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I. INTRODUCTIQN

In recent works by the authors1'2 the problem of charge-carrier

transport in a semiconductor in the presence of an applied electric

field was examined. A new nonlinear differential equation for the

distribution function of charge carriers was derived incorporating

acoustic-strain interactions and solved exactly. In the present work

this analysis is extended to include equivalent intervalley scattering

which is significant to transport processes in Silicon. 3'4 The

analysis considers only single phonon interactions. Furthermore,

charge-carrier energy is sufficiently small so that non-equivalent

intervalley transitions are omitted. Again a differential equation is

derived for the distribution of charge carriers as function of energy.

However, in the present case, this equation includes "difference" terms

stemming from intervalley scattering. An approximate solution to this

e~uation is obtained in the following manner. As a first step, a group

of difference terms is approximated by a differential form whose

components are motivated through matching with correct asymptotic

solutions. The resulting nonlinear equation is solved exactly thus

yielding an approximate solution to the original equation.

In the second step this approximate solution is employed in

constructing a solution to the full nonlinear difference-differential

equation. The resulting distribution appears as a piecewise continuous

function separated at the intervalley phonon energy. The solution so

obtained shows very good agreement with results generated by a Monte

Carlo analysis of the problem. The new analytic distribution is used

to obtain a closed expressions for drift velocity as function of

applied electric field, charge-carrier density and temperature.
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Comparison of these results with experimental values is found to give

very good agreement for n-type Silicon at room temperature and fields

up to 105 V/cm.
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II. ANAYSI

A. startina Equations

In this work we consider the following generalized Uehling

Uhlenbeck 5 ,6 equation for the distribution function, f(k,t),Am
af _. 3f f) + (f))R-t -K 6 k __SA (  IV

A

where SA represents charge carrier - strain acoustic interactions and

JIV represents equivalent intervalley interactions. Electric field and

particle momentum are denoted by E and to k, respectively. Both

collision terms are of the form
A (a) - ~-f ( a ) ]()

J (f) = I If'(l-af) kk f(l-af) Sk k' (2)

where f' E f(k'), etc. and S represents the scattering from the

state k' to k due to the mechanism a. The bookkeeping parameter a has

the value 1 and may be set equal to zero in the classical domain. In

writing (2) we have assumed the normalization

If(k) - N (3a)k

In the continuum limit this relation becomes

V f f(k)dk - N (3b)

(2w)

where V is crystal volume.

In this analysis we will concentrate on the transport of charge

carriers in Silicon. The possible phonon-charge carrier interactions

for this case are shown in Fig. 1. It is assumed that charge-carrier

energy is sufficiently small ( 1 eV) thereby permitting us to neglect

5



non-equivalent intervalley scattering.7 In this diagram "S" denotes

"strain" (often refered to as "deformation potential"), 0 and A

represent "optical" and "acoustic" phonons, respectively. In Silicon

there are two possible intervalley (IV) transitions denoted by g

(parallel valleys) and f (perpendicular valleys). The terms T and L

refer to transverse and longitudinal phonons, respectively.

To determine the relative importance of scattering mechanisms we

define the total scattering rate

X(a ) _ I (a ) (4)
k k kk'

These rates are calculated in Appendix A and are sketched in Fig. 2

relevant to Silicon at 300 0K. It is evident from these figures that

the interactions g (LO±) and (SM) dominate thereby justifying the RHS

of (1). In this notation (+) refers to phonon absorption and (-) to

phonon emission. It should be noted that the SO interaction listed in

Fig. 1 does not appear in the rate calculations of Fig. 2. This is

attributed to symmetry properties of the crystal which in turn disallow

this transition.
4'8

B. Reduction of Kinetic Eauation

To account for anisotropy of the distribution function we

introduce the expansion
9

f(lk,t) - I f CC,t) PL(A) (5a)

where

f 2 k 2  
A A (b

I 2, E" (5b)

6



Hatted variables are unit vectors and m is effective mass. Note that

in writing (5b) the constant energy surface has been approximated by a

sphere. Going to equilibrium and keeping only the first two terms in

(3) we obtain

4 - U eE [I L (ifl) + LLU-fo (6)

For JSA we obtain
2

Js~f M Js(fo_ . fl
A SA 0 SA

(7)

1 ,2mu2 8 S2
= i2 {- j g(fo ) - jiet }

where the relaxation time TSA is as implied and

g(fo ) S kBT T + fo (1 - af ) (7a)

Acoustic mean free path, L, is given by 1,3

rt 4 (7b)
m2E 2 k T

l B

In this expression p is crystal mass density, u is acoustic phonon

velocity, T is crystal temperature and E. is the deformation potential

constant. In obtaining (7) it was assumed that

T uq << kBT (8)

A

where q is phonon wavevector. For J (f) we obtain (see Appendix B)
A 1 ± 1)

Ji V~ = ( a, [fo(l - aft - afl) (niv + 1 1

(fo + Pfl)(1 - af o ) (n 1V + )] (9)

7



where the sum is over upper and lower terms in the summand and are

associated with phonon emission and absorption. Furthermore

a - - / 2 ( 9 ±-f (g (9a)

Here we have introduced

O(x) = 1, x > 0

(9b)

O(x) - 0, x < 0

The displaced distribution is given by

f 0(g) - f 0(g * 1( IV (9c)

and the length L IV is written for

= 2pwIV1TK3  (9d)
IV D2m2 1

where D is the intervalley interaction constant (in units of

energy/length). 3,4  Intervalley phonon frequency is written wIV* The

intervalley phonon density is taken to be

n = IV 1 (9e)

exp j  - 1
kB T

Note that (9) has the structure

i( V M i V (f ) 0 _T_ f1 (10)TIV



M a ( + f (n + a

(10a)

11 f (niv + ao

where again TIV is as implied. Inserting (6,7,10) in (1) and equating

Legendre coefficients we obtain

1 a 2mu 2 1 8 -2 (a)
" il) e k-- Ts [I g~ro0 (eEa)

.. * - f(n + T 1 oeE aIV 2 22 2
(11b)

2fo 0 f - 1 1 g a (nIV + 1 - 1* fo) fl

aaeEt 1 eE 2-.*(I+ 2 0 1i r~l,
Eliminating f1 from (11a,b) and introducing the nondimensional energy

x E 9/kBT (12)

gives the desired nonlinear difference-differential equation

+ [x2 g(f)]' + Cj . o(nIv +)

(13)

f (n + 2 a tO) = 0

where prime denotes differentiated with respect to x. Furthermore

sx 
2

x+ ++

a r(nv + 1 1 - a to) V1X(X±&) 9(X±A) (14)

r-v V i A ) 6(x*k )

9



In the proceeding we have introduced the dimensionless constants
ICT

IVkBT 2mu 2

and dimensionless electric field
3'8

(eEt)2 _ 2 (15b)

6mu2 kBT E BI
Note in particular that setting r - 0 in (13) has the effect of

shutting off intervalley scattering.

With these parameters given by (15), solving (llb) for fl and
1i

inserting the result into (5a) gives

f(xa) = (1 - k (x + f+ + f_) ] fo (X) (16)

The noramlization (3b) assumes the following form when written in terms

of the nondimensional energy x:

ff0 (x) /dx - A (17)

where A is the quantum degenerary parameter
1 0

A = ncXd3  (17a)

and Xd is the thermal deBroglie wavelength

2 . BT (17b)

and nc denotes charge carrier denisties. Some typical values of these

parameters4 are displayed in Table 1.

C. Limiting Properties

We wish to consider solution to (13) in three limiting cases:

(a) r = 0

10



Thus has the effect of turning off intervalley interactions (i.e., t I
-. ).In this event (13) reduces to



I

Values of Physical Constants

Used in This Analysis

material n-type Si

T 300 0K

A2.40

niv 0.100

7 85.5

r 1.65

E 497 V/cm

m = 0.33m
Iii. e

E 1 5.0 eV

D . ll.OxlO8 eV/cm

- IV 0.06 eV

12



0 C

whose solution was studied in detail in reference 1 and is given by

fSL(x) = I s (19)
a - Bex (s )

where B is a normalization constant.

(b) s = 0

This limit corresponds to turning (-ff the applied electric field.

There results

[x g(f 0 + I C(f = 0 (20)

where
A' - 1 z 1 1 * f )
C±(f O ) M- ffo(nIV + .2) - fo(n + a? (20a)

A physically relevant solution to (20) is given by the Fermi-Dirac

distr bution

fFD(x) x (21)
a Bex

Note in particular that
A A A

g(fFD) C+(fFD) C(fFD) = 0 (21a)

(c) A-0

This limit corresponds to 1 IV << kB T In this limit we find
1 1

nV = - 2 + O(A) (22a)

f= f o Af 0' + 0(A2 ) (22b)

13



in which case

Ci(fo) =c { g(fo ) + (fo) ]' + 0( 2  (23b)

Furthermore, with 9(x - 4) 1 we find

= rr(x i ) (A-) (23c)

Combining these results gives
AA A
C±(fo) = * r-x g(fo) + I Cr'xA g(fo ) )' + O(&) (23d)

Thus
A A

I Ci(fo) = Cr-xA g(f0 ))' + 0(A 2) (23e)
ii

Furthermore

= rx * r [ - x(l - 2a fo)] + O(A) (23f)
~* A 2 0 0A

which gives

V(X) sx (23g)
1 + 2r + 0(A)

Substituting these results into (13) converts it to the following

perfect differential equation:

2r + X 2  g(f0 ) ] ' + rrAx g(f = 0 (24)

Integrating we obtain (relevant to A << 1)

fW(x) 1 s (25)

a + B (xs'

14



where

s' - s (25a)
+. z

A

These limiting solutions will come into play in constructing a solution

to (13).

15



III. APPROXIMATE ANALYTIC SOLUTION

A. Integration Technique

To convert (13) to a more tractable form we write (deleting the

subscript on f0 )

Ik C(f) - ['P (x) g(F)]' + K (X) (26)

Note that the lead terms in this approximation maintains the property

(21a) and is consistent with the finding given by (23e). The trial

function +(x) which also contains arbitrary parameters is constructed

in a manner which effectively minimizes the error term K. Having thus

constructed *, a solution to (13) is then obtained in which K is

neglected.

B. Agyroximate Solution

We now consider the solution to the complete equation (13) with

the approximation (26) and K = 0.

(f x2 g(f)], + g4 g(f)], -0 (27)

where, we recall, + is an arbitrary function to be determined and * as

given by (14) depends on f. Integrating (27) gives

(# + x2 + *)f' + (x2 + *)f(l - af) = C1  (28)

where C1 is a constant. This equation may be further integrated

provided 4 is weakly dependent on f. This is the case when af << nIV*

In the classical domain where a = 0, this condition is trivially

satisfied. In the quantum domain (a = 1) this condition become f <<

nIV which is compatible with the property f < 1 and the fact that the

distribution nIV relevant to bosons, may be greater than 1.

16



1!

Assuming this constraint is satisfied and selting CI 0 , we obtain

f,1 (X) ( 1 (29)x *o(y)
a + 3 exp Cx - f C 2] dy

a 00(y) + y + 4,(y)

where 00 equals * with a = 0.

C. Full Solution

With the f (x) as given by (29) at hand we now seek to determine

the solution to (13), f(x). To these ends the LHS of (13) is rewritten
A 2 A

L(f) M (Of')' + £x g(f)]' + I C£(f) (30)
*

and we consider the functional

r[f] f [L(f)]3 dx > 0 (31)
0

where the equality corresponds to the solution to (13). The final form

of f(x) is determined by minimizing r(f) or, equivalently, by finding f

such that

a r(f) = 0 (32)

where 6 is a variation with respect to f.

Motivated by the results (23 c, e) relevant to case c, (A - 0), we

set

Sb C+ + (A - b) _ (33)

which at b = A/2, and recalling (26), returns the asymptotic form

(23e), i.e., + = riAx.

Numerical attempts at solving (32) at A << 1 strongly suggest that

17



the solution be separated into two components corresponding to x < a

and x > A. The resulting form is given by

f~) f x (-c) (f,(A) + f, (A)(x - A)], x < 4f (x) - 01 (34)
If 10(x), × > A

which is seen to be continuous at x - A. With (33) and (34) we find

that the functional, f[f], becomes a function of the parameters (b,c).

The conditions (32) then becomes
ar ara0 . 0 (35)

Solutions to these equations determine b and c as functions of the

parameters (T, A, s).

As we wish to compare final results with experiment, this

procedure was carried out for n-type Silicon at 3000 K with A << 1.

Resulting values of b and c vs electric field, s, are shown in Fig. 3.

Approximate analytic expessions describing these values are given

by

b(s) = G(s-480) log10 ( 8) + 0.74 8(480 - s) (36a)

1 s 1.3

c(s) = . (1 - tanh [logl0 (L) 1) (36b)

Characteristic behavior of these curves at small and large s is due to

the following. From (14) we, note that O(x) aC s. Thus at small s,

recalling (29) we see that f\(x) grows insensitive to P(x), and

therefore to b. This property was confirmed in numerical analysis

where it was observed that a2 /Sb 2 _ 0 in the domain s 100.

Concerning c(s), it was shown that the solution to the principal

18



equation (13) goes to the Fermi-Dirac distribution as s - 0. Thus with

reference to (34) we see that this behavior corresponds to c 1 1. For

large s, one expects the component f(x > 4) to dominate in (34). As

this component does not contain c, again one finds 82 /ac 2 = 0 in this

domain (i.e., s 100).

With these values of b(s) and c(s) at hand the distribution f(x)

as given by (34) is plotted for various values of s in Fig. 4. From

these curves it is evident that f(x 40) (corresponding to I > 1eV) is

vanishingly small. This is consistent with our omission of

non-equivalent intervalley scattering.

D. Drift Velocity

With the normalization of f(k) as given by (3) we write

v nc <m i f( d4 (37)nc (21r) 3

Converting to integration over x and w, and recalling (16) we obtain

Xdm 4 u f 00 x 2  -dfo' dx (38)3 -r A 0 x + f +_dx

In obtaining (38) we employed the tensor relation
A

f ki dk = I dk (38a)

(recall i = E.).

Integrating (38) by parts gives the final form (with +

d= d 4 u/i f f(x) x dx (39)

~dA 0 dx+ d+

where, we recall, f(x) a f0 (x) is given by (34). A plot of (39) for

n-type Silicon at 300 0 K and A << 1, as a function of electric field E,

19



is given in Fig. 5. A compilation of experimental results11 is drawn

on the same graph. It should be emphasized that this agreement with

experiment in no way depends on the fitting of free parameters.

20



IV. COMPARISION OF ANALYTIC AND MONTE CARLO RESULTS

As a self consistent check of the solution (34) we re-evaluated

the solution numerically employing a Monte Carlo technique such as

described in reference 4. Numerical values of parameters used in this

analysis are given in Table 1. The analysis addresses the steady-state

solution of (1) with a - 0 and scattering rates described in Appendix

A. In this procedure we obtain f(9,W). The I = 0 component of (5a) is

then given by

fo(s) - f ( (40)

-3.

A plot of f0 () so obtained for the specific case s - 100 is compared

with our analytic result (34) and is shown in Fig. 6. The discreteness

of the Monte Carlo result is due to the finite mesh in energy whereas

the fluctuations of the results are due to the statistical nature of

the numerical procedure. The Monte Carlo curve shown corresponds to a

sample of 10,000 collisions.
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V. CONCLUSIONS

A nonlinear difference-differential equation for the distribution

of charge carriers in a semiconducter including strain acoustic and

equivalent intervalley scattering was derived. Introducing an

approximate differential form for one term in this equation permitted

exact solution. This solution was then used in tandem with a numerical

analysis to obtain an approximate solution to the original equation in

the near-classical domain. The distribution so obtained was applied in

evaluation of drift velocity for n-type Silicon at room temperature.

Results were found to be in very good agreement with measured values

for electric fields up to 105 V/cm.
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A mendix-A

Scattering Rates

In this appendix we calculate the scattering rates Skk, that

appear in our starting equation (2) and the net rates X(a) given

by (4).

For SA interactions we write

E2s(SAf)l

kk = - (-V) q nsA(q) + 1 ) 851' -5 +1 uq) (Al)

where upper and lower signs refer, respectively, to phonon absorption

and emission. Furthermore 4

* q - k' - k

represents phonon wavevector and
1 kBT 1

nSA(q) =- 1( - B 2 (A2)
exp(tlug) u

kBT

where we have recalled the approximation (8). For IV interactions we

write 3,4,8

S (IV*) 2( D2 6 (&1 - 7 w (A3) A
kk' - -2Vpw 2IV 2 IV

- IV

For the net scattering rates (4), with (3b) we write

(a) = V "S-kk d (A4)
k -~ (2y) 3

Inserting the preceeding expressions and integrating we obtain

mE 2kT 2  3
-(sA . 1 1 k:T (2k±2mu/) 2  1 (2k±2nu/5) 3

k 4vi2PU k 2-- 2 2 3 (A5)

23



and

A IV*) - mD2  V -i -A WIV ( 1 f Ii (n + Ik 2 IV -

(A6)

a (nv + )

where a is given by (9a).

Intervalley Collision Integral

In this appendix we wish to obtain the intervalley collision

integral JIV given by (9). Combining (2) and (A3) together with the

limiting process (3a) gives

A 2
v() v 2 D _ i g

(2r)3 I t 2VPwiv IV

(Bl)
1 1 1-1

[f(l- af) (niv + i ,) - f(l - af') (n 1 v + )

Now we note

dk' - (2m)-I d d'd# (B2)
A3

where with (5b)

A A

k 1. E (B3)

and # is an azimuthal angle about the E axis. Furthermore

f, a f0(l') + .,fl(l, )  (B4)

24



With

and recalling a. given by (9a), integration over g' returns (9). Note

in particular that the difference terms f in (9) stem from the delta

function in (Bi).

25
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Figure Caotions

1. Diagram illustrating electron-phonon interactions relevant to

Silicon. Notation is defined in the text.

2. Scattering rates in n-type Silicon at 3000 K. (a) Strain-acoustic

(SA) and g intervalley scattering. (b) f intervalley scattering.

Absorption and emission are referred to as (+/-) respectively

whereas longitudinal and transverse are referred to as L and T

respectively. Each curve for X( ) corresponds to a distinct value

of a whereas k is the wavevector corresponding to energy 5.
3. (a) Parameter b vs log1os , as it appears in (33).

(b) Parameter c vs log10s, as it appears in (34).

4. Plots of the distribution f0 (x)/A for various values of electric

field s in the limit A << 1. The optical frequency A = 2.4 is

shown.

5. Derived values of drift velocity (S-L), compared to experimental

values (Jacoboni et alll). 0

6. Monte Carlo (-) and analytic (-) distribution function vs

charge-carrier energy for n-type Silicon at 3000 K, s = 100 and A

<< 1.
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