - uyfo v, dy - Ue dUe/dx) dy = -rw/p {2.28)
Integrate by parts to obtain the second term
& v & 6
J (uyf u, dx) dy = u_[ u, dy - [ uu ay (2.29)
0 0 0 0
and substitute-into Eq (2.28) to dget
S
fo(zuux - Uu, - U, QU /dx) dy = -T/p (2.30)
which after rearrangement yvields
) )
I o/3x(u{U_ - u)) dy + AU _/dx f (U. - u) @y = ¢t _/p {2.31)
0 e e o © w

*
The displacement thickness 6§ and momentum thickness 6 are

defined as

. 5
U é = ~0(Ue - u) dy (2.32)
and
2 S
4] 6 = u(u_. - u) dy (2.33)
e .10 e
14




Substitute Eqns (2.32) and (2.33) into (2.31) to obtain

2 * -
d/dx (Ue 6) + & Ue dUe/dx = lw/p (2.34)
Now cast Eq (2.34) into nondimensional form by introducing

the skin friction coefficient Cf, which has the definition

c. = W {2.35)

Expanding the first term of Eq (2.34) and writing the entire
equation in nondimensional form gives the final form of the

integral boundary layer equation

d46/dx + % du_/dx (2 + &5 /8) = Cs/2 (2.36)
e e

An alternative form to Eqn (2.36) is found by

2

multiplying it by Ue and rearranging to get

2 *
dsax[ v 6 ] + v, (au /dx) & = U " cg/2 (2.37)

Eqn (2.37) is used in the second method. The unknowns are
Cf, 6, and 5*. By assuming a velocity profile, the unknowns
can be reduced to two (Cf and 8). The second equation is a
form of the continuity eguation

u, ¢+ vy =0
Add and subtract the term dUe/dx and rearrange to get

VY = dUe/dx ~ dUe/dx ~u, (2.38)

15




Integrating this equation from y=0 to y=é and using Eqn

(2.32) results in

*
v, = d/dx [ U, ] -8 du/dx (2.39)

Equations (2.37) and (2.39) are solved simultaneously.

Representation of the inviscid flow using a panel method

The Hilbert Integral represents the correction to the
inviscid velocity Ue due to the effects of the displacement
thickness. To find an expression for this correction &u, one
can consider a line of source distribution g(x) at y=0 that
is constructed such that the resulting flow takes place over
a displaced body defined by the displacement thickness 6*(x).
Figure 3 shows a typical source distribution that results in
flow over the body defined by 5*(x). The source strength is
defined by the constant mass flow rate it generates. By
considering a circular control volume centered about the
source, the strength can be shown to be related to the flow
velocity at a distance r from the source by

g(&) dE = 2nr v (2.40)
The x component of velocity d(Su) for a source of strength
q(€) dE located at x=£ (Fig. 3) is simply

d(du) = V cos 6 = q(§) d¢ (x ~ &) / anr? (2.41)
where

= (x - £)% 4+ 872 (2.42)

16
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Figure 3. Source distribution geometry
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The total du considering the range between %4 and X, is

- x‘) 2
sutx) = [ % at8) (x - &) / 2nr® aE (2.43)
X
1
Integrating Egqn (2.43) from zero to y will give the stream

function ¥. This integration results in

X

ve | ° [ ae) tan"2iyrx-e1) 7 2n ] @& + ¢ (2.44)
X
1

w
The relation between Y at y=6 and Y at y=0 can be

approximated by considering a Taylor series expansion of V¥,

where
Y(x,0) = ¥(8") - ¥ x (8" u s 2.45
(x,0) (S ) yly=5 (¢ ) = e (2.45)
. * » . .
since wy|y=6* = U, and ¥(86 ) = 0. Differentiating Egn (2.45)
with respect to x gives
a¥(x,0)/dx = -d(Ue&*)/dx (2.45a)

Differentiating Egqn (2.44) with respect to x and taking the
limit as y goes to zero and equating the result to Eqn
{2.45a) will give the simple relation

q(5) = 2 AU D) /dE (2.46)
Substituting Egn (2.46) into Egn (2.43) gives the final

Hilbert integral expression for du as

X

su(x) = nt [ 2 [d(ues*)/da] (x-E)/r% at (2.47)
X
1

—

The streamwise velocity Ue h is calculated from
Ue,h(x) = PY(x) + du(x) (2.48)

which includes the correction du due to the viscous effects.

18




Boundary Conditions

The boundary conditions will now be discussed in general
for the three methods. Figure 4 shows the computational
domain and governing equations for the viscous and inviscid
regions. The domain consists of a 2-D rectangular region
with subsonic flow throughout. Boundary conditions for ¥ and
w are specified at each of the boundaries (a)~-(e).

At the outer flow boundary (a) the velocity is specified
by Howarth's profile.

PY(x) =1 -x , for x < X

0

PY!X) {2.49)

X , for x 2 X

0 0

where XO is chosen to be 0.2 after Briley [16]}].

The inlet flow (b) is assumed known from boundary layer
theory. Howarth [15) solved this flow using series
representations to obtain solutions up to the separation
pocint. The resulting streamwise velocity distribution is
compared in Figure 5 tc the distribution obtained from
boundary layer code (18). The variable ETA in Figure 5 is
defined as n, where

_ 1/2
n=0.%5y (R /X.) (2.50)
e’ 71
Note the excellent agreement between the data. The velocity

obtained from the boundary layer code can be integrated with

respect to the normal direction to obtain Y at the inlet.
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{a)
Y.= 7.23
< Inviscid Region
(b) WXX + vy =0
le 4.73 Interface (e) (d)
xx+ WYY + W =0
{b)
+ Vv uy - wyy/Re= 0
0 Viscous Region
{11171 7177777/7 (c) [11777177717/77777
X,=.05% X.=.489
1 X 2
Figure 4. Flow boundaries and governing equations
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to boundary layer code
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The inlet vorticity is obtained from Egn (2.20) assuming

¥ =0 in the boundary layer, resulting in

XX

m|x=x1 = -wyylxle (2.51)

The no slip condition prevails at (c¢), where

= ¥ = 0 .52

ul,oo = ¥ 1400 (2.52)
and

v|y=o = 'Wx|y=o = 0 (2.53)
and therefore

le:O = 0 {2.54)
Alsc, since ¥=0 everywhere along the plate surface

Wxx‘y:O = 0 (2.55)
and therefore the vorticity is given by

w) = {(2.56)

y=0 = “Yyyly=o
from equation (2.20).
At the downstream location (d)} a boundary condition on ¥
alone is required since the ANS equations contain the
elliptic term Wxx' If the full Navier-Stokes equations were

used, the term w would be present in Eqn (2.19), requiring

XX
a downstream boundary condition for the vorticity in the
viscous region. The boundary condition on ¥ is obtained
assuming that (d) is far downstream from the pressure

gradient disturbance. Uniform flow is assumed where

vl =0 (2.57)

X=x2 -Wx|x=x2




At the interface (e) the stream function is obtained
directly from the coupling scheme for the finite difference
method. The integral and Hilbert methods assume that the
interface represents the displaced body over which the flow
1s inviscid. For this case ¥=0 along the interface. The
vorticity is assumed to be zero along the interface. This
represents a departure from normal boundary layer type
conditions where the free stream velocity 1s allowed to be
satisfied asymptotically at an infinite distance normal to
the wall {16]. 1In the present work, these conditions are
imposed at a finite distance from the body surface.

The placement of the interface from the wall can be
quite important. Briley's soclution to the present case of
X,=0.2 shows that the maximum value of & is about 0.015.
For the simple case of a linear velocity distribution, the
boundary layer thickness is equal to twice the displacement
thickness [17). Thus, for the present work the location of
the interface should be at or greater than approximately

y=.03, which corresponds to Y = 4.32 for Re = 20800.
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III Methods of Solution

Method I

solution Procedure. The governing equations for this

method are the ANS equations {(2.19) and (2.20) for the
viscous region and Laplace's equation (2.21) in the 1inviscid
regron. The flow 1s initialized everywhere by the inlet
conditicons. The fainite d:fference form of Egns (2.20) and

(2.19), respectively, c¢an be written as

A%, 9-1 T Brgti, gt CagYi e Y P1g¥i,5-1 *f Big¥a, 5

*# F139) Juq = RHS) | (3.1)
and
Ars¥i,9-1 7 BasYa g Catigen * P2i®i,g-1 B2,y

+ F, 0 j,5 = RHS, | (3.2)

Where the indices 1i,]j represent the computational domain grid
points 1n the streamwise and normal directions respectively.
The finite difference form for Egn (2.21) can be written as

+ C. .V, = RHS

¥ | .
Ay¥i 5-1 % Bagti g 3974, 541 (3.3)

3,3
The calculation of the above coefficients and right hand
sides is the subject of the next two sections. The results
can be found in Egns (3.18)-(3.21) for Egn (3.3). The
coefficients for Eqn (3.1) will be similar to the
coefficients for equation (3.3) since the two equations

differ only by the vorticity term.
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The coefficients for Eqn (3.2) can be found in Egqns
(3.44)-(3.50). For now, only the method of soclution is
discussed.

Successive Line Over-Relaxation (SLOR) is used in both
regions. The solution procedure, depicted in Figure 6,
starts at the inlet and marches downstream. At each i
location the coefficients of Eqns (3.1}-(3.3) are found. For
the inviscid region this results in a tridiagonal system of
equations which can be sclved using a form of the Thomas
algecrithm {19 described in Appendix A. This algorithm puts
a tridiagonal matrix of equations in upper triangular form
anc¢ then performs back substitution to find the sclution
directly. From this algorithm, the solution at the interface
J can be written in terms of the soclution at the J+1 point by
the relation

= B A4 +

¥y 3e1 1,341 ‘1,3 Y Yi,04 (3.4)

Where Bi,J+l and ’i,J+1 are recurrence ccoefficients. The
boundary conditions are enforced by the definition of the

coefficients A B C., , and RHS, at the boundaries. For

37 73’ 73 3
the viscous region Eqns (3.1) and (3.2) result in a block 2x2
set of equations that is solved using a special form of the
Thomas algorithm for two partial differential equations.

This algorithm is also described in Appendix A.
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1.Calculate 3. Update Inviscid Solution at i
inlet “ using Wi y as B.C.
solution !

>5, March downstream
repeating 2-4

J+1
J e
J-1 ® 2. solve Eqn (3.7)
for Wi,J
4., Update Viscous Solution at i
“ using Vi 7 as B.C.
o Jl
i-1 i i+1//////////////////////////////
X

Figure 6. Solution procedure for Method I
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The solution for the viscous equations will have the form

b4 = ¥
k i,] Rl,j 1.3+1 7 Sl,] “1,j+1 + Tl,j (3.5)
= vy .
wi,J RB,J i,j+1 + Sz,j 01,j+1 * T2,j (3.6)
where Ry j o T, j are the recurrence coefficients. With

Egqns (3.4)-(3.6) the solution to both the viscous and
inviscid regions can be found given all of the boundary
cenditicns. A crucial element of the sclution process,
however., 1s the coupling scheme between the two regions. The
governing equations at the interface is given by Eqn (2.21),
since the vorticity 1is assumed to be zero. The finite
difference equations at the interface j=J has the form

¥
AY¥ L, +BY S+CV + DY,

J i+1,J i,J+1

+EY ;=0 (3.7)

where the coefficients A-E are known. The goal is to be able

1,3

03 in Eqn (3.7). The value of wi-l,J is known

because the solution is sweep downstream. The value of

to solve for Wi

W1+1 3 is approximated to the value from the previous

level. Note that this assumption is valid since the
difference in ¥ between successive levels goes to zero as the

solution converges. The remaining unknowns are Y. _, Y. ,
i,J i,J+1

and Wi,J-l' Using Eqns (3.4)-(3.6) the terms vi,J+1 and

Wi j-1 Can be written in terms of Wi 3 from the recurrence.
Since the vorticity is assumed to be 2zeroc at the interface,
the recurrence relation for Y given by Egn (3.5) can be

reduced at the interface to

27




¥r,000 TR aar Vit o (3.8)

Substituting Egns (3.4) and (3.8) into Egn (3.7) results in
one equation with one unknown. The stream function at the
interface, Wi,J’ is calculated and used as the new boundary
condition. The solution in the inviscid region is calculated
directly since it uses a non-recurrence form of the Thomas
algorithm. See Appendix A. Egqns {(3.5) and {3.6) are used to
generate the solution in the viscous region once the
recurrence coefficients are known. Both solutions use Y at
the interface calculated from Egn (3.7) as a boundary
condition. The algorithm moves downstream to the next i
location where the process repeats until i reaches IMAX-1.
Residuals are then calculated and compared to a tolerance
value. If the residual tolerance is not satisfied the
iterations continue back at i=2 and the solution process
continues until convergence is achieved.

Inviscid Region. The model for the inviscid region is

Laplace's equation

Wxx + Wyy = 0 (3.9)
Appendix B contains all of the finite difference forms of the
derivatives; allowing for a non-uniform grid. The coordinates
(x,Y) represent the physical domain and (£,n) represent the
uniform computational domain. The indices of the uniform

grid are denoted by i in the £ direction and j in the n

direction.
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Egn (3.9) written in finite difference form becomes

¥y "y +c. v ¥y
Ay Fi,3+1 By Y137 % Tig-1 Py T
*x
+EC Y =0 (3.10)
where,
* 2
) = ) . Ar, .
AJ nylj ny,3+1/2 / i (3.11)
B Y- ( + I Ar2
3 T 7 ",5 UBy ge172 * Ty, 517207 BT
- . z
Ex,3 U Bx, 30172 * Py, 5-172)7 88 (3.12)
c.” an? 3.13
3 7 %,3 My, 3172 77 (3.13)
= AE? 3
E. = & N 3.15%
3 T O°x,) Ex,j-l/z / B8 {3.15)

as given in Appendix B. It is implied that the stream
function ¥ in Egn (3.10) is written at the unknown level
denoted as n+1, whereas n represents the current

level. The n+l1 level is implied throughout this report.
Terms at the current level will carry the n superscript.

Rearrange Egn (3.10) to obtain

* * *
Yig e DAy Y v Y v 0 i
*W *
+ Eg i_1,3,] / By (3.16)

Relaxation is now introduced to enhance the convergence of
the solution. The relaxation parameter W 1s defined such

that ¥ at the unknown level is written as

N, w Y, (3.17)

) 4 = - W L S ,
( 1 ) 1'3 ’J

1,3
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Notice that when W = 1, Egn (3.17) becomes a simple identity
with no relaxation of the solution. Over-relaxation (W > 1)
can be used to accelerate the convergence if the solution is
relatively stable. Under-relaxation (W < 1) is used mainly
toc maintain numerical stability in the iteration process.

In this case more of the solution at the current value of ¥
is used to help stabilize the solution. Substituting Egn
(3.16) into Egn (3.17) and rcarranging gives Egqn (3.3)
rewritten as

= RHS

Aag¥ig-1 * BayYis * Ga5Yi 5 3,3
where,
_ * *
Ay, =W Cy/ B (3.18)
By, = 1 (3.19)
4 *
Cy, = WA/ B, (3.20)
n ® *
RHS, J = (1 -w) ¥, B-wp v /5
* *
~WE, ¥ __ ./ B, (3.21)

n

All of the terms in RHS. are known. The Y. term is known

3 i,3
since it is at the current level. The stream function at i-1
is known because the solution is marched downstream. The
stream function at i+l is assumed to be equal to W1+1,jn as
an approximation. The boundary conditions are imposed by

redefining the coefficients of Egqn (3.3) at the boundaries.
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The condition at the outer boundary is given by Egn (2.49),

rewritten as
b 4 = PY(X .
vly=y2 (x) (3.22)

where PY(x) is defined by Howarth's velocity profile as

PY(X)

1 - X , for x < xo {3.23)

PY(x) (3.284)

xo , for x = Xo

Writing Egn (3.22) in finite difference form gives

qij ( Wi'jz - w1,32-1 Y/ &n = PY({xX) (3.25)
which can be written as
= 2
Wl,jz W1'j2_1 + ( PY(x) an / Nyy2) (3.26)

Substituting this equation into Egn (3.3) written at j=j2-~1

gives
Ry g2-1 ¥y,92-2 * B3, 3221 ¥i,92-1 ¢
Cy ooy ( ¥y gy * (PY(X) 80/ n o)) = RHSy S, (3.27)

which can be cast back into the form of Egn (3.3). The
resulting coefficients are given in terms of their previous

definitions as

B3 32-1 7 B3, 5241

B3, j2-1 * B3,32-1 * C3,521

RHS, o, = RHS; j, 1 = Cy o 4 PY(X) &0/ n .,

€3,52-1 = ° (3.28)

where the equal sign above implies replacement of the terms
as in the FORTRAN programming language. Also note that

C3 j2-1 is set to zero after calculating the other terms.
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The boundary condition for ¥ at the interface is given by the
solution to Egn (3.7) as previously discussed. For this case
the coefficients are found to be

B = B

3,3+1 3,J+1

C3,3+1 7 C3,041

RHS; 5,9 = RHS; ;.0 - A3 5% 5

A3’J+1 = 0 (3.29)
With all of the coefficients known, the tridiagonal solver is
used to generate the recurrence relation at the interface and

to generate the solution for Y. The calculations follow the

sclution procedure discussed in the previous section.

Viscous Region. The viscous region is bounded by the

lower plate surface {(Y=0), the upstream and downstream
boundaries at i:.os and x=0.489 respectively, and the
interface at Y=4.73. The ANS equatiocns (2.19) and (2.20)
are the mathematical model for this region. These equations
are scaled in the vorticity to allow for the unknowns Y and
to be of similar order of magnitude. Define the vorticity as
W= w / w* (3.30)
where w* is the vorticity at the plate at x=0.05. This
scaling only affects Eqgn (2.19) since 0" will become a common
factor in Egn (2.20). The remaining discussion will assume
the scaled form of the equations, written as
Y +¥ +00 =0 (3.31)
Yy

XX

YY wx - Wx wy - wyy/Re =0 (3.32)
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where the vorticity in (3.31) is the scaled vorticity. The
convention used in the previous section where no superscript
implies the unknown n+l level and the superscript n implies
the current level 1is retained here. Note that Egn (3.32) is
nonlinear since the n+l1 level is implied on each term in the
eguation. Linearizing Egn {3.32) results in

Wyn Ux - Wxn wy + wxn Wy - wyn Wx

_ _yh _ n .
/Re = WY Oy Wx my (2.33)

“yy
The right hand side of Egn (3.33) as well the n level terms
are known from the current level. Finite difference
expressions for WX, Wy' w. ., and uy are obtained from
Appendix B. The finite difference form for Eqn (3.31) is
exactly the result obtained from the previous section with
the exception of the vorticity term. The resulting finite
difference equation is simply Egn (3.1)
Ar13¥i,5-1 * B1iti,g * Cag¥igen t P1g¥i, -1 * Big9, g

+ F._.w, = RHS, . (3.1)

15 Blj’ and C1j are given by the

right hand sides ¢f Egns (3.11)-(3.13) respectively and the

where the coefficients A

remaining coefficients are

Dyy = O (3.34)
By, =1 (3.35)
Fiy =0 (3.36)
= -p " ¥ g, (3.37)
RHSllj - DJ i+1'j j i-lrj ’
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The finite difference form for Egn (3.33) will now be
addressed. The solution will be marched in the streamwise
direction. Therefore, Wx and w, are written as backward
differences. The terms WY and v are written as central

b4

differences. When Wy is negative, the convective term Wyn Wy

will be written as upwind difference to honor the 1local
streamwise direction in the reversed flow area. Now let

UP 172 (¥

n n
y 3
y * I 338

/ y O o_ Jy B 3.
w o= 12 (Y | y' ) (3.39)

and notice that when Wy > 0, UP equals Wy and UM equals zero.

wWhen Wy < 0, UP equals zero and UM equals -Wy. The forward

and backward finite difference forms of wx are

oy = By Loy 5 =0y 50 /88 (3.40)

ol = & (91,5 ~ 95

) / A& (3.41)
and therefore the convective term can be written as

) / A&

) / BE (3.42)

n -
Wy w, = UP Exi ( w
E -

* UM S U %01, 7 95

Using Appendix B, Eqn (3.33) in finite difference form is

i, ° Yi-1,3

UP Exi { 953 7 Y13 ) / A8 + UM Exi ( ©1+1,3 " “1,5 ) / AE

+ P.. VY., . -P

vog (P 23 Yi,5 7 P3j Yi,5-1)

X 13 Wi,j+1

n
Y (Pyg %541 * P2y %5 " Paj 9%, 4-1")

n
oy e, ¢ APIPEL I PUPR R ]

L1595, 501 - 93 %9,5 * 935 9,3-13 7/ Re

it

gyheh_y¢yhyn (3.43)
Yy x X Yy
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The terms P1

(3.43) 1s now cast into the form of Egn (3.2),

Q3 are given in Appendix B.

Equation

as
AZJWi,j-l + 823W1,] + c2jvi,j+1 + DZjui,j-l + Eiji,j
+ FZJ 1,3+1 = RHSz’

by rearrangement of the terms in Egn (3.43). The
coefficients AZJ ca RHS?_’j are given by

Byy = = mxn P45

Byy = 9 Pag = @y &gy / 8

Cpy = U Py

Dyy = ¥y P3y - Q35 / R

Byy = £y (UP = UM ) /08 - ¥ D Py v Q0 /Ry

Fay = -Wxn P15 = Q15 7/ Re

RHS, , = 8y (UP Oy 4 5 - UM ”n1+1,j )/ Bk

- wyn Exi Wi-l,] / OE + Wyn wxn - xn wyn

(3

(3

(3.

(3

(3

(3.

(3.

repeated here

. 2)

.44)

.45)

46)

.47)

.48)

49)

50)

Egns {3.1) and (3.2) are solved using a special form of the

Thomas algorithm for two partial differential equations.

This algorithm, which is described in Appendix A, generates

the solution to a block 2x2 set of equations in terms of

recurrence coefficients. For the viscous region,

solution will have the form

¥. = R k4 + S + T

5 % R13 Ti,9¢1 * P15 %,941 7 Ty

+ T

“y =R 23 “1,9+1 * T2y

3 "Ry ¥y 441t S
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The terms R are the recurrence coefficients.

13 e sz
Boundary conditions are written in the form of Egns (3.51)
and (3.52) to find the recurrence. With the recurrence known
at a boundary, the block tridiagonal algorithm can generate
the remaining recurrence coefficients. There are two ways of
solving the problem. The first way uses the wall boundary
conditions to generate the recurrence and the interface
conditions tc generate the solution from Egns (3.51) and
{3.52). The second way is to use the boundary conditions at
the interface to generate the recurrence and use the wall
conditions tc generate the solution. Since the current
coupling scheme finds the solution at the interface, the
first approach is taken. The wall boundary conditions are
given by Eqns (2.54) and (2.56). Since Y is zero at the wall
and ¥ and v at j=2 are non-zero, in general, it follows from

Egqn (3.51) that

R11 =0 (3.53)
S11 =0 (3.54)
'I‘11 =0 (3.55)

The other recurrence at the wall are found by expanding Egn
{(2.56)
W = =¥
'Y=0 YYIy=0
into the form of Egn (3.52) and comparing the coefficients of

¥ and o,
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The resulting recurrence are

*
Ry = =0 Q3 + Q) /0 (3.56)
S,, = 0 (3.57)
T,, = 0 (3.58)

With the recurrence known at the wall, the block tridiagonal
solver can generate the remaining recurrence, where each
block is a 2x2 matrix. Egns (3.51) and (3.52) are then used
te find the solution from the boundary condition at the
interface.

Method II

Solution Procedure. The governing equations for this

method are Eqns (2.37) and (2.39}) in the viscous region and
Laplace's equation (2.21) in the inviscid region. The
inviscid solver is similar to the inviscid solver of method I

with one exception. The lower boundary for this method

takes the shape of the displacement thickness 5* as shown in
Figure 7. The inviscid solver now solves for flow over a
displaced body where ¥ = 0. The remaining boundary
conditions are unchanged. A shear transformation is applied
to Laplace’'s equation to allow for a uniform grid in the
computational domain. The solution procedures is as follows:

1) Assume an 1initial 8. solve the inviscid region
using the SLOR algorithm.

2) Evaluate Ue and ve along the displaced body from the

inviscid solution.
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Inviscid Flow over
body defined by &

0 Viscous Region

X1=.05 % x2=.489

Figure 7. Flow geometry for Method II

38




3) Use a Runge-Kutta method [20] to solve for & and Ce
in Eqn (2.37) and Egn (2.39), repeated here as

dsax[ u_°e ax) 8" = u 2
/ax[ u "6 ] + v, (du,/dx) = U_ " C./2

dsax [ v, & & du_/d
v, = dsax [u ] - U, /dx
*
The momentum thickness 8, and the displacement thickness &
are written in terms of & and Cf from Egqns (2.32) and (2.33)
assuming a streamwise velocity profile based on the shear
stress at the wall. This results in two equations and two
unknowns. Note that Ue' ve and dUe/dx are known from Step 2.
*x
4) Repeat steps (1) through (3) until & does not

change.

Inviscid Region. The model for the inviscid region is

b 4 + ¥ = 0
XX YY

A shear transformation given by

E = x (3.59)
n=zy-258 J H(X) (3.60)
H(x) = v, - 5" (3.61)

is applied to allow for a uniform grid in the computational

domain. The transformed Laplace equation becomes

WEE +(1‘{’Er'+3\ynn+ C‘l’nz 0 (3,62)
where
«=2H (1-n)/H (3.63)
B = [sz (1-1%) + 1] / He (3.64)
t=(1-n) (HH _ =-2HZ) /H (3.65)
XX X
39




Finite difference forms of the derivatives in Eqn (3.62) are

given as
2
_— 2%, 4+ ¥ . :
Yee = (Y00, i,3 F Y1-1,3 ) /88 (3.66)
= - ) . E
Yen = 03 e =3 ¥y g * Va2, 5 ) /8 B0 KE
-3 Y gt
+ ¥, gy ) /4 oE (3.67)
3 2
v o= (¥ ~2Y e ¥ .
o= U9 1,3 ¥ ty,5-1 M /AN (3.68)
A T A IV (3.69)

where a three point backward difference scheme is used for
w&n when 1 > 2. A two point backward difference scheme 1is
used at i=2. Substituting Egns (3.66)-(3.69) into Eqn (3.62)

and rearranging gives

*‘{, *q, *w *
Ag Y. o1 v By ¥, g+ ¥ L, = RHS, (3.70)
where
x “3(1 + i—-—g_.
Rg 4 anae an® 28 (3.71)
N -2 _ 2B
- e )
By = gl AnZ (3.72)
4 T 4 An AE an 2 An .
RHS, = (-¥ Ny ae2 -y JOEZ & o ¥ /BNAE
a i+1,5 i-1,3 1-1,5+1
- @ ¥y, /AANAE - o ¥, . /BnAE
+a ¥, o /amnaE (3.74)

A similar form of the equations are obtained for the case of

i=2.
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Relaxation 1s now added in the same manner as the finite

difference inviscid sclver. Solve for Wi 5 in Egn (3.70) and

substitute into the right hand side of the relaxation

relation
= - y D y
wl'j (1 W) i + W i (3.75)
to obtain
Ag ¥y go1 * By ¥y 4+ Cp ¥y 4, = RHS, (3.76)
where
* * 7
AQ-WA4/B4 (3.77)
84 =1 (3.78)
w * *
C4 = C4 / B4 (3.79)
= * * 1 -w)y .0 3.80
RHS4-(HRHS4/BA)+( )1,j (3.80)

Boundary conditions are now applied to f£ind the values of

A4...RHS4 for the special cases of j=2 and j=JMAX-1. At j=2,
¥ = 0, and therefore

A4|j=2 = 0 (3.81)
At the outer boundary the conditions are given by Howarth's

velocity profile, rewritten as

Yol -gmax = PY(T) (3.82)

Equation (3.82) written in finite difference form in the

computational domain yields

vi,JMAX = Wi,JMAX-l + H PY(I) &n {(3.83)

Equation (3.76) written at j=JMAX-1 is simply

A, Y + B, Y. +c, ¥ = RHS (3.84)

4 1i,JMAX-2 4 1i,JMAX-1 4 1i,JIMAX 4
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Substituting Egn (3.83) into Egn (3.84) and rearranging gives

the coefficients A,...RHS, at j=JMAX-1 as

4 4
RHS4 = RHS4 - C4 PY(I) H &n (3.85)
B4 = B4 + C4 (3.86)
C4 =0 (3.87)

where the order of these calculations must be honored. With
all the coefficients known, the system solver used in the
other inviscid solver can be used. The solution procedure is
identical at this point to the previous inviscid algorithm.

Viscous Region. The solution to the IBL equations

(2.37) and {2.39) start by assuming a streamwise velocity
profile written in terms of the wall shear stress. The

general form is given by

W=AU +BUY + CU Yy + DU y> + EU y* + FU y° (3.88)
where AU-FU are determined by the boundary conditions
(1) uly=0 = 0
(2) u|Y=5 = Ue
(3) Uyly=s = ©
=T
(6) =0 (3.89)

Yyyyly=0
A fifth degree polynomial was chosen after it was found that

a fourth degree form did not provide adequate accuracy.
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Impcsing Eqn (3.89) on Egn (3.88) results in

AU = 0O
BU = T_/H
- -2 -1
CU = (10/3) U, 8 2(t /m) &
DU = 0
_ -3 _ -4
EU = 2(Tt /H) 13 5 U, S
FU = (8/3) U &3 - (¢ /) s~4 (3.90)
e w )

Egn (3.90) can be put in non-dimensional form using Egn
(2.35), rewritten here as

- 2
Ce = 21w/0u,

and by considering the non-dimensional forms given in Eqgn

{3.4). Egn {(3.90) in non-dimensional form is therefore
AU = O
BU = Re Cf/2
- -2 _ -1
CU = (10/3) Ue 8 Re Ce b
DU = O
_ -3 _ -4
EU = R, C¢ b 5 Ug S
FU = (8/3) U_ &2 - (R_/2) ¢, &2 (3.91)
e e £ :

Egn (3.91) substituted into Eqn (3.88) defines the
non-dimensional form of the streamwise velocity u. Eqn
(3.88) can now be substituted into Eqgns (2.32) and (2.33) to
obtain expressions for the momentum and displacement

thicknesses in terms of Cf and §.
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while these calculations for Cf and 6 are straightforward,

they are also very long and tedious for the case of finding

the momentum thickness 6 (See Appendix C). The results are
given as

* - - 2 -1

§ =Ad-~-B Ce S U, (3.92)
where,

A = 4/9 (3.93)

B = Re/30 (3.94)
and

_ 2 -1 _ 2 <3 -2

6 =Cd+D cf S Ue E Cs 8 Ue (3.95)
where,

C = 0.115440115 (3.96)

D = 8.297258e-03 Re (3.97)

E = 1.695526e-03 Re2 (3.98)

Egns (3.92) and (3.95) can now be substituted into the IBL

equations
2 x 2
asax[ v 0 ] + v, (du sdx) & = u " cg/2 (2.37)
*
vg = d/ax [u, 8 ] - 8 au_/ax (2.39)

to obtain two equations in two unknowns, & and Cf. Once the
equations are solved, 5* can be found from Egn (3.92) to
obtain the new shape of the displaced body for the next cycle

of the inviscid solver discussed in the previous section.
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Two methods for solving the IBL equations are Newton's
method for finding roots of algebraic equations and the
fourth order Runge-Kutta method for integrating first order,
ordinary differential equations. Both were implemented for
the IBL method, but only the Runge-Kutta method {20) was used
in the final results. The IBL equations are written as

dd/dx = F,(C 8) (3.99)

fl
d(Cg)/dx = F,(Cg,8) (3.100)

where F, and F, are functions of C; and 8. The integration

starts at x1 = .05 and ends at x, = .489. The expressions

for Fl and F2 will now be found. Egn (2.37) written in terms

of ¢, and & becomes

f

2 2 2
zueuexcf + CUe 6x + DUefo6 + Due6 Ceg * 2DUeCf55x

-28c 87c - 3écf2525x - u%c /2 + UU_ RS

- BU_ Cc8% = 0 (3.101)
While Egn (2.39) becomes
Ve = Aéxue + A5Uex - ZBCf55x - BSchx - Uex5 (3.102)

Fl is found by sclving for Cfx in Egqn (3.101) and

substituting into Egqn (3.102). This results in an equation

of the form of Egqn (3.99), where

N _ 3 -1 _ 4 -1
F,(Cg,8) = [ ASU_ - 2BCO U U, 2 BDC8 U, 2
2., 2_-1 3 -1 2. 54 -1
+(1/2)BC8°U_ 27" - ABU_S"U_ 27" + B°C U, 2
+U_ 8 + v, ] / K (3.103)
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and,
=pu_ 8 -2EFc, &
Z = e E £ (3.104)
2., 2_~-1 3 -1
= - S & 2
K AUe ZBCf + BC Ue z + BDCf5 Uez
- 3Ec%8%27! (3.105)
thcf,é) is found by solving for 6x in Eqn (3.102) and
substituting into Egn (3.101). The result is
_ _ _ 2. _ 2 _
Fz(cf,é) = [ zueUeXcé cu."Q Duexcfa ZDUeCf5Q
2.2 2
+ 3Bcf 5°Q + U, cf/z - Aﬁueuex
2
+ BUex Cf ] ] / M (3.106)
where,
P=AU,-2B Ce 5 (3.107)
_ p~1 -
Q =P { Ve A d Uex + 5 Uex ) ({3.108)
_ a-1 2.2 3 _ 2.4
M =P ( CUg BS® + ZBDUeCf5 3EBcf 5% )
+pu 8% - 2EC,8° (3.109)
e £
With Fl and F2 determined, Egns (3.99) and (3.100) are solved

using a fourth order Runge-Kutta algorithm. The solution
produces Cf and 6 for each streamwise location. The
displacement thickness s is calculated and used as the input

to the inviscid solver, which produces a new Ue' U and ve

ex
from the inviscid solution. This cycle continues until the

*
convergence criteria on & is satisfied.
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Method III

This method sclves the Boundary Layer (BL) eguations in
the viscous regicn and uses the Hilbert Integral, Eqn (2.47),
to obtain the viscous correction to the inviscid velocity.
The ANS equations used in the finite difference method are
reduced to the BL egquations by setting Wxx = 0. The solution
procedure is as follows:

{1) Assume the displaced body defined by 8*(x).

{2) Sclve the BL eguations by sclving Egn (2.19) and

{(2.20) with wxx = 0. The boundary condition at the outer
*

boundary is known from prescribing & in (1). Calculate

Ue b1 the streamwise velocity at the BL edge.

{3) sclve the Hilbert integral

X *
su =t |2 [d(Ue5 yrag] (x-g) /0% e (2.47)
X
1

using trapezoidal integration. On the first pass Ue in Eqn
(2.47) is set to Howarth's velocity, PY. On later passes Ue

is taken as the current value, which will be denoted as Ue h*

’

Calculate the inviscid BL velocity Ue h as
14

Ue,h = PY + bu (3.110)

* ]
(4) Generate a new & (x) based on Ue b1 and Ue,h using

’

the following relation

¥ Ml _ g*n oy (3.111)

e,b1 / Ye,n’

47




This simple method for updating s was used by Carter and is
described in Reference [1]. It was noticed that small
deviations in the local Ue tends to preserve the volume flow
rate per unit width in the BL. Therefore, Ue 8" constant.
A local decrease in Ue {adverse pressure gradient) causes an
increase in 5* and vice versa. Adding over-relaxation to Egn
(3.111) results in

* n+l_g* n _
S =5 [1 + W{( (Ue,bl/ue,h) 1)] (3.112)

. * .
(5) With a new & , repeat (2)-(3) until Ue,bl = Ue,h

within a set tolerance level.
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IV Results and Discussion

The three methods discussed in Chapter 3 were applied to
Howarth's flow over a flat plate. The flow is incompressible
with a Reynolds number of Re=20800. Results are given and
comparisons made where applicable. Discussion on the
significant aspects of each method are alsc given.

Method 1

The flow geometry for this method was shown in Figure
2 of Chapter 2. Briley [16] solved this problem with an
Alternating-Direction-Implicit (ADI) scheme using the full
Navier-Stokes equations. The fundamental difference between
Briley's approach and the current approach is the treatment
of the solution domain. Briley solved the Navier-Stokes
equations within a single region where no distinction is made
between inviscid and viscous flows. The current solver
breaks up the solution domain into a viscous region and an
inviscid region that are implicitly coupled together. The
advantage of the current method is clear if the inviscid
region is much larger than the viscous region. For this
case, the relatively simple inviscid model is solved over
most of the domain while the ANS equations are solved over a
small region of that domain. Using the full Navier-Stokes
equations in such a domain would be gquite expensive in terms
of computation time. However, Briley selected an outer

boundary that is very close to the edge of the boundary
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layer. Therefore, a comparison of computation times between
these two methods will not demonstrate the utility of the
current method. It can be said, however, that the larger the
1nviscid region, the greater the amount of computational
savings using the current method versus using the
Navier-Stokes equations in a single solution domain.

Briley's work was used as a checkcase for the current
finite di1fference method. The displacement thickness & from
Briiey was prescribed at the edge of the current viscous
sclver. The resulting coefficient of friction compared very
well to Briley's Cf as shown in Figure 8. The grids used for
this comparison were (35x30) for Briley and (151x74) for the
currernt viscous solver. The comparison shows that the
viscous sclver is working properly. The entire current
method was then run for the case of a coarse (30x35) grid
used by Briley, an intermediate (76x74) grid, and a fine
(151x74) grid. The inviscid grid was the same as the viscous
grid in the number of x points with 4 grid points used in the
y directicn. All the grids were uniform. The resulting Cf
and 57 are shcewn in Figures 9 and 10 respectively. The
difference in the separation region is due to the treatment
of the boundary conditicns. With the current zonal technique
the boundary conditions are not imposed the same way as in

Briley's case.
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Briley |16]) prescribed zero vorticity and Howarth's velocity
at the outer edge of his solution domain. In Method I, the
condition of zero vorticity 1s imposed at the edge of the
boundary layer and Howarth's velocity condition is imposed at
the cuter boundary of the inviscid region. It 1is this
distinction in the boundary conditions that accounts for the
difference i1in the two solutions. When prescribing 6* at the
edge of the viscous region, as was dcne for the case shown in
Figure 8. the separation region grows as the grid is refined.
However, as Figure 9 shows, the current method produces a
smaller separation region as the grid is refined. This event
1s explained by examining Figure 10, which shows that
refining the grid in the current method produces a lower 5*.
This results in a lower Cf as well. 1In Briley's case,
howevar, the same 8* 1s prescribed for each refinement of the
grid. The two approaches are fundamentally different.
Streamline contours for the current method are shown in
Figure 11 for the intermediate (76x74) grid. The x axis was
scaled for plotting purposes only, and represents the plate
for x1=0.05 to x2=0.489. The important result from Figure 11
is that the streamlines at the interface (Y=4.73) are
completely continuous. The coupling scheme produces a smooth,

continuous solution between the viscous and inviscid regions.
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H. Figure 12 compares the predicted inviscid velocity at the

interface using Method I to Howarth's velocity. The
difference in these two curves 1is due to viscous effects.

The current methced was alsoc run for a higher value of
the corner velocity xo, with the expectation that a higher x0
will result in a longer region of adverse pressure, which
should result in a larger separation region. This was
exactly the case as shown in Figure 12. Here Xo was
increased from 0.2 to 0.21. The resulting increase in the
separation region is apparent from the figure.

Thes computation times for the current method for the
coarce, intermediate, and fine grids are 55, 579, and 4101
CPU seconds respectively on the ASD CYBER. The convergence
history for the intermediate grid is shown in Figure 14. The
residual tolerance was 10-5 for all grids. The approximate

memory use is 14600 words for the intermediate grid.
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Method II

The IBL method was described in Chapter 3. The fifth
degree velocity profile, along with the IBL equations, modeled
the viscous region. The inviscid region solved the finite
difference form of Laplace's equation for a non-uniform grid.
The 1nviscid grid is (76x51), with the outer boundary at the
same location as the finite difference method. The residual
tolerance value 1is 10'6. Relaxation was used in the inviscid
region where W was finally chesen to be 1.3.

The IBL method was first executed with & and U, from
the finite difference method used as the initial conditions.
For this special case, the inviscid solver is not required
since Ue is given. The normal velocity can be calculated
knowing s and Ue' The resulting Cf for only one iteration
of the method is shown in Figure 15. The excellent agreement
between this Ce and Briley's Ce demonstrates that the method
can be a useful alternative to solving the viscous region.
The CPU time required to solve the viscous region is 0.122
seconds on the ASD CYBER. 1In addition, Figure 15 shows that
this rather simple method is clearly capable of solving for
flows with an adverse pressure gradient; including flow
separation. Further iterations of the current IBL algorithm
results in an instability in the solution, which result in
very inaccurate values of Cf past x ¥ 0.3. The primary

reason for this behavior is thought to be the assumption of

the velocity profile.
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Figure 16 shows the resulting Cf for the case of a fourth
degree and a fifth degree velocity profile with the same
inputs of 5" and Ug,. Notice that the improvement in the
solution between the two cases is due to the accuracy of the

assumed velocity profile. The fourth degree profile was

generated with the same boundary conditions as the fifth

degrees precfile, except that u s # 0 for the fourth degree

yyly=
profile. Further accuracy in the method should be attainable

by specifying a sixth degree profile, where u 0

yyyly=s =
would provide the additional boundary condition.

An addational run with the IBL method was made to
investigate the small ridge in the Cf of Figure 14 at x=0.2.
This ridge 1s believed to be caused by a slight irregularity
in the input 6*. To confirm this hypothesis, a sixth degree
polynomial was generated to have the approximate shape of the
displacement thickness. This 6* is shown in Figure 17. The
Ue was obtained using the inviscid solver. The resulting Cf,
shown in Figure 18, shows that smooth, continuous output is
obtained from the method when a smooth 5" is used as the
input. This verifies that the small ridge in the Cf of
Figure 15 is due to an irregularity in the displacement
thickness. This is an important point, since the inviscid

*
solver uses first and second derivatives of & to obtain the

transformation parameters of the computational grid.
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The total CPU time for one cycle of the IBL method is
38.622 seconds, where 38.5 of this time 1s due to the
inviscid solver and the calling program. This time can be
greatly reduced by using less grid points, by reducing the
residual tolerance to 10_5, and possibly by using an ADI
method. The memory requirements are approximately 17000
wecrds, of which 11,628 words are used to store the
transfcrmation parameters «, B, and ¢ over the (76x51) grid.
These parameters are stored to calculate the residuals. A
scheme could be developed tc calculate the residuals locally
in the flow by saving only three local columns of the data.
This would reduce the total memory requirements down to
apprcximately 5500 words.

Method III

Method III was explained in Chapter 3. The boundary
layer egquations are solved over the viscous region. The
Hilbert Integral, Egn (2.47), is then solved to obtain the
correction to the inviscid velocity due to viscous effects.
The method iterates until Ue from the boundary layer
calculation matches Ue obtained from the Hilbert integral
calculation. The resulting Cf for this method is shown in
Figure 19 for two values of xo. The data near the inlet at

X, and at the corner position x0 required smoothing due to a

1
weak instability at these points.
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This instability was also noticed by Cebeci and Stewartson

{21), who added several modifications to their algorithm to
smooth the introduction of the Hilbert integral near the
inlet. The most severe modification was the addition of an
artificial correction term to the Hilbert integral that added
a maximum Su at the inlet and added less Su as X increased.
Cebeci also multaiplied Re by the term cosec((x-xl)/ZAx) in
the integration over the first four points to further smooth
the data. The only modification to the current method was to
smooth the data near the inlet and near the corner position

X Adding an artificial term to du may help smooth the

0
resulting data, however it also directly adds an error to the
solution. Indeed, Cebeci's result for Cf showed no
separation at all for the case of XO = 0.21. Figure 19
clearly shows separation for this case and is in excellent
qualitative agreement with Briley's result. The slight
irregularity of the sclution in Figure 19 near the inlet is
cf little concern. Additional smoothing can be done but

it will not affect the overall trends in the solution. The
displacement thicknesses for the current method are shown in
Figure 20. They are in qualitative agreement with the 6*
from the finite difference method and from Briley's results.
The resulting boundary layer edge velocities are shown in
Figure 21. UEBL 1is Ue from the boundary layer analysis and

UEH is from the Hilbert integral calculation. As expected,

the two profiles match for the converged solution.
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The CPU time for this method was 60 seconds. An
over~-relaxation of the solution was used where W=1.3. The
convergence criteria specified that the maximum difference
between UEBL and UEH at any x location be less than 15x10'4.
This criteria resulted in 39 iterations to achieve
convergence. The convergence history is shown in Figure 22.
The ordinate represents the error 1in Ue normalized from the

error of the first iteration. The method required

approximately 14900 words of memory.
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Ccmparison of Results

The CPU times and memory requirements are summarized in
Table 1. Also presented are the average absolute errors
{taken over five points in X) between Cf of the current
methods and Briley's cf. For Method I, Cf from the
intermediate grid 1s used 1n the comparison since the cther
methods have the same number of x points (See Figure 9). The
skin friction coefficient for methcds ITI and III can be found

in Figures 15 and 19 respectively. 1In Figure 19, the

XO = 0.2 case 1is used.
CPU Time Memory Megg,cf error
Method I
-course (30x35) 55 sec
-inter. (76x74) 579 sec 14.6 KW 0.096
-fine (151x74) 4101 sec
Method II (1 cycle)
-viscous 0.122 sec 0.1
*
-inviscid (76x51) 38.500 sec] 5.5 KW
*
Method III 60 sec 14.9 KW 0.14

Table 1. Summary data for Methods I,II, and III
* using local scheme to calculate residuals

** after smcothing
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YV Conclusions and Recommendations

Method I uses finite difference equations with SLOR
sweeps for solving the ANS equations in the viscous region
and the stream function egquation in the inviscid region. An
implicit coupling scheme matches the two solutions. The
solutions cbtained from Method I compared well with full
Navier-Stokes solutions. The coupling scheme developed for
this method provided an efficient means of patching the
viscous and inviscid regions. In addition, an initial
displacement thickness is not required to start the solution.
The cycle time for the course grid was the fastest of any of
the three methods, with the resulting skin friction
coefficient very close to that of the finer grids.

Method II uses finite difference approximations for
solving the stream function equation in the inviscid region
and a fourth order Runge-Kutta method for solving the
integral boundary layer equations in the viscous region.
Method ITI was shown to give very good for the first
iteration. Soluticns for Cf past the first iteration become
less accurate. It is recommended that a velocity profile
specified by a higher order polynomial be used to determine
if an improvement in the stability of the solution can be
achieved. The major contribution of this method is the
efficient viscous solver. The solution to the boundary layer

equations was reduced to finding the solution to a coupled
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set of first order, ordinary differential equations that were
sclved using a simple fourth order Runge-Kutta method.

Method III obtained the inviscid flow solution by a
panel method, while the viscous flow solution is obtained
using the finite difference form of the boundary layer
aguations operating in an inverse scheme. The solutions
obtained from Method III were 1n general agreement with the
knewn solutions.

For the current model problem and geometry, Method I
prrovided the best overall performance as evidenced by the
data given in Takle 1 of Chapter 4. However, for more
complex geometries, Method II would have the best potential
for providing efficient solutions with a minimal amount of
required memory.

Any further study of these methods should consider the
extension to 3-D flow, compressible flow, and also to flow

over more realistic geometries.
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Appendix A: Tridiagonal System Solvers

Single System of Equations

This algorithm was oktained directly from Appendix A of
Reference [1). It is used in the current work to solve the
sys-em c¢f equations resulting from the finite difference form
«f Laplace’'s equation, written 1n general form as

¥ ¥ =
Ay Y +B Y _vc Y RHS (al)

,J=1 J 1,3+1 J
where 1 i1s fixed and j varies frcm )=2 near the interface to
3=JM1 near the outer boundary. Writing Egn (al) for all

values of j results in the matrix equation

[ 9 " v h r T

B, , Cyg oo O L2 RHS,,

A3 Biz - G 3 Yi3 = |RHS, (a2)
: ; »

L 0 Al v Ci,amad L 71, aM1 l-RH':JmJ

where the terms A, , and C, yM1 are written in terms of the
remaining coefficients from the boundary conditions. The
algorithm simply takes matrix (a2) and cast it into upper

triangular form by performing a series of row operations,

given as
B,y = Bi,5 7 P,5%,5-17 Biaa (a3)
RHS, = RHS, - A, , RHS, ,_ ./ B, (ad)

wWhere the equal sign implies replacement as in the FORTRAN
programming language. The upper diagonal terms remain
unchanged because of the tridiagonal form of the equations.
The equations can now be solved by simple back substitution

starting at j=JM1 and marching upwards.
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Block Tridiagonal Solver

This algorithm was obtained from Reference [22}. The
general features of the solver are exactly like that of the
Thomas algorithm described in |1)] except for the current case
a block 2x2 set of equations exist.

The finite difference representations of the governing

equations can be written in the following general form

7 \ =
Al Y51 + B1 ¥J+ C1 WJ+1+ Dle-l + Ele + FIQJ-I G1 (as)
: \y =
A2 WJ—I + 32 3t C2 WJ+1+ DZQJ-I + Esz + FZQJ-l G2 (a6}

where the coefficients are functions of the grid and the J
subscripts denote the normal direction. Define the

recurrence relations as

Y3 = Rig ¥gu1 * 515 Y1 ¥ Tag (a7)
Wy = Ryy ¥y Sp5 950 v Tag (a8)

Equations (a3) and (a4) were chosen this way to allow for a
marching scheme that calculated the recurrence coefficients

R Tl’RZ’SZ'T° starting at J=0 and marching towards

17517

J=JMAX. Then the solution WJ, w_ are found by knowing the

J
boundary condition at JMAX and marching the solution towards
J=0 knowing the recurrence coefficients. The marching
direction is arbitrary, but choosing the marching in this way

is compatible with the development of the viscous/inviscid

coupling scheme used in the present work.
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Substitute (a7) and (a8) into (a5) and (a6) to get

ARp(Ry g1 Y3 % Sy, 501 93+ Ty, 51!

+ By ¥y ¢ €y ¥y *Dy(Ry g g¥5* Sy gop 93+ Ty goq)

*E 0y v B 95076 (a9)

and

ArRyo-1 ¥ 81,5219 Ty, 00!

By ¥y O YD Ry 5 Yat Sy 5oy Ya T, 0a)

*Ey 0+ Fy U5 76y (alv)

Now rearrange (a%) and (all0) into the form

3 ¥y r Gy ¥ PP g Fp ey T (all)
3 ¥t Gy Vg By 0y Fy gy = G (al2)
where
3 =By * AP Ry 5.1 * D1 Ry g0 (a13)
a, =B, + Ay Ry J .+ Dy Ry o (a14)
b, = E; + A sl,J-l + D, 52,3-1 (als)
by = Ex + Ry S1,5-1 * D2 55 5 (alé)
4 76 A Ty,0-1 " P11 Ty 5 (a17)
dy =6 = Ay Ty 501 ~ P2 Ty 50 (al8)

Now multiply Egn (all) by b2 and multiply Egn (al2) by b1 and

subtract. The resulting equation after some rearranging is

¥; = ((Cy by = €y by)/Dg) ¥y 0 + ((Fy by = Fy by)/Dy) 959

+ ((d; b, - 4, by)/Dy) (a19)
where

D. = a. b b (a20)
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S A N O

Compare Egn (al9) to Egn (a7) to find

R1J = (C2 b1 - C1 b2)/D0 (a2l)
le = (F2 b1 - Fl b2)/D0 (a22)
'I‘1J = (d1 b2 - d2 bl)/DO {az23)

The remaining recurrence coefficients are found by
multiplying Eqn (all) by a, and multiplying Eqn (all) by a1
and subtracting. The vorticity is rearranged in the form of

Egqn fa8) to find the recurrence

RZJ = (C1 a2 - C2 al)/DO (a24)
s2J = (F1 a, - F2 al)/D0 {azhs)
T2J = (a1 d2 - a2 dl)/DO (a26)

With the recurrence known, the solution can be obtained from
Egns (a7) and (a8). Notice from Eqns (al3)- (al8) that the
recurrence at the J-1 level are needed to generate the
solution. The specification of the boundary conditions at
the wall {(J=1) gives the recurrence for J=1. Knowing this,

the remaining recurrence are calculated.
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Appendix B: Finite Difference Expressions

The general finite difference expressions for the
derivatives in the governing equations are presented here.
Because of the marching scheme, the derivatives in the normal
{y) direction can be taken as central difference while the
streamwise derivatives are generally taken as either forward
or backward difference depending on the flow direction. The
elliptic Wxx term is taken as central difference.

A non-uniform grid is assumed where the coordinates
{x,y) represent the physical domain and (&,n) represent the
computational domain with indices 1i,Jj respectively. The

metrics cf the transformation are calculated as

R P FESVE IR PEAVE R (p1)
where,
= An/ivy. - 7. 2
ylgers2 = 51 Y300 7 Y5) (b2
= An/(y. - Y.
Mels-1y2 = MUY = ¥y_p) (b3)
and
Exli = 9% U 8is1/2 * Sx)i-1/2] (b4)
where,
Exlis1/2 © BE/(Rip1 = %) (b5)
Exli-1/72 = 88/1%y = X5 q) (b6)
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l The derivatives calculated in the physical domain can now be
kl expressed in terms of the computational domain by simple

application of the chain rule.

Yel3 = 95 C¥pe2 * Yylg-a2 )

= 0.5 (Ny1y41/2 nlg+1/2 * Myli-1/2 Tng-1/2 )

= 0.5 ny|j+1/2 { Wj+1 - Wj )/ 4an

R N A Iy

= 0.5/6n [”ylj+1/2 Y301 7 Uylae1sz = Yyl3-172) %

" Tyl3-1/2 Wj-l]

= By Yoy Py ¥y - Py ¥ (b7)
where,
Plj = 0.5 ”y|j+1/2 / &n (b8)
Pay = 705 Ullylyeay2 ~ yfg-1/2 ) /O (53
P3j = 0.5 nylj-l/z / An (b10)

Similarly,

wylj = Plj mj+1 + sz wj - P3j wj-l (b11)

The first derivative expressions in x are simply

Yeli = Sxpa Yy ¥ ) 7 88 (b12)
Ol T ki 0 94 T 941 ) /B8 (b13)
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The second

¥
vyl

where,

Similarly.

(%)
vyl)

The secocond

derivatives are found as follows

! d/3n(¥Y
7y|3 a/on( y)

- R -V A
v13 ¢ Tyli+1/2 yli-1/2 ) 7 2"

_ ¥ -
913Uy g+1/2 Tnlyer2 T Ty)3-1/2

- R oY
Qlj wj+1 QZJ J v Q3J w3-1

-

n / Ar¢
vl "yli+1s2 '
2
h _ n : +n Ar
vl3 b ylge1s2 yly-172 '/ A"
el
! an~
"yl Myly-172
T Q15 9341 7 Q23 95 * B33 954

b4
nfj-1,274"

(b14)

(b15)

{bl6)

{(bl17)

{bl8)

derivatives in x will have the same form as the y

derivatives with the metrics interchanged, therefore

Yaxli T Fri Yier " Kon Yot Ky Vi
where,
K, = E_y. E_y. / A2
11 x|i "xli+1/2
2
- E oy AE
Koy = Bxpi U Bxlier/2 * %xli-1/2 ) / B¢
_ 2
Ky = fxl1 Exli-172 7 %8
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Appendix C: Details of Method II

The calculation of & and 6 in Eqns (3.92) and (3.95)
will be shown here in greater detail. The development of the
functions Fl(cf,ﬁ) and FZ(Cf,S) are alsc presented. Method
II assumes a velocity profile given by Egn (3.88) with the
non-dimensional coefficients given in Egn (3.91).

Substituting (3.88) into Egn (2.32), repeated here as
g
(&

s _ - , .
& = J (1-u/U,: dy (c1)
0
yields
x . [ -1 -2 -1, -1..2
sY 2 Jo 1 - 0.5R,CU TNy -((10/3)87°-R 87 U "y
-1.-3 -4 4 =5 -1:-4 .5
- -58 - ; -
(RCLU, 76 7-58 )y ((8/3)¢ 0.5R_CeU, "8 T)y ]
(c2)
Integrating Egqn (c2) gives
L -1.2_ -2_ -1, -1].3
& = vy O.ZSRECer Yy (1/3)[(10/3)5 ReCf5 Ue ]Y
-1.-3 -4]1 5
-(1/5)[ReCer 5 7-59 ]y 5
-5 -1.-4].6 l
(1/6)[(8/3)5 0.5R C.U_ "8 ]y 0 (c3)
which results in
LI -152_ -142
& =6 O.25ReCer & (10/9)8 +(1/3)ReCfUe [
-(1/5)R.C.U_~186% + & -(4/9)8 + (1/12)R.C,U 362  (ca)
e f e e fe
Egqn (c4) simplifies to
* _ ~1.2
5 = (4/9)5 (1/30)Re Cer & (c5)

which is Egqn (3.92) with the terms A and B from Egns (3.93)

and (3.94) respectively.
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To obtain the expression for 8 in Egn (3.9%), substitute the

velocity profile, Egn (3.88), into Egn (2.33), repeated here

as
6 2
6= | [lurv) -tusv)?]ay (cé6)
0 e e
where the velocity profile can be written as
u=BUvy + CU y2 + EU y4 + FU y5 (c7)
when BU, CU, EU, and FU are given by Eqn (3.91). Squaring
Egqn (c7) results in
2 _ 2.2 3 5 6
u® = BU"Y” + 2(BU)CUYy +2(BU)EUY~ +2((BU)FU+(CU)EU)Y
+ culy? + 2(cu)Fuy’ + EUSY® + 2(EU)FUY® +Fulyl0 (c8)

Substituting Egns {(c¢7) and (c8) into Egn (c6) results in

s
) -1 -1.2 -1.4 -1.5
o = Jo [ (Bu)u_ "ty + (coyu, TMy? ¢ (Euyu Tyt ¢ (U Ty
-(8U) %u_"%y? -2BU(CU)Ue'2y3 - zBU(EU)Ue'zys
-2(BU(FU)+(CU)EU)Ue-2y6 - (CU)zue’zy4 - ZCU(FU)ue'2y7
-(EU)te-zys - 2FU(EU)ue'2y9 - (FU)ZUe'zyIO] dy (c9)
where,
2 2 2
(B1)* = R %c,%/a (c10)
) -2 2 2.-1
BU(CU) = (5/3)Recfue6 (1/2)Re cf 6 (c11)
: 2. 2,-3 _ -4
BU(EU) = (1/2)R °c.2 (8/2)R_C,U_S (c12)
) -5 _ 2. 2.-4
BU(FU) = (4/3)R,C.U_5 (1/8)R c 28 (c13)
) -5 _ 2. 2s-4
CU(EU) = (25/3)Recfue6 R, cf é
-(50/3)ue26'6 (c14)
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_ -5 _ 2. 2.-4
BU{(FU)+CU(EU) = (29/3)Recfueé (5/4)Re cf &
-(50/3)u626‘6 (c15)
2 2.-4 -3
= l - S
(CU) (100/9)U 5 (20/3)R_CeU,
-221“5-2
Re Cf . (cl6)
CU(FU) = (80/9)U_2¢~7 - (13/3)R.C, U 8"°
e e f e
R 2. 2,=5
+(1/2)R_"Cg s (c17)
2 2., 25-6 _ -7 2,-8
(EU)“ = Re cf 5 10Recfueé + zsue 8 (c18)
EU(FU) = (31/6)R. C.U 68 - (40/3)u_°6"°
e f e e
2. 2:=7
-(1/2)R_“Cg E) (c19)
2 2.-10 -9
= 5 -
(FU) (64/9)U "8 (8/3)Recfueé
2. 2.-8
+(1/4)R_“C; 5 (c20)
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Now 1ntegrate Eqn (c9) and substitute in Egqns (cl10)-{c20)

to obtain

-1

6 = (1/4) RCS%U_ "1 + (1/3)06'1[(10/3)Ue5'2 - Recf5'1]53

f

(1/5)U '1[R cgs™? - sy 5‘4]55

+

-1 -5 -4].6
+ (1/6) [(a/s)u &7 -{1/2)R,C¢S ]6
- (1/2) [R Cg 4]&
e =20 ‘ =2 i ,aig 2. 2:-1]x4
lllu.)ue [\5"/31Recfuek \1/5—)Re Cf 6 ]6
_ Ly =2 ap 2. 2573 _ -4].6
(1/3)9, [‘1/~’Re Cpt (5/2)R CeU 3" ]8
-2 -5 2,-4 2:-6]57
(2/7)u, [(29/3)Recfueé —(5/4)Re Cg™0 "-(50/3)U 8 ]6
- (1/5)U '2[(100/9)u 2574~ (20/3)r c u, 8 34R 2cf26'2]65
2,-5]s8
- (1/4)u, [(80/9)U =7.(13/3)R oC¢Ve 8" +(1/2)R cf &~ ]8

- (1/9)u, [R “c, 25~%_10r oCsUg? 7+zsu 25~ 3]59

- (1/5)U, [(31/6)R CeU S 8-(40/3)Ue“8"—(1/2)Re2cf26'7]61°

25-10 25-8]511

-2 -9 2
-(1/11)u, [(64/9)Ue -(8/3)ReCer5 +(1/4)RC

f
{c21)

Collect common terms in Egn (¢21) to obtain

6 = [(10/9)-1+(4/9)+(100/21)-(100/45)-(80/36)-(25/9)

+(8/3)-(64/99)]5 + [(1/4)-(1/3)+(1/5)-(1/12)-(5/6)+(5/6)

-1

-(58/21)+(4/3)+(13/12)+(10/9)-(31/3O)+(8/33)]ReCf62Ue

+[(-1/12)+(1/4)-(1/6)+(10/28)-(1/5)-(1/3)-(1/9)+(1/10)

2, 253, =2
-(1/44)]Re Ce 67U, (c22)
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Eqn (c22) reduces to
6 ¥ 0.1154401155 + 8.297258e-03 R _C.8°U !

-1.695526e-03 R_°c 287y 7 (c23)
which is simply Egn (3.95) with the values of C,D, and E
given by Egqns (3.96)-(3.98) respectively.

The expressions for Fl(cf,é) and Fz(cf,6) will now be
derived. The process starts be writing Egns (2.37) and
(2.39) in terms of Ce and 6. This results in Eqns (3.101)

and (3.102), repeated here as

2 2 2
2Ueuexc6 + cue 6x + Duexcfé + DUe5 cfX + ZDUeCf55x

3 2¢2¢ 2
- & - & -
2ECE7Ce 3ch S & Ue cf/z + UeUeXA5
2 _

Buexcfa =0 (3.101)

and
- l’: - - 2 -—

vV, = AJer + Aéuex 2Bcf55x BS Cey Uex5 (3.102)

To find Fl(Cf,ﬁ), solve for Cfx in Egn (3.101) and substitute

into Egn (3.102). The first step results in

=l -cu % - - 2 -
Cey = [ cu, 6x 2C8U U =DCg7U 2Dcf55er
+3EC,2526_+(1/2)C,U_%-U_U__AS+BU__C 5] /2 (c24)
f X f e e ex ex £
where,
- 2 _ 3
z = DUe5 2ch5 (c25)
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Substituting Egn (c24) into (3.102) results in

= S -2
Ve A er + Aéuex BC 56x

£

1 1 1

2 2 -1 . - 2 -
- 5~[ - 5 - 206 -DC.& .
B CUe 2 C UeUeXZ DCf u_.z 2DC

& -
X ex f6 erz

2525 -1 2_-1_ -1 2 -1]_
+3ch & sz +(1/2)cfue z UeUexA5z +BUefo5 z UeX5
(c26)

The term 5x can now be solved in terms of Cf and 6 from EgQn

(c.26), yielding

< 3 -1 4_-1 2., 2_-1
5 o= - - - & 2
B [ ASU,_  -2BCS Ugz "U,,~BDC.E"2 Uay*(1/2)BC 87U “2
3_-1 2. 4 -1 e]

- 5

BUeA z Uex+B Cf5 z Uex+UeX6+V /K (c27)
where,

_ _ s2. 2 =1 3 -1_ 2:4_-1

K = AU, ZBCf5+BCc Ug"2 +ZBDCf5 Uz 3Bch 5%z (c28)

Egn (c27) is Eqn (3.103) of Chapter 3, where 6x equals
Fl(cf,é) from Eqn (3.99). Fz(cf,B) is found by solving for
6x in Eqn (3.102) and substituting into Eqn (3.101). The
first step results in

- - 2 x]
o, = [ve AU, + SU__ + BS Ced /P (c29)

where,

P =A Ue - 2B Cf6 (c30)

Eqn (c29) can be simplified further by grouping the terms

that do not contain Cfx' that is
2 -1
= &
6x Q + B cfo (c31)
where,
Q = [ Ve - AéUex + 5Uex]/P (c32)
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Now substitute Egn (c¢31) into Eqn (3.101) to obtain

2 -
ZCBUeUex +CUez[Q + B5“Cfo 1] + DUefo52 + DUeSZCfx

2 -1] . 3 2 2[ 2 -1]
+ZDUeCf5[Q + BO"C. P 2EC_S 3EC."57|Q + BO"C. P

f
-(1/2)C,U_%4U_U__AS-BU__C,8% = 0 (c33)
f e e ex ex f
Now solve for Cfx in Egn (c33) to obtain
2 2 2:2

= - - - 5¢ - S

Cey [ 2c8U U, - CU."Q - DU, Cy 2DU,CeS5Q + 3ECL767Q
2 2

+ (1/2)CfUe - A5UeUex+ BS Cerx]/M (c34)

where,
_ 252.-1 52 3,-1_ 3_ 2:4,-1

M = BCU, 6°Pp +DUe~ +ZBDUeCf5 P ZECf6 3Bch S7P (c35)

Eqn (c34) is Egn (3.106) of Chapter 3, where Cfx equals

F,(Cf,é) from Eqn (3.100).
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ABSTRACT

The study of flows with viscous/inviscid interaction has
attracted many researchers over the last decade. These flows
occur whenever the adverse pressure gradient is large enough to
cause flow separation. The current emphasis is to find efficient
ways of solving these types of flows without solving the full
Navier-Stokes equations.

Three methods for solving the viscous/inviscid problem were
studied. The first method uses finite difference equations to model
both the viscous and inviscid regions. A coupling scheme is developed
to match the two solutions. The second method solves the integral
boundary layer equations in the viscous region and finite difference
equations in the inviscid region. The third method solves the Hilbert
integral to generate a correction to the inviscid velocity using the
boundary layer equations as the viscous model. The model problem used
in this work is Howarth flow over a flat plate.

The three methods were evaluated in terms of solution accuracy,
memory requirements, and computation times.




