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AFIT/GE/ENG/88D-49

Abstract

The purpose of this thesis was to explore the feasibility of

replacing a manual audio equalizer with an adaptive inverse filter

that adaptively equalizes the spectral distortion of an audio system.

The impulse response of an audio system , which includes the

response of the speaker crossover network, the power amplifiers,

speakers, and the acoustic transfer function between the system's

speakers and a reference microphone, distorts an audio system's

input signal spectrum. The Adaptive Inverse Prefilter, the Filtered-

x algorithm, and the Adaptive Inverse Modeling Control System are

investigated which remove the distortion by pre-filtering the audio

Usystem's input signal with the audio system's inverse. The audio

system examined is the Armstrong Aerospace Medical Research

Laboratory's Performance and Communication Research and

Technology reverberation chamber facility located at Wright

Patterson Air Force Base.

The researcher presents two innovative solutions: a multi-band

Adaptive Inverse Modeling Control System (AIMCS) and a frequency

domain adaptive spectrum shaper. The adaptive spectrum shaper

uses an improved weight update algorithm developed specifically for

this application. Computer simulation results are presented which

demonstrate the effectiveness of the multi-band AIMCS and the

adaptive spectrum shaper in removing the spectral distortion of an

audio system model.
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Ii

- ' .;i=,-,,illl ll/ll l lil~l



ANALYSIS AND SIMULATION OF AN
AUDIO ADAPTIVE EQUALIZER

L. Introduction

B a o

The Biological Acoustics Branch of the Armstrong Aerospace

Medical Research Laboratory, AAMRL/BBA, tests the intelligibility

performance of aircraft audio and radio systems in a simulated, _!

cockpit, ambient noise environment. A trained panel of ten subjects

comprised of nine listeners and one talker, who are located in a large

*l reverberation chamber, evaluate the intelligibility effectiveness of

aircraft communication links which include aircrew microphones and

headsets, aircraft intercommunication sets and radios. The

m inteliigibility testing is conducted in a pink noise or a simulated

aircraft noise environment. For some simulated aircraft noise

environments, actual cockpit recordings are played through the

reverberation chamber's audio system.

The major components of the noise generation system excluding

the tape deck for the cockpit recording playback and the speaker

crossover network are shown in Figure 1. A complete block diagram

of the audio system is presented in Chapter III. The analog white

noise generator produces white Gaussian noise over the 20 to 50,000

Hz frequency range. The white noise is filtered through a pink noise

filter which rolls off at 3 db per octave from 20 Hz to 20 KHz. The

p 1i I



pink noise is then spectral shaped with a 32 band graphic equalizer.

The spectral shaped noise is amplified with high power amplifiers to

provide up to 125 dB sound pressure level in the reverberation

chamber. The audio system components from point A to point C in

Figure I including the acoustic transfer function between the

speakers and the microphone is referred throughout the thesis as the

audio plant.

SPEAKER REVERBERATION SPEAKER
._ CHAMBER

MIC

SPEAKER SPEAKER

IUC

WHITE NOISE 7ILNKT E _ G P~ jj, POW -ER -- j
IGENERATOR I FLER iIEQULER IAMPLIFIERS'

Figure 1. Noise Generation System

The spectral shape of the reverberation chamber's noise

spectrum is monitored with a spectrum analyzer connected to a

reference microphone located in the center of tne chamber. The

2



graphic equalizer is adjusted to achieve the desired spectral shape of

the pink noise spectrum at the microphone output.

Intelligibility testing must be carefully monitored to insure the

validity and the repeatability of the tests. One test control
allparameter, that is crucial for valid test results, is the equalization of

the reverberation chamber's noise spectrum using the graphic

equalizer. The current equalization procedure is time consuming

and complicated. It requires readjustment for each intelligibility

test run to compensate for changes in the chamber's temperature

and humidity and for equipment drift. A preliminary BBA

investigation suggests that the equalization could be accomplished

automatically with an adaptive filter (7).

Purpose

The purpose of this thesis is to explore the feasibility of using an

adaptive pre-inverse filter to remove the frequency distortion

effects of the audio plant's transfer function so that the plant's

output at the reference microphone has the same spectral shape as

the input noise spectrum.

Scooe

The scope of this thesis is limited to an investigation of finite

impulse response (FIR) least mean square (LMS) adaptive filters.

Applicable LMS adaptive filters are simulated and tested using the

FORTRAN programming language and digitized pink noise data from

the reverberation chamber. The maximum number of taps for the

. ............. ...-- "' ,.=,= i . ,nnI i m lnl=.i I I I3



adaptive filter design is limited to the maximum number practical

with a dedicated digital signal processor chip. No hardware is

produced. The results are computer models, listings, and plots.

Assumotions

For the thesis research, the following assumptions have been

- made:

1. The impulse response of the audio system varies slowly.

2. The audio system's impulse response and its inverse can be
[- characterized with a finite impulse response filter .

3. Effects of finite-word length, round off, and quantization can
be ignored.

The thesis approach consists of a review of current literature to

identify promising adaptive LMS filter candidates, the development

of adaptive filter theory, and the simulation and analyzes of the

selected adaptive inverse filter configurations.

The literature review identified the Adaptive Modeling Inverse

Control System (AIMCS) and the filtered-x algorithm as the most

promising adaptive filter solutions for the simulation and analysis.

Both filter configurations have the required input output structure in

which the inverse adaptive filter is in front and in series with the

unknown plant. In addition to the AIMCS and the filtered-x

algorithm, the Adaptive Inverse Pre-filter (AIP) is also explored as a

4



potential inverse filter solution. The findings of the literature

review are integrated with the theory developed in Chapter IfI.

The theoretical development in Chapter II provides the

foundation required to analyze the AIMCS, filtered-x algorithm, and

the AlP. The initial background theory introduces the adaptive

linear combiner and the LMS algorithm. The theory then focuses on

the AIP, filtered-x algorithm, and the AIMCS.

An adaptive system is justified if the audio plant's response

distorts the input signal and changes with time. To confirm that an

adaptive system is warranted, the spectral response of the audio

Li plant is characterized by analyzing digitized data from the audio

plant. The digitized data is also used to generate the FIR plant

models and in the adaptive inverse filter simulations.

Computer simulations are conducted to test the effectiveness of

the three adaptive inverse filters configurations in removing the

distortion of the plant. The merit of each adaptive inverse filter

* simulation is assessed by comparing the desired spectrum with the

spectrum at the output of the plant.

The simulation programs are written in FORTRAN 77 and are

compiled and executed on the Elxsi computer. Modular top down

programming techniques and descriptive comments enhance the

readability of the source code. The simulation programs are

composed of a main program in which the variables are declared, the

input output data files are opened, the data reads and writes are

performed and the adaptive filter simulations are implemented.

Within the main program loop, calls are made to signal analysis, and 6

noise generation subroutines.

5
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SThe thesis concludes by recommending a course of action for
Icontinued research. For this specific application, it appears that a

frequency domain implementation has significant advantages over

the time domain approaches described within this thesis,

I.-.
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This chapter discusses the adaptive linear combiner, the LMS

S- algorithm, and adaptive inverse filter theory. The adaptive linear

combiner and the LMS algorithm are first briefly introduced. The

remainder of the chapter then focuses on a development of adaptive

inverse filter theory which is applicable to this thesis.

Adaptive Linear Combiner

The adaptive linear combiner is the basic building block for

adaptive signal processing systems. The adaptive linear combiner

consists of tap delay line with adjustable weights and a summing

unit (14:1 6-19). A single input adaptive linear combiner with a

desired response signal dk and an error signal ek is illustrated in

Figure 2. The adaptive linear combiner weights are adapted to

Xk Z- Z- .... Z-1

Yk ek

dk

Figure 2. Adaptive Linear Combiner (1 4:1 7)
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minimize the error ek between the desired response signal dk and

the output of the adaptive linear combiner Yk.

The kth output signal Yk is given by

=- L -

Yk X WnkXk-n = WkT Xk = XkT Wk (2.1)
n-O

- where Xk - Xk Xk- .... Xk-L IT (2.2)

and Wk=[ WOk Wik .... Wh k IT (2.3)

In Eqs(2.1-2.3), the superscript T denotes the transpose matrix

operator. The error signal at the kth time isU

ek - dk - Yk (2.4)

Substitution of Eq(2. 1) into Eq(2.4) yields

ek = dk - WkT Xk (2.5)

For the rest of this development, the subscript k will be removed
from the weight notation since it has been assumed that the weights

have converged and are no longer adapting. The instantaneous

squared error is found by squaring Eq (2.5):

ek 2 = dk 2 + WT XkXkTW - 2dkXkTW (2.6)

8



Assuming Xk and W are uncorrelated and Xk is zero mean and

stationary, the mean squared error (MSE) is derived by taking the

the expected value of Eq (2.6) ( 4:20):

= MSE = -E[ek 21 - E[dk 2l + WT E[XkXkT]W - 2E[dkXkTIW

-E[ek 2] - E[dk 2J - WT RW - 2pTW (2.7)

where the input autocorrelation matrix R is given by

X-2 k XkXk-I Xk-Xk-L

E[XkXkTI = R = E . . . . (2.8)

Xk-LXk Xk-LXk-1 X2k-L

and the cross correlation vector P between the input and the desired

signal is given by

dkXk

N dkXk- I

E[dkXkT ] - P - E (2.9)

dkXk-L

Equation (2.7) shows that the mean-square error is a quadratic

function of the components of the weight vectors (14:20). The

quadratic function has a paraboloid performance surface for a two

weight adaptive linear combiner and hyperparabcloid performance

surface for an adaptive linear combiner with three or more weights.

Figure 3 illustrates a typical performance surface for a two weight

adaptive linear combiner in which the vertical axis represents the

9



mean-square error and the two horizontal axes are the weight

values. The performance surface contour is bowl shaped, with the

concave upward, and only one minimum at the bottom of the bowl.

The optimum weights W* can be determined by projecting the

minimum MSE on the weight vector plane. In the next section, the

least mean square (LMS) algorithm that seeks the minimum of the

performance surface is discussed.

30-

- -

100
iW

W1 3

Figure 3. Portion of a Two Dimensional
Quadratic Performance Surface

Least Mean Sauare Algorithm

The LMS algorithm is an approximation of the steepest descent

iterative algorithm which searches the performance surface for the

weight vector that minimizes the mean square error between the

10



desired response signal dk and the adaptive filter output signal Yk

(14:99). The LMS algorithm utilizes gradient estimates to descend

down the performance surface and locate the minimum. Bernard

Widrow and Samuel Streans describe the LMS algorithm as an

elegantly simple search method for adaptive signal processing

applications, where the adaptive system is an adaptive linear

combiner with both the input state vector Xk and the desired signal

dk available at each iteration (14:99).

The steep descent algorithms change the weight vector in

proportion to the negative gradient vector

Wk+1 - Wk - UVk (2.10)

where Wk+I is the estimated weight vector for the k+Ith iteration,

Wk is the weight vector at the kth iteration, u is the gain constant

which regulates the rate and stability of convergence, and Vk is the

gradient vector at wk (1 4:48). The gain constant u has units of

reciprocal power.

The LMS algorithm uses e 2 k as an estimate of 4 to calculate the

gradient at each iteration. The gradient is obtained by taking the

derivative of Eq(2.5) with respect to the weight vector (14:100) 

ae 2 k-  -ek
awo awo

Vk'= =2ek - -2 ekXk (2.11)

ae2k aek

aWL SwL

I1



n Substitution of the gradient Eq(2.l ) into Eq(2.10) yields the LMS

algorithm

Wk, - Wk + 2uekXk (2.12)

Because the LMS algorithm's gradient is an estimate, the

adaptive process is noisy and does not follow the true path of

steepest descent (14:100). However, the LMS algorithm is

practically realized without complex mathematical computations.

U The upcoming sections apply the basic adaptive signal processing

concepts just introduced in the development of adaptive inverse

filter theory.

3
Inverse Filter Theory

The LMS algorithm is utilized in a multitude of signal processing

* applications which includes interference and echo cancellation,

modeling and inverse filtering of an unknown propagation channel,

linear prediction and spectral estimation (14;4:128 1-1283). This

section focuses on adaptive inverse filters.

An inverse filter can remove the undesired distortion effects of a

plant. The distortion for this thesis is the non-flat frequency

response of the audio plant. The audio plant consists of the audio

amplifiers, speaker crossover network, speakers, and the acoustic

transfer function between the speakers and the reference

microphone in the reverberation chamber. To solve this thesis

problem, the adaptive inverse filter must be placed in front of the

12



n audio plant to pre-equalize the audio plant's input audio signal; so,

the output of the audio plant at the microphone has the desired

spectral shape.

An adaptive inverse filter is required when the plant

characteristics are unknown and/or change slowly with time. The

transfer function of the audio equipment and the reverberation

chamber acoustics changes with time as a result of air temperature

and humidity variations, audio equipment drift, and number and

location of the subjects in the reverberation chamber (7). In

Chapter 4, actual test data from the reverberation chamber verify

that the plant's transfer function does vary with time.

General Inverse Filter Theory. Figure 4 illustrates the inverse

filter concept. An inverse filter W(z) is placed in series with the

Xk ..F z ].F........ Y k

Figure 4. Inverse Filter

plant P(z) to remove the effect of the plant; so, the output signal YR is

equal to the input signal Xk (5:422-448). For the inverse filter to

exactly compensate for the plant, the product of the z transforms

W(z) and P(z) must be equal to unity

W(z) P(z) = P(z) W(z) = 1 (2.13)

13



Thus, the series connection of the inverse filter and the plant act as a

straight wire. Solving Eq(2.1 3) for the inverse filter transfer function

gives

W(z) =P(z) -  (2.14)

Hence, the inverse filter's transfer function is the reciprocal of the

plant's transfer function. For illustrative purposes, let the plant's

transfer function be given by the ratio of two polynomial expressions
in z - 1

D(z)P(z) = F=z (2.15)

F(z)

To exactly cancel the plant, the inverse filter's transfer function is

given by

F(z)W(z) *Dz) (2.16)

Thus, the poles of the inverse filter transfer function are the zeros of

the plant and the zeros of the inverse filter are the poles of the plant.

Minimum and Non-minimum Phase Plants. The phase response

of the plant has important ramifications on the design of inverse

filters. If the plant zeros are contained within the unit circle, the

plant has minimum phase and the corresponding inverse filter's

poles are contained within the unit circle (5:426-429). Because the

14



poles are contained within the unit circle, the minimum phase plant's

inverse is stable. For a given plant's magnitude response, a

minimum phase plant is a causal system with the smallest phase

response possible (5:427). A non-minimum phase plant has a zero

or zeros outside the unit circle. Therefore, the inverse filter for a

non-minimum phase plant has poles outside of the unit circle to

cancel the zeros which are outside the unit circle. If the inverse is

not exact, it will be unstable. An exact inverse can not be practically

realized. A method to design an approximate stable inverse for the

non-minimum phase plant is discussed in the next paragraph. A
I-

minimum phase plant's phase response is characterized as a

continuous function of the radian frequency co which starts at zero

phase at co = 0, returns to zero phase at co = i, and does not exceed iT

l radians (5:426). While a non-minimum phase response is

characterized as a continuous function of the radian frequency (o)

which starts at zero phase at co = 0 and ends at -N TY phase at co = T

* where N is the number of zeros outside of the unit circle (5:427).

Zeros on the unit circle result in discontinuous jumps of iT radians in

the phase response.

The inverse z transform for the inverse filter of a non-minimum

plant yields an infinite left sided or two sided non-causal impulse

response (14:233,235). The impulse response is left sided when all

the zeros are outside the unit circle and two sided when the zeros are A

located inside and outside of the unit circle. By delaying the inverse

impulse response to shift the impulse response to the right and

truncating the infinite impulse response, an approximate, delayed,

causal inverse can be realized with an FIR filter (14:233).

15



Stephen Nealy and Jont Allen describe the impulse response of a
U room as having non-minimum phase when the microphone is more

than 8 in. from the speakers (9:169). In the revJerberation chamber

at AFAMRL/BBA, the microphone is separated from the speakers by

== more than 6 ft. Therefore, the impulse response of the

reverberation chamber has non-minimum phase characteristics

which must be considered in designing the inverse filter. The next

section analyzes three adaptive inverse filter configurations and

addresses the limitations of the Adaptive Inverse Prefilter.

Adaptive Inverse Pre-filter. The adaptive inverse pre-filter

(AIP) is illustrated in Figure 5 where a plant occurs after and in

series with the adaptive inverse filter. Bernard Widrow and Samuel

Stearns state that AIP is "almost guaranteed to be unstable or, if not,

5 to converge to an irrelevant solution" (14:289). Because of some

preliminary simulations in which the AIP converged to a relevant

solution, the AIP configuration is analyzed to determine its

* limitations.

XCk INVIERSE Yk PLRNT- k
FITE 

ek

dk

Figure 5. Adaptive Inverse Pre-filter

Derivation of the AIP Optimum Weight Transfer Function. The

purpose of the derivation is to determine whether the AIP inverse

16
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filter can inverse filter an FIR plant. The derivation follows closely

the derivation of an optimum weight transfer function for the

adaptive inverse modeling filter in the text by Widrow and Stearns

(14:234-235).

The plant P(z) has weights Pn where n denotes the nth weight.

From Figure 5, the error signal ek is given by

ek =dk - Yk (2.17)

L
where Y'k Pn Y(k-n) (2.18)

n=O

and Yk= i W(k) X(k-m) (2.19)
M=0

Substitution of Eqs (2.18) and (2.19) into Eq (2.17) yields

L

ek = dk - I J Pn wm(k-n) X(k-m-n) (2.20)
n=O mrO

Squaring Eq(2.20) and substituting Xk for ,' gives the instantaneous

squared error

e 2 k : y2k - 2Xk Pn Wm(k-n) X(k-m-n)
n=O m=O

+ I pnPiWm(k-n)Wp(k-)X(k-m-n)X(k-l-p) (2.21)
n:O m=O 1=0 p=O

17



3I Assuming the filter has converged to the optimum weights so the

weights are no longer time dependent and taking the expected value

of Eq(2.21 ) yields

LI
S=E(e 2 k) =E(x 2k)-2 1 J Pn wm E(xk Xk-m-n)

n=O m=0

L ILI
+ 1: 1 J Pn PI wm Wp E(Xk-m-n Xk-I-p) (2.22)

n=o m=O 1=0 p=O

Substitution of the correlation function for the expected value

function (i.e. Oxx(n)= E I Xk Xk+n] ) gives (14:128)

£ L
=Oxx(O) - 2 1 J Pn Wm )xx(-m-n)

n--O m=O

L L
+ X .. Pn P, Wm Wp 4xx(-m-n+,+p) (2.23)

* n=O m=O 1=0 p=O

The least mean square ideal weight vector W* is obtained by

substituting k for m, by applying the symmetry relationship for the

autocorrelation function, Pxx(-k-i,+v+p) = )xx(k+n-I-p), by taking the

gradient of the least mean square error performance surface, and by

setting the gradient equal to zero ( 14:23 4)

a4 L

awk - 2 Y Pn Oxx(-k-n)
n=O

+ 2 Pn PI Wp 4xx(k+n--p) =0 (2.24)
n=O 1=0 p=O
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* which simplifies to

L L L
pn Oxx(-k-n)= Y Y J pn pI Wp" Oxx(k+n---p) (2.25)

n=O n=O 1=0 p=O

To express Eq(2.2 5) in terms of z transforms, Equation's (2.2 5) finite

limits of summation are replaced with infinite limits by making the

plant and adaptive filter coefficients zero outside the finite limit

boundaries (14:120)

(PnI= [... 0 0 O0PO PI .. PL 0 0 0 ... (2.26)
( PI] = [..0 0 PO I.. PLO00 0...]

[p'JI=...OO owp P..LWOOO ..

Thus, Eq(2.25) becomes

00 00 00 00

Pn 4xx(-k-n) = I Pn P Wp Oxx(k+n-l-p) (2.27)
n=-oo n=-oo 1=-oo p=-oo

Taking the z transform of both sides gives

IX Pn4~xx(-k-n) Z-k = 00x 1
k=-oo n=-oo k=-oo n=-oo I=-

00

X I PnP1Wp*Oxx(k+n-I-p) Z-k (2.28)
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* To simplify the left side of Eq (2.28), let m =k + n to obtain

XPn~xx(-rn) Zn-rnm
rn=-oo fl=-co k=-oe fl=-oo 1=-ao

INN 00

X I PnPiwp*xx(k+n-1-p)Z-k (2. 29)

Applying the symmetry relationship for the autocorrelation function

yields

V ~ ~ ~ Pn-z' O xx(rn) z-,n=X X X
n=-oo M=-00 k=-oO fl-oo =0

00

X PnP1wP*Oxx(k+n-]-p) Z-k (2.30)

and applying the z transform gives

00 
0 0 

0 
0

-P(Z 1 ) 4 )Xi(Z) = I YY, Y PnP]Wp*Oxx(k+n-1-p) Z-k (2.31)
k=-co n=-c-0 1=-o p=-oo

To simplify the right side of Eq(2.3 1), let r =k +n - I -p .

r~00 fl00 100 00

Collecting terms

00 00 00 00

P(z 1' )(Dx(Z) Y,~ Pizn I PIZi1 I wp~ZP I Oxx(r)z-r (2.33)
fl-oo I=-00 P=-OO r=-00
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applying the z transform

P(z-1 )(D1 1 (z) - P(z-1 )P(z)W*(z)(?' 11 (z) (2.34)

and simplifying gives the expected optimal transfer function which

is the reciprocal of the plant transfer function

W*(z) -Pz) (2.35)

Since the impulse response length of the adaptive filter is finite,

W*(z), which is implemented with an FIR filter, can only approximate

the infinite impulse response of the plant's inverse, the mean

squared error k will not be zero but will approach the minimum on

the average after the adaptive filter weights have converged to the

optimum solution. An equation for the performance function for the

finite length FIR adaptive inverse filter is derived in the next section.

It The performance function equation expresses the mean squared

error as quadratic function of the linear combiner weights.

Performance Function Equation Derivation. From Figure 5,

the error signal is given by Equation (2.17) which is restated for

convenience

ek = dk - Y'k (2.17)

The plant output Y'k is given by

Y'k = Xk Wk *Pk (2.36)
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3Using the convolution commutative law, f(t) -g(t) -g(t) -f (t), and

the associative law, f(t) -[g(t) -h(t)] = (f(t) -g(t)] h(t), Eq(2.36)

becomes (11: 105)

-Y'k- Pk *Xk *Wk (2.37)

which assumes the plant and the adaptive filter can be commuted.

Equation(2.37) in matrix form is given by

yk = pTXkWk (2.38)

where P is the plant weight vector

P~k

Pk=- (2.39)

LPLkj

and Xk is input matrix

F k Xk-1 I Xk-L1

Xk = .. . . (2.40)[Xk-L Xk-L-1 I Xk-2Lj

where Xk XkT Substitution of Eq(2.38) into Eq(2.17) yields

ek =dk -pTXkW (2.41)
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Equation (2.4 1) is squared to obtain the instantaneous squared error

e 2 .dk 2 + WTXkppTXkTW - 2dkP W(.2

Assuming ek , dk, and Xk are wide sense stationary the expected

value of Eq(2.42) is given by

U=E[eik3I = E[dk2l + WTE(Xk ppTXkT]W - 2E[dkpTXklWk (2.43)

U Defining R as the filtered input correlation matrix

R - EIXkppTXkTI (2.44)

and K as the filtered cross correlation vector

K = E[dkpTXkIT (2.45)

Eq(2.43) reduces to the performance function

,E~ekj~
2  EI~dk 2] + WTRW -2KTW (2.46)
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To find the minimum, the gradient of Eq(2.46), is set equal to

zero

0 = 2WTR - 2KT (2.47)

to obtain the Weiner weight vector W*

W' = R-1KT (2.48)

where it was assumed that R is invertible. Substitution of Eq(2.48)

UI into Eq(2.46) yields an expression for the minimum mean squared

error tmin (14:22)

* min - E[dk 2 ] - KTW* (2.49)

Convergence of the LMS Weight Undate Equation. In the

following developmtnt, it will be shown that convergence of the AIP

configuration to the optimum weight vector Eq (2.48) is not possible

with a non-minimum phase plant or a plant with a transport delay

when the input signal is white, zero mean noise. The non-

convergence is the result of the plant's phase response which

decorrelates the Xk and Y'k weight update LMS inputs.
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m To illustrate the decorrelative effect of the non-minimum phase

plant, consider the following example where a two tap adaptive filter

W(z) is attempting to inverse filter a two tap FIR plant. The filter

configuration is shown in Figure 6.

RDRPTIUE FILTER
PLANT

Xkdk

Figure 6. Two Tap AIP Inverse Filtering a Two Tap
* Plant

From Figure 6. the plant weight vector is P = [(p0 p 1I]T.

Substitution of the plant weight vector into Eq(2.4 1 ) yields

a I -

ekl

.... ...... ... ... . ..,,. Im.i .i ,m =,.m~l l i~ i nl i .



The weight update equation for the AlP configuration is obtained by

substituting Eq(2.50) into Eq(2.1 2)

[WLk,,1 XLk1] = [-,-Xk-1][P1 [Xk-, Xk- ,[W(k
W Ok4.1I [W Ok] + U(kX Xk [PO 1k

The expected value of Eq(2.51 ) is given by

r o(Fkl 1 [E Xkkok

E kxl] _ [Xic PT [ Xk Xk-J [Wolk] (2.52)

* Reexpressing Eq(2.12) as

k-I
Wk =WO + 2u Y ej Xj (2.53)

j=O

it is shown that Wk is dependent on Xk- I,Xk-2 . Xo and not on Xk

(15:187). Since Wk and Xk are statistically independent, the

expected value of the product is equal to the product of the expected

values (14:20). Thus, Eq(2.52) becomes

Fwok+z Fwokl FdkXk 1
E WIk+I] E =Ew + 2uEdkkJ

(Xkl [pl k Xk-1 1 [W oki[Xk ] i [poTpj x -  E , (2-54) "
-2uE Xk1 1 Xk2 1.Wlk |  (2.54)
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which further reduces to

LWOk+] =E Wok EdkXkZ

XkI[POXk+P IXk- 1 E[ ] (-5-2u E Xk1 [ POXkl+P1Xk27 JEWlk] (.5

Because Xk is a white zero mean sequence with unit variance, Xk is

uncorrelated with xk- 1 and Eq(2.5 5) becomes

E k 1]= + uEd=_1 -2u [P p Eo k
[WOk+1 E [WOk] [dkxk l EJ [Wokl

FwOkl +dkxk1 -2u Ep lwwk
E [WkJ 2u dkXk k+powlk] (2.56)

In order to determine whether Eq(2.56) can converge to the

optimum weight vector, the optimum weight vector is substituted

into Eq(2.56). Using Eq(2.48) and Cramer's rule to calculate R- I the

optimum weight vector is given by

F - (po 2+p12 ) PoPL 1
(pop1) 2-(po 2+p, 2 )2 (popl) 2 -(po 2+p12)2

W* = R-IKT= POPI - (po2+p12 ) _|
[(Pop) 2 -(po2-+p12)2 (popl) 2 -(po2-+p2)2

[pOdkXk+pldkXk- 1(

[PodkXkl +p dkXk-2]
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which further reduces tom

-(pp 2+p12 )(pOdkXk+p I dkXk- I )+PoP I (podkxk- I +p I dkxk-2)
(Popl )2-(po 2+pl 2)2

W '= (2 58)
Spop I (podkxk+pl dkxk-I )-(po2+p 12 )(podkxk-+pIdkXk-2) (5

(Pop 1)2 -(po 2 +p 12)2

For a minimum phase plant, the desired signal does not need to

be delayed since the minimum phase plant's inverse is causal.

Therefore, dk is set equal to Xk and Eq(2.58) becomes

[ -(pp
2-4p, 2)po

(pop 1 )2-(po-p 12)2
W *min p0 2p 1 (2.59)

(pop I )2 -(po 2 +p 12)2

which is the optimum weight vector for minimum phase plants.

* Substitution of Eq(2.59) into Eq(2.56) yields

[- (po4,+p, 2po2)1
(-po4-po2pi2+pli4)

lim E[Wk+l]=W*+2u -2u -poPl 3  (2.60)
k-*o [L0 (pop )2 -(po2+p I2)2

For a zero near the center of the z plane, p I /pO << 1.0, the weight

update equation Eq(2.60) can converge to the optimum weight vector

lim E(Wk+lI=W* (2.61)
k- ~oo
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since p 14 and p 13 are approximately zero. For a zero just inside the z

plane unit circle, p I/pO < 1.0, Eq(2.60) can not converge exactly to

the optimum weight vector; so, the MSE error will exceed the

minimum MSE given by Eq(2.49). Figure 7 shows the minimum MSE

for the optimum weight vector W* and the MSE performance for the

weight vector W given by Eq (2.56) as function of p with P0

hardwired to 1. Since po is set to 1, - p1 is the zero of the plant. In

Figure 7, the curve for W was generated by solving Eq(2.56)

for Wk where Wk = Wk+1 and substituting Wk into performance

surface function Eq(2.46). The W* curve was generated by

substituting W* into Eq(2.49). The W curve shows that the

performance degrades as the zero of the plant approaches the unit

circle. The performance degradation is the result of the increasing

i phase response of the plant as the zero moves closer to the unit

circle. The phase responses for plants with zeros at .1, .3, .5, and .9

are illustrated in Figure 8.

1.0-

0.8

L 0.6-0W
0.4 W

0.2

in Mse
0.0 n

0.0 0.2 0.4 0.6 0.8 1.0
Zero

Figure 7, MSE versus the Zero Position
for a Minimum Phase Plant
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1.2 t

U .1.0-

p0.8
S-0- Zero at .1

0.6" Zero at .3
-- Zero at .5

MI- Zero at .9uo 0.4

C. 0.2

-0.0

0.00 1 .00 2.00 3.00

w (radians/sec)

Figure 8. Plant Phase Responses

The inverse of non-minimum phase plant with all its zeros

outside the unit circle has a left sided, non-causal, impulse response.

* To realize a causal inverse, the inverse is delayed to shift the left

sided, non-causal impulse response to the right. The delay of the

inverse is accomplished by delaying the desired signal. Thus, dk is

I equal to Xk-2 and Eq(2.58) becomes

pj2p°
(pop 1 )2 -(po 2 +p 12)2

W-*nonmin p I (po2 +pi2 ) I (2.62)L (pop )2 -(po 2 +p 12)21

which is the optimum weight vector for a non-minimum phase plant.
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* Substitution of Eq(2.62) into Eq(2.56) gives

p0 2pI2  1
(pOpl) 2 -(po 2 +p |2)2

lim E[Wk+f.] =W* + 2u [0 ] -2u -Po 3p (2.63)
k-4oo L(POP 1)2-(po2+p 12)2]

Equation (2.63) can not converge to the optimum weight vector when

PO or p I are non-zero values. Figure 8 shows the MSE as given by

Eq (2.46) for the optimum weight vector W* and the weight vector

W derived from Eq (2.56). The curve for W was generated by

solving Eq(2.56) for Wk where Wk = Wk+I and substituting Wk into

performance surface function Eq(2.46). The W* curve was

generated by substituting W* as given by Eq(2.62) into Eq(2.49).

. The MSE for W curve is unity for W given by Eq(2.56). Therefore,

the AlP with the Eq(2.56) weight update equation will yield an

irrelevant weight vector solution for a non-minimum phase plant

£ with a single zero.

1.0-

0.8

0.6- W*
E w

0.4-

0.2

0.0-
1.0 2.0 3.0 4.0 5.0

Zero
Figure 9. MSE versus the Zero Position

for a Non-minimum Phase Plant
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* This example illustrates that a non-minimum phase plant

decorrelates the LMS weight update inputs Y'k and Xk. Therefore,

the AIP configuration will not find a relevant inverse weight vector

when a non-minimum phase plant or a plant transport delay

decorrelates the LMS weight update inputs. Since the audio plant is

non-minimum phase and has a transport delay between the speakers

and the microphone, the AIP is not a practical solution for this thesis.

For a minimum phase plant, a relevant stable inverse can be

obtained; however the performance is dependent on the phase

response of the plant. For a minimum phase plant with a small

phase response, y'k and Xk are partially correlated and the weight

update equation can converge to a relevant solution. AlP simulation

results for minimum phase plants and non-minimum phase plants

are provided in Chapter I I I which verify the theoretical results of

this chapter.

By filtering the Xk in Eq(2.1 2) through a model of the plant to
I_

correlate the LMS inputs, Y'k and Xk, the AIP configuration can

converge to a relevant weight vector solution. This filter

configuration is called the filtered-x algorithm and, it is discussed in

the next section.

Filtered -x Algorithm. The filtered -x algorithm compensates for

the decorrelation effects of the plant as discussed in the AIP section

by pre-filtering the LMS Xk signal through a model of the plant as

shown in Figure 1 0. It will now be shown that the filtered-x weight

update equation can converge to a relevant weight vector for both

minimum and non-minimum phase plants.
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xk =JlINVERSE Yk , Y'k

, ODEL ,

dk

Figure 10. Filtered-x Algorithm ( 5:1857)

The modified weight update equation which incorporates the

filtering of Xk is given by ( 15 57)

Wk+ I = Wk + 2uekXkP' (2.64)

_II

where P' is the plant model vector. Substitution of Eq(2.41) into

Eq(2.64) yields

I

Wk+ I = Wk + 2u(dk -PTXkW)XkP' (2.65)

The expected value of Eq(2.65) is

E[Wk+ I] = E[Wk + 2uE[(dk - PTXkW)XkP'] (2.66)

Equation (2.64) can be rewritten as (1 5:157)

k-1
Wk =W 0 + 2u Y ej XjP' (2.67)

j=O
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Since Xj is filtered by the plant model P', the weight update input

XjP' is no longer white and XkP' is correlated with Xk-lP'. Thus, Wk

is not only correlated with Xk-1P', Xk-2P ..... XoP', but it is also

correlated with XkP'. The correlation between Wk and XkP' is
I.:

proportional to the convergence constant u (1 5:187). For a very

small u, Wk and XkP' are essentially uncorrelated. Assuming Wk

and XkP' are uncorrelated by using a small u and the plant model is

exact, P = P', Eq(2.66) can be expressed as

E[Wk+II = E[Wk] + 2uE[dkXkPI- 2uE[XkPPTXkT ] E[Wk] (2.68)

I Substituting Eqs(2.44) and (2.45) into Eq(2.68) yields

E[Wk+l1 = E[Wk] + 2u(KT - R E[Wk]) (2.69)
L

When Wk is equal to W*, Eq(2.69) becomes

E[Wk+ I =W*+ 2u(KT- R Wk') (2.70)

Substituting Eq( 2.48) into Eq(2.70) gives

E[Wk+I I = W* + 2u(KT - R R-IKT)

E[Wk+l I = W* (2.71)

34



Thus, the filtered-x algorithm is capable of converging to the

optimum weight vector for both minimum and non-minimum phase

plants.

If the plant model is not known a priori, the plant can be

directly modeled with an adaptive forward modeling filter as shown

in Figure 11 (14:293). The adaptive forward modeling filter weights

L COPY OF WEIGHTS ]

PLANT zk

MODEL

eXIk
Xk -_ INVERSEJ Yk-4 PLANT Y'k_

dk

Figure 11. Filtered-x Algorithm with an Adaptive
Plant Model (14:293)

are copied by the plant model filter to filter Xk for the LMS weight

update. Experience has shown that the plant model does not have to

be very precise (1 4:292). The plant model should have as least as

great a transport delay as the the plant; so, the LMS inputs are

correlated. The delays z- 6 in Figures 10 and 11 are required for the

non-minimum phase plant. The delays allow realizable causal

approximation of a left sided or two sided non-causal impulse

response. The last inverse filter discussed is the adaptive inverse

modeling control system (AIMCS).
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Adaptive Inverse Model Control System. The adaptive inverse

model control system (AIMCS) is shown in Figure 1 2. The AIMCS

was developed to inverse filter either non-minimum or a minimum

COPY OF WEIGHTS

Xk INUERSE Y k PLANTNURS

Figure 1 2. Adaptive Inverse Modeling Control System
( 14:28 1)

phase plants (1 4:280-285; 16:90-94). The AIMCS consist of an

adaptive inverse modeling filter and the adaptive inverse filter

which are shown in Figure 1 2. The adaptive inverse modeling filter

in Figure 1 2 adapts its weights to cause its output to be a best least

squares fit to the plant input. The weights of the adaptive inverse

modeling filter are copied by the adaptive inverse filter which pre-

filters the input Xk, so that the plant output X'k isqual to Xk.

For a non-minimum phase. FIR plant, the optimal transfer

Z-A

fucion r 12.z oftAdaptive vrModeling itrisifnte Sytwied o
left ided and s gien by(1:42315

W*(z) -4) (2.72)
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i" The weights from the adaptive modeling filter are transferred to the

adaptive inverse filter W'(z) ;so, that

Z-A

W'(z) = W*(z) = F(z) (2.73)

The adaptive inverse filter in cascade with the plant gives

W'(z) P(z) = p"A P(z) = z-A  (2.74)

Thus, the output Xk' in Figure 11 is equal to Xk-A , a delayed xk.

For practical implementations where the inverse filter and the

inverse modeling filter lengths are finite, the adaptive inverse filter

Vapproximates the perfect inverse. The Wiener weight vector for the

Figure 1 2 AIMCS configuration is

W" =R-IP (2.75)

where the input autocorrelation matrix R is given by

FX'2k X'kXk-1 . . .XkX'k-L,

X'k-lXk X'k-I X'k-IX'k-L

E[XkXkT ] = R = EL (2.76)
Xk-LX'k X'k-LX'k-I x'-

- .... "- - - =,=nu~m mm l lm nlnNil I m u m - I7



and the cross correlation vector P between the input and the desired

signal is given by

- dkX'k
dkX'k- I

E[dkXkT]=P = E (2.77)

dkX'k-L-

and dk is Yk-A (1 4:22). Unlike the AlP, the AIMCS can converge to

a relevant inverse solution for both minimum and non -minimum

phase plants because the plant does not decorrelate the LMS inputs.

In addition, the AIMCS requires only two major components: an

adaptive inverse modeling filter and an FIR filter with adjustable

weights while the filtered-x requires three major components: an

adaptive plant modeling filter, an adaptive inverse filter, and FIR

filter with adjustable weights. The AIMCS is the primary time

domain filter candidate for this thesis.

In summary, this chapter introduced the adaptive linear

combiner and the LMS algorithm and developed inverse filter theory

applicable to this thesis. The AIP, filtered-x algorithm, and the

AIMCS inverse filter candidates were discussed. The next chapter

presents the simulation results with the AIP, filtered-x algorithm,

and the AIMCS inverse filter configurations.
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I. Results and Discussion

This chapter presents and analyzes the results of experiments

and computer simulations to verify the theory developed in Chapter

2 and to determine the feasibility of applying an inverse control

system to remove the unwanted distortion effects of an audio

system. The chapter begins with the results of computer simulations

that show the AIP can inverse filter minimum phase plants while the

filtered-x algorithm and the AIMCS can inverse filter both minimum

and non-minimum phase plants. These initial simulations are

followed by an analysis of the digitized data recorded at the

AMRL/BBA reverberation chamber to demonstrate that the

combination of the audio equipment and the reverberation chamber,

which is designated the audio plant, distorts the input signal and that

the power spectral response of the audio equipment and the

reverberation chamber changes with time. The digitized data is then

utilized to test the performance of simulated inverse models and

inverse filters.

All computer program source code listings, which are referenced

throughout this chapter by number, (i.e. (Prog 1)) are included in

Appendix A.

Theory Verification Simulations

These simulations verify that the AIP can only inverse filter

minimum phase plants while the filtered-x algorithm and the AIMCS
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filter can inverse filter minimum and non-minimum phase plants. A

three tap FIR filter with the difference equation

- Yk = a0Xk +alXk-1 + a2Xk-2 (3.1)

was utilized as the plant where a0 , a 1 , and a2 are the filter

coefficients. The z transform of Eq(3.1) is given by

Y(z) = aOX(z) + alz-IX(z) +a2z-2 X(z) (3.2)

The zeros of Eq(3.2) are selected to model either a minimum phase

B plant or a non-minimum phase plant.

For the first simulations, a minimum phase plant with a pole and

zeros as shown in Figure 13 was inversed filter by the AIP, filtered-x

* algorithm and the AIMCS. In Figure 13, the pole is designated with

an "X", and the zeros are designated with an "0". The corresponding

phase response for

Re

Figure 13. Plant Pole, Zero Plot
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the Figure 13 pole zero combination is illustrated in Figure 14. The

plant phase response never exceeds 1.2 radians. The learning curves

for the AIP, filtered-x algorithm, and the AIMCS are shown in

Figures 15, 16, and 17, respectively (Progs 1,2,3). The adaptive filter

length for all three cases is 2 1 taps. The large number of taps, in

comparison to the 3 plant taps, is required since the inverse of the

FIR plant model has an infinite impulse response. The 21 tap FIR

inverse approximates the infinite impulse response. Each learning

curve is the average of 100 runs with a different random number

generator seed. The learning curves' ordinate is the Mean Square

Error, E(e 2 ), and the abscissa is the iteration number. All three

inverse filter configurations converged to a relevant stable inverse

filter solution.

-o

0-

0~-2

0.00 00 2.00 3.00

Frequency (radlans/sec)

Figure 14. Plant Minimum Phase Phase Response
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Figure 1 5. AIP Learning Curve for a Minimum
Phase Plant

1.0.

0.8

0.6-
LIj
LO
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00-
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Figure 16. Filtered-x Learning Curve for a
Minimum Phase Plant
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08
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LSJ

0.4

0.2
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Iteration Number, K

Figure 17. AIMCS Learning Curve for a Minimum
Phase Plant

A non-minimum phase plant was also modeled with a three tap

FIR filter. The pole zero plot and the corresponding phase response

for the non-minimum phase plant are illustrated in Figures 1 8 and

19, respectively. Since there are two zeros outside of the unit circle,

the phase is 21 radians at n radians per second which agrees with

the non-minimum phase theory discussed in Chapter 2.

Im

Izl=1

Re

0

Figure 18. Plant Pole, Zero Plot
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L Figure 19. Non-minimum Phase Plant Phase
Response

The learning curves for AIP, filtered-x algorithm, and the AIMCS

i are shown in Figures 20, 2 1, and 22, respectively. Unlike the

filtered-x and the AIMCS, the AIP does not reach a relevant inverse

filter solution in 3000 iterations, which is evident in Figure 20. In

* fact as the number of iterations increases, the AIP MSE exceeds

E[dk 2 ] since the AIP weight update equation for this example does

not converge to an all zero weight vector solution. A 30000 iteration

learning curve for the AIP is shown in Figure 23. The excessive MSE - -

was still exhibited when the AIP simulation was repeated with

smaller convergence constants. As discussed in Chapter 2, the

inability of the AIP to find a relevant inverse weight vector is the

consequence of the plant's large phase response which decorrelates

the Xk and the Yk LMS weight update inputs.
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Figure 20. AIP Learning Curve for a
Non-minimum Phase Plant
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Figure 2 1. Filtered -x Learning Curve for
a Non-minimum Phase Plant
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Figure 22. AIMCS Learning Curve for a
Non-minimum Phase Plant
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Figure 23. AIP Learning Curve Showing
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The predicted MSE performance versus the location of a zero for

the two tap minimum phase plant and the two tap AIP as illustrated

by the W curve in Figure 7 was verified by simulating the Figure 6

configuration (Prog 4). The simulation MSE along with the predicted

and the minimum MSE curves are shown in Figure 24. The

simulation MSE curve is in good agreement with the predicted curve

except for a slightly lower overall MSE. The overall lower MSE for

the simulation could be the result of some correlation between

consecutive samples of the input pseudo white noise sequence. This

lower overall MSE for the simulation will not be investigated further.

1.0

0.8

0.6-- Predicted
- Minimum

0.4-- Simulated

I 0.2-

0.0-
0.0 0.2 0.4 0.6 0.8 1.0

Zero

Figure 24. Simulated MSE versus the Zero Position
for a Minimum Phase Plant

Audio Plant Analysis

This section begins with a brief description of the AMRL/BBA

reverberation chamber's audio equipment. The digitized data from

the reverberation chamber is then analyzed to determine if the

response of the chamber varies with time, to determine if the input
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audio signal is distorted by the plant, and to measure the impulse

response of the chamber.

AMRL/BBA Reverberation Chamber Descriotion. A block diagram

and an approximate overhead view of the reverberation chamber is

shown in Figure 25. The white noise generator generates zero mean

FREQ (Hz) NUMBER LOW FREQ
V 25-100(Hz) 8 SPEAKER

100-400 (Hz) 4 ARRAYS

1> .4-1.5 (KHz) 4

I .5-5 (KHz) 20 SPEAKER

., 5-20 (KHz) 48 MIC ARRAYS0 15 FT+

HIGH FREQ
SPEAKER
ARRAYS

*i

REVERBERATION CHAMBER

MIC+ b
fb AMPLIFIER

SPECTRUMI BANK
1RNRLVZERK

1IENERTOR IFILTER K ETWORK

Figure 25. Audio System and Reverberation Chamber

noise with a selectable standard deviation. For the data collection,

the standard deviation was set to 2 which is the normal setting for

AMRL testing. The white noise is passed through a pink noise filter.

The pink noise filter has a rolloff of 3 dB per octave from to 20 to

48



u20000 Hz. The 32 band graphic equalizer in Figure 25 was not

available and was bypassed during digitized data collection. The

pink noise is filtered through a five way crossover network with

passbands at 25-100 Hz, 100-400 Hz, 400-1500 Hz, 1500-5000 Hz,

and 5000-20000 Hz. The crossover bands are amplified and

distributed to the iow frequency, wall mounted speaker arrays or the

ceiling suspended high frequency array as shown in Figure 25.

Located at the center of the reverberation chamber and suspended

approximately 6 ft from the floor is a reference microphone (MIC).

The reference microphone signal's spectrum is displayed on a

spectrum analyzer which has a selectable averaging period. The

graphic equalizer is adjusted to maintain a desired spectrum at the

reference microphone.

i The transfer function of the reverberation chamber is given by

M(e jw) - N(e jw ) P(ejw) (3.3)
U

where M(eiw) is the frequency response of the signal at the

microphone, N(ejw) is the frequency response of the pink noise,

P(eJw) is the frequency response of the audio plant which includes

the frequency response of the crossover network, the power

amplifiers, the speaker arrays, and the acoustic transmission paths

between the speakers and the microphone.

Digitized Data Analysis. Digitized data from points a and b in

Figure 25 was simultaneously recorded using a Hewlett Packard dual

channel, 12 bit digitizing oscilloscope. To prevent aliasing, the input
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to each oscilloscope was low pass filtered with a 5th order

butterworth filter and sampled at approximately 3.5 times the audio

bandwidth of 12 KHz. The actual A/D sampling rate of the

oscilloscope was 43956 Hz which equates to an 22.75 microsecond

sampling period supported by the digital oscilliscope. The digital

oscilloscope does not have unlimited sampling rates since the

sampling rates are derived from the oscilloscope's internal clock.

The audio system's gain was adjusted so that the overall sound

pressure level of the pink noise at the microphone pickup was 115

dB SPL. Each 12 bit A/D data sample was saved to the oscilloscope's

3.5 inch disk drive as two eight bit words. Data files were saved as

a block of 16384 consecutive samples. Twenty-five data files were

recorded: 12 pink noise files from point a, 12 pink noise files from

point b, and I impulse response file from point b. The data files

were translated by the oscilloscope to a four digit integer

representation and transferred to a Zenith 248 through a IEEE 488

interface for storage on a transportable 5.25 inch MSDOS floppy disk.

The MSDOS files were down-loaded into ASCII files on the AFIT's

Elxsi supercomputer and the VAX 785 for subsequent processing.

The Power Spectral Densities (PSD) from points a and b in Figure

25 were first analyzed to determine if and how the audio plant

distorts the input pink noise spectrum. An averaged periodogram

estimator was utilized to calculate the PSDs, The mathematical

expression for the averaged periodogram estimator is given by

iK-I I L-1 2
H(0Ok) := -C I Xm(In) exp(-jokn) (3.4)

m-0 n-0
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where xm(n) is the nth sample, CUk is the kth radian frequency, L is

the number of DFT points, and K is the number of non-overlapping

blocks of length L (6:68). The data record of length N is segmented

into K non-overlapping blocks of length L where N - K L. To reduce

the PSD computation time, the DFT in Eq(3.4) was replaced with a

radix 2 FFT. Figure 26 shows the PSDs at the output of the pink noise

filter, point a, and at the microphone output, point b, where N =

32768, L - 256, and K = 128. Since the frequencies of interest cover

the range from 25 to 12000 Hz, only 70 of the 256 PSD harmonics

were plotted. Figure 26 shows that the audio plant attenuates the

overall desired pink noise spectrum especially at the higher

frequencies. So, a manual or adaptive spectrum shaper is required to

boost the attenuated frequencies.

0

S -10

-20
- Pink Noise Gen (a)

-30 'Microphone (b)
A.

-40

-50

0 2000 4000 6000 8000 10000 12000
Frequency (Hz)

Figure 26. PSDs at the Pink Noise Input
and Microphone Output;
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To determine whether the frequency response of the audio plant

changes with time, data were collected at 5 minute intervals, the

PSDs were calculated, and the PSDs were compared. To compare the

PSDs, the average PSD magnitude difference was calculated between

the PSD at time t - 0 minutes and at time t = 5 n minutes where n is

integer value. The average PSD magnitude difference is given by

AvgDiff =- I0log(HO(O)k)) - I0log(Hn(wOk)) I (3.5)
P k-0

where P is the number of harmonics averaged, HO(Ok) is the PSD at 0

minutes and Hn(Dk) is the PSD at 5 n minutes. Figure 27 shows a

UI graph of the average magnitude difference versus time for the

microphone output and the pink noise generator. The curve for the

pink noise generator shows

1.2 -

S1.0-

0.6-- Pink Noise Gen (a)

" 0.4- Microphone (b)

0.2-J
.0

OC 0.0 5.0 10.0 15.0

Time (min.)

Figure 27. Average PSD Magnitude
Difference versus Time;
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that the pink noise input spectrum changed approximately .6 dB

while the spectrum at the microphone output changed 1.2 dB after

15 minutes. This appears to verify that the frequency response of

the audio plant varies slowly with time since the PSD at the

microphone exhibited a larger change than the PSD at the pink noise

generator. Because the audio plant's frequency response is non.-

stationary, an adaptive inverse system is highly desirable since the

manual equalization should be repeated periodically.

Impulse Response Measurement. An acoustic impulse signal was

generated at the room center approximately 3 ft from the floor and
,7-

recorded at the microphone output. Figure 28 shows the impulse

response of the reverberation chamber. The impulse response has a

m 6.00

5.00

4.00

2, 3.00

. 2.00

< 1.00

0.00

-10.00 1 -T -- I

-0.00 0.05 0.10 0.15 0.20 0.25
Time (see)

Figure 28. Reverberation Chamber Impulse Response
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duration of nearly 300 milliseconds and does not include the

impulse response of the crossover network, the audio amplifiers, or

the speaker arrays. To accurately model the entire audio plant with

an FIR model, the model's impulse response duration would have to

exceed 300 milliseconds to account for both the reverberation

chamber and the audio equipment.

Audio Plant Inverse Model and Filter Simulation Results

This section presents the inverse model and inverse filter

simulations results for the audio plant. The overall objective of the

simulations is to explore the feasibility of using an FIR adaptive filter

for the automatic equalization of the audio plant which distorts the

input pink noise spectrum. The primary performance criterion used

to assess the merit of the simulated inverse model and inverse filter

is a comparison of the desired pink noise spectrum with the

spectrum at the audio plant model output for the inverse filter

simulations and with the spectrum at the output of the adaptive

inverse model for the inverse model simulations. All simulations

are non-real time since dedicated digital signal processing hardware

was not available.

The number of filter taps for the simulation inverse models and

the inverse filters was limited to the number , which could be

implemented, in real time with a high speed digital signal processor

(DSP). AFAMRL has targeted the Texas Instruments TMS320C30 as

the DSP for future hardware development. A 150 nanosecond per

tap LMS adaptive filter weight update along with the FIR filter and

data shift is a specified benchmark for the TMS320C30 DSP (10:537).
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I With the plant audio bandwidth (bw) of 25 Hz to 12 kHz and a

sampling rate, fs, of 43956 Hz, which meets the Nyquist criteria of

greater than 2bw, the maximum number of taps feasible with the

TMS320C30 is 151 taps.

Adaptive Inverse Model. The first simulation results discussed is

for the adaptive inverse model (AIM). The AIM is the adaptive

inverse modeling component of the AIMCS and is shown as a

subcomponent of the AIMCS in Figure 29. Figure 30 shows the AIM

simulation block diagram. The digitized data from the pink noise

F

COPY OF WEIGHTS

INVERSE = k AUDIO X INVERSE Y'k

Fk FILTER PLANT MODEL

/
AIM

Figure 29. AIMCS with the AIM Component Identified

filter was the AIM desired sequence, and the digitized data from the

microphone was the adaptive filter input signal. The PSDs at the -

points a , b, and c are shown in Figure 3 1 for a 15 1 tap AIM (Prog 5).

The average PSD magnitude difference was 4.8 dB for the a and b

curves and was 2.6 db for the a' and c curves. Ideally, the PSDs at -
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points a' and c would be equal and the average PSD magnitude

difference would be 0 db if the AIM converges to the exact delayed

inverse. As shown by Figure 3 1, the performance degrades at the

higher frequencies.

MicrophoneOutput,/

Pink I AUDIO ' INERSE c
Noise PLANT b MODEL

Figure 30. AIM Simulation Block Diagram

- Desired (a')
10- Microphone (b)-10 -"Inverse Model (c)

-20

g 30

-40

50

0 2000 4000 6000 8000 10000 12000

Frequency (Hz)

Figure 3 1. AIM Power Spectral Densities of the Desired
Signal (a'), of the Audio Plant (b), and of the
AIM output (c)
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i It was observed that the high frequency performance of the

inverse model was a function of the convergence constant ,u . The

maximum convergence constant possible, which still allowed stable

operation, provided the best overall and high frequency inverse

performance. The average PSD magnitude difference between a' and

c as a function of convergence constant is shown in Figure 32. The

number of iterations was increased for the smaller convergence

constants to ensure the adaptive filter had converged before

calculating the PSDs. The inferior performance at the higher

frequencies is analyzed in the next paragraph.

14.

' 12

p, 8 "0ta-clo-

,i 6
6160U .9

-C 4

2a.- 2. . . '

0.0000 0.0001 0.0002 0.0003 0.0004

U

Figure 32. PSD Average Difference Versus u

The author's hypothesis is that the poor high frequency

performance is the consequence of the fixed convergence constant,

the fast sampling rate, the limited number of filter taps, and the pink

noise spectrum. It was observed that the weights of the AIM never

converged to a single optimum weight vector but were constantly
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m changing. The non-convergent weight behavior is attributed to the

AIM input power variations. Recall that the optimum weight vector

is given by W* = R-I P where R is the filter input correlation matrix.

Tlhe sum of the diagonals elements of R is the AIM input power as

seen by the adaptive inverse model at point b in Figure 30. The

input power is constantly changing because of the small number of

taps, the 43956 Hz sampling rate and the large low frequency

components. A snapshot of the input trace at point b is shown in

Figure 33. Two 151 sample windows are identified which illustrate

the small size of the adaptive filter window in comparison to the

large low frequency components.

I

0

* 0

0

0 500 1000 1500 2000 2500 3000

Sample Number

Figure 33. Microphone Output with Twol 51 Sample
Windows
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The input power of the kth iteration is given by

N-1 -A
Input Signal Power = I X(k-n) 2  (3.6)

n:=:

where Xk is the kth input component and N is the number of taps.

Figure 34 shows the input power at point b as a function of the

sample number.

500

400-0

a

C 300

200

100
0 500 1000 1500 2000

Sample Number
Figure 34. AIM Input Power as Seen by the

1 51 Tap Adaptive Inverse Model

Because of the large input power variations, the optimum weight

vector W* constantly changes. To minimize the weight

misadjustment, [W - W'l, the adaptive inverse model weight vector

W must rapidly converge to and track the nonstationary optimum
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weight vector W*. However, the speed of the LMS adaptaLion is

limited by the size of the convergence constant u. The upper bound

of the the convergence constant , which is inversely proportional to

the input power, is given by (14:103)

V1

u < (L+l)(Signal Input Power)

where L is the number of taps. Therefore, the larger power low

frequency components place a limit on Umax. Any attempt to make

u larger to track the lower power high frequency components would

cause instability. Thus, it could be concluded that the frequency

response of an adaptive filter evolves fastest in bands of highest

energy.

To improve inverse model performance at the higher frequencies

and to support the above hypothesis, the normalized LMS (NLMS)

was incorporated into the AIM simulation. The NLMS varies the

convergence constant based on the input signal power to achieve

continuous rapid adaptation. The expression for the NLMS

convergence constant u(k) is given by (13:82-83)

!a

(Xu(k) (38- + Input Signal Power (3.8)

where a is a constant which is selected to achieve rapid convergence

and Y is a small constant which prevents excessively large u(k)

-alues when the input power is negligible. The PSDs at points a', b,
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and c are shown in Figure 35 for the NLMS AIM simulation. The

AIM high frequency inverse performance has been enhanced with

the NLMS, and the a' and c PSD curves are now almost identical. The

NLMS compensates for the input power variations by calculating the

optimum convergence constant for the input power. The improved

high frequency performance with the NLMS supports the above

hypothesis.

-
' - '-- D sired (a') '

-!0 :-*Inverse Model (c):

M -20 .............
V

0.

-40

-50-
. 0 2000 4000 6000 8000 10000 12000

Frequency (Hz)

Figure 35. AIM /NLMS Power Spectral Densities of the
Desired Signal (a'), of the Audio Plant (b),
and of the AIM output (c)

The optimum value of the inverse delay, z- A, in Figure 30 was

empirically determined to be 1 00 samples for a 1 51 tap filter. A plot

of the PSD average magnitude difference between curves a' and c as

a function of the delay is shown Figure 36.
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Figure 36. AIM/NLMS Performance versus
Inverse Delay

Inverse Filter Simulations. The inverse filter simulations were

U conducted to determine if the AIMCS or the filtered-x algorithm

could inverse filter the audio plant. The results of these simulations

provided valuable insight for reaching the recommendation to

n implement the AIMCS or filtered-x in hardware or pursue an

alternative approach.

Plant Model. In order to accomplish the AIMCS simulations, an

audio plant model was required since the inverse filter stage of the

AIMCS occurs forward and in series with the audio plant. The audio

plant model weight vector was generated with an LMS adaptive

forward model (AFM) (Prog 6). The AFM, which is shown in Figure

37, adapts its weights so that the AFM output is a least squares fit to

the audio plant output (14:195-196).
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Figure 37. AFM Block Diagram

Since all the following simulations process blocks of the digitized

data less than 1.5 seconds in duration, it has been assumed that the

audio plant impulse response remains stationary. Figure 27

illustrated that the spectral response of the audio plant slowly varied

and that the first apparent change occurred between 5 and 10

minutes. Because of the assumed stationary spectral behavior of the

audio plant for the short duration of the simulations, only one weight

vector was saved at the last iteration of the adaptive forward

modeling process as the audio plant model.

Since the audio plant forward model will not be part of the

AIMCS if the AIMCS is implemented in hardware, the number of taps

is not limited to 151. More than 13000 FIR taps at the 43956 Hz

sampling rate would be required for the audio plant model to match

the duration of the reverberation chamber's impulse response shown

in Figure 28. Since a 13000 tap forward model simulation is a
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computational burden, the initial simulations used a 1000 tap FIR

filter.

Figure 38 shows the PSDs at points A, B, and C for the 1000 tap,

LMS, AFM simulation. The average magnitude difference between

the PSDs of B and C was 1.6 dB and between A and B was 4.6 dB.

Ideally the curves for B and C would match if the AFM and the audio

plant impulse responses were identical.

-o- Pink Noise (A)

-I0 MICOutput (B)
MdlOutput (C)

-20

(-30-

-40

- 5 0 
-j' ,

0 200 4000 6000 8000 10000 12000
Frequency (Hz)

Figure 38. AFM Power Spectral Densities of the Pink
Noise Input (A), Microphone Output (B), and
the AFM Output (C)

Before proceeding with the AIMCS simulations, a NLMS AIM

simulation was conducted with the audio plant model weight vector

to verify that an inverse model could be generated for the audio

plant model weight vector. The block diagram for the AIM

simulation test is shown in Figure 39, and the corresponding PSDs are

shown in Figure 40. The average magnitude difference between the
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Figure 40. AIM and Plant Model Test's Power Spectral
Densities of the Desired Signal (a'), of the
Audio Plant (b), and of the AIM output (c)

PSDs of a' and c was .6 dB and between a and b was 5.2 dB. The AIM

test with the plant model demonstrated that the AIM could still

generate the inverse model for the plant model.
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AIMCS Simulations Results. The AIMCS NLMS simulation block

diagram is shown in Figure 41 (Prog 7). For this simulation, the

objective of the AIMCS is to remove the distortion effect of the plant;

so, the PSD at the output of the plant model, point C, matches the PSD

of the desired pink noise spectrum, point A. The simulation PSDs

curves for 1/0 points A and C are shown in Figure 42. The PSD

curve at the output of the plant with the inverse filter bypassed,

"Without Inverse", was also included in Figure 42 to allow a

comparison of the plant model output PSDs with and without the

inverse filter. Figure 42 shows that the AIMCS only improved the

match in the frequency range of 0 to 350 Hz. In fact, the AIMCS had

a deleterious effect at frequencies above 350 Hz. From 350 to

12000 Hz, the PSD at the plant output with the inverse filter

bypassed matched the desired pink noise spectrum better than when

the inverse filter was enabled.

COPY OF WEIGHTS

Pi nk A INUERSE BPLRNT C INVERSE D
NoiseMOEMDL

Plant Model 
+

Weights

Figure 41. AIMCS Simulation Block Diagram

66



0

-~~ ~ ~ ~~~ - -D 7l i- IIm iim, ,.. ...

-0i thu Inese()

-10 - - With Inverse (C)

S-20 -

-30

-40

-50,, , , , ,

0 2000 4000 6000 8000 10000 12000

Frequenog (Hz)

Figure 42. AIMCS PSDs; (A') Desired Signal,
(C) Plant Model Output with the
Inverse and Without the Inverse
Filter

It is the hypothesis of the author that the poor performance is

attributed to differences of the input power at the inverse filter and

the inverse model inputs. As shown earlier, the inverse model

optimum weight vector changes in response to the inverse model's

input power. Because of the large low frequency components and

the small size of the filter, the optimum inverse model weight vector

is constantly changing to track the input power variations due to the

large low frequency components. The input power for points A and C

as a function of the iteration number is shown in Figure 43. Figure

43 clearly illustrates that the input signal powers would be different

at the inverse filter and at the inverse model. Therefore, the inverse

filter weight vector, which is the copied inverse model weight vector,

would not be the optimum for the inverse filter input power.
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Figure 43. Input Power at A and C

Five Band AIMCS Simulations. A larger AIMCS or a five band

I gAIMCS could reduce the power variations at the inputs to the inverse

model and inverse filter. The larger filter is not practical, since the

maximum number of taps feasible with the TMS320C30 at the 43956

Hz sampling rate is 15 1. An alternative solution is a five band

AIMCS approach which subdivides the 25 - 12000 Hz audio band

into the reverberation chamber's five crossover bands. This five

band AIMCS allows the realization of much larger filters for the

lower frequency bands.

The five band AIMCS simulations entailed decimation and

bandpass filtering of the digitized data for each of the five bands,

generation of five plant models using the AFM , and five LMS AIMCS

simulations. The simulation process block diagram for one band is

shown in Figure 44. No effort was made to recombine the output

time sequences from the five simulations. For the five bands, Table
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1 lists the sampling rates, the maximum filter size practical for the

specified sampling rate, and the decimation factor (M) to reduce the

sampling rate.

Sampling Rate Bandpass Bandpass Sampling Rate
Compressor Filter r --- Filter Compressor

Pink flD1 Microphone
Nois L±....... Output

Plant Model
Weights

(a)

COPY OF WEIGHTS

Sampling Rate Bandpass
Compressor Filter

Pink A INUEFISE B PLRNT C INIJERSE 0
N oi s eF 

L E O E O Ee
Plant Model 4
Weights 07

(b)

Figure 44. AIMCS Five Band Block Diagi ams; (a) AFM, (b) AINMCS
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p Thirty-one tap FIR bandpass filters were synthesized using the

window method with the Bartlett window (Prog 8). The rolloff of the

digital bandpass filters were approximately 30 dB per octave, and

the 3 dB cutoff points were the lower and upper bandpass limits

listed in Table 1.

Table 1. Practical Limits for Five Band AIMCS

Band (Hz) 25- 100- 400- 1500- 5000-C 100 400 1500 5000 12000

Sampling Rate 439.6 17582 5494.5 146520 439560

Number of Taps 15100 3775 1208 453 151

Decimation Factor 100 25 8 3 1
(M)

S

For the initial simulations, the criteria for establishing the

number of taps for each of the plant models was the average PSD

magnitude difference between points B and C of the AFM simulation.

The number of plant model taps was increased until the average PSD

magnitude difference between points B and C was below 1.0 dB

which was less than the 1.6 dB for the 1 000 tap plant model used in

the preceding single band AIMCS simulation. Table 2 lists the sizes

of each plant model and the corresponding average PSD magnitude

difference.
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Table 2. Plant Model Specifications

Band (Hz) 25- 100- 400- 1500- 5000-
100 400 1500 5000 12000

Number of Taps 70 140 140 300 70

Average PSD I b-c I .8 .6 .9 .6 .8

Table 3 lists the number of AIMCS taps, the average magnitude

difference with and without the inverse filter enabled and Figures 45

through 49 show the PSD curves for the five AIMCS simulations. The

curves illustrate that the five band AIMCS can effectively inverse

filter the plant model since the AIMCS significantly improves the

match of the desired and the plant model output when the inverse -

filter of the AIMCS is enabled.

II
Table 3. Number of AIMCS Taps

Band (Hz) 25- 100- 400- 1500- 5000-
100 400 1500 5000 12000

Number of Taps 140 300 300 453 151

Average PSD I A-C I (dB) 1.0 0.6 1.0 1.2 0.7
with Inverse Enabled

Average PSD I A-C I (dB) 2.0 2.2 2.2 3.2 5.4
with Inverse Disabled
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Figure 45. AIMCS PSDs for Band I
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Figure 46. AIMCS PSDs for Band 2
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Figure 47. AIMCS PSDs for Band 3
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Figure 48. AIMCS PSDs for Band 4
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Figure 49. AIMCS PSDs for Band 5

The simulation for the 5000 to 12000 Hz band was repeated with

larger plant models. As the size of the plant model was increased,

the plant modeling performance improved; however, the AIMCS

inverse filtering performance decreased. For plant models of

greater than 300 taps, the AIMCS failed to remove any of the

distortion effect of the plant model. The degraded performance is

due to the inability of the adaptive filters 151 zeros to effectively

cancel the 300 or more plant zeros. To exactly cancel the effect of an

,_ all zero plant, an all pole inverse is required which places the poles

at the location of the plant's zero. The all pole inverse has an infinite

impulse response which can be approximated by a long FIR filter,

With larger plant models, the 151 tap FIR inverse impulse response
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is less effective in approximating the longer inverse impulse

response.

Since the actual audio plant transfer function probably consists of

both poles and zeros, the inverse simulations would be more

representative of a real time implementation if the audio plant was

modeled with a autorecursive moving average (ARMA), pole zero,

plant model. In addition, the total number of taps to realize the

ARMA plant model should be less than the number of taps for the

moving average (MA) plant model.

Oliver Muron and Jacques Sikorav demonstrated that a small

number of AR coefficients significantly improved their modeling of

an audio conference room (8:923). The addition of 20 AR coefficients

to a 100 coefficient MA model reduced the observed average

squared error by more than 12 dB. While the addition of more than

500 MA coefficients to a 100 coefficient MA model was required to

achieve the same error reduction. Their findings suggests that a

small ARMA model could model an audio plant as well as a larger

MA model. An ARMA audio plant model was beyond the scope of

this thesis effort.

Filtered-x Algorithm Simulation. Since the primary inverse filter

candidate was the AIMCS, only limited simulations were

accomplished with filtered-x algorithm. The results are briefly

discussed to prevent a future duplication of effort. The analyses

which follow are the author's hypotheses.

The filtered-x simulation was accomplished with the alternate

form of the filtered-x algorithm, which is shown in Figure 50 (Prog

9). The simulation with the alternate form of the filtered-x requires
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the AFM for the LMS input, and unlike a filtered-x algorithm

simulation and the AIMCS simulations does not require a simulated

audio plant model. The alternate form converges to the same

solution as the standard filtered-x algorithm when its assumed the

inverse and the audio plant are commutable (15:187). This

assumption is not valid for these simulations since the output of the

audio plant and the inverse filter weights are time varying.

However, the simulations were still conducted to determine what

effect the filtered-x input has on the inverse model performance.

Microphone
Output/,

Pink R UDIO 41 IV.S

TeIadhFORWetnR - itere d-x
[MODEL b ' Input

Figure 50. Alternate Form of the Filtered-x Algorithm
(15:187)

The AIM and the alternate filtered-x algorithm have almost .l

identical filter structures. The major difference between the AIM

and the alternate form of the filtered-x is that the alternate filtered-

x algorithm obtains the LMS input from the plant model output while
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* the AIM obtains the LMS input directly from the plant. The

performance of both the AIM and alternate filtered-x algorithm

would be identical if the filtered-x algorithm's plant model is an

exact copy of the real plant.

The simulation results with a151 tap forward model and inverse

model were unsatisfactory since the inverse model did not remove

any of the audio plant's distortion effect. In fact, the inverse model

contributed to the distortion since the average PSD magnitude A

difference between points a' and c was larger than the average PSD

magnitude difference between points a and b. The average

magnitude difference between the PSDs of a' and c was 7.8 dB and

between a and b was 5.6 dB. The inefficacy of the alternate filtered-

x simulations is attributed to the forward plant model process.

The 151 tap forward model ,which approximates the audio plant, q

only partially correlates the LMS inputs. As was shown for the AIP,

the inverse performance degrades when the correlation between the

LMS inputs decreases. 4

Because the LMS inputs are only partially correlated, the

maximum convergence constant which allowed stable operation was

two orders of magnitude smaller than the convergence constant

utilized during the 151 tap AIM simulation. With the smaller u, the

alternate filtered-x algorithm will be less capable of tracking the

nonstationary W*. Therefore, the weight misadjustment will be

worse than the misadjustment for the AIM simulations. The weight

misadjustment could be a major contributor to the poor inverse

performance. Widrow and others are investigating the

misadjustment of the filtered-x algorithm (1 5:188).
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Simulations were also conducted with a plant model consisting of

a pure delay. The pure delay models the propagation delay between

the speakers and the microphone, but it does not correct for the

phase response of the plant. The transport delay , td, between a

speaker and the microphone is given by

td= sec (3.8)
Vs

where d is the distance between the speaker and the microphone in

feet and vs is the velocity of sound in air which is approximately

1000 ft/sec. Delay times ranging from .005 to .012 seconds were

simulated to account for the speaker, reference microphone

separations of 5 to 12 ft. Again the results were unsatisfactory.

Freauency Domain Adaptive Spectrum Shaper. Since the author

was not fully satisfied with the time domain adaptive filter results, a

preliminary investigation of a frequency domain adaptive spectrum

shaper (FDASS) was accomplished at the end of this thesis effort.

The FDASS, which is shown in Figure 5 1, is immune to the

decorrelative effect of the audio plant's phase response since the

weight update uses the power spectrum estimates of the LMS inputs.

This filter structure is the author's innovative approach to realize a

pre-filter structure that can pre-compensate for the spectral

distortion of minimum and non-minimum phase plants.
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Figure 51. Frequency Domain Adaptive Spectrum Shaper

The basic architecture of the FDASS is based on the complex

frequency domain adaptive filter. A brief literature review, which
introduces the complex LMS frequency domain algorithms theory of

operation, is presented in Appendix B. Unlike the complex
frequency domain adaptive filter, the FDASSs weight update inputs

are power spectral estimates and not complex signals. The FDASS

uses block processing and the overlap and save fast convolutional

technique for calculating the filter output (13:198-201). The input

data samples are segmented into 2N points and transformed with an

FFT to generate 2N complex frequency samples. The complex
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frequency sample in each of the input 2N frequency bins is

multiplied by a weight which is controlled by the LMS algorithm.

The product is then inverse transformed into 2N real data points.

The first N output data points, which are artifacts of the circular

convolution are discarded. The last N data points are then read from

the data buffer at the appropriate time as a output data point. To

compute the next valid N data points, the 2N sample input window is

shifted over N points and the entire process is repeated. The process

is summarized for the kth block iteration as

Yk = Wk Xk (3.9)

where Wk is the weight vector, Xk is the input vector

Xk =J2N[X((k- I )N) x((k- I )N+I ) ... x((k-I )N + 2N-I A (3.10)

Yk is the ouput vector

Yk =J 2 N[N discarded values y(kN) y(kN+ )...y((k-I )N+2N-I ) (3 1 )

,and the symbol P is the Fourier transform operator.

During the kth block iteration, the LMS algorithm predicts the

filter weight vector Wk+I for the (k+ 1 )th block iteration in

accordance with

Wk+I = Wk + U EkP 2N[Xk] (3.12)
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where P is the power spectral density operator, u is the

convergence constant vector and Ek is the error spectral estimate.

The error spectral estimate vector Ek is given by

Ek = P 2N[Dk] - P 2N[Y'kJ (3.13)

where P 2N[DkI is the desired spectrum and P 2 N[Y'k] is the spectral

estimate of the plant model output.

A simulation was accomplished with a 128 weight FDASS and a

100 tap plant model. The results of the simulation are illustrated in

Figure 52 (Prog 10). The FDASS effectively precompensated for the

spectral distortion of the plant model. The plant model output PSD

closely matches the desired PSD when the FDASS is enabled.

0-

-5-- without FDASS P2N[I"

- desired P2N [D]

-10 -- with FDASSP 2 N(Y']

-15

= -20
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Figure 52. Adaptive Spectrum Shaper PSDs
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This chapter presented the results of experiments and computer

simulations to verify the theory developed in Chapter 2 and to

analyze the effectiveness of an inverse control system in removing

the unwanted distortion effect of an audio plant. The simulations

illustrated that the AlP could inverse filter minimum phase p!ants

and the filtered-x algorithm and the AIMCS could inverse filter both

minimum and non-minimum phase plants.

An analyses of digitized data from the reverberation chamber

demonstrated that the audio plant transfer function distorts the pink

noise spectrum and slowly changes with time. The non-stationary

behavior of the audio plant lends itself to a hardware

implementation of an adaptive system that can automatically track

and remove the distortion effect of the audio plant.

The AIMCS and the filtered-x algorithm were analyzed to

determine the effectiveness of the two control system in removing

the frequency distortion of the audio plant. The only promising time

domain simulation was the five band AIMCS which effectively pre-

inverse filtered the limited size FIR plant models.

Preliminary results with a frequency domain adaptive spectrum

shaper were provided which demonstrated that a frequency domain,

adaptive filter could effectively equalize a plant model.

Recommendations follow in the next chapter.
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L

1Y, Recommendations
n

This chapter discusses the recommendations for the continuation

of this research and for the development of adaptive signal

m processing design software. The recommendations are directed to

AFAMRL and the AFIT Electrical Engineering Department.

Adaptive Inverse Filter

The five band AIMCS was the most promising time domain

adaptive filter candidate. Unlike the AIP, the single band AIMCS and

L. Ithe filtered-x, the five band AIMCS was capable of pre-inverse

filtering the limited size FIR plant models, Even though it was the

best time domain candidate, a frequency domain approach should be

thoroughly explored before preceding with a hardware

implementation. It is anticipated that the five band AIMCS would be

costly to build, since five parallel self contained AIMCSs are required.

The following list identifies some of the more expensive componentz

for each of the AIMCS:

a. two TMS32OC30 DSPs

b. two A/D

c. one D/A

d. three bandpass filters

e. three sample and holds

In addition to being costly, there is some risk the limited size FIR

plant models utilized for the simulations mav not accurately model

the audio plant. So, the AIMCS five band simulation results may not
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be representative of the performance from a real time hardware

implementation. To reduce this risk, the simulations could be

repeated with an ARMA model that would more accurately model

the audio plant.

As an alternative to the five band AIMCS, it is recommended that

the FDASS or a complex LMS frequency domain algorithm be

considered as a hardware solution. The preliminary FDASS

simulation results were very promising. The FDASS was able to

effectively compensate for the spectral distortion of a plant model.

For this application, there are two advantages with a frequency

domain implementation. First, the frequency domain

implementation offers reduced number of computations over the

time domain (13:203). The complexity ratio Cr , which is the ratio of

frequency domain to time domain real multiplies for an N point q

impulse response, are shown in Table 4. For a large N, the

computational complexity based on number of real multiplies for the

Table 4. Frequency to Time Domain
Complexity Ratio

Complexity Ratio
N Complex Frequency FDASS

Domain (13:203)

32 1.20 0.42
64 0.69 0.24

128 0.38 0.14
256 0.21 0.08
512 0.12 0.04

1024 0.06 0.02
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3 frequency domain adaptive filter is much less than an equivalent

time domain filter. Thus, with a given DSP throughput, larger

adaptive filters can be implemented in the frequency domain.

A- The second advantage is that the frequency domain adaptive

filter provides a means to improve the convergence behavior over a

time domain implementation. With a frequency domain adaptive

filter, the input spectrum has been divided into spectral bands where

each spectral band has its own convergence rate. A convergence

constant can be assigned to each spectral band which is dependent

on the band's relative input power. By incorporating any a priori

information about the power distribution, "the convergence modes of

the adaptive filter can be compressed to a more reasonable range,

* thereby improving the convergence behavior (13:205)". Thus, it can

be expected that the convergence behavior of the frequency domain

implementation will not be as dependent on the input power

variations due to the !.arge low frequency components of the pink

noise.

Adaptive Signal Processing Subroutines

In order to reduce the future development time of adaptive

signal processing algorithms, an adaptive signal processing software

subroutine package should be developed for a PC and/or mainframe.

The adaptive signal processing software subroutines would allow a

user to efficiently assemble, simulate, and verify adaptive filter
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algorithms by calling subroutines from a main program. The

following list identifies some suggested subroutines:

a. Time and frequency domain adaptive filters with selectable

number of taps.

b. Flexible I/O to import and export digitized data files.

c. Signal analyses to include FFTs, PSDs, autocorrelation and

crosscorrelations.

d. High resolution plotting.

e. Lowpass, highpass, and bandpass filters.

f. Signal generator for simulation white noise, sine waves, and

linear combinations of signals.
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This chapter discusses the conclusions culminating from this

thesis research. The objective of this thesis was to explore the

feasibility of using a time domain adaptive filter to remove the

frequency distortion of an audio plant. The approach to accomplish

this objective consisted of a review of current literature to find

pertinent articles, the development of adaptive inverse filter theory,

and the simulation and analysis of the applicable adaptive inverse

filter algorithms. In addition, a preliminary investigation of a

frequency domain implementation was conducted.

An exhaustive review of the current literature identified the

AIMCS and the filtered-x algorithms as prime time domain adaptive

filter candidates. Also, the time domain AIP, which was observed by

Widrow and Stearns to converge to an irrelevant solution or to be

* unstable, was also investigated since a preliminary simulation using

a three tap minimum phase plant was successful.

Chapter II developed the adaptive inverse filter theory

applicable to this thesis. The theory focused on the AIP, filtered-x

algorithm, and the AIMCS. The equations for the AIP's and filtered-x

algorithm's optimum weight vector and performance function were

derived since a complete derivation could not be found in the current

literature. A theoretical analysis of a two tap AIP in series with a

two tap plant demonstrated that the AIP weight update equation

converges to a relevant inverse solution when the plant has

minimum phase and an irrelevant inverse solution when the plant
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has non-minimum phase. It was shown that the AIP does not

converge to a relevant solution for the non-minimum phase plant

because the LMS inputs are decorrelated by the plant's large phase

response. The filtered-x algorithm compensates for the decorrelative

effect of the plant phase response by pre-filtering the LMS input

through a plant model.

Chapter III presented and analyzed the results of experiments

and computer simulations to verify the theory developed in Chapter

2, to determine the spectral response of the audio plant, and to test

the effectiveness of an inverse control system in removing the

unwanted distortion effect of an audio plant. Simulations with a 2 1

tap adaptive filter and a three tap minimum and non-minimum

phase plants verified that the AIP could inverse filter minimum

phase plants and the filtered-x algorithm and the AIMCS could

inverse filter both minimum and non-minimum phase plants.

A spectral analysis of the digitized data from the reverberation

chamber illustrated that the frequency response of the audio plant

distorts the input signal spectrum and varies slowly with time. The

audio plant's non-stationary spectral behavior supports the

requirement for an adaptive system to replace the manual graphics

equalizer currently in operation. The AIM, which is the adaptive

component of the AIMCS, was thoroughly analyzed before conducting

the AIMCS simulations. The analyses of the LMS AIM simulations

revealed that a single convergence constant, which is bounded by the

maximum input power, would not provide the rate of adaptation

required to track the low level high frequency components.

components. The NLMS AIM, which increases the overall rate of
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*adaptation by varying the convergence in inverse proportion to the

input power, exhibited improved performance over the entire

frequency band.

The NLMS AIMCS simulation results however, were

unsatisfactory. The poor performance was attributed to difference of

the input power at the inverse filter and the inverse model. The

only promising time domain adaptive inverse filter simulation was

with the five band LMS AIMCS, which effectively removed the

distortion effect of the limited size FIR audio plant models.

A preliminary investigation of a frequency domain adaptive

spectrum shaper was accomplished at the end of this thesis effort.

The frequency domain adaptive spectrum shaper is an innovative

approach based on the complex frequency domain adaptive filter

architecture that uses block processing and fast output convolution.

Unlike the complex frequency domain adaptive filter, the frequency

domain adaptive spectrum shaper updates a non-complex weight

using power spectral estimates of the LMS weight inputs. Since the

LMS weight inputs are not decorrelated by the phase of the plant,

the frequency domain adaptive spectrum shaper can find a relevant

inverse spectral solution for both minimum and non-minimum phase

plants. The simulation results verify that the frequency domain

adaptive spectrum shaper is able to precompensate for the spectral

distortion of a plant model.

Chapter IV presented a recommendation to thoroughly explore

the frequency domain implementation as an alternative approach

before preceding with a five band AIMCS hardware implementation.

A frequency domain adaptive filter is more computational efficient,
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has better convergence properties than a time domain adaptive

filter, and may be less expensive to implement than the five parallel

AIMCSs comprising the five band AIMCS. It was also recommended

that adaptive signal processing subroutines be developed to facilitate

the simulation and testing of adaptive filter algorithms.
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Appendix A: Comuter Programs

All computer programs are written in FORTRAN F77 and were

compiled and ran on AFIT's ICC.

Program 1:
PROGRAM AIPMSE

C THIS PROGRAM CALCULATES THE MSE FOR THE AlP FILTER

C DECLARE THE VARIABLES
REAL X(SOOOO),Y(50000),W(256),Y 1 (50000),TNOR,TOTE
REAL E(5OO0O),MSE(50000)
INTEGER DELAY
OPEN(UNIT=4,FILE='MSE',STATUS='UNKNOWN')
OPEN(UNIT= 1 FI LE='NUSTATUS=*UNKNOWN')

C INITIALIZE THE VAR:ALBLES
C SEED IS IX

IX=1
C S IS THE STANDARD DEVIATION

S= 1.O
C AM IS THE MEAN

AM=O.O
C NPT IS THE NUMBER OF POINTS

NPT=30000
C NT IS THE NUMBER OF ADAPTIVE FILTER TAPS

NT = 21
C U IS THE CONVERGENCE CONSTANT

U = .00009

C INITIALIZE THE MSE VARIABLE WITH ALL ZEROS
DO 50 N=I,NPT

MSE(N)=O.O
50 CONTINUE

C THIS LOOP CALCULATES THE MSE FOR 100 RUNS
C EACH RUN USES A DIFFERENT SEED IX.

DO I P=I,IO0

C CALL THE SUBROUTINE TO GENERATE THE WHITE GAUSSIAN NOISE FOR THE
C INPUT SEQUENCE

CALL GAUS(IX,SAMNPT,X)

C INCREMENT THE SEED
IX=IX- 1
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C SET THE INVERSE DELAY TO 1/2 THE NUMBER OF TAPS
DELAV=NT/2-

C SET THE PLANT COEFFICIENTS Al -A3
A1 =I.
A2=-2.8
A3=2.32

I C INITIALIZE THE WEIGHTS TO ZERO
DO 5 N= 1,NT

W(N)=O.O
5 CONTINUE

C LOAD THE PLANT OUTPUT VECTOR WITH ZEROS.

DO 7 N= 1,NT
Y(N)=0.0

7 CONTINUE

'OTE=0.O

TNOR=0.0

C MAIN ADAPTIVE FILTER LOOP
DO 20 N=NT 1,NPT
ACCUM=O.0I-i
DO 30 J=1,NT

30 ACCUM=X(N-(J- 1 ))*W(J)-ACCUM

C Y(N) IS THE AlP FILTER OUTPUT
Y(N)=ACCUM

C Y 1(N) IS THE PLANT OUTPUT
Y 1 (N)=A 1 *(Y(N))-A2*(Y(N - 1 ))-A3*(Y(N-2))

C CALCULATE THE ERROR
E(N)=X(N-DELAY)-Y 1 (N)

C CALCULATE THE SQUARED ERROR AND THE NORMALIZING FACTOR
TOTE=E(N)*E(N)
TNOR=X(N)*X(N)
IF (TNOR.EQ. 0.0) THEN

TOTE=O.0
TNOR= I.G

END IF

M"SE(N-NT)=(TOTE)-MSE(N-NT)

C PERFORM THE WEIGHT UPDATE
DO 40 J=I,NT

40 W(J)=W(J)-2.G*U*E(N)*X(N-20-(J - I ))

20 CONTINUE
I CONTINUE
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DO 80 N= I,NPT -NT -1,.10O

C CALCULATE THE MSE
M S F ( N) =M 5SE (N) / P

* C WRITE DATA FILES FOR MSE
WRPI TE (4,90 )M SE(CN)

-90 FORMAT(F 10.4)
WRITE( 1 ,92)N

92 FORMAT(15)
60 CONTINUE

END

C GAUSSAIN NUMBER GENERATOR SUBROUTINE
C THIS SUBROUTINE WAS COPIED FROM THE *DIGITAL FILTER DESIGN
C HANDBOOK" BY TAYLOR< t 12:101-) 02)

SUBROUTINE GAUS(IX,S,AMJ'IU,F)
tic REAL F(*)

INTEGER N,MU
REAL A,YFL,AM,S,AVG,TOT
TOT =0.0

DO 100 N=1,MU
A=O.O

3 DO 50 =1,12

C CALL UNIFORM RANDOM GENRATOR
CALL RANDU(IX,IY,YFL,TOT)

IX=IY
SO A=A-YFL

F(CN ) =(A -6,0) *S *AM

P100 CONTINUE
AVG=TOT/(MU* 12)
RETURN
END

SUBROUTINE RANDU( IX, IY,YFL.TOT)

IY=IX*65539)
IF( IY)S,6,6

S IY=IY21 47483647-1
6 YFL=IY

vFL=YFL*4.6566 128 75E- 1 0
TOT =YFL-TOT

RETURN

END
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Program 2:
PROGRAM AIMCSMSE

C THIS PROGRAM CALCULATES THE MSE FOR THE AIMCS FILTER

C DECLARE THE VARIABLES
REAL X(I 0000),Y( I 0000),W(256),v I( 1 0000),TNOR,TOTE
REAL E( 1 0000),MSE( I 0000),Y2( I 0000),Z(256)

INTEGER DELAY
OPEN(UNI T=2,F I LE='NU',STATUS='UNKNOWN ' )
OPEN(UNIT=4,FI LE ='r SE ' ,ST AT US ='UNKNOWN')

C SEED IS IX
IX=I

C S IS THE STANDARD DEVIATION
S=1.0

C AM IS THE MEAN
AM=0.0

C NPT IS THE NUMBER OF POINTS
NPT=3000

C NT IS THE NUMBER OF ADAPTIVE FILTER TAPS
NT = 21

C U IS THE CONVERGENCE CONSTANT
U = .006

C INITIALIZE THE MSE VARIABLE WITH ALL ZEROS
DO 50 N=1,NPT
MSE(N)=0.0

50 CONTINUE

C THIS LOOP CALCULATES THE MSE FOR 100 RUNS.
C EACH RUN USES A DIFFERENT SEED IX.

D) I P=I 100

C CALL THE SUBROUTINE TO GENERATE THE WHITE GAUSSIAN NOISE FOR THE
C INPUT SEQUENCE

CALL GAUS(IX,S,AM,NPT,X)

C INCREMENT THE SEED
IX=IX 1

C SET THE INVERSE DELAY TO 1/2 THE NUMBER OF TAPS
DELAY=NT/2

C SET THE PLANT COEFFICIENTS A I-A3
Al1l,
A2=-2,8
A3=2.32

C INITIALIZE THE WEIGHTS TO ZERO
DO 5 N= I,NTW(N)=0.0

5 CONTINUE

94



C LOAD THE PLANT OUTPUT VECTOR WITH ZEROS

DO 7 N= 1 ,NT
v(N)=O.O
v I(N)=O.O

7 X(N)=O.O

TOTE =0. 0
W( 1 I)=. 1 0

C M"AIN ADAPTIVE FILTER LOOP
DO 20 N=NT- 1,NPT
ACCUMO0.0
A CCUM 2 =0.0

C CALCULATE INVERSE FILTER OUTPUT
DO 30 J= 1 ,NT

30 ACCUM,=X(N-(J- 1 ))*W(J)-ACCUM
v(N)=ACCUM

C CALCULATE PLANT OUTPUT
y 1 (N)=A I *C(N))-A2*(v(N- 1 ))-A3*(Y(N-2))

ECN)=XCN-DELAY)-Y 1 (N)

C CALCULATE INVERSE MODEL OUTPUTDO3 =1N
ACCUM2=ACCUM2-W(J)yY 1 (N-(J- 1)

35 CONTINUE
V2(N)-ACCUM,2

C CALCULATE ERRORS
E 2=Y (N -DELAY) -Y 2(N)

a TOTE =E( N)*E(N)
MSE(N-NT)=CTOTE)-MSE(N-NT)

C WEIGHT UPDATE
DO 40 J= 1,NT

40 W(J)=W(J).2.O*U*E2*y I (N-(J- I)

20 CONT!IUE
1 CONTINUE

DO 80 N= 1,NPT-NT-I1,I1
MS E(N) =MSE (N) /P

WRITE(4,90)MSE(N)
90 FORMAT(F 10.4)

WRITE(2,95)N
95 FORMAT(1 4)
80 CONTINUE

END
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PROGRA M 3
I PROGRAM FILXMSE

C THIS PROGRAM" CALCULATES THE MSE FOR ThE FILTERED-X ALGORITH"-
C DECLARE THE VARIABLES

REAL X(10000),v(10000),W(256),v1(1 0 0 0 0 ),TNORTOTE
REAL E(10000),SE(4000),FILX(10000)
INTEGER DELAY
OPEN(UNIT=4,FILE='MSE',STATUS='UNKNOWN ' )

C SEED IS IX
IX=I

C S 15 THE STANDARD DEVIATION
S=1.0

C AM IS THE MEAN
AM=O.0

C NPT IS THE NUMBER OF POINTS
NPT=3000

C NT IS THE NUMBER OF ADAPTIVE FILTER TAPS
NT = 21

C U IS THE CONVERGENCE CONSTANT
iI = .U0075

C INITIALIZE THE MSE VARIABLE WITH ALL ZEROS
DO 50 N=I,NPT

MSE(N)=O.O
50 CONTINUE

I C THIS LOOP CALCULATES THE MSE FOR 100 RUNS
C EACH RUN USES A DIFFERENT SEED IX.

DO I P=l,100

C CALL THE SUBROUTINE TO GENERATE THE WHITE GAUSSIAN NOISE FOR THE
C INPUT SEQUENCE

CALL GAUS(IX,SAM",NPT,X)

C INCREMENT THE SEED
IX=IX- 1

C SET THE INVERSE DELAY TO 1/2 THE NUMBER OF TAPS
DELAV=NT/2

C SET THE PLANT COEFFICIENTS A1-A3
Al =1

A2=-2.8
A3=2 32

C INITIALIZE THE WEIGHTS TO ZERO
DO 5 N= 1,NT
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W(N)=O.O
* SCONT INUE

C LOAD THE PLANT OUTPUT VECTOR WITH ZEROS.

DO 7 N= 1,NT
V(N)=O 0
FILX(N)=O 0

- X(N)=O.0

TOTE =0.0
TNOR=O.0

C ANADAPTIVE FILTER LOOP
DO 20 N=NT- 1,NPT

ACCUr=O.O

C CALCULATE THE INVERSE FILTER OUTPUT 'FILX(N)Y

* FILX(N)=A I*X(N)-A2*X(N- I )-A3*X(N-2)

DO 30 J= 1,NT
30 ACCUM=X(N-(J- I ))*W(J)-ACCUM

Y(N)=ACCUM

C CALCULATE THE PLANT OUTPUT
,1 (N)=A I *!Y(N)).A2*(Y(N-) ))>A3*CV(N-2))

C C.ALCULATE ERROR
ECN)=XCN-DELAY)-Y 1 (N)
TOTE=E(N)*E(N)
T NOR =X( N)*X( N

* IF (TNOR.EQ. 0.0) THEN
TOTE=0.O
TNOR= 1.0

END IF

MSE(N-NT )=J0TE)-MSE(N-NT)

DO 40 J= 1,NT

40 W(J)=W(J)- 2.0*U*E(N)*FI LX(N-(J-~ 1)

20 CONTINUE
I CONTINUE

DO 80 N=lI,NPT-NT- 1,I10
rSE( N) = SE( )/ P
W R I T E(4,90 )VS E (N)

90) FO~rAT(F 1 0 4)
CONTINUE

END
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Program 4:
PROGRAM AIPASO

C THIS PROGRAM CALCULATES THE AVERAGE SQUARED ERROR FOR THE ALP
C AFTER 4000 iTERATIONS HAVE BEEN COMPLETED. THE WHITE NOISE
C IS COMPUTER GENERATED AND HAS SELECTABLE MEAN AND STANDARD
C DEVIATION. THE AVERAGED SQUARED ERROR FOR THE 4001 TO THE
C 40000 ITERATION IS SAVED TO THE FILE 'ERRORS'. THE PROGRAM ISi
C CURRENTLY CONFIGURED FOR A TWO TAP PLANT AND TWO TAP ADAPTIVE
C FILTER. HOWEVER, IT CAN BE EASILY MODIFIED FOR LARGER PLANTS AND
C FILTERS.

C DECLARE THE VARIABLES
REAL X(90000),Y(90000),W(256),Y1(90000)
REAL Y2(90000),W2(256),Y3(90000),NOISE(90000)
REAL E(90000)
OPEN(UNIT=9,FILE='ERRORS ',STATUS= 'UNKNOW N' )

C INITIALIZE THE VARIALBLES
C IX IS THE SEED

IX=1

C S IS THE STANDARD DEVIATION
S=1.0

I C AiH IS THE MEAN
AM=0.0

C NPT IS THE NUMBER OF POINTS
NPT=40000

I C NT IS THE NUMBER OF ADAPTIVE FILTER TAPS
NT=2

C CALL THE SUBROUTINE TO GENERATE THE WHITE GAUSSIAN NOISE FOR THE

C INPUT SEQUENCE

CALL GAUS(IX,S,AM,NPT,X)

C SET THE INVERSE DELAY
DELAv=2

C SET THE PLANT FILTER COEFFICIENTS
AI= 1.
A2-50-
A3=O.O0

C CALCULATE THE AVERAGED SQUARE ERROR FOR A RANGE OF CONVERGENCE CONSTANTS
C STARTING WITH U=.000007 IT THEN INCREMENTS ]-HE CONVERGENCE CONSTANT 5"-'
C Bv .000001 AND RECALCULATES THE AVERAGE SQUARED ERROR

DO 2 U=.000007, 00001 1000,.000001
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P=O

C INIIAIZ THE ADAPTIVE FILTER WEIGHTS TO ALL ZEROS.

W(N)=O.O
W2(N)=O.O

5 CONTINUE

C LOAD THE PLANT OUTPUT VECTOR WITH ZEROS.
DO 7 N= 1,NT

Y (N) = 0
Y2(N)=O.O
Y3(N)=O.O

7 X(N)=O.O

TOTE =0.0

C MAIN FILTER LOOP
DO 20 N=NT-1,NPT

C INITIALIZE THE FILTER ACCUMULATORS WITH ZEROS
A C CUM=0.0

C CALCULATE THE INVERSE FILTER OUTPUT
DO 30 J=1,NT

30 ACCUMX(N-(J- 1 ))*W(J)+ ACCUM
YC N)=AC CUM

C CALCULATE THE PLANT OUTPUT
Y 1 (N)=A I *Y(N)- A2*Y(N- 1 )+A3*Y(N-2)

C CALCULATE THE ERROR
ECN)=X(N-DELAY)-Y I1(N)

ERSO=E(N)**2.O

IF (N.GT,4000)THEN
P=P- 1

TOTE =TOTE-ERSO
END IF

C UPDATE WEIGHTS
DO 40 J= 1 ,NT

40 W(J)=W(J)-2 O*U*E(N)*X(N-(J- 1)

20 CONTINUE

1 00 AVGE=TOTE/P
WRITE(9,60)U,AVGE,W( I ),W,'2)

60 FORV AT(F 10 6,2X,F 12 7,2-'X,F 10 4,2X,F 10 4)

2 CONTINUE
END
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I Program 5:

PROGRAM AiM
C THIS PROGRAM CALCULATES THE INVERSE MODEL OF A
C REVERBERATION CHAMBER AT AI-RL/BBA USING THE ADAPTIVE
C til.:ERSE MODELING. THE DIGITIZED DATA FILES ARE WNG AND MIC
C WNG IS THE DATA FROM THE PINK NOISE GENERATOR AND MIC IS THE
C DATA FROM THE REFERENCE MICROPHONE.
C NT IS THE NUMBER OF TAPS
C X(N) IS THE FILTER INPUT-DATA FROM THE WNG (WNG=X(N))
C D(N) IS THE DATA FROM THE M IC (MIC=D(N))

C E IS THE ERROR SIGNAL
C Y(N) IS THE FILTER OUTPUT
C NPT IS THE NUMBER OF SAM"PLE POINTS.

C DECLARE THE VARIALBES
INTEGER XI(52000),DELAv,COUNT,FCOUNT,DELAv2
integer di(52000)
REAL X(52000),Y(52000),dC52000)
REAL W(SOOO),XMAG( 1024),YMAG( 1024),DMAG( 1024)

COMPLEX XS( 1024)
REAL ENERGY(52000),U I(52000),ER(52000),E2(52000)
REAL W 1(1 OO)V2(52000),Y3(52000),y4(52000)

C OPEN DATA FILES
C

OPEN(UN IT=4,F ILE='XDYa',STATUS ='UNKNOWN')
OPEN(UNIT=5,F ILE=wng',STATUS='OLD')
open(unit=6,f ile=m lc',status='old')
OPEN(UNIT=8,Fl LE='DSPECT',ST AT US='UNKNOWN')
OPEN(UNiT=7,FILE=XSPECT,STATUS=UNKNOWN')

FOPEN(UNIT=9,FILE=VYSPECT,STATUS=UNKNOWN')

C SET THE NUMBER OF SAMPLE POINTS IN THE DATA FILES
C WNG_ AND M IC_

NPT=32768
C SET THE NUMBER OF TAPS NT FOR THE ADAPT IVE I NIVERSE F ILTER

NT= 151
C SET THE INVERSE DELAY

DELAY=75
C SET THE NUMBER OF FFT POINTS FOR THE PSD

NFFT=256
C SET ALPHA FOR THE NORMALIZED LMS. SET TO 0 0 IF THE LMS IS GOING To BE USED

ALPHA=.30

C SET GAMMA FOR THE NORMALI ZED LMS
GAMMA= 100

C SET THE CONVERGENCE CONSTANT IF THE LMS IS BEING USED
U=0.000

C SET THE STARTING POINT (NSTART) FOR THE \P\S\D
NSTART=1I6385
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C SET THE FINISH POINT (NFIN) FOR THE \P\S\D
NFIN=32768

C SET THE NUMBER OF PSD POINTS TO BE WRITTEN TO THE FILES XDV,
C XSPECT, DSPECT, YSPECT

NPSD=70
C NOTE: NFIN - NSTART - I MUST BE A MULTIPLE OF NFFT

C ZERO FILL THE FIRST 2000 DATA SAMPLES.

DO 10 N=1,2000

X(N)=O.O
d(n)=O.O
Y(N)=O.O
Y2(N)=O 0
Y4(N)=O.O

10 CONTINUE

C READ IN DATA FROM THE WNG AND MIC DATA FILES.

C DIGITIZED DATA FILES WERE SAVED AS INTEGER FILES.
DO 30 N=1,NPT

READ(5,35)XI(N)
35 FORMAT(18)IREAD(6,36'END=999)DI(N)
36 FORMAT(18)

30 CONTINUE

999 CLOSE(5)
CLOSE(6)

C MULTIPLY DATA BY A CONSTANT AND PREPARE IT FOR PROCESSING. THE DIGITIZED
DATA
C IS CONVERTED TO REAL AND APPENDED TO A 2000 SAMPLE LEADER OF ALL ZEROS.

DO 40 N=2001,NPT-2000

X(N)=XI (N-2000)*.0043
D(N)=DI (N-2000)*.0043

40 CONTINUE

42 CONTINUE

C ZERO THE WEIGHTS.

DO 70 N= 1,NT
W(N)=O.O

70 CONTINUE

C STAR- MAIN FILTER LOOP.
DO 80 N=2OO1-nt,2OOO-NPT
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C SET FILTER ACCUMULATORS TO ZERO.
ACCU =O0
ACCUM2=O.O

C CALCULATE THE ADAPTIVE INVERSE MODEL OUPUT AND THE lNPUT POWER.
DO 340 K=I ,NT

ACCUM=ACCUM D(N-(K- I ))**2.0
ACCUM2=ACCUM2-D(N-(K- I ))*W(K)

340 CONTINUE
Y2(N)=ACCUM2

energy(n)=accum

C FILTER ENERGY IS USED BY THE NORMALIZED LMS

IF(ALPHA EQ. O.O)THEN
U I (N)=U
GO TO 121

END IF

C CALCULATE THE CONVERGENCE CONSTANTS U I(N) FOR THE NORMALIZED LMS.

U 1 (n)=alpha/(gamma-energy(n))

121 CONT I NUE

a C CALCULATE ERROR BETWEEN THE DESIRED AND THE INVERSE MODELING
C FILTER OUTPUT

E=x(N-DELAY)-Y2(N)
ER(N)=E

ERR=2.0*U 1 (N)*E

C WEIGHT UPDATE
DO 120 J=I,NT

W(J)=W(J) 2.0*err*d(n-(j- I))
120 CONTINUE

80 CONTINUE
85 continue

C CALCULATE POWER SPECTRUM FOR THE FILTER INPUT D(N), THE
C FILTER OUTPUT V(N) AND THE DESIRED SIGNAL X(N). THE PSD IS THE
C AVERAGE PERIODOGRAM ESTIMATOR. RECTANGULAR NON-OVERLAPPING
C WINDOWS ARE UTILIZED.

N-NFFT

C SAM"PLING RATE WAS 22.75 US
T=22.75E-6
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C FOR DIRECT FFT K0DE I
KODE= I

1 DF= I./(N*T)
DO 128 J= 1,NFFT

XMAG(J)=O.O
DMA 6(J) = 0

128 YMAG(J)=0.O

- FCOUNT=O
COUNT =0

C CALCULATE PSD OF THE MIC DATA WHICH IS SAVED IN THE ARRAY D(J).
DO 130 J=200O-NSTART,2OOO-NFIN

COUNT =COUNT- I
C CONVERT REAL ARRAY INTO COMPLEX ARRAY

XS(COUNT)=CMPLX(d(J))

C IF WINDOW IS FULL, RUN FFT.
IF(COUNT.EO.NFFT) THENr CALL FFT(KODE,N,T,XS)

C CALCULATE THE MAGNITUDE OF THE FFT COMPONENTS AND KEEP RUNNING
C TOTAL FOR EACH FREQUENCY BIN,

DO 140 K= 1,NFFT
XMAG(K)=CABS(DF*XS(K))+XMAG(K)

*140 CONTINUE

C REINITIALIZE COUNTER
COUNT =0

C FCOUNT COUNTS THE NUMBER OF WINDOWS
FCOUNT=FCOUNT- 1

END IF
130 CONTINUE

DO 150 J= 1,NPSD

C WRITE THE PSD FOR EACH FREQUENCY BIN INTO THE FILE DSPECT.
XMAG(J)= 1 O*LOG 1 O(XMAG(J)/FCOUNT)
WRITE(7,1I55)XMAG(J)

155 FORMAT(F 10.6)
150 CONTINUE

FCOUNT=O
CO UNT =0

C CALCULATE PSD OF THE PINK NOISE DATA WHICH IS SAVED IN THE ARRAY X(J).
DO 160 J=NSTART-2OOO,NFIN+200O

COUNT=C0UNT- 1
XS (COUNT )=CM PLX(x(J--de l ay))

I F(COUNT.EO.NFFT) THEN
CALL FFTCKODE,N,T,XS)
DO 1 70 K=I1,NFFT

DMAG( K) =0ABS( DF*XS( K) )-DMAG(K)
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170 CONTINUE
* FCOUNT=FCOUNT- I

CO UNT= 0
END IF

160 CONT INUE
DO 180 J= I,NPSD

DMAGCJ)=20*LOG I O(DMAG(J)/FCOUNT)
WRITE(8, 185)DMAG(J)

185 FORMAT(F 1.6)
180 CONTINUE

C CALCULATE PSID OF THE ADAPTIVE FILTER OUTPUT
-- C WHICH IS SAVED IN THE ARRAY V2C3)-

F COUNT =0
COUNT =0
DO 190 J=NSTART-2OOO,NFIN-2OOO

COUNT=COUNT- 1
XSC COUNT )=CMPLX(Y2CJ))
IF (COUNT. EO.NFFT) THEN

CALL FFT(KODE,NT,XS)
DO 200 K=1,NFFT

YMAG(K)=CABS(DF*XS(K))-YMAG(K)
200 CONTINUE

FC0UNT=FC0UNT- I

ENDIF ON=

190 CONTINUE

C CALCULATE THE PSID AVERAGE MAGNITUD~E DIFFERENCE BETWEEN XMAG AND DMAG
C AND BETWEEN YMAG AND DMAG AND WRITE THE RESULTS IN TABULAR FORMAT TO
THE

K.. C FILE XDYA.
DIFF=0.
DIFFO=O.

WRITE(4,2 12)
212 FORM AT(FREQ,5X, 'DES IRED,5X, -W/O FIL',5X,'W FIL-)

DO 2 10 J= I ,NPSD
YtMAG(J)= I 0*LOG I O(YrAG(J)/FCOUNT)
D I FF=DI FF-ABS(DMAG(J)-XMAG(J))
D I FFO=DI FFO-ABS(DMAGCJ )-YMAG(J))
FREQ=(J- 1 )/T/NFFT
WRITE(4,2 I S)FREQ,XMAG(J),DMAO(J),YM-AG(J)

215 FORMAT(F 7.1 ,2X,F 1 O.6,2X,F1 IO.6,2X,F 10.6)
WR I TE( 9,220)YMAG(J)

220 FORMATCF 10.6)
210 CONTINUE

DIFF=DIFF/NPSD
DIFFO=DIFFO/NPSD
WRITEC 4,225)

225 FORMAT('AVMAGCX-W/O) ,3X,AVMAO(X-W)')
WRI TE(4,230O)DI FF,DI FF0

230 FORMAT(F9.4,2X,F9.4)
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I* C CALCULATE AVERAGE SQUARED ERROR, AVERAGE INPUT POWER, AND AVERAGE
C CONVERGENCE CONSTANT FOR THE NLS AND APPEND TO FILE XDVA!

ERROR=0.0
ENER=O.O
ERROR2=O.0
UCONST=0.O
dsq=O.O

I dsq2=O 0

DO 240 J=20Ol-nstart,2O00NPT
ENER=ENER-ENERGY(J)
ERROR =ERROR (ER(J ) )** 2.
UCONST=UCONST'U 1(J)
dsq=dsqx( j -delay)**2.0

240 CONTINUE

AVGENE=ENER/(NPT-nt)
UCONST=UCONST/(NPT-nt)
ERROR=ERROR/dsq
WRITE(4,245)

245 FORMATCAVG ENERGY',7X,'AVG U',7X,'AVG SQ IMOD ER-)
WR I TE( 4,250)AVGENEUCONST,ERROR

250 FORMAT(F 10.4,2X,F 13.8,2X,F 10.4,)

CLOSE(4)
CLOSE(7)
CLOSE(8)
CLOSE(9)

END

! C FFT SUBROUTINE WAS COPIED FROM THE "METHODS OF DISCRETE SIGNAL
C AND SYSTEM ANALYSIS" BY JONG (3:262-265)

subroutine fft(kode,n,delta,x)
c power-of-2 fft (direct and inverse) algorithm.
c
c kode = I for direct fft, -1 for inverse fft.
c n = number of samples, must be a power of 2, otherwise error
c message will be printed
c delta = t (sampling interval in seconds) for direct transform
c df (frequency spacing in hz) for inverse transform
c for strict dft (not an approximation to continous ft), set delta
c to 1 for direct transform and to I/n for inverse transform.
c x = complex array holding data samples (input before, output after).
0

complex x(*),w ,x 1 ,cmplx
integer n
ir=O
nl =n

5 n2=nl/2
if(n2*2.ne. nl)goto 100

ir = ir - I
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n i n2
if (n I gt. I1)goto 5U pn =6.283185/n
1 =n/ 2
ir I=ir- I
k 1 =0
do 30 is=,I r

15 do 20 i=1I,1
- k=k I -

kpl=k-1
am=kbitr(k 1 /2**ir 1 ,ir)

if (am ne. 0.) go to 18
x I = x(kpl)

go to 19
18 arg=am*pn

c=cos( arg)
s=-kode*sin(arg)
w 1 =cmplx(c,s)
x I=w I*x(kpl)

19 x(kpl) = x(k)-xlI
x(k)=x(k)-x I

20 kl=kl+1
K I=K 1 l
ifkI i1t. n)go to 15
ki = 0
Wir= irl-1

30 1=1/2Udo 40kl In
kl = kbitr(k-I,ir)-l

if (k I le. k) go to 40
x I=x(k)
x(k)=x(k 1)

x(k I) = x I
3W 40 continue

if (delta eq. 1.) return
do 50 k=1,n

x(k)=x(k)*delta

50 continue

return
100 write(9,101) n
10 1 f ormat(16,' is not a power of 2, fift run aborted')

return
end

function kbitr~k,ir)
kbitr = 0
kI = k
do I i=1,ir
k2 =kl1/2
kbitr = 2*kbitr - k I - 2 *k2

1 k I=k2
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L

return
I end

subroutine window(z,nfft)
real z(*)
do 10 n=l,128

z(n)=z(n)*( 1 -cos(6.2832*(n-63)/nfft))
10 continue

return
end

Program 6:
program formod

c this program calculates the forward model of a
c reverberation chamber at amrl/bba. The forward model
c weights are saved during the last iteration to the file "weights6".
c The program can operate in a decimation or in a normal mode.
c The decimation mode reduces the initial sampling rate and bandlimits the
c digitized data. Ti ,e forward models generated in the decimation mode are
c used in the five band AIMCS simualtions. The bandpass filter coefficients
c are stored in the data file "bpfw". The file wng contains digitized
c data from the noise generator, and the file mic_ contains the digitized data
c from the microphone.
c nt is the number of taps
c x(n) Is the filter input-data from the mic (mic=x(n))
c d(n) is the desired sequence-data from the noise gen (wng=d(n))
c e is the error signal
c y(n) is the filter output
c u is the convergence constant
c npt is the number of sample points.

c declare the variables
integer xi(74000),di(74000),delay,count, fcount,l,dec

real x(37000),d(37000),y(37000),er(37000)
real w(2000),xmag( 1024),ymag( 1 024),dmag(1 024)
real fl(256),wbpf(501 ),xl(37000),dl(37000)

complex xs(1024)

c open data files for read and write operations
open(unit= 1 ,file='bpfw',status='unknown')
open(unit=2,file='weights6',s tatus='unknown ' )
open(uni t=4,fi le='xdy',status='unknown')
open(unit=5,file='wng',status='old ')

open(unit=6,file='m ic',status='old ')

open(unit=8,file='dspect',status='unknow n')
open(unit=7,f ile='xspect',status='unknown')
open(uni t=9,f i le='yspect ' ,status='unknown')

c set the number of sample points in the data files
C wng__ and rric_.

npt=65536
c set the number of taps nt

nt=70
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c set the number of f f t points nf ft
nfft=32

c set the convergence constant u
u=.0075

c set the number of bpf taps
nt5=3 I

c set the decimation factor
dec= 100

c set the starting point (nstart) for the P50
nstart=336

c set the finish point (nf in) for the P50
nf in=655

c set the number of psd points to be written to the f iles xdy,
c xspect, dspect, yspect.

npsd= 10
c nfin -nstart - 1 must be a multiple of nfft

c make the f ilIter causal for a max filter size of 2000.
do I On=1,2000

y(n)=0.0
x(n)=0.0
d(n)=0.0
x I (n)=0.0
d I (n)=0.0

10 continue

c read Jn data from the wng.- and mlc. files
do 20 n= I ,npt

read(6,25,end=998)di(n)
25 format(18)
20 continue

998 close(6)

do 30 n=i1,npt
read(5,35,end=999 )xi(n)

35 format0i8)
30 continue

999 close(5)

c the number of data points after decimation
if(dec ne. 0) then

npt=npt/dec

c read in BPF weights
do 43 n=l,nt5-1

readC 1 ,45)wbpf (n)
45 format(f 1 3.8)
43 continue

endift
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c mrultiply data by a constant and filter data for processing.

do 40 n=200l,npt-2000
if(dec.eq.0)then

x(n)=xi(n-2000)* 0043
d(n)=di(n-2000)* 0043
go to 40

end if
-~ 1l (n)=xi(1)*.004 3

dlI (n)=di(l)*.0043
accumn =0.0
accum 2=0.0
do 47 k= l,nt5

accumr=accurn -wbpf (k)*x 1 (n-(k- I)
47 accumr2=accun2-wbpf (k)*d 1 (n-(k- I)

c wbpf(nt5- l)is the bandpass filter scaling factor
x(n)=accum/wbpf(nt5- I )
d(n)=accumr2/wbpf(ntS I)

1=1-dec
40 continue

c zero the weights
do 70 n=l,nt
w(n)0O.0

70 continue

c repeat the adaptive flilter iteration 10 times to insure the flilter has converged 4

do 85 p- 1, 1 0

c main adaptive flilter loop
do 80 n=200 I nt,2000-npt

c set filter accumulators to zero.
accum =0.0

c calculate the filter output.
do 1 10 j- l,nt

110 accurr=x(n-(j- I))*w(j)-accum

y(nlaccun.

c calculate e,!r r between the desired and the filter output

e=d(n)-y(n)
er(n)=e

c calculate the filter weights for the next iteration.
err=2.0*u*e

do 120 j=lI,nt
w( j)=w(j ) err~x(n-( j -)I

c check if -it is tne last iteration
if(n .eq. npt+ I Y99.and. P.10. 10) then
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c write weight vector to file weights.
-wvrit e(2, 1 15) w(j)

1 15 formrat(f 10.6)
end if

120 continue

80~ continue
85 continue

c calculate power spectrum for the filter input x(n), the
c filter output y(n) and the desired signal d(n).

n=nf ft

c sampling rate was 22.75 us
t=22. 75e-6*dec

c for direct fft kode = 1
kode= I

df=1 /(n*t)

c initialize PSD accumrulators to zero
do 128 1=1 ,nfft

xm ag( j )=0. 0
dmrag(j )=0.00

5125 yrrag(j)00

fcount=0
count =0

c calculate the psd for the pink noise data
do 1 30 j=2000*nstart,2000*nf in

a count=count-l
xs(count )=cmrplx~x(j))

if (count.eq~nfft) then
callI fft(kode,n,t,xs)
do 140 k= l,nf ft

xmr ag(k )=cabs( df *xs(k ) )-xm ag(k)
140 continue

count =0
fcount=fcount-I

end if
130 continue

do 150 j =I, npsd
xrr ag(j)= 10*log I0(xmrag(j)/ fcount)
wri te(7, 1 55)xmrag~l)

1f formrat(f10.6)
150 continue

fount=0
count =0

c calculate the psd for the mric data
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do 1 60 j~nstart-2000,nf in-2000
count=count-1

xs(count)=cmrplx(dQj))

if (count.eq.nfft) then
call fft(kode,n,t,xs)
do 170 k= 1 ,nff t

dmrag(k)=cabs(df*xs(k))-drrag(k)
170 continue

fcount=fcount- 1
count=0

end if
160 continue

do 180 j =1,npsd
dmrag~j )= I 0*1091I 0(dmnag(j)/fcount)
write(8,1 85)dmrag(j)

185 f ormrat(f 10.6)
180 continue

fcoun~t=0
count=0

c calculate the psd for the forward model output
do 1 90 j=nstart-2000,nf in-2000

count=count-1
xs(count)=cmplx(y(j))3 if(count.eq.nfft) then

call fft(kode,n,t,xs)
do 200 k= 1,nf ft

ym ag(k )=cabs(df*xs(k ) )ymag(k)
200 cont inue

fcount~fcount I
count=0

end if
190 continue

c compare psdis and write results to file "xdy"

dif f O.

write( 4.21 2)
2 12 f orm at(freq',5x,'Input', 7xdes !red',5x,'output')

do 2 10 j= ,npsd
ymrag(j )= 10O*1091 0(ym ag(j )/f count)
dif f=dif f-abs(dmrag( j)-xmag(j))
diffo~diffo-abs(dmrag(j )-ymrag(i)
f reci=(j -I )/t/nff t
wri te(4,2 1 5)freq,xmag( j),dmag( j),ym ag( j)

215 format(f 7.1I,2x,f 1 0.6,2x,f I 0.6,2x,f 10.6)
write(9,220)ymrag(j)

220 f ormrat(f 10,6)
210 continue

diff=diff/npsd
-diffo=diffo/npsd
'wri te(4,225)



225 f or rna t ma g(d -x)', 6x,mra g(d-y)'
w r 1 te( 4,230 )d 1 ff, d f f o

230 f ormra t (f9.4,2 x, f9.4)

ccalculate the average squared error
error=O.0
ener=0 0
clsq=0.0
do 240 j=2001,200O-npt

error=error-( er( j)**2.0)
dsq=dsq-d(j )**2.O

240 continue
error=error/ dsq
writeC 4,245)

245 formnat('avg error')
write(4,250)error

250 f ormat(f 10.4)

close(7)
close(8)
close(9)
FND

Program 7:
PROGRAM AIMCS

C THIS PROGRAM CALCULATES THE INVERSE FILTER OF A
C REVERBERATION CHAMBER AT AMRL/BBA USING THE ADAPTIVE
C INVERSE CONTROL MODELING SYSTEM. THE PLANT MODEL WEIGHTS
C WERE GENERATED BY AN ADAPTIVE FORWARD MODELING FILTER.
C
C NT IS THE NUMBER OF TAPS

*C X(N) IS THE FILTER INPUT-DATA FROM THE WNG (WNG=X(N))
C E IS THE ERROR SIGNAL
C Y(N) IS THE FILTER OUTPUT
C NPT IS THE NUMBER OF SAMPLE POINTS.

C DECLARE VAR IALBLES
INTEGER X174000),DELAY,COUNT,FCOUNT,L,DELAv2

REAL X(37000),Y(3l7000),X 1(37000)
REAL W(2000),XMAG( 1024),YMAG(1I024),DM-AG( 1024)

COMPLEX XS( 1 024)
REAL ER(37000),E2(37000)

REAL Wi (1 OOO),Y2(37000),v3-(37000),v4(37000D),WBPF(3 1l)
OPEN(UN IT=l 1,F ILE='BPFW',STATUS='OLD')
OPEN(UN IT=2,FI LE='WE IGHTS6,ST AT US='UNKNOWN')
OPEN(UN I T=4,FI LE='XD', STATUS='UNKNOWN')
OPEN(UN IT =5,F ILE='WNG,ST ATUS='OLD')
OPENCUNIT=8,FILE=DSPECT',STATUS='UNKNOWN')
OPEN( UNIT =7,FILE='XSPECT ,ST ATUS='UNKNO WN')
OPEN(UNIT=9,FILE='YSPECT',STATUS='UNKNOWN')

C SET THE NUMBER OF SAM PLE POINTS IN THE DATA FILEr-
C WNG_ AND M I C_
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NPT=32768
C SET THE NUMBER OF TAPS NT FOR THE ADAPTIVE INVERSE FILTER

NT =453
C SET THE NUMBER OF PLANT TAPS

NT2=300
C SET THE NUMBER OF BPF TAPS.

NTS=31
C SET THE DECIMATION FACTOR

DEC= 100
C SET THE INVERSE DELAY

DELAY=NT/2
C SET THE NUMBER OF FFT POINTS NFFT

NFFT=64
C SET THE CONVERGENCE CONSTANT U

U=.OO 170
C SET THE STARTING POINT (NSTART) FOR THE \P\S\D

NSTART=336
C SET THE FINISH POINT (NFIN) FOR THE \P\S\D

NFIN=655
C SET THE NUMBER OF PSD POINTS TO BE WRITTEN TO THE FILES XDv,
C XSPECT, DSPECT, YSPECT.

NPSD=1O
C NFIN - NSTART 1 MUST BE A MULTIPLE OF NFFT
C MAKE THE FILTER CAUSAL FOR A MAX FILTER SIZE OF 2000.

DO 1ON=I,2000

X(N)=O.O
Y(N)=O.O
Y2(N)=O.O
Y4(N)=O.O
X I(N)=O.O

10 CONTINUE

C READ IN DATA FROM THE WNG_ FILE
DO 30 N--,NPT

READ(5,35,END=999)XI (N)
35 FORMAT(18)

30 CONTINUE

999 CLOSE(5)

C CALCULATE THE NUMBER OF DATA POINTS AFTER DECIVATION
IF(DEC NE. O)THEN

L=I
NPT=NPT/DEC

C READ BPF WEIGHTS
DO 43 N= I , NT5-1

READ( 1,45)WBPF(N)
45 FORMAT(F 13.8) a
43 CONTINUE

END IF
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C M ULTIPLY DATA BY A CONSTANT AND FILTER WITH BPF
DO 40 N=2001,NPT-2000

IF(DEC EQ. 0) THEN
X(N)=XI (N-2000)*.0043
GO TO 40

END IF
X I (N)=XI(L)*.0043

L=L DEC
ACCUM=0.0
DO 47 K=1,31

47 ACCUM=ACCUM-WBPF(K)*X 1 (N-(K- 1))

C WBPF(NT5 1) IS THE BANDPASS FILTER SCALING FACTOR
X(N)=(ACCUM)/WBPF(NT5 1)

40 CONTINUE

C READ IN WEIGHTS FOR THE PLANT SIMULATOR
DO 310 J=LNT2

READ(2,300,END=31 5)W 1 (J)
300 FORMAT(F 1 0.6)
310 CONTINUE
315 CONTINUE
C ZERO THE WEIGHTS.

DO 70 N= 1,NT
W(N)=O.O

70 CONTINUE
W( 1 )= 1.0

C REPEAT THE ADAPTIVE FILTER ITERATION 2 TIMES TO INSURE THE FILTER HAS
CONVERGED

DO 85 P=1,2

C START MAIN ADAPTIVE FILTER LOOP

DO 80 N=2OO1NT2"NT,2OOO NPT

C SET FILTER ACCUMULATORS TO ZERO.

500 ACCUM=0.0
ACCUM2=0.0
ACCUM3=O.O
ACCUM4=O.O

C CALCULATE THE INVERSE FILTER OUTPUT
DO 110 J=I,NT

110 ACCUr,=X(N-(J- I ))*W ( J)-ACCUM
Y(N)=ACCUM

C CALCULATE PLANT SIMULATOR OUTPUT Y2(N)
DO 340 K= I ,NT2

ACCUM2=ACCUM2.V(N-(K- 1 ))*W 1 (K)
340 CONTINUE

v2(N)=ACCUM2
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C CALCULATE THE PLANT INVERSE MODEL OUTPUT Y3(N)
DO 35OK= 1,NT

ACCUM3=ACCUM3-y2(N-(K- I ))*W(K)
350 CONTINUE

v-.(N-2OOO)=ACCUM3

C CALCULATE PLANT OUTPUT WITHOUT INVERSE FILTER
DO 360 K= 1,NT2

360 ACCUM4=ACCUr4-X(N-(K- I))*W I(K)
Y4(N)=ACCUM4

C CALCULATE ERROR BETWEEN THE DESIRED AND THE INVERSE MODELING
C FILTER OUTPUT

E=Y(N-DELAY)-Y3( N-2000)
ER(N)=E

C CALCULATE ERROR BETWEEN THE DESIRED AND THE INVERSE FILTER OUTPUT
E 2(N)=X( N-DELAY) -Y 2(N)

ERR=2.0*U*E

C WEIGHTS UPDATE
DO 120 J=1,NT

W(J)=W(J)-ERR*Y2(N-(J- I)
120 CONTINUE

*80 CONTINUE
85 CONTINUE

C CALCULATE POWER SPECTRUM FOR THE FILTER INPUT X(N), THE
C PLANT OUTPUT Y(N), AND THE PLANT WITHOUT THE INVERSE D(N).

N=NFFT

C INITIAL SAM1PLING RATE WAS 43956.0 HZ
T=22.75E-6*DEC

C FOR DIRECT FFT KODE = I
KODE= I

DF= 1 ./(N-*T)

C INITIALIZE PSD ACCUMULATORS TO ZERO.
DO 128 J= 1,NFFT

XMAG(J)=O.O
* DMAG(J)=O.O

128 YMAG(J)=O.0

F COUNT =0
COUNT=O

C CALCULATE THE PSD FOR THE PINK NOISE DATA
DO 130 J=200-NSTART,2OOO-NFIN

COUNT=COUNT- I
XS (COUNT) )=CV PLX(XJ))
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IF(COUNT.EQ.NFFT) THEN
CALL FFT(KODE,N,T,XS)
DO 140 K=1,NFFT

XMAG(K)=CABS(DF*XS(K))-XrAG(K)
140 CONTINUE

COUNT =0
FCOUNT=FCOUNT- 1

END IF
130 CONTINUE

DO 150 J= I,NPSD
XMAG(J)= 1 O*LOG 1 O(XMAG(J)/F COUNT)
WRITEC7, 155)XMAG(J)

155 FORrIAT(F 10.6)
150 CONTINUE

FCOUNT=O
COUNT=O

C CALCULATE THE PSD FOR THE PLANT OUTPUT WITH THE INVERSE FILTER
C BYPASSED

DO 160 J=NSTART-2OOO,NFIN-2OOO
COUNT=COUNT~ 1

XS (COUNT )=CM PLXCY 4(J))

IF(COUNT.EQ.NFFT) THEN
CALL FFT(KODE,N,T,XS)
DO 170 K- 1NFFT

DMAG(K)-CABS(DF*XS(K))-DrIAG(K)
170 CONT INUE

FCOUNT=FCOUNT~ 1
COUNT=O

END IF
160 CONTINUE

DO 180 J= I,NPSD
DrIAG(J)= I O*LOG I O(DMAGJ)/FCOUNT)
WRITE(6, I 85)DMAG(J)

185 FORMAT(F 10.6)
180 CONTINUE

FCOUNT=O
COUNT=O

C CALCULATE THE PS0 FOR THE PLANT OUTPUT WITH THE INVERSE ENABLED.
DO 1 90 J=NSTART-2OOO,NFIN-2O0

COUNT =COUNT~ 1
XSC COUNT)=CMPLX(Y2(J))

IFCCOUNT.EQ.NFFT) THEN
CALL FFT(KODE,N,T,XS)
DO 200 K= 1,NFFT

YMAG(K)=CABS(DF*XS(K))-vrAG(K)
200 CONTINUE

FCOUNT=FCOUNT- 1
COUNT =0
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END IF
190 CONTINUE

C COMPARE PSDS AND WRITE RESULTS TO FILE "XDY"
DIFF=O.
DIFFO=O.

WRITE(4,2 12)
212 FORMAT(FREO,SX,'DESIRED,5X,W/O FIL',5X,'W FIL-)

DO 210 J= I,NPSD
YMAG(J)= 1 0*LOG 1 0(YMAG(J)/ F COUNT)
DI FF=DIFF- ABS(DMAG(J)-XMAG(J))
DI FFO=DIFFO.ABS(XMAG(J)-VMAGCJ))

FREQ=(J- 1 )/T/NFFT
WRITE(4,2 15)FREQ,XMAG(J),DMAG(J),YVMAG(J)

215 FORMAT (F7.1I,2X, F 1 O.6,2X,F 1 O.6,2X,F 10.6)
WR ITE(9,220)YMAG(J)

220 FORMAT(F 10.6)
210 CONT INU.

DIFF=DIFF/NPSD
DIFFO=DIFFO/NPSD
WRITE( 4,225)

225 FORMAT (AVMAG(X-W/O)',3X,'AVMAG(X-W)
WRITE(4,230)DI FF,DIFFO

230 FORMAT (F9.4,2X, F9.4)

C CALCULATE THE AVERAGE SQUARED ERROR FOR THE INVERSE MODEL
C AND THE INVERSE FILTER.

ERROR=O.O
ERROR2=O.0
DSO=O.O
DS02=O.0
DO 240 J=200 1 ,2OOO-NPT

ERROR =ER RO R(ER(J))**2.
ERROR2=ERROR2(E2(J))**2.
DSQ=DSQ.YCJ-DELAY)**2.0
D5O2=DS02+X(J -DEL AY2)**2.0

240 CONTINUE
AVGENE=ENER/NPT
UCONST=UCONST/ NPT
ERROR=ERROR/ DSO
ERROR2=ERROR2/DS02
WRITE(4,245)

245 FORMAT(AVG SO INV ER',2X,'AVG SO MOD ER')

WR I TE(4,250 )ERROR 2, ERROR
250 FORMAT(F IO.4,2X,F 10.4)

C LOS E( 4)
CLOSE(7
CLOSE(8)
CLOSE(g)

END
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Program 8:
program BPF

c this program generates FIR filter coefficients of a digital bandpass filter
c by using the window synthesis technique. the filter coefficients are
c saved to the f ile 'bpf w and the frequency response is saved to the f ile
c 'data'. the first column in'data' is the frequency and the second column
c 1s the magnitude.

c declare variables
real fcoef(1I000),freq(256),Phase(256)

c open data f Iles
open(unit= lf ile='bpf W,status='unknown')
open(unit=2,fi 1e='data',status='unknown')

c set the sampling frequency in Hz
fs=5494.5

c set the number of taps. make sure the number of taps Is odd.
nt=31I

c set the upper cutoff in Hz
f h=1500.0

c set the lower cutoff in Hz
f1I 400.0

fc=(fh-f 1 )/2.0
wc=fc*2.0*3. 14159265

nt2=nt/2

do 10 n=-nt2,nt2
arg=wc/fs*n+- 1 e-39

c use a triangular window
w in= 1 -abs((2*n)/(nt- 1)

wo=(fcf1 ])*2.0*3.14 1 59265/f s
f coef (k)=w in*Csin(arg))/arg*cos(wo*n)

w ri te( 1 ,20)f coef W)
20 f orm at (f 13.8)

10 continue

c calculate scaling factor
f oef (nt- 1 )=f s/2.0/(f h-f 1)
write( 1 ,22)f coef (nt- 1)

22 f orm at(f 13.8)

118



ntps=nt
c calculate frequency response

call FRERES(ntps,fcoef,freq,phase,f)
do 40 k=0,40
fre~k*fS/8O,
writeC2,30)fre,freq(k* 1

30 f ormat~f 1 0.4,2x,f 10.6)
40 continue

end

SUBROUTI NE FRERES(NTPS,Z,FREO,PHASE,rn,)
C THIS SUBROUTINE CALCULATES THE FREQUENCY AND PHASE RESPONSE OF
C AN FIR FILTER. THE FIR FILTER COEFFICIENT VARIABLES ARE Z(*).
C THE FREQUENCY RESPONSE I S STORED I N THE VAR IABLE FPEO(*), AND
C THE PHASE RESPONSE IS STORED IN THE VARIABLE PHASE(*).

REAL Z( I OOO),REAL,IMAGYFRE(256),PHASE(256)
TOTPHASE=O.O
TOTCORR=O.O

SETFLAG=O.
DO 10 N=0,79

3 C THE NORMALIZED FREQUENCY RANGE FROM 0 TO 8 IS DIVIDED INTO
C 21 INTERVALS.

REAL=O.O
I MAG=O. 0
DO 20 I=O,NTPS-l

REAL=REAL-Z(I- 1 )*(COS(.0785*N*I))
IMAG=IMAG-ZCI - 1 )*(Sl N(.0785*,N*I))

20 CONTINUE

FREO(N)=SQRTCREAL*REAL. IMAG*IMAG)
IF(REAL.EO.O.O)REAL= 1.OE-99

PHASE(N)=ATANI IMAG/ REAL)
I FCN.EO.O.AND.REAL.LT.O.) SETFLAG= 1.
I F(N.EQ.O0) GO TO 40
I F (SETF L A0. eq.0. )T HE N

IF(IMAG.GT.O.O.AND.REAL.LT.O.O)PHASE(N)=3. 141 6-PHASE(N)
I F(I MAO. LT.O, O.AND.REAL. LT.O.O)PHASE(N)=- 3. 141 6-PHASE(N)
IF( IMAG.LT.O.O.AND.REAL.GT.O.O)PHASECN)=PHASE(N)

END IF
IF(SETFLAG.EO. I )THEN
I FO MAO.GOT.0.0. AND.REAL. LT.0. O)PHASE (N)=P 1AS E(N)

t - IF(IMAG.GT.O.O.AND.REAL.GT.O.O)PHASE(N)=PHASE(N)-3 1416
I F( IMAG.LT.O.O.AND.REAL.LT.O.O)PHASE(N)=Ph1ASE(N)
IF(IMAG7.LT.O.O.AND.REAL.GT.O.O)PHASE(N)=3. 141 6-PHASE(N)
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END IF
40 TOT PHASE=TOT PHASE- ABS(PH ASE(N))

TOTCORR =TOT CORR, ABS(COS(PHASEC N)))

10 continue

RETURN

END

Program 9:
PROGRAM' FILX

C THIS PROGRAM SIMULATES THE ALTERNATE FORM OF THE FILTERED-X
C ALGORITHM TO CALCULATE THE INVERSE MODEL OF THE REVERBERATION
C CHAMBER AT AM-RL/BBA.
C NT IS THE NUMBER OF TAPS
C X(N) IS THE DESIRED SIGNAL (WNG=D(N))
C D(N) IS THE INVERSE MODEL INPUT SIGNAL (MIC=X(N))
C NPT IS THE NUMBER OF SAMPLE POINTS.

C DECLARE VARIALBLES
INTEGER XI(52000),DELAY,COUNT,FCOUNT,DELAY2
INTEGER DI(52000)

REAL X(52000),Y(52000),D(52000),X(1(57000)
REAL W(5000),XMAG( 1024),YMAG( 1024),DMAG( 1024)

COMPLEX XS( 1 024)
REAL ER(52000),E2(52000),X2(52000)

REAL WI (1 OO),Y2(52000),Y3(52000),Y4(52000),D 1(57000)

C OPEN DATA FILES
OPEN(UN IT =4, F I LE='XDY,STATUS='UNKNOWN')
OPEN(UNIT=5,FI LE='WNG ,STATUS='OLD')
OPEN(UN I T6,F ILE='M IC',STATUS ='OLD')
OPEN(UNIT=8,FI LE='DSPECT ,STATUS='UNKNOWN')
OPEN(UNI T=7,F ILE='XSPECT,STATUS=UNKNOWN')
OPEN(UN IT =9,F I LE='YS PECT',ST ATUS='UNKNOWN*)

C SET THE NUMBER OF SAMPLE POINTS IN THE DATA FILES
C WNG- AND M I C

NPT=32768
C SET THE NUMBER OF TAPS NT FOR THE ADAPTIVE INVERSE FILTER

NT=151
C SET THE NUMBER OF PLANT MODEL TAPS

NT2=50
C SET THE DELAY TO 1/2 THE NUMBER OF TAPS

DELAY=NT/2
C SET THE NUMBER OF FFT POINTS NFFT

NFFT= 128
C SET THE CONVERGENCE CONSTANT FOR THE ADAPTIVE INVERSE FILTER

U I=.00 10
C SET THE CONVERGENCE CONSTANT FOR THE ADAPT IVE PLANT MODEL

U2=.025
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C SET THE STARTING POINT (NSTART) FOR THE \P\S\D
NSTART=24577

C SET THE FINISH POINT (NFIN) FOR THE \P\S\D
NFIN=32768

C SET THE NUMBER OF PSD POINTS TO BE WRITTEN TO THE FILES XDY,
C XSPECT, DSPECT, YSPECT.

NPSD=40
C NFIN - NSTART -1 MUST BE A MULTIPLE OF NFFT

C MAKE THE FILTER CAUSAL FOR A MAX FILTER SIZE OF 2000.
DO 1ON=1,2000

X(N)=O.O
X2(N)=O.O
D(N)=O.O
Y(N)=O .0
Y2(N)=O.O
Y4(N)=O.O

10 CONTINUE

V C READ IN DATA FROM THE WNG_ FILE
DO 30 N= I,NPT

READ(5,35)X I (N)
35 FORMAT(18)

READ(6,36,END=999)DI (N)
36 FORMAT(18)

R 30 CONTINUE

999 CLOSE(5)
CLOSE(6)

C MULTIPLY DATA BY A CONSTANT AND PREPARE IT FOR PROCESSING
DO 40 N=2OO1,NPT2000i

X(N)=XI (N-2000)*.0043
D(N)=DI(N-2000)*.O043

40 CONTINUE

C ZERO THE WEIGHTS.

DO 70 N=1,NT
W(N)=O.0

70 CONTINUE

C START MAIN FILTER LOOP
DO 80 N=2001 -NT-5OO,2OOO-NPT

C SET FILTER ACCUMULATORS TO ZERO.

ACCUM=O.0
ACCUM2=0.0

C CALCULATE THE PLANT MODEL OUTPUT
DO 320 K= I ,NT2
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320 ACCUM=ACCUM-X(N-(K- I ))*W I1(K)

R v2(N)=ACCUM

C CALCULATE THE INVERSE MODEL OUTPUT.
DO0340 K=lI,NT

ACCUM2=ACCUr2-D(N-(K- I ))*W(K)
3 40 CONTINUE

v(N)=ACCUM2

C CALCULATE THE ERROR FOR THE INVERSE MODEL
E=X(N-DEL-AY )-V(N)

ERCN)=E

C CALCULATE THE ERROR FOR THE PLANT MODEL
E2(N)=D(N)-Y2(N)

C CALCULATE THE FILTER WEIGHTS FOR THE NEXT ITERATION.
ERR=2.0*U I*E
ERR2=2.0*U2*E2( N)

C INVERSE MODEL WEIGHT UPDATE
DO 120 J= 1,NT

W(J)=W(J).ERR*Y2(N-~(J- 1)
120 CONTINUE

C FORWARD PLANT MODEL WEIGHT UPDATER DO 135 K= I,NT2
W 1 (K)= W I (K) -ER R2*X (N-(K~ 1))

135 CONTINUE

80 CONTINUE
85 CONTINUE

C CALCULATE POWER SPECTRUM FOR THE INVERSE MODEL INPUT X(N), THE
C INVERSE MODEL OUTPUT Y(N) AND THE DESIRED SIGNAL D(N).

N=NFFT

C SAMPLING RATE WAS 22.75 US
T=22,75E-6

C FOR D IRECT FFT KODE I
KODE= 1
DF= 1 ./(N*T)

DO 128 J=1,NFFT
XM.AG(J)=O.0
DM AG(J)=O.O

1 283 NMAG(J)=O.O

FCOUNT=O
COUNT =0

C CALCULATE THE PSO FOR THE INVERSE MODEL INPUT DATA
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DO 130 J=2000.NSTART,2000-NFIN
COUNT=COUNT-1

XS (COUNT)= CMPLX(D (J))
IF(COUNT.EO.NFFT) THEN

CALL FFT(KODE,N,T,XS)
DO 140 K= 1NFFT

XtIAG(K)=CABS(DF*XS( K) )-XMAG(K)
140 CONTINUE

COUNT=O
FCOUNT=FCOUNT-1

END IF
130 CONTINUE

DO 150 J=1,NPSD
XMAG(J)= 1 0*LOG 1 OCXMAG(J)/ FCOUNT)
WRITE(7, 155)XMAG(J)

155 FORMAT (F 10.6)
150 CONTINUE

FCOUNT0O
COUNT=0

C CALCULATE THE PSD FOR THE DESIRED PINK NOISE SIGNAL
DO 160 J=NSTART-20OO,NFIN-200

COUNT =COUNT-1
XS(COUNT) =CM PLX(X(J- DELAY))

I F(COUNTEO.NFFT) THEN
CALL FFT(KODE,N,T,XS)
DO 170 K= 1,NFFT

DMAG(K)=CABSCDF*XS(K))+DMAG( K)
170 CONTINUE

FCOUNT=FCOUNT 1
COUNT=0

END IF
160 CONTINUE

DO 160 J= 1,NPSD
DMAG(J)= 1 0*LOG 1 O(DMAG(J)/FCOUNT)
WRITE(8, 185)DrAG(J)

185 FORrA 10,O6)
180 CONTINUE

FCOUNT=O
CO UNT =0

C CALCULATE THE PSD FOR THE INVERSE M-ODEL OUTPUT.
DO 190 J=NSTART-2000,NFIN-20O0

COUNT =COUNT- 1
XS(COUNT )=CrPLX( V'(J))

I F(COUNT.EO NFFT) THEN
CALL FFT(KODE,N,T,XS)
DO 200 K= 1 ,NFFT

V A( K )=C AB S(CDF*XS-( K) )-' VA (K)

200 CONT INUE

123



FCOUNT=FCOUNT- I5 COUNT =0
END IF

190 CONTINUE

C COMPARE PSDS AND WRITE RESULTS TO FILE "KDV'
DIFF=O.
DIFFO=O.

WR ITE(4,2 12)
212 FORMAT(FRE',5X,'DESIRED,5X,W/O FIL',5X,'W FL)

DO 2. 0 J= 1,NPSD
YMAG(J)= I O*LOG 1 O(YMAG(J)/FCOUNT)
DIFF=DIFF-ABS(DMAG(J)-XMAG(J))
Dl FFO=DI FF0- ABS(DMAG(J)-YMAG(J))
FPEQ=(J- 1 )*43g56./NFFT

WRITE(4,2 I 5)FREO,XMAG(J),DM-AG(J),YMAG(J)
215 FORMAT(F7. I ,2XF 1 O.6,2X,F 10O6,2X,F 10.6)

WR ITE(9,220 )vMAG(J)
220 FORMAT(F 10-6)
210 CONTINUE

DI FF=Dt FF/NPSD
DIFFO-DIFFO/NPSD
WRITE(4,225)

225 FORMAT A VMAG(X -W/O),3X,AVMAG(X -WY)
WRITE(4,230)DI FF,DIFFO

230 FOPMAT(F9.4,2X,F9.4)

C CALCULATE THE AVERAGE SQUARED ERROR FOR THE INVERSE MODEL
ERROR =0.0
ERROR2=O.0
DSQ=0.0

* D502=0.0
DO 240 J=2001 -NSTART,2000-NPT

ERROR =E RRO R -(ER(J))**2.
ERROR2 -ERROR 2-E2(J)**2.

DSQ=DSQ+X(J-~DELAY)**2.0
D502=DSQ2.D(J)**2.0

240 CONTINUE
A V GENE -EN ER/ (NP T - NT)
UCONST=UCONST/CNPT-NT)
EPROR=ERROR/DSQ
EPROR2=ERROR2/D502

W R ITE (4,245)
245 FORMAT(AVG SQ INVM ER'2XAVG SO FM-,OD ER')

WRI TE(4,250)ERROR,ERROR2
250 FORMAT(F 1 0.4,2X,F 1 04)

CLOSE(4)
CLOSE(7
CLO';E(8)
CLOSE(g)

END
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Program 10
program f dass

c this program simulates the frequency domain adaptive spectrum
c sh-aper
c declare the variables

integer xi(37000),di(37000),delay,count~fcount, l,count2
real X(3 7000),d(37000),y(37000),y2(37000)

real xmag(2048),ymrag(2048),drmag(2048),w I1( 1000)
complex xs( 1024),dk(32768),xk(32768),xfft(2048),w(2048)

complex yk(2048),grad(2048),cmplx,conjg,dfft(2048)
real energy(37000),er(65000),e(2048),u 1 (2048)

real f I (256),u~xavg( I 024),eavg( 1024)
integer count3,count4
complex yfft(2048)

c open the data f iles
open(unlt=l1,f ile='weights I 00',status='unknown')
open(unlit=2,f i le='u',status='unknow))
open(unit=3,f ile='dye',status='unknown')
open~uni t=4,fi11e='xdy',status='unknown')
open(unit=5,f i le='wng',status='old')
open(unit=6,file=mric' ,st atus='old')Sopen(unit=7,fi le='xspect',status='unknown-i)
open(uni t=8,f ile='dspect',status='unknown')
open(unt=9,f ile=yspect',status='unknown')

c set the number of sample points in the data files
c wng. and mic.a npt=32768
c set the number of taps nt

n=128
c set the number of plant taps

nt2= 100
c set the number of f ft points for the P50

nf ft= 128
c set the starting point (nstart) for the PSD

nstart= 1 6385
c set the f ini sh point (nf in) for the PSD

nf in=-0720
c set the number of psd points to be written to the f iles xdy,
c xsp)ect, dspect, yspect.

npsd=40
c nfin - nstart + I must be a multiple of nfft
c make the filter causal for a max filter size of 2000.
c read in data f rom the wng.- and m ic- fi1les

do 20 n= 1 npt
read(5,2 5, end=9 98)x i(n)

25 f orm at (18)
20 corti1nue
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998 close(S)

do 30 n= 1,npt
rea d(6,3 5, end= 99 9)di1(ni)

35 f orm at 08)
x(n)=xi (n)*. 0043

30 continue
999 close(6)

c multiply data by a constant and prepare it for processing.
do 40 n)=I npt

xk(n)=cmplx(x(n),0.0)
d(n)=dI(n)*.0043

__ dk(n)=cmplx(d(n),0.0)
40 continue

c read in plant weights
do 3 10 j=lI nt2

read( 1 ,300,end=3 1 5)w I1(j)
300 format(fl10.6)
310 continue
315 continue

c generate converge constant u I Ck for each frequency bin based on the PSD
c of the input signal x.
c alpha is the normalization step size constant which controls the rate of
c of adaptation.

alpha=l15
do 34 n= I ,nt

34 xmag(n)=0.0
c average 20 blocks

do 36 n= 1 ,20
c load fft buffer

* do 37 k=l,nt
37 xfft(k)=xk(k-(n- t ) 1024)

kodel
dt= 1.0
call fft(kode,nt,dt,xfft)
do 38 k=lI,nt

38 xmag(k)=xmag(k)-cabs~xfft(k))
36 continue

do 39 k= I ,nt
u I (k)=alpha/(xmag(k))**2.0/20.0

write(2,41 )ulIkW
41 forma t(f 13.12)
39 continue

c initialize the weights and the outp~ut buffer.
do 70 n= 1 nt
w(n)-cmplx( 1 .0,0.0)
yk(n)=(0.0,0.0)

70 continue
do 75 k= 1 nt2 nt/2

75 y(k)=0.0
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c repeat the filIter process 4 timres to ensure the filIter has converged.
do 85 pp= 1,4

c initialize counters
do 77 k= I ,nt

e avg( k) =0.0
77xavg(k)=0.0

count=nt2- nt/2
count2=0
count 3=0
count4=0

c main filter loop
do 80 n= I nt/ 2,npt-nt,nt/2

c block the input data sequence
do 100 p=lI,nt

xf ft(p)=xk(p-n- 1)
100 continue

kode=1
dt= 1.0
call1 f ft(kode,nt,dt,xf ft)

c calculate the filter output
do 1 10 L= l,nt
yk(L)=xf ft(L)*w(L)

110 continue

c calculate the filter timre sequence output.
kode=- 1
dt= 1.0/nt
call fft(kode,nt,dt,yk)

c through away the first n/2 data points.
do 120 k=nt/2- I ,nt
count =count- 1
y (count )= real (y k (k))

120 continue

c calculate the plant output sequence.
do 390 j=1I,nt

count4=count4- 1
accum =0.0

do 400 k= 1 ,nt2
400 accumr=accum-w 1 (k)*y(count-nt-j-(kl ))

y2(count4)=accum

c calculate the plant output sequence fft
yf f t( )=cmrpl x(accum 0.0)

390 continue
kode=l
dt=1.0
call fft(kode,nt,dt,yfft)
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c calculate the magnitude of xf ft, df ft, and yk.
c dont start unless the plant input shift register is full.

i f(count4.gt.nt2 )then
do 1 15 1=lI nt

xmnag(l )=cabs~xfft(l))
ymnag(l)-cabs(yfft(l))

I1 15 continue

c calcuate the error
count3=count3- I
do 1 17 k= 1 ,nt

e(k)=xmag(k)-ymnag(k)
x avg( k )=xav g( k ) x mag Ck)
e avg( k)= eav g( k)-eCk)

count2=count2- I
er(count2)=e(k)

117 continue

c weight update when 10 P50 data blocks have been averaged.
if (count3.eq. 10) then
do 165 k=1,nt

w~k)=w (k)-u I (k)*eavg(k)*cmpi x(xavg(k),0.0)
1 65 continue

do 166 kk=l,nt
eavg(kk)=0.O

166 xavg(kk)=O.O
count3=0
end if
end if

80 continue
85 continue

c calculate power spectrum for the filter input x~n), the
c filter output y~n) and the desired signal d(n).

n=nf f t
c sampling rate was 22.75 us

t=22.75e-6
c for direct fft kode =I

kode=l
do 128 j=1,nfft
xmag(j)=0.0
dmag(j )=0.0

128 ymnag(j)=0.0
fcount=0
count=0
do 1 30 j=nstart,nf in

count=count- 1
xs(coun~t)=cmrpix(d(j)

i f(count.eq.nf ft) then
call fft(kode,n,t,xs)
do 140 k= 1,nff t

xmrag(k) =cabs N s(k)) - xrnag(k)
140 continue
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count =0
en fcount=fcount 1

130 continue
do 150 j = 1npsd

xmnag(j )= I Q*lIog I 0(xmrag( j)/f count)
writ e(7, 1 55)xmnag(j)

155 form at(fl10,6)
150 continue

fcount=0
count=0
do 160 j =nstart,nf in

count=count~ 1
xs(count)=cmp I x(x(j))

if (count.eq.nfft) then
call fft(kode,n,t,xs)
do 170 k= 1,nft

dm ag(k)=cabs(xs(k))+ dm ag(k)
170 continue

fcount=fcount-I
count=0

end it
1 60 continue

do 180 j=1,npsd
dmag(j)= I Q*log 1 0(dmag(j)/f count)
write(8, 1 85)dmag(j)5185 rormat(f 10.6)

180 continue
fcount=0
count=0
do 190 J=nstart,nflin

count=count 1
xs(count)=cmplx(y2( j))

if(count.eq.nfft) then
call fft(kode,n,t,xs)
do 200 k= 1,nf ft

ymag(k)=-cabs(xs(k))-ymag(k)
200 continue

tcount=fcount~ 1
count=0

end if
190 continue

diff=O.
diffo0O.

write(4,2 12)
2 12 form at('freq',5x,'input',7x,'desi red',5x,'out put')

do 210 j=1,npsd
ymag(j )= 1 0*log 1 0(ymag( j)/f count)
dif f=diff -abs(dmag(j )-xmag( j))
diffo=diffo~abs(dmag(j )-ymnag( j))
freq=j- I )*43956/nfft
write(4,2 1 5)f req,xmag( j),dmag( j),ymag( j)

215 f ormat(f 7.1I,2x,f I 0.6,2x,f 10.6,2x,f 10.6)
write( 9,220)ym ag( j)
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220 f ormat(f 10.6)
210 continue

diff=diff/npsd
dif fo=dif fo/nPsd
write(4,225)

225 formnat Cm ag(d-X)',6x,mra g(d-y)')
w rite( 4,230 )d if t ,dif ff0

230 format (f 9.4,2x,f 9.4)
close(7)
close(8)
close(9)
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Appendix B: Freauencv Domain Adaptive Filter Literature

Review

This brief literature review summarizes several frequency

domain adaptive filter articles. The following notation is used

throughout the summary: boldface letters denote vectors or matrices

and capitals denote frequency domain variables.

Mauro Dentino and others introduced the first complex LMS

algorithm that adaptively filters in the frequency domain (2:1658).

They showed that frequency domain complex LMS adaptive filter

implementations offer reduced number of computations over the

time domain when the number of weights exceed 16. It's expected

the number of weights for the thesis solution to far exceed 16

weights since the reverberation period of the reverberation chamber

is approximately 400 milliseconds (4). Their frequency domain LMS

algorithm block diagram is illustrated in Figure 1. The input signal

Xk and the desired signal dk are accumulated in separate N-point

buffer memories to form N-point data blocks. The data blocks are

transformed to N complex numbers with an N-point FFT. The

complex number in each of the input N frequency bins is multiplied

by an independent complex weight which is controlled by the

complex LMS algorithm. During the mth block iteration, the complex

LMS algorithm predicts the complex filter weight vector Wm., for the

(m+ I )th block iteration in accordance with

Wm+ = Wm + 2 u Xm Em (
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Figure 53. LMS Adaptive Filtering in the Frequency Domain (3:1659)

where u is a non-complex gain constant, Em is the error vector, and

the character denotes transpose complex conjugate (2:1658).

The nth frequency bin complex weight for the m + I iteration block is

predicted during the mth iteration in accordance with

Wn(m + I) = Wn(m) + 2u En(m) X*n(m) (2)

where En is given by

En = Dn - Yn (3)

where Dn is nth desired complex signal and Yn is the output of the

nth complex weight (2:1658). The N complex weighted outputs are

transformed with an inverse FFT to an N sample output. The mth
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block of the output time sequence is delayed by N number of

samples.

Treichler and others presented an intuitive approach for

developing frequency domain adaptive filters (13:197). They

explained the block processing of the signal data which includes the

overlap and save convolution technique. The overlap and save

technique circumvents the circular convolution problem due to the

periodic nature of the discrete Fourier transform. The technique

uses 2N input samples instead of N input samples to compute N

output values.

Mohammad Asharif and and others introduced the Frequency Bin

Adaptive Filter (FBAF) for noise cancellation in a chamber with

multi-reflection impulse response (1:2219-2222). According to the

authors, the FBAF performs better than the frequency domain

adaptive filter for cancelling noise in a chamber with a long delay

impulse response. The long delay impulse response is due to surface

multi-reflections of the speaker environment which is a similar to

the acoustic environment in the reverberation chamber for this

thesis. Each frequency bin of the FBAF is processed by an

independent FIR adaptive filter whose weights are controlled by the

extended complex LMS algorithm. This linear prediction of past

history for each frequency bin makes it possible to compensate for

long impulse delays with a shorter window length. The extended

complex LMS algorithm for the nth frequency bin and the kth tap

delay line is expressed as (1:2220)

Wnk(m+l) - Wnk(m) + 2 u Xnk(m) Enk(m) (4)
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Computer simulations indicate that the FBAF converged faster than

the frequency domain adaptive filter. In addition, an FBAF with an

eight weight filter and a sample block that was one half as long as

the frequency domain adaptive filter outperformed the frequency

domain adaptive filter.
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LASSIFIED

&'The purpose of this thesis was to explore the feasibility
of replacing a manual audio equalizer with an adaptive filter
that adaptively equalizes the spectral distortion of an audio
system. The impulse response of an audio system which includes
the response of the speaker crossover aetwork, the power amp-
lifiers, speakers, and the acoustic transfer function between
the system's speakers and a reference microphone, distorts an
audio system's input signal spectrum. The Adaptive Inverse
Pre-filter, the Filtered-x algorithm, and the Adaptive Inverse
Modeling Control System are investigated which remove the dis-
tortion by pre-filtering the audio system's input signal with
the audio system's inverse. The audio system examined is the
Armstrong Aerospace Medical Research Laboratory's Performance
and Communication Research and Technology reverberation cham-- -y
ber located at Wright-Patterson Air Force Base. /- ...

The researcher presents two innovative solutions: a multi-
band Adaptive Inverse Modeling Control System (AIMCS) and a
frequency domain adaptive spectrum shaper. The adaptive spect-
rum shaper uses an improved weight update algorithm developed
specifically for this application. Computer simulation results
are presented which demonstrate the effectiveness of the multi-
band AIMCS and the adaptive spectrum shaper in removing the
spectral distortion of an audio system model.
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