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Abstract

The purpose of this thesis was to explore the feasibility of
replacing a manual audio equalizer with an adaptive inverse filter
that adaptively equalizes the spectral distortion of an audio system.
The impulse response of an audio system , which includes the
response of the speaker crossover network, the power amplifiers,
speakers, and the acoustic transfer function between the system's
speakers and a reference microphone, distorts an audio system's
input signal spectrum. The Adaptive Inverse Prefilter, the Filtered-
X algorithm, and the Adaptive Inverse Modeling Control System are
investigated which remove the distortion by pre-filtering the audio
system's input signal with the audio system's inverse. The audio
system examined is the Armstrong Aerospace Medical Research
Laboratory's Performance and Communication Research and
Technology reverberation chamber facility located at Wright
Patterson Air Force Base.

The researcher presents two innovative solutions: a multi-band
Adaptive Inverse Modeling Control System (AIMCS) and a frequency
domain adaptive spectrum shaper. The adaptive spectrum shaper
uses an improved weight update algorithm developed specifically for
this application. Computer simulation results are presented which
demonstrate the effectiveness of the multi-band AIMCS and the
adaptive spectrum shaper in removing the spectral distortion of an

audio system model.
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ANALYSIS AND SIMULATION OF AN
AUDIO ADAPTIVE EQUALIZER

L Introduction

Background

The Biological Acoustics Branch of the Armstrong Aerospace
Medical Research Laboratory, AAMRL/BBA, tests the intelligibility
performance of aircraft audio and radio systems in a simulated,
cockpit, ambient noise environment. A trained panel of ten subjects
comprised of nine listeners and one talker, who are located in 2 large
reverberation chamber, evaluate the intelligibility effectiveness of
aircraft communication links which inctude aircrew microphones and
headsets, aircraft intercommaunication sets and radios. The
inteliigibility testing is conducted in a pink noise or a simulated
aircraft noise environment. For some simulated aircraft noise
environments, actual cockpit recordings are played through the
reverberation chamber's audio system.

The major components of the noise generation system exciuding
the tape deck for the cockpit recording playback and the speaker
crossover network are shown in Figure |. A complete block diagram
of the audio system is presented in Chapter [II. The analog white
noise generator produces white Gaussian noise over the 20 to 50,000
Hz frequency range. The white noise is filtered through a pink noise

filter which rolls off at 3 db per octave from 20 Hz to 20 KHz. The
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pink noise is then spectral shaped with a 32 band graphic equalizer.
The spectral shaped noise is amplified with high power amplifiers to
provide up to 125 dB sound pressure level in the reverberation
chamber. The audio system components from point A to point C in
Figure 1 including the acoustic transfer function between the
speakers and the microphone is referred throughout the thesis as the

audio plant.

SPEAKER REVERBERATION SPE AKER
- CHAMBER _
Mic
gPEAKER SPEAKER
1
SPECTRUM
ANALYZER
WHITE NOISE| _{PINK NOISE| A [GRAPHIC |.B [FOWER  H
GENERATOR | |FILTER EQUALIZER AMPLIFIERSL]

Figure 1. Noise Generation System

The spectral shape of the reverberation chamber's noise
spectrum is monitored with a spectrum analyzer connected to a

reference microphone located in the center of the chamber. The




graphic equalizer is adjusted to achieve the desired spectral shape of
the pink noise spectrum at the microphone output.

Intelligibility testing must be carefully monitored to insure the
validity and the repeatability of the tests. One test control
parameter, that is crucial for valid test results, ts the equalization of
the reverberation chamber’s noise spectrum using the graphic
equalizer. The current equalization procedure is time consuming
and complicated. It requires readjustment for each intelligibility
test run to compensate for changes in the chamber’s temperature
and humidity and for equipment drift. A preliminary BBA
investigation suggests that the equalization could be accomplished

automatically with an adaptive filter (7).

Purpose

The purpose of this thesis is to explore the feasibility of using an
adaptive pre-inverse filter to remove the frequency distortion
effects of the audio plant's transfer function so that the plant's
output at the reference microphone has the same spectral shape as

the input noise spectrum.

Scope

The scope of this thesis is limited to an investigation of finite
impulse response (FIR) least mean square (LMS) adaptive filters.
Applicable LMS adaptive filters are simulated and tested using the
FORTRAN programming language and digitized pink noise data from

the reverberation chamber. The maximum number of taps for the
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adaptive filter design is limited to the maximum number practical
with a dedicated digital signal processor chip. No hardware is

produced. The results are computer mocdels, listings, and plots.

Assumptions
For the thesis research, the following assumptions have been

made:
1. The impulse response of the audio system varies slowly.

2. The audio system's impulse response and its inverse can be
characterized with a finite impulse response filter .

3. Effects of finite-word length, round off, and quantization can
be ignored.

Approach

The thesis approach consists of a review of current literature to
identify promising adaptive LMS filter candidates, the development
of adaptive filter theory, and the simulation and analyzes of the
selected adaptive inverse filter configurations.

The literature review identified the Adaptive Modeling Inverse
Control System (AIMCS) and the filtered-x algorithm as the most
promising adaptive filter solutions for the simulation and analysis.
Both filter configurations have the required input output structure in
which the inverse adaptive filter is in front and in series with the
unknown plant. In addition to the AIMCS and the filtered-x

algorithm, the Adaptive Inverse Pre-filter (AIP) is also explored as a




potential inverse filter solution. The findings of the literature
review are integrated with the theory developed in Chapter II.

The theoretical development in Chapter II provides the
foundation required to analyze the AIMCS, filtered-x algorithm, and
the AIP. The initial background theory introduces the adaptive
linear combiner and the LMS algorithm. The theory then focuses on
the AIP, filtered-x algorithm, and the AIMCS.

An adaptive system is justified if the audio plant's response
distorts the input signal and changes with time. To confirm that an
adaptive system is warranted, the spectral response of the audio
plant is characterized by analyzing digitized data from the audio
piant. The digitized data is also used to generate the FIR plant
models and in the adaptive inverse filter simulations.

Computer simulations are conducted to test the effectiveness of
the three adaptive inverse filters configurations in removing the
distortion of the plant. The merit of each adaptive inverse filter
simulation is assessed by comparing the desired spectrum with the
spectrum at the output of the plant.

The simulation programs are written in FORTRAN 77 and are
compiled and executed on the Elxsi computer. Modular top down
programming techniques and descriptive comments enhance the
readability of the source code. The simulation programs are
composed of a main program in which the variables are declared, the
input output data files are opened, the data reads and writes are
performed and the adaptive filter simulations are implemented.
Within the main program loop, calls are made to signal analysis, and

noise generation subroutines.
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The thesis conciudes by recommending a course of action for

continued research. For this specific application, it appears that a
frequency domain implementation has significant advantages over

the time domain approaches described within this thesis.




1l Theory

This chapter discusses the adaptive linear combiner, the LMS
algorithm, and adaptive inverse filter theory. The adaptive linear
combiner and the LMS algorithm are first briefly introduced. The
remainder of the chapter then focuses on a development of adaptive

inverse filter theory which is applicable to this thesis.

Adaptive Linear Combiner

The adaptive linear combiner is the basic building block for
adaptive signal processing systems. The adaptive linear combiner
consists of tap delay line with adjustable weights and a summing
unit (14:16-19). A single input adaptive linear combiner with a
desired response signal dg and an error signal ey is illustrated in

Figure 2. The adaptive linear combiner weights are adapted to

Xx

Figure 2. Adaptive Linear Combiner (14:17)




minimize the error ey between the desired response signal dgx and
the output of the adaptive linear combiner yy.

The kth output signal yy is given by

L
Yk = 2 WnkZk-n = Wi Xg = X T Wy (2.1)

n=0
where Xe={xx xx-y ... 2L IT (2.2)
and We=0{wox wix .... wrg IT (2.3)

In Eqs(2.1-2.3), the superscript T denotes the transpose matrix

operator. The error signal at the kth time is

ex = dg - Yk (2.4)

Substitution of Eq(2.1) into Eq(2.4) yields

ex = dg - WiT Xi (2.5)

For the rest of this development, the subscript k will be removed
from the weight notation since it has been assumed that the weights
have converged and are no longer adapting. The instantaneous

squared error is found by squaring Eq (2.5):

eyl = dg2 + WT Xy X« TW - 24 X TW (2.6)




Assuming Xy and W are uncorrelated and Xy is zero mean and
stationary, the mean squared error (MSE) is derived by taking the

the expected value of Eq (2.6) (14:20):

MSE = £ =Eley2] = Eldx2] + WT E[Xy X TIW - 2E[dXTIW

£ =Eleg?] = Eldx2] - WT RW - 2PTW (2.7)

where the input autocorrelation matrix R is given by

X2y XxXk-1 - . . XxXk-L
Xk-1Xx X%k : : . Ek-1Xk-L
E[XyXcT] =R =E . . . . . . (2.8)
Xx-LXk  Xk-LXk-1 . : : X%k-L

and the cross correlation vector P between the input and the desired
signal is given by

[ dixk |
dgXk-1

EldcXyT] =P = E : (2.9)
dgXg-L
L

Equation (2.7) shows that the mean-square error is a quadratic
function of the components of the weight vectors (14:20). The
quadratic function has a paraboloid performance surface for a two
weight adaptive linear combiner and hyperparabeloid performance
surface for an adaptive linear combiner with three or more weights.
Figure 3 illustrates a typical performance surface for a two weight

adaptive linear combiner in which the vertical axis represents the

A R
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mean-square error and the two horizontal axes are the weight
values. The performance surface contour is bowl shaped, with the
concave upward, and only one minimum at the bottom of the bow|.
The optimum weights W* can be determined by projecting the
minimum MSE on the weight vector plane. In the next section, the
least mean square (LMS) algorithm that seeks the minimum of the

performance surface is discussed.

301

204

MSE

10

Figure 3. Portion of a Two Dimensional
Quadratic Performance Surface

Least Mean Square Algorithm
The LMS algorithm is an approximation of the steepest descent

iterative algorithm which searches the performance surface for the

weight vector that minimizes the mean square error between the

10




desired response signal dx and the adaptive filter output signal yy
(14:99). The LMS algorithm utilizes gradient estimates to descend
down the performance surface and locate the minimum. Bernard
Widrow and Samuel Streans describe the LMS algorithm as an
elegantly simple search method for adaptive signal processing
applications, where the adaptive system is an adaptive linear
combiner with both the input state vector Xy and the desired signal
dg available at each iteration (14:99).

The steep descent algorithms change the weight vector in

propcertion to the negative gradient vector

Wietr = Wi - uVy (2.10)

where Wi, is the estimated weight vector for the k+1th iteration,
Wy is the weight vector at the kth iteration, u is the gain constant
which regulates the rate and stability of convergence, and Vi is the
gradient vector at wy (14:48). The gain constant u has units of
reciprocal power.

The LMS algorithm uses e2x as an estimate of & to calculate the
gradient at each iteration. The gradient is obtained by taking the

derivative of Eq(2.5) with respect to the weight vector (14:100)

ey ] dey ]
Wy owWQ
Vi = ' = 2ek : = -2ex Xk (2.11)
de2y oey
ow ow
R | 7L
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Substitution of the gradient Eq(2.11) into Eq(2.10) yields the LMS

algorithm

Wiy = Wi + 2ueg Xy (2.12)

Because the LMS algorithm's gradient is an estimate, the
adaptive process is noisy and does not follow the true path of
steepest descent (14:100). However, the LMS algorithm is
practically realized without complex mathematical computations.
The upcoming sections apply the basic adaptive signal processing
concepts just introduced in the development of adaptive inverse

filter theory.

Inverse Filter Theory

The LMS algorithm is utilized in a multitude of signal processing
applications which includes interference and echo cancellation,
modeling and inverse filtering of an unknown propagation channel,
linear prediction and spectral estimation (14;4:1281-1283). This
section focuses on adaptive inverse filters.

An inverse filter can remove the undesired distortion effects of a
plant. The distortion for this thesis is the non-flat frequency
response of the audio plant. The audio plant consists of the audio
amplifiers, speaker crossover network, speakers, and the acoustic
transfer function between the speakers and the reference
microphone in the reverberation chamber. To solve this thesis

problem, the adaptive inverse filter must be placed in front of the

12




audio plant to pre-equalize the audio plant's input audio signal; so,
the output of the audio plant at the microphone has the desired
spectral shape.

An adaptive inverse filter is required when the plant
characteristics are unknown and/or change slowly with time. The
transfer function of the audio equipment and the reverberation
chamber acoustics changes with time as a result of air temperature
and humidity variations, audio equipment drift, and number and
location of the subjects in the reverberation chamber (7). In
Chapter 4, actual test data from the reverberation chamber verify
that the plant's transfer function does vary with time.

General Inverse Filter Theory. Figure 4 illustrates the inverse

filter concept. An inverse filter W(z) is placed in series with the

Xk —{ W(2) al P(2) |— Yk

Figure 4. Inverse Filter

plant P(z) to remove the effect of the plant; so, the output signal yg is
equal to the input signal xx (5:422-448). For the inverse filter to
exactly compensate for the plant, the product of the z transforms

W(z) and P(z) must be equal to unity

Wi(z) P(z) = P(z) W(z) = | (2.13)




Thus, the series connection of the inverse filter and the plant act as a

straight wire. Solving Eq(2.13) for the inverse filter transfer function
gives

W(z) - == = P(z)-] (2.14)

P(z)

Hence, the inverse filter’'s transfer function is the reciprocal of the
plant's transfer function. For illustrative purposes, let the plant's
transfer function be given by the ratio of two polynomial expressions
inz!

D(z)

P(z) “F2) (2.15)

To exactly cancel the plant, the inverse filter's transfer function is
given by

F(z)

Thus, the poles of the inverse filter transfer function are the zeros of
the plant and the zeros of the inverse filter are the poles of the plant.
Minimum and Non-minimum Phase Plants. The phase response
of the plant has important ramifications on the design of inverse
filters. If the plant zeros are contained within the unit circle, the
plant has minimum phase and the corresponding inverse filter's

poles are contained within the unit circle (5:426-429). Because the




poles are contained within the unit circle, the minimum phase plant's
inverse is stable. For a given plant's magnitude response, a
minimum phase plant is a causal system with the smallest phase
response possible (5:427). A non-minimum phase plant has a zero
or zeros outside the unit circle. Therefore, the inverse filter for a
non-minimum phase plant has poles outside of the unit circle to
cancel the zeros which are outside the unit circle. If the inverse is
not exact, it will be unstable. An exact inverse can not be practically
realized. A method to design an approximate stable inverse for the
non-minimum phase plant is discussed in the next paragraph. A
minimum phase plant's phase response is characterized as a
continuous function of the radian frequency w which starts at zero
phase at w = 0, returns to zero phase at o = 77, and does not exceed n
radians (5:426). While a non-minimum phase response is
characterized as a continuous function of the radian frequency (w)
which starts at zero phase at w = O and ends at -N7 phaseat v = 7
where N is the number of zeros outside of the unit circle (5:427).
Zeros on the unit circle result in discontinuous jumps of 7 radians in
the phase response.

The inverse 2 transform for the inverse filter of a non-minimum
plant yields an infinite left sided or two sided non-causal impulse
response (14:233,238). The impulse response is left sided when all
the zeros are outside the unit circle and two sided when the zeros are
located inside and outside of the unit circle. By delaying the inverse
impulse response to shift the impulse response to the right and
truncating the infinite impulse response, an approximate, delayed,

causal inverse can be realized with an FIR filter (14:233).

15




Vmup

Stephen Nealy and Jont Allen describe the impulse response of a
room as having non-minimum phase when the microphone is more
than 8 in. from the speakers (9:169). In the reverberation chamber
at AFAMRL/BBA, the microphone is separated from the speakers by
more than 6 ft. Therefore, the impulse response of the
reverberation chamber has non-minimum phase characteristics
which must be considered in designing the inverse filter. The next
section analyzes three adaptive inverse filter configurations and
addresses the limitations of the Adaptive Inverse Prefilter.

Adaptive Inverse Pre-filter. The adaptive inverse pre-filter
(AlIP) is illustrated in Figure S where a plant occurs after and in
series with the adaptive inverse filter. Bernard Widrow and Samuel
Stearns state that AIP is "almost guaranteed to be unstable or, if not,
to converge to an irrelevant sofution” (14:289). Because of some
preliminary simulations in which the AIP converged to a relevant

solution, the AIP configuration is analyzed to determine its

limitations.
v
INUERSE| Yk 'y
Xk >—
FILTER PLANT
Z €k 5
dy
Figure 5. Adaptive Inverse Pre-filter
jvatjopn o | ' ion. The

purpose of the derivation is to determine whether the AIP inverse

16




filter can inverse filter an FIR plant. The derivation follows closely

the derivation of an optimum weight transfer function for the
adaptive inverse modeling filter in the text by Widrow and Stearns
(14:234-235).

The plant P(z) has weights pn where n denotes the nth weight.

From Figure 5, the error signal e is given by

ex =dx - V'k (2.17)
. L

where Yk = Z Pn Y(k-n) (2.18)
n=0

and Yk = ﬁ Wm(k) X(k-m) (2.19)
m=0

Substitution of Eqs (2.18) and (2.19) into Eq (2.17) yields

L

ex =dg - Y, i Pn Wm(k-n) X(k-m-n) (2.20)
n=0 m=0

Squaring Eq(2.20) and substituting xg for dy gives the instantaneous

squared error

L
e2g = %% - 2%k Z i Pn Wm(k-n) ¥(k-m-n)
n=0 m=0

L L
+ 2 i ) i PnPIWm(k-n)Wp(k-NX(k~-m-n)X(k-1-p) (2.21)
n=0 m=0 1=0 p=0

17




Assuming the filter has converged to the optimum weights so the
weights are no longer time dependent and taking the expected value

of Eq(2.21) yields

L
E=E(e2g) =E(x%)-2 Y i Pn Wm E(Xk Xk-m-n)
n=0 m=0

L L
> i > i Pn PI Wm Wp E(Xg-m-n Xk-1-p) (2.22)
n=0 m=0 1=0 p=0

Substitution of the correlation function for the expected value

function (ie. dxx(n)=E [ Xk Xk+nl ) gives (14:128)

L
§=0xx(0) -2 2 i Pn Wm Oxx(-m-n)
n=0 m=0

L L
+ 2 i 2 i Pn P! Wm Wp Oxx(-m-n+l+p) (2.23)
n=0 m=0 1=0 p=0

The least mean square ideal weight vector W* is obtained by
substituting k for m, by applying the symmetry relationship for the
autocorrelation function, ¢Oxx(-k-n.++p) = dxx(k+n-1-p), by taking the
gradient of the least mean square error performance surface, and by

setting the gradient equal to zero (14:234)

% 23 pn o
v - Pn Oxx(-k-n)
L L i
*2y X Bn Pl Wp Oxx(ksn-1-p) =0 (2.24)
n=0 10 p=0

18
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which simplifies to

L L L
2 Pn Oxx(-k-n) = 2 2 i Pn PI Wp‘ Oxx(k+n-1-p) (2.25)
n=0 n=0 =0 p=0

To express Eq(2.25) in terms of z transforms, Equation's (2.25) finite
limits of summation are replaced with infinite limits bty making the
plant and adaptive filter coefficients zero cutside the finite limit
boundaries (14:120)

pnl=0..000pgp1...pLOOO. .| (2.26)
[p11=[...000p0p1 ...pLOOO...]

wp'l={..000wow;...wj000..]

Thus, Eq(2.25) becomes

z Pn Oxx(-k-n) = Z 2 Z Pn D1 Wp‘ Oxx(k+n-1-p) (2.27)
n=-oo N=~o00 |=—00 pP=-oo

Taking the z transform of both sides gives

z z Pndxx(-k-n) 27K = Z Z Z
K=~00 N=-00 K==00 N=-00 l=-00

X 2 pnplwp‘¢xx(k+n-|-p) zk (2.28)

p=-e
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To simplify the left side of Eq (2.28), let m =k + n to obtain

8

Pndxx(-m) 2n™M =
N=-oco 4

oo ) o0
2 2 X
m=-oo N=-co |=-c0

g

1

Y PnPIWp Oxx(k+n-1-piz %  (229)

Applying the symmetry relationship for the autocorrelation function

yields
2 Pn2t Y Oxx(m) 2= Y Y >
N=-co m=-co =~00 [1==00 |=-oco

X PnPIWp Oxx(k+n-1-p) 27k (2.30)

p=-co

, and applying the z transform gives

oo oo - -]

P(Z 1)(Dxx(2) = Z Z z 2 pnp]Wp‘q)xx(kﬁ-n-]-p) Z-k (231)

k=-c0 N==00 |=~00 p=-

To simplify the right side of Eq (2.31),1et r=k+n-1-p.

P(z-1)®yy(z) = 2

"‘M8

2 2 PnPIWp Oxx(r) z7T-1-p*n (2.32)

l=~00

Collecting terms

p(z_l)(bxx(Z)= 2 pnzh Z p]Z-] Z Wp‘Z_p Z ¢xx(r)2_r (2.33)

n=-oca l=~o0o P00 I'==oo




, applying the z transform

P(z-1)Dyy(2) = P(z-1)P(2)W*(z2)Dy4(z) (2.34)

, and simplifying gives the expected optimal transfer function which
is the reciprocal of the plant transfer function

l

W*(z) * P2 (2.35)

Since the impulse response length of the adaptive filter is finite,
W*(z), which is implemented with an FIR filter, can only approximate
the infinite impulse response of the plant's inverse, the mean
squared error & will not be zero but will approach the minimum on
the average after the adaptive filter weights have converged to the
optimum solution. An equation for the performance function for the
finite length FIR adaptive inverse filter is derived in the next section.
The performance function equation expresses the mean squared
error as quadratic function of the linear combiner weights.

Pecformance Function Equation Derivation. From Figure 5,
the error signal is given by Equation (2.17) which is restated for

convenience

ex =dx - V'k (2.17)

The plant output y'k is given by

V'k = Xk Wk * Pk (2.36)
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Using the convolution commutative law, f(t) = g(t) = g(t) « f(1), and
the associative law, f(t) « [g(t) « h(t)] = [f(t) « g(t)] « h(t), Eq(2.36)
becomes (11:105)

Y'k= Pk * Xk * Wg (2.37)

which assumes the plant and the adaptive filter can be commuted.

Equation(2.37) in matrix form is given by

yk = PTX Wy (2.38)

where P is the plant weight vector

" pok |
Pik
Py=1 . (2.39)
PLk
and Xy is input matrix
Xy Xk-1 . . . Xx-1
Xg-1 Xg-2 . : . Xk-L-1
Xg = : . . . . . (2.40)
Xg-L  Xk-L-1 . . . Xg-2L
where Xx = XxT. Substitution of Eq(2.38) into Eq(2.17) yields
ex = dg - PT(, W (2.41)
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Equation (2.41) is squared to obtain the instantaneous squared error

exl = dg? + WTXPPTX TW - 2dxPTX W (2.42)

Assuming ex , dx, and X are wide sense stationary the expected

value of Eq(2.42) is given by

E - Elex2] = Eldy2] + WTE(X PPTX TIW - 2E[dxPTX Wy  (2.43)

Defining R as the filtered input correlation matrix

R = E[XxPPTXT] (2.44)

and K as the filtered cross correlation vector

K = E[dgPTXgIT (2.45)

Eq(2.43) reduces 0 the performance function

£ = Elex2] = E[dx2] + WIRW - 2KTW (2.46)
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To find the minimum, the gradient of Eq(2.46), s-é- _is set equal to
Zero
0 =2WTR - 2KT (2.47)
to obtain the Weiner weight vector W*
W* = R-1IKT (2.48)

where it was assumed that R is invertible. Substitution of Eq(2.48)
into Eq(2.46) yields an expression for the minimum mean squared
error Enin (14:22)

Emin = Eldg2] - KTW® (2.49)

Convergence of the LMS Weight Update Equatjon. In the

following development, it will be shown that convergence of the AIP
configuration to the optimum weight vector Eq (2.48) is not possible
with a non-minimum phase plant or a plant with a transport delay
when the input signal is white, zero mean noise. The non-
convergence is the result of the plant's phase response which

decorrelates the Xy and y'y weight update LMS inputs.
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B To illustrate the decorrelative effect of the non-minimum phase
plant, consider the following example where a two tap adaptive filter
W(z) is attempting to inverse filter a two tap FIR plant. The filter

configuration is shown in Figure 6.

Xk

ADAPTIVE FILTER
b PLANT
ratd A
1
il L 1]] z
p o P % p1
2k 5
S{LMS .
Yk
ek -
b
+
di

Figure 6. Two Tap AIP Inverse Filtering a Two Tap

Plant

From Figure 6, the plant weight vector isP =[p0 pl JT.
Substitution of the plant weight vector into Eq(2.41) yields

PO Xk  Xk-1|| WOk
ex =dk ~|p1| |Xk-1 Xk-2 || Wik (2.50)
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The weight update equation for the AIP configuration is obtained by
substituting Eq(2.50) into Eq(2.12)

Wok+1| |[Wok I'xg xx | [poll [% Xk-1] [Wok
Wikel | T Wik [T dk[Xk-x ~ %1 (P1] |1 Xe2| [wik| | (251)
The expected value of Eq(2.51) is given by
WOk+1 WOk
Elwigst |ZE{wik
Xk xk | [poll [x« =xx~1] [Woxk
*2E|d¢ x|~ |1 [P1] % xe2| Wik | | (252)

Reexpressing Eq(2.1 2j as

k-1
Wix=Wo +2u Y ¢ X; (2.53)
j=0
it is shown that Wy is dependent on Xg-(.Xk-2 .. .., Xg and not on Xk

{15:187). Since Wx and Xy are statistically independent, the
expected value of the product is equal to the product of the expected
values (14:20). Thus, Eq(2.52) becomes

WOk+1 WOk [dxxk
Elwige1 [TE|wik +ZUELdek-l

Xk | [poff [%kx  xk-1 W0k
“2uE|lxk-1 | |p1| |%-1 x-2| |E]wik (2.54)
PL]
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which further reduces to

WOk+1 WOk [dgxk
Elwigsr | E{wik|* 2UE]|dgxk-y

.

Xk | [ Poxk+p1Xk-1 WOk
“2uE| %1 | |poxk-1*pixk-2| [E|{wik| (255)

Because Xk is a white zero mean sequence with unit variance, xx is

uncorrelated with x¢x-1 and EqQ(2.55) becomes

WOk+1 [wox | [dgxk ] po O] [wok
Elwiket [TE|wik +2uELdkxk—l ~2U|p; polE|wik

W oK ] [ dixk POWOK
=E Wik| + 2UE|dgxg-1 | "2UE|pwoktpowik | (2.56)
L L J

In order to determine whether Eq(2.56) can converge to the
optimum weight vector, the optimum weight vector is substituted
into Eq(2.56). Using Eq(2.48) and Cramer's rule to calculate R-! the

optimum weight vector is given by

- (poZ+pi2) Pop]
(pap1)2-(pa2tp12)2  (pop1)2-(po2+p)2)2
W* =R-IKT = PopP] - (pa%+pi2)

(pop1)2-(po2+p12)2  (pop1)2-(po2+p;2)2
[ podkXk+p 1 dkXk-1 ]

(2.57)
podkXk-1+pP1dkxg-2
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which further reduces to

- n
~(po?+p ;1 2)(podyxk*+P 1 dkXk-1 »PoP 1 (PodkXk-1+P 1 dkXk-2)
(pop1)2-(po2+p12)2
W= (2.58)
( Xk+P1dkxk-1)-(Po2+p 1 2N padiXk-1+P | dkXk-2)
(pop1)2-(po2+p12)2

For a minimum phase plant, the desired signal does not need to
be delayed since the minimum phase plant's inverse is causal.

Therefore, dy is set equal to xx and Eq(2.58) becomes

- (pg2+p;2)po
(pop1)2-(po2+p12)2
WV *min = Po2p] (2.59)
(pop1)2-(po2+p12)2

which is the optimum weight vector for minimum phase plants.

Substitution of Eq(2.59) into Eq(2.56) yields

- (po%+p12po?)
1 (-po*-po2pi14+p14)
lim E[Wg+i)=W*+2ulg] -2u -pop; 3 (2.60)
k-0 (pop1)2-(po+p12)2

For a zero near the center of the z plane, pl /p0 <« | O, the weight

update equation Eq(2.60) can converge to the optimum weight vector

lim E(Wgel=W* (261)

k 500 '%
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since p1 4 and p 3 are approximately zero. For a zero just inside the z
plane unit circle, pl /p0 < 1.0, Eq(2.60) can not converge exactly to
the optimum weight vector; so, the MSE error will exceed the
minimum MSE given by Eq(2.49). Figure 7 shows the minimum MSE
for the optimum weight vector W* and the MSE performance for the
weight vector W given by Eq(2.56) as function of p; with po
hardwired to 1. Since pgissetto |, - p; is the zero of the plant. In
Figure 7, the curve for W was generated by solving Eq(2.56)

for Wx where W = Wi+ and substituting Wi into performance
surface function Eq(2.46). The W* curve was generated by
substituting W* into Eq(2.49). The W curve shows that the
performance degrades as the zero of the plant approaches the unit
circle. The performance degradation is the result of the increasing
phase response of the plant as the zero moves closer to the unit
circle. The phase responses for plants with zeros at .1, .3, .5,and G

are illustrated in Figure 8.

10
0.8 4
06
g ] LY
—— *
0.4 - v ]
{ ]
0.2
. 1
min Mse
0.0 R T v . T A
0.0 0.2 0.4 0.6 08 1.0
Zero
Figure 7. MSE versus the Zero Position *
for a Minimum Phase Plant
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Figure 8. Plant Phase Responses

The inverse of non-minimum phase plant with all its zeros
outside the unit circle has a left sided, non-causal, impulse response.
To realize a causal inverse, the inverse is delayed to shift the left
sided, non-causal impulse response to the right. The delay of the
inverse is accomplished by delaying the desired signal. Thus, dg is

equal to xk-2 and Eq(2.58) becomes

P12po
(Pop1)2-(po2+p; 2)2
W *nonmin = -p1{pg?+p(2) (262)
(Pap1)2-(po2+p2)2

which is the optimum weight vector for a non-minimum phase plant.




Substitution of Eq(2.62) into Eq(2.56) gives

Po2p12
0 (pop1 )2-(pos+p12)2
Hm E[Wg+;l=W*+2u [0] -2u -podpi (263)
k—oo (pop1)2-(po2+p12)2

Equation (2.63) can not converge to the optimum weight vector when
pPo or p; are non-zero values. Figure 8 shows the MSE as given by
Eq (2.46) for the optimum weight vector W* and the weight vector
W derived from Eq (2.56). The curve for W was generated by
solving Eq(2.56) for Wi where W = Wi+ and substituting Wi into
performance surface function Eq(2.46). The W* curve was
generated by substituting W* as given by Eq(2.62) into Eq(2.49).

The MSE for W curve is unity for W given by Eq(2.56). Therefore,
the AIP with the Eq(2.56) weight update equation will yield an
irrelevant weight vector solution for a non-minimum phase plant

with a single zero.

1.0

0.8 1

0.6 — W
— W

MSE

0.4 1
b
0.2
1
00 v T ¥ > e e o
1.0 20 30 40 5.0

Figure Q. MSE versus the Zero Position
for a Non-minimum Phase Plant
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This example illustrates that a non-minimum phase plant

decorrelates the LMS weight update inputs y'x and Xx. Therefore,
the AIP configuration will not find a relevant inverse weight vector
when a non-minimum phase plant or a plant transport delay
decorrelates the LMS weight update inputs. Since the audio plant is
non-minimum phase and has a transport delay between the speakers
and the microphone, the AIP is not a practical sotution for this thesis.
For a minimum phase plant, a relevant stable inverse can be
obtained; however the performance is dependent on the phase
response of the plant. For a2 minimum phase plant with a small
phase response, y'x and Xk are partially correlated and the weight
update equation can converge to a relevant solution. AIP simulation
results for minimum phase plants and non-minimum phase plants
are provided in Chapter IlI which verify the theoretical results of
this chapter.

By filtering the Xk in Eq(2.12) through a model of the plant to
correlate the LMS inputs, y'y and Xg, the AIP configuration can
converge to a relevant weight vector solution. This filter
configuration is called the fiitered-x aigorithm and, it is discussed in
the next section.

Filtered-x Algorithm. The filtered-x algorithm compensates for
the decorrelation effects of the plant as discussed in the AIP section
by pre-filtering the LMS xy signal through a model of the plant as
shown in Figure 10. It will now be shown that the filtered-x weight
update equation can converge to a relevant weight vector for both

minimum and non-minimum phase plants.
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Figure 10. Filtered-x Algorithm (15:187)

The modified weight update equation which incorporates the

filtering of Xy is given by (15:187)

Wi+1 = Wi + 2uegXP' (2.64)

where P’ is the plant model vector. Substitution of EQ(2.41) into
Eq(2.64) yields

Wi+t = Wi + 2uldg - PTX W)X P’ (2.65) -

The expected value of Eq(2.65) is

E[Wg+1] = E[Wg] + 2uEl(dg - PTXxW)X(P') (2.66)

Equation (2.64) can be rewritten as (15:187)

k-1
Wx=Wo +2u ) e %P (267)
=0
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Since Xjis filtered by the plant model P', the weight update input

XiP' is no longer white and XgP' is correlated with Xx-P'. Thus, Wy
is not only correlated with Xg-|P’, Xx-2P' ... ., XoP' but it is also
correlated with X¢P'. The correlation between Wy and XiP'is
proportional to the convergence constant u (15:187). For a very
small U, Wi and XgP' are essentially uncorrelated. Assuming Wy
and XkP’ are uncorrelated by using a small u and the plant model is

exact, P =P', Eq(2.66) can be expressed as

ElWg+1] = E[Wg] + 2uE[dgXgP|- 2uEXkPPTX(T] E[Wg] (2.68)

Substituting Eqs(2.44) and (2.45) into Eq(2.68) yields

EWg+1] = EIWg] + 2u(KT - R E[Wk]) (2.69)

When Wy is equal to W°, Eq(2.69) becomes

ElWk+11=W" + 2u(KT-R Wy") (2.70)

Substituting Eq(2.48) into Eq(2.70) gives

EWg+1]=W" + 2u(KT - R R-IKT)
EWge11=W" (271)
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Thus, the filtered-x algorithm is capable of converging to the

optimum weight vector for both minimum and non-minimum phase
plants.

If the plant model is not known a priori, the plant can be
directly modeled with an adaptive forward modeling filter as shown

in Figure 11 (14:293). The adaptive forward modelir.g filter weights

COPY OF WEIGHTS

e

XK o | INUERSE| k|
FILTER

PLANT | |
MODEL ’114_15.

Figure 11. Filtered-x Algorithm with an Adaptive
Plant Model (14:293)

z-° dk

are copied by the plant model filter to filter xx for the LMS weight
update. Experience has shown that the plant model does not have to
be very precise (14:292). The plant model should have as least as
great a transport delay as the the plant; so, the LMS inputs are
correlated. The delays z-24in Figures 10 and 11 are required for the
non-minimum phase plant. The delays allow realizable causal
approximation of a left sided or two sided non-causal impulse
response. The last inverse filter discussed is the adaptive inverse

modeling control system (AIMCS).
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Adaptive Inverse Modei Control System  The adaptive inverse

model control system (AIMCS) is shown in Figure 1 2. The AIMCS

s e

was developed to inverse filter either non-minimum or a minimum

COPY OF WEIGHTS

INVERSE]|

b .
< Y i X'y [INDERSE| V'
K FILTER *[ PLANT MODEL i
7 % (v
+
Z_A

Figure 12. Adaptive Inverse Modeling Control System
(14:281)

phase plants (14:280-285; 16:90-94). The AIMCS consist of an
adaptive inverse modeling filter and the adaptive inverse filter
which are shown in Figure 12. The adaptive inverse modeling filter
in Figure 12 adapts its weights to cause its output to be a best least
squares {it to the plant input. The weights of the adaptive inverse
modeling filter are copied by the adaptive inverse filter which pre-
filters the input xg, so that the plant output x'yx isequal to xg.

For a non-minimum phase, FIR plant, the optimal transfer

function W*(z) of the adaptive modeling filter is infinite, two sided or

left sided, and is given by (14:235)

(y) = Em

: -




The weights from the adaptive modeling filter are transferred to the
adaptive inverse filter W'(z) ; so, that

() - W ¥ (o) — B
W'(z) =W*(z) = 52) (2.73)

The adaptive inverse filter in cascade with the plant gives

-A

: -2

P(z) =z"4 (2.74)

Thus, the output xy' in Figure 1 | is equal to xk-4 , 2 delayed xx.

For practical implementations where the inverse filter and the
inverse modeling fiiter lengths are finite, the adaptive inverse filter
approximates the perfect inverse. The Wiener weight vector for the

Figure 12 AIMCS configuration is

W*=R-IP (2.75)

where the input autocorrelation matrix R is given by

X% XXk~ . . . XkXk4
Xk-1Xk  X%-1 . , . Xk-IXkA
E[XxXxTl =R =E . . . . . ‘ (2.76)
Xk1Xk Xk1Xk-1 . : S
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and the cross correlation vector P between the input and the desired

signal is given by

dgX'k-~1
El[dgXT]=P = E ' (2.77)

dgX'k-L

b -

,and dg is yk-a (14:22). Unlike the AIP, the AIMCS can converge to
a relevant inverse solution for both minimum and non-minimum
phase plants because the plant does not decorrelate the LMS inputs.
In addition, the AIMCS requires only two major components: an
adaptive inverse modeling filter and an FIR filter with adjustable
weights while the filtered-x requires three major components: an
adaptive plant modeling filter, an adaptive inverse filter, and FIR
filter with adjustable weights. The AIMCS is the primary time
domain filter candidate for this thesis.

In summary, this chapter introduced the adaptive linear
combiner and the LMS aigorithm and developed inverse filter theory
applicable to this thesis. The AIP, filtered-x algorithm, and the
AIMCS inverse filter candidates were discussed. The next chapter
presents the simulation results with the AIP, filtered-x algorithm,

and the AIMCS inverse filter configurations.

38




This chapter presents and analyzes the results of experiments
and computer simulations to verify the theory developed in Chapter
2 and to determine the feasibility of applying an inverse control
system to remove the unwanted distortion effects of an audio
system. The chapter begins with the results of computer simulations
that show the AIP can inverse filter minimum phase plants while the
filtered-~x algorithm and the AIMCS can inverse filter both minimum
and non-minimum phase plants. These initial simulations are
followed by an analysis of the digitized data recorded at the
AMRL/BBA reverberation chamber to demonstrate that the
combination of the audio equipment and the reverberation chamber,
which is designated the audio plant, distorts the input signal and that
the power spectral response of the audio equipment and the
reverberation chamber changes with time. The digitized data is then
utilized to test the performance of simulated inverse models and
inverse filters.

All computer program source code listings, which are referenced
throughout this chapter by number, (i.e. (Prog 1)) are included in

Appendix A.

It Verification Simulati .

These simulations verify that the AIP can only inverse filter

minimum phase plants while the filtered-x algorithm and the AIMCS




filter can inverse filter minimum and non-minimum phase plants. A

three tap FIR filter with the difference equation

Yk = 20Xk *a1Xk-| + a2Xk-2 (3.1)

was utilized as the plant where ag, aj, and a3 are the [ilter

coefficients. The z transform of Eq(3.1) is given by

Y(z) = apX(z) + ayz-1X(z) +azz272X(z) (3.2)

The zeros of Eq(3.2) are selected to model either a minimum phase
plant or a non-minimum phase plant.

For the first simulations, a minimum phase plant with a pole and
zeros as shown in Figure 13 was inversed filter by the AIP, filtered-x
algorithm and the AIMCS. In Figure 13, the pole is designated with
an "X", and the zeros are designated with an "0". The corresponding

phase response for

lz]=t  Im B

.
U

Figure 13. Plant Pole, Zero Plot
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the Figure 13 pole zero combination is illustrated in Figure 14. The
plant phase response never exceeds 1.2 radians. The learning curves
for the AIP, filtered-x algorithm, and the AIMCS are shown in
Figures 15, 16, and 17, respectively (Progs 1,2,3). The adaptive filter
length for all three cases is 21 taps. The large number of taps, in
comparison to the 3 plant taps, is required since the inverse of the
FIR plant model has an infinite impulse response. The 21 tap FIR
inverse approximates the infinite impulse response. Each learning
curve is the average of 100 runs with a different random number
generator seed. The learning curves' ordinate is the Mean Square
Error, E(e2), and the abscissa is the iteration number. All three
inverse filter configurations converged to a relevant stable inverse

filter solution.
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Figure 14. Plant Minimum Phase Phase Response
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Figure 15. AIP Learning Curve for a Minimum
Phase Plant
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Figure 16. Filtered-x Learning Curve for a
Minimum Phase Plant
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Figure 17. AIMCS Learning Curve for a Minimum
Phase Plant

A non-minimum phase plant was also modeled with a three tap
FIR filter. The pole zero plot and the corresponding phase response
for the non-minimum phase plant are illustrated in Figures 18 and
19, respectively. Since there are two zeros outside of the unit circle,
the phase is 27 radians at 77 radians per second which agrees with

the non-minimum phase theory discussed in Chapter 2.

l2f=1 [z]

Figure 18. Plant Pole, Zero Plot —~——&1
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Figure 19. Non-minimum Phase Plant Phase
Response

The learning curves for AIP, filtered-x algorithm, and the AIMCS
are shown in Figures 20, 21, and 22, respectively. Unlike the
filtered-x and the AIMCS, the AIP does not reach a relevant inverse
filter solution in 3000 iterations, which is evident in Figure 20. In
fact as the number of iterations increases, the AIP MSE exceeds
Eldg?] since the AIP weight update equation for this example does
not converge to an all zero weight vector solution. A 30000 jteration
learning curve for the AIP is shown in Figure 23. The excessive MSE
was still exhibited when the AIP simulation was repeated with
smaller convergence constants. As discussed in Chapter 2, the
inability of the AIP to find a relevant inverse weight vector is the
consequence of the plant's large phase response which decorrelates

the Xy and the y'y LMS weight update inputs.
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Figure 23. AIP Learning Curve Showing
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The predicted MSE performance versus the location of a zero for
the two tap minimum phase plant and the two tap AIP as illustrated
by the W curve in Figure 7 was verified by simulating the Figure 6
configuration (Prog 4). The simulation MSE along with the predicted
and the minimum MSE curves are shown in Figure 24. The
simulation MSE curve is in good agreement with the predicted curve
except for a slightly lower overall MSE. The overall lower MSE for
the simulation could be the result of some correlation between
consecutive samples of the input pseudo white noise sequence. This

lower overall MSE for the simulation will not be investigated further.
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Figure 24. Simulated MSE versus the Zero Position
for a Minimum Phase Plant
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This section begins with a brief description of the AMRL/BBA
reverberation chamber's audio equipment. The digitized data from
the reverberation chamber is then analyzed to determine if the

response of the chamber varies with time, to determine if the input
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audio signal is distorted by the plant, and to measure the impulse

response of the chamber.

AMRL/BBA Reverberation Chamber Description. A block diagram

and an approximate overhead view of the reverberation chamber is

shown in Figure 25. The white noise generator generates zero mean
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Figure 25. Audio System and Reverberation Chamber

noise with a selectable standard deviation. For the data collection,

the standard deviation was set to 2 which is the normal setting for

AMRL testing. The white noise is passed through a pink noise filter.

The pink noise filter has a rolloff of 3 dB per octave from to 20 to




20000 Hz. The 32 band graphic equalizer in Figure 25 was not

available and was bypassed during digitized data collection. The
pink noise is filtered through a five way crossover network with
passbands at 25-100 Hz, 100-400 Hz, 400-1500 Hz, 1500-5000 Hz,
and 5000-20000 Hz. The crossover bands are amplified and
distributed to the low frequency, wall mounted speaker arrays or the
ceiling suspended high frequency array as shown in Figure 25.
Located at the center of the reverberation chamber and suspended
approximately 6 ft from the floor is a reference microphone (MIC).
The reference microphone signal's spectrum is displayed on a
spectrum analyzer which has a selectable averaging period. The
graphic equalizer is adjusted to maintain a desired spectrum at the
reference microphone.

The transfer function of the reverberation chamber is given by

M(ei¥) = N(eiw) P(eiw) (3.3)

where M(eiV) is the frequency response of the signal at the
microphone, N(eiV) is the frequency response of the pink noise,
P(eiv) is the frequency response of the audio plant which includes
the frequency response of the crossover network, the power
amplifiers, the speaker arrays, and the acoustic transmission paths
between the speakers and the microphone.

Digitized Data Analysis. Digitized data from points a and b in
Figure 25 was simultaneously recorded using a Hewlett Packard dual

channel, 12 bit digitizing oscilloscope. To prevent aliasing, the input
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to each oscilloscope was low pass filtered with a Sth order

butterworth filter and sampled at approximately 3.5 times the audio
bandwidth of 12 KHz. The actual A/D sampling rate of the
oscilloscope was 43956 Hz which equates to an 22.75 microsecond
sampling period supported by the digital oscilliscope. The digital
oscilloscope does not have unlimited sampling rates since the
sampling rates are derived from the oscilloscope's internal clock.
The audio system's gain was adjusted so that the overall sound
pressure leve!l of the pink noise at the microphone pickup was 115
dB SPL. Each 12 bit A/D data sample was saved to the oscilloscope's
3.5 inch disk drive as two eight bit words. Data files were saved as
a block of 16384 consecutive samples. Twenty-five data files were
recorded: 12 pink noise files from point a, 12 pink noise files from
point b, and 1 impulse response file from point b. The data files
were translated by the oscilloscope to a four digit integer
representation and transferred to a Zenith 248 through a IEEE 488
interface for storage on a transportable 5.25 inch MSDOS floppy disk.
The MSDOS files were down-loaded into ASCII files on the AFIT's
Elxsi supercomputer and the VAX 785 for subsequent processing.
The Power Spectral Densities (PSD) from points a and b in Figure
25 were first analyzed to determine if and how the audio plant
distorts the input pink noise spectrum. An averaged periodogram
estimator was utilized to calculate the PSDs. The mathematical

expression for the averaged periodogram estimator is given by

1 K-1 1 L-1 2
Hlow) =g 2 7|2 Xm(n) expl-jogn) (3.4)
m=0 n=0
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where X4(n) is the nth sample, wy is the kth radian frequency, L is
the number of DFT points, and K is the number of non-overlapping
blocks of length L (6:68). The data record of length N is segmented
into K non-overlapping blocks of length L where N =K L. To reduce
the PSD computation time, the DFT in Eq(3.4) was replaced with a
radix 2 FFT. Figure 26 shows the PSDs at the output of the pink noise
filter, point a, and at the microphone output, point b, where N =
32768, L = 256, and K =128. Since the frequencies of interest cover
the range from 25 to 12000 Hz, only 70 of the 256 PSD harmonics
were plotted. Figure 26 shows that the audio plant attenuates the
overall desired pink noise spectrum especially at the higher
frequencies. So, a manual or adaptive spectrum shaper is required to

boost the attenuated frequencies.
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Figure 26. PSDs at the Pink Noise Input
and Microphone Output;
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To determine whether the frequency response of the audio plant
changes with time, data were collected at 5 minute intervalis, the
PSDs were calculated, and the PSDs were compared. To compare the
PSDs, the average PSD magnitude difference was calculated between
the PSD at time t = 0 minutes and at time t = 5 n minutes where n is

integer value. The average PSD magnitude difference is given by

P-1
Y. |1010g(Howy)) - 10logHalex)) |  (3.5)
k=0

AvgDiff =

el Lo

where P is the number of harmonics averaged, Ho(wg) is the PSD at 0
minutes and Hp(wy) is the PSD at 5 n minutes. Figure 27 shows a
graph of the average magnitude difference versus time for the
microphone output and the pink noise generator. The curve for the

pink noise generator shows

1.2
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Figure 27. Average PSD Magnitude
Difference versus Time:
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that the pink noise input spectrum changed approximately .6 dB
while the spectrum at the microphone output changed 1.2 dB after
15 minutes. This appears to verify that the frequency response of
the audio plant varies slowly with time since the PSD at the
microphone exhibited a larger change than the PSD at the pink noise
generator. Because the audio plant's frequency response is non-
stationary, an adaptive inverse system is highly desirable since the
manual equalization should be repeated periodically.

lmpulse Response Measurement. An acoustic impulse signal was
generated at the room center approximately 3 ft from the floor and
recorded at the microphone output. Figure 28 shows the impulse

response of the reverberation chamber. The impulse response has a
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Figure 28. Reverberation Chamber Impulse Response
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duration of nearly 300 milliseconds and does not include the
impulse response of the crossover network, the audio amplifiers, or
the speaker arrays. To accurately model the entire audio plant with
an FIR model, the model's impulse response duration would have to
exceed 300 milliseconds to account for both the reverberation

chamber and the audio equipment.

\udio Pl I Model and Filter Simulation Resul

This section presents the inverse model and inverse filter
simulations results for the audio plant. The overall objective of the
simulations is to explore the feasibility of using an FIR adaptive filter
for the automatic equalization of the audio plant which distorts the
input pink noise spectrum. The primary performance criterion used
to assess the merit of the simulated inverse model and inverse filter
is a comparison of the desired pink noise spectrum with the
spectrum at the audio plant model output for the inverse filter
simulations and with the spectrum at the output of the adaptive
inverse model for the inverse model simulations. All simulations
are non-real time since dedicated digital signal processing hardware
was not available,

The number of filter taps for the simulation inverse models and
the inverse filters was limited to the number , which could be
implemented, in real time with a high speed digital signal processor
(DSP). AFAMRL has targeted the Texas Instruments TMS320C30 as
the DSP for future hardware development. A 150 nanosecond per
tap LMS adaptive filter weight update along with the FIR filter and
data shift is a specified benchmark for the TMS320C30 DSP (10:537).
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With the plant audio bandwidth (bw) of 25 Hzto 12 kHz and a
sampling rate, fs, of 43956 Hz, which meets the Nyquist criteria of
greater than 2bw, the maximum number of taps feasible with the
TMS320C30 is 151 taps.

Adaptive Inverse Model. The first simulation results discussed is
for the adaptive inverse model (AIM). The AIM is the adaptive
inverse modeling component of the AIMCS and is shown as a
subcomponent of the AIMCS in Figure 29. Figure 30 shows the AIM

simulation block diagram. The digitized data from the pink noise

COPY OF WEIGHTS

RO | O
‘ /‘ :

INUERSE|

Xy {yi_ | AUDIO | X'k JINDERSE
FILTER [ | PLANT MODEL
Z
Z—A
............................ g
AIM

Figure 29. AIMCS with the AIM Component Identified

filter was the AIM desired sequence, and the digitized data from the
microphone was the adaptive filter input signal. The PSDs at the
points a', b, and ¢ are shown in Figure 31 for a 151 tap AIM (Prog 5).
The average PSD magnitude difference was 4.8 dB for the a’ and b

curves and was 2.6 db for the a’ and c'curves. Ideally, the PSDs at
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points a' and ¢ would be equal and the average PSD magnitude

difference wosiild be 0 db if the AIM converges to the exact delayed
inverse. As shown by Figure 31, the performance degrades at the

higher frequencies.
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Figure 30. AIM Simulation Block Diagram
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Figure 31. AIM Power Spectral Densities of the Desired
Signal (a'), of the Audio Plant (b), and of the
AIM output {c)
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It was observed that the high frequency performance of the
inverse model was a function of the convergence constant ,u. The
maximum convergence constant possible, which still allowed stable
operation, provided the best overall and high frequency inverse
performance. The average PSD magnitude difference between a’ and
¢ as a function of convergence cornstant is shown in Figure 32. The
number of iterations was increased for the smaller convergence
constants to ensure the adaptive filter had converged before
calculating the PSDs. The inferior performance at the higher

frequencies is analyzed in the next paragraph.
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Figure 32. PSD Average Difference Versus u
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The author's hypothesis is that the poor high frequency

performance is the consequence of the fixed convergence constant,

the fast sampling rate, the limited number of filter taps, and the pink
noise spectrum. It was observed that the weights of the AIM never

converged to a single optimum weight vector but were constantly —1*
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] changing. The non-convergent weight behavior is attributed to the
AIM input power variations. Recall that the optimum weight vector
is given by W* = R-1 P where R is the filter input correlation matrix.
The sum of the diagonals elements of R is the AIM input power as

seen by the adaptive inverse model at point b in Figure 30. The

input power is constantly changing because of the small number of
- taps, the 43956 Hz sampling rate and the large low frequency
components. A snapshot of the input trace at point b is shown in
Figure 33. Two 151 sample windows are identified which illustrate
the small size of the adaptive filter window in comparison to the

large low frequency components.
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The input power of the kth iteration is given by

N-1
Input Signal Power = Y X(k-n)? (36)
n=0

where Xy is the kth input component and N is the number of taps.
Figure 34 shows the input power at point b as a function of the

sample number.
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Figure 34. AIM Input Power as Seen by the
151 Tap Adaptive Inverse Model

Because of the large input power variations, the optimum weight
vector W* constantly changes. To minimize the weight
misadjustment, [W - W*|, the adaptive inverse model weight vector

W must rapidly converge to and track the nonstationary optimum
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weight vector W*. However, the speed of the LMS adaptation is
limited by the size of the convergence constant u. The upper bound
of the the convergence constant, which is inversely proportional to

the input power, is given by (14:103)

1
Y« (L+1)(Signal Input Power)

(3.7)

where L is the number of taps. Therefore, the larger power low
frequency components place a limit on Upmay. Any attempt to make
u larger to track the lower power high frequency components would
cause instability. Thus, it could be concluded that the frequency
response of an adaptive filter evolves fastest in bands of highest
energy.

To improve inverse model performance at the higher frequencies
and to support the above hypothesis, the normalized LMS (NLMS)
was incorporated into the AIM simulation. The NLMS varies the
convergence constant based on the input signal power to achieve
continuous rapid adaptation. The expression for the NLMS

convergence constant u(k) is given by (13:82-83)

o
vy + Input Signal Power

u(k) = (3.8)

where ais a constant which is selected to achieve rapid convergence
and Yis a small constant which prevents excessively large u(k)

ralues when the input power is negligible. The PSDs at points a', b,
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and ¢ are shown in Figure 35 for the NLMS AIM simulation. The
AIM high frequency inverse performance has been enhanced with
the NLMS, and the a' and ¢ PSD curves are now almost identical. The
NLMS compensates for the input power variations by calculating the
optimum convergence constant for the input power. The improved

high frequency performance with the NLMS supports the above

hypothesis.
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Figure 35. AIM/NLMS Power Spectral Densities of the
Desired Signal (a'), of the Audio Plant (b),
and of the AIM output (¢)

The optimum value of the inverse delay, 274, in Figure 30 was
empirically determined to be 100 samples for a 1 51 tap filter. A plot
of the PSD average magnitude difference between curves a' and ¢ as

a function of the delay is shown Figure 36.
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Inverse Filter Simulations. The inverse filter simulations were

conducted to determine if the AIMCS or the filtered-x algorithm
could inverse fiiter the audio plant. The results of these simulations
provided valuable insight for reaching the recommendation to
implement the AIMCS or filtered-x in hardware or pursue an
alternative approach.

Plant Model. In order to accomplish the AIMCS simulations, an
audio plant model was required since the inverse filter stage of the
AIMCS occurs forward and in series with the audio plant. The audio
plant model weight vector was generated with an LMS adaptive
forward model (AFM) (Prog 6). The AFM, which is shown in Figure
37, adapts its weights so that the AFM output is a least squares fit to

the audio plant output (14:195-196).

62




Microphone
Output

FORWARD
MODEL

7

n Plant Model
Weights

Figure 37. AFM Block Diagram

Since all the following simulations process blocks of the digitized
data less than 1.5 seconds in duration, it has been assumed that the
audio plant impulse response remains stationary. Figure 27
illustrated that the spectral response of the audio plant slowly varied
and that the first apparent change occurred between 5 and 10
minutes. Because of the assumed stationary spectral behavior of the
audio plant for the short duration of the simulations, only one weight
vector was saved at the last iteration of the adaptive forward
modeling process as the audio plant model.

Since the audio plant forward model will not be part of the
AIMCS if the AIMCS is implemented in hardware, the number of taps
is not limited to 151. More than 13000 FIR taps at the 43956 Hz
sampling rate would be required for the audio plant model to match
the duration of the reverberation chamber's impulse response shown

in Figure 28. Since a 13000 tap forward model simulation is a
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h computational burden, the initial simulations used a 1000 tap FIR
filter.
| Figure 38 shows the PSDs at points A, B, and C for the 1000 tap,

LMS, AFM simulation. The average magnitude difference between

the PSDs of B and C was 1.6 dB and between A and B was 4.6 dB.
Ideally the curves for B and C would match if the AFM and the audio

plant impulse responses were identical.
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Figure 38. AFM Power Spectral Densities of the Pink
Noise Input (A), Microphone Output (B}, and
the AFM Output (C)

Before proceeding with the AIMCS simulations, a NLMS AIM
simulation was conducted with the audio plant model weight vector
to verify that an inverse model could be generated for the audio

plant model weight vector. The block diagram for the AIM

simulation test is shown in Figure 39, and the corresponding PSDs are

shown in Figure 40. The average magnitude difference between the - %
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PSDs of a' and ¢ was 6 dB and between a and b was 5.2 dB. The AIM
test with the plant model demonstrated that the AIM could still

generate the inverse model for the plant model.

65




AIMCS Simulations Results. The AIMCS NLMS simulation block

diagram is shown in Figure 41 (Prog 7). For this simulation, the
objective of the AIMCS is to remove the distortion effect of the plant,
so, the PSD at the output of the plant model, point C, matches the PSD
of the desired pink noise spectrum, point A. The simulation PSDs
curves for 1/0 points A and C are shown in Figure 42. The PSD
curve at the output of the plant with the inverse filter bypassed,
"Without Inverse”, was also included in Figure 42 to allow a
comparison of the plant mode{ output PSDs with and without the
inverse filter. Figure 42 shows that the AIMCS only improved the
match in the frequency range of 0 to 350 Hz. In fact, the AIMCS had
a deleterious effect at frequencies above 350 Hz. From 350 to
12000 Hz, the PSD at the plant output with the inverse filter
bypassed matched the desired pink noise spectrum better than when

the inverse filter was enabled.

COPY OF WEIGHTS

I v

Pink R |INVERSE B | PLANT g INUERSE{ D
Noise FILTER MODEL MODEL
T Z
Plant Model
Weights
Z-A

Figure 41. AIMCS Simulation Block Diagram
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[t is the hypothesis of the author that the poor performance is
attributed to differences of the input power at the inverse filter and
the inverse model inputs. As shown earlier, the inverse model
optimum weight vector changes in response to the inverse model's
input power. Because of the large low frequency components and
the small size of the filter, the optimum inverse mode! weight vector
is constantly changing to track the input power variations due to the
large low frequency components. The input power for points A and C
as a function of the iteration number is shown in Figure 43. Figure
43 clearly illustrates that the input signal powers would be different
at the inverse filter and at the inverse model. Therefore, the inverse

filter weight vector, which is the copied inverse model weight vector,

would not be the optimum for the inverse filter input power.
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Five Band AIMCS Simulations. A larger AIMCS or a five band

AIMCS could reduce the power variations at the inputs to the inverse
model and inverse filter. The larger filter is not practical, since the
maximum number of taps feasible with the TMS320C30 at the 43956
Hz sampling rate is 151. An alternative solution is a five band
AIMCS approach which subdivides the 25 - 12000 Hz audio band
into the reverberation chamber's five crossover bands. This five
band AIMCS allows the realization of much larger filters for the
lower frequency bands.

The five band AIMCS simulations entailed decimation and
bandpass filtering of the digitized data for each of the five bands,
generation of five plant models using the AFM , and five LMS AIMCS
simulations. The simulation process block diagram for one band is
shown in Figure 44. No effort was made to recombine the output

time sequences from the five simulations. For the five bands, Table
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1 lists the sampling rates, the maximum filter size practical for the

specified sampling rate, and the decimation factor (M) to reduce the

sampling rate.
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Figure 44. AIMCS Five Band Block Diagiams; (a) AFM, (b) AIMCS ) !ﬁ
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Thirty-one tap FIR bandpass filters were synthesized using the
window method with the Bartlett window (Prog 8). The rolloff of the
digital bandpass filters were approximately 30 dB per octave, and
the 3 dB cutoff points were the lower and upper bandpass limits

listed in Table 1.

Table 1. Practical Limits for Five Band AIMCS

Band (Hz) 25- 100~ 400- 1500~ 5000~
100 400 1500 5000 12000

Sampling Rate 4306 17582 54945 146520 439560

Number of Taps 15100 3775 1208 453 151

Decimation Factor 100 25 8 3 1
(M)

For the initial simulations, the criteria for establishing the
number of taps for each of the plant models was the average PSD
magnitude difference between points B and C of the AFM simulation.
The number of plant model taps was increased until the average PSD
magnitude difference between points B and C was below 1 .0 dB

which was less than the 1.6 dB for the 1000 tap plant model used in

the preceding single band AIMCS simulation. Table 2 lists the sizes
of each plant model and the corresponding average PSD magnitude

difference. .‘ﬁ
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Table 2. Plant Model Specifications

Band (Hz) 25- 100- 400- 1500- 5000-
100 400 1500 5000 12000

Number of Taps 70 140 140 300 70

Average PSD |b-c| 8 6 9 6 8

Table 3 lists the number of AIMCS taps, the average magnitude
difference with and without the inverse filter enabled and Figures 45
through 49 show the PSD curves for the five AIMCS simulations. The
curves jllustrate that the five band AIMCS can effectively inverse
filter the plant model since the AIMCS significantly improves the
match of the desired and the plant model output when the inverse

filter of the AIMCS is enabled.

Table 3. Number of AIMCS Taps

Band (Hz) 25- 100- 400- 1500- 5000-
100 400 1500 5000 12000

Number of Taps 140 300 300 453 151

Average PSD | A-C | (dB) 1.0 06 10 1.2 0.7
with Inverse Enabled

Average PSD | A-C | (dB) 20 22 2.2 32 5.4
with Inverse Disabled
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The simulation for the 5000 to 12000 Hz band was repeated with
larger plant models. As the size of the plant model was increased,
the plant modeling performance improved; however, the AIMCS
inverse filtering performance decreased. For plant models of
greater than 300 tap§, the AIMCS failed toremove any of the
distortion effect of the plant model. The degraded performance is
due to the inability of the adaptive filters 151 zeros to effectively
cancel the 300 or more plant zeros. To exactly cancel the effect of an
all zero plant, an all pole inverse is required which places the poles
at the location of the plant's zero. The all pole inverse has an infinite
impulse response which can be approximated by a long FIR filter.

With larger plant models, the 151 tap FIR inverse impulse response




is less effective in approximating the longer inverse impulse
response.

Since the actual audio plant transfer function probably consists of
both poles and zeros, the inverse simulations would be more
representative of a real time implementation if the audio plant was
modeied with a autorecursive moving average (ARMA), pole zero,
plant model. In addition, the total number of taps to realize the
ARMA plant model should be less than the number of taps for the
moving average (MA) plant model.

Oliver Muron and Jacques Sikorav demonstrated that a small
number of AR coefficients significantly improved their modeling of
an audio conference room (8:923). The addition of 20 AR coefficients
to a 100 coefficient MA model reduced the observed average
squared error by more than 12 dB. While the addition of more than
500 MA coefficients to a 100 coefficient MA model was required to
achieve the same error reduction. Their findings suggests that a
small ARMA model could modef an audio plant as well as a larger
MA model. An ARMA audio plant model was beyond the scope of
this thesis effort.

Eiltered-x Algorithm Simujation. Since the primary inverse filter
candidate was the AIMCS, only limited simulations were
accomplished with filtered-x algorithm. The results are briefly
discussed to prevent a future duplication of effort. The analyses
which follow are the author's hypotheses.

The filtered-x simulation was accomplished with the alternate
form of the filtered-x algorithm, which is shown in Figure SO (Prog

9). The simulation with the alternate form of the filtered-x requires
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the AFM for the LMS input, and unlike a filtered-x algorithm
simulation and the AIMCS simulations does not require a simulated
audio plant model. The alternate form converges to the same
solution as the standard filtered-x algorithm when its assumed the
inverse and the audio plant are commutable (15:187). This
assumption is not valid for these simulations since the output of the
audio plant and the inverse filter weights are time varying.
However, the simulations were still conducted to determine what

effect the filtered-x input has on the inverse model performance.

Microphone
Output 41//
Pink INVERSE{ ¢
Noise MODEL
LMs]
FORWARD - Filtered-x
MOBEL b Input
'
8 N 2]

Figure 50. Alternate Form of the Filtered-x Algorithm
(15:187)

The AIM and the alternate filtered-x algorithm have almost
identical filter structures. The major difference between the AIM

and the alternate form of the filtered-x is that the alternate filtered-

X algorithm obtains the LMS input from the plant model output while




the AIM obtains the LMS input directly from the plant. The
performance of both the AIM and aiternate filtered-x algorithm
would be identical if the filtered-x algorithm's plant model is an
exact copy of the real plant.

The simulation results with al51 tap forward model and inverse
model were unsatisfactory since the inverse model did not remove
any of the audio plant's distortion effect. In fact, the inverse model
contributed to the distortion since the average PSD magnitude
difference between points a’ and ¢ was larger than the average PSD
magnitude difference between points a and b. The average
magnitude difference between the PSDs of a’ and ¢ was 7.8 dB and
between a and b was 5.6 dB. The inefficacy of the alternate filtered-
X simulations is attributed to the forward plant model process.

ThelS1 tap forward model ,which approximates the audio plant,
only partially correlates the LMS inputs. As was shown for the AIP,
the inverse performance degrades when the correlation between the
LMS inputs decreases.

Because the LMS inputs are only partially correlated, the
maximum convergence constant which allowed stable operation was
two orders of magnitude smaller than the convergence constant
utilized during the 151 tap AIM simulation. With the smaller u, the
alternate filtered-x algorithm will be less capable of tracking the
nonstationary W*. Therefore, the weight misadjustment will be
worse than the misadjustment for the AIM simulations. The weight
misadjustment could be a major contributor to the poor inverse
performance. Widrow and others are investigating the

misadjustment of the filtered-x algorithm (15:188).
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Simulations were also conducted with a plant model consisting of
a pure delay. The pure delay models the propagation delay between
the speakers and the microphone, but it does not correct for the
phase response of the plant. The transport delay , t4, between a

speaker and the microphone is given by

tg= — sec (3.8)

where d is the distance between the speaker and the microphone in
feet and vg is the velocity of sound in air which is approximately
1000 ft/sec. Delay times ranging from .005 to .012 seconds were
simulated to account for the speaker, reference microphone
separations of 5 to 12 ft. Again the results were unsatisfactory.
Frequency Domain Adaptive Spectrum Shaper. Since the author
was not fully satisfied with the time domain adaptive filter results, a
preliminary investigation of a frequency domain adaptive spectrum
shaper (FDASS) was accomplished at the end of this thesis effort.
The FDASS, which is shown in Figure S1, is immune to the
decorrelative effect of the audio plant's phase response since the
weight update uses the power spectrum estimates of the LMS inputs.
This filter structure is the author's innovative approach to realize a
pre-filter structure that can pre-compensate for the spectral

distortion of minimum and non-minimum phase plants.
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Figure 51. Frequency Domain Adaptive Spectrum Shaper

The basic architecture of the FDASS is based on the complex
frequency domain adaptive filter. A brief literature review, which
introduces the complex LMS frequency domain algorithm's theory of
operation, is presented in Appendix B. Unlike the complex
frequency domain adaptive filter, the FDASS's weight update inputs
are power spectral estimates and not complex signals. The FDASS
uses block processing and the overlap and save fast convolutional
technique for calculating the filter output (13:198-201). The input
data samples are segmented into 2N points and transformed with an

FFT to generate 2N complex frequency samples. The complex
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frequency sample in each of the input 2N frequency bins is
multiplied by a weight which is controlled by the LMS algorithm.
The product is then inverse transformed into 2N real data points.
The first N output data points, which are artifacts of the circular
convolution are discarded. The last N data points are then read from
the data buffer at the appropriate time as a output data point. To
compute the next valid N data points, the 2N sample input window is
shifted over N points agg the entire process is repeated. The process

is summarized for the kth block iteration as

Y = Wi X (3.9)

where Wy is the weight vector, Xk is the input vector

Xi = F onlx((k-1)N) x((k-1)N+1) .. . x((k-1)N+ 2N-1)] (3.10)

, Yk is the ouput vector
Yx = F 2n(N discarded values y(kN) y(kN+1). .. y((k~1)N+2N-1)] (311)

and the symbol F is the Fourier transform operator.

During the kth block iteration, the LMS algorithm predicts the
filter weight vector Wy.; for the (k+!)th block iteration in

accordance with

Wi+l = Wi +u ExP on(Xk] (3.12)

80




where P is the power spectral density operator, u is the

B A i

convergence constant vector and Eg is the error spectral estimate.

The error spectral estimate vector Ey is given by

! Eg = P oniDkl - P onlY k] (3.13)

where P ,n([Dglis the desired spectrum and P oY 'l is the spectral
estimate of the plant model output.

A simulation was accomplished with a 1 28 weight FDASS and a
100 tap plant model. The results of the simulation are illustrated in
Figure 52 (Prog 10). The FDASS effectively precompensated for the
spectral distortion of the plant model. The plant model output PSD
closely matches the desired PSD when the FDASS is enabled.
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Figure 52. Adaptive Spectrum Shaper PSDs ’ %
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Summary

This chapter presented the results of experiments and computer

simulations to verify the theory developed in Chapter 2 and to
analyze the effectiveness of an inverse control system in removing
the unwanted distortion effect of an audio plant. The simulations
tllustrated that the AIP could inverse filter minimum phase pl!ants
and the filtered-x algorithm and the AIMCS could inverse filter both
minimum and non-minimum phase plants.

An analyses of digitized data from the reverberation chamber
demonstrated that the audio plant transfer function distorts the pink
noise spectrum and slowly changes with time. The non-stationary
behavior of the audio plant lends itself to a hardware
implementation of an adaptive system that can automatically track
and remove the distortion effect of the audio plant.

The AIMCS and the filtered-x algorithm were analyzed to
determine the effectiveness of the two control system in removing
the frequency distortion of the audio plant. The only promising time
domain simulation was the five band AIMCS which effectively pre-
inverse filtered the limited size FIR plant models.

Preliminary results with a frequency domain adaptive spectrum
shaper were provided which demonstrated that a frequency domain,
adaptive filter could effectively equalize a plant model.

Recommendations follow in the next chapter.
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1Y. Recommendations

This chapter discusses the recommendations for the continuation
of this research and for the development of adaptive signal
processing design software. The recommendations are directed to

AFAMRL and the AFIT Electrical Engineering Department.

A g ive I Fil
The five band AIMCS was the most promising time domain
adaptive filter candidate. Unlike the AIP, the single band AIMCS and
the filtered-x, the five band AIMCS was capable of pre-inverse
filtering the limited size FIR plant models. Even though it was the
best time domain candidate, a frequency domain approach should be
thoroughly explored before preceding with a hardware
implementation. It is anticipated that the five band AIMCS would be
costly to build, since five parallel self contained AIMCSs are required.
The following list identifies some of the more expensive components

for each of the AIMCS:

a. two TMS3206C30 DSPs
b. two A/D
c. one D/A
d. three bandpass filters

e. three sample and holds

In addition to being costly, there is some risk the limited size FIR
plant models utilized for the simulations mav not accurately model

the audio plant. So, the AIMCS five band simulation results may not
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be representative of the performance from a real time hardware
implementation. To reduce this risk, the simulations could be
repeated with an ARMA model that would more accurately model
the audio plant.

As an alternative to the five band AIMCS, it is recommended that
the FDASS or a complex LMS frequency domair algorithm be
considered as a hardware solution. The preliminary FDASS
simulation results were very promising. The FDASS was able to
effectively compensate for the spectral distortion of a plant model.

For this application, there are two advantages with a frequency
domain implementation. First, the frequency domain
implementation offers reduced number of computations over the
time domain (13:203). The complexity ratio Cr , which is the ratio of
frequency domain to time domain real muitiplies for an N point
impulse response, are shown in Table 4. For a large N, the

computational complexity based on number of real multiplies for the

Table 4. Frequency to Time Domain
Complexity Ratio

Complexity Ratio
N Complex Frequency FDASS
Domain (13:203)

32 1.20 0.42

64 0.69 0.24

128 0.38 0.14

256 0.21 0.08

S12 0.12 0.04

1024 0.06 0.02
84
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frequency domain adaptive filter is much less than an equivalent
time domain filter. Thus, with a given DSP throughput, larger
adaptive filters can be implemented in the frequency domain.

The second advantage is that the frequency domain adaptive
filter provides a means to improve the convergence behavior over a
time domain implementation. With a frequency domain adaptive
filter, the input spectrum has been divided into spectral bands where
each spectral band has its own convergence rate. A convergence
constant can be assigned to each spectral band which is dependent
on the band's relative input power. By incorporating any a priori
information about the power distribution, "the convergence modes of
the adaptive filter can be compressed to a more reasonable range,
thereby improving the convergence behavior (13:205)". Thus, it can
be expected that the convergence behavior of the frequency domain
implementation will not be as dependent on the input power
variations due to the !arge low frequency components of the pink

noise.

\daptive Signal P ine Sul :

In order to reduce the future development time of adaptive
signal processing algorithms, an adaptive signal processing software
subroutine package should be developed for a PC and/or mainframe.
The adaptive signal processing software subroutines would allow a

user to efficiently assemble, simulate, and verify adaptive filter
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algorithms by calling subroutines from a main program. The

following list identifies some suggested subroutines:

a. Time and frequency domain adaptive filters with selectable

number of taps.

b. Flexible [/0 to import and export digitized data files.

c. Signal analyses to inciude FFTs, PSDs, autocorrelation and

crosscorrelations.

d. High resolution plotting.

e. Lowpass, highpass, and bandpass filters.

f. Signal generator for simulation white noise, sine waves, and

linear combinations of signals.
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Y. Conclusion

This chapter discusses the conclusions culminating from this
thesis research. The objective of this thesis was to explore the
feasibility of using a time domain adaptive filter to remove the
frequency distortion of an audio plant. The approach to accomplish
this objective consisted of a review of current literature to find
pertinent articles, the development of adaptive inverse filter theory,
and the simulation and analysis of the applicable adaptive inverse
filter algorithms. In addition, a preliminary investigation of a
frequency domain implementation was conducted.

An exhaustive review of the current literature identified the
AIMCS and the filtered-x algorithms as prime time domain adaptive
filter candidates. Also, the time domain AIP, which was observed by
Widrow and Stearns to converge to an irrelevant solution or to be
unstable, was also investigated since a preliminary simulation using
a three tap minimum phase plant was successful.

Chapter Il developed the adaptive inverse filter theory
applicable to this thesis. The theory focused on the AIP, filtered-x
algorithm, and the AIMCS. The equations for the AIP's and filtered-~x
algorithm's optimum weight vector and performance function were
derived since a complete derivation could not be found in the current
literature. A theoretical analysis of a two tap AIP in series with a
two tap plant demonstrated that the AIP weight update equation
converges to a relevant inverse solution when the plant has

minimum phase and an irrelevant inverse solution when the plant
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has non-minimum phase. [t was shown that the AIP does not
converge 1o a relevant sofution for the non-minimum phase plant
because the LMS inputs are decorrelated by the plant's large phase
response. The filtered-x algorithm compensates for the decorrelative
effect of the plant phase response by pre-filtering the LMS input
through a plant model.

Chapter 11l presented and analyzed the results of experiments
and computer simulations to verify the theory developed in Chapter
2, to determine the spectral response of the audio plant, and to test
the effectiveness of an inverse control system in removing the
unwanted distortion effect of an audio plant. Simulations with a 21
tap adaptive filter and a three tap minimum and non-minimum
phase plants verified that the AIP could inverse filter minimum
phase plants and the filtered-x algorithm and the AIMCS could
inverse filter both minimum and non-minimum phase plants.

A spectral analysis of the digitized data from the reverberation
chamber illustrated that the frequency response of the audio plant
distorts the input signal spectrum and varies slowly with time. The
audio plant's non-stationary spectral behavior supports the
requirement for an adaptive system to replace the manual graphics
equalizer currently in operation. The AIM, which is the adaptive
component of the AIMCS, was thoroughly analyzed before conducting
the AIMCS simulations. The analyses of the LMS AIM simulations
revealed that a single convergence constant, which is bounded by the
maximum input power, would not provide the rate of adaptation
requiréd to track the low level high frequency components.

components. The NLMS AIM, which increases the overall rate of
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. adaptation by varying the convergence in inverse proportion to the
input power, exhibited improved performance over the entire

: frequency band.

‘ The NLMS AIMCS simulation results however, were

- unsatisfactory. The poor performance was attributed to difference of
the input power at the inverse filter and the inverse model. The

— only promising time domain adaptive inverse filter simulation was
with the five band LMS AIMCS, which effectively removed the
distortion effect of the limited size FIR audio plant models.

kv A preliminary investigation of a frequency domain adaptive

spectrum shaper was accomplished at the end of this thesis effort.
The frequency domain adaptive spectrum shaper is an innovative
approach based on the complex frequency domain adaptive filter
architecture that uses block processing and fast output convolution.
Unlike the complex frequency domain adaptive fifter, the frequency
domain adaptive spectrum shaper updates a non-complex weight

f using power spectral estimates of the LMS weight inputs. Since the

' LMS weight inputs are not decorrelated by the phase of the plant,
the frequency domain adaptive spectrum shaper can find a refevant
inverse spectral solution for both minimum and non-minimum phase
plants. The simulation results verify that the frequency domain
adaptive spectrum shaper is able to precompensate for the spectral
distortion of a plant model.

Chapter 1V presented a recommendation to thoroughly explore

the frequency domain implementation as an alternative approach

) before preceding with a five band AIMCS hardware implementation.

A frequency domain adaptive filter is more computational efficient,
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F has better convergence properties than a time domain adaptive
filter, and may be less expensive to implement than the five parallel

AIMCSs comprising the five band AIMCS. It was also recommended

that adaptive signal processing subroutines be developed to facilitate

the simulation and testing of adaptive filter algorithms.
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Appendix A: Computer Programs
] .

All computer programs are written in FORTRAN F77 and were

compiled and ran on AFIT's ICC.

]
Programl:
PROGRAM AIPMSE
C THIS PROGRAM CALCULATES THE MSE FOR THE AIP FILTER
C DECLARE THE VARIABLES
REAL X(50000),Y(50000),W(256),Y1(50000),TNOR,TOTE
REAL E(50000),MSE(S5C000)
INTEGER DELAY
~ OPEN(UNIT=4,FILE="MSE',STATUS="UNKNOWN")
{ OPEN(UNIT=1,FILE="NU",STATUS="UNKNOWN")
C INITIALIZE THE VAR:ALBLES
C SEED IS IX
IX=1
C 'S IS THE STANDARD DEVIATION
S=1.0
. C AM IS THE MEAN
AM=0.0
C NPT IS THE NUMBER OF POINTS
NPT=30000
C NT IS THE NUMBER OF ADAPTIVE FILTER TAPS
= NT = 21
, C U IS THE CONVERGENCE CONSTANT
U = .00009

C INITIALIZE THE MSE VARIABLE WITH ALL ZEROS
DO 50 N=1 NPT
MSE(N)=0.0
50 CONTINUE

C THIS LOOP CALCULATES THE MSE FOR 100 RUNS
C EACH RUN USES A DIFFERENT SEED IX.
DO 1 P=1,100

C CALL THE SUBROUTINE TO GENERATE THE WHITE GAUSSIAN NOISE FOR THE
C INPUT SEQUENCE
CALL GAUSUIX,S,AM NPT X)

: C INCREMENT THE SEED
1X= 1%~ 1
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C SET THE INVERSE DELAY TO 1/2 THE NUMBER OF TAPS
DELAY=NT/2

C SET THE PLANT COEFFICIENTS A1-AZ
Al=1.
A2=-2.8
A3=2.32

C INITIALIZE THE WEIGHTS TO ZERO.
DO S N=1 ,NT
W{N)=0.0
5 CONTINUE

C LOAD THE PLANT OUTPUT VECTOR WITH ZEROS.
DO 7 N=1 ,NT

Y(N)=0.0
CONTINUE

~1

TOTE=0.0
TNOR=0.0

C MAIN ADAPTIVE FILTER LOOP
DO 20 N=NT+1 NPT
ACCUM=0.0

DO 30 =1 ,NT
30 ACCUM=X(N-(J-1)*W(J)+ACCUM

C Y(N) IS THE AIP FILTER OUTPUT
Y{N)=ACCUM

C Y1(N) IS THE PLANT OUTPUT
YTN)=AT*¥(Y(N))+A2*¥(Y(N-1))+A3*(Y(N-2))

C CALCULATE THE ERROR
E(N)=X(N-DELAY)-Y1(N)

C CALCULATE THE SQUARED ERROR AND THE NORMALIZING FACTOR
TOTE=E(N)*E(N)
TNOR=X(N)*X(N)
IF (TNOR.EQ. 0.0) THEN

TOTE=0.0
TNOR=1.0
END IF

MSE(N-NT)=(TOTE)+MSE(N-NT)

C PERFORM THE WEIGHT UPDATE

DO 40 J=1,NT
40 W(J)=WI(J)=2. 0%UXE{NI*X(N-20-(J-1))
20 CONTINUE
! CONTINUE
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DO 80 N=1 NPT-NT-1,100

C CALCULATE THE MSE
MSE(N)=MSE(N)/P

C WRITE DATA FILES FOR MSE
WRITE(4,90)MSE(N)

S0 FORMAT(F10.4)
WRITE(T1,92)N
92 FORMATI(IS)
80 CONTINUE
END

C GAUSSAIN NUMBER GENERATOR SUBROUTINE

C THIS SUBROUTINE WAS COPIED FROM THE "DIGITAL FILTER DESIGN

C HANDBOOK" BY TAYLOR (12:101-102)

SUBROUTINE GAUS(IX,S,AMMU,F)
REAL F(*)
INTEGER N,MU
REAL AYFL,AM,5,AVG,TOT
TOT=0.0

DO 100 N=1,MU
A=0.0
DO S0 t=1,12

C CALL UNIFORM RANDOM GENRATOR
CALL RANDUCIX,IY,YFL,TOT)

IX=1Y
50 A=A+YFL
F(N)=(A-6.0)%S+ AM
100 CONTINUE
AVG=TOT/(MU*12)
RETURN
END

SUBROUTINE RANDU(IX, )Y, YFL, TOT)

1V=1X*65539
IF(1Y)5,6,6

5 IY=1Y+2147483647~

6 VYFL=IV
VFL=YFL*4.65661287SE-10
TOT=YFL-TOT

RETURN

END
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PROGRAM AIMCSMSE

Program 2:
* C THIS PROGRAM CALCULATES THE MSE FOR THE AIMCS FILTER

C OECLARE THE VARIABLES
REAL X(10000),Y(10000),W(256),Y1(10000),TNOR,TOTE

REAL E(10000),MSE(10000),Y2(10000),2(256)
L{ INTEGER DELAY

OPEN(UNIT=2,FILE="NU",STATUS="UNKNOWN")
OPEN(UNIT=4,FILE=MSE" ,STATUS="UNKNOWN")

C SEED IS IX
IX=1

C S 1S THE STANDARD DEVIATION
S=1.0

C AM IS THE MEAN
AM=0.0

C NPT IS THE NUMBER OF POINTS
NPT=3000

C NT IS THE NUMBER OF ADAPTIVE FILTER TAPS
NT = 21

C U IS THE CONVERGENCE CONSTANT

= .006

C INITIALIZE THE MSE VARIABLE WITH ALL ZEROS
DO 50 N=1,NPT
MSE(N)=0.0

50  CONTINUE

C THIS LOOP CALCULATES THE MSE FOR 100 RUNS.
C EACH RUN USES A DIFFERENT SEED IX.
DA P=1 100

C CALL THE SUBROUTINE TO GENERATE THE WHITE GAUSSIAN NOISE FOR THE
C INPUT SEQUENCE
CALL GAUSUX,S,AMNPT X)

C INCREMENT THE SEED
IX=1X+1

C SET THE INVERSE DELAY TO 1/2 THE NUMBER OF TAPS
DELAY=NT/2

C SET THE PLANT COEFFICIENTS A1-A3

Al=1.
A2=-28
A3=232

C INITIALIZE THE WEIGHTS TO ZERO
DO S N={ NT
" W(N)=0.0
S CONTINUE




C LOAD THE PLANT OUTPUT VECTOR WITH ZEROS

DO 7 N=1 NT

Y{N)=0.0

Y1(N)=0.0
7 X(N)=0.0

TOTE=0.0
w(11)=10

CMAIN ADAPTIVE FILTER LOOP
DO 20 N=NT+1 NPT
ACCUM=0.0
ACCUM2=0.0

£ CALCULATE INVERSE FILTER OUTPUT
DO 30 J=1 ,NT

30 ACCUM=X(N-(J-1))*W(J)+ACCUM
V(N)=ACCUM

C CALCULATE PLANT OUTPUT
YTN)=AT*(VIN))+ A2%(V{N=- 1))+ AZ*(Y(N-2))
E(N)=X(N-DELAY)-Y 1(N)

C CALCULATE INVERSE MODEL OUTPUT
DO 35J=1NT
ACCUM2=ACCUM2+W(J)*Y 1(N-(J-1))
35 CONTINUE
Y2(N)=ACCUM?2

C CALCULATE ERRORS
E2=Y(N-DELAY)-Y2(N)
TOTE=E(NY*E(N)
MSE(N-NT)=(TOTE)~MSE(N-NT)

C WEIGHT UPDATE
DO 40 JU=1 ,NT
40 W(UN=W(J)+2 0*U*E2*®Y 1 (N-(J-1))

20 CONTINUE
1 CONTINUE

DO 80 N=1 NPT-NT-1,10
MSE(N)=MSE(N)/P

WRITE(4,90)MSEN)
90 FORMAT(F10.4)
WRITE(2,95)N
95 FORMAT(14)
80 CONTINUE
END
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PROGR*M 3.

PROGRAM FILXMSE
C THIS PROGRAM CALCULATES THE MSE FOR ThE FILTERED-X ALGORITHY
C DECLARE THE VARIABLES

REAL X(10000),Y(10000),W(256),Y1(10000),TNOR,TOTE
REAL E(10000)MSE(4000),FILX(10000)

INTEGER DELAY
OPEN(UNIT=4 FILE="MSE" ,STATUS="UNKNOWN")

C SEED IS IX
1X=1
C S 1S THE STANDARD DEVIATION
5=1.0
C AM IS THE MEAN
AM=0.0
C NPT IS THE NUMBER OF POINTS
NPT=3000
C NT IS THE NUMBER OF ADAPTIVE FILTER TAPS
NT = 21
C U IS THE CONVERGENCE CONSTANT
U =.00075
C INITIALIZE THE MSE VARIABLE WITH ALL ZEROS
DO S0 N=1 NPT
MSE(N)=0.0
50 CONTINUE

C THIS LOOP CALCULATES THE MSE FOR 100 RUNS
C EACH RUN USES A DIFFERENT SEED 1X.
DO 1 P=1,100

C CALL THE SUBROUTINE TO GENERATE THE WHITE GAUSSIAN NOISE FOR THE
C INPUT SEQUENCE
CALL GAUS(IX,S,AM NPT, X)

C INCREMENT THE SEED
[(X=1X~1

C SET THE INVERSE DELAY TO 1/2 THE NUMBER OF TAPS
DELAV=NT/2

C SET THE PLANT COEFFICIENTS A1-A3
Al=]
A2=-2.8
A3=232

C INITIALIZE THE WEIGHTS TO ZERO
DO S N=1 NT
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W(N)=0.0
S CONTINUE

C LOAD THE PLANT OUTPUT VECTOR WITH ZEROS.

DO 7 N=1 NT
Y(N)=0.0
FILX(N)=0 0
7 X(N)=0.0

TOTE=0.0
TNOR=0.0

C MAIN ADAPTIVE FILTER LOOP
DO 20 N=NT-1,NPT

ACCUM=0.0

C CALCULATE THE INVERSE FILTER OUTPUT "FILX(N)
FILXIN)=AT#XIN)+ A2%X (N~ 1)+ AZ*¥X(N-2)

DO 30 J=1I NT
20 ACCUM=X(N~(J-T1N*W(J)-ACCUM
Y(N)=ACCUM

C CALCULATE THE PLANT OUTPUT
VIINISAT*(YIN))«A2¥(Y(N=-1))+AZ*(Y(N~2))

C CALCULATE ERROR
E(N)=X(N-DELAY)-Y 1(N)
TOTE=E(NI*E(N)
TNOR=X(N)*X(N)

(F (TNOR.EQ. 0.0) THEN

TOTE=0.0
TNOR=1.0
END IF

MSE(N-NT)=(TOTE)+MSE(N-NT)

DO 40 J=1NT
40 W) =W(J)-2 OXUXE(N)*FILX(N-(J~-1))
20 CONTINUE
| CONTINUE

DO 80 N=1,NPT-NT-1,10
MSE(N)=MSE(N)/P
WRITE{4,90)MSE(N)
FORMAT(F10.4)
CONTINUE

M D
OO

END
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Program 4:

PROGRAM AIPASQ
C THIS PROGRAM CALCULATES THE AVERAGE SQUARED ERROR FOR THE AlP
C AFTER 4000 iTERATIONS HAVE BEEN COMPLETED. THE WHITE NOISE
C 1S COMPUTER GENERATED AND HAS SELECTABLE MEAN AND STANDARD
C DEVIATION. THE AVERAGED SQUARED ERROR FOR THE 4001 TO THE
C 40000 ITERATION IS SAVED TO THE FILE 'ERRORS’. THE PROGRAM IS
C CURRENTLY CONFIGURED FOR A TWO TAP PLANT AND TWO TAP ADAPTIVE
C FILTER. HOWEVER, IT CAN BE EASILY MODIFIED FOR LARGER PLANTS AND
C FILTERS.

C DECLARE THE VARIABLES
REAL X(90000),Y(90000),W(256),Y1(90000)
REAL Y2(90000),W2(256),Y3(90000),NOISE(90000)
REAL E(90000)
OPEN(UNIT=9 FILE="ERRORS',STATUS="UNKNOWN")

C INITIALIZE THE VARIALBLES
C XIS THE SEED
IX=1

C S IS THE STANDARD DEVIATION
5=1.0

C AT IS THE MEAN
AM=0.0

C NPT IS THE NUMBER OF POINTS
NPT=40000

U NT IS THE NUMBER OF ADAPTIVE FILTER TAPS
NT=2

C CALL THE SUBROUTINE TO GENERATE THE WHIiTE GAUSSIAN NOISE FOR THE
C INPUT SEQUENCE

CALL GAUSUX,S,AMNPT X)

C SET THE INVERSE DELAY
DELAV=2

C SET THE PLANT FILTER COEFFICIENTS
Al=1
A2=50
AZ=0.00

C CALCULATE THE AVERAGED SQUARE ERROR FOR A RANGE OF CONVERGENCE CONSTANTS
C STARTING WITH U=.000007. 1T THEN INCREMENTS THE CONVERGENCE CONSTANT BV
C BY 000001 AND RECALCULATES THE AVERAGE SQUARED ERROR ﬂ

=

DO 2 U=.000007, 000011000, 000001
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P=0
C INITIALIZE THE ADAPTIVE FILTER WEIGHTS TO ALL ZEROS.
DO 5 N=1,NT
W(N)=0.0
W2(NJ=0.0
5 CONTINUE

C LOAD THE PLANT OUTPUT VECTOR WiTH ZEROS.
DO 7 N=1,NT
Y(N)=0.0
Y2(N)=0.0
Y3(N)=0.0
7 X(N)=0.0

TOTE=0.0

C MAIN FILTER LOOP
DO 20 N=NT-1 NPT

C INITIALIZE THE FILTER ACCUMULATORS WITH ZEROS

ACCUM=0.0
C CALCULATE THE INVERSE FILTER OUTPUT
DO 30 J=1,NT
30 ACCUM=X(N-(J=1))*W(J)+ ACCUM
Y(N)=ACCUM

C CALCULATE THE PLANT OUTPUT
YTN)=AT®Y(N)+ A2%¥Y(N=1)+ AZ*Y(N-2)

C CALCULATE THE ERROR

E(N)=X{N-DELAY)-Y1(N)
ERSQ=E(N)*%*2.0

IF (N.GT.4000)THEN

P=p+1
TOTE=TOTE+ERSQ
END IF
C UPDATE WEIGHTS
DO 40 J=1 NT
40 W(J)=W(J)+2 O%UXE(N)*X(N-(J~1))
20 CONTINUE
100 AVGE=TOTE/P
WRITE(9,60)U,AVGE, W( 1) Wi2)
60 FORMAT(F106,2X,F12 7,2X,F10 4,2X,F 10 4)

2 CONTINUE
END
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Program 5

PROGRAM AiIM

C THIS PROGRAM CALCULATES THE INVERSE MODEL OF A

C REVERBERATION CHAMBER AT AMRL/BBA USING THE ADAPTIVE

C 'N'“ERSE MODELING. THE DIGITIZED DATA FILES ARE WNG AND MIC
C WNG IS THE DATA FROM THE PINK NOISE GENERATOR AND IMIC IS THE
C DATA FROM THE REFERENCE MICROPHONE.

NT IS THE NUMBER OF TAPS

X(N) IS THE FILTER INPUT-DATA FROM THE WNG (WNG=X(N))
D(N) IS THE DATA FROM THE MIC (MIC=D(N))
E IS THE ERROR SIGNAL

Y(N) IS THE FILTER OUTPUT

NPT IS THE NUMBER OF SAMPLE POINTS.

OOOOOO0O

C DECLARE THE VARIALBES
INTEGER X1(52000),DELAY,COUNT FCOUNT ,DELAY2
integer di(52000)
REAL X(52000),Y(52000),d(52000)
REAL W(5000),XMAG(1024),YMAG(1024),DMAG(1024)
COMPLEX X3(1024)
REAL ENERGY(52000),U1(52000),ER(52000),E2(52000)
REAL WI1(1000),Y2(52000),Y3(52009),y4(52000)

C OPEN DATAFILES

C
OPEN(UNIT=4,FILE="XDYa',STATUS="UNKNOWN")
OPEN(UNIT=5,FILE="wng ,STATUS="0LD")
open(unit=6,file="mic’,status="0ld")
OPEN(UNIT=8,FILE="DSPECT',STATUS="UNKNOWN")
OPEN(UNIT=7 FILE="XSPECT ', STATUS="UNKNOWN")
OPEN(UNIT=9,FILE="YSPECT ' ,STATUS="UNKNOWN")

C SET THE NUMBER OF SAMPLE POINTS IN THE DATA FILES

C WNG_ AND MIC_.
NPT=32768

C SET THE NUMBER OF TAPS NT FOR THE ADAPTIVE INVERSE FILTER
NT=151

C SET THE INVERSE DELAY
DELAY=75

C SET THE NUMBER OF FFT POINTS FOR THE PSD
NFFT=256

C SET ALPHA FOR THE NORMALIZED LMS. SET TO 0.0 If THE LMS 1S GOING TO BE USED
ALPHA=Z0

C SET GAMMA FOR THE NORMALIZED LMS
GAMMA=100

C SET THE CONVERGENCE CONSTANT IF THE LMS 1S BEING USED
U=0.000

C SET THE STARTING POINT (NSTART) FOR THE \P\S\D
NSTART=16385

100




C SET THE FINISH POINT (NFIN) FOR THE \P\S\D
NFIN=32768
C SET THE NUMBER OF PSD POINTS TO BE WRITTEN TO THE FILES XDV,
C XSPECT, DSPECT, YSPECT.
NPSD=70
C NOTE: NFIN - NSTART « 1 MUST BE AMULTIPLE OF NFFT

C ZERO FILL THE FIRST 2000 DATA SAMPLES.
DO 10 N=1,20G0

X(N)=0.0
d(n)=0.0
Y(N)=0.0
Y2(N)=0 0
Y4(N)=0.0

10 CONTINUE

C READ IN DATA FROM THE WNG AND MIC DATA FILES.
C DIGITIZED DATA FILES WERE SAVED AS INTEGER FILES.

DO 30 N=1 NPT
READ(S,35)XI(N)

35 FORMAT(18)
READ(6,36,END=399)DI(N)

36 FORMAT(18)

30 CONTINUE

999 CLOSE(S)
CLOSE(6)

C MULTIPLY DATA BY A CONSTANT AND PREPARE IT FOR PROCESSING. THE DIGITIZED

DATA

C IS CONVERTED TO REAL AND APPENDED TO A 2000 SAMPLE LEADER OF ALL ZEROS.
DO 40 N=2001,NPT+2000

X(N)=XI(N~-2000)*.0043
DIN)=DI(N-2000)*.0043
40 CONTINUE
42 CONTINUE
C ZERO THE WEIGHTS.
DO 70 N=1,NT
W(N)=0.0
70 CONTINUE
C STAR™ MAINFILTER LOOP.
DO 80 N=2001+nt,2000-NPT
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C SET FILTER ACCUMULATORS TO ZERO.
ACCUM=0.0
ACCUM2=0.0

C CALCULATE THE ADAPTIVE INVERSE MODEL OUPUT AND THE INPUT POWER.
DO 340 K=1,NT
ACCUM=ACCUM+D(N-(K~-1))**2.0
ACCUM2=ACCUM2-D(N-(K-1))*W(K)
240 CONTINUE

Y2(N)=ACCUM?2
energy(n)=accum

C FILTER ENERGY IS USED BY THE NORMALIZED LMS

IFCALPHA EQ. 0.0)THEN
UT(N)=U
GO TO 121

END IF

C CALCULATE THE CONVERGENCE CONSTANTS U1(N) FOR THE NORMALIZED LMS.
Utl(n)=alpha/(gamma+energy(n))
121 CONTINUE

C CALCULATE ERROR BETWEEN THE DESIRED AND THE INVERSE MODELING
C FILTER OUTPUT

E=x(N-DELAY)-Y2(N)

ER(N)=E

ERR=2.0%*U1(N)*E

C WEIGHT UPDATE
DO 120 J=1,NT
W{J)=W(J)+2.0*err*d{n-(j=-1))
120 CONTINUE

80 CONTINUE
85 continue

C CALCULATE POWER SPECTRUM FOR THE FILTER INPUT D(N), THE

C FILTER OUTPUT V(N) AND THE DESIRED SIGNAL X(N). THE PSD IS THE
C AVERAGE PERIODOGRAM ESTIMATOR. RECTANGULAR NON-OVERLAPPING
C WINDOWS ARE UTILIZED.

N=NFFT

C SAMPLING RATE WAS 22.75 US
T=22.75E-6
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C FOR DIRECT FFT KODE = !
KODE=1
DF=1./(N*T)

DO 128 J=1,NFFT
XMAG(J)=0.0
DMAG(J}=0.0

128 YMAG(J)=0.0

FCOUNT=0
COUNT=0

C CALCULATE PSD OF THE MIC DATA WHICH IS SAVED IN THE ARRAY D(J).
DO 130 J=2000-NSTART,2000+NFIN

COUNT=COUNT+ 1
C CONVERT REAL ARRAY INTO COMPLEX ARRAY
XS(COUNT)=CMPLX(d(J))

C IF WINDOW IS FULL, RUN FFT,
IF(COUNT.EQ.NFFT) THEN
CALL FFT(KODE,N,T ,XS)

C CALCULATE THE MAGNITUDE OF THE FFT COMPONENTS AND KEEP RUNNING
C TOTAL FOR EACH FREQUENCY BIN.
DO 140 K=1 ,NFFT
XMAG(K)=CABS(DF*XS(K))+XMAGK)
140 CONTINUE

C REINITIALIZE COUNTER
COUNT=0

C FCOUNT COUNTS THE NUMBER OF WINDOWS
FCOUNT=FCOUNT+ 1
END IF
130 CONTINUE
DO 150 J=1,NPSD

C WRITE THE PSD FOR EACH FREQUENCY BIN INTO THE FILE DSPECT.
XMAG(J)I=10*LOG10(XMAG(J)/FCOUNT)
WRITE(7,155)XMAG(J)

155 FORMAT(F10.6)
150  CONTINUE

FCOUNT=0

COUNT=0

C CALCULATE PSD OF THE PINK NOISE DATA WHICH IS SAVED IN THE ARRAV X(J).

DO 160 J=NSTART+2000,NFIN+2000

COUNT=COUNT+1

XS(COUNT)=CMPLX(x(J-detay))

IFCCOUNT.EQ.NFFT) THEN

CALL FFT(KODEN,T XS)

DG 170 K=1,NFFT

DMAG(K)=CABS(DF*XS(K))«DMAG(K)
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170 CONTINUE
FCOUNT=FCOUNT+ |
COUNT=0
END IF
160 CONTINUE
DO 180 J=1,NPSD

DMAG(J)=20*LOG 1 O{DMAG(J)/FCOUNT)
WRITE(8,185)DMAG(J)

185 FORMAT(F 10.6)

180 CONTINUE

C CALCULATE PSD OF THE ADAPTIVE FILTER QUTPUT
C WHICH IS SAVED IN THE ARRAY Y2(J).
FCOUNT=0
COUNT=0
DO 190 J=NSTART+2000,NFIN+2000
COUNT=COUNT+ 1
XS(COUNT)=CMPLX(Y2(J))
IF(COUNT.EQ.NFFT) THEN
CALL FFT(KODE,N,T,XS)
DO 200 K=1,NFFT

YMAG(K)=CABS(DF*¥XS(K))+«*YMAG(K)

200 CONTINUE
FCOUNT=FCOUNT+ 1
COUNT=0
END IF
190 CONTINUE

C CALCULATE THE PSD AVERAGE MAGNITUDE DIFFERENCE BETWEEN XMAG AND DMAG
C AND BETWEEN YMAG AND DMAG AND WRITE THE RESULTS IN TABULAR FORMAT TO

THE
C FILE XDYA.
DIFF=0.
DIFFO=0.
WRITE(4,212)

212 FORMAT('FREQ’,5X,'DESIRED",5X,'W/0 FIL',5X,'W FIL")

DO 210 J=i,NPSD

YMAG(J)=10*LOG I O(YMAG(J)/FCOUNT)

DIFF=DIFF+ABS(DMAG(J)~XMAG(J))

DIFFO=DIFFO+ABS(DMAG(J)-YMAG(J))

FREQ=(J-1)/T/NFFT

WRITE(4,215)FREQ,XMAG(J),DMAG(J),YMAG(J)
215 FORMAT(F7.1,2X,F10.6,2X,F10.6,2X,F10.6)

WRITE(9,220)YMAG(J)
220 FORMAT(F10.6)
210  CONTINUE
DIFF=DIFF/NPSD
DIFFO=DIFFO/NPSD
WRITE(4,225)

225 FORMATCAVMAGIX-W/0) ,3X,'AVMAG(X~-W)")

WRITE(4,220)DIFF ,DIFFO
230 FORMAT(F9.4,2X,F9 4)
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C CALCULATE AVERAGE SQUARED ERROR, AVERAGE INPUT POWER, AND AVERAGE

C CONVERGENCE CONSTANT FOR THE NLMS AND APPEND TO FILE XDVA.
ERROR=0.0
ENER=0.0
ERROR2=0.0
UCONST=0.0
dsq=0.0
dsq2=0.0

DO 240 J=2001+nstart,2000+-NPT
ENER=ENER+ENERGY(J)
ERROR=ERROR~+(ER(J))**2,
UCONST=UCONST+U 1(J)
dsg=dsqg+x(j-delay)**2.0

240  CONTINUE

AVGENE=ENER/(NPT-nt)
UCONST=UCONST/(NPT-nt)
ERROR=ERROR/dsq
WRITE(4,245)
245  FORMAT('AVG ENERGY',7X,’AVG U, 7X,’AVG SQ IMOD ER")
WRITE(4,250)AVGENE, UCONST ,ERROR
250 FORMAT(F10.4,2X,F13.8,2X,F10.4))

CLOSE(4)
CLOSE(?7)
CLOSE(8)
CLOSE(9)

END

C FFT SUBROUTINE WAS COPIED FROM THE "METHODS OF DISCRETE SIGNAL
C AND SYSTEM ANALYSIS" BY JONG (3:262-265)

subroutine fft(kode,n, delta,x)
c power-of-2 fft (direct and inverse) aigorithm.
c
¢ kode = 1 for direct fft, =) for inverse fft.
¢ n = number of samples, must be a power of 2, otherwise error
¢ message will be printed
C delta = t (sampling interval in seconds) for direct transform
¢ df (frequency spacing in hz) for inverse transform
¢ for strict dft (not an approximation to continous ft), set delta
c to 1 for direct transform and to t/n for inverse transform.
¢ x = complex array holding data samples (input before, output after).
c
complex x(*¥) wi x1,cmplix
integer n
ir=0
nl=n
S n2=nt1/2
if(n2%2 ne nl)goto 100
ir=1r+ 1
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nt =n2
ifin1 gt. 1Ygoto5S
pn = 6.283185/n
1=n/2
irlt=ir-1
k1=0
do 30 is=1,ir
15 d¢ 20 i=1,]
k=k1+1
kpl=k+]
am=kbitr(k1/2%%ir1,ir)
if(am ne. 0.) goto 18
x1 = x(kpl)
goto 19
18 arg=ampn
c=cos(arg)
s=-kode¥*sin(arg)
w l=cmplx(c,s)
x1=w 1 %x(kpl)
19 x(kpl) = x(k)-x1
A(K)=x(k)+x 1
20 kl=k1+1
Ki=k1+]
if(k1.it.n)goto 15
k1=0
irt =irl-
30 1=1/2
do 40 k=1,n
kK1 = kbitr{k-1,ir)+1
if(k1 .le. k) go to 40
x1=x(k)
x(k)=x(k 1)
x(k1) =x1
40 continue
if(delta .eq. 1.) return
do S50 k=1,n

x(k)=x(k)*delta
S0 continue

return
100 write(9,101) n
101 format(i6, is not a power of 2, fft run aborted’)
« return
end

function kbitr(k,ir)

kbitr =0

k1l =k

do v i=1,ir

k2=%k1/2

kbitr = 2%kbitr ~ k1 - 2 * k2
1 ki=k2
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return

end

subroutine window(z,nfft)
real z(%)

do 10n=1,128

2(n)=z{n)*(1~c0s(6.2832*(n-63)/nfft))
10 continue
return
end

Program 6:
program formod
¢ this program calculates the forward modei of a
¢ reverberation chamber at amrl/bba. The forward model
c weights are saved during the last iteration to the file "weights6”.
¢ The program can operate in a decimation or in a normal mode.
¢ The decimation mode reduces the initial sampling rate and bandlimits the
C digitized data. Tie forward models generated in the decimation mode are
¢ used in the five band AIMCS simualtions. The bandpass filter coefficients
Cc are stored in the data file "bpfw". The file wng_ contains digitized
¢ data from the noise generator, and the file mic_ contains the digitized data
¢ from the microphone.
c nt is the number of taps
x(n) is the filter input~data from the mic (mic=x{(n))
d(n) is the desired sequence-data from the noise gen (wng=d(n))
e is the error signal
y(n) is the filter output
u is the convergence constant
npt is the number of sample points.

OO0 0O00

¢ declare the variables
integer x1(74000),di(74000),delay,count,fcount,],dec
real x{(37000),d(37000),y(37000),er(37000)
real w(2000),xmag(1024),ymag(1024),dmag(1024)
real f1(256),wbpf(501),x1(37000),d1(37000)
complex xs(1024)

C open data files for read and write operations
open(unit=1 file="bpfw’,status="unknown’)
open(unit=2,file="'weightsé’,status="unknown’)
open(unit=4,file='xdy’,status='unknown’)
open(unit=5,file='wng’,status="old’)
open(unit=6,file="mic’,status='o1d")
open(unit=8,file="dspect’,status="unknown’)
open{unit=7file="xspect’,status="'unknown’)
open(unit=9 file='yspect’ status="unknown’)

¢ set the number of sample points in the data files
¢ wng_. and mic_.

npt=65536 .
¢ set the number of taps nt

nt=70
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¢ set the number of fft points nfft
nfft=32
¢ set the convergence constant u
u=.007%
¢ set the number of bpf taps
nt5=31
¢ set the decimation factor
dec=100
¢ set the starting point (nstart) for the PSD
nstart=326
¢ set the finish point (nfin) for the PSD
nfin=65%5
¢ set the number of psd points to be written to the files xdy,
¢ xspect, dspect, yspect.
npsd=10
¢ nfin - nstart + 1 must be a multiple of nfft

¢ make the filter causal for a max filter size of 200C.
do 10 n=1,2000
y(n)=0.0
x(n)=0.0
d(n)=0.0
x1(n)=0.0
d1(n)=0.0
10 continue

¢ read in data from the wng_ and mic_ files
do 20 n=1,npt
read(6,25,end=998)di(n)
25 format(ig)
20 continue

998 close(6)

do 30 n=1,npt
read(5,35,end=999)xi(n)
35 format(ig)
30 continue

999 close(S)

¢ the number of data points after decimation
if(dec .ne. 0) then
npt=npt/dec

c read in BPF weights
do 43 n=1,nt5+1
read(1,45)wbpf(n)
45 format(r13.8)
43 continue

end if -L
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¢ multiply data by a constant and filter data for processing.
1=1
do 40 n=2001,npt-2000
if(dec.eq.0)then
x(N)=xi(n-20001*.0043
d(n)=di(n-2000)* 0043
go to 40
end if
x1(n)=xi(1)%*.0043
d1(n)=di(1)*.0043

accum=0.0
accum2=00
do 47 k=1 ,ntS
accum=accum-wbpf(k)*x1(n-(k-1))
47 accum?2=accum2-wbpf(k)*d1(n-(k-1))

¢ wbpf(ntS+1) is the bandpass filter scaling factor
x(n)=accum/wbpf(ntS+1)
din)=accum2/wbpf(ntS+1)
1=}-dec

40  continue

¢ zero the weights
do 70 n=1,nt
w(n)=0.0
70 continue

¢ repeat the adaptive filter iteration 10 times to insure the filter has converged
do 85 p=1,10

¢ main adaptive filter 1oop
do 80 n=2001t+nt,2000+npt

¢ set filter accumuiators to zero.
accum=0.0

¢ calculate the filter output.
do 110 j=1,nt

10 accum=x(n-(j-1))*w(j)+*accum
y(nj)=accun.

c calculate error between the desired and the filter output

e=d(n)-y(n)
er(n)=e

¢ calculate the filter weights for the next iteration.
err=2.0%*u*e
do 120 j=1,nt
wj)=w(j)+err*x(n=-(j-1))

¢ check if.it is tne last iteration
if(n eq. npt+1999.and. p.EQ.10) then
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¢ write weight vector to file weights.
write(2,115w(])
115 format(f10.6)
end if
120  continue

890 continue
85 continue

¢ calculate power spectrum for the filter input x(n), the
c filter output y(n) and the desired signal d(n).
n=nfft

¢ samrpling rate was 22.75 us
t=22.7Se-6*dec

c for direct fft kode = 1
kode=1

df=1./(n*t)

¢ initialize PSD accumulators to zero
do 128 j=1,nfft
xmag(j)=0.0
dmag(j)=0.0
128 ymag(j)=0.0

fcount=0
count=0

¢ calculate the psd for the pink noise data
do 130 j=2000+nstart,2000+nfin
count=count+1
xs(count)=cmplx(x(j))
if(count.eq.nfft) then
call fft(kode,n,t,xs)
do 140 k=1,nfft
xmag(k)=cabs(df*xs(k))+xmag(k)
140 continue
count=0
fcount=fcount+!
end if
120 continue

do 150 j=1,npsd
xmrag(j)=10*log10(xmag(j)/fcount)
write(7,155)xmag(j)
55 format(f10.6)
150 continue

c calculate the psd for the mic data
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do 160 j=nstart+2000,nfin+2000
_ count=count+ !
| xs(count)=cmplix(d(j))
§ if(count.eqnfft) then
: call fft(kode,n,t,xs)
i do 170 k=1,nfft
dmag(k)=cabs(df*xs(k))+dmag(k)

170 continue

fcount=fcount+1

count=0

end if

160  continue

do 180 j=1,npsd
dmag(j)=10%*log10(dmag(j)/fcount)
write(8,185)dmag(j)
185 format(f10.6)
180 continue
fcount=0
count=0

¢ calculate the psd for the forward model output
do 190 j=nstart-2000,nfin+2000
count=count+1i
xs(count)=cmpix(y(j))
if(count.eqnfft) then
call fft(kode,n,t,xs)
do 200 k=1,nfft
ymag(k)=cabs(df*¥xs(k))+ymag(k)
200 continue
fcount=fcount+1
count=0
end {f
190 continue

¢ compare psds and write results to file "xdy"
diff=0.
diffo=0.
write(4,212)
212 format('freq’,Sx,'input’, 7%, desired’,5x, output’)
do 210 j=i,npsd
ymag(j)=10*1og10(ymag{j)/fcount)
diff=diff-abs{dmrag(j)-xmag(j)) 4

diffo=diffo-abs(dmag(j)-ymag(i)
freg=(j-1)/t/nfft
write(4,215)freq,xmag(j),dmag(j),ymag(j)

215 format(f7.1,2x,f105,2x,110.6,2x,f10.6)
write(9,220)ymag(j)
220 format(f106)

210  continue
diff=diff/npsd _
diffo=diffo/npsd
write(4,225)
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225 format{'mag(d-x),6x,'mag{d-y)’)
. write(4,230)diff diffo
23C format{fg.4,2x,f9.4)

¢ calculate the average squared error
error=0.0
ener=00
450=0.0
- do 240 j=2001,2000+npt
error=error+(er(j)**2.0)
dsq=dsqg+d(j)**2.0
240 continue
error=error/dsq
- write(4,245)
245  format(‘avg error’)
write(4,250)error
250 format(f10.4)

close(7)

. close(8)

1§ close(9)
FND

Program 7:
PROGRAM AIMCS
B C THIS PROGRAM CALCULATES THE INVERSE FILTER OF A
C REVERBERATION CHAMBER AT AMRL/BBA USING THE ADAPTIVE
C INVERSE CONTROL MODELING SYSTEM. THE PLANT MODEL WEIGHTS
C WERE GENERATED BY AN ADAPTIVE FORWARD MODELING FILTER.

C

C NT IS THE NUMBER OF TAPS

C X(N) IS THE FILTER INPUT-DATA FROM THE WNG (WNG=X{N))
C E 1S THE ERROR SIGNAL

C Y(N) IS THE FILTER OUTPUT

c NPT IS THE NUMBER OF SAMPLE POINTS.

c

DECLARE VARIALBLES
INTEGER X1(74000),DELAY,COUNT,FCOUNT L, DELAY2
REAL X(37000),Y(37000),X1(37000)
REAL W(2000),XMAG(1024),YMAG(1024),DMAG(1024)
COMPLEX XS(1024)
REAL ER(37000),E2(37000)
REAL W1(1000),Y2(37000),V3(37000),v4(Z7000) WBPFIZ1)
. OPEN(UNIT=1,FILE="BPFW' ,STATUS="0LD")
OPEN(UNIT=2,FILE="WEIGHTS6',STATUS="UNKNOWN")
OPEN(UNIT=4,FILE="XDY',STATUS="UNKNOWN")
OPEN(UNIT=S,FILE="WNG',STATUS="0LD")
OPEN(UNIT=8,FILE='DSPECT",STATUS="UNKNOWN")
OPEN(UNIT=7 FILE="XSPECT ,STATUS="UNKNOWN")
| OPEN(UNIT=9 FILE="YSPECT ,STATUS="UNKNOWN")
C SET THE NUMBER OF SAMPLE POINTS IN THE DATA FILES
C WNG_ AND MIC_.
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NPT=32768
C SET THE NUMBER OF TAPS NT FOR THE ADAPTIVE INVERSE FILTER
NT=453
C SET THE NUMBER OF PLANT TAPS
NT2=300
C SET THE NUMBER OF BPF TAPS.
NTS5=31
C SET THE DECIMATION FACTOR
DEC=100
C SET THE INVERSE DELAY
DELAY=NT/2
C SET THE NUMBER OF FFT POINTS NFFT
NFFT=64
C SET THE CONVERGENCE CONSTANT U
U=.00170
C SET THE STARTING POINT (NSTART) FOR THE \P\S\D
NSTART=336
C SET THE FINISH POINT (NFIN) FOR THE \P\S\D
NFIN=655
C SET THE NUMBER OF PSD POINTS TO BE WRITTEN TO THE FILES XDv,
C XSPECT, DSPECT, YSPECT.
NPSD=10
C NFIN = NSTART ~ 1 MUST BE A MULTIPLE OF NFFT
C MAKE THE FILTER CAUSAL FOR A MAX FILTER SIZE OF 2000.

DO 10 N=1,2000

X(N)=0.0

Y(N)=0.0

Y2(N)=0.0

Y4(N)=0.0

X1(N)=0.0
10 CONTINUE

C READ IN DATA FROM THE WNG_ FILE
DO 30 N=1,NPT
READ(S,35,END=999)XI(N)
35 FORMAT(18)

30 CONTINUE
9399  CLOSE(D)

C CALCULATE THE NUMBER OF DATA POINTS AFTER DECIMATION
[F(DEC .NE. O)THEN
L=1
NPT=NPT/DEC

C READ BPF WEIGHTS
DO 43 N=1,NT5+]
READ(1,45)WBPF(N)
45 FORMAT(F13.8)
42 CONTINUE
END IF
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C MULTIPLY DATA BY A CONSTANT AND FILTER WITH BPF
DO 40 N=2001 ,NPT~2000
IF(CEC .EQ. O) THEN
X(NY=X1(N-2C00)%*.0043
GO TO 40
END IF
XT(N)=X1(L)*.0043
L=L+DEC
ACCUM=0.0
DO 47 K=1,31
47 ACCUM=ACCUM-WBPF(K)*X1{(N-(K-1))

C WBPF(NTS+1) IS THE BANDPASS FILTER SCALING FACTOR
X(N)=(ACCUM)/WBPF(NTS+1)
40  CONTINUE

C READ IN WEIGHTS FOR THE PLANT SIMULATOR
DO 310 J=1,NT2
READ(2,300,END=315)W1(J)
300 FORMAT(F10.6)
310 CONTINUE
315 CONTINUE
C ZERO THE WEIGHTS.

DO 70 N=1 NT
W(N)=0.0
70 CONTINUE
w(1)=1.0

C REPEAT THE ADAPTIVE FILTER ITERATION 2 TIMES TO INSURE THE FILTER HAS
CONVERGED
DO 85 P=1,2

C START MAIN ADAPTIVE FILTER LOOP
DO 80 N=2001+NT2+NT,2000+NPT

C SET FILTER ACCUMULATORS TO ZERO.

500 ACCUM=0.0
ACCUM2=0.0
ACCUM3=0.0
ACCUM4=0.0

C CALCULATE THE INVERSE FILTER QUTPUT
DO 110 J=1,NT

110 ACCUM=X(N-(J-TN*W(J)«ACCUM
Y(N)=ACCUM

C CALCULATE PLANT SIMULATOR QUTPUT Y2(N)
DO 340 K=1,NT2
ACCUM2=ACCUM2+V(N-(K-1))*W1(K)
349 CONTINUE
V2(N)=ACCUM2
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C CALCULATE THE PLANT INVERSE MODEL OUTPUT V3(N)
DO 350 K=1,NT
ACCUM3=ACCUM3+Y2(N-(K-1))*W(K)
350 CONTINUE
VI(N-2000)=ACCUM3

C CALCULATE PLANT OUTPUT WITHOUT INVERSE FILTER
DO 360 K=1,NT2

60 ACCUM4=ACCUM4«X(N-(K-1))*W1({K)
Y4(N)=ACCUM4

(A

C CALCULATE ERROR BETWEEN THE DESIRED AND THE INVERSE MODELING
C FILTER OUTPUT
E=Y(N-DELAY)-Y3(N-2000)
ER(N)=E

C CALCULATE ERROR BETWEEN THE DESIRED AND THE INVERSE FILTER OUTPUT
E2(N)=X(N-DELAY)-Y2(N)
ERR=2.0*U*E

C WEIGHTS UPDATE
DO 120 J=1,NT
W) =W(JI+ERR*Y2(N-(J-1))
120 CONTINUE

80  CONTINUE
85  CONTINUE

C CALCULATE POWER SPECTRUM FOR THE FILTER INPUT X(N), THE
C PLANT OUTPUT Y(N), AND THE PLANT WITHOUT THE INVERSE D(N).
N=NFFT

C INITIAL SAMPLING RATE WAS 43956.0 HZ
T=22.75E-6*DEC

C FOR DIRECT FFT KODE =1
KODE=1

DF=1./(N*T)

C INITIALIZE PSD ACCUMULATORS TO ZERO.
DO 128 J=1,NFFT
XMAG(J)=0.0
DMAG(J)=0.0
128 YMAG(J)=0.0

FCOUNT=0
COUNT=0

C CALCULATE THE PSD FOR THE PINK NOISE DATA
DO 130 J=2000+NSTART,2000+NFIN
COUNT=COUNT+1
XS(COUNT)=CMPLX(X(J))
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IF(COUNT.EQ.NFFT) THEN
CALL FFT(KODE N,T,XS)
DO 140 K=1 ,NFFT
XMAG(K)=CABS(DF *XS(K)+XMAGK)
140 CONTINUE
COUNT=0
FCOUNT=FCOUNT+1
END IF
130 CONTINUE

DO 150 J=1,NPSD
XMAG(J)=10%*LOG 1 0(XMAG(J)/FCOUNT)

WRITE(7,155)XMAG(JY)
155 FORMAT(F10.6)
1S5S0  CONTINUE

FCOUNT=0
COUNT=0

C CALCULATE THE PSD FOR THE PLANT QUTPUT WITH THE {NVERSE FILTER
C BYPASSED
DO 160 J=NSTART+2000,NFIN+2000
COUNT=COUNT+1
XS(COUNT)=CMPLX(Y4(J))

IF(COUNT .EQ.NFFT) THEN
CALL FFT(KODE,N,T XS)
DO 170 K=1,NFFT
DMAG(K)=CABS(DF *XS(K))+DMAG(K)
170 CONTINUE
FCOUNT=FCOUNT+ 1
COUNT=0
END IF
160  CONTINUE

DO 180 J=1,NPSD
DMAG(J)=10%*LOG 1 O(DMAG(J)/FCOUNT)
WRITE(8, 185)DMAG(J)
185 FORMAT(F10.6)
180  CONTINUE

FCOUNT=0
COUNT=0
C CALCULATE THE PSD FOR THE PLANT OUTPUT WITH THE INVERSE ENABLED.

DO 190 J=NSTART+2000,NFIN+2000
COUNT =COUNT+1
XS(COUNT)=CMPLX(Y2(J))
IF(COUNT.EQ.NFFT) THEN
CALL FFT(KODE,N,T XS)
DO 200 K=1,NFFT
YMAG(K)=CABS(DF*XS(K))+ VM AG(K)

200 CONTINUE

FCOUNT=FCOUNT+1

COUNT=0
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END IF
CONTINUE

C COMPARE PSDS AND WRITE RESULTS TO FILE "XDVY"

212

215

220
210

225

230

DIFF=0.
DIFFO=0.

WRITE(4,212)
FORMAT('FREQ',SX,'DESIRED",5X,"W/0 FIL',5X,'W FIL)
DO 210 J=1,NPSD
YMAG(J)=10%LOG 1 0(YMAG(J)/FCOUNT)
DIFF=DIFF+ABS(DMAG(J)~XMAG(J))
DIFFO=DIFFO+ABS{XMAG(J)-YMAG(J))
FREQ=(J-1)/T/NFFT
WRITE(4,215)FREQ,XMAG(J),DMAG(U),YMAG(J)
FORMAT(F7.1,2X,F10.6,2X,F10.6,2X,F10.6)
WRITE(9,220)YMAG(J)
FORMAT(F10.6)
CONTINUL

DIFF=DIFF/NPSD
DIFFO=DIFFO/NPSD
WRITE(4,225)
FORMAT(CAVMAG(X-W/0Q)",3X,"AVMAG(X-W)")
WRITE(4,230)DIFF DIFFO
FORMAT(F9.4,2X,F9.4)

C CALCULATE THE AVERAGE SQUARED ERROR FOR THE INVERSE MODEL
C AND THE INVERSE FILTER.

240

245

250

ERROR=0.0

ERROR2=0.0

DSQ=0.0

DSQ2=0.0

DO 240 J=2001,2000+-NPT
ERROR=ERROR+(ER(J))**2.
ERROR2=ERROR2+(E2(J))**2,
DSQ=DSQ+Y(J-DELAY)**2.0
DSQ2=DSQ2+X(J-DELAY2)**2.0
CONTINUE

AVGENE=ENER/NPT

UCONST=UCONST/NPT

ERROR=ERROR/DSQ

ERROR2=ERROR2/DSQ2

WRITE(4,245)
FORMAT('AVG SQ INV ER',2X,’AVG SQ MOD ER)

WRITE(4,250)ERROR2,ERROR
FORMAT(F10.4,2X,F10.4)
CLOSE(4)
CLOSE(7)
CLOSE(8)
CLOSE(9)

END

117




Program 8:

program BPF
¢ this program generates FIR filter coefficients of a digital bandpass filter
c by using the window synthesis technique. the filter coefficients are
¢ saved to the file ‘bpfw’ and the frequency response is saved to the file
¢ 'data’. the first column in ‘data’ is the frequency and the second column
¢ is the magnitude.

¢ declare variables
real fcoef(1000),freq(256),phase(256)

¢ open data files
open(unit=1 file="bpfw’',status="unknown’)
open(unit=2,file="data’,status="unknown')

¢ set the sampling frequency in Hz
fs5=54945

C set the number of taps. make sure the number of taps is odd.
nt=31

C set the upper cutoff in Hz
fh=1500.0

¢ set the lower cutoff in Hz
fl= 400.0

fc=(fh-11)/2.0
we=fCc*2.0%3.14159265

nt2=nt/2

do 10 n=-nt2,nt2
arg=wc/fs*n+1e-39

¢ use a triangular window
win=1l-abs{{2*n)/{(nt-1))

wWOo=(fc+f1)%¥2.0%3 14159265/fs
fcoef(k)=win*(sin(arg))/arg*cos{wo*n)

write(1,20)fcoef(k)
20 format(f13.8)
k=k+1
10 continue

C calculate scaling factor
foef(nt-1)=15/2.0/(fh-f1)
write(1,22)fcoef(nt+1)

22 format(f13.8)
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ntps=nt
¢ calculate freguency response
call FRERES(ntps,fcoef,freq,phase,m)
do 40 k=0,40
fre=k*fs/80.
write(2,30)fre,freqg{k+1)
30 format(f10.4,2x,f10.6)
40 continue
end

SUBROUTINE FRERES(NTPS,Z,FREQ,PHASE,m)
C THIS SUBROUTINE CALCULATES THE FREQUENCY AND PHASE RESPONSE OF
C ANFIRFILTER. THE FIR FILTER COEFFICIENT VARIABLES ARE Z(*).
C THE FREQUENCY RESPONSE 1S STORED IN THE VARIABLE FREQ(*), AND
C THE PHASE RESPONSE IS STORED IN THE VARIABLE PHASE(*).

REAL Z(1000),REAL,IMAG,FREQ(256),PHASE(256)
TOTPHASE=0.0
TOTCORR=0.0

SETFLAG=0.
DO 10 N=0,79

C THE NORMALIZED FREQUENCY RANGE FROM O TO 8 IS DIVIDED INTO
21 INTERVALS.

REAL=0.0
IMAG=0.0
DO 20 I=0,NTPS~1

REAL=REAL~+Z(1+1)*(COS(.0785%*N*|))
IMAG=IMAG-Z(1+1)*(SIN(.0785*N*I))

20 CONTINUE

FREQ(N)=SQRT(REAL*REAL+IMAG*IMAG)
IF(REAL.EQ.0.0)REAL=1.0E-99

PHASE(N)=ATAN(IMAG/REAL)
IF(N.EQ.O.AND.REAL.LT.0.) SETFLAG=1.
IF(N.EQ.O) GO TO 40
IF(SETFLAG.eq.0.)THEN
IF(IMAG.GT.0.0.AND.REAL.LT.0.0)PHASE(N)=2.1416+PHASE(N)
IFGUMAG.LT.0.0. AND.REALLT.0.0)PHASE(N)=-3.1416+PHASE(N)
IF(IMAG.LT.0.0.AND.REAL.GT.C.0)PHASE(N)=PHASE(N)
END IF
IF(SETFLAG.EQ.1)THEN
IFCIMAG.GT.0.0.AND.REAL.LT.0.0)PHASE(N)=PHASE(N)
IFOMAG.GT.0.0.AND.REAL.GT.0.0)PHASE(N)=PHASE(N)-3.1416
IFOMAG.LT.0.0.AND.REAL.LT 0.0)PHASE(N)=PHASE(N)
IFOUMAG.LT.0.0.AND.REAL.GT.0.0)PHASE(N)=3.1416+PHASEIN]
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END IF
40 TOTPHASE=TOTPHASE+ABS(PHASE(N))
TOTCORR=TOTCORR+ABS(COS(PHASE(N)))

10 continue

RETURN
END

Program 9:
PROGRAM FILX
C THIS PROGRAM SIMULATES THE ALTERNATE FORM OF THE FILTERED-X
C ALGORITHM TO CALCULATE THE INVERSE MODEL OF THE REVERBERATICN
C CHAMBER AT AMRL/BBA.
C  NT IS THE NUMBER OF TAPS
C X(N) IS THE DESIRED SIGNAL (WNG=D(N))
C D(N) IS THE INVERSE MODEL INPUT SIGNAL (MIC=X(N))
C NPT IS THE NUMBER OF SAMPLE POINTS.
C

DECLARE VARIALBLES
INTEGER X1(52000),DELAY,COUNT ,FCOUNT ,DELAY2
INTEGER DI(52000)
REAL X(52000),Y(52000),0(52000),X1(57000)
REAL W(5000),XMAG(1024),YMAG(1024),DMAG(1024)
COMPLEX XS(1024)
REAL ER(52000),E2(52000),X2(52000)
REAL W1(1000),Y2(52000),Y3(52000),Y4(52000),01(57000)

C OPEN DATAFILES
OPEN(UNIT=4,FILE="XDY',STATUS="UNKNOWN")
OPEN(UNIT=5,FILE="WNG',STATUS='0LD")
OPEN(UNIT=6,FILE=MIC ,STATUS="0LD")
OPEN(UNIT=8,FILE='"DSPECT",STATUS="UNKNOWN")
OPEN(UNIT=7 FILE="XSPECT',STATUS="UNKNOWN")
OPEN(UNIT=9,FILE="YSPECT',STATUS="UNKNOWN")

C SET THE NUMBER OF SAMPLE POINTS IN THE DATA FILES
C WNG_ AND MIC_..

NPT=32768

C SET THE NUMBER OF TAPS NT FOR THE ADAPTIVE INVERSE FILTER
NT=151

C SET THE NUMBER OF PLANT MODEL TAPS
NT2=50

C SET THE DELAY TO 1/2 THE NUMBER OF TAPS
DELAY=NT/2

C SET TRHE NUMBER OF FFT POINTS NFFT
NFFT=128

C SET THE CONVERGENCE CONSTANT FOR THE ADAPTIVE INVERSE FILTER
Ut=.0010 :

C SET THE CONVERGENCE CONSTANT FOR THE ADAPTIVE PLANT MODEL
U2=.025
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) C SET THE STARTING POINT (NSTART) FOR THE \P\S\D
NSTART=24577
' C SET THE FINISH POINT (NFIN) FOR THE \P\S\D
L NFIN=32768
C SET THE NUMBER OF PSD POINTS TO BE WRITTEN TO THE FILES XDY,
C XSPECT, DSPECT, YSPECT.
NPSD=40
C NFIN - NSTART « 1 MUST BE A MULTIPLE OF NFFT

r C MAKE THE FILTER CAUSAL FOR A MAX FILTER SIZE OF 2000.
. DO 10 N=1,2000

X(N)=0.0

X2(N)=0.0

D(N)=0.0

Y(N)=0.0

Y2(N)=0.0

Y4(N)=0.0
10 CONTINUE

C READ IN DATA FROM THE WNG_ FILE

DO 30 N=1,NPT
READ(S,35)XI(N)
35 FORMAT(18)
READ(6,36,END=999)DI(N)
36 FORMAT(18)
20 CONTINUE

999  CLOSE(S)
CLOSE(6)

C MULTIPLY DATA BY A CONSTANT AND PREPARE |T FOR PROCESSING
DO 40 N=2001 NPT+2000
X(N)=X1(N-2000)%*.0043
DIN)=DI{N-2000)*.0043
40  CONTINUE

C ZERO THE WEIGHTS.
DO 70 N=1,NT
W(N)=0.0
70 CONTINUE

C START MAIN FILTER LOOP
DO 80 N=2001+NT+500,2000+NPT

C SET FILTER ACCUMULATORS TO ZERO.

ACCUM=0.0
ACCUM2=0.0

C CALCULATE THE PLANT MODEL QUTPJT
DO 320 K=1,NT2
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320 ACCUM=ACCUM-X(N-(K=-1))*W1(K)
VZ2(N)=ACCUM

C CALCULATE THE INVERSE MODEL OUTPUT.
DO 340 K=1,NT
ACCUMZ=ACCUM2-DIN~(K-1))*W(K)
240 CONT INUE
VIN)=ACCUM2

C CALCULATE THE ERROR FOR THE INVERSE MODEL
E=X(N-DELLAY)-V(N)
ER(N)=E

C CALCULATE THE ERROR FOR THE PLANT MODEL
£2(N)=D(N)-Y2(N)

C CALCULATE THE FILTER WEIGHTS FOR THE NEXT ITERATION.
ERR=2.0*%U I *E
ERR2=2.0%U2*E2(N)

C INVERSE MODEL WEIGHT UPDATE
DO 120 J=1,NT
WD) =W(I+ERR*Y2(N-(J-1))
120 CONTINUE

C FORWARD PLANT MODEL WEIGHT UPDATE
DO 135 K=1,NT2
W1 K)=WI1(K)+ERR2*X(N-(K-1))
135 CONTINUE

80 CONTINUE
85 CONTINUE

C CALCULATE POWER SPECTRUM FOR THE INVERSE MODEL INPUT X(NJ, THE
C INVERSE MODEL OUTPUT Y(N) AND THE DESIRED SiGNAL D(N).

N=NFFT

C SAMPLING RATE WAS 22.75 US
T=2275E-6

C FOR DIRECT FFT KQDE =1
KODE=1
DF=1./(N*T)

DO 128 J=1,NFFT
XMAG(J)=0.0
DMAG(JY=0.0

128 YMAG(J)=0.0

FCOUNT=0

COUNT=0 .ﬁ
-

C CALCULATE THE PSD FOR THE INVERSE MODEL INPUT DATA
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DO 130 J=2000+NSTART,2000+-NFIN
COUNT=COUNT~ 1
XS(COUNT)=CMPLX(D(J))
(F(CCOUNT.EQ.NFFT) THEN
CALL FFT(KODE,N,T XS)
DO 140 K=1,NFFT
XMAG(K)=CABS(DF *XS(K))+XMAG(K)
140 CONTINUE
COUNT =0
FCOUNT=FCOUNT 1
END IF
120 CONTINUE

DO 150 J=1,NPSD
XMAG(J)=10%LOG 1 0(XMAG(J)/FCOUNT)
WRITE(7,155)XMAGY)
155 FORMAT(F10.6)
150 CONTINUE

FCOUNT=0
COUNT=0

C CALCULATE THE PSD FOR THE DESIRED PINK NOISE SIGNAL
DO 160 J=NSTART+2000,NFIN+2000
COUNT =COUNT+1
XS(COUNT)=CMPLX(X(J-DELAY))

IF(COUNT.EQ.NFFT) THEN
CALL FFT(KODE,N,T,XS)
DO 170 K=1,NFFT
DMAG(K)=CABS(DF*XS5(K))+DMAG(K)
170 CONTINUE
FCOUNT=FCOUNT+ 1|
COUNT=0
END IF
160  CONTINUE

DO 180 J=1,NPSD
DMAG(J)=10*L0G 1 O(DMAG(J)/FCOUNT)
WRITE(8, 185)DMAG(J)
185 FORMA1(710.6)
180  CONTINUE

FCOUNT=0
COUNT=0
C CALCULATE THE PSD FOR THE INVERSE MODEL OUTPUT.
DO 190 J=NSTART-2000,NFIN-2000
COUNT=COUNT~1
XS(COUNT)=CMPLX(¥(J))
IF(COUNT.EQ.NFFT) THEN
CALL FFT{KODE,N,T X3)
DO 200 K=1 ,NFFT
VI“ AG(K)=CABS{DF *XS(K))- VM AG(K)
200 CONTINUE
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FCOUNT=FCOUNT-1
COUNT=0
END IF
190  CONTINUE

C COMPARE PSDS AND WRITE RESULTS TO FILE "XDVY"
DIFF=0.
DIFFO=0.

WRITE(4,212)
212 FORMAT('FREQ',SX,'DESIRED",5X,"W/0 FIL,SX,"W FIL"
DO 210 J=1,NPSD

YMAG(J)=10%LOG 10(YMAG(L)/FCOUNT)
DIFF=DIfF - ABS(DMAG(J)-XMAG(J))
DIFFO=DIFFO+~ABS(DMAG(J)-YMAG(J))

FREQ=(J-1)*43956./NFFT
WRITE(4,2 1 5)FREQ,XMAG(J),DMAG(U), YMAG)

215 FORMAT(F7.1,2X,F10.6,2X,F10.6,2X,F10.6)
WRITE(9,220)YMAG(J)
220 FORMAT(F10.6)

210  CONTINUE
DiFF=DIFF/NPSD
DIFFO=DIFFO/NPSD
WRITE(4,225)
225 FORMATCAVMAGIX-W/0) ,3X,"AVMAG(X-W)")
WRITE(4,220)DIFF ,DIFFO
230 FORMAT(F9.4,2X,F9.4)

C CALCULATE THE AVERAGE SQUARED ERROR FOR THE INVERSE MODEL
ERROR=0.0
ERROR2=0.0
DSQ=0.0
D0SQ2=0.0
DO 240 J=2001+NSTART,2000+NPT
ERROR=ERROR+(ER(J))**2
ERROR2=ERROR2+E2(J)**2,
DSQ=D3Q+X(J~DELAY)*%*2.0
DSQ2=DSQ2+D(U)**¥2.0
240  CONTINUE
AVGENE=ENER/(NPT-NT)
UCONST=UCONST/(NPT-NT)
ERROR=ERROR/DSQ
ERROR2=ERROR2/D3Q2
WRITE(4,245)

245 FORMAT(AVG SQ INVM ER’,2X,"AVG SQ FMOD ER)
WRITE(4,250)ERROR,ERROR2
250 FORMAT(F10.4,2X,F10.4)
CLOSE(4)
CLOSE()
CLOSE(8)
CLOSE(9)
END
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Program 10:
program fdass

¢ this program simulates the frequency domain adaptive spectrum
¢ shaper
¢ declare the variables

integer xi(37000),di(37000),delay,count,fcount,1,count2

real x(37000),d(37000),y(37000),y2(37000)

real xmag(2048),ymag(2048),dmag(2048),w 1(1000)

complex xs(1024),dk(32768),xk(32768),xfft(2048),w(2048)
complex yk(2048),grad(2048),cmplx,conjg,dfft(2048)

real energy(37000),er(65000),e(2048),ul(2048)

real 11(256),u,xavg(1024),eavg(1024)
integer count3,count4
complex yfft(2048)

¢ open the data files
opentunit=1,file='weights 100, status="unknown’)
open{unit=2,file="u’,status="unknown’)
open(unit=3,file='dye’,status="unknown’)
open(unit=4,file="xdy’',status='unknown’)
open(unit=5,file='wng’,status="old")
open{unit=6,file="mic’,status="o01d")
open(unit=7,file="xspect’,status="unknown’)
open(unit=8,file='dspect’,status='unknown’)
open{unit=9,file="yspect’,status="unknown’)

¢ set the number of sample points in the data files
¢ wng_ and mic_.
npt=32768
¢ set the number of taps nt
nt=128
C set the number of plant taps
nt2=100
¢ set the number of fft points for the PSD
nfft=128
¢ set the starting point (nstart) for the PSD
nstart=16385
¢ set the finish point (nfin) for the PSD
nfin=30720
¢ set the number of psd points to be written to the files xdy,
C xspect, dspect, yspect.
npsd=40
¢ nfin - nstart + 1 must be a multiple of nfft
¢ make the filter causal for a max filter size of 2000.
¢ read in data from the wng_ and mic_ files

do 20 n=1 npt
read(5,25,end=9488)xi(n)
25 format(ig) -
20 continue
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998 close(5)

- do 30 n=1,npt
~ read(6,35,end=999)di(n)
25 format(i8)
x(N)=xi(n)*.0043
20 continue
999 close(6)

¢ multiply data by a constant and prepare it for processing.
do 40 n=1,npt
xk(n)=cmpix(x(n),0.0)
d(n)=di(n)*.0043
- dk(n)=cmplix(d(n),0.0)
40 continue

¢ read in plant weights
do 310 j=1,nt2
read(1,300,end=315)w 1(}))
200 format(f10.6)
310  continue
315  continue

¢ qgenerate converge constant ul(k) for each frequency bin based on the PSD
¢ of the input signal x.
c alpha is the normatization step size constant which controls the rate of
¢ of adaptation,

alpha=1S

do 34 n=1,nt

34 xmag(n)=0.0
C average 20 blocks

do 36 n=1,20
¢ load fft buffer
do 37 k=1,nt
37 Xfft(k)=xk(k+(n-1)¥1024) _
kode=1
dt=1.0
call fft(kode,nt,dt xfft)
do 38 k=1,nt

28 xmag(k)=xmag(k)+cabs(xfft(k))
36 continue
do 39 k=1,nt
ul(k)=alpha/(xmag(k))**2.0/20.0
write(2,41)ul(k)
41 format(f13.12)
329 continue

¢ initialize the weights and the output buffer.
do 70 n=1nt
win)=cmpix(1.0,0.0)
yk(n)=(0.0,0.0)
70 continue |
do 75 k=1 ,nt2+nt/2
75 y(k)=0.0
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h c repeat the filter process 4 times to ensure the filter has converged.

{ do 85 pp=1,4
¢ initialize counters
do 77 k=1,nt
eavg(k)=0.0
77 xavg(k)=0.0
count=nt2+nt/2
count2=0
count3=0
count4=0

¢ main filter loop
do 80 n=1+nt/2,npt-nt,nt/2

¢ block the input data sequence
do 100 p=1,nt
xffL(p)=xk{p+n-1)
100 continue
kode=1
dt=1.0
call fft(kode,nt,dt,xfft)

c calculate the filter output
do 110 L=1,nt
yk(L)=xfrE(L)*w(L)

110  continue

¢ calculate the filter time sequence output.
kode=-1
dt=1.0/nt
call fft(kode, nt,dt,yk)

¢ through away the first n/2 data points.
do 120 k=nt/2+1,nt
count=count+1
y(count)=real(yk(k))
120  continue

¢ calculate the plant output sequence.
do 390 j=1,nt
count4=count4-+1
accum=0.0
do 400 k=1 ,nt2
400 accum=accum~w H(k)¥y(count-nt+j~(k-1))
y2(count4)=accum

¢ calculate the plant output sequence fft
yfft(j=cmpix(accum,0.0)
290 continue
kode=1
dt=1.0
call fft(kode,nt,dt,yfft)
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¢ calculate the magnitude of xfft, dfft, and yk.
¢ don't start unless the plant input shift register is full.
if(count4.gt.nt2)then
do 115 1=1,nt
xmag(1)=cabs(xfft(l))
ymag(l)=cabs(yfrt(i))
115 continue

¢ caltcuate the error
count3=count3~]
do 117 k=1,nt
e(k)=xmag(k)-ymag(k)
xavg(k)=xavg(k)+xmag(k)
eavg(k)=eavg(k)+e(k)
count2=count2+1
er(count2)=e(k)
117  continue

¢ weight update when 10 PSD data blocks have been averaged.
if(count3.eq.10) then
do 165 k=1,nt
wk)=w(k)+ul(k)*eavg(k)*cmplx(xavg(k),0.0)
165  continue
do 166 kk=1,nt
eavg(kk)=0.0
166 xavg(kk)=0.0
count3=0
end if
end if
80  continue
85  continue

c calculate power spectrum for the filter input x(n), the
¢ filter output y(n) and the desired signal d(n).

n=nfft

¢ sampling rate was 22.75 us
t=22.75e-6

¢ for direct fft kode = 1
kode=1
do 128 j=1,nfft
xmag(j)=0.0
dmag(j)}=0.0

128 ymag(j)=0.0
fcount=0
count=0

do 120 j=nstart,nfin

count=count+1

xs(count)=cmpix(d(j))

if(count.eq.nfft) then

call fft(kode,nt,xs)

do 140 k=1,nfrt

xmag(k)=cabs(xstk))-xmag(k)
140 continue
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=t

count=0
. fcount=fcount+1
: end if
120 continue
do 150 j=1,npsd
xmag(j)=10%*log10(xmag(j)/fcount)
write(7,155)xmag(j)
155 format(f10.6)
- 150 continue
‘ fcount=0
count=0
do 160 j=nstart,nfin
count=count+ 1
xs{count)=cmplx(x(j))
if(count.eq.nfft) then
call fft(kode,n,t,xs)
do 170 k=1,nfft
dmag(k)=cabs(xs(k))+dmag(k)
170 continue
U fcount=fcount+ |
count=0
end if
160  continue
do 180 j=1,npsd
dmag(j)=10%*log10(dmag(j)/fcount)
write(8,185)dmag(j)
] (85 format(f10.6)
) 180 continue
fcount=0
count=0
do 190 j=nstart,nfin
count=count+ 1
- xs(count)=cmpix(y2(j))
: if(count.eq.nfft) then
call fft(kode,n,t, xs)
do 200 k=1 ,nfft
ymag(k)=cabs(xs(k))+ymag(k)
200 continue
fcount=fcount+ |
count=0
end if
190  continue
diff=0.
diffo=0.
L write(4,212)
212 format('freq’,Sx, input’,7x,'desired ,Sx, output”’)
do 210 j=1,npsd
ymag(j)=10%*log10(ymag(j)/fcount)
diff=diff+abs(dmag(j)-xmag(j))
diffo=diffo+abs(dmag(j)-ymag(j))

1 freq=(j-1)*43956./nfft ‘
: write(4,215)freq,xmag(j),dmag(j),ymag(j) %
215 format(f7.1,2x,f10.6,2x,f10.6,2x,f10.6)

write(9,220)ymag(j)
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220 format(f10.6)
210 continue
diff=diff/npsd
diffo=diffo/npsd
write(4,225)
225 format('mag(d-x),6x,'mag(d-y))
| write(4,230)diff, diffo
2320 format(f9.4,2x,19.4)
close(7)
close(8)
close(9)
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\ iz B: F D in Adaptive Fil Li
Review

This brief literature review summarizes several frequency
domain adaptive filter articles. The following notation is used
throughout the summary: boldface letters denote vectors or matrices
and capitals denote frequency domain variables.

Mauro Dentino and others introduced the first complex LMS
algorithm that adaptively filters in the frequency domain (2:1658).
They showed that frequency domain complex LMS adaptive filter
implementations offer reduced number of computations over the
time domain when the number of weights exceed 16. It's expected
the number of weights for the thesis solution to far exceed 16
weights since the reverberation period of the reverberation chamber
is approximately 400 milliseconds (4). Their frequency domain LMS
algorithm block diagram is illustrated in Figure 1. The input signal
Xx and the desired signal dx are accumulated in separate N-point
buffer memories to form N-point data blocks. The data blocks are
transformed to N complex numbers with an N-point FFT. The
complex number in each of the input N frequency bins is multiplied
by an independent complex weight which is controlled by the
complex LMS algorithm. During the mth block iteration, the complex
LMS algorithm predicts the complex filter weight vector W . for the

(m+1)th block iteration in accordance with

Wm+[=Wm+2UX'mEm (1)
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Figure 53. LMS Adaptive Filtering in the Frequency Domain (3:1659)

where u is a non-complex gain constant, Ep is the error vector, and
the character " ' " denotes transpose complex conjugate (2:1658).
The nth frequency bin complex weight for the m + 1 iteration block is

predicted during the mth iteration in accordance with

Walm + 1) = Wa(m) + 2u Ep(m) X*p(m) (2)

where Ej is given by

En‘Dn'Yn (3)

where Dy is nth desired complex signal and Y, is the output of the
nth complex weight (2:1658). The N complex weighted outputs are

transformed with an inverse FFT to an N sample output. The mth
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block of the output time sequence is delayed by N number of
samples.

Treichler and others presented an intuitive approach for
developing frequency domain adaptive filters (13:197). They
explained the block processing of the signal data which includes the
overlap and save convolution technique. The overlap and save
technique circumvents the circular convolution problem due to the
periodic nature of the discrete Fourier transform. The technique
uses 2N input samples instead of N input samples to compute N
output values.

Mohammad Asharif and and others introduced the Frequency Bin
Adaptive Filter (FBAF) for noise cancellation in a chamber with
multi-reflection impulse response (1:2219-2222). According to the
authors, the FBAF performs better than the frequency domain
adaptive filter for cancelling noise in a chamber with a long delay
impulse response. The long delay impulse response is due to surface
multi-reflections of the speaker environment which is a similar to
the acoustic environment in the reverberation chamber for this
thesis. Each frequency bin of the FBAF is processed by an
independent FIR adaptive filter whose weights are controlled by the
extended complex LMS algorithm. This linear prediction of past
history for each frequency bin makes it possible to compensate for
long impulse delays with a shorter window fength. The extended
complex LMS algorithm for the nth frequency bin and the kth tap
delay line is expressed as (1:2220)

Wak(m+1) = Wpx(m) + 2 u Xpx(m) Eqg(m) (4)
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Computer simulations indicate that the FBAF converged faster than
the frequency domain adaptive filter. In addition, an FBAF with an
eight wejght filter and a sample block that was one half as long as
the frequency domain adaptive filter outperformed the frequency

domain adaptive filter.
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Armstrong Aerospace Medical Research Laboratory's Performance
and Communication Research and Technology reverberation cham" 4
ber located at Wright-Patterson Air Force Base. /#=, - <"~

The researcher presents two innovative solutions: a multi-
band Adaptive Inverse Modeling Control System (AIMCS) and a
frequency domain adaptive spectrum shaper. The adaptive spect-
rum shaper uses an improved weight update algorithm developed
specifically for this application. Computer simulation results
are presented which demonstrate the effectiveness of the multi-
band AIMCS and the adaptive spectrum shaper in removing the
spectral distortion of an audio system model.

UNCLASSIFIED




