
rnP

OF

DESIGN AND DEVELOPMENT OF A

COMPUTER-BASED MESSAGE TRANSFER SYSTEM -
FOR THE AIR FORCE LOGISTICS COMMAND

PACKET RADIO NETWORK

THESIS
William J. Taris, Captain, USAF

'DTIC
J' AN 1989

DEPARTMENT OF THE AIR FORCESE CT u
AIR UNIVERSITY

AIR FORCE INSTITUTE OF. TEr I1NOLOGYI

f

Wright-Patterson Air Force Bqjse, Ohio

wa id f

AFIT/GE/ENG/88D-53

I
i
I

I
I
I

I DESIGN AND DEVELOPMENT OF A

COMPUTER-BASED MESSAGE TRANSFER SYSTEM

I FOR THE AIR FORCE LOGISTICS COMMAN4D

PACKET RADIO NETWORK

I THESIS
William J. Taris, Captain, USAF

AFIT/GE/ENG/88D-53

I Approved for public release; distribution unlimited

I
I

I

AFIT/GE/ENG/88D-53

I

n DESIGN AND DEVELOPMENT OF A

3 COMPUTER-BASED MESSAGE TRANSFER SYSTEM FOR THE

AIR FORCE LOGISTICS COMMAND PACKET RADIO NIETWORK

I THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

3 Requirements for the Degree of

Master of Science in Electrical EngineeringI
William J. Taris, B.S.E.E.

I Captain, USAF

3 December 1988

A
I
3 Approved for public release; distribution unlimited

I
i

I
I

Acknowledgements

3 This thesis would not have been possible without the

help provided by my faculty advisor, LTC Albert B. Garcia.

His patience and guidance enabled me to gain a working

3 knowledge of engineering principles. I am also indebted to

Capt Thomas Saner, who contributed his enthusiasm for this

topic, his time and, working with the Air Force Logistics

Command, helped in obtaining hardware resources. Finally, I

I wish to thank my spouse, Dianne, for her continued help and

5 understanding.

William J. Taris

LAccession For-
DTIS TFA3

By -/
_Dist r ilrut In Oil/

Availability Codes
i !kV.a1l and/or

Dist Special

I
I
I
I
I

ii1

Table of Contents

I Page

Acknowledgements ii

List of Figures vi
List of Tablesviii
Abstract ix

U I. Introduction 1.1
Background 1.1
Problem Statement 1.6
Scope and Limitations 1.7

Approach and Presentation 1.9

II. Requirements 2.1

Introduction 2.1

System Reference 2.1

Software Project Constraints 2.3
I Requirements Listing 2.4

Message Processing Requirements 2.4

Operator Interface Requirements . . . 2.5

Customer Interface Requirements 2.6
Logical System Model 2.8

System Overview DFD 2.8
Generate Message DFD 2.10
Transmit Message DFD 2.11
Receive Message DFD 2.13

Validation Criteria 2.16
Comparison Between Requirements Listing

and Logical System Model 2.16
Validation Tests 2.19
Expected Software Response 2.19

Conclusion 2.22

III. System Design 3.1
Introduction 3.1

System Objectives 3.1

Major Design Constraints 3.2
Design Description 3.3

Data Description 3.4
Message Data Structure 3.4
Routing Table Data Structure 3.7

Program Structure 3.8
System Structure Chart 3.9
Changing System States 3.12

I
I

iiiU

II

I

Table of Contents (Cont'd)

Modules 3.14

State Transition Manager Module 3.14
Initialize System State Module 3.15

Initialize Port Module 3.16

Initialize TNC Module 3.17
Initialize Linked Lists Module 3.18

Operator Interface State 3.19
Display Menu and Prompt Module 3.21

Prepare a Message for Transmit Module . . 3.23
Access Archive Module 3.25
Generate Message 3.30

Receive State Module 3.31
Receive Message Module 3.31
Update Routing Table Module (Receive) . . 3.33
Update Received Message Archive Module . 3.35

Transmit State Module 3.35
Transmit Message Module 3.37

Update Routing Table Module (Transmit) . 3.37
Update Transmitted Message

Archive Module 3.39
Reset System State Module 3.40

Reset TNC Module 3.41
Close Port Module 3.41
Store Linked Lists Module 3.42

Error Recovery and Exception Handling . . . 3.42
Error Recovery 3.42
Exception Handling 3.44

Design Verification 3.46

IV. Testing 4.1

Introduction 4.1

Verification Testing 4.2
Unit Testing 4.2
Integration Testing 4.7

Validation Testing 4.10

Summary 4.11

V. Results, Conclusions, and Recommendations . 5.1
Introduction 5.1

Test Results * 5.1
Verification Tests 5.1
Validation Tests 5.2

Conclusions 5.2

Recommendations for Further Study 5.3

i
I

i ! ~ ~iv•|

I
I
I Table of Contents (Cont'd) Page

3 Bibliography BIB.1
Appendix A: Advanced Electronic Applications

5 Model PK-232 Terminal Node Controller A.1

Appendix B: User's Manual B.1

3 Appendix C: System Structure Charts C.1

Appendix D: Data Dictionary D.1

Appendix E: Test Plan E.1

Appendix F: Test Results F.1

Appendix G: Computer Program Code G.1

I
3
I
I
I
I
I

Iv

Il l i l i

I
I

ir List of Figures

Figure Page

1. Map of US Showing Location of AFLC PRN's
Eight Nodes 1.4

2. Equipment Configuration at Each of the
Eight AFLC PRN Nodes 1.5

3. System Overview Data Flow Diagram 2.7

4. Generate Message Data Flow Diagram 2.10

5. Transmit Message Data Flow Diagram . . 2.12

6. Receive Message Data Flow Diagram 2.14

7. Representation of the Message Data Structure
Broken Down by Fields 3.5

8. Representation of the Routing Table Data
Structure Broken Down by Fields 3.8

9. System Structure Chart 3.10

* 10. Flowchart Depicting the System State

Change Process 3.13

1 11. Initialize System State Structure Chart . . . 3.16

12. Operator Interface State Structure Chart . . . 3.22

13. Receive State Structure Chart 3.323 14. Transmit State Structure Chart 3.36

15. Reset System State Structure Chart 3.40

3 C-i System Structure Chart C.1

C-2 Initialize System State Module
Structure Chart C.2

C-3 Initialize TNC Module Structure Chart C.2

C-4 Initialize Linked Lists Module
Structure Chart C.3

C-5 Operator Interface State Module
Structure Chart C.3

I
" I I I I I I I IvI

I

List of Figures (Cont'd)
Figure Page

C-6 Display Menu and Prompt Module
Structure Chart C.4

C-7 Prepare Message for Transmit
Module Structure Chart C.4

C-8 Access Archive Module Structure Chart . . C.5

i C-9 Generate Message Module Structure Chart . C.6

C-10 Receive State Module Structure Chart . . C.6

C-11 Receive Message Module Structure Chart . C.7

C-12 Update Routing Table (Receive)
Module Structure Chart C.7

C-13 Update Received Message Archive
Module Structure Chart C.8

C-14 Transmit State Module Structure Chart . . C.8

C-15 Transfer Message Module Structure Chart . . C.9

C-16 Update Routing Table (Transmit)
Module Structure Chart C.9

C-17 Update Transmitted Message Archive
Module Structure Chart C.10

C-18 Reset System State Module Structure Chart C.10

vi
!
I
I

I

. i i II I

I

I

List of Tables

Table Page

I. Comparison Between the Requirements Listing
and the Logical System Model 2.17

II. Requirement, Validation Test, and Expected
Software Response 2.19

III. Design Verification Table 3.47

3 F-I Alpha Phase Validation Tests, Expected
Software Responses, Actual Responses F.11

ivii

U

I
I
I
I
I

I
I
U
I
i viii

'I
I

AFITiGE/ENG/88D-53I Abstract

I 'The Air Force Logistics Command W(- ?el Packet Radio

Network (PRN) is a specialized communications network that

enables communication between eight logistics command cen-

3 ters throughout the continental United States. The PRN

communicates by transferring a message from a microcomputer

onto a broadcast radio channel. This thesis effort designs,

and partially develops the design for, a computer-based mes-

i sage transfer system that operates the PRN. First, system

requirements are established, a logical system model is con-

structed, and validation tests are detailed. The computer-

5 based message transfer system has two fundamental require-

ments--that it be easy to use and that it provide automatic

3 routing through the network. Next, the design is built sup-

porting a hierarchical program structure, modularity and

information hiding. After the computer code, detailed by

g design, is written, it is tested. Testing involves a com-

parison of the validation tests detailed earlier with the

3 computer program's operation. The results show that this

thesis effort resulted in an operational computer-based

3 message system for the PRN that satisfies the tdo fundamen-/-I

tal requirements of ease of use and automatic routing. I F) --

I
ix

Il H I H I I

I
I

DESIGN AND DEVELOPMENT OF A COMPUTER-BASED

MESSAGE TRANSFER SYSTEM FOR THE

g AIR FORCE LOGISTICS COMMAND PACKET RADIO NETWORK

I. Introduction

Background

I Military communication systems are recognized force

multipliers [19:11. This recognition leads to continued

growth in the number of military communication systems. As

5 additional military communication systems are implemented,

significant contention for a limited resource, bandwidth,

3 demands efficient utilization of that resource. Paralleling

the growth in military communication systems is the dramatic

increase in the use of military computers. This use led

3 almost immediately to the need for a capability to com-

municate between various military computers. These computer

5 communications are data transfers, typically of a burst-type

nature, some requiring use of a radio channel. A pair of

i computers communicating in a burst-type nature over a dedi-

cated radio channel is an inefficient use of the bandwidth

I resource because most of the time the channel is idle.

3 In response to the need for a computer communications

capability over a radio channel, packet radio is used

3 [10:24-31]. Packet radio allows a group of computers to

communicate over a shared radio channel. Packet radio uses

the radio channel as a multiple-access channel.

i
i 1.1

Ia ~ i l n

The radio channel is a multiple-access channel because many

nodes will want to send message traffic over the same chan-

nel, possibly at the same time. One efficient multiple-

channel access technique to use for this type of communica-

tion is Carrier Sense Multiple Access (CSMA), a communica-

tion method based on the transmission of packets between

computer nodes [11:1400-1402;12:91.

A packet is a maximum length number of data characters

along with a fixed number of control characters. The length

of a packet is a maximum of 256 bytes of data, 8 bits per

byte, and control characters [7]. The PRN has an average

message length of 1500 characters, 1500 bytes, so that one

message is broken up into a large number of packets. Conse-

quently, the channel transmission time used by an individual

packet is much shorter than the transmission time for trans-

mitting the entire message all at once. Packetized trans-

mission of a message allows sharing of the radio channel.

The radio channel can be shared at the end of every packet

transmission, unlike the situation of transmitting the

entire message where sharing of the channel is possible only

at the end of a message's transmission. The sharing of the

radio channel between packet transmissions is accomplished

by interleaving in time the packets from all nodes on the

radio channel. Another important advantage of packet

transmission is that corruption of the data during

1.2

transmission causes the retransmission of the corrupted

packet, whereas the corruption of data during transmission

of the entire message requires that the entire message be

retransmitted.

A computer node consists of the computer and associated

radio equipment. The computer node is simply referred to as

a node. With CSMA, when a node has a packet to transmit it

senses the radio channel. If the channel is not busy, the

node transmits the packet. If the node senses that the

channel is busy, it reschedules the transmission for a later

time when it again starts the channel-sensing process. The

process of transmitting packets over the radio channel con-

tinues until the entire message is transmitted. Communica-

tion systems that use this type of CSMA technique are called

packet radio networks (PRNs). AFLC's PRN is such a network.

AFLC's PRN is a specialized communications network that

provides message communication between eight Logistics

Command Centers dispersed throughout the continental United

States, see Figure 1. The network is used for contingency

operations and is included in the AFLC's Survival, Recovery,

and Reconstitution Plan [3].

A.FLC's PRN replaced a system that used radio voice

links. The previous system was slow and personnel-intensive

because the network's messages were manually encrypted for

voice transmission. The PRN is faster and requires fewer

1.3

I
I
I

McCLELLAN AP H

NE RK APE

M IS MONTHAN APB TINKER APB OIN P

5 KELLY APB

Figure 1. Map of U.S. Showing Location of AFLC PRN's Eight
Nodes

personnel than the previous system. An increase in speed is

3 possible because encryption is performed automatically as

the message leaves the computer. Unattended operation is

possible with the PRN.

Each PRN node consists of an IBM PC-compatible computer,

a computer program, an encryption device, a terminal node

3 controller, and a single-frequency, high frequency (HF)

radio, see Figure 2. The computer program is responsible

3 for interfacing with node operators requiring the

transmission or receipt of PRN messages. The computer

I
I

D 1.4

I'

I [
u COMPUTER

PROGRAM

COMPUTER ENCRYPTION NODE HF
DEVICE CONTROLLER RADIO

3 Figure 2. Equipment Configuration at Each of the Eight AFLC
PRN Nodes

I program is also responsible to interface with the terminal

node controller so that messages are transmitted over, and

received from, the radio channel. The encryption device is

3 viewed as a transparent device that rearranges the data

stream between the computer and terminal node controller. A

I terminal node controller is similar in operation to a modem

3 with the added requirements of operating with a radio, using

packet radio techniques, instead of a telephone line (see

3 Appendix A).

When a message is transmitted between a source and a

1 destination node, the node operator instructs the computer

I
I 1.5

program to enter and transmit the message. The receiving

node, under computer control, accepts the message into

* storage and indicates to that node operator that a message

has arrived. This scenario views the network as being fully

3 connected, each node able to establish a direct link with

every other node. Because the PRN uses an HF radio channel,

full connectivity cannot be assumed at all transmission

3 itimes. In a situation of less than full connectivity, a

method must be instituted to use intermediate nodes to for-

3 ward the message to the destination. This method is

referred to as a network routing algorithm [22:539-541].

U Currently, the PRN has only a basic computer program

available. The current network routing algorithm is a

manual system requiring complete operator intervention. The

3 PRN needs a computer-based message transfer system with an

associated automated network routing algorithm.

U Problem Statement

5 AFLC's PRN lacks a computer-based message transfer

system (MTS) with an associated network routing algorithm.

3 The goal of this thesis effort is to design and develop an

i MTS for the AFLC's PRN.

1
i
I
* 1.6

Scope and Limitations

The goal of this thesis effort is to provide an MTS.

The MTS will provide the capability to transmit a message

from any node to any other node over the shared HF radio

channel. Central to providing this capability is the need

for a network routing algorithm.

The MTS will have the ability to generate messages,

transmit messages, and receive messages. These three abili-

ties form the baseline for the MTS.

3 The MTS will satisfy three overall objectives:

(1) Portability - the MTS will be able to operate on
any IBM PC-compatible computer
running MS-DOS 3.X or higher.

(2) Flexibility - the MTS will have an ability for
growth, should its requirements
expand.

(3) Maintainability - all system documentation will be
complete and concise. Changes
made to the MTS should involve no

* hardware modifications.

The network routing algorithm will be implemented in

5 software resident at each computer node. The choices for

implementation of the network routing algorithm are either

5 a software or a firmware implementation. Choosing the soft-

ware implementation satisifes the three overall objectives

I for the MTS:

(1) Portability - the software implementation will
be independent of the type of IBM
PC-compatible computer being used.

I

* 1.7

nII

I
(2) Flexibility - the ease with which a software

implementation can be modified
aids in its flexibility.

(3) Maintainability - because a fix to a problem code
segment can be remedied by insert-
ing a different floppy disk with
no hardware changes involved aids
maintainability.

A firmware implementation would involve a firmware pro-

3 duct residing within the TNC. The TNC model chosen for the

PRN does not have commercially available firmware as do some

TNCs [14]. The firmware for this project would have to be

* totally developed in-house.

Interoperability of the MTS with other networks will not

be developed during this thesis effort. However, it is

realized that the PRN, being a U.S. military communication

i network, requires interoperability. The objective of flexi-u bility has, as one of its benefits, the ability to enhance

the PRN to interoperate.

This thesis effort will not review the type of logistics

information that will be incorporated into a message's text.

5 The message text will simply be viewed as a series of ASCII

characters.

The encryption of messages will not be investigated nor

3 developed into the MTS. The PRN provides for encryption of

the message traffic by a computer expansion card that

3 interfaces between the data stream input and output of the

computer and the data stream input and output of the TNC.

I
i 1.8

I
I
i For the purpose of this thesis effort, the encryption device

will be assumed to be completely transparent. Because the

expansion device is viewed as completely transparent, there

is no need for incorporation into the MTS development. The

3 MTS will be expected to perform only on the PRN not having

the encryption devices installed.

Approach and Presentation

The initial approach is to perform a literature search

for information about related PRN system designs. Specifi-

cally, this review will help to identify problem areas that

other investigators have encountered. Publications and

periodicals available in the AFIT library are the starting

3 point for this investigation.

The goal of this project is to provide an MTS. The MTS

I project involves three areas of development: detail spe-

cific requirements of the message transfer system iden-

tifying from those specific requirements that the MTS will

I satisfy; design of the MTS computer program; and testing of

the MTS computer program.

I Specific requirements of the message transfer system are

documented as a plain English description. Following this,

I the logical system model highlights the data flow of the

3 MTS. The logical system model is represented by data-flow

diagrams and a data dictionary. Validation criteria that

1
I
i 1.9

I
3 check the ability of the completed MTS to satisfy the system

requirements are developed and presented.

3 Design of the MTS develops the logical system model

data-flow diagrams into structure charts through the use of

3 transform analysis. A bottom-up I-rogramming style turns the

structure charts into computer code.

The Test Plan referenced in the chapter on testing

3 Uspecifies the steps taken to verify the MTS computer

program. Validation testing for the MTS computer program

i uses the validation criteria developed during requirements

analysis.

I,11

I

I
I
I
I
I
i ii

3 1.10l

Introduction II. Requirements

U Introductio

Satisfying the PRN's need for a message transfer system

computer program with an associated network routing

3 algorithm (MTS) begins by an investigation of specific PRN

requirements. A baseline for the start of this effort is

the knowledge that the PRN's message-handling processes need

to generate messages, transmit messages, and receive mes-

sages.

3 After a brief discussion of the PRN system reference and

software project constraints, a detailed listing of the spe-

3 cific requirements for the packet radio network is presented

in plain English. Following this, a logical system model,

using data-flow diagrams and a data dictionary, indicate the

3 data flow through the MTS. The final section in this

chapter establishes the validation criteria that will be

* used to compare the PRN requirements against the completed

MTS.

System Reference. The purpose of AFLC's PRN is to pro-

3 vide secure record communications during a lack of con-

tingency communications capabilities needed to support

I natural disasters and the wartime Survival, Recovery,

* Reconstitution scenario.

Each of the eight Logistics Command Centers, Wright-

3 Patterson, Hill, Robins, Kelly, McClellan, Tinker, Davis-

Monthan Air Force Bases, and Newark Air Force Base, Ohio, is

i
i 2.1

a PRN node, see Figure 1. Each node will be equipped with a

I Tempest Z-150 m~icrocomputer, an encryption device, a ter-

minal node controller, and an HF AN/URC-119 radio, see

Figure 2. Each node will use a copy of the MTS computer

program, developed as part of this thesis, on the Z-150

microcomputer to operate on the PRN.

i Generation of the messages for transmission is accom-

plished on an off-line IBM PC-compatible computer and stored

on a 5 1/4-inch disk. Once the message is generated, it is

3 delivered to the PRN operator. The PRN operator processes

the message by transferring it from the 5 1/4-inch disk to the

3 itransmit section of the MTS. At the receiving node, the

message is automatically received and the destination node

operator is informed that a message has arrived.

i Due to the characteristics of HF radio transmission,

continuous direct radio contact between all pairs of PRN

nodes is not expected. There is a need for the PRN to

transmit messages from any node to any other node through

i the use of intermediate nodes acting as repeaters. The

PRN's ability to automatically make use of intermediate

nodes as repeaters is the goal of the network routing

algorithm. This ability enables the transmission of a mes-

sage that is unable to go directly from source node to

* destination node by automatically choosing a transmission

path using an intermediate node or nodes to aid in the

I transmission of the message.

I
i 2.2

I
Software Project Constraints. The MTS software develop-

ment is constrained by three factors: the volume of message

traffic that can be processed, the computer hardware equip-

ment configuration, and the limited development time.

* The volume of message traffic that can be processed by

each node is limited by the radio transmission rate of 300

I :baud. This transmission rate results in a channel capacity

of 1,080,000 bits/hr where the network is modeled as two

nodes, one transmitting and one receiving. Knowing the

packet sizes used by AX.25 and that an average message is

1500 characters results in a requirement of 17070 bits/msg.

i The error-free channel throughput is calculated by dividing

the channel capacity by the average message size. The

error-free channel throughput is calculated to be 63

msgs/hr. Errors occurring in 2% of the packets cause the

throughput to be 58 msgs/hr.

The Z-150 computer is configured with two floppy disk

drives and 512k bytes of random access memory (RAM). These

I storage limitations cause some software implementation

* choices to be disregarded.

Time limits on the development of the MTS dictate that

priority requirements are identified for full-scale incor-

poration into a completed MTS. This points out that not all

3 the PRN requirements are to be incorporated into the MTS

* computer program developed as a part of this thesis effort.

2
3 2.3

I
Requirements Listing

Requirements for the MTS computer program were developed

after discussions with the PRN system administrator and a

system operator. Information was exchanged regarding the

3 way the older manual system worked and about the expecta-

tions for an automated system. The requirements specified

serve to establish a complete set of requirements for the

The requirements listing is broken into three areas.

The three areas are message processing requirements, opera-

tor interface requirements, and customer interface require-

I ments. These three areas correspond to the focus of the

message transfer systems's operation.

References to "system" in the following requirements

listing mean either an individual node operation performed

at each node or an overall PRN function.

Message Processing Requirements. These requirements
focus on the entire PRN operation.

1 (1) The system shall transmit a message from one of
eight nodes to another node, more than one node, or all
nodes. The capability shall exist to transmit messages
between all eight nodes.

(2) Messages shall be composed of 10 fields. These
fields will be message source, message destination(s), mes-
sage author, date/time, priority, security classification,
message text, time of transmission, and time message was3 received.

(3) Messages shall be composed of, at most, one and
* a half pages of text.

I
m 2.4

I

(4) A network routing algorithm shall be used by
the system to determine the best route to transmit a mes-
sage. The network routing algorithm shall be automated.
The network routing algorithm shall provide a route for
transmission of a message even when there is not a direct
connection between the source and destination.

(5) Messages shall be encrypted for transmission.

(6) The system shall provide archival storage of
messages that are transmitted or received. Following a
message transmission and before storing the messaqe, a
transmission time will be appended to the message. Follow-
ing a message being received and before storing the message,
a time of receipt will be appended to the message.

(7) The system shall provide a positive acknowl-
edgement that a message has been received at the destination
node.

(8) The system shall provide a transmit message
queue. The transmit message queue should be capable of
holding TXQUEUEMAX messages.

(9) Queued messages not able to be transmitted
after TIMEOUT minutes or TRYOUT tries shall be flagged for
the operator's attention.

(10) The system shall transmit messages based on
priority.

(11) The system shall provide for receiving mes-
sages, whether the operator position is attended or unat-
tended.

i idd (12) Complete system documentation shall be pro-
vided. This documentation shall include a detailed expl;na-
tion of the computer program, points of contact, and

I reference documentation.

Operator interface Requirements. These requirements
focus on the system operator interface.

(13) Use of the operator interface shall not inhibit
receiving messages.

I (14) The system operator interface shall be menu
driven with English instructions and help features for all

* major operator options.

2
i 2.5

(15) The system shall provide the operator with a
message completeness indication as messages are being
entered.

(16) The system operator shall be provided with the
ability to enter messages for transmission into the
transmission message queue. This ability shall be provided
for up to TXQUEUEMAX messages.

(17) The system operator shall be able to access a
record of all node activity for the previous 24 hours. This
record shall be provided in hard copy form. Node activity
is defined as transmitted messages, received messages, and
instances where the node was used as an intermediate node.
Selectable options shall provide choices among how the
records will be formatted for output.

(18) A converse mode shall be provided. Converse
mode allows interactive communication between two system
operators.

(19) A system operator handbook shall be provided.
The handbook shall detail all menu options and provide
sample screen displays. The handbook shall reproduce in
hard copy form all help feature displays.

Customer Interface Requirements. These requirements
focus on the customer's generation of messages.

(20) The system shall provide a method for a cus-
tomer to generate a message. The method shall be a computer
program that displays a message template and queries the
customer for input.

(21) The Generate Message Program shall be menu
driven with English instructions and help features for all
customer options.

(22) The information that shall be provided by the
customer when generating a message is the source, destina-
tion, author, date/time, priority, security classification,
subject, and message text.

(23) The Generate Message Program shall be portable
to any IBM PC-compatible computer running MS-DOS 3.X or
higher. The Generate Message Program will produce the
message onto a 5 1/4-inch disk.

2.6

EdE

-4

1 4

2.7~

Logical System Model

The purpose of the logical system model is to describe

data flows associated with the MTS [9:8-24]. The logical

system model uses data-flow diagrams (DFD) and a data dic-

tionary to describe MTS data flows. The DFDs presented in

this section detail the basic DFD logical levels.

System Overview DFD. The purpose of the system overview

DFD is to provide a framework for subsequent development.

No specific data dictionary entries are associated with this

DFD.

The system overview DFD, Figure 3, represents the high-

est level DFD of the MTS. The three primary processes

involved with the MTS--generate messages, transmit messages,

receive messages--are each represented.

The generate message process is represented on the DFD

as the customer's message data store. This data store

signifies the process of generating a message, transferring

it to a 5 1/4-inch disk, and delivering the disk to the

system operator.

The transmit message process is represented by the top

half of the system overview DFD. This basic DFD description

shows the three steps involved with transmitting a message.

The first step is to transfer the message from the custo-

mer's 5 1/4-inch disk into a priority-ordered transmit

queue. This step is represented by the DFD process TRANSFER

2.8

I
jI

MESSAGE. The second step sets up the next queued message's

path through the PRN. This step is represented by the DFD

process SET UP PATH. The final step in the transmit message

process is to segment the message. Because the message is

larger than one packet, it must be segmented into packets.

This step is represented by the DFD process SEGMENT MESSAGE

OUT.

The receive message process, the final primary MTS pro-

cess, is represented by the bottom half of the System Over-

view DFD. Three steps are involved with receiving a

message. The first step is recognition of the received

message path that has been established. This step is repre-

sented by the DFD process RECOGNIZE PATH. The second step

is to receive and store incoming message packets. This step

is represented by the DFD process SEGMENT MESSAGE IN. The

final step in the receive message process is to notify the

system operator that a message has been received. This step

is represented by the DFD process NOTIFY OPERATOR.

Common to the transmit and receive message processes is

the interfacing between the computer and the TNC. This

interfacing is represented by the DFD process INTERFACE TO

TERMINAL NODE CONTROLLER.

The three primary processes involved with the MTS have

been presented as a basic DFD representation, the system

overview DFD. Each of the three primary processes, generate

2.9

I
I

message, transmit message, and receive message, are now pre-

I sented as separate DFDs. Unlike the system overview DFD,

3t these DFDs have associated data dictionary entries. The

data dictionary is presented in Appendix D. These three

separate DFDs, still at a basic logic level, serve to

illustrate the primary MTS processes.

Generate Message DFD. The purpose of the generate mes-

I sage process is to provide the customer with a method to

generate a message and transfer that message onto a

5 1/4-inch disk. Figure 4 is a DFD of the generate message

process. Central to this process is the display of a

CRT

TEMPLATr

Figure 4. Generate Message Data Flow Diagram

2) I0

message template onto the customer's computer screen and

querying the customer for keyboard inputs. Once all message

fields are queried and the customer exits and the entire

message is transferred onto a 5 1/4-inch disk.

Transmit Message DFD. The purpose of the transmit

message process is to transfer a message from a customer's 5

1/4-inch disk to a distant node. The transmit message pro-

cess requires an operator. The transmit message DFD is

shown as Figure 5. Earlier, the transmit message process

was described as a three-step procedure: transfer message,

3 set up message path, and segment the message. Each of these

three steps involves two distinct DFD processes.

The transfer step checks that the message being

requested by the operator for entry is complete, storing

i completed messages in the computer's RAM. The message's

priority then drives the ordering of memory location point-

ers to the next message to be transmitted from the transmit

message queue. These two transfer message steps are repre-

sented by the DFD processes CHECK FOR COMPLETENESS and

3 TQUEUE.

The message path procedure for the transmit message

function begins as a check of the transmit message pointers.

3 Finding the next message to be transmitted in the transmit

queue results in that message's destination being passed to

I

i 2.11

£c 0

-

o 01

0.-a

2.1

I
I

the network routing algorithm. The network routing algo-

rithm produces a transmission path. This transmission path

is then used to establish a connection between source and

destination node. These operations are represented as DFD

processes TCONNECT/DISCONNECT and DETERMINE ROUTE.

Once a connection is established, the segmenting message

Iprocedure begins to segment the message into packets. These

3 ipackets are then transferred to the TNC for transmission.

This is represented by the DFD process PARSE OUT MESSAGE.

After the entire message has been transferred, a transmis-

sion time is appended to the message and the message is

3 stored on a 5 1/4-inch disk. This process is represented by

the DFD process TX STATISTICS.

The interface between the transmit message process and

I the TNC is represented by the DFD process INTERFACE TNC.

The primary purpose of the INTERFACE TNC process is respon-

I sibility for control and data transfer from the computer to

the terminal node controller.

Receive Message DFD. The purpose of the receive message

* process is to receive a message from a distant node and

inform the operator of a received message. A message will

be received regardless of whether or not the operator posi-

3 tion is attended. The received message DFD is shown as

Figure 6. Earlier, the message process was described as a

2

i 2.13

i i I II II I i I I t i ,,

I
I

1 |4

I s-I1

I
!0

I
2.14

i0

"" u II I I

three-step procedure: recognize message path, receive mes-

sage packets, and notify operator. Each of these three

steps involves two distinct DFD processes.

The recognize message path step establishes that a

received message is arriving. This is represented by the

DFD process RCONNECT/DISCONNECT. The receive message packet

step accepts message packets arriving, and stores them as

partial message segments. This is represented by the DFD

process PARSE IN MESSAGE. When all message packets have

been received, a receive time is appended to the message.

The message is then stored on a 5 1/4-inch disk. These two

operations are represented by the DFD process RCV

STATISTICS. The newly received message path is used to

update the network routing algorithm. This is represented

by the DFD process UPDATE ROUTING ALGORITHM.

Once a message is completely received, the receive

message queue pointers are reordered, based on priority.

This is represented by the DFD process RQUEUE. Next, an

indication of a received message is passed to the operator's

computer screen if the operator position is attended. This

process is represented by the DFD process NOTIFY OPERATOR.

The interface between the receive message process and

the TNC is represented by the DFD process INTERFACE TNC.

Operations performed under this process are similar to those

described for the transmit message process.

2.15

I
I

Validation Criteria

Validation criteria answer the question of what message

g transfer system requirements are satisfied by the completed

MTS [13:670-674]. The validation process has two steps.

5 First, a comparison is made between the message transfer

system requirements and the logical system model. Next,

3 validation tests are detailed.

3 IComparison Between Requirements Listing and Logical

System Model.

5 A comparison of the message transfer system requirements

listing with the logical system model is presented in Table

3 II. Requirements that are identified as not being satisfied

by the logical system model are valid message transfer

I system requirements that have been identified but are not

g able to be satisfied by this thesis effort.

Table I indicates that requirements 5, 7, and 18 will

I not be satisfied by this thesis effort. The requirement for

encryption, requirement 5, is accomplished by an expansion

3 card placed in the Z-150. The expansion card is secure com-

munications equipment. The administrative overhead associ-

I ated with secure communications equipment placed this

3 requirement beyond the scope of this thesis effort.

The requirement for a positive acknowledgement that a

3 message has been read by the system operator at the destina-

tion node, requirement 7, is not satisfied by the MTS. A

I
I

I 2.16

.. ..Ut t I I

manual procedure that requires the operator to positively

acknowledge all received messages could be mandated to

satisfy this requirement.

The requirement of a converse mode, requirement 18,

between system operators is not satisfied by the MTS.

Table I. Comparison Between the Requirements Listing and
the Logical System Model.

Logical System Model Not

Requirement TX RCV GEN Satisfied Comments

(i) X X Transfer
to all
nodes

(2) . . X : Additional
Msg Info

(3) X 1.5 Pages
: :of Text

(4) : X Routing
Algorithm

(5) . X Encryption

(6) X X . Transmit
Stats

(7) X : Positive

: Ack

(8) X Queue

(9) X X * TIMEOUT/TRYOUT

(10) X Priority
Handling

(11) X Unattended
Receipt

2.17

Table I. Comparison Between the Requirements Listing and
the Logical System Model (Cont'd).

Logical System Model : Not
Requirement TX :RCV :GEN : Satisfied Comments

(12) X X X Sys
: . :Documentation

(13) X X Noninhibiting
: :Operator

Interface

(14) X X Operator
: . : :Position

Menu-Driven

(15) X Complete-
ness
Check

(16) X X Queueing

(17) X :X :Archive
: of Msg
: Traffic

(18) X : Converse
: Mode

(19) X X : Operator
: Handbook

(20) X : Customer
S : :: Generate

: Messages

(21) . : X :Menu
: : : :Driven

(22) : X Additional
: :Msg Info

(23) . . X . Portable

2.18

I

Validation Tests. Tests will be performed in assessing
I

the validity of the MTS to satisfy the specifically iden-

tified message transfer system requirements. Validation

tests will provide a validation that individual requirements

5 are satisfied by the computer system program. Tests have an

alpha and beta phase. Alpha testing is done at an AFIT

laboratory. Beta testing is performed in the operational

3: environment.

Expected Software Response. This section details the

validation tests used to validate the MTS. Table II provi-

3 des the requirement number, the associated validation test,

and the associated expected software response. No attempt

is made in this section to cover details relating to

requirements that involve documentation, requirements 13 and

1 20. Documentation products will undergo a configuration

audit during beta testing by PRN administrators and PRN

operators.

Table II. Requirement, Validation Test, and Expected
Software Response

* Expected Software
Req Validation Test Response

(1) : Send a message to all : Msg received correctly
: nodes. : at all nodes.

(2) : Place all message info, : Msg transferred to
: such as author, date, : 5 1/4-inch disk com-
: etc., into a message : plete with all addi-
: along with text. : tional information.

2.19

U
I

Table II. Requirement, Validation Test, and Expected
Software Response (Cont'd)

Expected Software

Req Validation Test Response

(3) : Compose a message of : Only 1 1/2 pages of msg
: more than one and a half : text is transferred to
: pages of text. : 5 1/4-inch disk.

(4) : Send a message to a : Msg arrives at destina-
: known destination that : tion via an alternate
: has no direct connec- : route.

(6) Send a message. : Message arrives com-
: plete.

(8) Continuously enter mes- : The number of messagesI sages into the transmit : entered will be equal
queue with a single : to or slightly greater
destination until a : than TXQUEUEMAX, due toI Queue Full indication. : transmit during entry.
Count the number of : If TXQUEUEMAX equals
messages entered. Don't : RCVQUEUEMAX, then the
immediately have the : number of messages
destination operator : available to the
receive messages. receive operator is3 RCVQUEUEMAX.

(9) Send a message to a Indicators inform the
: known off-line node. operator that the msg

: did not get through
after TIMEOUT minutes
or TRYOUT tries.

1 (10) Fill the transmit Some of the low-
: message queue with a : priority msgs get
: low-priority msg to a : through before the
: single node. Immediately higher priority msgs.

send a msg to the same The remaining lower
node at a higher priority msgs follow.

: priority. Enter no addi-
: tional messages.

(11) : Send a msg to a node : Msg is received at the
: having an unattended : destination and placed
: operator position. : in the receive archive

: file.

i 2.20

U
I

Table II. Requirement, Validation Test, and Expected
Software Response (Cont'd)

Expected Software5 Req Validation Test Response

(13) : One node is processing : Messages transmitted to
: the entry of a message. : the first node proces-
: A second node is sending : sing a msg entry are
: the first node messages. : received.

One node continuously : The second node
: processes msg entries : receives the messages.
: with a second node as a
: destination. The second
: node is able to receive
: the messages.

(14) : Activate operator inter- : The operator interface
: face Repeatedly call up : is menu-driven. The
: the help option for each : help feature details
: operator option. : all major operator

: options.

(15) : Input a semicompleted : Msg is detected as
s: header, i.e., leave : incomplete and causes

: out the destination, : an incomplete indica-
: source, author, etc. : tion at the operator

I :position.

(16) : Continuously enter mes- : All messages entered
: sages into the transmit : are received. Message
message queue with a : receipt by the operator

: single destination until : proceeds through the
: a Queue Full indication. : received message queue.
: Count the number of
: messages entered.

(20) : Activate the Generate : The screen displays a
: Message Program. Enter a : msg template and a cur-
: message. : sor query for input.

: The msg input is stored
: on 5 1/4-inch disk.

(21) : Activate the Generate : The Generate Message
: Message Program. : Program is menu-driven
: Repeatedly call up the : with accurate, clearly
: help feature for all : worded, detailed help
customer options, and : features.
msg fields.

2.21

Table II. Requirement, Validation Test, and Expected
Software Response (Cont'd)

Expected Software

Req Validation Test Response

(22) : Activate the Generate : The Generate Message
: Message Program. : Program has destina-

: tion, author, date,
: time, priority,
: security, and message
: text fields.

(23) ; Activate the Generate : The Generate Message
: Message Program on an : Program runs correctly.
: IBM PC computer that
: runs MS-DOS 3.X.

Conclusion

This chapter establishes the message transfer system

requirements, identifies which of those requirements are

satisfied by the MTS, and establishes the criteria that is

used to validate the identified requirements satisfied by

the MTS.

2.22

I

III. System Design

Introduction

I The goal of the design effort is to produce an opera-

tional MTS for the AFLC's PRN. Details of the system's

objectives and major design constraints are presented as

3 part of this introduction to the system's design. Following

this, the four main sections of the system design chapter--

5 design description, system modules, error recovery and

exception handling, and design verification--are developed.

System Objectives. The primary objective of the MTS is

3 to transmit a message from any system node to any other

system node over a shared HF channel. A direct radio propa-

gation path between any two system nodes is not always

3 available. An optional routing of the message through

intermediate nodes must be provided. This optional routing

* is the purpose of the network routing algorithm.

Secondary objectives of the MTS involve satisfying the

Iother ancillary requirements uncovered during the require-
3 ments analysis of Chapter II.

Along with specific system objectives are three overall

3 objectives, first presented in Chapter I:

(1) Portability--The MTS must be designed to operate

3 with any IBM PC or compatible computer running

3.1

MS-DOS 3.0 or higher and having at least 512k bytes

of RAM.

(2) Flexibility--The MTS must have the ability to grow.

(3) Maintainability--All system program elements must

be designed to ease understanding, correcting, and

enhancing.

These three overall objectives must be satisfied by all

aspects of the MTS design.

Major Design Constraints. Major design constraints

result from both hardware and software items that are part

of the system's node at the time design begins. Another

major design constraint results from the real-time nature of

the MTS.

The major design constraints imposed by the system's

hardware originate from two items, the terminal node

controller and the microcomputer. The use of a specific

terminal node controller, the PK-232, forces the use of a

specific command and data exchange format on the computer-

to-TNC interface (see Appendix A). The speed with which

data can be exchanged between the computer and the TNC is

limited by the capability of the PK-232. The system's use

of the Zenith Model Z-150 microcomputer, an IBM PC-

compatible computer equipped with 512k bytes of RAM memory

and no hard disk drive, further narrows design implementa-

tion choices.

3.2

A major design constraint imposed by existing software

is the system's use of the MS-DOS operating system. This is

the operating system used on the system's microcomputers

that must be used as the foundation of this software design.

3 The real-time nature of the MTS imposes design con-

straints by limiting the efficiency of program operation due

to priority service interruptions.

3 Design Description

The design description is a preliminary design step

[18:256]. This part of the system development pro-

3 cess relies on the data flow diagrams produced during

requirements analysis. Study and refinement of these data-

flow diagrams provide input to the two primary steps of

design description, the data description and the program

structure.

3 The overall design of the MTS can be viewed as being

modeled by the seven-layer Open Systems Interconnection

5 (OSI) model [23:15-211. The bottom two layers are fully

satisfied by the TNC. The top four layers are satisfied by

3 the computer program. A traditional view of the third

layer, the network layer, views the X.25 protocol as

satisfying layer three resonsibilities [23:2381. The TNC

implements a version of X.25, AX.25 (see Appendix A).

However, a closer look at how X.25 accomplishes the network

3.3

function reveals that it has no capability to perform net-

work routing decisions (161. The MTS computer program will

3 have the capability to perform network routing decisions

dynamically and is therefore viewed as satisfying the third

layer of the OSI model.

3 Data Description. The purpose of a data description is

to present the system data structures. Both physical and

logical details for the two system data structures, the

message data structure and the routing table data structure,

are developed. The physical details associated with these

3I data structures involves a discussion of the type of

programming construct used to store and sort the data struc-

3 tures. The logical details involve an overview of how the

data structures are used by programming processes.

Message Data Structure. Physically, the message

3 data structure is composed of 12 fields, see Figure 7. Ten

of the fields are alphanumeric, each having a fixed maximum

I number of characters. Two of the fields are pointers used

_ •by the programming construct that stores the message data

structure. Each message data structure is stored as a

3 separate entry. The principal purpose of the MTS is to

transmit message data structures between system nodes.

I
U
I
i 3.4

IC

I

-I
41,

0 4 4 1 1

i.1 4) " U 44 . U U "

0 a) V 0 0)) 4 0 03~~~ m ,C U) 4,1 0. C.

Figure 7. Representation of the Message Data Structure
Broken Down by Fields

The message data structures are stored in linked lists.

Linked lists are programming constructs that allow a fixed

number of various types of data fields to be stored as a

single data structure entry and data structure entries to be

stored in sequence. The sequencing of data structure

entries within the linked list is based on the characteris-

tics of a specific data field in each data structure entry.

A distinctive property of linked lists is that each linked

list entry has fields that point to the prior linked list

entry and the next linked list entry.

3.5

I
U

There are four linked lists in the program that involve

the message data structure. The four linked lists are the

generate message linked list, the transmit queue linked

list, the transmitted message linked list, and the received

* message linked list.

A message data structure moves among different system

U linked lists. A message data structure is created during

3f the generate message process. During program processing, a

message data structure moves from the generate message

linked list to the transmit queue linked list. After the

message data structure has been transmitted, the message

data structure is deleted from the transmit queue linked

list and added to the transmitted message linked list. At

the receiving node, the newly received message data struc-

3 ture is added to the received message linked list.

The sorting of message data structures within each of

3 the four linked lists is done relative to only one field in

each message data structure entry. Within the generate

I message linked list, the message data structure entries are

i sorted based on a message data structure's source field.

For the transmit queue linked list, message data structure

3 entries are sorted based on the message data structure's

priority field. For the transmitted message linked list,

3 message data structures are sorted based on a message data

structure's destination field. For the received message

3.6

I:
linked list, message data structures are sorted based on the

message data structure's source field.

Logically, the message data structure is used by a

number of program processes to make decisions. Typically,

3 only a limited number of message data structure fields is

used by any one program process. The destination field is

used to determine a message's destination. The priority

3l field is used to sort messages in the transmit queue linked

list.

Routing Table Data Structure. Physically, the

3 routing table data structure is composed of six fields, see

Figure 8. Four of the fields are alphanumeric, each having

3 a fixed maximum number of characters. Two of the fields are

pointers used by the programming construct that stores the

routing table data structure. Each routing table data

structure is stored as a separate entry. The purpose of a

routing table data structure entry is to supply the program

with routing information to establish a communications link

between source and destination.

The programming construct used to store the routing

table data structures is a linked list. Each system has a

routing table linked list with seven routing table data

structure entries. Each of the routing table data struc-

tures represents a different destination. Each system node

has seven possible destinations.

3.7

ICJAl

0 0 0 0 0

I

W~ I' w4 w~ . C..

i Figure 8. Representation of the Routing Table Data
Structure Broken Down by Fields

l The routing table linked list is used to determine the

path for transmission of a message. The destination of the
message is matched with a routing table linked list data

i structure. The routing paths associated with the destina-

tion are used as the message's transmission path. Alternate

i routing paths are provided for each destination so that if

the best path cannot be used, other options are available.

I Updating of the routing path entries for each destinationI

are accomplished by the routing algorithm. The routing
algorithm dynamically determines the best routin~g paths and

I updates the routing table data structures.

i Program Structure. The MTS program structure is devel-

oped based on the three software engineering concepts of an

I 3.8

--4El l 4) 4) 4)|

I
established program hierarchy, modularity, and information

I hiding. [18:219-228].

3 The MTS is a real-time system. Real-time proces-

sing decisions cause the state of the system to change. At

3 the foundation of the program structure is the idea of

state-driven processing. A state transition manager is at

3 the top of the program hierarchy. The state transition

manager changes the system's state, depending on the

system's condition. These changes of state are reflected as

3 calls-to-program process modules by the state transition

manager. Information hiding is supported by each process

Smodule only having access to the specific information needed

during its processing.

I The system structure chart was formed from the DFDs

of Chapter II, see Figure 9. A transaction center is

shown as the state transition manager. This transaction

center makes decisions, based on the system's condition, of

which process module to call [17:242-251]. These process

3 modules are considered to be system states.

A review of the system structure chart is presented

in the next section, followed by a discussion of changing

* between system states.

System Structure Chart. The system structure

chart, Figure 9, shows the state transition manager at the

3 top of the program hierarchy. The system structure chart

3
3.9

WUE
InV

I4
cr E-

fl

I 4J

z

4i)

I I

3.10

shows the two ancillary system states, the initialize system

state and the reset system state, and the three fundamental

system states, the operator interface state, the receive

state, and the transmit state.

The initialize system state and the reset state are

called ancillary modules because they are called only once

during any active program period. The initialize system

state is primarily responsible to initialize the communica-

tion link between the computer and the TNC and provide the

TNC with station identifiers and system parameters. The

reset system state returns the TNC to an idle condition,

I clears the communications link between the computer and the

TNC, and stores the system linked lists.

The operator interface state is responsible for inter-

3 facing the MTS to the operator. This interfacing includes

displaying menu choices on the computer's monitor and

3 responding to requests for service. Once the menu choices

are displayed and until there is a keyboard key depressed,

the operator interface state turns program control back over

i to the state transition manager.

The receive state is responsible for receiving messages.

5 The messages are stored for later access.

The transmit state is responsible for transmitting the

I highest priority message in the transmit queue linked list.

Once a message is transmitted, it is stored for later

reference.

I
I 3.11

The structure chart in Figure 9 defines the basic archi-

tectural structure of the MTS. This basic architectural

structure displays an established program hierarchy and

modularity. Information hiding is supported by each module

*I having access only to information necessary to complete its

process.

Changing System States. The state of the system is

changed, based on system conditions. The system's three

fundamental states are the operator interface state, the

receive state, and the transmit state. Two ancillary states

u are the initialize system state and the reset system state.

The three conditions that cause the system to change between

fundamental system states are a receive request, a transmit

request, and a keyboard key being depressed. The two con-

ditions that cause the system to change to the two ancillary

states are program initiation and an exit request.

Figure 10 illustrates changing between the three fun-

damental states. The highest priority of service is given

to a receive request. Detecting a receive request causes

the system to move to the receive state. Once a message has

been received, the transmit queue is checked. If there is a

message in the transmit queue and the transmit flag is

enabled, the system moves to the transmit state. Once a

message has been transmitted, there is a check mode for

keyboard entries (kbhit). If a kbhit has occurred, the

3.12

I
I

system moves back to the operator interface state to process

the keyboard request.

The two ancillary system states are active only once

during each active session. The initialize system state is

I START &
INITIATE

I_

OPERATOR
INTERFACE
STATE

1RECV RECEIVE

TX TRANSMIT

REQUEST STATE

I YES

NO

I IT

Figure 10. Flowchart Depicting the System State Change
* Process

called by the state transition manager when the MTS computer

I program is first initiated. The reset system state is

3
I 3.13

I
I

called by the state transition manager only upon an opera-

tor's exit request.

3 The previous discussion of changing the system state

highlighted the system conditions that cause changes to the

fundamental system states. A brief discussion of the

3 system's two ancillary states was also presented.

Modules

I The system's modules include the state transition

manager and the fundamental and ancillary states illustrated

in the System Structure Chart of Figure 9. The system is

3 composed of primary modules and submodules. The primary

modules are the state transition manager, the initialize

3 system state, the operator interface state, the receive

state, the transmit state, and the reset state. There is a

I number of submodules associated with each of these primary

* modules that is responsible for portions of the primary

module's processing. Structure charts, narrative

3, discussions, and pseudocode descriptions for each of the

modules and submodules are now presented.

State Transition Manager Module. The primary purpose of

3 the state transition manager module is to change the sys-

tem's state. Figure 9 is a structure chart for the state

I transition manager module showing the state modules that are

I
I
i 3.14

called by the state transition manager. Figure 10 illus-

trates the system conditions that are involved in making the

* decision of the next system state condition.

A pseudocode description depicts the processing of the

3 state transition manager.

BEGIN STATE TRANSITION MANAGER
INITIALIZE SYSTEM STATE(),
WHILE(! EXIT)

CHANGE TO OPERATOR INTERFACE STATE,
WHILE(! KEY DEPRESSED)
IF(RECV REQ = 1) PROCESS A RECEIVE,
IF(TRANSMIT REQ = 1) PROCESS A TRANSMIT,

BACK TO OPERATOR
INTERFACE STATE

END WHILE,
RESET STATE(),

END STATE TRANSITION MANAGER

The code for the state transition manager is written in

the C programming language (C) and presented in Appendix G.

5 None of the primary system data structures detailed pre-

viously is acted upon by the state transition module.

I Initialize System State Module. The three responsibil-

1 ities of the initialize system state module are to initial-

ize the computer-to-TNC communications port, initialize the

3 TNC, and initialize the system linked lists. Refer to

Figure 11, the structure chart for the initialize system

state. The module's responsibilities are performed by three

submodules: the initialize port module, the initialize TNC

module, and the initialize linked list module.

3

i 3.15

II I
I

The pseudocode description of the initialize system

I state module shows that the only processing done is to call

g the three state's submodules.

BEGIN INITIALIZE SYSTEM STATE
INITIALIZE PORT(PORT,PARAMETERS),
INITIALIZE TNC(PORT),
INITIALIZE LINKED LISTS(),

END INITIALIZE SYSTEM STATEI
INITIALIZE

SYSTEM
STATE

I
I

INITIALIZE
INITIALIZE INITIALIZE LINKED
PORT TNC LIST

I
Figure 11. Initialize System State Structure Chart

The code for the initialize system state module is writ-

ten in C and is presented in Appendix G.

The actions of the three submodules of the initialize

I system state module are now detailed.

3, Initialize Port Module. The initialize port module

causes the computer's serial port to be set to specific

l
I 3.16

parameters. The parameters passed to the module specify the

ports data transfer rate, parity, and the number of bits per

3 word. Additionally, the module allocates a buffer for

storing received data.

R A pseudocode description of the initialize port module

is:

: BEGIN INITIALIZE PORT (PORT, PARAMETERS)
ENABLE RECEIVE BUFFERS,
SET PORT PARAMETERS,

END INITIALIZE PORT

The initialize port module's code is written in the

assembly programming language and presented in Appendix G.

Initialize TNC Module. The initialize TNC module

initiates the dialogue between the computer and the TNC.

During the first steps in this dialogue, the TNC is

I instructed to move from start-up to fully operational sta-

tus. This dialogue is accomplished through the use of send

3 and receive commands. The send command transfers data out

the computer's serial port to the TNC. The receive command

Ireads data coming into the computer's serial port from the
3 TNC. The send and receive commands are written in Assembly

and presented in Appendix G. The structure chart associated

3 with the initialize TNC module is presented in Appendix D.

The pseudocode description of the initialize TNC module

is:

3.17

BEGIN INITIALIZE TNC (PORT)
WHILE(INCORRECT RESPONSE)

SEND(PORT,COMMAND DATA),
RESPONSE = RECV(PORT),

END WHILE
WHILE(INCORRECT RESPONSE)

SEND(PORT,COMMAND DATA),
RESPONSE = RECV(PORT),END WHILE

END INITIALIZE TNC

The number of while process loops within the pseudocode

description is a function of the number of command data

£ streams that are to be sent to the TNC. The number of com-

mand data streams is a function of the number of TNC parame-

3 ters that must be set for a particular node's configuration.

The code for the initialize TNC module is written in C and

I presented in Appendix G.

Initialize Linked Lists Module. This module is

responsible for initializing the system's linked lists.

There are four linked lists associated with each node: the

transmit queue linked list, the transmitted messages linked

list, the received messages linked list, and the routing

3 table linked list. The structure chart for the initialize

linked lists module is presented in Appendix C.

During previous system operation, system linked lists

i were stored on a 5 1/4-inch disk as the program was exited.

The job of the initialize linked list module is threefold:

3

II

I
I

search the 5 1/4-inch disk for the previous linked lists,

I pro-vide the operator with the choice of whether to use the

3: previous linked lists or to start the linked list in the

cleared state, and to perform the operator's choice with

regard to the linked lists. In the event that no previous

linked lists are recovered, no operator choice is possible

and the system linked lists are set up in the cleared state.

A pseudocode description of the initialize linked lists

module is:

BEGIN INITIALIZE LINKED LISTS
IF(RETRIEVE PREVIOUS LINKED LISTS)

QUERY OPERATOR; LOAD OLD OR LOAD CLEAR,
IF(LOAD OLD) LOAD OLD LINKED LISTS,
IF(CLEAR) LOAD LINKED LISTS CLEARED,

ELSE LOAD LINKED LISTS CLEARED

END INITIALIZE LINKED LISTS

The modules code is written in C and is presented in

j Appendix G.

The initialize system state module and its three com-

ponent submodules, initialize port, initialize TNC, and ini-

tialize linked lists have been detailed.

Operator Interface State. The operator interface state

is responsible for providing an interface between the system

operator and the MTS. The principal agents involved in this

interfacing are the computer monitor, the computer keyboard,

the computer disk drives, and the system printer.

The operator interface is menu-driven. Menu choices

appear on the computer monitor. Selection of a menu item by

3.19

the operator causes the program to display additional menus

or requests for specific keyboard input [6:66-791. Upon

3 selection of a menu choice or upon entering the requested

keyboard input, the selected operation is performed. The

I computer monitor continuously displays information about the

operation being performed.

The operator interface state module initially presents a

main menu on the computer monitor offering the following

four choices to the system operator:

TRANSMIT MESSAGE
GENERATE A MESSAGE
ACCESS ARCHIVED MESSAGE FILE3 EXIT PROGRAM

There is an active help feature available to the opera-

*tor any time the system is in the operator interface state

module. This help feature is invoked by depressing the Fl

function key. The help display window appears in the center

of the computer monitor and presents relevant information.KI
The operator interface state module uses four submodules

to aid in processing its responsibilities: the display menu

and prompt module; the prepare a message for transmit mod-

ule; the access archive module; and the generate message

module. A structure chart of the operator interface state

I is presented in Figure 12.

3 A pseudocode description of the operator interface state

is:I
I

3.20

BEGIN OPERATOR INTERFACE SYSTEM STATE

WHILE(!EXIT)
WHILE(NO SELECTION)

SELECTION = DISPLAY MENU AND PROMPT(MAIN MENU),
END WHILE

SWITCH(SELECTION)

CASE(TRANSMIT MESSAGE): PREPARE MSG FOR TRANSMIT(),

BREAK,
CASE(ACCESS ARCHIVED MSG FILE):

ACCESS ARCHIVE AND UPDATE(,

BREAK,

CASE(GENERATE A MESSAGE): GENERATE MSG(),
BREAK,

CASE(HELP): HELP(),
BREAK,

CASE(EXIT): RETURN,
END SWITCH

END WHILE
END OPERATOR INTERFACE STATE

The four submodules of the operator interface state

module, the display menu and prompt module, the prepare a

message for transmit module, the access archive and update

module, and the generate message module, are detailed.

IDisplay Menu and Prompt Module. The display menu

I and prompt module displays menu choices on the operator's

monitor. Within this module the OIS interacts with the

f state transmission manager as previously discussed. A

structure chart of the display menu and prompt module is

ipresented in Appendix D.
A pseudocode description for the display menu and prompt

module is:

BEGIN DISPLAY MENU AND PROMPT (MENU)

DISPLAY MENU CHOICES,
INTERACT WITH THE STATE TRANSITION MANAGER,
IF(SELECTION) RETURN SELECTION

END DISPLAY MENU AND PROMPT

I
£ 3.21

Iw

1 4
(a

4JIU
4J

c9: (a

0aa 4
or 4wI..I.z

4

1 0
c C."

3.224

I

The code for the display menu and prompt module is writ-

ten in C and presented in Appendix G.

f Prepare a Message for Transmit Module. The prepare

g a message for transmit module is activated when the operator

selects the TRANSMIT MESSAGE from among the main menu item

3 choices. The module accomplishes the preliminary steps

necessary before actually transmitting a message. This

module does not transmit a message. The specific respon-

sibilities of this module are to read a specified message

I from a 5 1/4-inch disk into RAM, check the message for com-

pleteness, reorder the transmit queue, and process any

requests for the help function. The prepare a message for

transmit module uses the display menu and prompt module to

present the transmit menu options on the monitor. Once an

3 operator makes a menu selection, the prepare a message for

transmit module processes the selection. A structure chart

of the prepare a message for transmit module is presented in

f Appendix C.

Upon entering the module, after having chosen TRANSMIT

j MESSAGE from the main menu, the transmit menu is displayed:

ENTER A GENERATED MESSAGE
BEGIN TO TRANSMIT
HOLDUP TRANSMISSION
RETURN TO MAIN MENU

3 Selecting the first transmit menu item causes the

transmit submenu to be displayed:

i
I

i 3.23

I
I

ALL MESSAGES LISTED
ONLY ONE MESSAGE LISTED
ENTER TRANSMIT QUEUE LISTING
RETURN TO MAIN MENU

3 A pseudocode description of the prepare a message for

transmit module is:

BEGIN PREPARE A MESSAGE FOR TRANSMIT MODULE
MOVE MSG FROM DISK TO RAM,
CHECK MSG FOR COMPLETENESS,
WHILE(LSELECTION)

SELECTIONDISPLAY MENU AND PROMPT(TRANSMIT MENU),
END WHILE
SWITCH(SELECTION)

CASE(ENTER A GENERATED MESSAGE):
GO TO TRANSMIT SUBMENU
RETURN

CASE(BEGIN TO TRANSMIT): ENABLE TRANSMIT FLAG,
RETURN,

CASE(HOLDUP TRANSMISSION): DISABLE TRANSMIT FLAG,
RETURN,

CASE(RETURN TO MAIN MENU): RETURN,
END SWITCH

TRANSMIT SUBMENU:
WHILE(ISELECTION)

SELECTION=DISPLAY MENU AND PROMPT (TRANSMIT
SUBMENU)

END WHILE
SWITCH(SELECTION)

CASE(ALL MESSAGES LISTED):
GET MESSAGES OFF DISK,
ENTER MESSAGES INTO TRANSMIT
QUEUE,
REORDER TRANSMIT QUEUE,
RETURN,

CASE(ONLY ONE MESSAGE LISTED):

GET MESSAGES OFF DISK,
DISPLAY MESSAGES,
WAIT FOR OPERATOR CHOICE,
ENTER CHOSEN MESSAGE INTO
TRANSMIT QUEUE,
REORDER TRANSMIT QUEUE,
RETURN,

I
I
1

i 3.24

II I

S

CASE(ENTER TRANSMIT QUEUE LISTING):
ALLOW OPERATOR TO ENTER
MESSAGE,
ENTER MESSAGE INTO TRANSMIT
QUEUE,
REORDER TRANSMIT QUEUE,

RETURN
CASE(RETURN TO MAIN MENU):

RETURN

END
SWITCH

END TRANSMIT SUBMENU5 END PREPARE A MESSAGE FOR TRANSMIT

The code for the prepare a message for transmit module

is written in C and presented in Appendix G.

Access Archive Module. The access archive module

enables the system operator to view the system linked lists.

This module also gives the operator the opportunity to act

upon the system linked lists. Initially, the module

displays the archive menu, a choice of seven menu items on

j the operator's monitor:

DISPLAY ALL TRANSMITTED MESSAGE HEADERS
SHOW THE RECEIVED MESSAGE HEADERS
THE TRANSMIT QUEUE
A SPECIFIC NODE'S TRANSMIT AND RECEIVE MESSAGE HEADERS
MESSAGE HEADERS FROM A SPECIFIC TIME PERIOD
CURRENT ROUTING TABLE

RETURN TO MAIN MENU

When any one of the first five access archive menu items

is selected, the monitor is cleared, then the requested

linked list entries are displayed. Reverse video highlights

one of the linked list entries. The linked list entry high-

3 lighted is selectable by the arrow keys. After the entry to

3.25

I

be processed is highlighted, the RETURN key is pressed and

i the archive submenu appears:

PRINT MESSAGE
STORE MESSAGE AS
VIEW MESSAGE
DELETE MESSAGE
LINKED LIST PRINT
GO TO ARCHIVE MENU
RETURN TO MAIN MENU

3 This menu partially pulls down over the linked listings.

The linked list entry that was highlighted when the submenu

was activated is still highlighted in reverse video. The up

and down arrow keys are active, but now cause a reverse

video highlight to cycle through the menu choices. Depress-

ing the RETURN key causes the highlighted menu selection tc

process. Where this menu selection is for action on an

individual linked list entry, such as print message, the

highlighted linked list entry is acted upon. So, in this

case, the message pointed to by the highlighted linked list

3entry is printed.
Referring back to the archive menu, when the sixth

£archive menu item is chosen, CURRENT ROUTING TABLE, the

routing table linked list is displayed. When the correct

routing table linked list entry is highlighted in reverse

video, the RETURN key is depressed and the routing table

menu appears on the monitor:

I
I
I

i 3.26

ADD A NEW ROUTING TABLE ENTRY
MODIFY AN EXISTING ROUTING TABLE ENTRY
VIEW ENTIRE ENTRY
DELETE THE HIGHLIGHTED ROUTING TABLE ENTRY
ENTER NEW ROUTING TABLE FROM DISK
STORE CURRENT ROUTING TABLE ON DISK
RETURN TO MAIN MENU

This menu partially pulls down over the linked listings.

The linked list entry that was highlighted when the menu was

activated is still highlighted in reverse video. The up and

down arrow keys are active, but now cause a reverse video

highlight to cyc'.e through the menu choices. Depressing the

RETURN key causes the highlighted menu selection to process.

Where this menu selection is for action on an individual

linked list entry, such as view entire entry, the high-

lighted linked list entry is acted upon. In this case, the

routing table linked list entry highlighted is displayed on

the monitor.

Once an archive submenu selection has finished pro-

cessing, control is returned to the main menu.

The access archive module uses the display menu and

prompt module to present the menu options on the monitor.

Once an operator makes a menu choice, the access archive

module processes the selection.

A pseudocode description of the access archive module

is:

3.27

BEGIN ACCESS ARCHIVE
FOREVER,

ARCHIVE :WHILE(NO SELECTION)
SELECTION=DISPLAY MENU & PROMPT(ARCHIVE MENU),
END WHILE

SWITCH(SELECTION)

CASE(DISPLAY ALL TRANSMITTED MESSAGE HEADERS):
LIST TRANSMITTED,
PROCESS ARROW KEYS, RETURN KEYS, SPECIAL KEYS,
UPON RETURN GO TO ARCHIVE SUBMENU,
BREAK,

CASE(SHOW THE RECEIVED MESSAGE dEADERS);
LIST RECEIVE,
PROCESS ARROW KEYS, RETURN KEYS, SPECIAL KEYS,
UPON RETURN GO TO ARCHIVE SUBMENU,
BREAK,

CASE(THE TRANSMIT QUEUE);

LIST TRANSMIT QUEUE,

PROCESS ARROW KEYS, RETURN KEYS, SPECIAL KEYS,
UPON RETURN GO TO ARCHIVE SUBMENU,
BREAK,

CASE(A SPECIFIC NODE'S TRANSMIT AND RECEIVE
MESSAGE HEADERS):

LIST SPECIFIC,
PROCESS ARROW KEYS, RETURN KEYS, SPECIAL KEYS,
UPON RETURN GO TO ARCHIVE SUBMENU,
BREAK,

CASE(MESSAGE HEADERS FROM A SPECIFIC TIME PERIOD):

LIST TIME,
PROCESS ARROW KEYS, RETURN KEYS, SPECIAL KEYS,
UPON RETURN GO TO ARCHIVE SUBMENU,
BREAK

CASE(CURRENT ROUTING TABLE):

LIST ROUTING,
PROCESS ARROW KEYS, RETURN KEYS, SPECIAL KEYS,

UPON RETURN GO TO ROUTING TABLE MENU,

BREAK,

CASE(RETURN TO MAIN MENU): RETURN,
END SWTTCH

END FOREVER

SUBMENU:SELECTION=DISPLAY MENU ANiD PROMPT (ARCHIVE SUBMENU),

SWITCH(SELECTION)
CASE(PRINT MESSAGE):

PRINT MESSAGE,
RETURN,

CASE(STORE MESSAGE AS):
STORE MESSAGE,

RETURN,

CASE(VIEW MESSAGE):

3.28

VIEW MESSAGE,
RETURN,

CASE(DELETE MESSAGE):
DELETE MESSAGE,
RETURN,

CASE(LINKED LIST PRINT):
PRINT THE LINKED LIST,
RETURN,

CASE(GO TO ARCHIVE MENU):
RETURN,

CASE(RETURN TO MAIN MENU):
RETURN,

END SWITCH
END SUBMENU

ROUTING TABLE MENU:SELECTION=DISPLAY MENU AND PROMPT
(ROUTING TABLE SUBMENU)

SWITCH(SELECTION)
CASE(ADD A NEW ROUTING TABLE ENTRY):

ADD ROUTING TABLE ENTRY,
RETURN,

CASE(MODIFY AN EXISTING ROUTING TABLE ENTRY):
DISPLAY ROUTING TABLE ENTRY,
MODIFY ROUTING TABLE ENTRY,
RETURN,

CASE(VIEW ENTIRE ENTRY):
DISPLAY ROUTING TABLE ENTRY,
RETURN,

CASE(DELETE THE HIGHLIGHTED ROUTING TABLE ENTRY):
DELETE ROUTING TABLE ENTRY,
RETURN,

CASE(ENTER NEW ROUTING TABLE FROM DISK):
LOAD ROUTING TABLE ENTRIES FROM DISK,
RETURN,

CASE(STORE CURRENT ROUTING TABLE ON DISK):
STORE CURRENT ROUTING TABLE ENTRIES ON DISK,
RETURN,

CASE(RETURN TO MAIN MENU):
RETURN,

END SWITCH
END ROUTING TABLE MENU

END ACCESS ARCHIVE

The code for the access archive module is written in C

and presented in Appendix G.

3.29

Generate Message. The generate message module is

responsible for generating a message. The module will also

be available as a stand-alone program so that generation of

messages can be accomplished off-line. The generate message

option is available as part of the operator interface system

to allow more flexibility.

The generate message module can be broken into three

processes: display a message template on the monitor,

prompt the operator through the message fields, and store

the message on a 5 1/4-inch disk. There are three sub-

modules that carry out these specific operations. A struc-

ture chart for the generate message module is presented in

Appendix C.

A pseudocode description of the generate message module

is:

BEGIN GENERATE MESSAGE
DISPLAY MESSAGE TEMPLATE,
PROMPT THRU TEMPLATE FIELDS,
STORE MESSAGE,

END GENERATE MESSAGE

The code for the generate message module is written in C

and presented in Appendix G.

The OIS module and its four component submodules--the

display menu and prompt module, the prepare a message for

transmit module, the access archive module and the generate

message module--have been detailed.

3.30

Receive State Module. The receive state module is

responsible for processing the receiving of messages over

the computer-to-TNC communications link. Processing

received messages involves three steps: the message must be

received from the TNC, the path taken by the received

message is used to update the routing tables, and the

received message is added to the received message linked

list. Processing received messages is done by three sub-

modules: the receive message module, the update routing

table module, and the update receive message archive module.

Figure 13 is a structure chart of the receive state module.

A pseudocode description of the receive state module is:

BEGIN RECEIVE STATE
RECEIVE MESSAGE(),
UPDATE ROUTING TABLES(),
UPDATE RECEIVE MESSAGE ARCHIVE(),

END RECEIVE STATE

The code for the receive state module is written in C

and presented in Appendix G.

Each of the three submodules of the receive state module

is now detailed.

Receive Message Module. The receive message module

is responsible for receiving a message from the TNC.

Receiving a message from the TNC is a five-step process that

queries the TNC for data, interprets responses from the TNC,

3.31

concatenates received data to a received message data struc-

ture, and detects an end of message. A structure chart of

the receive message module is presented in Appendix C.

A pseudocode description of the receive message module

is:

BEGIN RECEIVE MESSAGE
WHILE(I EOM)

QUERY TNC FOR RECEIVE MESSAGE DATA,
INTERPRET RESPONSES FROM TNC,
CONCATENATE RECEIVED DATA TO A MESSAGE DATA

STRUCTURE,
END WHILE
PROCESS EOM,

END RECEIVE MESSAGE

RECEIVE
STATE

RECEIVE zPDOATE UPDNTE
MESSAGE rOzT TrIG MESSAGE

TABLE ARCHIVE

Figure 13. Receive State Structure Chart

3.32

The code for the receive message module is written in C

and presented in Appendix G.

3 Updatinq Routing Table Module (Receive). The

5 update routing table module is responsible for modifying the

routing table linked list. This modification is done based

on the transmission path taken by the recently received

message. A structure chart of the update routing table

(receive) module is presented in Appendix C.

The routing table linked list provides up to three

transmission paths between a source and destination node.

5 The top transmission path entry is considered to be the best

route. The next transmission path in the listing is con-

sidered to be the second best path, and the third

transmission path in the listing is considered to be the

I least desirable path.

Modifications to the routing table linked listing

involve reordering the routing table linked list

transmission paths. This reordering can also include adding

a new path if the current received message transmission path

is not in the choice of transmission paths. The recently

received message's transmission path is considered to be the

best current path between source and destination nodes.

The modification process searches for a match between

the recently received message's transmission path and the

3.33

U

current routing table linked list transmission path entries

for the destination. Should a match occur, the routing

table linked list path entry is deleted. Irrespective of

the matching outcome, the newly received message's trans-

mission path is placed as the top choice of transmission

paths in the routing table linked list. Other entries are

placed below this entry and kept in their former sequence.

If the modification process starts with three transmis-

sion path choices, then at the end of the modification pro-

cess there will still be three choices, even if the recently

received message's transmission path was a new addition.

From this starting condition and a new addition, the least

desirable transmission path is deleted from the routing

table linked list.

If the modification process starts with fewer than three

transmission path choices, then a recently received

message's transmission path that does not already appear as

a transmission path choice is added.

A pseudocode description of the update routing table

(receive) is:

BEGIN UPDATE ROUTING TABLE (RECEIVE)
SEARCH FOR A MATCH,
REORDER PATHS,

END UPDATE ROUTING TABLE (RECEIVE)

The code for the update routing table (receive) module

is written in C and presented in Appendix G.

3.34

Update Received Message Archive Module. The update

received message archive module is responsible for changing

the received message linked list to reflect the recently

received message.

A pseudocode description of the update received message

archive module is:

BEGIN UPDATE RECEIVED MESSAGE ARCHIVE
ADD MESSAGE DATA STRUCTURE ro RECEIVED MESSAGE LINKED

LIST,
END UPDATE RECEIVED MESSAGE ARCHIVE

The code for the update received message archive module

is written in C and presented in Appendix G.

The receive state module and its three component sub-

modules, receive message module, update routing table

module, and update received message archive module, have

been detailed.

Transmit State Module. The transmit state module is

responsible for processing the transmission of a message

over the computer to TNC communications link. Processing

the transmission of a message involves three steps: the

transfer of the message from the computer to the TNC,

updating the routing table linked list after transmission of

the message, and updating the transmit queue and the

transmitted message linked lists. These processes are

'handled by three submodules of the transmit state module.

The three submodules are the transfer message module, the

3.35

update routing table module, and the update transmit message

archive module. Figure 14 is a structure chart for the

transmit state module.

TRANSMIT
STATE

TFANSFER UPDATE UPDATE
ROUTING MESSAGE

MESSAGE TABLE ARCHIVE

Figure 14. Transmit State Structure Chart

A pseudocode description of the transmit state module

is:

BEGIN TRANSMIT STATE
TRANSFER MESSAGE(),
UPDATE ROUTING TABLE(),
UPDATE TRANSMITTED MESSAGE ARCHIVE(),

END TRANSMIT STATE

The code for this module is written in C and presented

in Appendix G.

Each of the three submodules of the transmit state

module is now detailed.

3.36

Transmit Message Module. The transmit message

module is responsible for transmitting a message.

Transmission of a message is a three-step process that

establishes a connection between the local and destination

TNCs, transfers the message to the destination TNC, and

orders a disconnect with the destination TNC.

A pseudocode description of the transfer message module

is:

BEGIN TRANSFER MESSAGE
CONNECT
SEND BYTES,
DISCONNECT,

END TRANSFER MESSAGE

The code for the transfer message module is written in C

and presented in Appendix G.

Update Routing Table Module (Transmit). The update

routing table module (transmit) is responsible for modifying

the routing table linked list. This modification is done

based on the transmission path taken by the recently

transmitted message. A structure chart of the update

routing table (transmit) module is presented in Appendix C.

The recently transmitted message's transmission path is

considered the current best transmission path to the desti-

nation node. The recently transmitted message's transmis-

sion path comes directly from the routing table linked list.

This transmission path is used to modify the linked list.

3.37

The modification process searches for a match between

the recently transmitted message's transmission path and the

current routing table linked list transmission path entries.

If there is a match with the first transmission path, the

modification process is conluded, the best current path is

at the top of the list. If a match is not made with the

first transmission path entry, the newly transmitted mes-

sage's transmission path appears somewhere else in the

listing of the three transmisison path choices. It is found

and deleted from the linked list. The newly transmitted

message's transmission path replaces the top entry, the for-

mer top entry falls into the second-best entry position.

The other entry is then moved to the third-best entry posi-

tion.

At the end of the modification process, the routing

table linked list contains the same number of transmission

path choices as when the modification process began. The

transmit function does not generate any new transmission

paths. The only purpose of the modification process is to

reorder the routing table linked list in the event that the

top transmission path was not successful at providing a

usable transmission path.

A pseudocode description of the update routing table

(transmit) module is:

3.38

BEGIN UPDATE ROUTING TABLE (TRANSMIT)
SEARCH FOR A MATCH,
REORDER PATHS,

END UPDATE ROUTING TABLE (TRANSMIT)

3 The code for the update routing table (transmit) module

is written in C and presented in Appendix G.

Update Transmitted Messaqe Archive Module. The

3update transmitted message archive module is responsible for

changing the transmitted message linked list to reflect the

transmission of a new message. Additionally, the module

3 revises the transmit queue linked list by deleting the entry

associated with the recently transmitted message. The

transmit queue linked list is then reordered by priority. A

structure chart of the update transmitted message archive

module is presented in Appendix C.

A pseudocode description of the update transmitted

archive module is:

BEGIN UPDATE TRANSMITTED MESSAGE ARCHIVE MODULE
MOVE TRANSMITTED MESSAGE TO TRANSMITTED MESSAGE

LINKED LIST,
REVISE TRANSMIT QUEUE,

END UPDATE TRANSMITTED MESSAGE ARCHIVE MODULE

The code for the update transmitted message archive

module is written in C and presented in Appendix G.

The transmit state module and its three component sub-

modules, transmit message module, update routing table

module, and update transmitted message archive module, have

been detailed.

3.39

i
U

Reset System State Module. The three responsibilities

of the reset system state module are to reset the TNC, close

3 the computer-to-TNC communications port, and store the

system linked lists. These responsibilities are performed

by three submodules, the reset TNC module, the close port

module, and the store linked lists module. Figure 15 is a

Istructure chart of the reset system state module.

3 RESET

S YSTEM

STATEI'
I

RESET CLoSE s'rouc
TNC PORT LINKED

LISTS

3 Figure 15. Reset System State Structure Chart

3 A pseudocode description of the reset system state

module is:

I
U

3 3.40

BEGIN RESET SYSTEM STATE

RESET TNC(),
CLOSE PORTO),
STORE LINKED LISTS(),

END RESET SYSTEM STATE

The code for the reset system state module is written in

C and presented in Appendix G.

Each of the three submodules of the reset system state

module is now detailed.

Reset TNC Module. The reset TNC module controls a

dialogue between the computer and the TNC. During this

dialogue, the TNC is issued commands which instruct it to

move from the fully operational state to a reset state.

A pseudocode description of the reset TNC module is:

BEGIN RESET TNC
SEND(PORT, COMMAND DATA),

RECV(PORT, COMMAND RESPONSES),
SEND(PORT, COMMAND DATA),
RECV(PORT, COMMAND RESPONSES),

END RESET TNC

The code for the reset TNC module is written in C and is

presented in Appendix G.

Close Port Module. The close port module causes

the computer-to-TNC communication port to be closed. The

module's code is written in the Assembly programming

language and is presented in Appendix G.

3.41

3 Store Linked Lists Module. The store linked lists

module is responsible for storing the four system linked

5 lists on a 5 1/4-inch disk at the time reset is initiated.

The code for the store linked lists module is written in

C and is presented in Appendix G.

The reset state module and its three component modules,

reset TNC module, close port module, and store linked lists

module, have been detailed.

Error Recovery and Exception Handling

The topic of error recovery and exception handling

covers situations where the normal flow of processing by the

computer program is interrupted or disabled by some system-

triggered event. An example is when a process to store data

on a 5 1/4-inch disk cannot open the file. How this and

similar situations are handled by the computer program are

of importance because improper error recovery or exception

handling can cause the MTS to hang up or even to crash.

The topic of error recovery and exception handling is

broken into two areas for detailed discussion--error recov-

ery and exception handling.

Error Recovery. Errors related to this discussion

center around three system components: the keyboard, the 5

1/4-inch disk, and the TNC. Each component requires a dif-

ferent error recovery process.

3.42

Keyboard errors could be caused by invalid keys being

entered by the operator. During an active display on the

computer monitor, only certain keys are valid input. Spe-

cifically, when the menu choices are displayed, the only

valid keys are the up and down arrow keys, the enter key,

and the character keys of the first letter of any menu

choice. Error recovery for a keyboard error, hitting an

invalid key, is performed by a masking operation recognizing

only valid keys. Invalid keys are ignored.

The 5 1/4-inch disk could cause errors in three

instances: failure to find a drive active, failure to find

the file named, or failure to open a file, and a disk full

error message. Error recovery in each of these instances

involves an indicator message to be displayed on the com-

puter monitor. The operator is then expected to perform

normal recovery procedures, such as activating the disk

drive, renaming the file, or inserting a 5 1/4-inch disk

with additional storage capacity.

Errors associated with the TNC involve responses to com-

puter commands and computer queries of the TNC that are

unintelligible. Errors could occur while the computer is

establishing TNC parameters, processing the transmission of

a message, processing the receipt of a message, or resetting

the TNC. The process for handling this type of error is to

repeat the command or query and reevaluate the TNC's

3.43

response. This looping process occurs only a limited number

of times until the operator is notified that there is a

problem with the computer-to-TNC communication link. This

notification is in the form of a monitor message stating the

5problem.

3 Exception Handling. Exception conditions involve pro-

cesses that give information that is not expected; the

information is intelligible. One such situation occurs when

the TNC is queried by the computer for current message data.

Instead of message data being received, other TNC infor-

3I mation is received. This other information is, typically,

information about radio channel traffic. Because the radio

3 channel is shared among all the system's nodes, various

pairs of nodes can be communicating over the radio channel.

I The additional information is about other pairs of system

node communications that were heard by the local TNC. This

information is called monitored data. The level of moni-

toring done by the TNC is selected so that there is no moni-

toring except for local node processing.

3 Exception handling is also necessary during transmitting

and receiving a message. During this time, the entire mes-

sage may not completely transfer over the radio channel due

to the loss of the propagation path. Handshaking and inter-

val timing are two ways that this exception condition is

3.44

handled. The handshaking occurring at the message transmis-

sion level involves a search by the receiving station for a

specific character sequence that is sent by the transmitting

node to indicate the end of a message. The receiving node

then sends a specific character sequence to the transmitting

node. Only after this handshaking at the end of a message's

transmission will both nodes register the message transmis-

sion as successful. This prevents a channel outage result-

ing in an incorrect message transmission. Interval timing

is also used by the MTS computer program to prevent a chan-

nel outage from tying up a node during transmission by

having the node continuing to wait for an end-of-message

indicator. After each packet is received by the MTS com-

puter program, a timer is started. If the time before

another packet is received exceeds the time limit, then the

message transfer process is aborted and a disconnect is pro-

cessed. The timer's limit is set by the system administra-

tor. The exception condition of a radio channel outage is

handled by both handshaking and interval timing.

The previous discussion of error recovery and exception

handling detailed how these elements of program flow are

handled by specific code segments placed at the point of

possible occurrence of errors and exception conditions.

3.45

Design Verification

Design verification answers the question, "Are we

3 designing the product right?" During design verification,

the system's requirements listing is matched to design com-

ponents. All requirements that were to be satisfied by the

MTS are listed. This matching of requirements to design

components is presented in tabular form in Table III. The

requirements from Chapter II that were to be satisfied by

the MTS are listed in numerical order. The results pre-

sented in Table III show that the design satisfies the

requirements.

3.46

Table III. Design Verification TableI
Requirement

1 2 3 14 618191017 111 12 1 III617 120121 22 23

State Transition
Manager X X

Initialize System
State
Initialize
Port
Initialize

T NC
Initialize Linked
Lists
Operator Interface
State X X X X X X X X X

Display Menu
and Prompt X X
Prepare Message
for Transmit X X x X X X
Access
Archive X X X
Generate

Message X X X X X X
Receive
State X x x
Receive
Message X x
Update Routing3 Table (Receive) X
Update Received
Message Archive X X
Transmit

State X X X X X
Transfer
Message X X

Update Routing
Tabli (Transmit) X
Update Transmitted
Message Archive X X X

Reset System
State

Reset
TNC
Close

Port

Store Linked

Lists3

3.47

I
I

I Introduction
IV. Testing

3 Testing affords a view of the development process unre-

vealed by simply looking at the final system design. The

3 design shows a static view of the finished product. Testing

shows the dynamic development process that leads to the

finished product. This dynamic development is particularly

i evident during verification testing.

Verification testing and validation testing are the two

stages in the testing process. Verification testing answers

the question, "Are we building the product right?"

Validation testing answers the question, "Are we building

the right product?" [18:499]

The testing process for each testing stage is composed

3 of a test configuration and testing procedures. The test

configuration details the hardware and software requirements

3 necessary to perform the testing. The testing procedures

list, in outline form, the sequence of actions taken by the

I tester and the expected program responses. A successful

* test is one where the expected program responses occur.

Specific details associated with verification and vali-

dation testing are presented, followed by a chapter summary.

I
I
I

l 4.1

I
I
3 Verification Testing

Verification testing is composed of unit testing and

3 integration testing. Unit testing looks at an individual

module's function. Integration testing addresses the

3 interaction between various modules.

Verification testing is started at the earliest stages

in the software coding process and finishes when the

I finished software product is declared ready for validation

testing.

3 Both unit testing and integration testing make use of

embedded test code that displays program progress status

I messages. These program progress status messages are path-

dependent.

A presentation of unit testing is followed by a presen-

* tation of integration testing.

Unit Testing. Unit testing looks inside the module to

determine whether the module's process is being carried out

3 correctly [13:679-681]. In this regard, unit testing can be

seen to be a white-box testing method.

3 Unit testing makes extensive use of drivers and stubs.

Drivers provide a vehicle to invoke the module under test.

Drivers emulate the module-calling process required by the

3 system design. Stubs provide the module under test with the

I
I
3 4.2

responses to function calls made by the module under test.

These responses emulate the responses called for by system

design.

The four principal test areas involved in unit testing

are the examination of the data structures that are pro-

cessed by the module under test, the boundary conditions

associated with the module under test, independent paths

within the module under test, and error handling paths

within the module under test. A description of each of

3these four unit test areas is presented.

Data structure testing evaluates the characteristics

associated with the data items handled by the computer

program. For example, if alphanumeric characters are per-

missible, numeric digits should also work. If a data string

is able to be five alphanumeric characters long, are five

alphanumeric characters able to be put in the data string?

Did the symbol of the key that was depressed become the sym-

bol stored?

Boundary condition testing evaluates any limits built

into the computer program. For example, if five characters

can be stored in a data string, what happens when an attempt

is made to store no characters, or an attempt is made to

store six characters?

Independent path testing looks at a program's flow

through the module. Typically, these independent paths

4.3

I
I

follow a transaction center. A transaction center is where

one or more system conditions are evaluated and the

resulting decision causes a specific program path. Testing

of independent paths involves setting up the conditions to

* process through a specific path and seeing that that path is

chosen. The goal in this type of testing is to check all

I the module's independent paths.

Error handling path testing ties together the results of

post-processing of a transaction decision point after a

boundary condition has been violated. The resulting actions

constitute an error handling path. Error handling paths can

also result from a number of other sources, such as improper

responses to a function call, or system-constraining items,

i such as being out of memory.

The principal method for implementing these four types

of tests is through the use of embedded routines that cause

3 program progress status messages to be displayed on the

monitor, depending on the module's internal execution

i sequence. The appearance of the proper program progress

status messages in the proper sequence indicates the

program's internal execution is correct.

There are five foundation modules that will undergo unit

testing. These five foundation modules provide a base for

3 development of the system modules. The presentation of each

i

i 4.4

I
U

of the five foundation modules details the module's function

I and the specific areas to be examined during testing.

The display menu and prompt module

- display the menu listing passed in function parameter
- look for a keyboard hit and process: if selection,

return; if arrow, move cursor; if valid letter, move
cursor.

- look for a receive request: if receive request, go
to receive

- look for a transmit request: if transmit request, go
to transmit'

I Two specific test areas are examined during unit testing of

this module: an examination of independent paths through

I the module, and an examination of error handling paths

through the module.

The serial port connectivity module

I - provides an ability to initialize the serial com-
munications port

- provides an ability to send a data character out the
serial communications port

- provides an ability to receive data characters auto-
matically from the serial communications port and
place in a buffer

- provides an ability to read a data character from thereceive buffer
- provides an ability to close the communications port

i Two specific test areas are examined during unit testing of

this module: an examination of data structures processed by

the module, and an examination of independent paths through

I the module.

The transmit message module

queries the operator for a TNC connect path

switches the TNC into HOST mode (see Appendix A)

I
I

4.5I

I
I

while in HOST mode, transfers a specified connect
path to TNC

- while in HOST mode, looks for an active connect sta-
tus from TNC

- queries the operator for a character string to
transmit

- while in HOST mode, transfers a specified character
string to the TNC
while in HOST mode, provides a disconnect request to
the TNC

- while in HOST mode, looks for a disconnect acknowl-
edgement from the TNC

Three specific test areas are examined during unit testing

of this module: an examination of data structures processed

by the module, an examination of independent paths through

3 the module, and an examination of error handling paths

* through the module.

The receive message module

- switches the INC into HOST mode (see Appendix A)
- while in HOST mode, looks for a receive request from

the TNC
- while in HOST mode, and an active receive request

condition exists, takes in the character data from
the receive buffer being sent by the TNC

- while in HOST mode, looks for a disconnect from the
TNC

- while in HOST mode, displays the received message on
the monitor

I Three specific test areas are examined during unit -esting

of this module: an examination of data structures processed

by the module, an examination of independent paths through

3 the module, ard an examination of error-handling paths

through the module.

4
I

I
4.6

I
I

The linked list operations module

- creates a doubly linked list
- provides for numerous fields within each entry
- displays the linked list on the monitor
- provides for adding entries to the linked list
- provides for deleting entries from the linked list
- provides for sorting the entries of the linked list

for a specified field
- provides for finding a referenced entry within the

linked list and displaying on the monitor
- provides for storing the linked list on disk
- provides for loading a linked list from disk

Three specific test areas are examined during unit testing

of this module: an examination of data structures processed

by the module, an examination of boundary conditions of the

module, and an examination of error handling paths through

3 the module.

Appendix E, Test Plan, documents the specifics of the

unit testing process to include the test configuration and

* the test procedure associated with each foundation module.

Integration Testing. Integration testing looks at the

operations occurring between modules to determine whether a

3 program is operating correctly. Because the individual

modules involved in the testing are viewed as black boxes,

U integration testing can be thought of as black box testing

[13:681-6841.

I Integration makes extensive use of drivers. Stubs are

3 used infrequently during integration testing because of the

4

i 4.7

I

nature of the bottom-up integration process. In the bottom-

up integration process, modules at the lowest level are tied

together in clusters. These clusters are first joined

together based on a common function. Later clustering is

done at a higher level in the program hierarchy. Because

clustering starts at the lowest level in the program's

hierarchy, little use of stubs is necessary.

There are three primary clusters associated with this

program's integration process. These clusters are the

operator interface cluster, the communications cluster, and

the linked list cluster. The operator interface cluster is

built from the display menu and prompt module with added

functionality to perform as a stand-alone backbone for the

program. The communications cluster is built around the

serial communications module, the receive message module,

and the transmit message module. The communications cluster

is developed to provide an intermediate communications abil-

ity enabling systematic development of the most critical

program function, communication between computers. The

linked list cluster is built from the linked list module and

provides for development of all the linked lists used by the

program, and all operations needed to be performed on the

linked lists.

During integration, the three primary clusters are built

first. This is followed by combining clusters in pairs and

4.8

I
I

finally by joining all three clusters to form the system

program. In order for integration testing to be performed

3 at each phase of this integration process, integration

testing is accomplished in six phases. The six phases of

3 integration testing are: operator interface cluster

testing; communications cluster testing; linked list cluster

I testing; testing on the tying together of the operator

i interface cluster and the communications cluster; testing of

the tying together of the communications cluster and the

5 linked list cluster; and testing of the tying together of

the operator interface cluster, the communications cluster,

3 and the linked list cluster.

The primary testing done during integration testing

involves the interfaces between the component modules. The

primary method used for that testing will be equivalence

testing [15:44-50]. Equivalence testing treats the com-

ponent modules as black boxes, breaking up the elements of

interface processing into valid and invalid systems. An

I important aspect of integration testing is testing the func-

tion parameters passed during function calls and return

calls. The coding language C has a provision for checking

these parameters through the use of function prototypes.

Extensive use of function prototypes enables the C complier

3 to check parameter passing features.

4.9

I
Appendix E, Test Plan, documents the specifics of the

integration testing process.

IValidation Testing
Validation tests, answering the question, "Are vie

building the product right?" were presented in Chapter II,

Requirements. The validation tests are listed and

referenced to the underlying system requirement that is

if satisfied for a correct response to the validation test.

Validation testing is composed of two stages, alpha and

beta testing. With each, the validation tests are used to

3 measure the system's capabilities. Although similar tests

are run during alpha and beta testing, the environment in

5 which the two types of tests are run is different.

Alpha testing is done in an electronics laboratory. A

3 test bed is set up to replicate thp target system's opera-

tion. The test bed will consist of a three-node network,

with two nodes using the target system type of TNC. The

3 third node, which acts as an intermediate node, does not

require a target system type of TNC, but one that acts simi-

larly durinq operation as an intermediate node. Once the

test bed is set up, validation tests are performed. The

i testing is performed by an individual familiar with opera-

3 tional PRNs. Upon satisfactory completion of alpha testing,

the validation tests will be performed in a beta test.

I

i 4.10

Beta testing is done in the operational environment.

This testing will be staged so that a gradual evolution to

the complete network is obtained. This staging will begin

with only two operation nodes. Upon successful validation

testing at this level, a third node will be added. This

process of stepwise node addition will continue until all

eight network nodes are able to successfully run the valida-

tion tests. At this point, validation testing is complete

and the system is ready for use by the end user.

Summary

Details of the testing process have been presented. The

testing process is shown to consist of a set of verification

and validation tests. The Test Plan presented in Appendix

E, and the validation tests from Chapter II were referenced

to be the documents used during testing. Results of these

tests are presented in the following chapter.

4.11

I
I

V. Results, Conclusions, and Recommendations

Introduction

I Three subjects are covered in this chapter. The first

subject discusses the test results performed on the MTS com-

puter progr.r The second subject presented is the conclu-

sions arrived at after the process of design and development

of the MTS computer program. The third subject presented is

a recommendation for follow-on efforts related to this

thesis.

Test Results

Test results were arrived at after performing the tests

presented in Chapter IV and detailed in Appendix E, Test

Plan. The test results section is broken up into verifica-

f tion and validation testing. After a brief discussion about

each section, the reader is referred to Appendix F, Test

5 Results, a listing of actions performed and the program's

response.

Verification Tests. The specific verification tests

t3 specified in Chapter IV were performed. These tests were

broken into unit tests and integration tests. The results

I are detailed in Appendix F, Test Results. Although the

V results appear to process smoothly through the procedure,

the actual testing included a large amount of program code

I
I
i 5.1

n
I

debugging. The results detailed show only the results per-

formed on the debugged program.

3 Validation Tests. The specific validation tests spe-

cified in Chapter II were performed. The results are pre-

sented in Appendix F, Test Results. System requirements not

satisfied by the program are noted. The beta test phase of

validation testing was not performed.

Conclusions

Validation testing pointed to the specific areas of the

system requirements that were and were not satisfied by the

j current version of the MTS computer program. The areas that

were coded aimed at building a solid foundation from which

further coding could easily satisfy all system requirements.

These include such areas as the code for the dialogue

between the computer and the TNC, code to allow the operator

to control the system, and code to generate, transmit, and

receive a message between two nodes. Requirements not

satisfied by code include the checking of a message for

completeness, and the help feature.

In general, the scope of the project was very broad; any

5n one of the areas of design, development, and testing could

serve as suitable thesis topics. This thesis effort fully

designed and partially developed the system to include

actual coding, and performed tests on the portion of the

5.2

code that was developed. In this way, insight was gained

into all areas of system development.

This thesis allowed application of the basic engineering

principles of defining the system requirements, establishing

levels of performance for the system, designing the method

to be used to satisfy the requirements, developing the

detailed design into a working product, and testing the

4orking product against the expected level of performance.

Recommendations for Further Study

Three areas are recommended for further study. The

first is to completely develop and test all system require-

ments. This also involves refining the system to provide

all the accepted industry practices such as templating all

forms that appear on the monitor, and providing clear and

easy-to-use help features.

The second area recommended for further study is to per-

form beta testing of the MTS computer program on AFLC's PRN.

Incremental implementation on the network could be pursued.

Two of the network's system nodes are in the immediate geo-

graphical area, providing a basic foundation for incremental

implementation.

The third area recommended for further study is the

interconnectivity of AFLC's PRN with other DOD communication

networks. Specifically, the capability for interconnection

to DOD TCP/IP networks should be pursued. The TCP/IP stan-

dard is used on the Defense Data Network.

5.3

Bibliography

1. Advanced Electronic Applications, Inc. Operating
Manual Model PK-232 Data Controller. Lynwood, WA:
Advanced Electronic Applications, Inc., 1987.

2. Advanced Electronic Applications, Inc. Technical
Reference Manual Model PK-232 Data Controller.
Lynwood, WA: Advanced Electronic Applications, Inc.,
1987.

3. Air Force Logistics Command. Air Force Logistics
Command's Survival, Recovery, and Reconstitution Plan.
No. 55.

4. Campbell, Joe. C Programmer's Guide to Serial
Communications. Indianapolis, IN: Howard W. Sams &
Company, 1987.

5. Chesley, Harry R., and Mitchell Waite. Supercharging
with Assembly Language. Reading, MA: Addison-Wesley
Publishing Company, 1987.

6. Dumas, Joseph S. Designing User Interfaces for
Software. Englewood Cliffs, NJ: Prentice-Hall, 1988.

7. Fox, Terry L. AX.25 Amateur Packet-Radio Link-Layer
Protocol (Version 2.0). Newington, CT: American Radio
Relay League, 1984.

8. Friend, ^eorge E., and others. Understanding Data
Communications, Indianapolis, IN: Howard W. Sams,
1984.

9. Gane, Chris, and Trish Sarson. Structured Systems
Analysis: Tools and Techniques. Englewood Cliffs, NJ:
Prentice-Hall, 1979.

10. Heggestad, Harold M. An Overview of Packet-Switching
Communications. IEEE Communications Magazine, 22:
24-31 (April 1984T.

11. Kleinrock, Leonard, and Fouad A. Tobagi. Packet
Switching in Radio Channels: Part I--Carrier Sense
Multiple-Access Modes and their Throughput-Delay
Characteristics. IEEE Transactions on Communications,
Com-23: 1400-1416 (December 1975).

12. Lerner, Barry M., and others. Issues in Packet Radio
Network Design. Proceedings of the IEEE, 75: 6-20
(January 1987).

BIB.1

I

13. Martin, James, and Carma McClure. Structured
Techniques for Computing. Englewood Cliffs, NJ:
Prentice-Hall, 1985.

14. Mayo, Jonathan L. The Packet Radio Handbook. Blue
Ridge Summit, PA: Tab Books, 1987.

15. Myers, Glenford J. The Art of Software Testin. New
York: John Wiley & Sons, 1978.

16. National Communications System. Revised CCITT
Recommendation X.25 1980. TIB 80-5. Washington: NCS,
11 August 1960.

17. Page-Jones, Meilir. The Practical Guide to Structured
Systems Design. Boston: Yourdon Press, 1980

18. Pressman, Roger S. Software Engineering: A
Practitioner's Approach. New York: McGraw-Hill Book
Company, 1987.

19. Ricci, Fred J., and Daniel Schutzer. U.S. Military
Communications a C31 Force Multiplier. Rockville, MD:
Computer Science Press, 1986.

20. Schildt, Herbert. Advanced C (Second Edition).
Berkeley, CA: McGraw-Hill, 1988.

21. Schildt, Herbert. C Power User's Guide. Berkeley, CA:
McGraw-Hill, 1988.

22. Schwartz, Mischa, and Thomas E. Stern. Routing
Techniques Used in Computer Communication Networks.
IEEE Transactions on Communications, COM-28: 539-552
(April 1980).

23. Tanenbaum, Andrew S. Computer Networks. Englewood
Cliffs, NJ: Prentice-Hall, 1981.

BIB.2

Appendix A

I Advanced Electronics Applications

Model PK-232

Terminal Node Controller

£ Introduction

This appendix is broken into two sections. The first
section parallels the operation of a terminal node control-
ler with that of the familiar telephone modem. The second
section presents the protocol used between interconnected3 terminal node controllers, AX.25.

The Advanced Electronics Applications Model PK-232
Terminal Node Controller (TNC) has found wide acceptanceI ithin the amateur radio community. The reason it was cho-
sen for use in the hardware configuration associated with
AFLC's PRN is because of its low cost and excellent reputa-
tion. However, one of the reasons for this well deserved
reputation is that it serves the amateur radio community
with five operational modes. Most competing amateur radio
terminal node controllers do not have such scope. Only one
operational mode is used in this application--the packet
mode. All disciission related to the TNC concerns operation
within the packet mode. One extremely beneficial feature of
the PK-232 in packet mode is the ability to set up a special
method for communication between the TNC and an intercon-
nected computer. As will be detailed shortly, this special
communication method, called HOST mode, allows the dialogue
between the TNC and the computer to be controlled by the
computer. This process, not generally available on other
amateur radio terminal node controllers, was essential to
the real-time processing environment of the MTS computer
program.

Information for this appendix was taken from the PK-232
Operating Manual and the PK-232 Technical Manual [1,2].
Both of these publications must be obtained directly from5 the Advanced Electronics Applications Company.

if TNC 9peration and Control

In order to understand the operation of the TNC, it is
beneficial to first develop an understanding of the familiar

A
I

A. 1I

I
I

computer modem. Three aspects of computer modem operation
are developed: simple operating methods, modem control, and
computer control once there is an established connection.
The type of modem that will be discussed is the Hayes-type
Smartmodem. After the modem is presented, similarities and
differences between modem operation and control and TNC
operation and control are developed.

During operation of a modem, data are received from the
computer and sent out via the telephone line connected to
the modem. Also, during modem operation, data received by
the modem over the telephone line are sent to the computer.
The reason the data coming out of the computer are not sent
directly over and received from the telephone line is that
the computer outputs bits which have signal shapes that do
not travel efficiently over the telephone line. The modem
converts the computer's output signals to signal forms that
travel efficiently over the telephone line. This process
requires the modem to perform a modulation and demodulation

process.

During control of the modem, specifically a Hayes-type
modem, commands are sent from the computer to the modem
embedded in the data stream. This software method of modem
control is done under manual command. Traditional communi-
cation software converts the English commands from the oper-
ator, such as connect to the modem at 257-3030, into the
commands that are embedded in the data stream that flows
between the computer and the modem. The embedded commands
within the data stream are interpreted by the modem and pro-
cessed. In this case, the modem would go off-hook, wait for
a dial tone, send the telephone switch the number 257-3030,
wait for a connect tone from the distant modem, respond tothe distant modem connect tone, and signal the computer that
the connection is made.

5I Once a computer-to-computer connection is established
through the modems, a higher level of control is responsible
for the accurate transfer of data between the computers.
One method for accomplishing this responsibility is a proto-
col known as XMODEM [7:167], which operates by breaking a
data file transfer between two computers into a number of
frames. Each frame is then sent independently over the con-
nection. The principal components of a frame are a start-
of-frame character, a frame number, the data characters, an
error-checking sequence, and an end-of-frame character.
Upon receiving the date characters, the receiving computer
checks the error-checking sequence that it generates against
the error-checking sequence that was transmitted. If the

I
I

I A. 2

I

two sequences match, an acknowledgement is sent from the
receiving computer to the transmitting computer. If the
sequences do not match, the receiving computer sends a nega-
tive acknodledgement to the transmitting computer. Upon
receipt of an acknowledgement, the transmitting computer
sends the next frame. If the transmitting computer receives
a negative acknowledgement, it resends the corrupted frame.
This frame transfer process continues until all the fixed
length frames needed to send the complete file are sent.
For operation of UMODEM, both computers must be manually set
to XMODEM mode, one computer established as the transmitter,5 the other as the receiver.

Now that the modem has been presented, the similarities
and differences between the Hayes-type modem and the TNC are
discussed.

Operation of the TNC is similar to the operation of the
modem. At the TNC, data are received from the computer,
just as with the modem; however, unlike the modem, which
interconnects to another modem through use of a telephone
line, the TNC interconnects to another TNC through a radio
and radio channel. Data received by the TNC from the radio
are processed and sent to the computer. The radio cannot
receive data directly from the computer or send data
directly to the computer; this is one of the functions of
the TNC. In this respect, the TNC is acting as a modem,
converting the computer's output signals into signaling
forms that can be transmitted by the radio. Similarly, for
the receive process, radio signaling forms are converted by
the TNC to the computer's signaling forms. During opera-

tion, the TVNC performs a modulation and demodulation pro-
5 cess.

During control of the TNC, the process is similar to the
Hayes-type modem, although there are important differences.
Commands are sent from the computer to the TNC by embedding
the commands in the data stream. Responses from the TNC are
sent by embedding the responses in a return data stream. A
special method for communicating between the computer and
the TNC is possible with the TNC. This special method is
referred to as HOST mode. The TNC is placed into the TNC
HOST mode by commands from the computer. Once in HOST mode,
the TNC only responds when requested by the computer. The
specific format for this request-and-response process has
two forms: command and data formats. Both are processed by
sending frames which are made up of a start-of-frame
character, a code character indicating whether it is a com-
mand or a data frame, the specific command or data, and

A.3

I

an end-of-frame character. The command frames instruct the
TNC to perform some process. Examples of some processes are
to connect to a specific TNC, change the station call sign,
or send data received by the TNC from the radio to the com-
puter. The data franes are used to transmit data to the TNC
for transmission. These data frames would only be sent to
the TNC once a connection to a distant TNC has been estab-
lished. The special feature of HOST mode is that it allows
the dialogue between the computer and the TNC to be con-
trolled by the computer. Also, processing within the HOST
mode can be accomplished without manual control. Like the
discussion of MODEM above, communication takes place by
frames. However, unlike MODEM, the purpose of HOST mode is
to facilitate communication between the computer and the
TNC, and not between two computers. No error checking is
done in the transfer of information between the computer-to-
TNC connection. The process that handles the TNC-to-TNC
connection and handles responsibility for accurate transfer
of data across that connection is the AX.25 protocol, a
topic important enough to be the entire focus of the next
section.

AX.25

During the previous presentation of the modem operation,

it was mentioned that once a computer-to-computer connection
is made through the modems, a higher level of control was
responsible for the accurate transfer of data between the
computers. A similar responsibility is given to the TNC.
The TNC is responsible for ensuring that the data trans-
ferred between two TNCs are correct. This definition of
correct includes a character-for-character match at the
transmitting and receiving TNCs, as well as the proper

ordering of those characters in a data stream. The TNC does
this by using a protocol referred to as AX.25 16]. AX.25 is
the amateur radio version of the international X.25 stan-
dard [151. The AX.25 protocol can be viewed as a sophisti-
cated form of XMOOEM. AX.25 is considered sophisticated in
that it is established whenever transmission occurs between
TNCs, and is invoked automatically. Like MODEM, AX.25 uses

frames to parse the message to be transmitted into small
chunks, sending those frames to the destination and awaiting
a positive or negative acknowledgement. The acknowledgement
is based on the matching of the error-checking field at the
destination TNC, similar to the XMODEM checks made at the
destination computer. The principal components of an AX.25
frame are similar to an XMODEM frame and include a start-of-
frame character, frame number, data characters, error-
checking sequence, and end-of-frame character. One

A.4

significant difference is that the frame also has an address
field. The reason for this is that the TNC transmits over a
radio and radio channel. This radio channel is a broadcast
medium with the possibility of reaching many TNC-radio
pairs. Only the addressed TNC processes the packet. The
exception to this is the principal difference between AX.25
and X.25. AX.25 allows the frame to have more than one
address, with the additional addresses serving as inter-
mediate processing nodes. If a frame has two call signs in
the address field, one of those addresses is an intermediate
node which will process the frame, interpret that it is not
for consumption, and transmit it to the addressed destina-
tion. This powerful technique, unique to AX.25, allows for
the establishing of a connection between any two nodes in a
non-fully connected network, as long as a path can be made
through the network, even if it involves the use of inter-
mediate nodes.

The AX.25 process is an integral part of the TNC. This
protocol serves the connected computer with the ability to
relinquish responsibility for the end-to-end integrity of
the data that are transmitted from the computer. This stra-
tegy relies on a quality path between the computer and its
servicing TNC, since no error checking is done on this data
path.

The previous discussion started with a presentation of
the operation and control of the familiar computer modem.
Once this foundation was set, a comparison was made between
the operation and control of the modem and the TNC.
Finally, the AX.25 protocol was discussed, highlighting the
responsibility it has for providing end-to-end data integrity
between connected TNCs.

A.5

I
I

Appendix B

I User's Manual

Introduction

This User's Manual serves as a guide for AFLC's PRN MTS.
The MTS is menu-driven. This guide presents the reader with
the menus that are displayed on the computer monitor and an
explanation of the actions that follow each menu selection.

The User's Manual is broken into three sections. The
first is an example procedure to generate and transmit a
message, the second is an example procedure to receive a

message, and the third details each menu in the system.

All menus are presented in the same format, a vertical
listing of menu items. There are limited active keyboard
responses during display of a menu. These keys are the up
and down arrow keys, the first letter of any menu item, the
RETURN key, and CTRL-C. The up and down arrow keys move a
reverse video highlight among the menu items. Only one menu
item is highlighted at any time. Depressing the key corre-
sponding to the first letter of any menu item causes the
reverse video highlight to move to the selected menu item.
The menu item that is highlighted in reverse video signifies
the menu item selected. Once a RETURN key is hit, the
selected menu item begins processing. Hitting CTRL-C causes
the program to terminate and control to be returned to the

I operating system.

5I Transmitting a Message: An Example Procedure

This procedure gives the keystrokes necessary to gener-
ate and transmit a message. The reader is not expected to
have read the detailed menu description.

1. Insert the 5 1/4-inch disk containing the computer3 program into disk drive B.
2. Insert the 5 1/4-inch disk containing the system

3 routing tables in disk drive A.

3. Enter "B:STM <RETURN>".

4. The monitor will display a question about generating
new routing tables. Enter "n"

IB
I

5. The main menu will display on the monitor. Depress
the down arrow key until the menu item GENERATE A MESSAGE is
highlighted in reverse video.

6. Enter <RETURN>.

7. The monitor will display an information header
describing the generate message process. Follow all direc-
tions and complete a message.

8. Upon completion of the generate message process, the
main menu will be displayed. Depress the down arrow key
until the menu item TRANSMIT MESSAGE is highlighted.

9. Enter <RETURN>.

10. The transmit menu will display in the monitor.
Depress the down arrow key until the menu item ENTER A
GENERATED MESSAGE is highlighted.

11. Enter <RETURN>.

12. The transmit submenu will display on the monitor.
Depress the down arrow key until the menu item ALL MESSAGES
LISTED is highlighted.

13. Enter <RETURN>. The light on disk drive A will
illuminate briefly.

14. The transmit menu will display on the monitor. A
sentence will appear at the bottom of the monitor, indicat-
ing that the transmit queue is not empty and that the trans-
mit flag is disabled. Depress the down arrow key until the
menu item BEGIN TO TRANSMIT is highlighted.

15. Enter <RETTJRN>.

16. A sentence will appear at the bottom of the moni-
tor, explaining that there is a message being transmitted.
Wait until the sentence about transmitting a message no
longer appears, then depress the down arrow key until the
transmit menu item RETURN TO MAIN MENU is highlighted.

17. Enter <RETURN>.

18. The main menu will display on the monitor. Depress
the down arrow key until the menu item ACCESS ARCHIVED
MESSAGE FILE is highlighted.

B.2

19. The access archive menu will display on the moni-
tor. Depress the down arrow key until the menu item DISPLAY
ALL TRANSMITTED MESSAGE HEADERS is highlighted.

20. Enter <RETURN>.

21. A listing of the messages that have been trans-
mitted will display on the monitor. Confirm that the
message that was just generated has been transmitted.

22. Enter <RETURN>.

23. The archive submenu will display on the monitor.
Depress the down arrow key until the menu item RETURN TO
MAIN MENU is highlighted.

24. The main menu will display on the monitor.

Receiving a Message: An Example Procedure

1. Follow the transmit procedure above to instruct a
distant node to send you a message.

2. Return the system to the main menu.

3. Upon receiving a message, a sentence will appear at
the bottom of the monitor, indicating that a message is
being received. Wait until the sentence no longer appears,
then depress the down arrow key until the menu item ACCESS
ARCHIVED MESSAGE FILE is highlighted.

4. Enter <RETURN>.

5. The access archive menu will display on the monitor.
Depress the down arrow key until the menu item SHOW THE
RECEIVED MESSAGE HEADERS is highlighted.

6. Enter <RETURN>.

7. The list of received messages will display on the
monitor.

8. Enter <RETURN>.

9. The archive submenu will display on the monitor.
Depress the down arrow key until the menu item VIEW MESSAGE
is highlighted.

10. Enter <RETURN>.

B.3

I
I

11. The message that was just received will be
displayed completely on tie screen.

12. Enter <RETURN>.

3 13. Depress the down arrow key until the menu item
RETURN TO MAIN MENU is highlighted.

5 14. Enter <RETURN>.

15. The main menu will display on the monitor.

System Menus

3Main Menu

The main menu has four items for selection:

I TRANSMIT MESSAGE
GENERATE MESSAGE
ACCESS ARCHIVED MESSAGE FILE
EXIT PROGRAM

TRANSMIT MESSAGE is selected when the operator wants to
transmit a message. Typically, this menu item is selected
after a message has been generated and stored on a disk in
drive A. Upon selection, this menu item causes the transmit3 menu to be displayed.

GENERATE MESSAGE is selected when the operator wants to
generate a message for transmission. Upon selection of this
item, an information header is displayed, outlining the mes-
sage generation procedure.

ACCESS ARCHIVED MESSAGE FILE is selected when the opera-
tor wants to look at the messages stored in the system or
the system's routing tables. Upon selection of this menu
item, the access archive menu is displayed.

EXIT PROGRAM causes the system to stop operation, store
the system's messages and routing tables on disk, reset the
terminal node controller, and turn control over to the
operating system. Upon selection of this menu item, there
is a slight delay as the system performs exit processing3 before the operating system prompt appears.

I

B.4

Transmit Menu. The transmit menu is reached from the
main menu by selecting the TRANSMIT MESSAGE menu item. The
transmit menu offers the operator four menu items:

ENTER A GENERATED MESSAGE
BEGIN TO TRANSMIT
HOLDUP TRANSMISSION
RETURN TO MAIN MENU

ENTER A GENERATED MESSAGE is chosen by the operator when
a prepared message for transmission is on disk in drive A.
Upon selection of this menu item, the transmit submenu is
displayed.

BEGIN TO TRANSMIT is chosen to put the operation of the
node into the active transmit mode. Upon selection of this
menu item, the system's transmit flag is enabled, allowing
the message at the head of the transmit queue to be trans-
mitted.

HOLDUP TRANSMISSION is chosen to put the operation of
the node into the inactive transmit mode. Upon selection of
this menu item, the system's transmit flag is disabled,
stopping the transmission of the next message at the head of
the transmit queue.

RETURN TO MAIN MENU is chosen by the operator to display
the main menu. Upon selection of this menu item, the main
menu is displayed.

Transmit Submenu

The transmit submenu is reached from the transmit menu
by selecting the ENTER A GENERATED MESSAGE menu item. The
transmit submenu offers the operator four menu items:

ALL MESSAGES LISTED
ONLY ONE MESSAGE LISTED
ENTER TRANSMIT QUEUE LISTING
RETURN TO MAIN MENU

ALL MESSAGES LISTED is chosen when all prepared messages
on disk in drive A are to be entered. More than one message
can be in the generated message file on disk in drive A.
Upon selection of this menu item, all the messages in the
prepared message file on disk in drive A are read into the

B.5

I
I

system and placed in the transmit queue for transmission.
The transmit queue is ordered by each message's priority
field.

ONLY ONE MESSAGE LISTED is chosen when only one message
out of all the prepared messages on disk in drive A is to
be chosen. Upon selection of this menu item, the prepared

messages are read from disk and the source, destination,
author, and subject are displayed. Through a reverse video
highlight selection using the up and down arrow keys, the
chosen message is entered into the transmit queue by
depressing a RETURN key. The transmit queue is ordered by
each message's priority field.

ENTER TRANSMIT QUEUE LISTING is chosen when the operator
wants to enter a message directly into the transmit queue.
Upon selection of this menu item, message field prompts
appear and the cursor moves among the fields as the operator
enters information. Once all the fields have been entered,
the message is stored in the transmit queue. The transmit
queue is ordered by each message's priority field.

RETURN TO MAIN MENU is chosen by the operator to display
the main menu. Upon selection of this menu item, the main
menu is displayed.

Generate Message. The generate message procedure is
reached from the main menu by selection of the GENERATE A
MESSAGE menu item. The generate message process does not
display a menu; instead, it begins by displaying the
following information header:

I GENERATE MESSAGE PROGRAM

This program will ask questions about the message, such

as the message's source node, destination node, message

3 text, etc.

Your answers are stored in a disk file named a:messages.

3 Type any key to begin.

To quit, immediately type a return after the first

I question.

I
I

8.6I

I

Once the operator types a key, the message fields are
displayed. The cursor then moves to the starting field and
waits for the operator's entry. The monitor echoes the key-
board entries, placing them in the current message field
being worked. When all the message fields have been
entered, the message is stored in RAM and another blank mes-
sage template is displayed. Should the operator want to
enter another message, the message field entry procedure
detailed above is followed. When no further messages are to
be generated, the RETURN key is depressed at the first mes-
sage field entry point, causing all the generated messages3 to be stored on disk.

Access Archive Menu. The access archive menu is reached
from the main menu by selecting the ACCESS ARCHIVED MESSAGE
FILE menu item. The access archive menu offers the operator
seven menu items:

DISPLAY ALL TRANSMITTED MESSAGE HEADERS
SHOW THE RECEIVED MESSAGE HEADERS
THE TRANSMIT QUEUE
A SPECIFIC NODE'S TRANSMIT AND RECEIVE MESSAGE HEADERS
MESSAGE HEADERS FOR A SPECIFIC TIME PERIOD
CURRENT ROUTING TABLE
RETURN TO MAIN MENU

DISPLAY ALL TRANSMITTED MESSAGE HEADERS is chosen when
the operator wants to see a listing of all messages that
have been transmitted. Upon selection of this menu item,
the monitor displays a listing of all the mes3ages trans-

* mitted.

SHOW THE RECEIVED MESSAGE HEADERS is chosen when the
operator wants to see a listing of all the messages that
have been received. Upon selection of this menu item, the
monitor displays a listing of all the messages received.

THE TRANSMIT QUEUE is chosen when the operator wants to
see a listing of messages in the transmit queue. Upon
selection of this menu item, the monitor displays a listing

of the messages in the transmit queue.

A SPECIFIC NODE'S TRANSMIT AND RECEIVE MESSAGE HEADERS
is chosen when the operator wants to see a listing of mes-
sages transmitted from the local node to the specified node
and the messages received by the local node from the speci-
fied node. Upon selection of this menu item, a prompt for

I
* B.7

the node to view is followed by a listing of the specified
node's transmitted and received messages.

MESSAGE HEADERS FOR A SPECIFIC TIME PERIOD is chosen
when the operator wants to see a listing of transmitted and
received message headers that have been processed during a
specific time period. Upon selection of this menu item, a
prompt for the time period is followed by a listing of mes-
sages processed within the specified time period.

Upon selection, these first five menu items have similar
responses. The monitor displays a listing of messages: the
top entry is highlighted in reverse video, the down arrow
key moves the highlighted message down the listing, and
depressing the RETURN key causes an archive submenu to pull
down over the listing.

CURRENT ROUTING TABLE is chosen when the operator wants
to see the current routing tables. Upon selection of this
menu item, the current routing tables are listed. A reverse
video highlight, under the down arrow control, can be moved
down the routing table listing. When the routing table to
be operated on is highlighted, the RETURN key is depressed
and the routing table submenu pulls down over the routing
table listing.

RETURN TO MAIN MENU is chosen when the operator wants to
return to the main menu. Upon selection of this menu item,
the main menu is displayed.

Archive Submenu

The archive submenu is reached upon depressing the
RETURN key from within any of the message listings asso-
ciated with the first five access archive menu items. The
archive submenu offers the operator seven menu items:

PRINT MESSAGE
STORE MESSAGE AS
VIEW MESSAGE
DELETE MESSAGE
LINKED LIST PRINT
GO TO ARCHIVE MENU
RETURN TO MAIN MENU

PRINT MESSAGE is chosen when the operator wants to print
the message that is highlighted in reverse video. Upon
selection of this menu item, the message that is highlighted

B.8

I

in reverse video is printed on the system printer. Follow-
ing printing, the listing that was displayed prior to enter-
ing the archive submenu is displayed. The archive submenu
is not displayed.

STORE MESSAGE NS is chosen when the operator wants to
store the message highlighted in reverse video on disk.
Upon selection, a prompt requesting the file store name is
followed by a brief illumination of the disk drive's status
light. Following this, the listing that was displayed prior
to entering the archive submenu is displayed. The archive
submenu is not displayed.

VIEW MESSAGE is chosen when the operator wants to see
the entire message on the monitor. During display of the
message listing, only a limited number of each message's
fields is shown. Upon selection of this menu item, the
message that is highlighted in reverse video is shown
complete on the monitor. When the operator has finished
viewing the message, the RETURN key is depressed. The moni-
tor then displays the listing that was displayed prior to
entering the archive submenu. The archive submenu is not
displayed.

DELETE MESSAGE is chosen when the operator wants to
delete the message that is highlighted in reverse video.
Upon selection of this menu item, the message that is high-
lighted is deleted. The monitor then displays the abbre-
viated version of the listing that was displayed prior to
entering the archive submenu. The archive submenu is not
displayed.

LINKED LIST PRINT is chosen when the operator wants the
entire listing printed. Upon selection of this menu item,
the message listing that appears on the monitor is sent to
the printer. The monitor then displays the listing that was
displayed prior to entering the archive submenu. The
archive submenu is not displayed.

GO TO ARCHIVE MENU is chosen when the operator wants to
go back to the access archive menu. Upon selection of this
menu item, the monitor is first cleared and then the access
archive menu appears.

RETURN TO MAIN MENU is chosen when the operator wants to
return to the main menu. Upon selection of this menu item,
the main menu is displayed.

S.9

I

Routing Table Submenu

The routing table submenu is reached by depressing the
RETURN key from within the routing table listing associated
with the access archive menu. The routing table submenu
offers the operator seven menu items:

ADD A NEW ROUTING TABLE ENTRY
MODIFY AN EXISTING ROUTING TABLE ENTRY
VIEW ENTIRE ENTRY
DELETE THE HIGHLIGHTED ROUTING TABLE ENTRY
ENTER NEW ROUTING TABLE FROM DISKSSTORE CURRENT ROUTING TABLE ON DISK
RETURN TO MAIN MENU

ADD A NEW ROUTING TABLE ENTRY is chosen when the opera-
tor wants to add a new destination to the routing table.
Upon selection of this menu item, the monitor is cleared and
the routing table fields are displayed. When the fields
have been filled by the operator, the monitor displays the
routing table listing including the newest entry.

MODIFY AN EXISTING ROUTING TABLE ENTRY is chosen when
the operator wants to modify the highlighted routing table
entry. Upon selection of this menu item, the monitor is
cleared and then displays the entire routing table entry.
The cursor is in the first routing table field. The opera-
tor can keep the current routing table field entry by
depressing the RETURN key. To change the routing table
field entry, the operator types in the new information at
the appropriate field. When all fields have been worked,
the monitor is cleared, and then displays all routing table
listings.

VIEW ENTIRE ENTRY is chosen when the operator wants to
view the complete routing table entry that is highlighted.
When the routing table listing is displayed, the complete
routing table entry is not shown. Upon selection of this
menu item, the routing table entry that is highlighted in
reverse video is displayed on the monitor. When the viewing
is finished, the operator depresses the RETURN key. The
monitor then displays the routing table listing.

DELETE THE HIGHLIGHTED ROUTING TABLE ENTRY is chosen
when the operator wants to delete the highlighted routing
table entry. Upon selecting this menu item, the highlighted
menu item is deleted, and the abbreviated routing table
listing is displayed.

B.10

I
I

ENTER NEW ROUTING TABLE FROM DISK is chosen when the
operator wants to have the current routing table listing
replaced with the routing table listing on disk. Upon
selection of this menu item, a brief illumination of the
disk drive light is followed by a display on the monitor of
the new routing table listing read from disk.

STORE CURRENT ROUTING TABLE ON DISK is chosen when the
operator wants to store the current routing table on disk.
Upon selection of this menu item, a brief illumination of

the disk drive light is followed by a display on the monitor£ of the current routing table listing.

RETURN TO MAIN MENU is chosen when the operator wants to
return to the main menu. Upon selection of this menu item,
the main menu item is displayed.

I
U
I
I
U
U
I
i
I
I
I

i B.I11

I
I

Appendix C

I w
- ---- ---

0 >0

I °

II
U

w 4J
tn

|1 °
tr U)

II
040

t.

-'-

INITIA\LIZE
SYSTrEM3 STATE

INITIALIZE
InivIALIZE IHITIALIZE LINKED

PORT TNC LIST

3 Figure C-2 Initialize System State Module Structure Chart

'10DEL !-,nr O AULT.,

3 Figure C-3 Initialize TNC Module Structure Chart

C-2

I

mi

I

I
S INMTALIZE

I
I

Figure C-4 Initialize Linked Lists Module Structure Chart

I

InTCRFACE

SrATF.

HC*rnID r. ;AP: A" 1 ACCE.SS Gr!:rFATr.

PROMPT TRANSMIT AC|[
£ ' C

I
I

Figure C-5 Operator Interface State Module Structure Chart

C.3

r) I q P LA Y
MIrjll Afl P
PROMPT

IT

DISPLAYQUERY(EYROARD

MEN OPERATORHI

3 Figure C-6 Display Menu and Prompt Module Structure Chart

InAR
IC:A~ O
IRtnfT

Figure C-7 Prepare Message for Transmit Module Structure
Chart

C.4

4-

I4

-4

0 1i

-4

L)I U)

Cc U)

ep

-Jo.I

CL 0

I C.5

I
I

IGENIEPATr.

HEqqAGEI
I
I

D I S P LA Y P RO.IPT s'rc
MESSAGE THIROU-VG[H MEAGE
TEMP LATE TEMPLATE FIFE'r

FIELDS rN'rp I ES

I
I Figure C-9 Generate Message Module Structure Chart

I
RECEIVE

3 .STATE

I

RECEIVE ItPDATr UPDATE

MESSAGE ROUTIrMG MESSAGE
TA13LE ARCHIVE

I
Figure C-1O Receive State Module Structure Chart

C.6

RCCEE

MESSAGr

FOR ,1VE £SrPPPCT DATA To A PR 'Uss

H[SRGE ROpt TC RECEZV EO

ITPING

Figure C-11 Receive Message Module Structure Chart

UUPDATE

ROUTING
TABLE

I
I

i SEARCH REORDER

FOR A PATHSl, MATCH

Figure C-12 Update Routing Table (Receive) Module

rce Structure ChartIC.7

I
I

IESSAGE

ARCHIVE

I
I

CREATE ADD MESSAGE
NEW To RECEIVED

MPSSAGF 1,u1KC~D LIST

I
I

Figure C-13 Update Received Message Archive Module

Structure Chart

I
TRANSMIT
STATEI

I
I \

S UPDATE UPDATE

TRA SFER ROUTING MESSAGE
MESSAGE TABLE ARCIVE

I
I Figure C-14 Transmit State Module Structure Chart

C.8

I
I
I
I

I~ TPANS$FER

I Sg.;'fD D COIFT ir[UT /

I

Figure C-15 Transfer Message Module Structure Chart

I
UPDATE
ROUTING
TABLE

,I
I
I

SEARCH REORDER
FOR A PATHS

MATCH

Figure C-16 Update Routing Table (Transmit) Module

I Structure Chart

C.9

MESSAGE
ARCtIrVE

MOVE MESSAGE

TO TRMNsMi'rTED REVISE

MESSAGE TRANSMIT
LINKED QUEUE

LIST

Figure C-17 Update Transmitted Message Archive ModuleI Structure Chart

RESET
SYSTEM

STATE

RES ET CLOSE STORE

TVC PORT LINKED

LISTS

Figure C-l8 Reset System State Module Structure Chart

C. 10

I
I
3 Appendix D. DATA DICTIONARY

Page

I DATA PROCESSES

CHECK FOR COMPLETENESS 0.3
DETERMINE ROUTE 0.3
DSP MSG TEMPLATE & QUERY D.4
INTERFACE TNC 0.4
NOTIFY OPERATOR 0.5
PARSE IN MSG D.6
PARSE OUT MSG 0.6
RCONNECT/DISCONNECT D.7
RCV STATISTICS 0.7
RQUEUE 0.7TCONNECT/DISCONNECT D.8

TQUEUE D.8
TRANSFER MSG D.8
TX STATISTICS 0.9
UPDATE ROUTING ALGORITHM 0.9

I DATA STRUCTURES

SCONN O lO1DESTINATION D.1
EOM POINTER 0.10
GEN STRUCTURE D.10
INPUT D.10
MSG D.10

MSG POINTER D.10
NEXT RMSG POINTER D.11
NEXT TMSG POINTER D.11
ORDERED R POINTERS D.11
ORDERED T POINTERS 0.11
RCV C/D D.11
RMSG POINTER D.11
RMSG PKT D.11

IROUTE D.11

RROUTE D.11
SERIAL DATA D.12
STATUS D.12
TEMPLATE 0.12I
TMSG PKT D.12

I
I
I D.1

I
1

Appendix D: DATA DICTIONARY (Cont'd) Page

TMSG POINTER D.12

TMSG PRIORITY HEADER D.12

TROUTE 0.12

TX C/D 0.13
VALIDATION VALUES D.13

DATA STORES

I CUSTOMER'S MESSAGE 0.14
MSG STORE D.14

RMSG ARCHIVE D.14

RMSG POINTERS 0.14

RMSG QUEUE D.15

ROUTING FILE 0.15
TMST QUEUE 0.15

VALID PARAMETERS 0.15

II
I
i

U
I
I

I

! 0.2

I
I
3 DATA PROCESSES

PROCESS: CHECK FOR COMPLETENESS
DESCRIPTION: Review a message for completeness. Each

message entered must pass through this
review process. Once through, the message
becomes valid and goes on to be entered in
the transmit message queue. Append the
operator's initials to the message.

INPUTS: SEND
MS G
VALID PARAMETERS

LOGIC SUMMARY: Upon sensing a SEND from the active operator
interface menu, compare each of the 10 mes-
sage elements with its associated valid
parameter. If all message elements match
VALID PARAMETERS, pass. Provide an indica-
tion on the operator's screen indicating the
message passed, STATUS. If any element can-
not match to an associated valid parameter,
provide a failed indication on the opera-
tor's screen, along with an error pointer to
the failed message element, STATUS. Trans-
fer the complete message, appending opera-
tor's initials, to TMSG QUEUE. Provide the
TQUEUE process with the location of the
newly completed message, TMSG POINTER.

OUTPUTS: TMSG POINTER
TMSG
STATUS

PHYSICAL REF: TX

* PROCESS: DETERMINE ROUTE
DESCRIPTION: The heart of the routing algorithm. Given a

destination a "best" route is determined.
INPUTS: SOURCE

DESTINATION
ROUTE

LOGIC SUMMARY: Given DESTINATION determine if the direct
path can be used between the source and
destination. If source to destination is on
file as being "recently" successful, use,
TROUTE. If unsuccessful in establishing a
connection on the direct route, given back
DESTINATION, then determine a "beit" path
using an intermediate node or intermediate
nodes, TROUTE. If connection is successful,
record as a "good" path, ROUTE. If unsuc-

I cessful determine another path using a

D.3

1
I

different sequence of intermediate nodes,
TROUTE. Continue process until TIMEOUT orI TRYOUT is reached. All connect paths are
passed to TCONNECT/DISCONNECT.

OUTPUTS: TROUTE
ROUTE

PHYSICAL REF: TX

PROCESS: DSP MSG TEMPLATE & QUERY
DESCRIPTION: During message generation, a template of a

blank message is displayed on the customer's
computer screen. The cursor prompts the
customer for data. The customer's keyboard
responses are stored in RAM.

INPUTS: GEN MSG
INPUT

LOGIC SUMMARY: Upon receiving a GEN MSG command, display on
the customer's computer screen the message
template, TEMPLATE, and query for INPUT. As
INPUT arrives, store in RAM and advance cur-
sor. Provide TRANSFER MSG process with MSG

POINTER after entire message has been input.
OUTPUTS: TEMPLATE

MSG POINTER
INPUT

I PHYSICAL REF: GENERATE

PROCESS: INTERFACE TNC
DESCRIPTION: A serial data stream is transferred to, and

received from, the TNC via the computer's
serial port. The serial port is directly
connected to the computer's Universal
Asychronous Receiver Transmitter (UART).
Access through the computer's UART is
controlled by the INTERFACE TNC process.
The process transfers the data coming from
the computer program's processes into the
computer's UART. Also, data being received
at the UART from the TNC is decoded to
determine which process should receive the
data.

INPUT: SERIAL DATA
TX C/D
RCV C/D
TMSG PKT

I RMSG PKT

I
I

D.4I

I
U

LOGIC SUMMARY: During establishment of a connection during
a transmit, tranfer a connect path, TX C/D,
to the UART transmit buffer. Query and
report back the TNC's success at establish-
ing the connection to the TCONNECT/
DISCONNECT process. As the data stream,
TMSG PKT, associated with the transmit,
begins to arrive from the processm PARSE MSG
OUT, transfer to the UART transmit buffer.

Query and report back the TNCs being ready
for more packets. Continue to transfer
TMSG PKTs in this manner until a TX C/D
signals a disconnect. Transfer this request
to the UART transmit buffer. Query and
report the TNC's response back to TCONNECT/3 DISCONNECT.

During establishment of a connection on a
receive, signal the RCONNECT/DISCONNECT pro-
cess, RCV C/D, of the incoming path. Con-
tinue to monitor the UART receiver buffer,

transferring arrivals, RMSG PKTs, to the
PARSE IN MSG process. Monitor all UART
receiver buffer arrivals for a disconnect
command. When a disconnect arrives, signal
the RCONNECT/DISCONNECT process through an
RCV C/D that a disconnect has been processed
by the TNC.

3 Continuously query the TNC for incoming con-

nect requests.
OUTPUT: SERIAL DATA

RCV C/D
TX C/D

PHYSICAL REF: TX
3 RCV

PROCESS: NOTIFY OPERATOR
DESCRIPTION: Through visual and audible signals, inform

the operator of a received message. Provide
an output of the message to the printer on
command from the operator.

INPUT: NEXT RMSG POINTER
RMSG

LOGIC SUMMARY: Check contents of RMSG POINTERS. As long as
RMSG POINTERS is not empty, process a
received message. Identify next message
location, NEXT MSG POINTER. Indicate to

D.5

I

operator via the computer screen visually,
and the computer bell audibly, when a mes-
sage has been received, RRMSG. At the
operator's option, provide the received
message to the computer screen, printer, or
both.

OUTPUT: RMSG

1 PHYSICAL REF: RCV

PROCESS: PARSE IN MSG
DESCRIPTION: Message is sent in packets. These packets

must be taken in by the receiver and pro-
cessed to form a whole message. Packets are
transferred as they are received into RAM
storage. When the entire message has been
received, an indication is provided to the
follow-on process.

INPUTS: CONN
RMSG PKT

LOGIC SUMMARY: Upon receiving a CONN signal, the process
implements a RMSG POINTER and begins to
receive RMSG PKTS. These packets are each
sent to the RAM location specified by RMSG
POINTER. Once all packets are received, the
R MSG POINTER is sent back to the RCONNECT/
DISCONNECT process.

OUTPUTS: RMSG PKT
RMSG POINTER

PHYSICAL REF: RCV

PROCESS: PARSE OUT MSG
DESCRIPTION: Message is broken into packets and sent to

TNC. TNC can only handle one packet at a
time. Process feeds the TNC message packets
upon demand until the entire message is transmitted.

INPUT: TMSG POINTER
TMSG PKT

LOGIC SUMMARY: When TMSG POINTER arrives, begin to pull
from TMSG QUEUE at location specified by
TMSG POINTER. Segment message into packets,
TMSG PKT, and forward to INTERFACE TNC pro-
cess for transfer to TNC. Upon reaching the
end of the message, send EOM POINTER to
TCONNECT/DISCONNECT process and TX
STATISTICS process.

OUTPUT: TMSG PKT
EOM POINTER

PHYSICAL REF: TX

I
D.6

I
I

PROCESS: RCONNECT/DISCONNECT
DESCRIPTION: Process sets in motion receipt of a message.

Also involved in last step of transmission
of a message, disconnecting.

INPUT: RCV C/D
RMSG POINTER

LOGIC SUMMARY: Upon receipt of a connect path, RCV C/D,
from INTERFACE TNC, process pass CONN to
PARSE IN MSG. Pass SOURCE to UPDATE ROUTING
ALGORITHM. Upon a disconnect request, RCV
C/D, transfer RUMSG POINTER received from
PARSE IN MSG process to RQUEUE process.

OUTPUT: SOURCE
RMSG POINTER
CONN

PHYSICAL REF: RCV

PROCESS: RCV STATISTICS
DESCRIPTION: Once a message is received, it will be

archived on a 5 1/4-inch disk. This
archiving process records time received.
The message plus appended time is trans-
ferred onto a 5 1/4-inch disk.

INPUT: RMSG POINTER
RMSG

LOGIC SUMMARY: When an RMSG POINTER is received, the indi-
cated message is transferred to a 5 1/4-inch
disk from RA.M. A time stamp is appended to
the message in message field TIME RECEIVED.

OUTPUT: FMSG PLUS TIMESTAMP PLUS...
PHYSICAL REF: RCV

IPROCESS: RQUEUE
DESCRIPTION: Upon indication of a newly received message,

the process reorders the RMSG POINTERS such
that the highest priority message is top
pointer.

INPUTS: RMSG POINTER
RMSG PRIORITY HEADER
RMSG POINTERS (DATA STORE)

LOGIC SUMMARY: Receive RMSG POINTER. Read RMSG POINTERS.
Read new message's priority. Compare.
Reorder. Write back into RMSG POINTERS.

OUTPUTS: ORDERED.R POINTERS3 PHYSICAL REF: RCV

ID

P D.7

I

I

PROCESS: TCONNECT/DISCONNECT
DESCRIPTION: Connect paths establish connection throughI the TNC with the destination node. Connect

paths can have intermediate nodes in connect
path. Disconnect path follows connect path,
serving to complete transmission.

INPUT: NEXT TMSG POINTER
TMSG DESTINATION
TROUTE
EOM POINTER

LOGIC SUMMARY: Whenever TMSG POINTERS is not empty, deter-
mine the msg destination through the network
routine algorithm. Routing algorithm
returns a connect path that might be suc-
cessful. If connection using this path is
not successful, repeat the routing algorithm
step. When connection is successful, begin
the transfer of the message process. Once
message has been transferred, disconnect.

OUTPUT: TX C/D
TMSG POINTER

DESTINATION
PHYSICAL REF: TX

PROCESS: TQUEUE
DESCRIPTION: Scans newly arrived message's priority and

compares that priority with other transmit
queued messages. Orders the transmit
message pointers so that highest priority
message will be transmitted before a lower
priority message.

INPUTS: TMSG POINTER
TMSG PRIORITY HEADER
TMSG POINTERS (DATA STORE)

LOGIC SUMMARY: Receive TMSG POINTER. Read TMSG POINTERs.
Compare old pointers' priorities with new
message priority. Reorder pointers' highest
to lowest priority. Store in TMSG POINTERS.

OUTPUTS: ORDERED T POINTERS
PHYSICAL REF: TX

PROCESS: TRANSFER MSG
DESCRIPTION: During message generation, after customer

has input all data, transfer message from
RAM to a 5 1/4-inch disk.

INPUT: MSG POINTER
MSG

LOGIC SUMMARY: Upon recipt of a MSG POINTER, the MSG is
transferred from RAM to a 5 1/4-inch disk.

OUTPUT: MSG
PHYSICAL REF: GENERATE

0.8

I
I

PROCESS: TX STATISTICS
DESCRIPTION: Once a message has been transmitted, it will

be archived on a 5 1/4-inch disk. This
archiving processs will record the time the
message was transmitted.

INPUT: TMSG
TMSG POINTER
EOM POINTER

LOGIC SUMMARY: When TMSG/EOM POINTER is transferred, take a
timestamp and append to message addresses by
TMSG POINTER. Transfer entire message to
TMSG ARCHIVE on a 5 1/4-inch disk.

OUTPUT: TMSG PLUS TIMESTAMP PLUS...
PHYSICAL REF: TX

PROCESS: UPDATE ROUTING ALGORITHM
DESCRIPTION: When a received message comes in, the path

that message took will be used to update
routing tables to indicate a "best" path
available.

INPUTS: SOURCE
ROUTE

LOGIC SUMMARY: Upon a receive connection being established,
the path the incoming message takes is con-
sidered to be the "best" current path
through the network. The received path will
be interpreted and recorded as the "best"
path for a message connection having that
destination. The "best" status will last
until a different message comes in from the
same source or REDO time is reached.3 OUTPUTS: ROUTE

PHYSICAL REF: RCV

I

D.9

I
I

DATA STRUCTURES

I STRUCTURE: CONN
DFD: RCV
PATH: RCONNECT/DISCONNECT, PARSE IN MSG

COMPONENTS: CONN

STRUCTURE DESTINATION
DFD: TX
PATH: TCONNECT/DISCONNECT
COMPONENTS: DESTINATION

U STRUCTURE: EOM POINTER
DFD: TX
PATH: PARSE OUT MSG, TCONNECT/DISCONNECT3 COMPONENTS: EOM POINTER

STRUCTURE: GEN STRUCTURE
DFD: GENERATE
PATH: CUSTOMER, DSP MSG TEMPLATE & QUERY
COMPONENTS: GEN MSG

3 STRUCTURE: INPUT
DFD: GENERATE
PATH: KEYBOARD, DSP MSG TEMPLATE & QUERY

DSP MSG TEMPLATE & QUERY, MSG STORE (RAM)

COMPONENTS: INPUT

STRUCTURE: MSG

DFD: GENERATE
TX

PATH: MSG STORE (RAM), TRANSFER MSG
TRANSFER MSG, CUSTOMER'S MSG (FLOPPY)

CUSTOMER'S MSG, CHECK FOR COMPLETENESS

COMPONENTS: SOURCE
DESTINATION
DATE
SUBJECT
AUTHOR
PRIORITY
SECURITY CLASSIFICATION

MSG TEXT

I STRUCTURE: MSG POINTER
DFD: GENERATE

PATH: DSP MSG TEMPLATE & QUERY, TRANSFER MSG

COMPONENTS: MSG POINTER

D
3

D.I
I

STRUCTURE: NEXT RMSG POINTER
DFD: RCV
PATH: RMSG POINTERS, NOTIFY OPERATOR
COMPONENTS: NEXT MSG POINTER

STRUCTURE: NEXT TMSG POINTER
DFD: TX
PATH: TMSG POINTERS, TCONNECT/DISCONNECT
COMPONENTS: NEXT TMSG POINTER

STRUCTURE: ORDERED R POINTERS
DFD: RCV
PATH: RQUEUE, RMSG POINTERS
COMPONENTS: ORDERED R POINTERS

STRUCTURE: ORDERED T POINTERS
DFD: TX

PATH: TQUEUE, TMSG POINTERS
COMPONENTS: ORDERED T POINTERS

STRUCTURE: RCV C/D

DFD: RCV

PATH: INTERFACE TNC, RCONNECT/DISCONNECT

COMPONENTS: HEADER

CONNECT PATH
DISCONNECT PATH

STRUCTURE: RMSG POINTER
DFD: RCV
PATH: RCONNECT/DISCONNECT, RQUEUE
COMPONENTS: RMSG POINTER

STRUCTURE: RMSG PKT
DFD: RCV

PATH: INTERFACE TNC, PARSE IN MSG

PARSE IN MSG, RMSG QUEUE (RAM)

COMPONENTS: RMSG PKT

STRUCTURE: ROUTE

DFD: TX

PATH: DETERMINE ROUTE, ROUTING FILE
COMPONENTS: DESTINATION

INTERMEDIATE NODE 1

INTERMEDIATE NODE 2
INTERMEDIATE NODE 3
INTERMEDIATE NODE 4

STRUCTURE: SEND
DFD: TX

PATH: OPERATOR, CHECK FOR COMPLETENESS
COMPONENTS: MENU SEND

FILENAME

D.11

I
I

STRUCTURE: SERIAL DATA
DFD: TX

RCV

PATH: INTERFACE TNC, TERMINAL NODE CONTROLLER
TERMINAL NODE CONTROLLER, INTERFACE TNC

COMPONENTS- SERIAL DATA

STRUCTURE: STATUS

DFD: TX
PATH: CHECK FOR COMPLETENESS, OPERATOR
COMPONENTS: FILE NAME

ERROR POINTER

STRUCTURE: TEMPLATE
DFD: GENERATE
PATH: DSP MSG TEMPLATE & QUERY, CRT
COMPONENTS: A BOARDER

"DESTINATION:"
"DATE/TIME:"
"SUBJECT:"
"AUTHOR:"
"PRIORITY:"
"SECURITY CLASSIFICATION:"
"MSG : to

3 STRUCTURE: TMSG PKT
DFD: TX
PATH: TMSG PKTS, PARSE OUT MSG
COMPONENTS: PARSE OUT MSG, INTERFACE TNC

TMSG PKT

STRUCTURE: TMSG POINTER
DFD: TX
PATH: CHECK FOR COMPLETENESS, TQUEUE
COMPONENTS: TMSG POINTER

PRIORITY

STRUCTURE: TMSG PRIORITY HEADER
DFD: TX
PATH: TMSG QUEUE (RAM), TCONNECT/DISCONNECT
COMPONENTS: PRIORITY

5 STRUCTURE: TROUTE
DFD: TX
PATH: DETERMINE ROUTE, TCONNECT/DISCONNECT
COMPONENTS: DESTINATION

INTERMEDIATE NODE 1
INTERMEDIATE NODE 2
INTERMEDIATE NODE 3

INTERMEDIATE NODE 4

I
3 D.12

STRUCTURE: TX C/D
DFD: TX
PATH: TCONNECT/DISCONNECT, INTERFACE TNC
COMPONENTS: HEADER

CONNECT PATH
DISCONNECT PATH

STRUCTURE: VALIDATION VALUES
DFD: TX
PATH: VALID PARAMETERS, CHECK FOR COMPLETENESS
COMPONENTS: VALID SOURCES

VALID DESTINATIONS
VALID DATE/TIME
VALID AUTHORS
VALID PRIORITIES
VALID SECURITY CLASSIFICATIONS
VALID MSG LENGTH

D

I.1

I
I

DATA STORES

I NAME: CUSTOMER'S MESSAGE (5 1/4-INCH DISK)
DESCRIPTION: The customer's message that is stored on a

5 1/4-inch disk
DATA FLOW IN: MSG; TRANSFER MSG
DATA FLOW OUT; MSG; CHECK FOR COi iPLETENESS
CONTENTS: DESTINATION

DATE/TIME
SUBJECT
AUTHOR
PRIORITY
SECURITY CLASSIFICATION
MESSAGE TEXT

INAE: MSG STORE (RAM)
DESCRIPTION: During generation of a message, the par-

tial message is stored in this data store.
Located in RAM. The completed message is
transferred out.

DATA FLOW IN: INPUT; DSP MSG TEMPLATE & QUERY (GENERATE)

DATA FLOW OUT: MSG; TRANSZER MSG (GENERATE)
CONTENTS: MSG

NAAME: MSG ARCHIVE (5 1/4-INCH DISK)
DESCRIPTION: A final storehouse for received messages.

The entire message will be stored on a
5 1/4-inch disk.

DATA FLOW IN: MSG; RCV STATISTICS (RCV)
DATA FLOW OUT: none--by system administrator
CONTENTS: MSG

NAME: RMSG POINTERS (RAM)
DESCRIPTION: An ordered list, by priority, of all

received messages yet to be read and/or
printed out by operator. Can have up to
RCVQUEUEMAX number of pointers.

DATA FLOW IN: ORDERED R POINTER; RQUEUE (RCV)

DATA FLOW OUT: NEXT RMSG POINTER; NOTIFY OPERATOR (RCV)
CONTENTS: RMSG POINTER 1

RMSG POINTER 23 RMSG POINTER RCVQUEUEMAX

I
I

U
1

NAME: RMSG QUEUE (RAM)
DESCRIPTION: A complete file of all received messages

not yet read. Stored in RAM.
DATA FLOW IN: RMSG PKT; PARSE IN MSG (RCV)
DATA FLOW OUT: MSG; NOTIFY OPERATOR (RCV)

MSG; RCV STATISTICS (RCV)
CONTENTS: MSGl

MSG2
MSG 3

NAME: ROUTING FILE (RAM/5 1/4-INCH DISK)
DESCRIPTION: The best current path to connect from

source to destination. Also, the next
best currenit path to connect.

DATA FLOW IN: ROUTE; DETERMINE ROUTE (TX)
ROUTE; UPDATE ROUTING ALGORITHM (RCV)

DATA FLOW OUT: ROUTE; DETERMINE ROUTE (TX)
CONTENTS: DESTINATION

INTERMEDIATE NODE 1
INTERMEDIATE NODE 2
INTERMEDIATE NODE 3
INTERMEDIATE NODE 4

NAME: TMSG QUEUE (RAM)
DESCRIPTION: A complete file of all messages yet to be

transmitted. Stored in RAM.
DATA FLOW IN: TMSG; CHECK FOR COMPLETENESS (TX)
DATA FLOW OUT: TMSG PRIORITY HEADER; TQUEUE (TX)

MSG
TCONNECT/DISCONNECT (TX)
MSG PKT; PARSE OUT MSG (TX)

MSG; TX STATISTICS (TX)
CONTENTS: MSG 1

USG 2
MSG 3

TMSG TXQUEUEMAX

NAME: VALID PARAMETERS
DESCRIPTION: Provides specific message elements that

are acceptable.
DATA FLOW IN: none--under system administrator

control
DATA FLOW OUT: VALIDATION VALUES; CHECK FOR COMPLETENESS

(TX)
CONTENTS: VALID SOURCES

VALID DESTINATIONS
VALID DATES
VALID AUTHORS
VALID PRIORITIES

VALID SECURITY CLASSIFICATIONS
VALID MESSAGE LENGTH

ID I' D.15

I

Appendix E

* Test Plan

Table of Contents

Page

3 Unit Testing E.2

Display Menu and Prompt Module E.2
Serial Port Connectivity Module E.3
Transmit Message Module E.4
Receive Message Module E.6
Linked List Operations Module E.7

Integration Tests E.9

Phase One - Operator Interface Cluster . . E.10
Phase Two - Communications Cluster . . . E.12
Phase Three - Linked List Cluster E.13
Phase Four - Tie Together the Operator

Interface Cluster and the
Communications Cluster E.13

Phase Five - Tie Together the Communications
Cluster and the Linked List
Cluster E.14

Phase Six - Tie Together the Operator
Interface Cluster, the
Communications Cluster,
and the Linked List Cluster . . . E.15

IU
I
I
I
I

E.1

APPENDIX E

TEST PLAN

Unit Testing

Display Menu and Prompt Module

Modules Functions
-display the menu listing passed in function
parameter
-look for a keyboard hit and process: if selec-
tion, return; if arrow, move cursor; if valid
letter, move cursor

-look for a receive request: if receive request,
go to receive
-look for a transmit request: if transmitrequest, go to transmit

I Testing Process
-specific area to be examined by testing

--independent paths
--error-handling paths

-process consists of setting up the test con-

figuration and following the procedure

Testing Configuration
-IBM PC-compatible computer
-write a driver to

--call the display menu and prompt module,
passing the main menu as an initial parameter

--embed a test cell within the display menu and
prompt module that echoes the keyboard
characters that are depressed on the monitor

--process the selection returns and present the
appropriate responses, i.e., when first item
is selected, pass to the display menu and
prompt module the submenu to display

--process the exit request

Test Procedure
-invoke the driver
-depress a key

--ensure that the key that was hit is displayed
on the monitor

--evaluate the response of the program: any
key other than the up or down arrow keys, the
return key, the first letter of any menu
item, CTL-C should have no effect, the cursor
should remain stationary

I
i E.2

I
I

-depress the down arrow key at one-second inter-
vals

--the cursor should change position, moving
downward to the next menu item for each key
press

--the cursor should cycle through the menu
items, moving to the top menu item from the
bottom menu item

-depress the up arrow key at one-second intervals
--the cursor should change position, moving

upward to the next menu item for each key
pressU--the cursor should cycle through the menu
items, moving to the bottom menu item from
the top menu item

-depress the first letter of each menu item,
pausing for one second after each key press

--the cursor should move to the menu item
associated with the letter pressed

-depress the return key
--the position of the cursor when the return

key is depressed is the control for subse-
quent action taken by the program

--if the cursor was at the first menu item, a

submenu should be displayed, with key press
actions parroting those detailed above, from
within this submenu, the return key should
return the main menu independent of cursor
position

--if the cursor is at the last menu item, EXIT,
the program should exit, returning control to

the operating system
--if the cursor is in any position except the

first or last menu item, the monitor should
clear and the main menu should be displayed

-depress CTL-C
--the program should exit and return control to

the operating system

Serial Port Connectivity Module

Modules Functions
-provide an ability to initialize the serial com-
munications port
-provide an ability to send a data character out

the serial communications port
-provide an ability to receive data characters
automatically from the serial communications port
and place in a buffer

I
E. 3I

-provide an ability to read a data character from
the receive buffer

-provide an ability to close the communications
port

Testing Process
-specific areas to be examined by testing

-- examine data structures
-- independent paths

-process consists of setting up the configuration
and following the procedure

Test Configuration
-IBM PC-compatible computer and a TNC available
-write a driver to automatically
-- initialize the port
-- send characters from keyboard to TNC
-- receive characters from receive buffer and dis-
play on monitor

-- display all characters sent out or received
from the serial port on the monitor

Test Proc-dure
-invoke driver
-send a sequence of three *s to the TNC
-the response from the TNC should appear on the
monitor and consist of the TNC sign-on message
followed by the sequence command:

Transmit Message Module

Modules Functions
-query the operator for a TNC connect path
-transfer specified connect path to TNC
-look for an active connect status from TNC
-query operator for a character string to send
-transfer specified character string to TNC
-provide a disconnect request to TNC
-look for a disconnect acknowledgement from TNC

Testing Process
-specif:c area co be examined by testing

-- examii- data structures
-- examine independent paths
-- examine error handling paths

-process consists of setting up the test configur-
ation and following the procedure

E.4

U
I

Testing Configuration
-requires two IBM PC-compatible computers and two
interconnected TNCs

-set up the destination to run the driver associ-
ated with the serial port connectivity module

-a driver to
--call the transmit message module
--embed test cells within the transmit message
module to display the connect status response
returned from the TNC, display the character
string byte by byte as it is sent to the TNC,
display the disconnect request being sent to
the TNC, display the disconnect status
response returned from the TNC

Testing Procedure
-invoke the driver
-at the connect request, immediately send a return

--the response should display a message that
the connect field is invalid and another con-
nect request is made

-at the connect request, enter 30 characters
--the response should be that the connect field

is invalid and another connect request is
made

-at the connect request, enter four alphanumeric
characters

--the response should be the continuation of the
program

-at the request to enter a character string, enter
100 characters of alphanumeric data

--the response should display a message that the
field is invalid and another character string
is made

-at the request to enter a character string,
immediately send a return

--the response should be that the program con-
tinues

-at this point, the program is run and presented
with the destination call sign and a character
string

--the display shows the connect status response
from the TNC; the last characters should
match the destination call sign

--once the two TNCs are connected, the display
shows the character string byte by byte as it
is sent out to the TNC

--next, the disconnect request string that is
sent to the TNC is displayed

I
I

E.5I

I
I

--finally, the display shows the disconnect
status returned from the TNC

--upon disconnect, the program returns to the
operating system

-indicators of a successful data transfer can be
accomplished by

--noticing the activity of the TNC to the
passing of data between TNCs

--viewing the destination monitor for the
character string received

--requiring an exact match between the
character string sent and the character
string received

-run the program with a nonexistent destination
call sign

--the program should provide a display indication
that the TNC is unable to connect to the
destination

Receive Message Module

Modules Functions
-switch the TNC into HOST mode (see Appendix A)
-while in HOST mode, look for a receive request
from the TNC

-while in HOST mode, and an active receive request
condition exists, take in the character data from

the receive buffer being sent by the TNC
-while in HOST mode, look for a disconnect from
the TNC

-while in HOST mode, display the received message
* on the monitor

Testing Process
-specific areas to be examined by testing

--examine data structures
--examine independent paths
--examine error handling paths

-process consists of setting up the test configur-
ation and following the procedure

Testing Configuration
-requires two IBM PC-compatible computers and two
interconnected TNCs

-set up the destination to run the driver associ-
ated with the transmit message module

-a driver to
--call the receive message module
--embed test cells within the receive message

module to display the receive request response

I
i E.6

I
I

from the TNC, display the character data byte
by byte as it is received from the source, dis-
play the disconnect status responses from the
TNC

* Testing Procedure
-invoke the driver
-as long as the channel between the TNCs is
inactive, the receive request responses will be
displayed
-begin to transmit a character string from the
computer that is driving the transmit message
module

--the receive request response should stop
being displayed, indicating that an active
receive request has been detected

--character data should be displayed byte by
byte as it is sent from the TNC

--interleaved with the character data is the
disconnect response from the TNC

--when all the character data that was sent has
arrived, the disconnect responses should no
longer be displayed

--upon a disconnect, the program returns com-
puter control over to the operating system

-indicators of a successful data receive are
--that all the character data sent from the

source are received
--all the character data received are in the

* proper sequence

Linked List Operations Module

I Modules Functions
-create a doubly linked list
-display the linked list on the monitor
-provide for adding entries to the linked list
-provide for deleting entries from the linked list
-provide for sorting the entries of the linked
list for a specified field

-provide for numerous fields within each entry
-provide for finding a referenced entry within the
linked list and displaying on the monitor

-provide for storing the linked list on disk
-provide for loading a linked list from disk

Testing Process
-specific area to be examined by testing

--examine data structures
--examine boundary conditions
--examine error handling paths

E.7I

-process consists of setting up the test configura-
tion and following the procedure

Testing Configuration
-requires an IBM PC-compatible computer
-requires a driver to

--run the linked list operations module
--provide a simple numbered menu of choices

consisting of
(1) List
(2) Add
(3) Delete
(4) Find
(5) Store
(6) Load

Testing Procedure
-invoke the driver

--note the appearance of the numbered menu
-enter the number 1 at the menu prompt

--the display should have a message indicating
the linked list is empty

-enter the number 2 at the menu prompt
--the display should prompt through a number of

field requests for entries and check that the
number of entries is consistent with the
number specified in the program

-enter the number 1 at the menu prompt
--the display should show the linked list entry

that was just completed
-enter the number 2 at the menu prompt

--the display should prompt through a number of
field requests for entries and check that the
number of entries is consistent with the
number specified in the program

-enter the number 2 at the menu prompt
--the display should show the two linked list

entries just completed and ensure that the
listing is sorted according to the order dic-
tated by the program

-enter the number 3 at the menu prompt
--the display should show the first field of
each linked list entry in the properly sorted
order

--a prompt should request the name of the first
field of the entry to delete

-enter the first name listed
-enter the number 1 at the menu prompt

--the linked listing should not contain the
entry that was just deleted

E
i E.8

I

-enter the number 2 at the menu prompt and enter
another entry to the linked list
-enter the number 4 at the menu prompt

--a prompt should appear requesting the first
field of the entry to find

-enter the first field of the recently completed
entry

--the entire listing of the requested entry
should be displayed for five seconds,
followed by the display of the main menu

-enter the number 5 at the menu prompt
--the light on the disk drive should light,

indicating that the program is storing the
linked list on disk in the file specified by
the program

-enter the number 3 at the menu prompt repeatedly
until all linked list entries have been deleted

-enter the number 6 at the main menu prompt
--the light on the disk drive should light,

indicating that the program is reading from
the linked list disk file specified by the
program

-enter the number 1 at the main menu prompt
--the linked listing should display the entries

that were stored on disk

I Integration Tests
-broken into six phases based on function and com-
plexity
-performance objectives form the basis for the
test measures

-test measures of performance will be based on
equivalence testing

Phase One

Operator Interface Cluster

Performance Objectives
-tailored menu listings to system requirements
-when cluster is built, it forms a menu-driven
operator interface that can accommodate all
functions dictated by requirements

-the actual functions called by a menu selection
will be stubs that display an indication that the
stub was entered

-stubs return control to the correct level of menu
that would occur in operation when stubs are

replaced by the operational function

I
i E.9

I
I

Principal Module Components
-display menu and prompt module

Modules Formed
-operator interface state module

3 Testing Process
-testing process consists of setting up the test
configuration and following the procedure

-specific areas to be examined by testing
--valid and invalid input
--only menu listings called for in the design are

incorporated
--a specific menu selection leads to the correct
program stub that displays the correct progress
indicator

Testing Configuration
-requires an IBM PC-compatible computer
-requires a driver only to call the operator
interface module

Test Procedure
-invoke the driver
-check that the display shows a menu header and a
main menu listing

--check that the main menu listing conforms to
design (see Chapter III)

-check that the function keys specified during
unit testing of the display menu and prompt mod-
ule are operating properly
-choose the first main menu item
-check that the submenu displayed or the stub
indicator displayed conforms to design (see
Chapter III)
-choose the return to main menu choice from the
submenu

-repeat the last three steps for all the remaining
menu items

-repeat the last three steps for all submenu items
of all main menu selections
-repeat the last three steps for all subsubmenu
items of all submenu selections

I Phase Two

Communications Cluster

Performance Objectives
-provide for automatic transmission and receiving
of an operator-specified character string to an
operator-specified destination

IE
E. 10I

I!

-query the operator for the station call sign
-query the operator for a transmit request
-when the operator selects a transmit request,
prompt for a destination and a character string

-if no transmit request is made, the program moni-I tors the TNC for a connect and displays any
received characters on the display

Principal Module Components
-receive message module
-transmit message module

Modules Formed
-state transition manager module
-receive state module
-transmit state module

Testing Process
-testing process consists of setting up the test
configuration and following the test procedure

-specific areas to be examined by testing
--ability of the program to switch from the

receive mode to the transmit mode
--ability of the program to switch from the

transmit mode to the receive mode

Test Configuration
-requires two IBM PC-compatible computers and two
interconnected TNCs

-requires a driver to
--call the state transition manager module

Test Procedure
-invoke the driver on both the computers
-check that both computers display requests for
the operator to signal a transmit request

-enter a transmit request at one of the computers
and process the transmit

-check that the other computer received the trans-
mitted character string

-check that the character strings that were trans-
mitted and received are composed of the same
characters and sequence of those characters

-check to see whether the transmitting computer
returns to the receive ready mode by looking for
the transmit request on the display

-check to see that the receiving computer returns
from the receiving mode to the transmit request
mode by looking for the transmit request on the
display
-enter a transmit request from the computer that
just received a character string

E.1I

I
I

-check that the character string is transmitted
correctly to the other computer

-check to see whether the transmitting computer
returns to the receive ready mode by looking for
the transmit request on the display

-check to see that the receiving computer returns
from the receiving mode to the transmit request
mode by looking for the transmit request on the
display

Phase Three

Linked List Cluster

Performance Objectives
-multiple linked list tailored to requirements
-transfer an entry from one linked list to another

-tailor the linked list entries to requirements
-display one of the multiple linked lists
-provide for a display of one entry of a chosen
linked list

Principal Module Components
-linked list operations module

Modules Formed
-initialize linked lists module
-access archive module
-generate message module
-update routing tables
-update message archive
-store linked lists

Testing Process
-testing process consists of setting up the test
configuration and following the test procedure

-specific areas to be examined by testing
--all linked lists formed
--ability to work with any linked lists

Test Configuration
-requires an IBM PC-compatible computer
-requires a driver to

--initialize five linked lists
--- transmit queue linked list
--- transmitted linked list
--- received linked list
---generate message linked list
--- routing table linked list

--provide a limited menu listing to include

E
I

i E. 12

I
I

---Operate on linked list
---List
---Delete
---Add
---Store
---Load

--move generate message linked list entries into
the transmit queue to the transmitted linked
list, copying into the received linked list and
using the generate message entry field to up-
date the routing table linked list

I Test Procedure
-invoke the driver
-from the menu, choose each linked list, in turn,
and verify that all listings are empty
-add an entry to the generate message linked list
-verify that all linked lists now contain the gen-
erate message entry except for the routing table,
which contains the correct source and destination
fields from the generate message entry

I Phase Four

Tie Together the Operator Interface Cluster and the Com-
munications Cluster

Performance Objectives

I -from a menu selection, enable automatic connec-
tion and transfer of a character string

-destination needs to automatically receive char-
acter string while in any menu configuration

Principal Module Components
-state transition manager module
-oprerator interface state module
-receive state module
-transmit state module

Modules Formed
-none

Testing Process
-testing process consists of setting up the test
configuration and following the test procedure

-specific area to be examined by testing3 --ability of the modules to work together

Testing Configuration
-requires two IBM PC-compatible computers and two
interconnected TNCs

E
n E.13

I

-requires a driver to
-- call the operator interface state module

Testing Procedure
-invoke the driver at each of the computers
-at one of the computers, choose the transmit
option from among the menu listings
-enter the requested information to establish a
transmission

-check that the other computer receives the mes-
sage from the monitor display

-check that after transmission, the program
returns to the main menu

-check that the other computer returns to the main
menu after receiving a message
-switch the process to transmit and receive onim opposite computers
-check that the message is transmitted properly to
the receiver's monitor

-check that the program returns to the main menu
after transmission and receipt of the character
string

Phase Five

Tie Together the Communications Cluster and the Linked
List Cluster

Performance Objectives
-a message structure linked list entry replaces
the character string

-the destination is taken from the linked list
entry
-the destination points to a routing table linked
list entry for the connect path

-the destination updates the appropriate routing
table linked list entry upon receipt of a message
structure linked list entry

-the destination stores the received message
structure linked list entry in the received mes-
sage queue linked list

Principal Module Components
-state transition manager module
-receive state module
-transmit state module
-initialize linked lists module
-generate message module
-update routing tables
-update message archive

E.14

Modules Formed
-receive state module
-transmit state module

Testing Process
-testing process consists of setting up the test
configuration and following the test procedure

-specific area to be examined by testing

--interaction between the linked list modules and
the transmit and receive modules

Test Configuration
-requires two IBM PC-compatible computers and two
interconnected TNCs

-requires a driver to
--call the state transition manager module
--provide an abbreviated menu

Test Procedure
-invoke the driver at both computers
-select the menu item to view all linked lists and
ensure they are empty

-select the menu item to generate a message
-generate a message
-select the menu item to transmit a generated mes-
sage

-check that the message is in the process of being
transmitted by monitoring the TNC indicator lamps

-after transmission of the message, select the
menu option to see that the transmitted message
updated the transmitted linked list at the source
computer
-after transmission of the message, select the
menu option to see that the transmit queue linked
list is clear

-after receiving the message, choose the menu item
to see that the recently received message has up-
dated the received message linked list
-reverse the process to the other computers and go
through the test procedure again

Phase Six

Tie Together the Operator Interface Cluster, the Commu-
nications Cluster, and the Linked List Cluster

Performance Objectives
-perform all the functions detailed by design (see
Chapter III)

E.15

I

Principal Module Components
-all

Modules Formed
-none

Testing Process
-testing process consists of setting up the test
configuration and following the test procedure

-specific area to be examined by testing
--interaction correct between all called modules

Test Configuration
-requires two IBM PC-compatible computers and two
interconnected TNCs

-no driver is required, since the program is now
in final form

-no stubs are used
-there is still an embedded code that displays
program progress indicators on the monitor

Test Procedure
-run the program at each computer
-check that full capabilities to transmit and
receive a module exist

-check that the linked lists are properly updated
after each transmission

E.16

I

Appendix F

I Test Results

Table of Contents

Page

£ Verification Tests F.2

Unit Tests . . . F.2

1 Display Menu and Prompt Module F.2
Serial Port Connectivity Module . . F.3
Transmit Message Module F.3

i Receive Message Module . . . F.4
Linked List Operations Module . . F.5

f Integration Tests . . . F.6

Phase One - Operator Interface Cluster. . . F.6

Phase Two - Communications Cluster . . . F.7
Phase Three - Linked List Cluster F.8
Phase Four - Tie Together the Operator

Interface Cluster and the
Communications Cluster F.9

Phase Five - Tie Together the
Communications Cluster and
the Linked List Cluster . . F.9

Phase Six - Tie Together the Operator
Interface Cluster, the
Communications Cluster, and
the Linked List Cluster . . . F.10

Validation Tests F.11

Alpha Testing F.11

F.1

I
I

Appendix F

TEST RESULTS

3 Verification Tests

Unit Tests

SDisplay Menu and Prompt Module

Test Procedure Results

I -invoked t~le driver
-- menu listing was displayed

-depressed a "q"
--a "q" ..a- displayed
--nc apparent effect on program

-depresjed the down arrow key at one-second
intervals

--the cursor changed position, moving down-
ward to the next menu item for each key
press

--the cursor cycled through the menu items,
moving to the top menu item from the bot-
tom menu item

-depressed the up arrow key at one-second
intervals
--the cursor changed position, moving upward

to the next menu item for each key press
--the cursor cycled through the menu items,

moving to the bottom menu item from top

menu item
-depressed the first letter of each menu item,
pausing for one second after each key press

--the cursor moved to the menu item associ-
ated with the letter pressed

-depressed the return key while the cursor was
at the first menu item

--a submenu was displayed
--repeating the key press actions detailed

above resulted in the correct responses
--upon selection of the RETURN TO MAIN MENU

option, the program displayed the main
menu

-depressed the return key while the cursor was
at the second menu item -isted

--the monitor cleared and the main menu
reappeared

I
I

i F. 2

I

-depressed the return key while the cursor was
at the last menu item, EXIT

--the program exited, returning control to
the operating system

-invoked the driver
-depressed CTL-C

--the program exited and returned control to
the operating system

Serial Port Connectivity Module

Test Procedure Results

-invoked the driver
-entered a sequence of three *s from the key-
board

--the monitor displayed the TNC sign-on mes-
sage followed by the sequence "cmd:"

Transmit Message Module

Test Procedure Results

-invoked the driver
--queried the operator for a connect path

-depressed the return key
--the monitor displayed a message that the
connect field was invalid

--the operdtor was queried for another con-
nect path

-depressed a random sequence of 30 characters
--the monitor displayed a message that the

connect field was invalid
--the operator was queried for another con-
nect path

-depressed the character sequence N8NN, the
call sign of the other TNC

--the monitor displayed a request for the
character string to transmit

-depressed a random character string of 101
characters

--the monitor displayed a message indicating
that the character string was invalid

--the monitor displayed a query to the oper-
ator for another character string

F.3

I
I

-depressed the return key
--the program began to process the transmit

request
--the monitor displayed connect status

responses from the TNC
--the last characters were N8NN
--connect status responses stopped being
displayed

--the character string was displayed on the
monitor

--the disconnect request sent to the TNC was
displayed

--the monitor displayed the disconnect sta-
tus responses from the TNC

--the disconnect status response stopped
being displayed

--the operating system prompt appeared
-invoked the driver
-provided the input data to send a character
string of 25 random characters to N84N

-monitored the call progress indicators on the
monitor
-compared the random character string trans-

mitted to the character string received

-the character strings matched
exactly

Receive Message Module

Test Procedure Results

-invoked the driver
--the TNC responses to the receive requests

initiated by the program were displayed
-transmitted a character string from a computer
to the computer running the receive message
module

--the receive request responses stopped
being displayed

--character data were displayed byte by byte
as they were sent from the TNC

--the disconnect response from the TNC was
interleaved with the character data

--the character data and interleaved dis-
connect response from the TNC stopped
being displayed

--the character strings transmitted and
received matched exactly

--the monitor displayed the operating system

prompt

F
* F.4

Linked List Operations Module

Test Procedure Results

-invoked the driver
--a numbered menu appeared

-entered the number 1 at the menu prompt
--the display had a message indicating that

the linked list is empty
-entered the number 2 at the menu prompt

--the display prompted for an entry to the
first field

-an iterative process began that first entered
an excessively large character string, then
upon getting a field error indication, a pro-
per character string was entered causing the
program to advance to the next field
-entered the number 1 at the menu prompt

--the display showed the linked list that
was just entered

-entered the number 2 at the menu prompt
--the display prompted for an entry to the

first field
-an iterative process began that first entered
an excessively large character string, then
upon getting a field error indication, a pro-
per character string was entered causing the
program to advance to the next field
-entered the number 1 at the menu prompt

--the monitor display showed the two linked
list entries just completed

--the listings are sorted according to the
order dictated by the program

-entered the number 3 at the menu prompt
--the monitor displayed the first field of

each linked list entry in the properly
sorted order

--a prompt requested the name of the first
field of the entry to delete

-antered the first name listed
-entered the number 1 at the menu prompt

--the linked listing no longer contained the
entry that was just deleted

-entered the number 2 at the menu prompt,
entering another entry to the linked list

-entered the number 4 at the menu prompt
--a prompt appeared requesting the first

field of the entry to find

F.5

I

-entered the first field of the recently com-
pleted entry

-- the entire listing of the requested entry
was displayed for five seconds, followed
by the display of the numbered menu

-entered the number 5 at the menu prompt
-- the disk drive light illuminated

-entered the number 3 at the menu prompt
repeatedly until all linked list entries were
deleted
-entered the number 6 at the main menu prompt

-- the disk drive light illuminated
-entered the number 1 at the main menu prompt

-- the monitor displayed the linked listing

entries that were stored on disk
--the linked list matched the previous

linked list that was deleted

Integration Tests

Phase One - Operator Interface Cluster

Test Procedure Results

-invoked the driver
--the monitor displayed a menu header and a

main menu listing
--the main menu listing conformed with
design

--the functional keys, as specified during
unit testing of the display menu and
prompt module operated properly

-selected the first main menu item, TRANSMIT
MESSAGE

--the transmit menu was displayedi --the transmit menu displayed conformed with

design
-from the transmit menu listing, selected all
items in turn
--each selection produced the proper

response via display of another menu or a
stub

-from the transmit menu listing, the RETURN TOMAIN MENU item was chosen
--the program returned to the main menu

F.6

-selected the second main menu item, GENERATE A
MESSAGE

--the monitor displayed the information
header for generating a message

--the monitor prompted through message
fields for input

--the main menu was displayed after all mes-
sage fields had been entered

-selected the third main menu item, ACCESS
ARCHIVED MESSAGE FILE

--the archive menu was displayed
--the archive menu conformed to design

-from the archive menu listing, selected all
items in turn
--each selection produced the proper

response via display of another menu or a
stub

--the submenu and routing table submenu per-
formed as specified

-from the archive menu, the RETURN TO MAIN MENU
item was chosen
--the program returned to the main menu

-selected the fourth menu item, EXIT PROGRAM
--the disk drive light illuminated briefly
--the operating system prompt appeared

Phase Two - Communications Cluster

Test Procedure Results

-invoked the driver on both computers
--both computers displayed requests for the

operator to signal a transmit request
-entered a transmit request at one of the com-
puters and processed the transmit

--the other computer received the trans-
mitted character string

--the character strings which were trans-
mitted and received were composed of the
same characters and sequence

--the transmitting computer returned to the
transmit request mode

--the receiving computer returned from the
receiving mode to the transmit request
mode

F.7

I
I

-entered a transmit request from the computer
that was the recent receiving computer

--the other computer received the trans-
mitted character string

--the character strings which were trans-I mitted and received were composed of the
same characters and sequence

--the transmitting computer returned to the
transmit request mode

--the receiving computer returned from the
receiving mode to the transmit request
mode

Phase Three - Linked List Cluster

If Test Procedure Results

-invoked the driver
--the menu was displayed

-the list menu item was selected for all linked
lists
--all linked lists were empty

-the add menu item was selected
--the program displayed prompts for the

operator to enter generate message fields
-the fields were entered for the generate mes-

I' sage entry
--after the generate message function

entries were completed, the program dis-
played the main menu

-the list menu item is selected for all linked
lists

--all linked lists except the transmit queue
had the recently entered message

-the store menu item is selected
--the disk drive light illuminated for a
brief period

-the delete menu item was selected recursively
to clear all linked lists

-the load menu item was selected
--the disk drive light illuminated for a
brief period

-the list menu item was selected recursively
for all linked lists
--all linked lists had the message that was
previously entered

F.8

Phase Four - Tie Together the Operator Interface Cluster
and the Communications Cluster

Test Procedure Results

I -invoked the driver at each of the computers
-at one of the computers, the transmit option
was chosen, and a connect path and character
were entered

--the transmitting computer began to display
connect status responses from the TNC

--the receiving computer was displaying con-
nect status responses from the TNC, but
stopped and began to display disconnect

--the character string was displayed byte by
byte at the transmitting computer

--at the receiving computer, the displaying

of the received character string is inter-
leaved with the disconnect responses byte
by byte

--at the transmitting computer, all the
character string characters had been dis-
played

--at the receiving computer, all the char-
acter string characters were displayed in
proper sequence

--the transmitting computer began to display
disconnect responses from the TNC

--the receiving computer continued to dis-
play disconnect responses from the TNC

--the transmitting and receiving computer
displayed a final disconnect response dif-
ferent than the previous responses

--both computers returned to the main menu
-the process was then reversed; the computer
that recently transmitted became the receiver,
and the computer that was the receiver became
the transmitter3 --results were the same as presented above

Phase Five - Tie Together the Communications Cluster and

the Linked List Cluster

Test Procedure Results

-invoked the driver at both computers
--an abbreviated menu was displayed on each

computer monitor

F.9

I

-selected the menu item to view linked lists
recursively
--all linked lists empty

-selected the menu item to generate a message
-generated a message
-selected the menu item to transmit a generated
message

--TNC indicator lamps indicated that the
message was being transmitted

--a message appeared on both computer moni-
tors to indicate that a message was being
received or transmitted

--the message indicating that a message was
being received or transmitted no longer
appeared on the computer monitors

-at the transmitting computer, the list menu
item was selected and the transmitted linked
list was chosen

--the transmitted linked list contained the
message that was recently transmitted

-at the receiving computer, the list menu item
was selected and the received linked list was
chosen

--the received linked list contained the
message that was recently received

-the transmitting and receiving computers were
reversed and the test procedure was rerun

--exactly the same results as above were
obtained

Phase Six - Tie Together the Operator Interface Cluster,
the Communications Cluster, and the Linked
List Cluster

Test Procedure Results

-ran the program at each computer
--the main menu appeared on each computer

monitor
-selected the access archived message file menu
item at each computer and checked each linked
list
--all linked lists were empty

-selected the generate message menu item at
each computer and generated a message

--the disk drive light illuminated for a
brief period

F.10

-selected the transmit message menu item at one
of the computers

--the disk drive light illuminated for a
brief period

--a message was displayed indicating that
the transmit queue was not empty, but the
transmit flag was disabled

-from within the transmit menu, selected the
begin transmit menu item

--a message was displayed on both computers
indicating that a transmission or receiv-
ing of a message was occurring

--the message indication was erased
--the main menu was displayed

-from the main menu of both computers, the
access archived message file was selected
-due to the recent message transmission, the
linked lists at the transmitting and receiv-
ing computer were checked for update
--the linked lists were updated

-the transmit message process was redone,
switching the transmit and receive computers

--the results were exactly as obtained above
-at both computers, the first routing path of
the routing table linked list was purposely
altered with random characters to check
whether the routing table was being updated on
transmit and receive

-at one computer, a transmit was processed
--the routing table was correctly updated at
both the transmit and receive computers

F.11

I

I

Validation Tests

Alpha Testing

Table F-I. Alpha Phase Validation Test, Expected Software
Responses, Actual Responses

Expected Software

Req Validation Test Response Actual Response

(1) Send a message Message would Message was received

to all nodes. be received correctly at all
correctly at nodes.
all nodes.

(2) Place all mes- Complete message Complete message was
sage informa- would transfer transferred to a
tion into to a 5 1/4-inch 5 1/4-inch disk.
message. disk.

(3) Compose a Only one and a Operator was
message of half pages of informed upon entry
more than one text would that the maximum

and a half transfer to message length was
pages of text. disk. exceeded and new

text was requested.

(4) Send a message Message would Continuing to be
to known des- arrive at des- tested.
tination that tination via an

has no direct alternate path.
connection.

(5) Send a mess- Message would Message arrived
sage. arrive complete. complete.

(6) Continuously The number of The queue full indi-
enter messages messages cator was the out-
into the entered would of-memory indicator.
transmit queue be equal to, or The number of mes-
with a single slightly sages that can be
destination greater than, entered into the
until a queue TXQUEUEMAX, due transmit queue was
full indica- to transmit limited by the com-
tion. during entry. puter's memory.

F.12

I
U

Table F-I (Cont'd) Expected Software

Req Validation Test Response Actual Response

1 (7) Send a message Indicator would Indicators informed
to a known off- inform the the operator that
line node. operator that the message did not

the message did get through in
U not get through TIMEOUT minutes.

in TIMEOUT
minutes orI TRYOUT tries.

(8) Fill the The higher The higher priority
transmit queue priority message was sent
with a low- message would before the lower
priority be sent before priority message.
message, then the lower
immediately priority
enter a higher message.
priority
message.

(9) Send a message Message would Message was received

to a node be received at at the destination
having an unat- the destination and placed in the
tended operator and placed in received message
position. the received linked listing.

archive file.

(10) One node is Messages trans- Messages transmitted
processing the mitted to the to the first node
entry of a first node 4ere received. The
message. A would be entry process was
second node is received. fast enough to
sending the finish and receive.
first node a
message.

(11) One node con- The second node The second node
tinuously pro- would receive received the
cesses message the messages. messages.
entries, with a
second node as
the destina-
tion. The
second node is
able to receive5 messages.

I
i F. 13

I
I

Table F-I (Cont'd)

Expected Software
Req Validation Test Response Actual Response

(12) Activate opera- The operator The operator inter-
tor interface, interface would face was menu-
Repeatedly call be menu-driven, driven. The help
up the help The help option was not
option for each feature would available.
operator option. detail all

major operator
options.

(13) Input a semi- Message would The message com-
completed be detected as pleteness option was
message header, incomplete and not available.
e.g., leave out cause an
the destina- incompleteI tion, source, indication at
author, etc. the operator

positicn.

(14) Continuously All messages All messages entered
enter message entered would were received.
into the be received. Messages received
transmit queue Message receipt were automatically
with a single by the operator put in the received
destination would proceed message queue.
until a queue through the
full indica- received
tion. Count message queue.
the number of
messages
entered.

(15) Activate the The screen The screen displayed
generate pro- would display a crude message
gram. Enter a a message template and a
message. template and a cursor query for

cursor query input. The message
for input. The was stored on a
message would 5 1/4-inch disk.
be stored on a
5 1/4-inch disk.

F.14

U

Table F-I (Cont'd)

Expected Software

Req Validation Test Response Actual Response

(16) Activate the The generate The generate message
generate mes- message program program was menu-
age program. would be menu- driven. Help
Repeatedly driven with features were not
call up the accurate, implemented.

help feature clearly worded,
for all cus- detailed help
tomer options, features.
message
fields.

(17) Activate the The generate The generate message
generate mes- message program program had destina-
sage program. would have tion, author, date,

destination, time, priority,
author, date, security, and mes-
time, priority, age text fields.
security, and
message text

fields.

(23) Activate the The generate The generate message
generate mes- message program program ran
sage program would run correctly.
on an IBM PC correctly.
computer that

runs MS-DOS
3.X.

F.15

I

Appendix G

3 Table of Contents

State Transition Manager Module

Initialize System State Module

Initialize Port Module

Initialize TNC Module

Initialize Linked List Module

Operator Interface State Module

Display Menu and Prompt Module

Prepare a Message for Transmit Module

Access Archive Module

Generate Message Module

Receive State Module

Receive Message Module

Update Routing Table Module (Receive)

Update Message Archive Module (Receive)

Transmit State Module

Transfer Message Module

Update Routing Table Module (Transmit)

Update Message Archive (Transmit)

Reset System Scate Module

include/netos.h file

The code associated with each module is the property of

the United States Air Force. A listing of the code can be

made available to authorized personnel by contacting

Captain Willia. Taris, whose permanent mailing address is

ligted in the Vita.

G.1

VITA

Captain William J. Taris

in 1972 was awarded a full tuition scholarship to

attend Control Data Institute's 10-month technical school. Fol-

lowing the completion of this training in May 1973, he enlisted

in the U.S. Army and served with the 440th Signal Battalion until

September 1976. After completing an Associate Degree at Moraine

Valley Community College, he was employed by the Wescom Telecom-

munications Company until attending Illinois State University.

Upon graduation from Illinois State University, from which he

received the degree of Bachelor of Science in Chemistry, he was

employed by the Illinois Water Treatment Company until May 1982.

He was awarded a U.S. Air Force commission upon graduation from

Officer Training School on 26 August 1982. His first Air Force

assignment was to attend Louisiana Tech University to pursue the

degree of Bachelor of Science in Electrical Engineering. Follow-

ing the successful completion of this assignment, in June 1984,

he was assigned to the 1842 Electronics Engineering Group, Air

Force Communications Command, Scott AFB, Illinois, until March

1987. While serving his assignment at Scott AFB, he earned the

degree of Master of Arts in Procurement and Materials Management

from Webster University. He then attended Squadron Officer

School en route to his Air Force Institute of Technology assign-

ment to pursue the degree of Master of Science in Electrteal

Zngineering.

V.1

SECURiY CLASSIFICA T ION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGSUNCLASS IFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for Public Release;

Distribution Unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/EE/88D-53

6a. NAME OF PERFORMING ORGANIZATION I6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Engineering (if applicable)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology

Wright-Patterson AFB, Ohio 45433

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUPIENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)Air Force Logistics Cmd. IAFLC/SCMX

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

AFLC/SCMX ELEMENT NO. NO. NO ACCESSION NO

right-Patterson AFB, Ohio 45433
11. TITLE (Include Security Classification)

See Box 19

12. PERSQNAL AUTHOR,
Wlllam J. Taris, BoSoE.Eo, Capt, USAF

1F . 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
FROM____ FROM TO 1988 December 179

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Packet Radio, Communications Networks
I 5 02

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: Design and Development of a Computer-Based Message Transfer
System for the Air Force Logistics Command Packet Radio Network

Thesis Chairman: LTC Albert B. Garcia

Abstract on next page

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICA1IONI 0UNCLASSIFIED/UNLIMITED [M SAME AS RPT, C3 DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
LTC Albert B. Garcia 513-255-3576 AFIT/ENG

D O Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASS IFIED

UNCLASSIFIED

Item 19 (Cont'd.)

Abstract The Air Force Logistics Command (AFLC) Packet

Radio Network (PRN) is a specialized communications network
that enables communication between eight logistics command
centers throughout the continental United States. The PRN
communicates by transferring a message from a microcomputer
onto a broadcast radio channel. This thesis effort designs,
and partially develops the design for, a computer-based mes-
sage transfer system that operates the PRN. First, system
requirements are established, a logical system model is con-
structed, and validation tests are detailed. The computer-

based message transfer system has two fundamental require-
ments--that it be easy to use and that it provide automatic
routing through the network. Next, the design is built sup-
porting a hierarchical program structure, modularity and
information hiding. After the computer code, detailed by
design, is written, it is tested. Testing involves a com-
parison of the validation tests detailed earlier with the
computer program's operation. The results show that this
thesis effort resulted in an operational computer-based
message system for the PRN that satisfies the two fundamen-
tal requirements of ease of use and automatic routing.

I
I
I
I
I
I
I

TJ:.CLASS I F tED

