
,I SIrILt ATING C

THSI

'LO

0

D A E OF JANT2H3 198q

4H

SIMULATING RULE-BASED SYSTEMS

THESIS

Nizar Mahmoud Mahaba
Lieutenant Colonel, Egyptian Army

AFIT/GOR/ENS/88D-1 2

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

-'.IO ff'- 89 1 17 144
Aproved for pbli c iJ i 1

AFIT/GOR/ENS/88D- 12

SIMULATING RULE-BASED SYSTEMS

THESIS

Nizar Mahmoud Mahaba
Lieutenant Colonel, Egyptian Army

AFIT/GOR/ENS/8 8D-12

DTIC
JAN 2 39MI

Approved for public release; distribution unlimited

*7

AFIT/GOR/ENS/88D-12

SIMULATING RULE-BASED SYSTEMS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

Nizar Mahmoud Mahaba

Lieutenant Colonel, Egyptian Army

December 1988

Approved for public release; distribution unlimited

I!

Acknwledgements

I wish to thank Major Bruce Morlan, my thesis advisor,

for adopting the idea of this research, for the useful

discussion of the details of the model, and for facilitating

the communication with other faculty members. I also wish to

thank Dr. Frank Brown for enriching the work by his technical

and grammatical expertise. A word of thanks is also owed to

Major Joseph Litko and Major Kenneth Bauer for the help they

offered.

£A

Aocession For

NTIS GR&I
DTI' ThA CI

£ i . : -:ed
Ju.. tl if t I ,n _

D , r. ltvo n

iiCyC LI

Table Of Contents

Page

Acknowledgements.............

List of Figures v

List of Tables vi

Abstract..........................vii

I. Introduction 1

II. Rule-Based Systems. 7

Basic Architecture 8
Data Memory 12
Rule Memory 14
Control Strategies. 16

Ill. Efficiency of Rule-Based Systems 22

Efficiency of Implementation
Efficiency of Consultation. 33
A Comparative Study of Control Strategies
for Expert Systems. 38

IV. The Description of the Model40

Features Presented in the Model 41
Limitations 42
Measure of Effectiveness. 43
Model Structure 44
Assertions 51
The Rule Generator. 54

V. The Simulated Inference Engines. 70

Enginel1....................72
Engine 2....................73
Engine3 74
Engine 4....................74
Engine 5....................74
Engine 6....................75
Verification. 78 -

VI. Design of Experiments. 80

Type I Experiments: Performance of a
Specific RBS. 84
Type II Experiments: Comparison of the
Matching Effort for Inference Engines . . . 95

VII. Summary and Recommendations 105

Summary
Recommendations. 108

Bibliography................... 11

Appendix: The Computer Programs. 112

iv

List of Figures

Figure Page

1. Architecture of a Production System Model . . . 10

2. Summary of the Rete Matcher 32

3. Summary of Techniques for Improving
Efficiency in OPS534

4. The Main components of the Model 47

5. The relations Among the Initial Assertions . . . 53

6. The Rule Generator 56

7. The Condition-Membership Filter 77

8. Basic Sequence of Experimentation 83

9. Type 1 Experiments87

10. The Effect of Fact Ordering on Monotonic RBSs . 89

11. The Effect of Fact Ordering on Non-Monotonic
RBSs 89

12. The Effect of Rule-Ordering on Monotonic RBSs . 94

13. Type 2 Experiments96

14. The Effect of Controlled-Production Filter
on Monotonic RBSs 98

15. The Effect of Controlled-Production Filter
on Non-Monotonic RBSs 98

16. The Effect of Context-Restricted Filter
on Monotonic RBSs 100

17. The Effect of Context-Restricted Filter
on Non-Monotonic RBSs 100

18. The Effect of Conflict-Resolution Strategy
on Monotonic RBSs 103

19. The Effect of Conflict-Resolution Strategy
on Non-Monotonic RBSs 103

v

List of Tables

Table Page

1. The Effect of Fact Ordering on Monotonic RBSs
(Part 1) 86

2. The Effect of Fact Ordering on Non-Monotonic
RBSs (Part 1) 88

3. The Effect of Fact Ordering on Monotonic RBSs
(Part 2) 88

4. The Effect of Fact Ordering on Non-Monotonic
RBSs (Part 2) 90

5. The Effect of Rule-Ordering on Monotonic RBSs . 93

6. The Effect of Controlled-Production Filter
on Monotonic RBSs95

7. The Effect of Controlled-Production Filter
on Non-Monotonic RBSs 97

8. The Effect of Context-Restricted Filter
on Monotonic RBSs97

9. The Effect of Context-Restricted Filter
on Non-Monotonic RBSs 99

10. The Effect of Conflict-Resolution Strategy
on Monotonic RBSsi..101

11. The Effect of Conflict-Resolution Strategy
on Non-Monotonic RBSs 102

vi

AFIT/GOR/ENS/88D-12

2The purpose of this stidy is to develop a methodology

for evaluating the performance of rule-based systems (RBSs)

using a simulation approach. A numerical scheme is used for

knowledge representation; facts are represented by integer

numbers and the rules and data memories are represented by

matrices. The numeric representation can be handled by

simplified algorithms that simulate the function of different

types of inference engines. six types of forward-chaining

inference engines that vary according to .the .conflict-

resolution strategy and the implementation of filters are

simulated and compared. The number of match-tests of the

left-hand side of the rules against the data memory is used as

a measure of performance to estimate the relative matching

effort for each inference engine. Also, a methodology to

reduce the matching effort of a RBS by changing the order of

the facts in the left-hand side or changing the order of the

rules is described. ~ f~ ~ -
4

y~ ?~i
To simulate RBSs, it is assumed that probabilistic

relations among the assertions to a RBS can be identified and

specified by the experts or after running the system for some

time. The numeric representation and the probabilistic

relations provide the environment needed to build a simulation

model. A rule-generator program is developed to randomly

vii

generate RBSs with different specifications. RBSs that vary

in size (the number of rules), shape (the number of facts in

both sides of the rule), and monotonicity (monotonic or non-

monotonic) are generated and used in experimentation.

Two types of experiments are performed on the generated

RBSs. The first type estimates the reduction ratio in

matching effort achieved by rearranging the facts or the rules

in a RBS. The second type estimates the reduction ratio in

matching effort achieved by implementing two types of filters

or changing the conflict-resolution strategies.

vi

viii

SIMULATING RULE-BASED SYSTEMS

I. Introduction

Rule-Based systems (RBSs) are the most used means for

building expert systems. Experts tend to express their

knowledge for solving problems in terms of conditional rules.

In RBSs knowledge is represented as a set of facts and rules.

Solutions are inferred by interacting with the users and

searching through the knowledge.

RBSs consist of a knowledge base and an inference

engine. Different methods and strategies are used for

building the knowledge base and designing the inference

engine. Some of these methods and strategies perform well

when used for certain applications; others are used for

building general tools that can be used in different

applications. The performance of RBSs can be described in

terms of speed or accuracy. Speed refers to the time needed

to draw the results, while accuracy refers to the correctness

of these results. In expert systems, a subjective aspect of

performance may also be considered, viz., the naturalness of

the output. Speed can be improved by implementing more

efficient algorithms. Accuracy and naturalness do not depend

only on the rule set of the RBS, but are also affected by the

control strategies of the inference engine.

The speed of an algorithm is usually evaluated by

applying the algorithm to different RBSs and comparing the

execution time with other algorithms. Accuracy of a specific

1

RBS is usually evaluated by testing different cases with known

results and comparing the output of the RBS with those

results. Different methods have been developed to study and

evaluate the performance of RBSs.

RBSs are not limited to a small set that can be examined

in one study. A study related to the performance of RBSs

usually examines an application, an architecture, or a subset

of RBSs. When a class of RBSs is investigated, knowledge

representation is usually abstracted in order to provide a

general representation of the class under investigation.

Abstraction leads to simpler representation to the knowledge,

and in turn to simplified versions of the inference engines.

This thesis presents a study in the area of the

performance of RBSs. The method used in this study belongs to

the methods that abstract knowledge representation. As in

other studies, this study abstracts knowledge representation

in order to investigate a class of RBSs; however the approach

is different. In this study, knowledge is represented by

numbers and the relations among the facts are described by

t probability distributions. This suggests that a simulation

approach can be used to investigate RBSs and evaluate their

performance.

Simulation is a powerful and flexible modeling technique

that is widely used to study different systems. Simulation is

best used to compare the relative performance of the systems.

Simulating RBSs can lead to better understanding of their

behaviour and performance under different circumstances.

2
t

Problem

The purpose of this study is to show how a simulation

approach can be used to design a model that simulates the

behaviour of RBSs and to provide an environment to experiment

with the model to measure some aspects of the relative

performance of RBSs.

The study includes the following steps:

1. Examine the different methods and strategies for

building RBSs.

2. Design a numerical scheme for knowledge

representation.

3. Define suitable measures for the performance of RBSs.

4. Design a methodology to generate a wide variety of

RBSs.

5. Write modules to simulate the function of selected

architectures of inference engines.

6. Design experiments to measure the relative

performance of RBSs.

This study is limited to forward-chaining RBSs; backward-

chaining RBSs are not attempted. A low level of resolution is

used for knowledge representation; facts are composed of one

term only, and they should not contain pattern-variables. The

left-hand side of the rules can include AND and NOR Boolean

operators, but the OR operator is not allowed. This

representation is not very restrictive since most knowledge

3

representation schemes can be converted into this degree of

resolution by adding extra rules or adding extra facts in the

left-hand side of the rules. Both monotonic and non-monotonic

RBSs can be used; the right-hand sides of the rules can

contain both adding and deleting actions. Modifying actions

and actions that interact with external procedures are not

considered. However, the functions of modifying actions can

be simulated. Certainty factors or any other uncertainty

schemes are not supported by this representation.

No specific restrictions are imposed by this

representation for simulating different architectures of

inference engines. However, an architecture should be

simplified to match the degree of abstraction used for

knowledge representation. In addition, any type of

application can be handled if it can be suitably represented

by the available features.

Assumptions

The following assumptions are made in this study:

1. The RBSs investigated can be represented directly by

the features presented in the model, or they can be converted

into a suitable form.

2. Probabilistic relations among the facts, used as

initial assertions to a RBS, can be defined and specified by

the experts initially, or developed after running the system

for some time.

4

3. Matching overhead can be expressed by the number of

matching tests, for the conditions in the left-hand side of

the rules, against the data memory.

Features presented. The model is designed to provide a

general representation of a wide class of RBSs. The features

represented in the model are the basic features found in most

forward-chaining RBSs. These features are enough to represent

the bahaviour of a small class of RBSs, one term per fact

without variables, and at the same time they can approximately

represent the behaviour of a wider class.

Model Structure. The purpose of using numeric

representation in the knowledge base is to provide a concise

representation that can be handled easily and fast. The

numeric representation provides a suitable environment to use

simple data structures and direct access, which accelerate the

inference process. The FORTRAN-77 language is used in this

study because of its ability to handle the numeric

representation simply and easily, provide a simulation

environment, and interact with statistical packages.

Generating RBSs. To investigate a large number of RBSs

with different specifications, the model should be provided

with a capability to generate RBSs. A rule generator is

developed in this study to provide such capability.

Relative performance. Matching constitutes a great part

of execution time of RBSs. The selected measure of

performance, the number of matching tests, is used to compare

5

the matching overhead for different RBSs in a way independent

of the environment, hardware or software, running the system.

Experiments are designed to compare the relative matching

overhead for different structures of the same RBS, or

different implementations of inference engines.

Organization

The thesis is organized in seven chapters and one

appendix. In Chapter II, the components of different

architectures of RBSs are described. In Chapter III, a review

of some of the work related to the performance of RBSs is

presented. The model structure and the rule generator are

described in detail in Chapter IV, and the algorithms used to

simulate the functions of the selected inference engines are

described in Chapter V. In Chapter VI, the experiments used

in this study are explained and the results of these

experiments are summarized. In the last chapter, a summary of

the study and recommendations for future work are presented.

The Appendix contains listings of the computer programs and

samples of the input and output files of some of these

programs.

6

II. Rule-Based Systems

Rule-based systems (RBSs) are one of many Artificial

Intelligence (AI) techniques used for problem solving.

Researchers in the AI area have developed different techniques

for problem solving based on knowledge representation and

manipulation in computer programs. RBSs, logic programming,

object-oriented programming, and hybrid-language programming

are among the techniques that are widely used for problem

solving. RBSs are characterized by using data-sensitive

unordered rules rather than sequenced instructions as the

basic unit of computation (Brownston and others, 1985: 4).

They are sometimes referred to as Production Systems. In this

study, the two terms are used as synonyms, though the term

rule-based systems has slightly broader definition.

Expert systems constitute a widely used application for

RBSs. The term expert systems is used in AI to refer to

computer programs that behave like an expert in some, usually

narrow, domain of application; an expert system should be

capable of explaining its decisions and the underlying

reasoning (Bratko, 1987: 314). Experts tend to express their

knowledge in terms of a set of situation-action rules, and

this suggests that RBSs should be the method of choice for

building knowledge-intensive expert systems (Hayes-Roth, 1985:

921).

RBSs are sometimes defined as modularized know-how

systems, where know-how is practical problem-solving

knowledge. The kinds of information that constitute such

7

knowledge are defined in (Hayes-Roth, 1985: 921) as follows:

1. Specific inferences that follow from specific
observations;

2. Abstraction, generalizations, and categorizations of
given data;

3. Necessary and sufficient conditions for achieving
some goal;

4. Likeliest places to look for relevant information;
5. Preferred strategies for eliminating uncertainty or

minimizing other risks;
6. Likely consequences of hypothetical situations;
7. Probable causes of symptoms.

RBSs have been used successfully to solve problems in

different domains. Two of the most famous systems are MYCI

for medical diagnosis, and XCON or R1 for the automatic

configuration of computers. Applications of RBSs include a

variety of problem domains such as classification, diagnosis,

monitoring, design, and planning.

Basic Architecture of Production Systems

The production system architecture typically includes

three major components:

1. Data memory (working memory)

A data store serves as a global database that contains whatever

information is relevant to the specific problem (facts-goals).

2. Rule memory (production memory)

A store for the set of rules (productions) that constitutes

the program. Each rule has a left-side condition part which

determines the applicability of the rule, and a right-side

action part which describes the action to be performed by the

rule (Rich, 1983: 31). Rules are usually written in the form:

IF condition THEN action

8

3. Inference engine (control)

A finite-state machine which executes (fires) rules. It

determines which rules are relevant to the current data memory

contents and chooses one to apply (Brownston and others, 1985:

7). The inference engine has a cycle consisting of three

action states:

1. Match rules: find all of the rules that are satisfied

by the current contents of data memory. These rules are the

potential candidates for execution and are referred to as the

"conflict set".

2. Select rules: apply some selection strategy (conflict

resolution) to determine which rules will actually be

executed.

3. Executing rules: execute the action part of the

selected rules.

Rule-execution (firing) usually changes the contents of

data memory. A different set of rules will match in the next

cycle. The cycles continue until a stopping condition is

satisfied. This control mechanism is referred to as the

"recognize-act" cycle. Figure 1 shows the basic architecture

of the inference engine.

The strategies that are applied by the inference engine

are known as "control strategies". Control strategies are

responsible of searching for a solution in the problem's

solution space. Two requirements are needed for good

strategy: to cause motion in order to lead to a solution, and

to be systematic; the latter requirement corresponds to the

9

flow of data

flow of control
DATA RULES
(data (production
memory) memory)

__MATCH

C I E
(conflict set) 0 N N

N F G
T 0 E I

SELECT R r R N
0 E E

iEXECUTE L N
C
E

(changes)-

Figure 1. Architecture of a Production System Model.

(Brownston and others, 1985: 6)

10

need for motion (Rich, 1983: 33-34). Search techniques such as

depth-first or breadth-first are systematic strategies. Search

is applied to the rules in a production system in one or both

of the two directions: forward or backward. The direction used

corresponds to the type of reasoning strategy used by the

inference engine. According to Rich (Rich, 1983: 56-57)

forward and backward reasoning can be viewed as systematic

process which can be described as follows:

Forward reasoning (chaining) starts from the initial

configuration and begins building a tree of move-sequences

that might be solutions. It generates the next level of the

tree by finding all the rules whose left sides match the

contents of the data memory (the initial configuration), and

using their right sides to create a new configuration. The

process continues until a configuration that meets a stopping

criterion is generated.

Backward reasoning (chaining) starts from the goal

configuration and begins building a tree of move sequences

that might be solutions. It generates the next level of the

tree by finding all the rules whose right side match the goal

configuration, and using the left sides of the rules to

generates the nodes of the next level of the tree (subgoals).

The process continues until a node matches the goal

configuration.

The next three sections show a more detailed description

of the components of production systems. The discussion in these

sections is based mainly on (Brownston and others, 1985: Ch 7).

11

Data Mmory

Two types of information can be stored in data memory:

facts and goals. Facts are used by the rules to make

inference, and goals are the final conclusions toward which

the problem solving aims. Facts and goals are usually stored

in the same memory; however, in some rule-based languages they

are stored separately.

Organization. Rule-based languages use different methods

to represent data elements. One method is attribute-value

pairs that contain knowledge about an object. A similar

method is object-attribute-value triples in which the object

name is repeated with each attribute. The general LISP list

structure is also used by some languages; this representation

places little restriction on the form in which knowledge is

represented. A different method, used in object-oriented

languages, is the frame or schema representation. This

method, which allows inheritance of attributes, value types,

and values, can greatly facilitate programming without

affecting the reasoning style. Semantic networks are also

used as a method of data representation. In this scheme,

objects are represented by nodes and attributes are

represented by arcs.

Goals are also organized in a variety of structures that

facilitate the implementation of the specified control

strategy. A tree structure often is used when the system

seeks its solution through a strategy of divide and conquer,

problem refinement, or problem decomposition. The stack

12

structure is usually used to implement a pure backward-

chaining control strategy. When all goals must be processed

and they are of equal importance, the queue structure is used.

In the case of specifying dynamic priorities to the goals, the

agenda structure is used.

Pro~ertie. Properties of data elements are used to

determine the elements most relevant to the current task;

these are examined and processed before the other elements.

Three properties of the facts are used for this purpose:

recency, certainty, and activation. A recency number is

attached to a fact when it is added to (or sometimes deleted

from) the data memory. In other implementations, the same

recency number is attached to all facts added in the same

cycle. In systems that use some kind of probabilistic

reasoning, a certainty measure is attached to the facts when

added to the working memory. In other systems a measure that

relates a data element to other data elements is propagated

according to criteria determined either by the architecture or

by rules in the system. This measure is called activation and

is usually used in cognitive systems.

Goals also have properties that can be updated by the

rules, inference engine, or both. Properties that are usually

assigned by the rules include: priority, and the expected time

and memory-space requirements. Properties that are best

assigned by the inference engine include: the method that

describes how the goal can be achieved, the cumulative time

and space used in accomplishing the goal so far, and the

13

recency of the goals. Properties that can be specified either

way include: the list of goals and subgoals, the set of

preconditions and postconditions related to the goal, and the

status of the goal (active, achieved......

At any given time the rule memory may or may not contain

all rules that constitute a RBS. In some systems, all rules

are continuously active and sensitive to the contents of data

memory. In other systems, rules can be grouped into sets that

are loaded or removed from rule memory as a group.

The Left-Hand Side (LHS). Forward-chaining systems allow

a wide variety of features in the 14S part of rules. This

gives the programmer freedom, but complicates the

implementation. In backward-chaining, fairly simple features

are used for the conditions because they may be established as

subgoals. For both types of reasoning, the LHS features can

be described according to the following:

1. Types of tests against the data memory:

a. Positive tests: conditions that must be true

(present) for the rule to succeed.

b. Negative tests: conditions that must be false

(absent) for the rule to succeed.

c. Condition function-calls: a call to a function

that serves as a condition element and returns success or

failure based on its inputs.

d. Disjunctions: a set of elements, only one of

which needs to be in data memory for the rule to succeed.

14

e. Partial tests: a minimum number of condition

elements that must be satisfied for the rule to succeed.

2. Conditions in the range of attribute values:

a. Relational operators: single relations,

disjunctions, or conjunctions.

b. Attribute function call: arbitrary function calls

to test values.

c. Negative matching against values.

d. Matching components of a list that must be in the

attribute list.

e. Partial attribute matching: values must be within

some predetermined threshold.

3. Pattern matching with variables

a. Regular variable: matches a single value or a

sequence of values to satisfy the value of a single attribute.

The value is usually either a scalar or a list.

b. Segment variable: matches a sequence or more tian

one sequence within a data element to specify the value of a

single attribute.

c. Nested pattern: a recursive data structure that

matches patterns within patterns.

When a match occurs the system stores the variables and

the values that it matches as a binding. Typed variables are

rarely used in production system languages.

The Right-Hand Side (RHS. In backward-chaining systems

the RHS part has a limited function. It either specifies a

conclusion to be drawn or adds data to the data memory. In

15

forward-chaining systems the RHS part consists of a (usually

ordered) set of actions to perform. The types of actions for

forward-chaining systems are the following:

1. Changes to data memory: addition, deletion, or

modification.

2. Input and output: usually dependent on the operating

system implementation language. Some languages that are

written in LISP allow the user access to all internal LISP

functions.

3. Changes to rule memory: add, remove, or modify rules

during execution.

4. Calling user-defined functions: implementation-

language functions that are called with the arguments provided

by the rules.

Control Strategies

Implementation of control strategies is either totally or

partially separated from the rule set. For systems involving

total separation, the language provides built-in controls so

that the user can concentrate on domain knowledge only. This

implementation is faster, easier, and more reliable. However,

it is not flexible and may be inefficient when applied to

different domains. Systems involving partial separation are

more flexible, but adds more responsibility to the user, which

means more time and complexity. Three types of control

strategies are discussed in this section: conflict resolution,

filtering, and metarules.

16Ii

Conflict Resolution. Conflict-resolution strategies

affect all aspects of the performance of RBSs: speed, accuracy

and naturalness. In (McDermott and Forgy, 1978: 181-183) the

authors defined "sensitivity" and "stability" as two

performance requirements that conflict-resolution strategies

should meet. Sensitivity is the quickness of response to the

dynamically changing demand of the environment, while

stability is the system's continuity of behaviour. Some of

the principles of conflict-resolution strategies are described

below.

Refratn. Refraction requires that rules fire not

more than once on the same data. This principle is necessary

to prevent looping. Refraction can be implemented by

forbidding the firing of identical instantiations on

consecutive cycles, or by keeping track of all rule-

instantiations that have fired so far.

Data Ordering. Data can be ordered by recency or

activation, in order to determine the more sensitive data.

Recency of facts or goals can be measured in different ways.

Also there is more than one way to select the rule to fire on

the basis of recency.

Specificity Order. Specificity favors rules that

are special cases of other rules or are more specific

according to some measure.

Rule Ordering. Rule ordering is the static ordering

of the rule set independent of the way rules are instantiated.

The ordering may be specified by the user or may be computed

17
IJ

using some features of the rules.

Arbitrary ChoicS and Parallel Selection. None of I
the principles described guarantees that only a single

instantiation will remain in the conflict set. An arbitrary

choice can be applied to select one instantiation. Some

languages use a parallelism principle which fires all the

instantiations in one cycle. Parallelism has the disadvantage

of the possibility of adding conflicting information.

Some of selection rules that use the principles described

in this section are described and evaluated in (McDermott and

Forgy, 1978: 184-190). The authors defined three knowledge

sources that could be used by any rule: data memory,

production memory, and a state memory maintained by the

inference engine. A brief discussion of selection-rules is

given below:

1. Production order rules, POs:

a. P01: the relation of dominance totally orders the

productions.

b. P02: productions are divided into groups, each

performing a separate task. No relation of dominance is

specified among productions related to different tasks. Both

methods use production memory as the source of knowledge.

However, POe is more selective than P02.

2. Special case rules, SCs:

a. SCl: uses production memory as its knowledge

source. It is sensitive to a special case relationship

between the production of instantiations.

18

b. SC2: uses working memory as its source of

knowledge. It is sensitive to a special case relationship

between the data of instantiations.

c. SC3: uses both production memory and working

memory as its knowledge source. It is similar to SC2, but it

takes negated conditions into account.

SCs are only weakly selective; SC2 is the most selective

and SC3 is the least.

3. Recency rules, Rs:

Two different measures for the age of a data element are

used: the number of cycles that have elapsed since its

assertion, or the number of other actions that have been

performed since the action that asserted that element. All

recency rules use working memory as their knowledge source.

a. Ri: measures time in number of actions. It

orders instantiations on the basis of the most recent data

element contained in each. This rule is highly selective.

b. R2: similar to Ri, but it measures time in number

of cycles. It is less selective than Ri.

c. R3: measures time in number of actions. Among

the instantiations, it prefers the one whose least recent

element is most recent. It is somewhat more selective than

RI.

d. R4: similar to R3, but it measures time in number

of cycles. It is less selective than R3.

e. R5: it measures time in number of actions.

Unlike the other recency rules, it considers the recency of

19

all data elements of an instantiation. To order two

instantiations, it first compares their most recent elements;

if those elements are equally recent, it compares the next

most recent elements, and so on. This rule is the most

strongly selective of the recency rules.

4. Distinctiveness rules, Ds:

Distinctiveness rules apply the refraction principle discussed

before. They use state memory as their knowledge source.

a. D1: tries to prevent any production from firing on

consecutive cycles by looking at the most recent firing.

b. D2: looks to the entire history of the system to

prevent instantiations from firing twice.

Both Dl and D2 are weakly selective rules.

5. Arbitrary decision rules, ADl:

AD1 selects one instantiation at random.

Filtering. Filtering is a technique used to reduce the

number of rules and the number of data elements that

participate in the matching process. If no filtering is

applied, the entire set of rules will be tested against all

data elements in data memory on each recognize-act cycle.

Filters must be able to store the information they capture in

such a way that accessing and updating is significantly less

costly than processing the excluded rules or data elements

(McDermott and others,1978: 158). Two types of filtering can

be applied: rule filtering and data filtering.

Rule filtering. Three methods that help identify a

subset of the rules to match are discussed below: controlled

20

production, goal restricted, and context restricted. In

controlled production, the user writes a program that

specifies which subset of the rules to try in the following

cycle. In goal filtering, rules are organized into subsystems

by the type of goal they help to solve. Context-restricted

systems use the information in data memory to group rules into

subsystems by their similarity, time of proper application,

location in the consultation (goal) tree, or some other

feature.

Data Filtering. Two methods that help identify a

subset of data elements to be used by the matching algorithm

are discussed below: activation filtering and certainty

filtering. In the first method, the user specifies an

activation threshold, and items below that threshold are not

matched. In the second method, the user specifies a minimum

certainty, and items that are less certain are not matched.

HtJaLruIs. Metarules are rules that determine how to

apply other rules. Metarules can be written in the same

language as the rules themselves, or in a separate control

language. Some of the conflict-resolution principles can be

coded quite easily as metarules; examples are recency,

specificity, or refraction. Some properties of goals can also

be used by metarules. Metarules should not be mixed with

normal rules unless they are controlled strictly.

21

III. Efficiency of Rule-Based Systems

The performance of Rule-Based Systems (RBSs) can be

viewed from two sides. The first is the amount of time

required to draw the conclusions, and the second is how

accurate or reliable these conclusions are. The two sides

differ considerably; however, improvement of the reliability

of a certain RBS may affect its execution time. In this

chapter a review of some of the work in the efficiency of RBSs

is presented. The first section presents work in the area of

implementation which aims to reduce the execution time, the

second section presents a review of an example of how to

improve a system's reliability, and the last section presents

a combination of the two sides given in one study.

Efficiency of Implementation

The efficiency of RBSs can be improved by making changes

in the implementation in two ways: by designing more efficient

inference engines, and by writing rule sets in a more

efficient way. Reducing the matching effort and limiting the

size of the conflict set are among the approaches that can be

considered by the RBS designer to improve the performance of

the inference engine. The order of rules in the rule set and

the number and the order of conditions in the LHS of rules are

among the factors that can be handled by the user to improve

the performance of a certain RBS.

Five papers are discussed on this section. The first

paper presents an implementation of some filtering techniques.

Filters were implemented for an actual architecture of a RBS.

22

The rules investigated in this paper have high LHS resolution,

i.e., the LHS of such rules contain more than one term and

pattern-variable. However, the architecture of the presented

RBS does not include disjunctions in the LHS of the rules.

The second paper extends one of the ideas presented in the

first paper by using an architecture that allows disjunctions.

However, it only uses a low level of resolution for the LHS of

rules. The low resolution provides a simpler, more general,

but less accurate representation. The third paper also uses

low resolution, but in a limited architecture that does not

represent a wide variation of RBSs. The fourth paper

represents an efficient, but complex matching algorithm. The

algorithm exploits the components of data elements in detail

and could not be easily abstracted. The final paper in this

section presents recommendations to the programmer of a

general purpose rule-based language in order to improve

processing time by making changes to the rulesQ structure.

The Effect of Filtering on Efficiency (McDermott and

others. 1978: 155-176). Production-system architectures that

match all rules in the rule-set against all elements of

working memory are inefficient in terms of execution time.

Such production systems do not make use of knowledge that

could be obtained before or during execution. Three knowledge

sources (KSs) can be used to eliminate this inefficiency:

1. The condition-membership KS provides knowledge about

the occurrence of condition elements in productions.

2. The memory-support KS provides knowledge about the

memory elements that support condition elements.

23

3. The condition-relationship KS provides knowledge

about the relationship among condition elements within each

production.

The first KS permits rejection of productions whose

condition elements are not supported by elements in working

memory. Filters using this KS allows further testing of

productions whose condition elements all appear to be

supported by memory elements. This does not guarantee that

such productions will be satisfied because filters may use

only partial knowledge, or variables may be instantiated to

different values. The condition-membership KS is static and

it is usually established before execution.

The second KS contains the knowledge of which condition-

elements are supported by a memory element at the beginning of

a cycle. This KS complements the first one. If a filter

makes use of both of them, then no matching would be necessary

at the beginning of the cycle. However, the knowledge must be

updated at the end of each cycle. The ratio of the number of

elements added or deleted per cycle to the number of elements

in working memory determines how the updating cost compares

with the cost of matching.

The third KS can be used to determine whether a

production, each of whose condition elements is supported when

considered individually, is actually satisfied. It can also

be used to determine whether a production is satisfied even

though some of its condition elements seem to be unsupported

when considered individually. Condition-relationship KS may

be used only when the first two KSs are also in use.

24

Using a production system architecture called PSG, the

authors designed two filters. The first one uses condition-

membership KS, and the second one uses both the condition-

membership and the memory-support KSs. In the first filter,

the KS is represented by a discrimination net that indicates

which productions contain the same first-named symbol (primary

feature) as a way to define similar productions. The net is

traversed at the beginning of each cycle to determine the

possibly satisfied productions that constitute the conflict

set. Three versions of the second filter have been

implemented. They differ from one another only in the set of

features they use to represent elements. The first

implementation uses only the primary feature to represent a

condition element. At the beginning of a run three sets of

associations are established as follows:

1. Each primary feature is associated with a list of

those condition elements it represents.

2. Each condition element is associated with a list of

productions containing it.

3. Each production is associated with the number of

condition elements contained in it (support measure).

Through this sequence of associations, the support

measure is updated whenever a primary feature enters the

working memory (decremented by one), or leaves the working

memory (incremented by one). If the resulting number is less

than or equal to zero, the production is tagged as possibly

satisfied. Before each cycle the satisfied productions are

put into the conflict set. The other two implementations use

25

both a primary feature and a list of secondary features to

represent condition elements but in two different ways.

The authors used arithmetic formulas to predict the

execution cost for the original architecture of PSG and the

two modified architectures which augment one of the two

filters. They tested the formulas by comparing the actual

cost with the predicted cost for different cases that include

variation in working memory size, variation in production

memory size, and varied production systems with constant

working memory size and production memory size. For each

case, tests were conducted for the two conflict resolution

strategies used in PSG: rule order and recency. They

concluded that in spite of inadequacies in the statistical

assumptions, the cost formulas do capture the most important

dependencies. They added that a large increase in efficiency

can be gained by using such simple filtering mechanism.

A Focus of Attention Technique (Whiting and others. 1985:

1-1 . A focus of attention technique (SUBEX) has been

designed for improving the efficiency of production systems.

The basic idea of SUBEX is to build a data structure that

allows the inference engine to take advantage of the fact that

rule conditions are satisfied incrementally and that

preserving the history of past actions can prevent repeated

evaluation of the same rule conditions. To evaluate the SUBEX

technique, three related implementations of rule-based pattern

directed inference systems were studied. The first is a

system in which all rules are evaluated against the entire

working memory (context base) on each cycle. The second is an

26

implementation of the condition-membership filter of McDermott

and others (McDermott and others, 1978: 160-161). The third

implements the subexpression focus technique (SUBEX).

The authors also developed an automated rule base

generator which generates arbitrary rule bases with different

size, topology, and frequency of appearance of rule types. In

addition, an analyzer program was written to examine each

generated rule base and report on its characteristics.

Finally, a driver program was developed which generates test

data sets in a random fashion, runs all three inference

engines against the same test data sets and rule set, and

reports and summarizes the results.

The software was implemented in Common LISP using a VAX-

11/780 computer running the VMS operating system. Differences

among the three implementations were kept to the minimum

feasible, to facilitate direct comparison using relative CPU

execution time. A most-recent-first conflict resolution

scheme was used in all inference engines. The condition

(antecedent) part of the rules is composed of literals or

arbitrary Boolean compositions of literals, while the action

part (consequent) is a single positive literal. At the

beginning of a test, the rules are read in one at a time from

a text file and compiled into tree structures which are

accessed by the inference engines.

The SUBEX inference engine builds an index of "reference

counts" associated with every Boolean connective in the

antecedent part of each rule. The count field of the

reference count node represents the number of facts required

27

to satisfy the Boolean operator which occurs at the top

(outermost) level of the antecedent of the rule. This count

equals 1 for an OR, and equals N for N-ary AND. The process

of constructing reference count nodes continues in a similar

fashion for any subexpression of the antecedent, for any

subexpression of those subexpressions, and so on. As a fact

is inserted into the context base, each reference count node

associated with that fact is located and decremented by

1. Any reference count which goes to zero as a result

indicates satisfaction of the antecedent component represented

by the node. If all nodes that represent a rule go to zero

the rule is enabled for firing and is passed on to the

conflict-resolution routine.

A series of experiments was performed to compare the

relative efficiency of the three inference engines using

different rule sizes (50, 200, 800 rules), different shapes

(fan-in, fan-out, no-fan), and different antecedent

compositions (all ANDs, all ORs, 50% ANDs and 50% ORs, nested

ANDs and ORs). The results showed that the SUBE inference

method displays a substantial speed advantage over both the

other two methods. This advantage is maintained over a wide

variation in rule base size and structure, but appears to be

most pronounced with large rule bases.

Forward Chaining Versus a Graph Approach (Neaoolitan.

1986: 62-69). Production systems in which the set of rules

does not contain variable data are used in many expert

systems. For such production systems a more efficient

28

architecture can be implemented by storing the rules in a

graph and the true assertions in an assertion list. The

assertion list is traversed only once; at each assertio, a

premise (condition) is triggered in all the rules which have

that assertion as a premise. When all premises of a rule

trigger, the rule's conclusion is added to the end of the list

of assertions. It must be added at the end so that it will

eventually be used to make further deductions. Each rule is

represented by a special count node with premises coming in

and conclusions leaving.

In the regular implementation of forward chaining, the

computing time (in the worst case) is a function of N, where N

is the number of rules. The actual time is totally

unpredictable because it depends on the rule mix and the true

assertions. Computing time in the graph method is related

only to a linear function of N; this suggests that it should

be much more efficient.

Two algorithms were written in PASCAL and implemented in

a VAX running under VMS to compare the performance of the two

methods. Computing time was measured for a variety of RBSs

that vary in the number of rules, maximum number of premises

in the rule, and the number of true assertions. It was found

that computing time for the regular implementation is usually

about 10 times that of the graph method.

The Rete Matching Algorithm (Forgy. SheDard. 1987: 34-40).

One property of production systems is that the number of

elements of working memory changed in one cycle is very small

compared to the total number of elements in working memory.

29

Another property is that the condition parts of rules contain

many similar or identical patterns. Large production systems

usually have from hundreds to more than one thousand elements

in working memory at any one time. On a typical cycle, changes

made by rule-firing are from 2 to 4, which represents a very

small percentage of working memory contents. Since working

memory changes little on a typical cycle, much of the

information used by the match process in one cycle is still

present and can be reused in the next cycle. The basic idea

of Rete is to save such information from cycle to cycle,

and to update it as necessary to reflect the changes made

to the working memory in each cycle. Thus the cost of

matching depends primarily on the rate of change to working

memory rather than its absolute size. To make use of

similarities of patterns in rules, Rete processes the patterns

before the system is interpreted, to locate common terms and

eliminate as many of them as possible. These patterns are

compiled in a special data-flow graph called the Rete network,

a tree structured sorting network or index for the productions.

The graph serves as a function to map changes in working memory

into changes in the set of satisfied productions.

The Rete algorithm has been implemented in several

languages in both research-grade and commercial systems.

Evidence shows that Rete is the most efficient algorithm

developed so far for performing match operations on single

processor. Figure 2 shows a summary of the implementation of

the Rete algorithm in the OPS5 production-system language.

30

Efficient Progra in OPS5 (Brownston and others,

1985: Ch 6. OPS5 is a general purpose production-system

language. The inference engine of OPS5 is a forward-chaining

one, but backward-chaining problem-solving strategies can also

be implemented. OPS5 imposes no constraints on the type of

application program that can be written. As a result, the

programmer must explicitly handle both data representation and

flow of control by means of rules. OPS5 uses attribute-value

pairs for data representation. Objects are defined by a

structure called "element class" which contains the object

name and its attributes names. Pattern-variables are allowed

in the LHS of rules. Data elements can be added, deleted, or

modified as a result of executir., "he RHS of rules.

Programmers can use the BUILD command in the RHS of a rule to

add another rule during execution. OPS5 uses the Rete

algorithm for the matching process.

Programmers of OPS5 can sometimes make dramatic

improvements in the efficiency of a set of rules. Some simple

changes such as ordering conditions within a rule, or adding

or regrouping attributes within element classes may noticeably

reduce the execution time of a production system run. Some

possible causes of slowness in the set of rules in decreasing

order of effect are specified as follows:

31

-(lia~ill~ wi vorking menry are nuipe direc~tly it changes in
ihe conlflict sol.

- Rtllier fihati repeatedly te5tilig all conditions ill all ruI Is onl cacli
rvu),cmi'.e-aict mcif"lv, tllr' Ri'll' alj.rritlim saves niatcl itiformat 1(11 inl

i net uork.
-Add itiios to anid dcelet jels fruoni wvorkinog nen iorv raulse c ha oges

inl Iic network data structurvs.
T he saved iniformationi an~d the tiiw inciory chanigcs dvierti i no
wvhvt her or not t here arr. changes in filhe sot of rles that imatich.

-When a working, memorv elemien t is chrcked againlst a conditionl
clemicnii. the attribuite tests of thle condition ire eva luatoil ill thc
order inl which they are written,. if tHie element fails one oif the(
tests. thle rermain ing te-sts arc not CV1'aluated.

= Tlhe coniditions of a rule are chceckced inl order from first (Irlp) to
last (bottom]). If no combination of wvorking memirory elcemcnts
imaiachs an initial sequteticc of conidit ions. thec rcmaini~ig condi-
t ions are not coils idervd.

= Stored with each condition elemeict arc two data striucture's: a right
iiiemonr Coiitai nilig the set of working rncinorv elements t hat thw
conldition maltches. andl a le0t titelnury containing the cnnmbinitions
(if workinig ineinoryv elineits (and. implicitly, variable bindinigs)
thW make it and all pr('ccdifig conditions iatch (:oflistelitiy.
-hcconsistency of matches for a coni(iol element is comiputed
from its right memtory and thle left memory of the previous condi-
tinll. 111115. whenlever a working iiemory clement is added or re-
m~ovedl. all coliditiolis tOa newly mlatch or no longer match are af-
fected. and all memories of consistent bindings associated wvith
comiditionis following thie affected oncs may' also chiange. In other
words. if somelthinlg changes early in a left-hand side, it affects
everythlin g that follows it in the left-hand side.

=Identical condition elements and sequences of condition elements
in different ruiles are factored out in the nietwork amid miatched
only onice.

= Deleting a working memory elemnent has an additional cost when
many other working memory elenments match the same conditions
that it does. It takes a linear search to find the deleted element in
the Ilists of matchinmg elements for a cond1(1it ion, and thc cost propa-
gFates to removing thie combined rmatchmes fromn later conditions.

Figure 2. A Summary of the Rete Matcher

(Brownston and others, 1985: 229)

32

1. When large numbers of working memory elements match
successive conditions in the same rule, finding
consistent matches is one of the most expensive
processes.

2. Frequent changes to elements that match conditions
occurring early in rules are more expensive than
changes to those that match later-occurring
conditions.

3. When a condition matches a large number of elements,
deletion from the set is expensive.

Figure 3 shows a summary of some techniques for speeding

up processing. Almost all efficiency techniques involve

modifying a rule to exploit a constraint as quickly as

possible so that complex processing is performed only when

necessary. The principles for improving efficiency are

sometimes contradictory. If the principles conflict, estimates

of the costs of alternatives may be used to choose the most

effective one.

Efficiency of Consultation (Politokis, 1985: 8-30, 36-39)

RBSs are the most common knowledge representation scheme

that are used in expert systems. Some AI researchers have

developed methods to evaluate expert systems by comparing the

human expert's conclusions with the expert system's

conclusions. The evaluation process usually uses "cases" with

known conclusions to evaluate the expert systems. Evaluation

some expert systems such as CASNET, PROSPECTOR, MYCIN, and

EXPERT has been performed using the cases approach. Some

special programs have been written as an aid in the evaluation

process: the TEIRESIAS program for MYCIN, and the SEEK program

for EXPERT are among those special programs. In this section

a brief review of the SEEK program is presented.

33

1. Avoid conditions that match many working memory elements.
a) Add attribute tests that change the condition so that fewer

working memory elements match it.-Tests may be based on re-
strictions to data or on the state of processing.

b) Add new element classes or modify the representation to
change the data elements so that fewer of them match the
condition.

c) Represent and enumerate sequences carefully.
2. Avoid big cross-products between conditions.

a) Order the conditions so the more restrictive ones occur first.
This limits the number of consistent matches that are passed
on to the next condition.

b) Write rules with a few big conditions rather than many simple
conditions by merging the attributes of related element classes
into fewer element classes.

c) Use build to specialize rules.
3. Avoid frequent changes to matched conditions.

a) Put conditions that match frequently changing elements as far
toward the end of the rule as possible.

b) Avoid excessive chancs in control elements.
4. Make matching individual condition elements faster.

a) Put the most restrictive attribute tests first to speed the match
of working memory elements against conditions.

b) Change the representation of data to speed up matching.
5. Limit the size of the conflict set.
6. Call user-defined functions.

Figure 3. Summary of Techniques for
Improving Efficiency in OPS5

(Brownston and others, 1985: 241)

34

SEEK combines design aids for building expert models with

empirical testing and evaluation heuristics; these help in

carrying out experiments for the purpose of improving

decision-making knowledge. SEEK uses a restricted type of

productions written in a tabular form to express the rules.

It uses experience, in the form of stored cases with known

conclusions, to interactively guide the user in refining the

rules of the model. A typical interaction with SEEK involves

iterating through three steps: obtain performance of the rules

on the stored cases, analyze the rules, and revise the rules.

The performance of the rules is evaluated by matching the

expert's conclusion with the model's conclusions in each case.

SEEK allows the user to specify the proper way to score the

result of the test when ties in certainty occur between the

model's conclusion and the expert's conclusion. It also

allows the user to determine which rules and cases are to be

ignored during the evaluation process. Results can be

obtained in two forms: a summary for the performance of the

model as a whole, or the performance of a specific rule.

Results about the performance of the model shows the number of

cases in which the model's conclusions agree or disagree with

the expert's conclusions. Results about the performance of a

specific rule contains the following:

1. The number of cases in which the rule was satisfied.

2. The number of times the greatest certainty was

obtained by the rule and it matched the expert's conclusion.

3. The number of times the greatest certainty in the

conclusion was obtained by the rule and the rule did not match

35 -I

the expert's conclusion.

Interactive assistance for rule refinement is provided

during the analysis of the model. Analysis can be performed

on the basis of a single case or on all cases. The objective

of single-case analysis is to provide the user with an

explanation of the model's result for that case. SEEK cites

the rules which were used to reach the conclusion and those

that partially satisfied (rules that agree with the expert's

conclusion which are closest to being satisfied in a

misdiagnosed case). In addition, SEEK allows the user to

interrogate any conclusion in the model, both final and

intermediate results. In all-cases analysis, SEEK performs

global analysis and reports the results by numbering and

listing partially satisfied rules as potential candidates for

generalization, and rules used to reach the model's

conclusions as potential candidates for specialization. SEEK

applies some heuristics rules, that use the statistics

gathered about the rules' performance, for the purpose of

suggesting specific experiments about rule refinement. The

output of this step is suggestions to generalize some rules by

either removing a condition or increasing the confidence, or

to specialize other rules by either adding a condition or

decreasing the confidence. The suggestions are ordered based

on maximum potential gain.

SEEK provides the user with an editing capability to

change the rules according to the suggestions. The changes

are logged separately from the original rules in the model.

The results of the revised version of the model are collected

36

and analyzed as before. The user can accept or reject each

suggestion, and the cycle continues until satisfactory results

are obtained.

A Comparative Study of Control Strategies for Expert Systems

(Aiello.1983: 1-4). AGE is a collection of tools and partial

frameworks for building expert systems. A user of AGE can

define production rules about a particular domain, set up a

basic structure for a solution space, and then experiment with

different control strategies to find one that best fits the

problem. "Best fit" can be determined both by subjective and

by objective measurements. Subjective measurements include an

indication of how natural the knowledge represented and the

output of the program seem to the expert. Objective

measurements are speed and accuracy in terms of the total

number of rules evaluated or comparisons with the expert's

conclusions. Three different versions of the PUFF diagnostic

expert system were implemented using the AGE building tool.

Each version was implemented with an event-driven strategy

which has a simple blackboard data structure to store the

intermediate and final results. Several levels of rules

(knowledge sources KSs) are used in the blackboard data

structure. The first level uses the initial assertions (test

measurement) as an input and produces actions (events). A

user-specified selection method chooses one of those events to

use as a focus to be matched against the other levels of KSs.

The events drive the order in which KSs are evaluated. The

second version uses the model-driven (expectation) control

strategy which has the same data structure but instead of

37

A

checking all the test data it checks only a limited number of

crucial data and makes initial, broad diagnostics. AGE then

attempts to substantiate the initial hypothesis with a few

more data items of secondary importance. If the diagnosis is

still credible, a set of further model-based expectations is

generated for corroborating evidence. AGE compares the

expectations with input data and partial hypotheses on the

blackboard. The third version is a typical goal-driven

backward chaining implementation which has only one KS.

The three implementations were compared in terms of

speed, accuracy and naturalness. Speed was measured by the

number of rules tested, the number of rules executed, the

number of input data items referenced, and the number of

references to the blackboard or internal data representation

in the backchaining strategy. The table below shows the

average results for the three strategies far a small sample

of actual cases. There was very little deviation from the

average for each measurement shown in the table.

Measured Comparison of Three Control Strategies

Strategy rules rules input internal
tested executed data data

event-driven 60.4 12.6 80.4 54.4

model-driven 35.5 14.5 47 48.5

goal-driven 68 14 76 128.8

38

A
The results show that the model-driven strategy does less

testing and refers less often to data than the other two

strategies do. The ability to focus initially on the most

likely diagnosis eliminates the need to test rules for other

diagnoses. Accuracy was measured as agreement with the

doctor's conclusions, based on the statements PUFF is capable

of producing. The event-driven and goal-driven strategies are

slightly more accurate than the model-driven strategy. Given

odd or marginal data, the model driven strategy may produce

incomplete interpretations. The naturalness of the output was

calculated by counting the number of moves required to

reproduce the doctor's order. Output generated by model-

driven system always had fewer findings out-of-order. The

event-driven system had the next fewest out-of-order items,

and the goal-driven system had the most.

39

IV. The Description of the Model

In Chapter III, a review of some of the work related to

the performance of rule-based systems (RBSs) is presented.

One approach used in some of this work is to abstract

knowledge representation in order to simplify the studying of

different implementations of RBSs. The model presented in

this study uses a similar approach for the purpose of

providing an easily-built, fast, and flexible experimental

tool for evaluating RBSs. The model captures the main features

of RBSs and presents a general representation that is not

dependent on a specific environment.

The basic idea of the model is to represent the knowledge

base (rules and facts) in numerical form, and to use prior

knowledge about the system to describe probabilistic relations

among the assertions. Then a simulation approach can be used

to study RBSs and evaluate their performance under different

circumstances.

The model is easily built because it uses simple data

structures (arrays) in the FORTRAN language. The model is

fast because it uses numeric representation for data elements

and provides direct access to rules and facts by using their

numeric identifications as subscripts. The model is flexible

because it allows the use of more than one conflict-resolution

strategy and filtering technique without changing the basic

data structures.

This chapter describes-the basic constructs of the model

and the approach used to provide the simulation environment.

40

The chapter starts by introducing the features represented in

the model, the limitation of this representation, and the

measure of effectiveness used in comparing the different

structures of RBSs. The following section introduces the idea

of describing a probabilistic relation among the assertions.

The last section contains the details of a random rule-

generator procedure used to generate different sets of RBSs.

Features Represented in the Model

The current implementation of the model is restricted to

forward-chaining RBSs. Compared with the architectures

presented in Chapter II, the model contains the following

features:

Organization of Data. Data are represented by

structureless elements with low levels of resolution. Object-

attribute-value triples are represented by an individud data

element. Attribute-value pairs and lists can be simulated by

an equivalent number of data elements.

Properties of Facts. A recency number can be

attached to each fact added to the data memory.

The Left Hand Side

Types of Tests. The model represents positive

and negative tests directly. Disjunctions and partial tests

can be simulated by adding extra rules.

V. Variables are not represented

explicitly in the model. They can be simulated by adding

41

extra rules.

The Right Hand Side. Addition and deletion of data

elements are represented in the model. Modification of data

elements can be modeled as a combined deletion-addition

operation. Actions that call external procedures are not

represented in the model.

Control strategies

Conflict Resolution. The model does not impose any --

restrictions on representing conflict-resolution strategies.

ilteri. The model does not impose any

restrictions on representing filtering techniques.

Metaules. The model can represent metarules if

they are written in the same regular rule structure.

Limitations

The main limitation of the model is the low resolution of

data representation, which does not allow explicit

representation of attributes or variables. The same level of

resolution was used in other works as described in Chapter

III. Low resolution allows much simpler handling of the

problem. It accurately represents the object-attribute-value

scheme with no variables. For other schemes, results are

subject to some degree of inaccuracy. Some conflict-

resolution strategies and filtering techniques have to be

simplified to match the level of resolution. Simulating RBSs

that contain a large number of variables with a large number

of possible values for the variables is not practical.

However, this author believes that such a degree of

42

abstraction should be accepted for comparison of results.

High-resolution representation is not impossible for the

numeric scheme used in the model, but it will add a

considerable amount of complexity. Disjunctions in the LHS of

rules can be replaced by adding extra rules. Some powerful

RBS languages do not use disjunctions in the rule structures.

The conclusions drawn from RBSs will not be affected by the

replacement, but performance measures may not be exactly the

same. Auding this feature to the model is feasible and it

will not cause too much complexity.

Backward-chaining inference engines can be built in

different architectures that considerably differ from those of

forward chaining. In general they use more complex features.

A backward-chaining architecture is not attempted for the

current implementation of the model. The numeric

representation would not impose additional restrictions for

such attempts.

Measure of Effectiveness (MOE)

Execution time is the MOE used in most related works for

comparing different implementations of RBSs. The same measure

can also be used in the present model for the same purpose.

This author argues that although execution time is a proper

measure, it may be affected by the environment. Different

envirotiments may show different statistical results; however,

they may show similar general conclusions. For example, an

implementation of a hypothetical filter may show 20%

improvement in execution time for an inference engine written

43

in language Li using computer Cl running under operating

system OSi. Another implementation for the same filter may

show only 10% improvement if it is written in language Li

using the same computer, Cl, running under operating system

OS2.

An environment-independent MOE is used in the model,

viz., the number of match-tests (NMT) of the conditions in the

LHS of rules against the contents of data memory. This

measure could be used in experiments that measure the effect

of changing some parameters within a specific implementation.

In addition, it could be used to compare the matching overhead

of different implementations. However, it is not suitable to

be used as a measure for the total performance of a RBS.

Model Structure

The model uses numeric representation for the data

elements and rules. Facts, taken in any order, are assigned

integer numbers. Rules are represented by a collection of

numbers that represent data elements on both LHS and RHS of

the rule. The array data structure is used to represent data

memory, rule memory, and conflict set.

DatLa mgx. Facts are organized in the NF(i,j) array,

where row number is the numeric identification (ID) of the

fact. Each fact (i) has two attributes:

1. NF(i,l) is the fact status; it assumes the value e if

the fact is currently in the data memory, and -1 if not. It

is initialized by the value -1 for all facts.

2. NF(i,2) is the recency of the fact; it assumes the

44

value of an incremental counter that is incremented by 1

whenever a fact is added to (or deleted from) the data memory.

It is initialized by the value 0 for all facts.

Data memory is not represented by a separate structure;

it is contained in the fact array as a dynamic subset. No

search is required to check an attribute of a fact; a direct

access is available by using the fact ID.

Rulea1m . Rules are organized in the NR(i,j) array,

where row number is the traversing order of the rule. It is

used as a primary ID of the rule to facilitate both sequential

and direct access to the rule. Each rule (i) has the

following information stored in the array:

1. NR(i,l) is the rule number; it is used as a unique

secondary ID.

2. NR(i,2) is the number of conditions in the LHS of the

rule.

3. NR(i,3) is the number of actions in the RHS of the

rule.

4. NR(i,4) --> NR(i,MAXL+3) contain the fact-IDs that

constitute Lhe LHS of the rule, where MAXL is the maximum

number of conditions a rule can assume in the specific RBS

currently represented. A (-) sign is attached with a fact ID

if it is a negative condition.

5. NR(i,MAXL4) --> NR(i,MAXL+MAXR): contain the fact-

IDs that constitute the RHS of the rule, where MAXR is the

same as MAXL except for the actions. A (-) sign is attached

with a fact ID if the required action is deletion.

6. NR(i,MAXL+MAXR+l) is the rule status; it assumes the

45

value 1 to mark the rule if it is fired, and it is initialized

by 0 to all rules.

This structure allows dynamic allocation to the rule set

within the array-limits specified by the program. Rule memory

is the static subset of NR array that contains the LHS and RHS

of the rules.

Conflict Set. Rules that are candidates to fire are

collected in the conflict-set array NC(k,j), where row number

is the value of an incremental counter that is incremented by

one whenever a rule is added to the conflict set. Only the

necessary subset of information in stored in the NC array.

The subset includes data stored in both the NF array and NR

array to identify the LHS of the rule, in addition to the rule

primary ID which is used as a pointer to the rule in the rule

memory. The data is organized as follows:

1. NC(kl) is the rule primary ID.

2. NC(k,2) is the rule secondary ID.

3. NC(k,3) --> NC(k,MAXL+2): they contain the recency

numbers of the facts in the LHS of the rule. Figure 4 shows

the main components of the model and how they communicate with

each other.

An _Exampi. To show how the described structure can be

applied to RBSs, a simplified example is considered below.

This example is adapted from the animal identification RBS

described in (Winston, 1984: 182-184).

46

RULE MTRIX

LHS RHS

I F

igr 4.Th4Mi.L..nn o heMoe

I II I
• ., i I

1 I I i
, I i , I

I I I

I I FACT MATIILX

I r I
II I

I I

IO I - I D I I I

Is I I

L
I I

L.. I

Figure 4. The Main Conrents of the rMbde1

47

Rule 1:

IF the animal has hair

THEN the animal is a mammal

Rule 2:

IF the animal has feathers

THEN the animal is a bird

Rule 3:

IF the animal eats meat

THEN the animal is a carnivore

Rule 4:

IF the animal is a mammal

AND the animal is a carnivore

AND the animal has a tawny color

THEN the animal is a cheetah

Rule 5:

IF the animal is a bird

AND the animal does NOT fly

AND the animal has long legs

AND animal has a long neck

THEN the animal is an ostrich

An arbitrary numeric mapping to the facts may be as

follows:

1 -- > the animal has hair.

2 -- > the animal has feathers.

3 -- > the animal eats meat.

4 -- > the animal has a tawny color.

5 -- > the animal has long legs.

6 -- > the animal has a long neck.

48

7 -- > the animal flies.

8 -- > the animal is a mammal.

9 -- > the animal is a bird.

10 -- > the animal is a carnivore.

11 -- > the animal is a cheetah.

12 -- > the animal is an ostrich.

The rules can then be written as follows:

Rule 1: IF 1 THEN 8

Rule 2: IF 2 THEN 9

RUL 3: IF 3 THEN 10

Rule 4: IF 8, 10, 4 THEN 11

Rule 5: IF 9, -7, 5, 6 THEN 12

Assuming that the rules are written in ascending order the

NR matrix will be as follows:

Rule Rule Length Conditions Actions Rule
order number LHS RHS status

1 1 1 1 1 - - - 8 0

2 2 1 1 2 - - - 9 0

3 3 1 1 3 - - - 10 0

4 4 3 1 8 10 4 - 11 0

5 5 4 1 9 -7 5 6 12 0

Assuming facts 1, 3 and 4 are the initial true assertions

the NF matrix will be as shown in the next page. After the first

iteration of the recognize-and-act cycle both rule 1 and rule 3

eligible to fire. The NC matrix will be as shown in the next

page.

49

The Fact Matrix

Fact Fact Fact
number status recency

1 1 1

2 -1 0

3 1 2

4 1 3

5 -1 0

6 -1 0

7 -1 0

8 -1 0

9 -1 0

10 -1 0

11 -1 0

12 -1 0

The Conflict-Set Matrix

Serial Rule Rule Recency of the LHS
number order number

1 1 1 1 - - -

2 3 3 2

Assuming rule 1 is selected to fire then row 8 in the NF

matrix will be (1 4) and the rule status of rule 1 will be

set to 1. Matrices are updated to keep track of the changes

that happen to the system until a stopping criterion is reached.

50

Facts that are added to the data memory are known as

assertions. Forward-chaining production systems start with

initial assertions inserted by the user to specify which facts

are known to be true. The production system then updates the

contents of the data memory by firing rules until a stopping

condition is satisfied. The number of facts added or deleted

depends completely on the rule mix and the initial assertions,

so that it is totally unpredictable. Therefore, performance

is best evaluated by a posteriori testing (Neapolitan, 1986:

64).

Production systems are deterministic systems; for given

initial assertions, the results will be always the same

provided no changes are applied to the rule memory or the

conflict-resolution strategy. However, the input to a

production system (initial assertions) is not deterministic.

Inputs, though they vary from one run to another, are usually

a subset of a limited domain. In some problem domains the

structure and the frequency of inputs can be predicted by the

experts, estimated from statistics of similar systems, or

estimated after running the system for some time. This

posterior knowledge may be in the form of prior probabilities,

conditional probabilities, or frequency figures.

As an example, suppose a RBS is constructed for a

diagnostic system in which the results of three tests are the

input to the system. Experts in this domain estimate prior

and conditional probabilities of the results of the tests as

follows:

51

KI

1. Test I has 2 possible results with probabilities P(I-

1), P(I-2).

2. Test II has 3 possible results conditioned on the

results of the first test as follows:

P(II-1/I-1), P(II-i/I-2), P(II-2/I-I), P(II-2/I-2), P(II-

3/1-1), P(II-3/I-2).

3. Test III has 2 possible results conditioned on the

results of both the first and the second tests as follows:

P(III-I/I-2,II-I), P(III-i/I-2,II-2), P(III-I/I-2,II-3),

P(III-2/I-l,II-l), P(III-2/I-l,II-2), P(III-2/I-I,II-3),

P(III-2/I-2,II-l), P(III-2/I-2,II-2), P(III-2/I-l,II-3).

These relations are best represented by a tree structure

as shown in Figure 5, where nodes are the possible results of

tests and arcs are the paths from one test to another. Nodes

are assigned sequential integer numbers that represent the

possible initial assertions to the system. The input to the

system is a 3-tuple assertion, for example (1, 4, 10) or (2, 7,

11).

This hypothetical RBS can be simulated by randomly

selecting the input from the specified probability figures.

The number of matching tests (NMT) for an input can be

calculated for a certain architecture. Performing a suitable

amount of runs, performance can be estimated by the average

value of NMT.

The given example shows a case where the number of

assertions is fixed for each run and the relation among the

52

0

Test 1I

Test II1 6 7

Figure 5. The Relations Among the Initial Assertions

53

assertions are identified by conditional probabilities.

Assertions can be identified in different ways according to

the nature of the system. The number of assertions may be a

random number or the assretions may be divided into

independent groups. All in all, if the relation among the

assertions can be stochastically identified, it is always

possible to simulate the input to the RBS.

The Rule Generator

The features of the present model described so far

provides a methodology to simulate a specific RBS. To use

this model for experimentation, a large number of RBSs with

different features should be tested. It is not practical to

look for already developed RBSs or to write new RBSs. The

best way is to provide a method to generate RBSs. RBSs are

not described only by the number of rules; other criteria can

also be used to describe them. However, since RBSs are

problem-dependent they are not restricted to fixed patterns.

RBSs depend also on the capabilities of the language used and

on the programmer using this language. To generate RBSs some

criteria should be selected to describe a relatively wide

spectrum of RBSs. In (Whiting and others, 1985: 215-220), as

described in Chapter III, the authors discuss a rule generator

program that randomly generates different structures according

to parameters that define size, shape, and LHS composition. A

similar approach is used in this study to automatically

generate variations of RBSs that are suitable to the features

represented in the model.

54

A rule generator should generate consistent RBSs. In

(Nguyen, 1987: 4-8), the author described six types of

inconsistency that may occur in RBSs. These types will be

discussed at the end of this section. A rule generator should

also be flexible and cover a wide spectrum of RBSs. These

requirements should be satisfactorily implemented in a rule

generator in order to provide credibility in the results of

the experiments applied to the generated RBSs. The rule

generator (RG) developed in this study is a complement to the

model; the rest of this section contains a detailed

description to the RG.

BasiIe. The basic idea of the R is to divide the

RBS into levels of rules; the LHS of a level is built totally

or partially from the RHS of the preceding level. Facts

defined as initial assertions may be also used to build the

LHS of the rules. The LHS of the first-level rules are

totally built from the initial assertions. The RHSs of the

rules are built from new facts and they can contain facts from

the RHSs of rules in the same level. Figure 6 illustrates the

basic idea of the rule generator.

Param er . A set of parameters that describe RBSs are

used by RG; they are:

1. Size: size measures the number of rules that compose

a RBS. Because RG divides rules into levels, the number of

rules in each level needs to be specified as well. The

numbers of rules in the different levels need not be

identical. Three sets of rules are chosen in this study: 100

rules in three levels (30, 35, 35), 500 rules in 4 levels

55

"S
N

N'S'N
N NN N

N,
N ~ 7 -,

-

'4

cI~

- I I
I(N H-,
I -

rz~

2 2

" 'V

I '- - -

-'-I

C-, -

U,
(N

56

(125-rules each), and 1000 rules in 5 levels (200-rules each).

2. Shape: the shape parameter defines the relation between

the number of facts in both sides of rules. In fan-out shape

the RHS is larger than the LHS. In fan-in shape the LHS is

larger than the RHS. In no-fan shape both sides are almost

equal. The RG allows the user to specify the lower and upper

bounds of each side for the whole RBS. The actual number in

each rule is selected randomly within the specified bounds.

In this study the bounds are selected as follows:

LHS RHS
Lower bound Upper bound Lower bound Upper bound

Fan-out 2 2 3 4

No-fan 2 3 2 3

Fan-in 3 4 2 2

3. Negated conditions: the LHS of rules may include

negated conditions by a specified percentage. This process is

applied only to the initial assertions. Conditions selected

from the preceding level are negated in the subsequent level

if they were identified previously as deleting actions. The

first condition in the first-level rules are not tested for

negation, and the first condition in the subsequent levels is

selected only from adding actions. This feature does not

permit the RBS to have rules with all conditions negated,

which is unlikely in actual RBSs.

4. Repeated actions: in actual RBSs, it is likely to

have some of the actions repeated in more than one rule. This

feature is permitted in RG by specifying a percentage of

57

actions that can be repeated. Repeated actions are selected

randomly from actions in the same level.

5. Deleting actions: non-monotonic RBSs allow facts to

be deleted from the data memory. This feature is permitted in

R by specifying a percentage of deleting actions. Only

repeated actions are allowed to be identified as deleting

actions.

Initial Assertions. In the previous section a

probabilistic scheme for the relation among the initial

assertions is described. This scheme and two other schemes

are used to help generate RBSs in addition to their principal

use in experimentation. The proposed schemes will be called

conditional schemes, independent schemes, and grouped schemes.

These schemes are not the only ways to describe probabilistic

relations among the initial assertions, but they are proposed

in this study to demonstrate how this model can utilize any

probabilistic scheme.

Conditional Scheme. The example described in the

previous section is a typical conditional scheme. This scheme

is programmed by making use of two matrices: the first matrix

contains pointers to the facts branched from the current fact,

and the second matrix contains the cumulative probability

figures of those branches. The following two tables show an

example of the two matrices which are called the ASR-matrix

and the APP-matrix respectively.

58

ASR matrix APP matrix

Row Row

0 1 2 - 0 .4 1 -

1 3 4 5 1 .2 .5 1

2 3 5 - 2 .6 1 -

3 6 7 8 3 .3 .6 1

4 6 8 4 .1 .9 1

5 7 R - 5 .7 1 -

The matrices are accessed directly starting from row 0

which branches to either row 1 or row 2 according to uniform

random draw. A second random draw decides the next row, and

so on. In this example, the 3-tuple assertion (1, 4, 7) would

be generated by the random-number sequence (.35, .46, .87).

Another random-number sequence (.95, .71, .01) would generate

the assertion sequence (2, 5, 7).

Independent Scheme. In an independent scheme, the

initial assertions are divided into independent subsets. Each

subset contains assertions having a common probability

distribution. Only one assertion from each subset is selected

randomly. The ASR and APP matrices for an example similar to

the one presented in the conditional scheme will be as

follows:

ASR matrix APP matrix

Row Row

1 1 2 - 1 .4 1 -

2 3 4 5 2 .3 .7 1

3 6 7 8 3 .2 .8 1

59

The matrices are accessed sequentially in this case to

determine the assertions. For example the random number

sequence (.25, .06, .11) generates the assertion sequence (1,

3, 6).

Grouped Scheme. In a grouped scheme, instead of

selecting one assertion from each subset as in the independent

scheme, a fixed number of assertions (group) is selected. The

members of the group are selected randomly with equal

probability and the sampling is performed without replacement

to prevent repetition. Only one matrix is needed in this

scheme. The first column in the matrix contains the first

fact in each subset, the second column contains the last fact,

and the third column contains the group size. The matrix

shown below represents a grouped-scheme example.

Row

1 1 10 4

2 11 26 5

3 27 38 3

4 39 50 3

An example of a randomly generated assertion sequence

would be (1, 3, 9, 5, 25, 15, 13, 19, 21, 27, 37, 30, 47, 39,

41).

Procedure. To generate a RBS, the RG program should

determine which facts are used to build the LHS of the rules

as a first step. The LHS of the first-level rules is built

from the initial assertions. Assume facts 1 --> 8 are the

possible initial assertions and they have the probabilistic

60

relation described in the first example in the previous

subsection. If a fan-out RBS is to be generated, then the LHS

of the rules will consist of two conditions. To build a rule

that can fire from a randomly-generated assertion sequence,

the facts chosen to compose the LHS must be consistent with

the probabilistic relation among the facts. A rule with a LHS

consisting of facts (1, 2) or facts (2, 4) will never fire.

In the first case, facts 1 and 2 are mutually exclusive, they

can not be true at the same time. In the second case there is

no branch from fact 2 to fact 4. If the LHS are generated

completely randomly, many nonsense rules will be generated.

The best way to build the LHS of the rules is to use a

randomly generated assertion sequence which is guaranteed to

be consistent. For example, the assertion sequence (1, 4, 7)

can be used to generate several consistent LHSs such as: (1

,4), (1, -7) or (7, -4).

The procedure used in RG is first to generate a number of

assertions from a probabilistic relation among the initial

assertions, then to select some of them randomly to build the

LHSs of the first-level rules. The conditions that compose a

LHS are selected randomly from facts within the assertion.

Conditions, except the first one, may be negated according to

the specified negation percentage.

The RHSs of first-level rules are composed of facts that

start from where the initial assertions end. For the given

example the RHS starts from fact 9. If the RHS of the first

level is composed of three actions, then they will be the

facts (9, 10, 11). If a non-zero repetition percentage is

61

specified, facts can be repeated in more than one rule. The

procedure used in R is to generate some rules at the

beginning of each level without repetition, to give a chance

for adding new facts before repeating them. The number chosen

for unrepeated rules are 2, 3, and 4 for fan-out, no-fan, and

fan-in respectively. For the given example, the RHS of the

second rule may be the facts (12, 13, 14, 15), and the RHS of

the third rule may be (9, 16, 17, 13) where facts 9 and 13 are

repeated actions. If a non-zero delete percentage is

specified, some of the repeated actions may be identified as

deleting actions. For example, the RHS of the third rule may

become (-9, 16, 17, 13) where fact 9 will be deleted if rule 3

is fired and the fact already exists in the data memory.

The LHS of the second-level rules consists of the RHS of

rules from the first level. First, a rule is selected randomly

from the first level, then a number of actions, equal to the

number of conditions needed for the second-level rule, is

selected randomly from the RHS of the selected first-level

rule. For example, assume rule 2 is randomly selected to

build rule 40 in the second level. If the number of

conditions in rule 40 is 2, then facts (14, 12) may be

selected for the LHS of the rule. Facts are copied from the

RHS to the LHS with the same signs (+ or -). For example, if

rule 3 is selected instead of rule 2, the RHS of rule 40 may

be (-9, 17). This procedure is sufficient for the fan-out

shape where the LHS is always greater than the RHS. In the

case of no-fan and fan-in shapes, extra initial assertions,

similar to the first-level assertions, need to be assigned to the

62

subsequent levels. To illustrate this situation, assume

that the data of the grouped-scheme example presented

previously are used to generate a fan-in RBS composed of three

levels. The first two rows of data are assigned to the first

level, the third row is assigned to the second level, and the

fourth row is assigned to the third level. Examples of first-

level rule are:

Rule 1: IF 2, 4, -15, 19 THEN 51, 52

Rule 2: IF 16, -3, 10, -1 THEN 53, 54

Rule 3: IF 14, -24, 4 THEN 55, -51

The RHS of rule 1 starts from fact 51 because the last

initial assertion allowed is 50.

Assume that the second level starts with rule 31, which

consists of four conditions, and rule 3 is randomly selected

to build the LHS of rule 31. The first two conditions of rule

31 will be 55 and -51. The other two conditions are selected

randomly from the facts (27 --> 38) assigned to the second

level. As mentioned before, rules are built from previously

generated random assertions to guarantee the consistency of

the rules. Any random selection from grouped-scheme data will

be consistent; however, the same procedure used for the other

schemes is applied also to the grouped scheme just to unify

the procedure. To illustrate the procedure used to generate

random assertions for all levels, consider the same example of

grouped scheme. To generate random assertions for a RBS, four

extra parameters are identified; they are:

1. NAl, the total number of assertions for the first

level.

63

2. NA2, the total number of assertions for each of the

other levels.

3. NTAI, the number of true assertions for the first

level.

4. NTA2, the number of true assertions for each of the

other levels.

The procedure assumes that levels other than the first

one have identical specifications. This assumption is used to

simplify the procedure and reduce the amount of input data.

The value of these parameters, for the case given in the

example, can be determined from the given data; they are 26,

12, 9, and 3 respectively. Each random assertion will consist

of 1 cells. The first 9 cells are used to build the first-

level rules, the next 3 cells are assigned to the second

level, and the last three cells are assigned to the third

level. The process of building the LHS of the rules is

performed in two steps: first the locations of cells are

selected randomly, then the value of the facts in the selected

cells are copied into the LHS of the rule. If negation is

permitted, a negation test is applied to each fact separately.

The two conditions needed for rule 30 in the example are

determined first by selecting two cells randomly from the

candidate cells 10, 11, and 12. Assume cells 10 and 12 are

selected and the random assertion is the one given in the

example, then the conditions will be 27 and 30. The final

structure of LHS of rule 31 will be the facts (55, -51, 27,

30). The RHS of rule 31 will start with the fact next to the

last condition added to the first level.

64

Any of the three proposed probability schemes can be used

to generate RBSs of any size and any shape. Fan-out RBSs need

few initial assertions to fire a reasonable number of rules in

each level. No-fan RBSs need more initial assertions, and

fan-in RBSs need the most. The number of initial assertions

should also increase with the increase in size (the number of

rules in the rule set). A separate program is used to

generate random assertions from each scheme. The

probabilistic relations are specified in an input file to the

program. The output of the program is a file containing a set

of random assertions. The RG program uses the random

assertions file as an input. Also, a file containing the

specifications of the required RBS is needed as an input to

the RG program. A rule specification file contains the

following data items:

1. NRULE, the size.

2. NLVL, number of levels.

3. LVL(l), LVL(2) , number of rules in each level.

4. MINL and MAXL, the lower and upper bounds of the LHS.

5. MINR and MAXR, the lower and upper bounds of the RHS.

6. PN, negation percentage.

7. PR, repetition percentage.

8. PD, deletion percentage.

It also contains the NAl, NA2, NTA1, and NTA2 parameters.

Listings of the programs and samples of the input and output

are shown in the Appendix.

Consistency of the Generated RBSs. As mentioned early in

this section, six types of inconsistency in RBSs were

65

described in (Nguyen, 1987: 4-8); they are the following:

1. Redundant rules:
Two rules or rule chains are redundant if they
succeed in the same situation and have the same
conclusions.

2. Conflicting rules:
Two rules or rule chains are conflicting if they
succeed in the same situation but with conflicting
conclusions.

3. Subsumed rules:
Two rules or rule chains are in subsumption if they
have the same conclusions, but one contains
additional constraints on the situations in which it
will succeed.

4. Unnecessary conditions:
Two rules contain unnecessary conditions if the
rules have the same conclusions, a condition in one
rule is a negation of a condition in the other rule,
and all other conditions in the two rules are
equivalent.

5. Unreachable conditions:
If there is no match for a condition, it is said to
be unreachable.

6. Circular rules:
A set of rules is circular if the chaining of those
rules in the set forms a cycle.

The following paragraphs discuss the possibility of

generating each of the six types of inconsistency in the RBSs

generated by the RG program.

1. Redundant rules: generating rules of equivalent LHSs

is fairly probable for RBSs with small LHS, especially for the

first-level rules. If the repetition percentage is high then

generating RHSs with at least one common action is frequent

and may occur to those rules having equivalent LHSs. The

probability of generating redundant rules is higher for the

first few rules of each level. However, because RG does not

allow repetition in the first few rules, this probability is

reduced.
2. Conflicting rules: recognizing conflicting rules in

monotonic RBSs requires the identification of conflicting

66

facts. For example, facts 17 and 24 may be defined as

conflicting facts that cannot be true at the same time. There

is no need to complicate the generated RBSs by identifying

such relations. In non-monotonic RBSs, two rules are

considered as conflicting rules if they have an equivalent LHS

and one of them adds a fact and the other deletes the same

fact. This situation may occur in the generated RBSs if the

LHS is small and both the repetition and deletion percentages

are high.

3. Subsumed rules: generating two rules with equivalent

RHSs is fairly probable for RBSs with small RHS, and

generating two rules with LHSs differing only by the addition

of one condition in one of them is frequent in RBSs with small

LHSs. Generating rules with both cases would occur if both

the LHS and the RHS are small. However, if either or both

sides is long enough, the probability of generating subsumed

rules is very small.

4. Unnecessary conditions: The causes that lead to

unnecessary conditions are quite similar to the causes of

subsumed rules. By the same argument, generating rules with

unnecessary conditions is very rare if either or both sides is

long enough.

5. Unreachable rules: the conditions of the rules are

generated either from initial assertions that can be true or

from the RHS of rules that have a positive probability to

fire. So, all conditions are reachable.

6. Circular rules: two rules are circular if the LHS of

67

the first rule is equivalent to the RHS of the second rule,

and in the same time the RHS of the first rule is equivalent

to the LHS of the second rule. The RG program may generate

the first part of this condition, especially for RBSs with

small LHSs, but it never generates the second part at the same

time because it composes the LHS from the preceding level

while the RHS is composed either from new facts or from

repeated facts at the same level.

In summary, the probability of generating the six types

of inconsistency can be classified as low for types 1 and 2,

very low for types 3 and 4, and zero for types 5 and 6.

Eliminating inconsistent rules completely can be achieved by

controlling the LHS to prevent generating equivalent LHSs.

Such a process will slow down the RG especially for large

RBSs. Types 1 and 2 can be greatly reduced if the LHS of the

rules consist of two or more facts. Types 3 and 4 can be

almost eliminated if both sides of the rules consist of two or

more facts. The specifications of the RBSs selected for

experimentation include at least two facts in both sides, as

mentioned at the beginning of this section, in order to

generate highly consistent RBSs.

Usage. The developed RG program can generate highly

consistent RBSs in different specifications that cover a wide

spectrum of RBSs handled by the current implementation of the

model. The choice of the parameters of a RBS and the number

of initial assertions for each level should be well balanced

in order to generate a good RBS. Understanding the relations

68

among the parameters requires practicing with the RG for a

while, and preparing the input files may consume some time.

However, the execution time of the programs is unnoticeable

even for a 1000-rule RBS.

69

V- The Simulated Inference Engines

In Chapter IV a detailed description of the

representation of a knowledge base (data memory, rule memory,

initial assertions) used in the model is presented. Also the

method used to generate a wide spectrum of RBSs is explained.

In this chapter, a description to the different types of

inference engines simulated in this study is presented.

Conflict resolution and filtering are the main features of

inference engines as explained in Chapter II. Six types of

forward-chaining inference engines are simulated. Each

inference engine is characterized by a conflict-resolution

strategy and a filter technique (if any). The six types are

the following:

1. Engine 1: producticn order (PO) conflict-resolution

strategy and no filtering.

2. Engine 2: lexical-order recency (R5) conflict-

resolution strategy and no filtering.

3. Engine 3: most recent (R1) conflict-resolution

strategy and no filtering.

4. Engine 4: least recent (R3) conflict-resolution

strategy and no filtering.

5. Engine 5: production order (PO) conflict resolution-

strategy and rule filtering (controlled productions)

6. Engine 6: most recent (R1) conflict-resolution

strategy and rule filtering (context restricted).

In all engines the distinctiveness conflict-resolution

strategy is applied to prevent rules from firing twice. In

70

engines 2, 3 and 4, an arbitrary decision is applied if

necessary to break ties. For each engine, two versions of the

computer program that simulates each engine are written. The

first version is used for the detailed results of one run.

The second version is used to collect statistics for a

specified number of runs. The rule memory file (the output

file of the R program or a representation of a specific RBS)

is used as an input file to the required program. In version

1 the initial assertions are entered interactively, while in

version 2 a file that contains the initial assertions for the

specified number of runs is used as another input file. The

output of version 1 is a file containing the firing rules and

the value of the number of match-tests (NMT). In version 2,

two output files are produced: the performance file and the

statistics file. The performance file contains the values of

the NMT for each run and their average value; the statistics

file contains statistics about the number of times each fact

is added to the data memory, and the number of times each rule

fires.

At the beginning of each program the rule memory file is

read and stored in a matrix. A fact matrix is established and

initialized according to the initial assertions. All programs

include two main processes which are called: check a rule, and

fire a rule. The details of the two processes are as follows:

1. Check a rule:

The purpose of this process is to decide whether a rule

is eligible to fire or not. No search is needed to accomplish

this process. Each condition in The LHS of the rule is

71

checked directly by inspecting the status of the condition in

the fact matrix. The result of the check depends also on the

nature of the condition (positive or negative). The NMT is

represented by a counter which is incremented by one after

each check irrespective of the result of the check. If a

condition fails the test, no further checking is needed. The

rule is eligible to fire if all its conditions pass the test.

2. Fire a rule: _

When a rule is selected to fire, the rule status flag is

set to mark the rule. The status of the actions in the RHS of

the rule, the first column in the fact matrix, is modified

according to the nature of the action (add or delete a fact).

After firing the rule another cycle starts from the beginning

of the rule matrix. The procedure of each program is

described in the following sections, and the listings of the

programs are shown in the Appendix.

Engine_ 1

Engine 1 is the simplest forward-chaining inference

engine. A straight-forward procedure is used according to the

following steps: -_

1. Read the first rule.

2. IF the rule status flag is set

THEN go to 6

ELSE go to 3.

3. Check the rule.
Ii

4. IF a condition fails
THEN IF the rule is not the last one

THEN go to 6

72

ELSE stop.

ELSE go to 5.

5. Fire the rule.

6. Read the next rule,

go to 2.

In engine 2, the conflict-set matrix described in Chapter

IV is used to store the recency of the conditions in the LHS

of the rules eligible to fire. Another matrix is established

to store the same values after sorting them for each rule in

descending order. To facilitate the selection of a rule

according to R5 policy, the recency of the sorted facts are

converted into one equivalent number, the lexical value, which

is a function of both the order and the value of the recency

of all the facts in the rule. The lexical value of all the

rules in the conflict set is stored in an array, then the rule

having the maximum lexical value is selected to fire. The

procedure can be summarized in the following steps:

1. Read the first rule.

2. IF the rule status flag is set

THEN go to 7

ELSE go to 3.

3. Check the rule

4. IF a condition fails

THEN IF the rule is not the last one
THEN go to 7

ELSE IF the conflict set is empty

73

THEN stop

ELSE go to 5

ELSE add the rule to the conflict set,

IF the rule is not the last one

THEN go to 7

ELSE go to 5.

5. Sort the LHS of the rules in the conflict set,

calculate the lexical number for the rules,

select a rule to fire.

6. Fire the rule.

7. Read the next rule,

go to 2.

Engin

Engine 3 uses the same procedure as engine 2 except for

step 5. After sorting the LHS of the rules in the conflict

set, the rule having the maximum first condition recency

number (most recent of the most recent) is selected.

Engine 4

Engine 4 uses the same procedure as engine 2 except for

step 5. Sorting is applied in ascending instead of descending

order, then the rule having the maximum first condition (most

recent of the least recent) is selected.

The procedure of engine 5 is similar to the procedure of

engine 1. However, instead of checking all rules in the rule

matrix in every cycle, the rules are divided into groups

74

taken one at a time until all the rules eligible to fire in a

group fire. The procedure works as a filter that allows a

specific subset of the rule memory to be checked in each

cycle. The formation of the groups should be entered to the

program as input data. In this program, it is assumed that

the rules in the rule memory file are ordered such that it is

enough to specify the order of the rule in the end of each

group. For the RBSs generated by RG, each level of rules can

be considered as a group. If a specified RBS is used it

should be ordered first.

Engine 6 is an implementation to the condition-membership

filter (McDermott and others, 1978: 160-161) as described in

Chapter III. The procedure used in this study is similar to

the one discussed in (Whiting and others, 1985: 215-220)

because the degree of abstraction used in both studies is

quite similar in spite the fact that the data structure is

different. The authors described their procedure, which they

called the RF (Rule Focus) inference engine as follows:

RF does not evaluate every rule on every cycle. Instead,
it evaluates only the unfired rules that contain in their
antecedent (LHS) the last fact entered in the context
base (data memory). To locate these rules it utilizes an
index, built when the rule set is first read, which
consists of all facts which appear in the rule base (rule
memory), and for each fact a list of all rules whose
antecedent contains that fact. As a fact enters the
context base, the fact list is searched to find it, and
the corresponding rule list for that fact is traversed

In this study the index is organized as the fact matrix

where it can be accessed directly, rather than sequentially,

75

Y)

T TZ

I44

77

by specifying the fact number. The first cell of each row is

used as a pointer to the first empty place in the row. The

index is constructed by reading the rule matrix sequentially

and storing the rule order in all rows of the index

corresponding to the conditions in the LHS of the rule. To

implement the R1 policy, the most recent fact should be

determined. The direct approach is to search for this fact

through the fact matrix. This approach may involve searching

more than once to find the next most recent fact if no rule

related to the most recent fact is eligible to fire. An

alternative approach used in this study, avoids such repeated

search. A separate array is established to save, in

sequential order, the value of the facts added to or deleted

from the data memory in sequential order. In addition, a

pointer is created to maintain the location of the last fact

added to this array, i.e., the most recent fact. The next

most recent fact can simply be determined by decrementing this

pointer by one. Figure 7 illustrates the approach used for

implementing the condition-membership filter.

When the most recent fact is determined, only the rules

related to this fact, as specified in the index, are checked

in sequential order. The first rule eligible to fire from

those rules is selected. If no such rule is found, the next

most recent fact is determined and the same procedure is

applied. The procedure can be summarized in the following

steps:

76

1. Find the most recent fact.

2. Read the first rule related to the most recent fact.

3. IF the rule status flag is set

THEN go to 7

ELSE go to 4.

5. IF a condition fails

THEN IF the rule is not the last one in the index row

THEN go to 7

ELSE IF the fact is the least recent fact

THEN stop

ELSE find the next most recent fact,

go to 7.

ELSE go to 6.

6. Fire the rule.

7. Read the next rule related to the current fact,

go to 1.

Verification

To verify the set of programs that simulate the

different inference engines, two tests are applied. In the

first test, an actual small RBS consisting of 15 rules, the

animal-identification RBS (Winston, 1984: 182-184), is

translated into the numeric representation used in the model.

Several runs with different initial assertions are applied to

each inference engine to verify that the correct results are

produced. In the second test, several generated RBSs with

different specifications are applied to all engines. The a

results are compared to verify that the same results are

78

produced by all engines. In monotonic RBSs, all the engines

produce the same results, but the order of firing may change

according to the conflict-resolution policy. In non-monotonic

RBSs, the conflict-resolution policy may affect the results in

addition to the firing order. In some cases, the rule-

ordering policy fires a few rules more or less than the

recency policy for the same assertions. This difference is a

result of the conflict-resolution policy and the nature of the

RBS itself; it does not indicate any type of error in the

programs.

79

VI. Design of Experiments

The representation of rule-based systems (RBSs) used in

the model provides a convenient environment for

experimentation. Experiments can be performed on actual or

generated RBSs for the purpose of comparing their performance.

Experiments can be used to compare different implementations

for the inference engine or the structure of the rule set.

Two types of experiments are performed in this study: the

first provides a methodology to enhance the performance of a

specific RBS by changing the order of the conditions of the

LHS of the rules or changing the order of the rules in the

rule set, and the second compares the matching effort for

different implementations for the inference engine. In both

types, the number of match-tests (NMT) of the conditions of

the LHS of the rules against the contents of the data memory

is used as the measure of effectiveness.

The rule generator (RG) program is used to generate the

RBSs used in the experimentation. The independent-probability

scheme described in Chapter IV is used to describe the

probabilistic relations among the assertions of the generated

RBSs. The initial assertions are divided into independent

subsets of four assertions each. An arbitrary probability

distribution is assigned to each subset. One data file

containing 200 facts in 50 subsets and their probability

distributions is used as an input file to the independent-

scheme program. Only the part of the file needed to generate

random assertions for a specific RBS is read, stored, and

80

A

used in the independent-scheme program. The number of initial

assertions used for the Jifferent sizes and shapes selected to

generate the RBSs used in experimentations is as shown in the

following table:

number number of initial assertions
shape size of levels level 1 other levels total

Fan-out 100 3 4 4

500 4 6 6

1000 5 8 - 8

No-fan 100 3 5 1 7

500 4 10 2 16

1000 5 16 3 28

Fan-in 100 3 7 3 13

500 4 20 5 35

1000 5 25 6 49

The negation probability for facts in the LHS of the

rules and the repetition probability for facts in the RHS of

the rules selected for the generated RBSs are 0.2 and 0.4

respectively. For non-monotonic RBSs the selected deletion

probability is 0.4. It should be noted that these

rrobabilities do not represent the actual percentages in the

generated RBSs because of the restrictions applied in the RG

program in order to generate consistent RBSs as explained in

Chapter IV. The actual percentages are less than the

specified probabilities, but they cannot be accurately

estimated and there is no need to do that. These

probabilities are used only to help generate RBSs that look

81

like actual RBSs. For each of the nine RBSs defined in the

table, two versions of RBSs' specifications files are written:

the first includes the monotonic version and the second

includes the non-monotonic version.

Three sets of random assertions are generated for each

RBS used in experimentation. The first set is used as input

to the RG program to be used in generating the RBS. The

second and third sets are used as random samples from the

assertions population of the simulated RBS. These sets of

assertions will be called set 0, set 1, and set 2

respectively. Figure 8 illustrates the basic sequence of

experimentation.

The statistic used in the experiments is the reduction

ratio in matching effort. For example, if the estimated mean

of NMT of system 1 is X, and the estimated mean of NMT of

system 2 is Y where X is greater than Y, then the statistic is

(X - Y)/X.

Experiments are applied for 18 design points which

represent the intersections of the following three factors:

1. Shape (3 levels: fan-out (FO), no-fan (NF), and fan-

in (Fl)).

2. Size (3 levels: 100, 500, and 1000 rules).

3. Monotonicity (2 levels: monotonic and non-

monotonic).

One Thousand replications in two independent runs of size

500 each are applied for each design point using the generated

random assertions set 1 and set 2. The following sections

82

u

-4

tit

'E--
w ul LO

U))

/- -
co

83

describe the experiments and present a summary of their

results.

Type 1 Experiments: Performance of a Specific RBS

Experiment 1: The Order of the Conditions in the LHS.

As mentioned in Chapter III, the execution time of a RBS can

be reduced by rearranging the conditions in the LHS of the

rules such that the most restricted conditions are tested

first. If a rule is going to fail the matching test, then it

is better to fail after one test instead of two or more tests.

This rule seems simple; however, the question is how to

identify the most restricted conditions. It is unlikely to

identify such conditions for all the rules in the rule set

only by the prior information about the system. One measure

that can identify the degree of restriction of the conditions

is the number of times a condition passes the matching test

(the less often a fact passes the test the more restricted it

will be). Another measure is the number of times a fact is

added to the data memory (the less often a fact is added to

the data memory the more restricted it will be). Given the

probabilistic relations among the initial assertions, the

model is able to simulate the system and estimate the degree

of restriction of all the facts that comprise the RBS using

either measure. Then, the LHS of the rules can be sorted in

ascending order according to the frequency of the measure

used. As mentoned in Chapter V, version 2 of each program

that simulates an inference engine, the simulator, collects

statistics about the performance of the RBS during the

specified number of runs and stores the data in a file. The

84

I

number of times each fact is added to the data memory is

stored in the statistics file. A computer program, the fact-

ordering program shown in the Appendix, is written to sort the

conditions. The program uses both the statistics file and the

RBS file as inputs and produces an output file containing the

newly-structured RBS.

The experiment is applied twice: the first experiment is

applied for the 18 design points of the factor space using

engine 1, which uses the production order conflict-resolution

policy with no filtering; and the second is applied for the

100-rules RBSs using all the six engines. For the given RBS

and inference engine, the experiment is performed according to

following steps:

1. Run the simulator using set 1 of the random

assertions and the original structure of the RBS and collect

the statistics (run 1).

2. Rearrange the RBS.

3. Run the simulator using set 1 and the new structure

of the RBS (run 2).

4. Run the simulator using set 2 of the random assertions

and the original RBS (run 3).

5. Run the simulator using set 2 and the new structure of

the RBS (run 4).

6. Estimate the reduction ratio between run 1 and run 2.

7. Estimate the reduction ratio between run 3 and run 4.

The reason for applying the second replication to the new

structure generated from the first replication is to find if

the new structure will perform better for any random set or

85

only for the random set that generates the structure. The

table below summarizes the procedure of the experiment and

Figure 9 illustrates the sequence of the experiment.

Set 1 Set 2

Original RBS Run 1 Run 3

New RBS Run 2 Run 4

Results. Tables 1 and 2 show the results of the

first part of the experiment, which is applied to engine 1 for

the 18 design points. Tables 3 and 4 show the results of the

second part of the experiment, which is applied to all the

engines for the 100-rules size only. The reduction percentage

shown in the tables is the average of the reduction ratio of

the two random sets multiplied by 100. Figures 10 and 11

depict the results of the first part of the experiment.

Table 1 The Effect of Fact Ordering
on Monotonic RBSs (Part 1i

Shape Size Reduction Percentage

fan-out 100 4.820
500 6.055

1000 6.925

no-fan 100 6.320
500 7.250

1000 5.435

fan-in 100 3.845
500 6.665
1000 6.015

86

i--

(:'j
I

I -

* I-

,== -.,.,. -= -4__ . _.= , I n

4 87

Table 2 The Effect of Fact ordering
on Non-Monotonic RBSs (Part 1)

Shape Size Reduction Percentage

fan-out 100 2.925
500 3.255

1000 3.980

no-fan 100 6.225
500 8.540

1000 9.290

fan-in 100 9.490
500 11.175

1000 10.770

Table 3 The Effect of Fact Ordering
on Mono~tonic RBSs (Part 2)~

Shape Engine Reduction Percentage

fan-out 1 4.820
2 3.700
3 3.745
4 3.505
5 4.730
6 12.445

no-fan 1 6.320
2 5.480
3 5.805
4 5.520
5 7.595
6 15.745

fan-in 1 3.845
2 2.805
3 2.805
4 2.835
5 3.560
6 4.015

88

Reduction 15

Percentage

10

NF

5 FO

FI

100 500 1000 Size

Figure 10. The Effect of Fact Ordering on

Monotonic RBSs

Reduction
15

Percentage

10

N4F

5

FO

100 500 1000 Size

Figure 11. The Effect of Fact Ordering on

Non-Monotonic RBSs

89

Table 4 The Effect of Fact Ordering
on Non-Monotonic REBSs (Part 2)

Shape Engine Reduction Percentage

fan-out 1 2.925
2 2.202
3 2.204
4 2.270
5 2.315
6 7.530

no-fan 1 6.225
2 7.120
3 7.225
4 7.360
5 7.700
6 13.070

fan-in 1 9.490
2 10.465
3 10.455
4 10.475
5 9.860
6 8.600

Comments. Three factors that affect the results of

this experiment can be identified. The first factor is the

length of the LHS of the rules; fact ordering is expected to

be more efficient for RBSs with larger LHSs. The second

factor is the amount of information that can be obtained about

0 the degree of restriction of the facts; more information can

be obtained if more rules fire at each run. The last factor

is the degree of "association" of the facts; if facts appear

* together in the RHS of a rule and in the LHS of another rule,

then there is high probability that they have the same degree

of restriction. The first factor suggests that more reduction

4 can be obtained from fan-in RBSs, while the second factor

suggests that more information may help fact ordering for the

short LHSs of fan-out RBSs. The third factor is related to

C 90

the nature of the RES; the procedure used in the RG program

implies high degree of association in order to generate

consistent RBSs. In non-monotonic RBSs, more distinction

among the facts can be obtained as a result of allowing the

deletion of some facts from the data memory.

The results of the first part of the experiment show that

the reduction percentage increases slightly as size increases,

then it becomes almost constant. Shape does not affect fact

ordering significantly in monotonic RBSs, while fan-in shape

provides the highest reduction percentage for non-monotonic

RBss. Significant reduction is obtained for large-size fan-in

and no-fan shapes. A more significant reduction is expected

for actual RBSs having less degree of association than the

ones generated by the RG program. .4

The results of the second part of the experiment show

that all engines provide close reduction percentage with one

exception. Engine 6, which includes a context-restricted

filter, provides higher reduction percentage in both fan-out

and no-fan shapes. Engine 6 tests smaller numbers of rules

that have more potential to fire and thus save a great amount

of unnecessary tests. Assume that the matching cost can be

divided into two parts X and Y, where X represents the cost of

the unnecessary tests and Y represents the cost of testing the A

rules that have more potential to fire. The results of the

experiment shows that Y is much smaller than X (Y < .1 X).

Fact ordering affects the X-part more than the Y-part. After

ordering the facts it can be assumed that the X-part reduced

91

by an amount A and the Y-part is reduced by an amount B. The

results show that A is greater than B; however, the ratio A/B

is much less than the ratio X/Y. The reduction ratio for

engine 6 will be B/Y, while for the other engines it will be

(A+B)/(X+Y) . It is obvious that the reduction ratio for

engine 6 would be the greatest especially for fan-out and no-

fan shapes where the total matching cost, X+Y , is high.

Experiment 2: The Order of the Rules. The order of the

rules in the rule memory affects the execution time when a

production-order conflict-resolution policy is applied (engine

1). Matching effort can be reduced if the rules that fire

more frequently are at the beginning of the rule set. The

frequency of firing can be measured by the number of times

each rule fires. An experiment similar to the one described

previously is applied to engine 1. The frequency of rules'

firing is collected in the statistics file. Another program,

the rule-ordering program shown in the Appendix, sorts the

rules in the rule set in descending order according to the

firing frequency. Two replications of the experiment are

applied in the same way described in experiment 1. This

experiment is only applied to monotonic RBSs since changing

the order of the rules affects the results in non-monotonic

RBSs.

Results. Table 5 shows the results of the

experiment for the 18 design points and Figure 12 depicts the

results. The reduction percentage shown in the table is the

average of the reduction ratios of the two random sets

multiplied by 100.

92

Table 5 The Effect of Rule Ordering

on Monotonic RBSs

Shape Size Reduction Percentage

fan-out 100 38.735
500 43.165

1000 46.095

no-fan 100 37.080
500 54.795

1000 47.855

fan-in 100 21.630
500 23.135

1000 25.860

Qmments. Two factors that affect the results of

this experiment can be identified. The first factor is the

rules-firing percentage; both fan-out and no-fan RBSs have

high rule-firing percentage, while fan-in RBSs have the least.

For the RBSs tested in the experiment, the firing percentage

for the three shapes are 10-15 for fan-out, 6-10 for no-fan,

and less than 2 for fan-in. The second factor is the rules'

firing frequency distribution which is problem dependent. The

first factor suggests that more reduction can be obtained from

fan-out RBSs.

The results show that reduction percentage, in most

cases, increase slightly as size increases. Both fan-out and

no-fan shapes provide high and almost equal reduction

percentage, which is about twice the reduction percentage of

fan-in shape.

93

Reduction

Percentage

50
NF

FO

25 FI

100 500 1000 Size

Figure 12. The Effect of Rule Ordering on

Monotonic RBSs

94

Type 2 Experiments: Comparison of the Matching Effort for the

Inference Engines.

Experiment 3: The Effect of Filtering. Two types of

rule filtering are investigated in this study: filter 1, a

controlled-production filter, that is added to engine I to

produce engine 5; and filter 2, and a context-restricted

filter, that is added to engine 3 to produce engine 6. The

reduction ratio in the matching effort is estimated for each

filter on all the design points in the factor space using both

the random sets 1 and 2 for each point. Figure 13 illustrates

the sequence of type 2 experiments.

Results. Tables 6 and 7 show the results of

filter 1 and tables 8 and 9 show the results of filter 2.

Figures 14 to 17 depict the results. The reduction percentage

shown in the tables is the average of the reduction ratios of

the two random sets multiplied by 100.

Table 6 The Effect of Controlled-Production
Filter on Monotonic RBSs

Shape Size Reduction Percentage

fan-out 100 58.035
500 76.125
1000 81.060

no-fan 100 52.030
500 73.475

1000 75.715

fan-in 100 13.935
500 23.080
1000 25.495

95

srr-1

SII4JLATOR 1

- \

-SIMAM~tR 2 PE'R~~C

PEMR4%NCE

Figure 13. Type -2 Experiffents

96

Table 7 The Effect of Controlled-Production

Filter on Non-Monotonic RBSs

Shape Size Reduction Percentage

fan-out 100 59.240
500 74.120

1000 80.690

no-fan 100 49.540
500 71.225

1000 74.180

fan-in 100 15.415
500 27.055

1000 27.130

Table 8 The Effect of Context-Restricted
Filter on Monotonic RBSs

Shape Size Reduction Percentage

fan-out 100 90.605
500 94.450

1000 96.460

no-fan 100 83.785
500 91.525

1000 93.240

fan-in 100 46.045
500 61.300

1000 64.665

97

Reduction 80
Percentage

60

40

20 I

100 500 1000 Size

Figure 14. The Effect of Controlled-Productions

Filter on Monotonic RBSs

Reution 80

Percentage

60
N

40

20 F1

100 500 1000 Size

Figure 15. fThe Effect of Controlled-Productions

Filter on Non-Monotonic RBSs

9'.

Table 9 The Effect of Context-Restricted

Filter on Non-Monotonic RBSs

Shape Size Reduction Percentage

fan-out 100 92.730
500 95.350
1000 97.385

no-fan 100 85.975
500 93.080

1000 94.350

fan-in 100 49.885
500 64.570
1000 67.00

Cmaents. No specific factors can apparently be

identified as the factors that have the main effects on the

results of the experiment. However, the results show that

fan-out and no-fan shapes provide better reduction percentage,

which indicates that both filters work more efficiently with

higher matching effort. The reduction percentage increases

with the increase in size in both filters, but the increasing

rate is lower for filter 2 in most cases. Monotonicity has no

significant effect on the results for the first filter, while

non-monotonic RBSs provide slightly higher reduction for the

second filter.

Experiment 4: The Effect of Conflict-Resolution

t . Speed is not the only factor that decides which

conflict-resolution strategy should be applied. Production-

order strategy is expected to be faster than any other

strategy that collects the rules eligible to fire in a

99

Rediuction

Percentage 100

75NF

50 Fl

25.

lod

100 500 1000 Size

Figure 17. T1he Effect of Context-Resrtrictei 'ilter

on1 Non-Monotonic RBSs

100

conflict set. The purpose of this experiment is to compare

the matching effort between the PO1 strategy applied in engine

1 and one of the recency strategies, viz., R1 applied in

engine 3. The reduction ratio in the matching effort is

estimated for each filter on all the design points in the

factor space using both the random sets I and 2 for each

point.

Results. Tables 10 and 11 shows the results of

the experiment and Figures 18 and 19 depicts the results. The

reduction percentage shown in the tables is the average of the

reduction ratios of the two random sets multiplied by 100.

Table I0 The Effect of Conflict-Resolution
Strategy on Monotonic RBSs

Shape Size Reduction Percentage

fan-out 100 47.425
500 45.530

1000 46.180

no-fan 100 45.525
500 47.010

1000 52.325

fan-in 100 40.085
500 62.590

1000 70.700

Comments. No specific factors can apparently be

identified as the factors that affect the results of the

experiment. However, the results show that fan-in shape

provides better reduction percentage than the other two

shapes. Reduction percentage increases considerably with the

101

Table 11 The Effect of Conflict-Resolution
Strategy on Non-Monotonic RBSs

Shape Size Reduction Percentage

fan-out 100 49.000
500 53.160
1000 54.520

no-fan 100 49.675
500 53.475

1000 59.o65

fan-in 100 41.050
500 62.840
1000 71.505

increase in size for fan-in shape, while it increases slightly

for no-fan shape and it is almost constant for fan-out shape.

Non-monotonic RBSs provide higher reduction percentage for

fan-out and no-fan shapes, while the effect of monotonicity

almost diminish in fan-in shape.

Experiments are performed on randomly generated RBSs that

vary in three main factors: size, shape, and monotonicity.

The rule-generator program generates highly consistent RBSs as

discussed in Chapter IV. Two runs are applied in all

experiments with large sample size in order to obtain accurate

estimates with low variations. The relative performance of

RBSs is evaluated by an independent measure of performance to

avoid the effect of the environment. Although matching is not

the only component of the cost of running RBSs, it does

constitute the major part of it. In type 1 experiments,

matching is the only factor that can be used to enhance the

102 _

Percentage 7,F

50

25

100 500 1000 Size

Figure 18. The Effect of~ Conict-?sciticn

Strategy, on Pbrtc.tzrntc RBS-,

50

25

100 500 .1000 Sz

Fiqure 19. The Effect of Corflict-Resolution

Strategy on Non-Monotonic RBSs

103

performance of RBSs since the other factors are constant. In

type 2 experiments, other contributing factors such as the

cost of filters and the cost conflict-resolution strategies

are not considered in this study. The three factors analyzed

in the experiments are not the only factors that may affect

the performance of RBSs. Other factors such as the number of

levels, the number of rules in each level, the negation

percentage, the repetition percentage, and the number of

initial assertions may have impact on the performance of RBSs.

104

VII. Summary and Recommendations

Rule-based systems (RBSs) are a problem-solving technique

that is widely used in expert systems and other Artificial

Intelligence applications. The speed of RBSs is one of the

performance criteria often investigated in studies. This

study presented a simulation approach to evaluate the most

important factor of RBSs' speed, viz., the matching effort.

The simulation environment is achieved by designing a

numerical scheme to represent the knowledge base and defining

probabilistic relations among the initial assertions to the

RBSs. The numerical representation can be used to model most

of the features of RBSs either directly or indirectly by

resolving the structure or the function into simpler form.

The components of the knowledge base are represented by an

array data structure that is accessed both directly and

sequentially in a simple and fast way. Six types of forward-

chaining inference engines, characterized by conflict-

resolution strategy and the filtering technique are simulated

and investigated. In addition a rule-generator program is

developed to provide a fast way to generate a wide spectrum of

RBSs for experimentation. The rule-generator program is built

with tight procedures to control the construction of RBSs in

order to provide a high degree of consistency for the

generated RBSs. The probabilistic relations among the initial

assertions are used to help generate the RBSs and to generate

random-assertions sets to be used in experimentation. The

105

numeric representation of the knowledge base, the simulated

inference engines, and the rule generator, compose the

simulation model used in this study to perform experiments on

RBSs to evaluate their relative matching efforts. The

matching efforts are measured by the number of match-tests of

the rules against the data memory. This measure has the

advantage of being independent of the environment, hardware or

software, running the RBSs. The relative performance of

different structures of RBSs is evaluated by comparing their

matching efforts. All experiments were performed for two

randomly-generated assertion sets of size 500 each to provide

accuracy and reduce the variation in the estimate of the

reduction ratio.

Experiments are designed and applied to a variety of

RBSs generated by the rule generator program. Three of the

factors that characterize the RBSs are analyzed, viz., size,

shape and monotonicity. The six inference engines simulated

in this study are used in the experiments accordingly. Two

types of experiments are designed to estimate the relative

performance of RBSs. The reduction ratio in matching effort

is the statistic used in experiments to evaluate the RBSs;

these RBSs vary in the structure of the rule set or the

features of their inference engine. In the first type of

experiments, a methodology to enhance the performance of a

specific RBS is described and evaluated in two different

experiments. In the first experiment, the facts in the LHS of

the rules are rearranged according to their degree of

restriction which is estimated by the number of times each

106

fact is added to the data memory when the RBS is run a large

number of times. In the second experiment, rules are ordered

according to their firing frequency, which is also estimated

by running the RBS a large number of times. The facti

ordering procedure enhances the performance of RBSs in all the

cases studied. The achieved savings in matching effort varied

from 2% to 15%. The rule-ordering procedure is applied to

monotonic RBSs that use the production order conflict-

resolution strategy; the achieved savings varied from 21% to

55%.

In the second type of experiments, the effect of

filtering and conflict-resolution strategies on matching

effort is studied in two experiments. Two types of filters

are evaluated in the first experiment. The first filter is a

controlled-production filter applied to inference engines that

use the production order conflict-resolution strategy; the

second filter is a context-restricted filter applied to

inference engines that use a recency conflict-resolution

strategy. The first filter achieved from 14% to 81% saving in

matching effort, while the second filter achieved from 46% to

97% saving. In the second experiment, the production order

conflict-resolution strategy is compared with the recency

conflict-resolution strategy. The first strategy achieved

savings from 40% to 72% of the matching effort of the second

strategy.

107

Recomm endations

The current implementation of the model used in this

study does not cover all features of RBSs. The model

contains only the basic features of forward-chaining RBSs.

Extensions to the current model can be applied in two

directions: the first is to extend the model as an

experimental tool, and the second is to use the model as a

tool for building actual RBSs.

As an experimental tool, the direct extension to the

current implementation is to apply the developed methodology

to actual RBSs that can be represented suitably by the

features available in the current implementation of the model.

A possible extension is to use the model to compare the total

effort of different structures of RBSs by estimating the cost

of the other functions of inference engines beside the

matching cost. In (McDermott and others, 1978: 163-165, 172-

175) the authors discuss mathematical formulations for

estimating the total cost. The formulations include matching

cost, action cost, and filter cost. The current model can be

modified to provide estimates of the parameters of these

equations. Another extension is to use a more complex

parameter to estimate the matching effort. In actual RBSs,

data memory is not accessed directly because of the complex

representation of data elements. A search is usually applied

to check the existence of a certain fact in the data memory.

If the search time, for a specific implementation of data

memory, can be estimated as a function of data-memory size,

then it can be used as a better estimate to the matching

108

effort.

The features represented in the model simulates the

function of actual, but simple, inference engines. A simple

extension is to construct a file containing the facts and

their integer-number mapping and to display the facts that

constitute the rules selected to fire. A more complex

extension is to write code that reads rules written in

natural-language form and build the rule matrix automatically,

given that the rules are written in a form that can be handled

directly by the model.

More complex features could be added to the model to

provide representations for other features or classes of RBSs.

Backward-chaining RBSs can be handled by the numeric

representation, but it would require more complex data

structures. Disjunctions can be represented by simple

extensions to the rule matrix and the algorithms that simulate

the inference engines, but the rule generator and the

rearrangement of the LHS of the rules will be more

complicated. Variables can be represented if they can assume

only a limited number of values. One way is to give the facts

that represent variables a range of values and to extend the

rule status flag in the rule matrix into a vector that keeps

track of the instantiations of the rule. In addition, major

changes to the algorithms should be applied to simulate the

binding process. Uncertainty schemes are usually applied to

backward-chaining RBSs; however, some forward-chaining tools,

EXPERT for example, provide uncertainty schemes. The numeric

representation can handle uncertainty schemes with simple

109

extensions to the current representation and algorithms.

In general, adding more features will limit the use of

the model in experimentation because of the difficulty in

generating consistent RBSs. Specific RBSs will need to be

designed in order to run the experiments. However, more

specific structures can be tested and more accurate

performance measures can be obtained. Adding more features

will enhance the performance of the numeric representation as

a RBSs' building tool that can be more efficient than other

building tools but in limited and simple applications.

110

Bibliography

Alello, Nelleko. "A Comparative Study of Control
Strategies For Expert Systems: AGE Implementation of
Three Variations of PUFF," The National Conference
on Artificial Intelligence. 1-4. Washington, D.C:
IAAA,1983.

Bratko, Ivan. PROLOG Programming For Artificial
Intelligence. Wokingham, England: Adison-Wesley
Publishing Company, 1987.

Brownston, Lee and others. Programming Expert Systems in
OPSS: An Introduction to Rule-Based Programming.
Reading, Massachusetts: Adison-Wesley Publishing
Company, 1985.

Forgy, C. L. and Susan J'. Shepard. "Rete: a Fast Match
Algorithm," AlEx grt, 34-40 (January 1987).

Hayes-Roth, Frederick. "Rule-Based Systems,"
Communications of The ACM. 28: 921-932 (September
1985).

McDermott, J and C. Forgy. "Production System Conflict-
Resolution Strategies," Pattern-Directed Inference
S . Edited by D. A. Waterman and F. Hayes-Roth.
New York: Academic Press, 1978.

McDermott, J and others. "The Efficiency of Certain
Production System Implementations," Pattern-
Directed Inference Systems. Edited by D. A.
Waterman and F. Hayes-Roth. New York: Academic
Press, 1978.

Neapolitan, Richard E. "Forward-Chaining Versus a Graph
Approach as The Inference Engine in Expert
Systems," SPIE. Aplications of Artificial
Intelligence III. 635: 62-69 (1986).

Nguyen, Tin A. "Verifying Consistency of Production
Systems," IEEE Forth Conference on Artificial
Intelligence Apolications, 4-8. Kissimee, Florida
(1987).

Politakis, Peter G. Empirical Analysis For Expert
5yAit=. Boston: Pitman Advanced Publishing Program,
1985.

Rich, Elaine. Artificial Intelligence. New York: McGraw-
Hill Book Company, 1983.

~111

Whiting, K. W. and others. "SUBEX: A Focus of Attention
Technique For Rule-Based Inference," IEEacn
Conference on Artificial Intelligence Aoglications,
215-220. Miami-Beach, Florida (1985).

Winston, Patrick Henry. Artificial Intelligence.
Reading, Massachusetts: Adison-Wesley Publishing
Company, 1984.

112

Appeadix:The Computer Programs

Page

List of Variables. 114

The Conditional-Scheme Program. 118

The Independent-Scheme Program. 120

The Grouped-Scheme Program. 122

The Rule-Generator Program. 124

Sample 1: Fan-Out Random-Assertions Set 129

Sample 2: Fan-Out Monotonic RBS 130

Sample 3: Fan-Out Non-Monotonic RBS 131

Sample 4: No-Fan Random-Assertions Set. 132

Sample 5: No-Fan Monotonic RBS. 133

Sample 6: No-Fan Non-Monotonic RBS. 134

Sample 7: Fan-In Random-Assertions Set. 135

Sample 8: Fan-In Monotonic RBS. 136

Sample 9: Fan-In Non-Monotonic RBS. 137

Engine 1 Simulator (Version 2) 138

Engine 2 Simulator (Version 2) 141

Engine 3 Simulator (Version 2) 146

Engine 4 Simulator (Version 2) 147

Engine 5 Simulator (Version 2) 148

Engine 6 Simulator (Version 2). 150

Fact-Ordering Program 154

Rule-Ordering Program 157

113

List of Variables

This part of the Appendix contains a list of the

variables used in all programs. The variables are classified

as: two-dimensional arrays, one-dimensional array, and

variables. The variables in each category is written in

alphabetical order.

Two-Dimensional arrays.

ASR: the initial assertions.

ASRT: the random assertions.

APP: the probabilistic relation among the initial assertions.

INDX: the condition-membership index.

MG: groups' specifications for a grouped-probability scheme.

MR: a rule matrix sorted according to the rule-firing

frequency.

NC: the conflict set.

NCSRT: the sorted conflict set.

NF: the fact matrix.

NR: the rule matrix.

One-Dimensional Arrays.

FIRE: rules-firing frequency.

GRP: the order of the last rule in each group of rules.

LEX: the lexical numbers for the rules in the conflict set.

LVL: the number of rules in each level.

LYE: the order of the first rule in each level.

LVS: the starting location, dedicated to each level, in a

random-assertions vector.

REC: a list of facts in ascending order according to their

recency.

114 "I

Si: the LHS of a rule.

S2: fact-assertion frequency for the LHS of a rule.

SFIRE: rules-firing frequency sorted in descending order.

TRU: the fact-assertion frequency.

Variable.

ARF: the average number of the rules fired in an experiment.

ATC: the average number of the match-tests in an experiment.

IASS: the number of true assertions for all levels.

IPOS: a flag which is set when the LHS of a rule has at least

one positive fact.

IREC: a counter contains the location of the most-recent fact

in the REC array.

IX: the number of assertions selected from a group.

IY: the starting location in a random-assertion vector for a

group of assertions.

JRU: the order of the rule selected from the preceding level

to build the LHS of the current rule.

KI: the most-recent fact.

KRU: a flag which is set when the length of the LHS of the

current rule is greater than the RHS of the rule selected

from the preceding level.

LA: the last action in the current level.

LB: the last action in the preceding level. J

LEND: the location of the last condition in the LHS of the

current rule.

LG: the number of assertion groups.
I

LRF: the number of rules fired at least once in an experiment.

LRU: the number of conditions in the LHS taken from the RHS of

115
i

a rule in the preceding level.

LSTRT: the starting location in the LHS of a rule for

conditions taken from initial assertions. Al

MAXL: upper bound for the LHS.

MAXR: upper bound for the RHS.

MINL: lower bound for the LHS. _A

MINR: lower bound for the RHS.

MLV: the order of the first rule in the current level.

MP: the number of probability branches.

MRU: a randomly-selected assertion vector to build the rest of

the LHS of a rule.

NA: a counter contains the last fact added to the RBS.

NAI: the number of assertions for the first level.

NA2: the number of assertions for the other levels.

NASS: the number of assertions that can be used to build the

LHS of the current rule.

NC: the last action that can be repeated.

NG: the number of groups.

NPT: a pointer to the most-recent fact.

NRF: the number of the rules fired in a run.

NRS: the order of the last rule in a group of rules.

NRTF: the ID-number of the rule selected to fire.

NTAl: the number of true assertions for the first level.

NTA2: the number of true assertions for the other levels.

NFAC: the number of facts.

NFIRE: location of the rule status flag.

NLVL: the number of levels.

NRULE: the number of rules.

116

NRUN: the number of runs.

PD: deletion probability.

PN: negation probability.

PR: repetition probability.

TC: a counter contains the number of match-tests.

117

C------------------ CONDITIONAL-SCHEME PROGRAM ---------
C
C INPUT FILES
C-- - - - -
C CONDITIONAL-SCHEME DATA FILE
C
C OUTPUT FILES
C - - - - - -
C RANDOM-ASSERTIONS SET
C
C BOUNDARIES
C - - - - -
C 10 LEVELS
C 50 BRANCHED ASSERTIONS
C 5 PROBABILITY BRANCHES
C 1000 RUNS
C
C PURPOSE
C-- - -
C GENERATE A RANDOM-ASSERTIONS SET FROM A CONDITIONAL SCHEME
C
C---
C

INTEGER ASR(0:50,5),ASRT(1000,50)
REAL APP(0:50,5)
OPEN (UNIT=9 ,FILE='PROB.DAT' ,STATUS='OLD')
OPEN (UNIT=10,FILE='ASRT.DAT' ,STATUS='NEW' ,RECL=132)

C-
C-ENTER INITIAL DATA
C

PRINT*"'# OF LEVELS'
READ*, NLVL
PRINT*,'# OF PROBABILITY BRANCHES'
READ* ,MP
PRINT*"'# OF RUNS'
READ* ,NRUN
PRINT*"'# OF BRANCHED ASSERTIONS FOR LEVEL-i'
READ* ,HASS
PRINT*,'# OF LEVEL-i TRUE ASSERTIONS'
READ*,NTA1
IASS=NTA1

C
PRINT*P'RANDOM NUMBER STREAM (1--3)'
READ* ,NRS
IF (NRS.EQ.1)II=11234521
IF (NRS.EQ.2)II=428956419
IF (NRS.EQ.3)II=200496737

C
C- ESTABLISH THE ASSERTIONS AND THE PROBABILTY MATRICES
C-

DO 10 I=0,MASS
READ(9,*)(ASR(I,J) ,J=1,MP)
READ(9,*)(APP(I,J) ,J=1,MP)

10 CONTINUEC
DO 11 KK=i,NRU14

118

1=0
C
C-BUILD A RANDOM-ASSERTION VECTOR
C

DO 22 K=1,IASS
XX=RAN(II)
DO 33 J=1,MP

IF (XX .LT. APP(I,J)) GOTO 44
33 CONTINUE
44 ASRT(KK,K)=ASR(I,J)

I=ASR(I,J)
22 CONTINUE
11 CONTINUE
C
C-WRITE THE RANDOM-ASSERTIONS SET
C

WRITE(1O,*)NRUN,IASS
DO 55 I=1,NRUN

WRITE(1O,*)(ASRT(I,J) ,J=1,IASS)
55 CONTINUE
C

STOP
END

C

119

C------------------- INDEPENDENT-SCHEME PROGRAM---------
C
C INPUT FILES
C-- - - - -
C INDEPENDENT-SCHEME DATA FILE
C
C OUTPUT FILES
C - - - - - -
C RANDOM-ASSERTIONS SET
C
C BOUNDARIES
C - - - - -
C 10 LEVELS
C 50 BRANCHED ASSERTIONS
C 5 PROBABILITY BRANCHES
C 1000 RUNS
C
C PURPOSE
C-- - -
C GENERATE A RANDOM-ASSERTIONS SET FROM AN INDEPENDENT-SCHEME
C
C---
C

INTEGER ASR(50,5),ASRT(1000,50)
REAL APP(50,5)
OPEN (UNIT=9 ,FILE='PROBI .DAT' ,STATUS='OLD')
OPEN (UNIT=1O,FILE='ASRT.DAT' ,STATUS='NEW' ,RECL=132)

C
C-ENTER INITIAL DATA
C

PRINT*,'# OF LEVELS'
READ,NLVL
PRINT*,'# OF PROBABILITY BRANCHES'
READ* ,MP
PRINT*"'# OF RUNS'
READ* ,NRUN
PRINT*,'# OF LEVEL-1 TRUE ASSERTIONS'
READ* ,NTA1
PRINT*"'# OF TRUE ASSERTIONS FOR THE OTHER LEVELS'
READ*, NTA2
IASS=NTA1+(NLVL-) *NTA2

C
PRINT*,'RANDOM NUMBER STREAM (1--3)'
READ*, NRS
IF (NRS.EQ.1)II=11234521
IF (NRS.EQ.2)II=428956419
IF (NRS.EQ.3)Il=200496737

C
C-ESTABLISH THE ASSERTION AND PROBABILITY MATRICES
C

DO 10 I=1,IASS
READ(9,*) (ASR(I,J) ,J=1,MP)
READ(9,*) (APP(I,J) ,J=1,MP)

10 CONTINUEC
DO 11 KK=1,NRUN

120

C
C-BUILD A RANDOM-ASSERTION VECTOR
C

DO 22 I=1,IASS
XX=RAN (II)
DO 33 J=I,MP

IF (XX .LT. APP(I,J)) GOTO 44

33 CONTINUE
44 ASRT(KKI)=ASR(I,J)
22 CONTINUE
11 CONTINUE
C
C-WRITE THE RANDOM-ASSERTIONS SET
C

WRITE(10, *)NRUN,IASS
DO 55 I=1,NRUN

WRITE(10,*) (ASRT(I,J) ,J=1,IASS)
55 CONTINUE
C

STOP
END

C

121

C--------------------- GROUPED-SCHEME PROGRAM ----------
C
C INPUT FILES
C-- - - - -
C GROUPED-SCHEME DATA FILE
C
C OUTPUT FILES
C - - - - - -
C RANDOM-ASSERTIONS SET
C
C BOUNDARIES
C - - - - -
C 10 LEVELS
C 10 GROUPS
C 50 GROUPED ASSERTIONS
C 1000 RUNS
C
C PURPOSE
C-- - -
C GENERATE A RANDOM-ASSERTIONS SET FROM A GROUPED-SCHEME
C
C--
C

INTEGER MG(1O,3) ,ASRT(1000,50)
OPEN (UNIT=9 ,FILE='PROBG.DAT' ,STATUS='OLD')
OPEN (UNIT=10,FILE='ASRT.DAT' ,STATUS='NEW' ,RECL=132)

C
C-ENTER INITIAL DATA
C

PRINT*,'# OF LEVELS'
READ*, NLVL
PRINT*,'# OF ASSERTIONS GROUPS'
READ*,LG
PRINT*,'# OF RUNS'
READ*, NRUN
PRINT*,'# OF LEVEL-i TRUE ASSERTIONS'
READ* ,NTA1
PRINT*"'# OF TRUE ASSERTIONS FOR THE OTHER LEVELS'
READ* ,NTA2
IASS=NTA1+ (NL VL-1)*NTA2

C
PRINT*,'RANDOH NUMBER STREAM (1--3)'
READ*,NRS
IF (NRS.EQ.1)II=11234521
IF (NRS.EQ.2)II=428956419
IF (NRS.EQ.3)II=200496737

C-READ THE GROUPED ASSERTIONS MATRIX
C

DO 5 I=1,LG
READ(9,*) (MG(I,J) ,J=1,3)

5 CONTINUE
C

DO 11 KK=1,NRUN
IX=0

122

IY=o
DO 22 K=1,LG

C
C-DETERMINE GROUP BOUNDARIES IN THE RANDOM-ASSERTION VECTOR
C

IY=Iy+Ix
IX=HG(K,3)
ASRT(KX,IY+1)=MG(K,1)+INT(RAN(II)*(MG(K,2)-MG(K,1)+1))

DO 33 I=IY+2,IY+IX
C
C-BUILD THE PART OF THE ASSERTION VECTOR TAKEN FROM A GROUP
C
34 NN=MG(K,1)+INT(RAN(II)*(MG(K,2)-MG(K,1)+1))

IW=IW+1
DO 44 L=1,I-1

IF (NN.EQ.ASRT(KK,L) -AND. IW.LE.1O) GOTO 34
44 CONTINUE

IW=o
ASRT(KK, I)=NN

33 CONTINUE
22 CONTINUE
11 CONTINUE
C
C-WRITE THE RANDOM-ASSERTIONS SET
C

WRITE(1O,*)NRUN,IASS
DO 55 I=1,NRUN

55 CONTINUE
C

STOP
END

C

123

C------------------------ THE RULE GENERATOR-----------
C
C INPUT FILES
C-- - - - -
C RBS SPECIFICATIONS
C RANDOM-ASSERTIONS SET
C
C OUTPUT FILES
C - - - - - -
C THE GENERATED RBS
C
C BOUNDARIES
C - - - - -
C 1000 RULE, 4000 FACT, 8 CONDITIONS+ACTIONS
C 10 LEVELS
C 200 RANDOM ASSERTIONS
C
C PURPOSE
C-- - -
C GENERATING RULE-BASED SYSTEMS
C
C

C
INTEGER NR(1000,12) ,ASRT(200,50) ,LVL(0:10) ,LVS(10) ,LVE(0:10)
OPEN (UNIT=1O,FILE='RGEN.DAT' ,STATUS='NEW' ,RECL=132)
OPEN (UNIT=9 ,FILE='RSPC.DAT' ,STATUS='OLD')
OPEN (UNIT=8,FILE='ASRT.DAT' ,STATUS'='OLD' ,RECL=132)

C
C-RANDOM STREAM SEED
C

I1=11234521
C
C-READ RBS SPECIFICATIONS
C

READ(9,*)NRULE,NA1,NTA1 ,NA2,NTA2
READ(9 ,*)NLVL
LVL(0)=0
LVE(0)=0
DO 1iJ5 I=1,NLVL

READ (9, *) ,LVL (I)
LVE(I)=LVL(I)+LVE(I-i)

105 CONTINUE
READ(9, *)MINL,MJAXL,MINR,MQAXR,PN,PR,PD

C
C-THE BOUNDARIES OF LEVELS IN A RANDOM-ASSERTION VECTOR
C

LVS (1)= 1
LVS(2)=NTA1+1
DO 115 I=3,NLVL

LVS(I)=LVS(I-i)-+NTA2
115 CONTINUE
C

C-INITIALIZE THE RULE MATRIX

124

C
NFIRE-4 +MAXL+MAXR
NFAC-0
IL-MAXL-MINL+l
IR-MAXR-MINR+ 1
DO 10 I-1,NRULE

MR(I,1)=I
NR(I, 2)-MINL+INT(RAN(II) *IL)
NR(I, 3)-MINR+INT(RAN(II)*IR)
NR(I,NFIRE)-0

10 CONTINUE-A
C
C-STORE THE RANDOM-ASSERTION SET IN A MATRIX
C

READ(8,*)NRUN, lASS
DO 120 I-1,NRTJN

READ(S,*) (ASRT(I,J) ,J=1,IASS)
120 CONTINUE

WRITE(10,*)NRtJLE,MAXLDMAXR,NFIRE
C
C-INITIALIZE THE BOUNDARIES OF THE FIRST LEVEL
C

LA=0
NA=NA1+(NLVL-1)*NA2
MLV=1

C
C- BUILD THE RBS
C-_******
c

DO 99 K=1,NLVL
C
C-INITIALIZE THE PARAMETERS OF THE LEVEL
C

LB=NA
IF (K.EQ.1)THEN

NASS=NTA1
ELSE

NASS=NTA2
END IF

C
C- RULES OF A LEVEL
c-
c

DO 88 I=M4LV,LVE(K)
C- THE LEFT-HAND SIDE
C-
C
C-FIRST LEVEL PARAMETERS
C

IF (K .EQ. 1) THEN
LRU=0
LSTRT=4
GOTO 12

ENDIFC
C-CONDITIONS FROM THE PRECEDING LEVEL

125

C
895 LPOS-O

JRU-INT(RAN(II)*LVL(K-l))+LVE(K-2)4-l
c the selected rule should has at least one positive fact
c

DO 896 J=4+NAXL,3+MAXL.NR(JRU,3)
IF (NR(JRUJ).GT.O)LPOS-l

896 CONTINUE
IF (LPOS .EQ. O)GOTO 895
IF (NR(JRU,3) .GE. NR(I,2)) THEN

LRU=NR (I,2)
KRU-O

ELSE
LRU=NR(JRU, 3)
KRU=1

ENDIF
IF (UR(JTRU,3).GT.NR(I,2)) GOTO 15

C
C-LHS >= RHS
C copy the RHS
c

DO 11 J=1,LRU
NR(I,Ji3)=NR(JRU,MAXL+3+J)

11 CONTINUE
GOTO 14

C
C-LHS < RHS
C
15 NN=RAN(II)*NR(JRU,3)+l

IW=Iw+1
MH=NR(JRU ,MAXL+3+NN)

c the first selected fact should be positive
c

IF (MM.LT.O .AND. IW.LE.50) GOTO 15
NR (1,4) =MM
Iw=o
DO 9 J=5,LRU+3

16 NN=RAN(II)*NR(JRU,3)+l
NR(I ,J)=NR(JRU,MAXL-3+NN)
IW=IW+ 1
DO 8 1C=4,J-1
IF (NR(I,J).EQ.NR(I,IC).AND.IW.LE.10)GOTO 16

8 CONTINUE
Iw=o

9 CONTINUE
C
C-LHS COMPLETED
C
14 IF (KRU .EQ. 0) GOTO 62
C

C-CONDITIONS FROM INITIAL ASSERTIONS
C

LSTRT=4 +LRU

126

12 NR(I,LSTRT)=1+INT(RAN(II)*NASS)
c first fact can be negated except for the first-level rules
c

IF (RAN(II).LT.PN AND. K.GT.1) NR(I,LSTRT)=-l*NR(I,LSTRT)
LEND=NR(I,2)+3
IF (LEND .EQ. LSTRT) GOTO 139
DO 77 J=LSTRT+1,LEND

60 NN=1+INT(RAN(II)*NASS)
IW=Iw+1

c no repeated facts in the same rule
c

DO 66 KK=LSTRT,J-l
IF (NN.EQ.ABS(NR(I,KK)) .AND. IW.LE.l0) GOTO 60

66 CONTINUE
Iw=O
NR (I 1J)=NN
XX=RAN (II)
IF (XX.LT.PN) NR(I,J)=-l*NN

77 CONTINUE
C
C-MAPPING FROM ASSERTIONS
C
139 MRU=INT(RAN(II)*NRUN)tl

DO 138 J=LSTRT,LEND
NN=ABS(NR(I,J))
NR(I,J)=(NR(I,J)/NN)*(ASRT(MRU,NN+LVS(K)-l))

138 CONTINUE
C
C THE RIGHT-HAND SIDE
C * * **

C
62 NC=NA

DO 55 JJ=MAXL+4,MAXL-3+NR(I,3)
XX=RAN (II)

C
C-REPETITION
C generate few rules without repetition
c

IF (I .GT.MLV+5-MAXR -AND. XX .LT. PR) GOTO 91
NA=NA+ 1
NR (I ,JJ)=NA
GOTO 55

c repeat only from the preceding rules in the level
c

91 NR(I,,JJ)=(l+LB+INT(RAN(II)*(NC-LB)))
C
C- DELETION
C

IF (RAN(II) .LT.PD)NR(I,JJ)=-l*NR(I,JJ)
IW=IW+ 1

c no repeated facts in the same rule
c DO 87 IL=MAXL+4,JJ-1

IF (NA-LB -EQ. 0)GOTO 55
IF(ABS(NR(I,JJ)).EQ.ABS(NR(I,IL)).AND.IW.LE.10)GOTO 91

87 CONTINUE

127

Iw-o
55 CONTINUE
C
C-A RULE COMPLETED
C

WRITE(1O,*)(NR(I,IX) ,IX=1,NFIRE)
88 CONTINUE
C
C- A LEVEL COMPLETED
c

MLV=3.+LVE(K)
LA-LB

99 CONTINUE
C
C-RBS COMPLETED
C

NFAC=NA
WRITE(1O,*)NFAC
IF(NFAC.GT.4000)PRINT*, 'WARNING: FACTS EXCEEDED BOUNDARY'
STOP
END

C

128

Sample 1: Fan-Out Random-Assertions Set

3 6 11
1 7 9
3 7 9
4 7 11
4 8 11
3 5 10
1 8 10
3 6 12
4 8 10
3 5 9
1 7 10
4 7 10
2 6 12
4 8 11
2 7 10
2 6 9
1 7 10
2 7 11
4 7 11
4 8 11
2 8 12
2 5 12
3 5 12
3 8 10
4 6 11
3 5 9
1 6 12
2 8 11
4 5 11
4 6 9

NUMBAR OF RUNS = 30
NUMBER OF TRUE ASSERTIONS FOR THE FIRST LEVEL 3

129

Sample 2: Fan-Out Monotonic RBS

RULE MAX MAX LHS RHS 'RULE
NUMBER LHS RHS SAU

1 2 3 9 6 13 14 15 0 0
2 2 3 3 5 16 17 18 0 0
3 2 3 5 12 18 19 13 0 0
4 2 4 6 11 17 14 19 20 0
5 2 4 12 1 14 19 21 22 0
6 2 4 10 7 16 23 21 24 0
7 2 4 12 3 25 26 27 22 0
8 2 4 8 4 23 27 28 29 0

9 2 3 13 15 30 31 32 0 0
10 2 4 22 21 33 34 35 36 0
11 2 4 29 28 36 37 31 38 0
12 2 4 13 18 39 31 40 41 0
13 2 4 20 17 42 32 43 38 0
14 2 4 29 28 38 44 45 46 0

15 2 3 32 38 47 48 49 0 0
16 2 3 40 39 50 51 52 0 0
17 2 4 31 39 53 49 48 51 0
18 2 3 46 45 52 54 55 0 0
19 2 3 33 35 50 56 57 0 0
20 2 4 45 38 57 50 58 59 0

SHAPE: FAN-OUT
MONOTONICITY: MONOTONIC
NUMBER OF RULES = 20
NUMBER OF LEVELS = 3

1

130

Sample 3: Fan-out Non-Monotonic RBS

RULE MAX MAX ' LHS ' RHS 'RULE
NUMBER LHS RHS I STATUS

1 2 3 9 6 13 14 15 0 0
2 2 3 3 5 16 17 18 0 0
3 2 3 5 12 18 19 13 0 0
4 2 4 6 11 17 -14 -19 20 0
5 2 4 12 1 -14 19 21 22 0
6 2 4 10 7 16 23 21 24 0
7 2 4 12 3 25 26 27 -22 0
8 2 4 8 4 -23 27 28 29 0

9 2 3 13 15 30 31 32 0 0
10 2 4 22 21 33 34 35 36 0
11 2 4 29 28 -36 37 -31 38 0
12 2 4 13 18 39 31 40 41 0
13 2 4 20 17 42 -32 43 38 0
14 2 4 29 28 -38 44 45 46 0

15 2 3 38 -32 47 48 49 0 0
16 2 3 39 40 50 51 52 0 0
17 2 4 31 30 -51 -47 53 52 0
18 2 3 31 41 54 55 56 0 0
19 2 3 33 35 -51 57 58 0 0
20 2 4 45 -38 58 51 59 60 0

SHAPE: FAN-OUT
MONOTONICITY: NON-MONOTONIC
NUMBER OF RULES = 20
NUMBER OF LEVELS = 3

131

Samnle 4: No-Fan Random-Assertions Set

3 6 Li 13 19 21
3 7 9 16 19 23
4 8 11 15 18 22
1 8 10 14 18 24
4 8 10 14 18 21
1 7 10 16 20 22
2 6 12 15 20 22
2 7 10 13 18 21
1 7 10 13 19 23
4 7 11 16 20 23
2 8 12 14 17 23
3 5 12 14 20 22
4 6 11 15 17 21
1 6 12 13 20 23
4 5 11 16 18 21
1 5 12 14 19 22
4 7 10 14 18 22
4 8 9 16 20 23
3 5 11 13 19 22
3 5 11 13 18 22
2 6 11 14 18 22
2 6 12 14 20 23
1 5 12 14 18 22
3 8 11 16 19 22
4 8 12 14 18 24
1 8 9 13 17 23
2 8 9 14 18 21
4 8 11 13 20 21
4 6 9 13 20 21
4 7 12 16 20 22

NUMBER OF RUNS = 30
NUMBER OF TRUE ASSERTIONS FOR THE FIRST LEVEL = 4

132

Samole 5: No-Fan Monotonic RBS

RULE MAX MAX LHS RHS RULE
NUMBER LHS RHS IS

1 3 2 14 12 5 25 26 0 0
2 3 2 11 5 16 27 28 0 0
3 3 2 14 9 -8 29 30 0 0
4 3 3 13 10 7 31 32 26 0
5 2 3 6 13 0 33 34 30 0
6 3 3 5 -1 14 35 36 37 0
7 3 3 8 9 -14 38 39 40 0
8 3 3 3 11 5 37 34 35 0

9 2 2 26 31 0 41 42 0 0
10 2 3 34 30 0 43 44 45 0
11 2 3 32 26 0 46 47 48 0
12 2 3 29 30 0 49 50 51 0
13 3 3 33 34 30 51 52 42 0
14 2 3 36 37 0 45 52 53 0

15 2 2 48 46 0 54 55 0 0
16 2 2 43 45 0 56 57 0 0
17 2 3 48 47 0 58 59 60 0
18 3 2 49 50 51 61 62 0 0
19 2 2 51 42 0 63 64 0 0
20 3 3 51 52 42 65 66 55 0

SHAPE: NO-FAN
MONOTONICITY: MONOTONIC
NUMBER OF RULES = 20
NUMBER OF LEVELS = 3

133

Sample 6: No-Fan Non-Monotonic RBS

RULE MAX MAX LHS RHS 'RULE
NUMBER LHS RHS ,STATUS

1 3 2 14 12 5 25 26 0 0
2 3 2 11 5 16 27 28 0 0
3 3 2 14 9 -8 29 30 0 0
4 3 3 13 10 7 31 32 -26 0
5, 2 3 6 13 0 33 34 30 0
6 3 3 5 -1 14 35 36 37 0
7 3 3 8 9 -14 38 39 40 0
8 3 3 3 11 5 -37 -34 35 0

9 2 2 31 -26 0 41 42 0 0
10 2 3 38 40 0 43 44 45 0
11 2 3 30 34 0 46 47 48 0
12 2 3 35 -34 0 -48 49 -42 0
13 3 3 35 36 37 -47 50 42 0
14 2 3 35 -37 0 51 -43 52 0

15 2 2 45 44 0 53 54 0 0
16 2 2 51 -43 0 55 56 0 0
17 2 3 49 -42 0 57 58 59 0
18 3 2 -47 50 42 60 61 0 0
19 2 2 49 -42 0 62 54 0 0
20 3 3 41 42 22 -53 63 61 0

SHAPE: NO-FAN
MONOTONICITY: NON-MONOTONIC
NUMBER OF RULES = 20
NUMBER OF LEVELS = 3

134

Sample 7: Fan-In Random Assertions Set

3 6 11 13 19 21 27 31 33
4 7 11 15 20 23 28 29 34
1 8 10 14 18 24 28 32 34
3 5 9 13 19 22 28 31 34
2 6 12 15 20 22 27 31 34
2 6 9 13 19 22 26 30 36
4 7 11 16 20 23 26 32 36
2 5 12 14 17 23 27 31 34
4 6 11 15 17 21 26 29 36
2 8 11 15 17 22 28 29 33
1 5 12 14 19 22 28 31 34
3 6 10 15 20 21 28 31 36
3 5 11 13 19 22 28 29 36
1 6 11 13 18 22 27 29 35
2 6 12 14 20 23 25 29 36
2 6 10 14 20 22 28 30 34
4 8 12 14 18 24 26 32 33
1 5 11 13 20 21 27 29 33
4 8 11 13 20 21 28 29 33
1 8 9 15 19 23 28 32 34
1 7 9 14 19 22 28 29 36
2 8 11 14 19 21 25 31 36
3 6 9 15 17 22 28 29 33
1 6 11 13 20 23 27 29 36
3 8 11 13 18 22 25 30 33
4 8 12 15 18 22 28 32 33
2 7 10 16 20 23 25 31 33
1 7 11 13 20 23 25 32 34
2 5 12 14 19 22 27 29 33
2 8 9 16 20 23 25 29 36

NUMBAR OF RUNS = 30
NUMBER OF TRUE ASSERTIONS FOR THE FIRST LEVEL 5
NUMBER OF TRUE ASSERTIONS FOR EACH OTHER LEVEL= 2

135

Sample 8: Fan-In Monotonic RBS

RULE MAX MAX LHS RHS RULE
NUMBER LHS RHS ,STATUS

1 4 2 14 12 8 -4 37 38 0
2 4 2 12 15 18 8 39 40 0
3 4 2 20 -11 13 8 41 42 0
4 4 2 7 20 16 2 43 44 0
5 3 2 1 20 11 0 45 41 0
6 4 2 6 15 2 20 46 40 0
7 4 2 14 1 7 9 39 47 0
8 4 2 13 -19 3 11 48 49 0

9 3 2 46 40 28 0 50 51 0
10 3 2 39 47 27 0 52 53 0
11 3 2 37 38 -21 0 54 55 0
12 3 2 37 38 22 0 56 57 0
13 4 2 46 40 23 26 56 58 0
14 3 2 43 44 28 0 59 55 0
15-- 3- 2- 56- 57- 33- 0- 60-61 -0

15 3 2 56 57 33 0 60 61 016 3 2 54 55 33 0 62 63 0

17 3 2 50 51 33 0 64 65 0
18 4 2 56 57 30 36 66 67 0
19 3 2 56 58 32 0 68 66 0 -

20 4 2 56 58 34 29 69 66 0

SHAPE: FAN-IN
MONOTONICITY: MONOTONIC
NUMBER OF RULES = 20
NUMBER OF LEVELS = 3

136

Sample 9: Fan-In Non-Monotonic RBS

RULE MAX MAX LHS ' RHS 'RULE
NUMBER LHS RHS I ISTATUS

1 4 2 14 12 8 -4 37 38 0
2 4 2 12 15 18 8 39 40 0
3 4 2 20 -11 13 8 41 42 0
4 4 2 7 20 16 2 43 44 0
5 3 2 1 20 11 0 45 -41 0
6 4 2 6 15 2 20 46 40 0
7 4 2 14 1 7 9 39 47 0
8 4 2 13 -19 3 11 48 49 0

9 3 2 46 40 28 0 50 51 0
10 3 2 39 47 27 0 52 53 0
11 3 2 37 38 -21 0 54 55 0
12 3 2 37 38 22 0 56 57 0
13 4 2 46 40 23 26 -56 58 0
14 3 2 43 44 28 0 59 -54 0
15 3 2 56 57 33 0 60 61 0
16 3 2 54 55 33 0 62 63 0
17 3 2 50 51 33 0 64 65 0

18 4 2 56 57 30 36 66 67 0
19 3 2 -56 58 32 0 68 66 0
20 4 2 -55 58 34 29 69 66 0

SHAPE: FAN-IN
MONOTONICITY: NON-MONOTONIC
NUMBER OF RULES = 20
NUMBER OF LEVELS = 3

137

C-------------------- ENGINE 1 SIMULATOR (VERSION 2) -------
C
C ENGINE SPECIFICATIONS
C-- - - - - - - - - -
C PRODUCTION-ORDERING (P01) CONFLICT-RESOLUTION STRATEGY
C NO FILTERING
C
C INPUT FILES

C THE RES
C A RANDOM-ASSERTIONS SET
C
C OUTPUT FILES
C - - - - - -
C PERFORMANCE FILE
C STATISTICS FILE
C
C BOUNDARIES
C - - - - -
C 1000 RANDOM ASSERTIONS
C
C PURPOSE
C-- - -
C COLLECT STATISTICS ABOUT THE PERFORMANCE OF THE ENGINE
C
C

C
INTEGER NR(1000,12) ,NF(4000,2)
INTEGER FIRE(1000) ,TRU(4000) ,ASRT(1000,50)
OPEN (UNIT=12,FILE='ASRT.DAT' ,STATUS='OLD')
OPEN (UNIT=10,FILE='MAD.DAT' ,STATUS='OLD' ,RECL=132)
OPEN (UNIT=11 ,FILE='PFIRST.DAT' ,STATUS='NEW' ,RECL=132)
OPEN (UNIT=9,FILE='TRU.DAT' ,STATUS='NEW' ,RECL=132)

C
c-READ THE RBS
C

READ(10, *)NRULE,MAXL,MAXR,NFIRE
DO 1 I=1,NRULE

1 CONTINUE
READ (10, *) NFAC
READ(12,*)NRUN, lASS
GTC=0.0
GTR=0.0

C
DO 101 IJK=1,NRUN

C
IREC=IASS
NRF=0

C
C-READ AN ASSERTION VECTOR
C

READ(12,*) (ASRT(IJK,J) ,J=1,IREC)
DO 102 I=1,NRULE

138

NR(I,NFIRE)=O
102 CONTINUE
C
C-INITIALIZE THE FACT MATRIX
C

DO 2 I=1,NFAC
NF(I,1)=-l
NF(I,2)=O

2 CONTINUE
c

DO 3 J=1,IREC
NN=ASRT(IJK,J)
NF(NN,1)=1
NF(NN,2)=J
TRU (N) =TRU (NN)+ 1

3 CONTINUE
C
C-INITIALIZE THE MATCH-TESTS COUNTER
C

TC=O.O
C
C -RECOGNIZE AND ACT CYCLE
C ***********

C MATCH
C
5 K=O

DO 11 I=1,NRULE
C
C-CHECK A RULE
C

IF (NR(I,NFIRE) .NE. 0) GOTO 11
DO 12 J=4,NR(I,2)93

TC=TC+1. 0
NN=NR(I,J)
MM=ABS(NN)
IF (Nik(MM,1)*NN .LT. 0) GOTO 11

12 CONTINUE
K=K+l
GOTO 66

11 CONTINUE
C
C-THE STOPPING CRITERION
C
66 IF (K .EQ. 0) GOTO 16
C
c FIRE
C

NRTF=NR(I,1)
NR(I,NFIRE)=1
FIRE(NRTF) =FIRE(NRTF)+1
NRF=NRF4-

DO 15 J=4+MAXL,3+KAXL+NR(I,3)

NN=NR(I,J)

139

LL=ABS (NN)
NF (LL,1) =NN/LL
IF (NN.GT.O) TRU(LL)=TRU(LL)+1

15 CONTINUE
C

C-END OF A CYCLE
C

GOTO 5
C
c-END OF A RUN
C-WRITE THE PERFORMANCE MEASURE OF THE RUN
C
16 WRITE(11,*)TC,NRF

GTC=GTC+TC
GTR=GTR+NRF

101 CONTINUE
C
C-END OF ALL RUNS
C

ATC=GTC/NRUN
ARF=GTR/NRUN
PRINT*,'AVERAGE TOTAL TESTS = ',ATC
PRINT*I'AVERAGE RULE FIRED = ',ARF

C
DO 326 I=1,NRULE

IF (FIRE(I).GT.0) LRF=LRF+1
326 CONTINUE

PRINT*,'# OF RULES FIRED = ,LRF
WRITE(11,*)ATC,LRF,ARF

C
C-WRITE FACT-ASSERTION FREQUENCY
C

WRITE(9, *)NRULE,NFAC,NRUN
WRITE(9,*) (TRU(I) ,I=1,NFAC)

C
C-WRITE RULE-FIRING FREQUENCY
C

WRITE(9,*) (FIRE(I) ,I=1,NRULE)
C

STOP
END

C

140

C------------------- ENGINE 2 SIMULATOR (VERSION 2)--------
C
C ENGINE SPECIFICATIONS
C-- - - - - - - - - -

C RECENCY (R5) CONFLICT-RESOLUTION STRATEGY
C NO FILTERING
C
C INPUT FILES
C-- - - - -

C THE RBS
C A RANDOM-ASSERTIONS SET
C
C OUTPUT FILES
C - - - - - -

C PERFORMANCE FILE
C STATISTICS FILE
C
C BOUNDARIES
C - - - - -

C 1000 RANDOM ASSERTIONS
C 200 RULES IN THE CONFLICT SET
C
C PURPOSE
C-- - -

C COLLECT STATISTICS ABOUT THE PERFORMANCE OF THE ENGINE
C
C
-------------- --
C

INTEGER NR(1000,12),NF(4000,2),NC(200,6),NCSRT(200,6)
DOUBLE PRECISION LEX(200)
INTEGER FIRE(1000),TRU(4000),ASRTK-i(1000,50)
OPEN (UNIT=10,FILE='MAD.DAT' ,STATUS='OLD' ,RECL=132)
OPEN (UNIT=11 ,FILE='PLEX.DAT' ,STATUS='NEW' ,RECL=132)
OPEN (UNIT=12,FILE='ASRT.DAT' ,STATUS='OLD' ,RECL=132)
OPEN (UNIT=9,FILE='TRU.DAT' ,STATUS='NEW' ,RECL=132)

C
C-READ THE RBS
C

READ(10, *)NRULE,MAXL,MAXR,NFIRE
DO 1 I=1,NRULE

1 CONTINUE
READ(10, *)NFAC

READ(12,*)NRUN, lASS
GTC=0 .0
GTR=0.0

C
DO 101 IJK=1,NRUN

C
NRF=0.0
IREC=IASS

C-READ AN ASSERTION VECTOR

141

C
READ(12,*) (ASRT(IJK,J) ,J=1,IREC)
DO 102 I=1,NRULE

NR(I,NFIRE)=0
102 CONTINUE
C
C-INITIALIZE THE FACT MATRIX
C

DO 2 I=1,NFAC
NF(11 1)= -1
NF(I,2)=O

2 CONTINUE
C

DO 3 J=1,IREC
NN=ASRT(IJ'K,J)
NF(NN, 1)=1
NF(NN,2)=J
TRU(NN)=TRU(NN)+1

3 CONTINUE
c

C-INITIALIZE THE MATCH-TESTS COUNTER
C

TC=0
C
C-RECOGNIZE AND ACT CYCLE
C************
C MATCH
C
5 K=0

DO 11 I=1,NRULE
C
C-CHECK A RULE
C

IF (NR(I,NFIRE) .NE. 0) GOTO 11
DO 12 J=4,NR(l,2)+3

TC=TC+1 .0
NN=NR(I,J)
MM=ABS(NN)
IF (NF(MM,1)*NN .LT. 0) GOTO 11

12 CONTINUE
K=K+1

C
C-PUT A RULE IN THE CONFLICT SET
C

NC(K,1)=I
NC(K, 2) =NR (I, 1)
DO 13 J=3,NR(I,2)+2

NN=NR(I,J+1)
NC(K,J)=NF(NN,2)

13 CONTINUE
11 CONTINUE
C

C-THE STOPPING CRITERION

142 .

C
IF (K .EQ. 0) GOTO 16

C
c- SELECT
c

IF (K .GT. 1) THEN
CALL SORT(NC,NCSRT,K,HAXL,200,6)
CALL SLCT(NCSRT,K,MAXL,LEX,NRO,200,6)

ELSE
NRO=1

ENDIF
c
c FIRE
C

MM=NC (NRO, 1)
NR(MM,NFIRE)=1
NN=NC (NRO, 1)
FIRE(NN)=FIRE(NN)+1
NRF=NRF+l
DO 15 J=4+MAXL,3+HAXL+NR(MM,3)

NN=NR (MM ,J)
LL=ABS(NN)
NF(LL, 1)=NN/LL
IF (NN.GT.0) TRU(LL)=TRU(LL)+1
IREC= IREC+ 1
NF(LL, 2)=IREC

15 CONTINUE
C
c-NULLIFY THE CONFLICT-SET MATRIX
C

DO 17 I=1,K
DO 18 J=1,MAXL+2

NC(I,J)=0
18 CONTINUE

LEX(K)=O
17 CONTINUE
C

DO 19,I=1,K
DO 20,J=1,MAXL
NCSRT(I,J)=0

20 CONTINUE
19 CONTINUE
C
C-END OF A CYCLE

GOTO 5
C-END OF A RUN
C-WRITE THE PERFORMANCE MEASURE OF THE RUN
C
16 WRITE(11,*)TC,NRF

GTC=GTC+TC _

GTR=GTR+NRF
101 CONTINUEC-END OF ALL RUNS
C

ATC=GTC/NRUN

143

ATR=GTR/NRUN
PRINT*, 'AVERAGE TOTAL TESTS = ',ATC
PRINT*, 'AVERAGE RULE FIRED = ',ATR

C
LRF=0
DO 326 I=1,NRULE

IF (FIRE(I).GT.O)LRF=LRF+1
326 CONTINUE

PRINT*,'# OF RULES FIRED = ',LRF
WRITE(11,*)ATC,LRF,ATR

C
C-WRITE FACT-ASSERTION FREQUENCY
C

WRITE(9 ,*)NRULE,NFAC,NRUN
WRITE(9,*) (TRU(I) ,I=1,NFAC)

C-WRITE RULE-FIRING FREQUENCY
C

WRITE(9,*) (FIRE(I) ,I=1,NRULE)
C

STOP
END

C---
C-SORT THE CONFLICT SET IN DESCENDING ORDER
C

SUBROUTINE SORT(X, Y,N,M,HAXR,MAXC)
INTEGER HAXR,MAXC,X(MAXR,MAXC),Y(HAXR,MAXC),N,M
LOGICAL SORTED
DO 10 I=1,N

DO 11 J=3,Mi2
Y(I,J-2)=X(I,J)

11 CONTINUE
10 CONTINUE
C

DO 21 I=1,N
SORTED=. FALSE.

15 IF (.NOT. SORTED) THEN
SORT ED= .TRUE.
DO 20 J=1,M-1

IF (Y(I,J) .LT. Y(I,Jt-)) THEN
TEMP=Y(I,J)
Y(I ,J)=Y(I,J+1)
Y(I,J+1)=TEMP
SORTED=. FALSE.

ENDIF
20 CONTINUE

GOTO 15
ENDIF

21 CONTINUE
RETURN
END fm

C-SELECT THE RULE HAVING THE MAXIMUM LEXICAL NUMBER
C

SUBROUTINE SLCT(Y,N,M,LEX,MAX,MAXR,MAXC)

144

INTEGER MAXR,MAXCY(NAXR,KAXC) ,M,N
REAL L
DOUBLE PRECISION BEX,LEX(MAXR)

C
C-CALCULATE THE LEXICAL NUMBER
C

DO 10 I=1,N
LEX(I)=0.0
DO 11 J=1HM

L=-3.O*J
BEX=Y(I,J) *10**L
LEX(I)=LEX(I)+BEX

11 CONTINUE
10 CONTINUE
C
C-FIND THE MAXIMUM LEXICAL NUMBER
C

MAX=1
DO 20 I=2,N

IF (LEX(I) .LE. LEX(MAX)) GOTO 20
MAX=I

20 CONTINUE
RETURN
END

C

145

C ------------------ ENGINE 3 SIMULATOR (VERSION 2)
C
C ENGINE SPECIFICATIONS
C
C RECENCY (RI) CONFLICT-RESOLUTION STRATEGY
C NO FILTERING
C
C INPUT FILES
C
C THE RBS
C A RANDOM-ASSERTIONS SET
C
C OUTPUT FILES
C
C PERFORMANCE FILE
C STATISTICS FILE
C
C BOUNDARIES
C
C 1000 RANDOM ASSERTIONS
C
C PURPOSE
C
C COLLECT STATISTICS ABOUT THE PERFORMANCE OF THE ENGINE
C
C
---- --
C

The code of this engine is similar to

engine 2 except for the selection subroutine.

Only the different parts are listed below.

C- SELECT

IF (K .EQ. 0) GOTO 16
IF (K .GT. 1) THEN

CALL SORT(NC,NCSRT,K,MAXL,200,6)
CALL SLCT(NCSRT,K,MAXL,NRO,200,6)

ELSE
NRO=l

ENDIF
C
C-SELECT THE MOST-RECENT RULE
C

SUBROUTINE SLCT(Y,N,M,MAX,MAXR,MAXC)
INTEGER MAXR,MAXC,Y(MAXR,MAXC),M,N
MAX=1
DO 20 I=2,N

IF (Y(I,l) .LE. Y(MAX,l)) GOTO 20
MAX=I

20 CONTINUE
RETURN
END

146

C ---------------- ENGINE 4 SIMULATOR (VERSION 2)
C
C ENGINE SPECIFICATIONS
C
C RECENCY (R3) CONFLICT-RESOLUTION STRATEGY
C NO FILTERING
C
C INPUT FILES
C
C THE RBS
C A RANDOM-ASSERTIONS SET
C
C OUTPUT FILES
C
C PERFORMANCE FILE
C STATISTICS FILE
C
C BOUNDARIES
C
C 1000 RANDOM ASSERTIONS
C
C PURPOSE
C
C COLLECT STATISTICS ABOUT THE PERFORMANCE OF THE ENGINE
C
C

The code of this engine is similar to

engine 3 except for the sorting subroutine,

where sorting is applied in ascending order

instead of descending order.

147

C ---------------- ENGINE 5 SIMULATOR (VERSION 2)
C
C ENGINE SPECIFICATIONS
C
C PRODUCTION-ORDERING (PO1) CONFLICT-RESOLUTION STRATEGY
C CONTROLLED PRODUCTIONS FILTER
C
C INPUT FILES
C
C THE RBS
C A RANDOM-ASSERTIONS SET
C
C OUTPUT FILES

CC ------------
C PERFORMANCE FILE
C STATISTICS FILE
C
C BOUNDARIES
C "
C 1000 RANDOM ASSERTIONS
C
C PURPOSE

SC ------.....C COLLECT STATISTICS ABOUT THE PERFORMANCE OF THE ENGINE
C
C---
C

The code of this engine is similar to

engine 1 except for adding the code needed to

define the groups and to test the rules by groups.

Only the extra code is listed below.

INTEGER GRP(10)
c

Data entry code

PRINT*,'# OF GROUPS'
READ*,NG
DO 303 I=I,NG

PFINT*,'END RULE NUMBER FOR GROUP 'I
READ*,NRS
GRP(I)=NRS

303 CONTINUE
C

Initialization code

C-RECOGNIZE AND ACT CYCLE
C *****1*****************

b 148 -

C MATCH
C

DO 16 L=-1,NG
5 K=O

IF (L.EQ.1)NGS1l
IF (L.GT.1)NGS-GRP(L-1)+1

C
C-CHECK THE RULES IN A GROUP
C

DO 11 I=NGS,GRP(L)
C

Recognize and act cycle code

C-END OF A CYCLE
C

GOTO 5
C
C-END OF A GROUP
C
16 CONTINUE
C
C-END OF A RUN

output preparation code

149

C ----------------- ENGINE 6 SIMULATOR (VERSION 2) --------
C
C ENGINE SPECIFICATIONS
C - -- - - - - - - - - -
C RECENCY (Ri) CONFLICT-RESOLUTION STRATEGY
C CONTEXT-RESTRICTED FILTERING
C
C INPUT FILES
C-- - - - -
C THE RES
C A RANDOM-ASSERTIONS SET
C
C OUTPUT FILES
C - - - - - -
C PERFORMANCE MEASURE
C STATISTICS
C
C BOUNDARIES
C - - - - -
C 1000 RANDOM ASSERTIONS
C
C PURPOSE
C-- - -
C COLLECT STATISTICS ABOUT THE PERFORMANCE OF THE ENGINE
C
C---

INTEGER NR(1000,12),NF(4000,2),REC(4000),INDX(4000,0:200)
INTEGER FIRE(1000),TRU(4000),ASRT(1000,50)
OPEN (UNIT=12 ,FILE='ASRT.DAT' ,STATUS='OLD')
OPEN (UNIT=10,FILE='HAD.DAT' ,STATUS='OLD' ,RECL=132j)
OPEN (UNIT=11,FILE='FOCUS.DAT' ,STATUS='NEW' ,RECL=132)
OPEN (UNIT=9,FILE='TRU.DAT' ,STATUS='NEW' ,RECL=132)

c

C-READ THE RBS
C

READ(10, *)NRULE ,MAXL,MAXR,NFIRE
DO 1 I=1,NRULE

READ(10,*) (NR(I,J),J=1,NFIRE)
1 CONTINUE

READ(10, *)NFAC
C

c-BUILD THE INDEX
C

DO 201 I-1,NRULE
NGAL=0
DO 202 J=4,3+NR(I,2)

NN=NR(I,J)
NN=ABS(NN)
INDX(NN,0)=INDX(NN,0)+1
MM=INDX(NN, 0)
INDX(NN,MM)=NR(I,1)

202 CONTINUE
201 CONTINUE
C READ(12,*)NRUN,IASS

GTC=0.O

150

GTR-O.O0

DO 101. IJK=1,NRUN
C

NRF=0
IREC=IASS

C
C-READ AN ASSERTION VECTOR
C

READ(12,*)(ASRT(IJK,J) ,J=1,IREC)
DO 102 I=1,NRULE
NR(I,NFIRE)=0

102 CONTINUE
C
C-INITIALIZE THE FACT MATRIX
C

DO 2 I=1,NFAC
NF (I ,1)=- 1
NF(I,2)=0
REC(I)=0

2 CONTINUE
C

DO 3 J=1,IREC
NN=ASRT(IJK,J)
NF(NN,1) =1
NF(NN,2)=J
TRU (NN)=TRU(N)+ 1
RECCJ) =NN

3 CONTINUE
C
C-INITIALIZE THE MATCH-TESTS COUNTER
C

* TC=0.O

C-RECOGNIZE AND ACT CYCLE
C
C MATCH
C **
5 K=0
C
C-GET THE MOST RECENT FACT
C

NPT- IREC
210 KI=REC(NPT)

DO 11 KJ=1,INDX(KI,0)
C
C-CHECK A RULE FROM THE INDEX
C

I=INDX(KI ,KJ)
IF (I.EQ.0)GOTO 213
IF (NR(I,NFIRE) .NE. 0) GOTO 11
DO 12 J=4,NR(I,2)+3

TC=TC+1 .0
NN=NR(I,J)

* 151

MM=ABS (NN)
IF (NF(MM,1)*NN .LT. 0) GOTO 11

12 CONTINUE
K=K+l
GOTO 66

11 CONTINUE
C
C-GET THE NEXT HOST-RECENT FACT
C
213 NPT=NPT-1

IF (NPT.GT.0)GOTO 210
C
C-THE STOPPING CRITERION
C
66 IF (K .EQ. 0) GOTO 16
C
c FIRE
C

NRTF=NR (I,1)
NR(I,NFIRE)=1
FIRE(NRTF)=FIRE(NRTF)+l
NRF=NRF+ 1
DO 15 J=4+MAXL,3+HAXL+NR(I,3)

NN=NR (I ,J)
LL=ABS(NN)
NF(LL,1)=NN/LL
IREC=IREC+ 1
NF(LL, 2)=IREC
REC(IREC)=NN
IF (NN.GT.O) TRU(LL)=TRU(LL)+1

15 CONTINUE
C
C-END OF A CYCLE
C

GOTO 5
C
C-END OF A RUN
C-WRITE THE PERFORMANCE MEASURE OF THE RUN
C
16 WRITE(11,*)TC,NRF

GTC=GTC+TC
GTR=GTR+NRF

101 CONTINUE
C
C-END OF ALL RUNS
C

LRF=0
DO 412 I=1,NRULE

IF (FIRE(I).GT.)LRF=LRF+1
412 CONTINUE

PRINT*,'# OF RULE FIRED = ',LRF
ATC=GTC/NRUN
ATR=GTR/NRUN
PRINT*11AVERAGE TOTAL TESTS = ',ATC

152

PRINT*1'AVERAGE RULE FIRED = ,ATR
WRITE(11 ,*)ATC,LRF,ATR

C
C-WRITE FACT-ASSERTION FREQUENCY
C

WRITE(9,*)NRULENFAC,NRUN
WRITE(9,*) (TRU(I) ,I=1,NFAC)

C
C-WRITE RULE-FIRING FREQUENCY
C

WRITE(9,*) (FIRE(I) ,I=1,NRULE)
STOP
END

C

153

C --------------------- FACT-ORDERING PROGRAM
C
C INPUT FILES
C

--
-

C THE ORIGINAL RBS
C THE STATISTICS FILE
C
C OUTPUT FILES
C
C THE NEW STRUCTURE OF THE RBS
C
C BOUNDARIES
C
C 4 CONDITIONS IN THE LHS
C
C PURPOSE

C REARRANGE THE LHS ACCORDING TO FACT-ASSERTION FREQUENCY
C
C---
C

INTEGER NR(1000,12),TRU(4000),SI(4),S2(4)
OPEN (UNIT=1O,FILE='MAD.DAT',STATUS='OLD',RECL=132)
OPEN (UNIT=11,FILE='TRU.DAT',STATUS='OLD',RECL=132)
OPEN (UNIT=12,FILE='ARNG.DAT',STATUS='NEW',RECL=132)

C
C-READ THE ORIGINAL RBS
C

READ(10,*)NRULE,MAXL,MAXR,NFIRE
DO 5 I=I,NRULE

READ(10,*)(NR(I,J),J=I,NFIRE)
5 CONTINUE
C
C-READ FACT-ASSERTION FREQUENCY
C

READ(11,*)NRULE,NFAC,NRUN
READ(11,*)(TRU(I),I=1,NFAC)

C
WRITE(12,*)NRULE,MAXL,MAXR,NFIRE

C
C-FIND THE MAXIMUM FREQUENCY
C

MAX=TRU(1)
DO 17 I=2,NFAC

IF (TRU(I).GT.MAX)MAX=TRU(I)
17 CONTINUE
C
C-REARRANGE
C *********
C

DO 10 I=1,NRULE
K=O a

C- REARRANGE THE LHS OF A RULE
C

154
-I

DO 15 J=4,3+NR(I,2)
c-
c STORE THE FREQUENCY IN AN ARRAY
C
C

K=K+1
Sl(K)=NR(I,J)
IF (S1(K).LT.0)THEN

S2(K)=HAX-TRU(S1(K))
ELSE

S2 (K) =TRU(SiCK))
ENDIF

15 CONTINUE
C
C SORT
C

CALL FSRT(S1,S2,NR(I,2),MAXL)
K=O

C
C WRITE THE NEW LHS
C
C

DO 20 J=4,3+NR(I,2)
K=K+l
NR(I,J)=Sl(K)

20 CONTINUE
WRITE(12,*) (NR(I,JJ) ,JJ=1,NFIRE)

10 CONTINUE
C

WRITE(12, *)NFAC
STOP
END

C
C---
C

C-SORT THE LHS IN ASCENDING ORDER

C

155

SUBROUTINE FSRT(S1,S2,L,4)
INTEGER L,M,S1(M) ,S2(M)
LOGICAL SORTED
SORTED= .FALSE.

10 IF (.NOT. SORTED) THEN
SORTED= .TRUE.
DO 20 J=1,L-1

IF (S2(J).GT.S2(J+1)) THEN
ITEMP=S2 (J)
S2 (J)=S2 (J+l)
S2 (J+1)=ITEMP
JTEMP=S1 ()

Si (J+1)=JTEMP
SORrEED=. FALSE.

END IF
20 CONTINUE

GOTO 10
ENDIF
RETURN
END

C

156

C---------------------- RULE-ORDERING PROGRAM ----------
C
C INPUT FILES
C-- - - - -
C THE ORIGINAL RBS
C THE STATISTICS FILE
C
C OUTPUT FILES
C - - - - - -
C THE ORDERED RBS
C
C PURPOSE
C-- - -
C REARRANGE THE RBS ACCORDING TO RULE-FIRING FREQUENCY
C
C---
C

INTEGER NR(1000,12) ,TRU(4000),MR(1000,12)
INTEGE FIRE(1000) ,SFIRE(1000)
OPEN (UNIT=1O,FILE='HAD.DAT' ,STATUS='OLD' ,RECL=132)
OPEN (UNIT=11,FILE='TRU.DAT' ,STATUS='OLD' ,RECL=132)
OPEN (UNIT=12,FILE='ARNGR.DAT' ,STATUS='NEW' ,RECL=132)

C
C-READ THE ORIGINAL RBS
C

READ(10, *)NRULE,MAXL,MAXR,NFIRE
DO 5 I=1,NRULE

READ(10,*) (NR(I,J) ,J=1,NFIRE)
5 CONTINUE
C
C-READ THE STATISTICS FILE
C

READ(11 ,*)NRULE,NFAC,NRUN
READ(11,*) (TRU(I) ,I=1,NFAC)
READ(11,*)(FIRE(I) ,I=1,NRULE)

C
C-SAVE THE ORIGINAL ORDER IN AN ARRAY
C

DO 31 I=1,NRULE
SFIRE(I)=I

31 CONTINUE
C

WRITE(12, *)NRULE,MAXL,MAXRNFIRE
C
C-SORT
C

CALL RSRT (SFIRE ,FIRE ,NRULE)

C-

C-SAVE THE NEW STRUCTURE

157

C
DO 32 I=1,NRULE

K-SFIRE(I)
DO 33 J=1,NFIRE

MR (I ,J)=NR (K,J)
33 CONTINUE

WRITE(12,*) (MR(I,J) ,J=1,NFIRE)
32 CONTINUE
C

WRITE(12, *)NFAC
STOP
END

C
C---
C
C-SORT THE RULES IN DESCENDING ORDER
C

SUBROUTINE RSRT(S ,S2 ,M)
INTEGER L,M,S1(M),S2(M)
LOGICAL SORTED
SORTED= .FALSE.

10 IF (.NOT. SORTED) THEN
SORTED=.TRUE.
DO 20 J=1,M-1

IF (S2(J).LT.S2(J+1)) THEN
ITEMP=S2 (J)
S2(J)=S2(J+1)
S2 (J41) =ITEMP
JTEMP=S1 (J)
S1(J)=S1(J+1)
SI (J+) =JTEMP
SORTED=.FALSE.

ENDIF
20 CONTINUE

GOTO 10
ENDIF
RETURN
END

C

158

vita~e

Lieutenant Colonel Nizar M. Mahaba

- in

1968 attended Cairo University from which he received the

degree of Bachelor of Science in Civil Engineering in July,

1973. He joined the Egyptian Army in 1974 in which he served

in the Engineering Corps until 1980. He received a Diploma in

Computer Science from Cairo University, the Institute of

Statistical Studies & Research in September, 1982 and a

Diploma in Operations Research from the Military Technical

College in December, 1982. He then served in the Information

System Department until entering the School of Engineering,

the United States Air Force Institute of Technology in June,

1987.

159

UNCLSSIP
SECUR ITY CLASSIFICATION OF THIS PAGE

' ' Form Approved

REPORT DOCUMENTATION PAGE OMON. ppove

Ia. REPORT SECURITY CLASSIFICATION Ib. RESTRICTIVE MARKINGS
UNLASSIFIP ____

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABILITY OF REPORTApproe for pub]_ic release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE A f

ditribution unrdtid.

4. PfRFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AIT/GCI /IS/88D -12

Ga. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
ffappliable)

Schol of Engineering
6C. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) ,

Air Force Institute of Technology, , ,. _ -

Wright Patterson AFB CH 45433-6583 PROCUREMENT'CATIO N0

ft. NAME OF FUNDING /SPONSORING Sb. OFFICE SYMBOL. 9 PROCUREMENT INSTRUMSMTIJDNTIFCATION NUMBER
ORGANIZATION (If applica0le)

SC ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO ICCESSION NO.

11. TITLE (Include Security Classification)

Sinulating Rule-Based System
12..PERSONAL AUTHOR(S)

Nizar Mahaba, Ltc, Egyptian Army
13a. TYPE OF REPORT 13b. TIME COVERED T14. DATE OF REPORT (Year, Month, Day) 15. PACI.SOUNT

MS Thesis FROM TO 1988 Decenber 17
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Artificial Intelligence, Rule-Based Systems, Simulation12 03
12 09 1 Statistics and Probability, Mont Carlo Method.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The purpose of this study is to develop a methodology for evaluating the performance
of rule-based systems (RBSs) using a simulation approach. A numerical scheme for knowledge
representation; facts are represented by integer numbers and the rules and data memories
are represented by matrices. The nunexi c representaion can be handled by simplified
algorithms that simulate the function of different types of inference engines. Six types of
forward-chaining inference engines that vary according to the conflict-resolution strategy
and the implementation of filters are simulated and compared. The number of match-tests of
the rules against the data memry is used as a measure of performance to estimate the
relative matching effort for each inference engine. Also, a methodology to reduce the
matching effort of a RBS by changing the order of the facts in the left hand side or

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCIASSIFIM

2 A f RfEPOISIBLE INDIVIDUAL 22b, TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
wZrlan, Major, USAF (513) 255-3576 AFIT/ENG

DOForm11473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

s ny T .ASSIFICA.C C' THIS PAGE

19. (continue)

changing the order of the rules is described.

To simulate RMSs, it is assumed that probabilistic relations among the
assertions to a RBS can be identified and specified by the experts or after
runmning the sstem for se time. The nmzeric representation and the probabilistic
relations provide the enircun needed to build a sinulation model. A rule-
generator progran is developed to randomly generate RBSs with different specifications.
RBSs that vary in size (the numter of rules), shape (the nuber of facts in both
sides of the rule), and uxxxtonicity (mootonic or non-n-cntcnic) are generated and
used in experimentation.

Two types of experiments are performed on the generated RBSs. The first type
estimates the reduction ratio in matching effort achieved by rearranging the facts
or the rules in a ERBS. The second type estimates the reduction ratio in matching
effort achieved by implemnting two types of filters or changing the conflict-
resolution strategy.

.. 6'' " m ll I |

