
gcFILE GLi) 4 (

0

DTI

CJA 1 819q.

-. 4

DEPARTMENT OF THE AIR FORCE ~~

*~;~~' ~ ,' ' AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY'.

Wright-Patterson Air Force Base, Ohio

'T~t~NT"'~1A 89 1 17 0 35
Dflbfi aft _

AFIT/GEO/ENG/88D-1

SPEECH RECOGNITION USING NEURAL
NETS AND DYNAMIC TIME WARPING

THESIS

Gary Dean Barmore

Capt, USAF

AFIT/GEO/ENG/88D-1

DTIC
~JAN 1 8 0D

H
Approved for public release; distribution unlimited

...:.!. : _ . _ . i I i !n, , , . ..

AFIT/GEO/ENG/88D-1

SPEECH RECOGNITION USING NEURAL NETS
AND DYNAMIC TIME WARPING

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Gary Dean Barmore, B.S., B.S.E.E

Capt, USAF

December, 1988

Approved for public release; distribution unlimited

Preface

The purpose of this effort is to demonstrate the feasibility of using Kohonen neural nets in

recognizing speech. A dual level system of two Kohonen neural nets accomplished this. The first

net breaks an utterance into a sequence of phonemes, a trajectory. The second net recognizes those

trajectories as distinct words.

In performing the study, I san deeply indebted to my faculty advisor, Dr. M. Kabrisky, for

his suggestions, support, and most particularly, acting as a sounding board for ideas. I would also

like to thank Capt S. Rogers for his assistance and suggestions.

Gary Dean Barmore

Aooossion Fo

PTIS GRA.&I
DTIC TAB 0
Uaan~ounced D1
Justiftiatio

D Pstribution/

Av-ahtility Codes

Aw l and/or

DIst I I

Table of Contents

Page

Preface .ii

Table of Contents..ii

List of Figures..iv

List of Tables. v

Abstract vi

1. Introduction. 1-1

Problem. 1-1

Background. 1-2

Definitions 1-2

Connected Speech 1-2

Speaker Independence. 1-3

Feature Set.. 1-3

Neural Net. 1-3

Trajectories 1-5

Dynamic Time Warping. 1-6

Scope. 1-6

Approach. 1-7

Sequence of Presentation. 1-7

11. Development Environment. 2-1

Sound Sampling 2-1

Software Development. 2-1

Run-Time Environment 2-2

Summary 2-2 -

iii

Page

III. Speech Recognition System 3-1

Preprocessing 311

W indowing 3-3

Fast Fourier Trnfrm.... f o m 3-4

Frequency Reduction 3-4

Average Subtraction 3-6

Energy Normalization 3-6

First Level Kohonen Neural Net 3-7

Training 3-7

Use. 3-10

Post-Net Processing 3-11

Rationale. 3-11

Method 3-11

Word Recognition Algorithms. 3-12

Dynamic Time Warping 3-12

Second Kohonen Neural Net. 3-17

Summary.. 3-22

IV. Results and Discussion..4-1

First Kohonen Neural Net..................................4-1

Trajectories.. .4-1

Dynamic Time Warping...................................4-7

Training Process 4-7

Stretch Factors. 4-8

Conscience. 4-9

Templates 4-10

Speaker Independent Speech Recognition 4-10

Second Kohonen Neural Net 4-11

iv

Page

Early Attempts.................................... 4-11

Tr~ajectory Input Nets................................ 4-12

Summary..41

V. Conclusions and Recommendations............................... 5-1

Conclusions...5-1

Dynamnic Time Warping................................5-1

Second Kohonen Net..................................5-2

Recommendations..5-3

Summary.. 5-4

A. Template Trajectories...A-1

B. Computer Programs..B-1

C. Software User's Manual.......................................CG-I

Introduction...C-1

The Backup Tape C- I

Dev..C-2

Lin...C-2

Net...C-3

Snd2..C-3

Snd3..C-3

Sndw... C-3

Sounds..C-3

Sounds2 C-4

Src...C-4

Test.. CA

Programs..C-4

Autofft..C-5

v

Page

Neuraff . -5

NeuraI20-7

NeuraI4 -8

Autodtw C-8

Ou t d a C-11

Twoba&4 -12

Twornask5..C-12

Twopic4c...C- 13

Twopic8b- 13

Twopic6b.......................................- 14

Twopic8c...0- 15

Twopic6c...C- 15

Coder..C- 15

Coderb...- 16

Summary..- 16

Bibliography..BIB-I

Vita... VITA-i

vi

List of Figures

Figure Page

1.1. A Sample Kohonen Neural Net...................................1-5

3.1. The Speech Recognition System..................................3-2

3.2. Hamming Windows..3-3

3.3. FFT Inputs and Outputs.......................................3-4

3.4. Frequency Reduction...3-5

3.5. Average Subtraction... 3-6

3.6. Energy Normalization............................ 3-7

3.7. DTW Array..3-14

3.8. A Simplified DTW Example 3-15

3.9. DTW Used for Scoring 3-18

4.1. Net SpeakI Trained with No Conscience 4-2

4.2. Net SpeaklO Trained with Conscience = 1.5......................... 4-3

4.3. Full Trajectory of the Word Zero................................. 4-4

4.4. Reduced Trajectory of the Word Zero 4-5

4.5. Reduction Process for the Word Zero 4-6

4.6. Net Path5 Trained with No Conscience 4-13

4.7. Net Pathil Trained with Conscience = 1.5 4-14

64.8. Net Path12 Trained with Conscience = 1.1 4-15

A-1. Reduced Trajectory of the Template Zero. A-2

A .2. Reduced 'Trajectory of the Template One. A-3

A .3. Reduced Trajectory of the Template Two. A-4

A A. Reduced Trajectory of the Template Three A-5

A .5. Reduced Trajectory of the Template Four. A-6

A.6. Reduced Trajectory of the Template Five. A-7

vii

Figure Page

A.7. Reduced Trajectory of the Template Six A-8

A.8. Reduced Trajectory of the Template Seven A-9

A.9. Reduced Trajectory of the Template Eight. A-10

A.1O.Reduced Trajectory of the Template Nine A-11

Ali1Reduced Trajectory of the Template Silence A-12

Viii

List of Table.

Table Page

4.1. Presentation of Inputs 4-7

4.2. Comparison of Stretch Factors 4-8

4.3. Tests of Clearly Spoken Connected Speech 4-9

4.4. Conscience in First Kohonen Nets 4-9

4.5. Conscience in Second Kohonen Nets 4-12

4.6. Scalar Input Net Tests 4-16

4.7. Conscience in 100 Scalar Input Nets 4-17

4.8. Accuracy of 100 X-Y Pair Input Nets 4-18

4.9. Differently Trained 100 X-Y Pair Input Nets 4-18

4.10. Scalar Input Nets Without Training 4-19

4.11. X-Y Pair Input Nets Without Training 4-20

ix

AFIT/GEO/ENG/88D-1

Abstrct

The purpose of this study is to demonstrate the feasibility of using Kohonen neural nets in

speech recognition. This is done by combining a first level Kohonen net with a word recognition

algorithm which is either dynamic time warping (DTW) or a second Kohonen net.

A digitized utterance is sliced and processed to obtain a sequence of 15 component vectors.

Each component corresponds to the energy in a selected frequency range. An utterance of the

digits zero through nine is used to train the first Kohonen net, After training, an utterance input

to the net produces a trajectory through the net. Each point on the trajectory corresponds to a

node and a particular sound.

These trajectories are input to a word recognition algorithm. The first of these, DTW, com-

pares unknown utterances to template utterances. It is a computationally intense, mathematical

algorithm, and it was used primarily to test the preprocessing and neural net training procedures.

The second algorithm is a second Kohonen neural net. Digits are assigned to each node so that

when an unknown trajectory is input to the second net, the node that "lights up" identifies the

utterance.

Using DTW, 99% isolated and 93% connected speech recognition rates are achieved. With the

second Kohonen net, isolated speech is recognized at up to 96%, depending upon the net format.

Recommendations for future effort include increasing the vocabulary, using multiple feature

sets and nets to attempt speaker independent speech recognition, and substituting a backward

propagation multi-layer perceptron net for word recognition. -

x
\/

- I

-- i i I I I i / I I I I Ix

SPEECH RECOGNITION USING NEURAL NETS

AND DYNAMIC TIME WARPING

L Introduction

As our society becomes more technically oriented, the ability to efficiently direct both ma-

chines and computers becomes essential. One very promising way of increasing that control is

through voice direction of computer controlled devices. Not only could the worker use hands and

feet to control conveyances, appliances, computers or weapons, he could also use voice.

However, in addition to simply expanding the number of methods by which devices are

controlled, voice recognition permits simplification of the interface process. Remember the last

time you tried to play a tape on your friend's new stereo? How long did it take you to find

the ON/OFF button? Imagine simply saying, "Stereo, power on". Considering the vastly more

complicated process of controlling a fighter aircraft, the anticipated benefits from voice control in a

cockpit are immeasurably greater. Thus, in today's complicated weapons environment, the benefit

to the military of a working voice recognition system is obvious.

Problem

Accordingly, the purpose of this effort is to demonstrate the feasibility of a speech recognition

system for connected speech-a system which uses neural nets to simulate the activity of neurons

and potentially take advantage of parallel processing techniques. The feature set used to charac-

terize speech, the neural net training process, and the word recognition algorithms (which process

the output from the ncural net) are varied to obtain the best performance.

1-1

Background

Unfortunately, the current state of the art in voice recognition does not allow an efficient

transfer of information between humans and machines. Speech recognizers limited to the speech

of one person, with distinct pauses between each word, have recognition efficiencies around 98%

(1:57)--in ideal or noise free environments (2:29-32). These recognizers fail when the speech

becomes continuous (without distinct pauses) or is not spoken by the one person who trained the

recognizer.

Attempts to have machines recognize continuous speech as well as speaker independent speech

are limited to small vocabularies, require immense amounts "' nputation, and are relatively

unsuccessful (1:56; 2:29; 3:74-76; 4). Speaker independent speech recognition, in particular, requires

using multiple templates (5:199) ; i.e., training the recognizer with more than one voice, thus

limiting the usable vocabularies because of the increased computation.

Attempts to use a form of parallel processing (or at least a serial simulation) to minimize

the impact of computation time include Kohonen's work with neural nets (6:15; 7:18; 8:184; 9).

However, his work is directed more towards producing a phonemic transcription of speech rather

than actual whole word recognition.

Problems involved in using neural nets to recognize speech include choosing the feature set

with which to train the net (the age old problem of traditional pattern recognition), finding a net

with the optimum performance, and processing the net output into actual words and sentences.

Definitions

Connected Speech. Since the problem involves recognizing connected speech, a definition

is essential. Connected speech is simply an utterance in which distinct pauses are not inlentionally

provided between words. When distinct pauses are included, the utterance is identified as isolated

speech. In connected speech, words may be pronounced distinctly (that is, the pronunciation is

1-2

not chopped or smeared) or they may be run together (where the words are chopped or smeared

at the boundaries). Additionally, the speed with which words are spoken varies. Typically, when

isolated speech is performed, words are spoken more slowly than during typical conversations. The

difference in speeds becomes an important factor in properly processing the neural net output into

recognized words.

Speaker Independence. While the same person generally pronounces the same words simi-

larly time after time, different individuals have different speech organs and distinguishably different

sounding voices. In addition, a person from the Midwest pronounces words differently than someone

from the South. Such differences create significant problems in recognizing speaker independent

speech. Accordingly, the speech recognition system described here is developed using speaker de-

pendent utterances.

Feature Set. A feature set represents or characterizes utterances in such a way that they

are distinguishable from other utterances. Usually, the feature set characterizes only a small slice

of time, thus requiring a sequence of slices to represent the whole utterance. Hence, the speech

waveform is broken up into distinct time slices (possibly overlapping) which are then transformed

into vectors defined from the chosen feature set.

For example, in this research, the feature set is the narrow band frequency spectrum. The

components of the vectors representing each time slice correspond to the energy in sequential

frequency bands. Thus an appropriate transformation is either the fast Fourier transform (FFT)

(10:272-285) or a fast Hartley transform (FHT) (1I) with some postprocessing to reduce the number

of frequency bands to a usable number.

Neural Net. After the feature set is chosen and the representative utterance is sliced up

and transformed into vectors, it is time to train and use a neural net.

The neural net simply approximates or simulates a set of interconnected neurons. In the

1-3

present work, a 'Kohonen neural net" (6:15-18; 7:18-20; 8:182-185) is a simplified simulation of a

single two dimensional layer of interconnected neurons. Each node in the two dimensional Kohonen

net corresponds to a neuron and is associated with a set of weights. The weights correspond to the

strength of the connection between the inputs and each node, and can alternatively be thought of

as multi-dimensional vectors (in a hyperspace) which characterize the respective nodes.

For example, if each input to the net consists of 15 components (such as a 15 component vector

corresponding to a spectral slice of a speech waveform), each node is associated with 15 weights.

The output of each node, corresponding to a given input, is the summation of the products of the

weights to that node and the input components:

N

Yj = D..dxj (1.1)
j=

where yj is the output of node i, N is the number of input components, Wi," is the weight connecting

the i node to the j" component of the input, and zi is the value of the j" component of the

input. For clarity, let the set of weights associated with a node be called that node's "weight

vector". Figure 1.1 shows the relationship between the nodes, weights, and inputs in graphical

form for a net having four nodes and two input components. The figure includes the equations

describing a node's output as well as the weight update process (described in detail in Chapter [I).

Training the net with a set of input vectors results in the weight vectors of the nodes approxi-

mating the input vectors. Also, the weight vectors associatcd with nodes in localized regions of the

neural net tend to be similar to one another; i.e., the Euclidean distances between weight vectors,

corresponding to a local region of the net, is relatively small.

Another way to think of a Kohonen net is as a codebook. If the input vectors representing time

slices are thought of as phonemes, each node's weight vector represents a characteristic phoneme

from the training set. Thus, when a phoneme is input to the net (as an input vector), the node

1-4

X, X,

OUTPUT: 1 -1'i X1

TRAINING: W.J,. (tI) = .,(t) cJ(t) (x,(t) t ,j (t

Figure 1.1. A Sample Kohonen Neural Net. The first Kohonen net in this system
actually has 225 nodes (in a 15 by 15 array) and 15 inputs.

(i) whose weight vector represents that phoneme will have the largest output (yi). Obviously, each

weight vector is just one of the codes from a codebook.

Toectories. After a net is trained with an utterance representative of the vocabulary to

be recognized (by repeating the utterance many times), the net is ready to characterize speech.

Given an input, only one node of the net most closely resembles the input. Thus a sequence of time

slices or vectors generate a trajectory through the neural net, with each point on the trajectory

corresponding to the node most closely resembling the respective input vector.

1-5

Hence a neural net characterizes an utterance by a unique trajectory. It is these trajectories,

whether they correspond to a single word, a string of spoken digits, or a sentence, which are

processed to obtain the content of an utterance.

The trajectories may be thought of as either pictures of a complex meandering line or as

sequences of two dimensional coordinates. The former representation suggests using traditional

pattern recognition algorithms for processing images. The latter suggests traditional speech recog-

nition processes such as dynamic time warping (DTW) (12:263-271; 13:Ch 3,6-16) or state tran-

sition mapping (14). This work examines the latter processes (DTW in particular) as well as the

possibility of using a second neural net to process the Kohonen net output.

Dynamic Time Warping. A method is needed to evaluate the performance of different

nets. For this purpose, Ney's one step dynamic time warping algorithm (12) is useful. This

algorithm allows a near optimum recognition of connected speech while minimizing errors due to

word boundaries and stretching of words during pronunciation.

Running a standard set of utterances through a net and then a dynamic time warping algo-

rithm characterizes the performance of the net (including its training procedures and the feature set

chosen for speech characterization) by the percentage of words correctly identified. Doing this for

several nets (or feature sets) permits comparison of the nets (or feature sets) based on the variable

being changed. And of course, this algorithm also provides a version of the last step in a speech

recognition system, the word recognition algorithm.

Scope

The evaluation and selection of feature sets, the neural net training process, and the trajectory

processing algorithm are all based upon a vocabulary of the spoken digits zero through nine. A

set of standard utterances consisting of both single and connected digits is used to compare and

optimize the various processes in the system.

1-6

Initial evaluations use the standard set of utterances and the one step dynamic time warping

algorithm to evaluate both the feature sets and the neural net training process. Both DTW and a

second Kohonen net are evaluated as word recognition algorithms.

Approach

In developing a system to recognize connected speech, the first task is to select a feature set.

Once the feature set is selected, alternate training procedures for the Kohonen net are evaluated.

After the net training process is tuned for optimum performance, by testing standard utterances

with DTW, comparisons are made between likely algorithms to process the net trajectories and

provide the sequence of words contained in the input utterances. Algorithms considered include

variations of dynamic time warping (12; 14), state transition (15), phoneme analysis (16), reduced

phoneme trajectories (17), fuzzy set analysis (18), and a second neural net. Time considerations

limited tests to dynamic time warping and a second Kohonen neural net.

During each step, the evolving system is evaluated for its utility in recognizing both connected

and isolated speech.

Sequence of Presentation

Chapter two presents the hardware and software environments used to digitize and process

the utterances. Chapter three defines the speech recognition system and describes alternatives

that were evaluated. Details are provided on each step and algorithm in the recognition process.

Chapter four presents the results of the tests on those versions of the system which demonstrated

reasonable performance. Results include tests for speaker dependent, isolated and connected speech.

Chapter five provides conclusions and recommendations for further application and expansion of

the recognition system. The Appendices contain additional data and the computer programs.

1-7

I1. Development Environment

Every speech recognition system requires an analog to digital (A/D) convertor to sample

the sound. This was provided by a Digisound Professional cartridge attached to an Atari 520

ST microcomputer. The sound data files were transferred to a VAX 11/780 where they were run

through preprocessing and FFT routines.

All computer programs were developed rn the VAX 11/780 in the C language under the VMS

operating system. Most of the proxyt.A were run on either Micro-VAX 1I's or IIl's.

Sound Sampling

The Digisound Professional digitizer cartridge for the Atari 520 ST has a sampling range of 5

to 40 kHz. It takes eight bits (one byte) per sample in either a normal or logarithmic mode (where

logarithmic mode allows a greater dynamic range than the normal mode). The data files generated

by the Digisound software contain eight bytes of header information followed by N bytes of sound

data, where N is the product of the number of samples per second times the number of seconds

of data recorded. The format of each byte, assuming sound data has positive and negative values

ranging about an average value translated to zero, has the negative values (-128 to -1) translated

to the (+128 to +255) range by addition of 256.

Most of the data files generated for this work were sampled logarithmically at 16 kHz. Normal

mode sampling was tested on a small amount of sound data and found to not significantly affect

the performance of the system (at an early point in the system's development). The selection of 16

kHz and logarithmic sampling was arbitrary, but -assured a "good" characterization of the sounds.

Software Development

All software was developed on a VAX 11/780 running the VMS operating system. Programs

were developed exclusively in the "C" language using the Graphics Kernel System (GKS). The use

2-1

of C and GKS permits porting of the system to other host computers with only minor software

changes. Additionally, all sound files were stored on the VAX 11/780. This permitted one back-up

tape to record all essential sound and program source files.

The programs were developed in a modular fashion. Generally, each step in the process was

tested as it was developed. The use of *.com files (corresponding to the MAKE utility on UNIX

machines) allowed modular compilation of routines and quick linking into executable modules.

Run-Time Environment

Most of the programs developed on the VAX 11/780 were run on either a Micro-VAX II or Ill.

The exception to this was the transformation of sound files (*.snd) into files containing frequency

domain vectors (*.trn) and dynamic time warping routines. These two sets of software were usually

run real-time on the VAX 11/780 at about one million instructions per second (I MIP).

All other software was usually run batch (on the Micro-VAX III at 3 MIP) or required GKS

graphics (on the Micro-VAX II at .7 MIP). The software run on the Micro-VAX machines included

training and testing of the neural nets.

10m
Summary

A concise summation reveals the Atari 520 ST as the host for speech digitizing and VAX

machines for all other work. Coding was done in C using GKS for graphics and VMS as the

operating system. Finally, after identifying hardware and software used for development, its about

time to describe the speech recognition system itself.

2-2

11. Speech Recognition System

The speech recognition system consists of a preprocessor, a first level Kohonen neural net,

post-net processing, and a word recognition algorithm. The word recognition algorithm is either

a dynamic time warping (DTW) algorithm or a second Kohonen neural net. The dynamic time

warping algorithm works for either isolated or connected speech, while the second Kohonen neural

net provides acceptable results only for isolated speech (with only limited continuous speech testing

of the second Kohonen neural net). Figure 3.1 diagrams the steps in the system. Each step is

0• described below in detail.

Preprocessing

C
This stage of the system was developed before the word recognition algorithm (see the section

on Word Recognition Algorithms) and remained essentially unchanged after the initial development

* period. The preprocessing method was "frozen" when it created "reasonable" reduced trajectories

(see the section on Post-Net Processing) through the first Kohonen neural net. Thus, it is possible

that other, possibly simpler, preprocessing schemes will work as well, or even enable better overall

system performance.

The preprocessing was initially very simple. The sound data, sampled at 16 kHz, was broken

up into consecutive non-overlapping windows of 128 samples each. Each slice was run through an

FFT routine to produce a set of 64 complex frequency coefficients. The amplitudes of these 64

frequencies were reduced to a set of 15 values corresponding to 15 frequency ranges. The extent of

each range increased linearly as the frequency increased. Thus, for each time slice of 128 samples

a 15 component vector, representing the frequency domain of the slice, was produced. The finalC
preprocessing step was energy normalization of each vector to remove variations in the volume of

the utterance.

(3-
3--1

.. ..(--- a ni l ~ e a i| III. .

PREPROCESSING

DiitzeKamming F
UttraceWindows (Z56 Points)

* Energy Average Frequency
Normalization Subtraction Reduction

FIRST KOKONEN NET

C N Kohonen

* Traiin Net________I

______j POST-NET PROCESSING

Trajectory
Reduction

IWORD RECOGNITION ALGORITKM

Kohonen Net
DTW Net Training

Figure 3.1. The Speech Recognition System. The second Kohonen net is de-
veloped and tested as an alternative to DTW as the word recog-
nition algorithm.

3-2

0 A

. ... " 0.'!, . h

t

I Window #l -- Z56 samples L 3,

o1m Window 02 -- 256 samples I as Un

5.3 a Window 33 -- 256 samples j

10t6 m"

€
Figure 3.2. Hamming Windows. The ringing effects caused by rectangular

windows are reduced by using hamming windows.

• Unfortunately, this initial preprocessing scheme did not work. However, at this point, the

preprocessing procedure was evaluated using untested first net training procedures and the full (not

reduced) trajectories through the net. Accordingly, the following set of procedures was developed.

Because of the reservations just listed, it is possible that this set provides more processing than is

necessary.

Windowing. A hamming window reduces the high frequency ringing effects that would be

caused by sampling speech with a rectangular window. And, since the period represented by each

time slice is very short, the window length is increased to 256 samples. Thus, each hamming window

covers 16 ms. An overlapping scheme of 3:1 is used to minimize boundary effects of the hamming

windows. Thus, each 16 ms window begins 5.3 rns after the start of the prior window. The relation

is depicted graphically in Figure 3.2. Please note that the sound envelope is shown compressed in

time simply to assure that the viewer recognizes the data as that for speech.

3-3

C

Z56 Samples FFT 8 Freuenoy
Amplttu e 3

Figure 3.3. FFT Inputs and Outputs. The 128 complex coefficients are con-
* verted to positive amplitudes; the phase data are thrown away.

Poet Fourier Transform. A typical 256 point complex FFT routine processes each 256

0 sample hamming window. The imaginary components of the input are set to zero. The amplitudes

of the resulting 128 frequency components are calculated from the real and imaginary outputs.

This array of amplitudes is passed to the next preprocessing step. To complete the pictorial

0 representation of preprocessing, Figure 3.3 is included.

Frequency Reduction. To reduce the time to obtain trajectories, the 128 amplitudes are

reduced to 15. In speech, since there is less energy at the higher frequencies, a nonlinear compression

of the frequencies provides some equalization of the spectral amplitudes (energies). In this work,

a pseudo-logarithmic (nearly quadratic) reduction is used. In general, this allows a one-to-one

transformation at the lower frequencies and simple summation of amplitudes from ever larger

groups at the higher frequencies. It should be noted that the human auditory system uses an

approximately logarithmic coding of frequencies.

I This mapping was set up to provide a 15 component vector corresponding to each time slice

(window) where each component on the average is of the same order of magnitude. Figure 3.4

provides some additional detail on the actual mapping.

3

3-4

•(-.. ,l.ii sin t Iiiilil !I

tt

_ It I S I t I I I I s=

I t(4 ± T I I0 1 g If. ji~8

(Throw *go lowest 2)

Figure 3.4. Frequency Reduction. After reduction, the sounds are still sepa-
rable, but can be manipulated more quickly.

3-5

A7

A

Figure 3.5. Average Subtraction. This process distributes the input vectors
throughout a 15 dimensional hyperspace-not just the positive
sector.

Average Subtraction. Since each slice is reduced to a 15 component vector, a sequence of

slices can be thought of as a trajectory through a 15 dimensional hyperspace in which only the

positive sector is used.' By finding the average value of the 15 components and then subtracting

that average from each component, the components become both positive and negative, and all

sectors of the hyperspace are used. This is shown in Figure 3.5.

Energy Normalization. Energy normalization of the 15 component vectors has two bene-

fits. The first is that variations in the loudness of the speech will not create differences in the same

sound's vectorial representation. Hence a word can be recognized no matter what its volume-

assuming no other differences in pronunciation. Figure 3.6 shows the normalization process in

terms of a unit hypersphere.

The second advantage of energy normalization is that neural net processing of normalized

inputs allows use of dot products in place of Euclidean distance calculations (see Equation 1.1).

I Each frequency amplitude resulting from an FFT is defined as a positive value. And sums of these amplitudes
am assigned to the is components of each vector. Thus all components of the vectors are positive. The positive
sector in a hyperspace contains all of those vectors and is simply that region where all the coordinates of a point are
positive.

3-

.... 'mu" " m ants n l agiif i N l+l~ill -3-I6

iO VlUnit

0 Hypersphere vI
Leng thened

Hypersphere

m Shortened

C

Figure 3.6. Energy Normalization. Variations in volume are removed when
each slice is normalized to one.

* This improves the speed of net training, testing, and use.

Pirst Level Kohonen Neural Net

Preprocessing produces a file that consists of a sequence of normalized 15 component vectors.

Each of these vectors, when applied to a Kohonen neural net, will "light up" a node. A node is

defined as "lighting up" when the distance between the node's weight vector and the input vector
(.

is smaller than the distance between any other node's weight vector and the input vector. Hence, a

sequence of input vectors (corresponding to the slices of an utterance) is represented by a trajectory

of nodes lighting up.
(

Training. To get trajectories to use as templates for known words or as representations of

unknown utterances, one must first have a trained net. The purpose of training the net is to get

a two dimensional representation of the 15 dimensional space which produces: (a) very similar

3-7

.. . ..(mm iImnmIlmm lmmlmm[

trajectories for different utterances of the same word, and (b) significantly different trajectories for

utterances of different words. If these two requirements are not met, word recognition will not be

successful.

Size. But what size net can meet these requirements? Since the vocabulary is the

digits zero through nine, the number of significantly different sounds in those words should dictate

the size of the net. Using an arbitrary set of phonemes (sounds), the ten digits were broken up into

combinations of about 20 different phonemes. Assuming each region on the neural net corresponds

to a phoneme, and assuming the reasonable size of a region is 9 nodes (to allow variations), the

desired rectangular net has at least 180 nodes. This allows 9 versions of each of the 20 phonemes

and theoretically accounts for most differences in pronouncing the same word. Thus, to allow

margin for background noise in the training input data, the net was chosen to be 15 by 15 (a total

of 225 nodes) with 15 weights per node.

* Initialization. The weights for each node are initially assigned random values between

-0.05 and +0.05. Since the inputs are normalized to unit energy, the average input component

(corresponding to a weight) is zi,. = -0258=

Training Cycles. The actual training of the net requires applying an input (a 15

component vector) and updating the node's weights. This cycle is done repeatedly. The actual input

vectors are chosen sequentially from an utterance which contains the spoken digits, in sequence,
4L 0

with brief pauses between words. When the number of training cycles is greater than the number

of vectors (slices) in the training utterance, the training utterance vectors are simply applied again.

The final nets were trained between 90,000 and 150,000 iterations (cycles). In analyses of early
I

tests, most of the weight changes were accomplished within the first 10,000 iterations.

Random application of the vectors and random application of the words were also tried, but

resulted in no improvement in recognition accuracy.

3-8

.. 1 i i I I lC... II -":I -

Neighlbolioods. As previously described, when an input vector is applied, a node

lights up. During any training cycle, only the weights of those nodes, in a neighborhood about the

node that lit up, are updated. Of course, the neighborhood includes the node that lit up.

Neighborhoods are rectangular 2 in shape, and are truncated (where applicable) at the edge

of the net. Neighborhoods are specified by their radius (or half their length and width). Thus a

neighborhood specified as '4 3' actually includes an array of nodes sized 9 by 7. A typical training

process on a 15 by 15 net running 90,000 iterations starts with neighborhoods sized '7 7' and

linearly reduces them to ' I' at iteration number 20,000. Thereafter, the neighborhoods stay at a

constant '1 1'.

In the training processes used here, neighborhoods are never reduced to only the node which

lit up. Since the minimum neighborhood includes the nearest neighbors, weights in complete regions

(nine nodes) will be adjusted during all training cycles.

Gains. A gain curve specifies how much the weights of each node are changed during

each training cycle (within the specified neighborhood). Outside of the neighborhood, node weights

are not changed. Typical gain curves are piecewise linear in two sections. For example, the gain

might start at 0.1 and reduce linearly to 0.0 at 20,000 iterations. Thereafter it might reset to 0.01

at 20,001 iterations and reduce linearly to 0.00 at 90,000 iterations.

The actual equation used to update a weight within the given neighborhood is:

w,,j 0 + 1) w,j(t) + at)(zi(t) - ,i)) (3.1)

where w is the weight connecting node i to the jh component of the input z, t is time (or cycle),

and a is the gain.

Conscience. While training a Kohonen neural net as described above, one usually

finds that several nodes in the net (during the training cycle) are not often lit up by the inputs.
2 AIthouagh the software allows neighborhoods to be rectangular, all of the nets in this effort were trained uaing

square neighborhoods.

3-9

This results in under-training of certain nodes and a corresponding under-utilization of the same

nodes during later use of the net. Specifically, the possible set of trajectories representing the

chosen vocabulary will never, or seldom, include some of the nodes.

This is a problem only if different classes (regions in the 15 dimension hyperspace representing

different sounds) tend to be pushed together in a region of the net, not allowing sufficient resolution

for adequate speech recognition.

One possible cure for such a problem is applying "conscience". The name is derived (rumor

has it) from the assumption that given a large enough set of random inputs, any node should light

up with equal probability. Supposedly, the net training routine is "bugged" when this does not

occur and thus activates its "conscience".

The version of conscience used here is simple. It assumes that during training, the inputs

should have lit up each of the nodes about an equal number of times at every cycle of the training

process. Thus, when the program is searching through the 225 nodes to find the one that lights up

(for each cycle), it does not consider those nodes which have already been lit up too often. The

routine specifically uses the following equation for eligibility of the node:

• < (t (3.2)

n

where c is the number of times node i has been lit up prior to time (cycle) t, n is the total number

of nodes, and 0 is a conscience factor (usually 1.5).' If the consci- , factor is changed to any

number much greater than 1.5, the program effectively implements no conscience. If Equation 3.1

is true for a given node, it is eligible for consideration as the closest node to that input.

Use. After the net is trained, it is ready for use. Using a net is the same whether the desired

output is the trajectory for a template (a known utterance) or an unknown utterance. A sequence

of 15 component vectors, prepared by preprocessing, is presented one at a time as input to the
3
Note that even if a node is not eligible as the closest node to a given input, its weight vector will still be updated

if it is within the neighborhood of the node that did light up. When a node's weight vector is updated this way, the
value of c, is not incremented.

3-10

C

net. The resulting sequence of nodes that light up is the output-a trajectory. The length of the

trajectory equals the number of slices (windows) generated in preprocessing.

Depending on the use of the output, the nodes are identified either as an x-y coordinate pair

or as a scalar. When the x-y representation is used, the range of both x and y is 0 to 14. When

the nodes are represented as scalars they range from 0 to 224 with 0 to 14 assigned to the first row

of nodes and 210 to 224 assigned to the last row.

*@ Post-Net Processing

After a trajectory is generated it can be input to a word recognition algorithm such as DTW

or a second Kohonen neural net. However, examination of typical trajectories suggests that some

0 post-net processing be applied prior to using a trajectory as input to a word recognition algorithm.

Rationale. One expects the trajectory to stop at certain places on the net for periods of

* time. Such pauses in the trajectory should correspond to the pronunciations of distinct vowel

phonemes4 within each word. Of course, because of the dynamic nature of human speech, one

would expect a given phoneme to wander within a region of the net (assuming the net trained each

phoneme to a specific region). And if the net trained any given phoneme to more than one region

of the net, a trajectory might pause either on multiple, non-adjacent regions during a phoneme's

pronunciation or on different regions during different utterances of the same word. But in any case,

IL the expected trajectory is a sequence of pauses at certain locations with transitory jumps between

those pauses. This is observed. Since the transitory jumps between pauses are inconsistent between

different utterances of the same word, one expects their elimination to improve accuracy.

£ Method. The actual implementation requires two passes through a stored trajectory. If any

point on the trajectory is not within two node units (using the x-y coordinate pair representation)

of another point on the trajectory within two time slices in either direction, it is eliminated. In the

4 Even if the phonemes are arbitruily defined.

3-11

(

second pass, all points on the trajectory which are not part of three consecutive points, each point

within two node units of the others, are eliminated.

This procedure leaves only those points on the trajectory that pause in a given phoneme

region for at least 26.6 me (three overlapping time slices). Phoneme regions sized differently than

two node units were not tested. This processed trajectory is called a "reduced trajectory".

Tests were run on both the full trajectory, the reduced trajectory, and a reduced trajectory

with consecutive pauses at any particular node reduced to one point on the trajectory. The second

0 form (the reduced trajectory) performed best.5

Word Recognition Algorithms

Two generic types of word recognition algorithms were developed. The first was an imple-

mentation of Ney's one pass dynamic time warping algorithm (DTW) (12). This DTW algorithm

permits recognition of either isolated or connected digits. Unfortunately, it is rather time consum-

ing. Thus, a second Kohonen net was also developed to recognize words. The second Kohonen

net can recognize isolated words, but does not approach the performance of DTW in recognizing

continuous speech.

Dynamic Time Warping. Ney's one pass dynamic time warping (12) was adapted almost

unchanged using the output of the first Kohonen net. The significant changes are the much simpler

inputs (trajectories), testing of the "stretch" factors, and adapting the routine to test a set of

standard utterances automatically.

Description. Although significant memory can be saved by coding shortcuts, it is
I

easiest to describe the algorithm by thinking of one large array. Figure 3.7 shows a simplified view

of a completed array. Assign to each column one vector or time slice of the utterance under test.

In the process here, that vector is an x-y coordinate pair corresponding to a point on the reduced
5See Figures 4.3 through 4.5 for examples of full and reduced trajectories and the reduction process.

3-12

I1

€I

trajectory. The first column is assigned the first vector, the last column the last vector. To each

row is assigned a vector from one of the II templates. The templates are typical utterances of the

ten digits, one each, and a short period of background noise (silence). Thus, the first vector of the

digit zero is assigned to the bottom row and the last vector of the trajectory for silence is assigned

* to the top row. Silence is included since it is part of any recording of natural speech. Using a

template for silence alleviates the need for trimming such periods from a digitized recording.

To explain DTW and how the array is processed, first assume a simplified array with only one

'S template (e.g., a two) and an utterance to be identified which also happens to be a two. Vectors

from the two trajectories are assigned to the rows and columns of an array. The size of the array

obviously depends on the lengths of the trajectories. Fill in the array by assigning to each element

C the distance between the vectors assigned to that element's row and column. Now, if both words

were spoken identically, the diagonal would be filled with zeros.

Of course, the same word, spoken twice by the same person can be either longer or shorter, and

generally is stretched non-uniformly throughout the utterance. The DTW algorithm tries to find

the best possible match between two words despite such stretching. To do so, the algorithm starts

at the bottom left element of the distance array (just generated) and finds the shortest cumulative

path to the upper right element. Any path can go diagonally (the theoretical best match), right

one element (utterance stretched more than template), or up one element (template stretched more

than the utterance). Factors are assigned to each of these directions which show preference for the

direction and amount of stretch expected by the programmer. Figure 3.8 demonstrates this process

with two short, hypothetical twos.

Thus, the cumulative minimum path, V, is assigned a value according to the following equa-

tions:

V = min(6)i = in(- -' de.')' (3.3)

where V represents the best match between the two trajectories, i represents all possible paths

3-13

..C amlai l ~l~lI . .

SIL

a

7

s 4

3

z

0

2 5 5 3 0 3 0

UTTERANCE UNDER TEST

Figure 3.7. DTW Array. The problems caused by stretching and word
boundaries are handled efficiently in a one-pass dynamic time
warping algorithm.

3-14

() Dtstanoe Array

(9.8) 15 7

Template (4.6) 8 0 7
Two

(45) 7 1 8

(0 1) 1 9 16

(I .) (4.6) (8.)

Test Two

(a) Stretch Factors

Gig I

~C,= I

(3) Cumulative Minimum Paths

(9 8) 31 9 4

Template 4,6 16 9
Two !

(4 5) 8 2 '10

(0.1) 1 10 26

(I 1 4.6) (8 9)

Test Two

Note The cumulative minimum path is in bold

characters V equals 4

Figure 3.8. A Simplified DTW Example. This simple problem shows how the
basic routine works when the utterance under test is compared
to only one template.

3-15

through the distance array, -I" is a coefficient depending on which of the three possible directions,

j, is chosen (usually 1, 0.75, and 0.75 for diagonal, right, and up), and d,,, is the distance between

vectors assigned to row r and column c. If values of V are found for a given unknown utterance

when compared to each of the 11 templates (in 11 arrays), the unknown utterance is probably the

word represented by the template with the smallest V.

In the simple case where one unknown word is compared to one template (doing this eleven

times), the coding to find V is simple. Just start at the bottom of the left column of the dis-

tance array and proceed upwards-column by column. As each element in the array is reached, a

cumulative minimum partial path value is assigned to the same element of a different array (of

the same size). The partial path value is found by adding the distance assigned to that element

* (multiplied by the appropriate stretch factor) to the minimum value chosen from the partial values

calculated for the elements to the left, diagonal, or down directions. Thus, the value of V is just

the cumulative minimum partial path value of the top right element.

When the unknown utterance contains connected digits, the process is slightly more compli-

cated and the array of Figure 3.7 must be used. The same column by column calculations are made

(proceeding upward through each column), but special rules take effect as template boundaries are

crossed. When a boundary is reached, one assumes either a word just ended or else stretch is occur-

ring in the existing word. Thus, at the first row after each template boundary, the minimum partial

value is chosen from the elements corresponding to the last row of each template (words ended) in

the prior column, and the element just to the left of the one under consideration (stretching of the

word). Finally, one must also assume that the end of the trajectory for the utterance under test

corresponds to the completion of a digit (or silence).
0

To find the contents of an utterance, the minimum path through the array is traced from the

upper right element to the lower left, tracing out the various templates as the path progresses. As

mentioned earlier, there are coding schemes which do not require saving more than two rows of

3

3-16

I

pointers and two columns of partial path values at any one time.6

Stretch Factors. The stretch factors assigned to the three path directions seem to

have a large impact on the success of recognizing both isolated and connected digits. The greatest

success was found when factors of 1.0, 0.75, and 0.75 were assigned to the diagonal, right, and up

directions, respectively. This differs from Ney's suggested values of 1.0, 2.0, and 0.5. The best

values actually depend on the specific utterances used.

Automatic Scoring. As previously mentioned, a set of standard utterances and tem-

plates are used to evaluate the success of particular versions of the system. To minimize the

operator's efforts, an automatic scoring routine was developed.

A scoring DTW array is used where sequences of digits are assigned to the rows and columns.

For example, if the utterance is known to be the words 1-2-3, those integer values are assigned to

the three rows of the DTW array. After running through the DTW process described earlier, tile

utterance might be found to be 1-2-4. Thus, 1, 2, and 4 are assigned to the three columns of the

scoring DTW array. The distances assigned to each element are either zero or one. Zero is chosen

if the row and cclumn match; one if they do not. Figure 3.9 shows this example.

The stretch coefficients are set to 1.0, 0.5, and 1.0 for diagonal, right, and up directions. In the

scoring DTW array, these correspond to a match that is a substitution (or correct). an insertion, or

a deletion. Therefore, when V is calculated it becomes the number of errors. Knowing the number

of actual digits in the utterance allows calculation of the percentage coirect.

Second Kohonen Neural Net. Obviously, the computation time needed to use a DT\V

algorithm increases in direct proportion to the size of the vocabulary (number of templates) to

recognize. In an attempt to reduce computation time, a second Kohonen neural net was evaluated

as an alternative to the DTW algorithm.
6 See the routine "cdtw" in the program "autodtw" in Appendix B. page B-48.

3-17

(I) Distance Array

T 3 I 1e

2 1 0 1
a
t 1 0 1 1

2 4

Test

(2) Stretch Factors

Insertion 0.5

Substitution or
Correct=I

Deletion I

(3) Cumulative Minimum Paths

T/

3 z I I
m I
? 2 1 0 0.5

a
t 1 0 0 5 1
e

2 4

Test

Note The cumulative minimum path to the upper

right element is the number of errors

Figure 3.9. DTW Used for Scoring. This example shows how DTW is
adapted to automatically score the results of a test of connected
speech recognition.

3-18

Inputs. Because DTW works well on reduced trajectories, the "reduced trajectory"

contains enough information to identify words. But trajectories vary in length and cannot be energy

normalized without destroying the information.

Thus, the first form of input considered was simply a set of 225 values corresponding to the

225 nodes of the first net. Each value is the number of times the trajectory hit that node. The

second idea is not as simple, but includes more information in the input vector. When a slice

(vector) is input to the first net, it produces an activation surface identified by 225 values (the

dot product of the input vector with the node's weight vector for each node). Summing7 these

surfaces produces a composite surface which might have local maxima where the trajectory paused

longest. Both forms of input can be normalized. However, they inherently do not contain the

* time dependent information in the trajectories. Success was not achieved using either nf these

techniques.

Alternate forms of input vectors which retain the time dependency are either a set of 200

values corresponding to 100 x-y coordinate pairs or 100 values corresponding to 100 scalars. Both

sets of values are simply "reduced trajectories" through the first net. The vast majority of isolated

digits produce reduced trajectories of less than 100 points. When the trajectory lengths are less

than 100 points, both of the alternate forms of input vectors are filled with -i's to maintain a

constant length input. Both of the alternate forms were reasonably successful.

Size. The desired output is either one of the 10 digits or silence; that is, eleven words.

Assuming some variation in the words, regions of nine nodes should adequately represent each word.

Thus a net of 10 x 10 nodes provides more than the 99 nodes desired. The number of weights in

*! a node's weight vector is either 100 or 200 depending on the form of input selected (scalar or x-y

pair).

7Summing two surfaces simply adds the height at any point on one surface to the height at the corresponding
point on the second surface.

3-19

I

Training. Training is very similar to that of the first net. The biggest difference is

that here the number of training input vectors is the same as the number of nodes. In the first net,

the number of inputs was almost an order of magnitude larger than the number of nodes.

Additionally, initial weights are randomly assigned from sets consisting of the integers from

0 to 225 (where the inputs are 100 scalars) or 0 to 14 (where the inputs are 100 x-y coordinate

pairs).'

Traditional Training. Two sets of training inputs were selected and used for

various nets. The first of these was a set of 100 words, 10 each of the 10 digits. The second was a

set of 91 words, 9 each of the 10 digits and 1 example of silence.

Training runs included cases for no conscience as well as conscience factors of 1.1 and 1.5. To

account for the decreased eligibility of nodes during training with conscience, the training process

was increased to 150,000 cycles.

Upon completion of each net's training, the set of training inputs was applied to the trained

net. With no conscience, only about 58% of the nodes light up. This implies a need for conscience

in training the second net.

Finally, there is an obvious question implied by training a net with 100 scalar inputs. The

nodes are made to reflect the inputs by pulling their weights towards the input components. But

two points on a trajectory can be adjacent nodes on the first net while being 15 units apart on

the scalar input representation. Thus, can the existing training process be effective in overcoming

those 15 unit discontinuities?

Abbreviated Training. Clearly, using a second net is little more than select-

ing a set of codebook trajectories. As such, does one expect training to generate 100 codebook

trajectories that are better than an arbitrary 100 original trajectories (10 each of the 10 digits)?

gNote that when scalar inputs are used, both the scalar input components and the initial node weights are scaled
by 2- to keep the values in the range of zero to one.

3-20

To answer this question, nets were generated for each of the two forms of inputs (100 scalars

* and 100 x-y coordinate pairs) without any training. In these nets, the reduced trajectories for ten

examples of each digit were assigned directly to the weight vectors of each row of nodes. No other

training was provided.

Use In Isolated Speech. Once a net is trained, a digit is assigned to each node.

Thereafter, when a reduced trajectory is applied to the input of the net, the net identifies the input

as the digit assigned to the node that lit up.

Digits are assigned to nodes by comparing the weight vector of a node to the trajectory

representations of a set of 100 digits (ten each) not used in training the net. The digit whose

trajectory is "closest" to the node wins. Finding the "closest" trajectory involves either Euclidean

distance or performing a mini-DTW.

Euclidean Distance. In this case, tl~ distances are simply the sum of the

0m squares of the differences between the weights and input components. At times, a TAXI distance

is used rather than Euclidean. In TAXI space, distance is the sum of the absolute values of the

differences between the weights and the input components

Dynamic Time Warping. When DTW is used, the 100 scalar trajectories are

converted to 100 x-y coordinate pairs. The lengths of the utterance and template trajectories are

always adjusted to eliminate the portion of the trajectories filled with trailing -l's. Use of DTW

to find the closest digit considers the variations in stretch inherent in any utterance.

Use In Connected Speech. To use the second Kohonen net to identify connected

speech, the same training and node assignment procedures are used. However, the methods tested

to identify connected speech used only DTW to identify the closest node.

Each slice of the utterance under test is assigned a digit and a distance. The slice in question

3-21

.4 l II ..

and the following 99 in the sequence are used to generate a trajectory through the first Kohonen

net. The trajectory is then used to find which node lights up in the second Kohonen net. The

comparison method here is DTW where the template and utterance (trajectory) lengths are both

assigned the number of weights in the appropriate node's weight vector which are not -l's. The

digit assigned to the node which lit up is the digit assigned to the slice. That slice is also assigned

a weight or distance which is merely V (the cumulative minimum path distance) normalized by

dividing it by the number of array elements in the minimum cumulative path.

Thus, when a sequence of distances assigned to a sequence of slices (i.e. an utterance) has

an obvious local minima (one that lasts for more than about 50 ms and is at least 100 ms from

another minima), it is assumed that the utterance begins a new digit at that point. In particular,

it begins the digit assigned to that slice. In turn, the sequence of digits assigned to the sequence

of local minima is interpreted as the content of the utterance under test.

Summary

This chapter has described in detail the speech recognition system developed in this effort.

The description included preprocessing of the digitized speech, training of the first Kohonen net

for production of trajectories, processing those full trajectories to eliminate transitory points, and

evaluating the reduced trajectories by either a DTW algorithm or a second Kohonen neural net to

obtain the content of an utterance. At no time was any attempt made to quantify the performance

of the system 9-that data was saved for the next chapter.

9
Although at times it was necessary to verify some hypothesis or state that some procedure did or did not work.

3-22

-- IU

1Y. Results and Discussion

First Kohonen Neural Net

An ideally trained Kohonen net should place inputs from a given class within the same region

(group of nodes). Is it possible to tell whether this result is obtained just by looking at a net? To

some extent, yes. Figure 4.1 displays the net "speak1". Each of the 225 nodes is represented by

its weight vector, shown as a small spectrum. The spectrum is simply the 15 weights drawn as

vertical bars. It is easy to see that various regions of the net have similar spectra, and the changes

between adjacent nodes are very graceful.

"Speakl" was trained with no conscience. Figure 4.2, "speaklO", was trained with a con-

science factor of 1.5. Again, one observes that within a region, the node spectra are very similar. In

fact, without prior knowledge, there is no way visually to tell that conscience was used in training

"speakIO" and not in "speaki". This is expected. It shows that training has occurred, but does

not show whether a net will be successful in producing identifiable trajectories.

Trajectories

Trajectories can be viewed either graphically, or as a sequence of integers representing the

225 nodes. Figure 4.3 graphs a full trajectory for the word zero. Figure 4.4 shows the reduced

trajectory of the same word. Figure 4.5 shows the reduction process from a full trajectory to a

reduced trajectory as a printout of integers (each integer one of the 225 nodes). The graphs contain

the number of the slice which lights up a node in the rectangle representing that node. If a node is

lit up more than once, only the last slice number is identified and three asterisks are added to the

rectangle. Note that slice numbers are only "effective" values for the reduced trajectories.

Appendix A shows the reduced trajectories for the templates (the digits zero through nine

and silence) used in the DTW algorithm. When comparing the eleven templates they appear

separable-even to the eye.

4-1

-- -u

- wrq.nw v1p w JAOW i J j y

kl 4Wk. 0L W Ja IeLL LMimk VA

kfJA,10 v k m n w I wkL L LtV

vwLe4 m i, m n ,=4 oLaLLV L L

imsJJJtvt t 44kvxm-rm-aI LL
kr w wJ,,J, owLeLmLL w -Yv

FgreJ 4.1 N-epi Tr Ind thv N-o Concinc Nwow Lh reinl smLriie

and the gradual change from node to node and region to region.

4-2

jI ism Iw I~ k, km km 1 I I w. v

L LL L k,. k , ..1iwkaiw iw
1~ L LL L.wLtL. '-wL.L_ J

LwLwL, LmLL.v.%cJJr

: L LuL.L u, vJj.J:

L L L L LL L tw ,L L ,,.J_ .k

Figure 4.2. Net SpeaklO Trained with Conscience = 1.5. Without prior knowl-
edge, there is no way to visually determine the amount of conscience
used to train a net.

4-3

5

22 / - Z~ 871 11)

zeroS.trn -- qpeakiOnet

Figure 4.3. Full Trajectory of the Word Zero. The numbers represent the last
time slice to light a node. When a node is lit more than once, three
asterisks are printed.

4-4

_.. .. :=. .n - - II IIII li-I II-,

i~ '3

31 21

- 2
F1 I

3111

7 6

7 9

I \4 I I

Reduced Trajectory: zeroS-t-n -- > pe"10.net

Figure 4.4. Reduced Trajectory of the Word Zero. Transitory points not near
other points are eliminated. The "slice" numbers shown are actually
the respective location of a lit node in the reduced trajectory. Note
the much simpler curve when the trajectory is reduced.

4-5

zerc5.trn --> speaklO.net

Trajectcry through map: (98,

145 115 100 100 93 122 93 93 93 190 190 115 261 115 190
148 119 1'' 192 193 176 93 138 138 153 153 154 154 154 154
154 140 154 154 154 154 154 1S3 95 95 66 66 66 66 66
66 66 66 60 64 50 50 64 4 4 4 18 33 33 33
33 33 18 33 33 33 33 33 33 63 33 33 63 48 33
63 63 32 63 63 63 66 13' 137 122 115 99 32 145 145

145 145 145 220 133 32 32 127

After elimination of transients (89,

145 115 100 100 93 93 93 93 190 19C 175 160 175 190 179
177 192 193 176 138 138 153 153 154 154 154 154 154 14C 154
154 154 154 154 153 95 95 66 66 66 66 66 66 66 66
6r 64 50 50 64 4 4 4 18 33 33 33 33 33 16
33 33 33 33 33 33 63 33 33 63 48 33 63 63 63
63 63 137 137 122 115 99 145 145 145 145 145 32 32

[seduced Tragectoryj Only three in a row! (81 1

115 100 100 93 93 93 93 190 190 175 160 175 190 177 192
193 138 138 153 153 154 154 154 154 154 140 154 154 154 154
154 153 66 66 66 66 66 66 66 66 80 64 50 50 64

4 4 4 16 33 33 33 33 33 18 33 33 33 33 33
33 63 33 33 63 48 33 63 63 63 63 63 237 137 122

115 145 145 145 145 145

Now listing final trajectory! (37)

115 100 93 190 175 160 175 190 277 192 193 138 153 154 140
154 153 66 80 64 50 64 4 18 33 28 33 63 33 63
48 33 63 137 122 115 145

Figure 4.5. Reduction Process for the Word Zero. Each point in a trajectory
represents a node. "0" is the upper left node, "14" is the upper right,
and "224" is the bottom right node.

4-6

Table 4.1. Presentation of Inputs

Net Process Isolated Word, Connected Words

speakI sequential 95V , 75V
Slfeak3 randoin 90' 73T
speak-I random word 1001A 56XA
Note, Beraus0" sequential training resulted in overall best
p,-rformnace. it is used to train all later nets.

Dynamic Time Warping

Dynanic time warping tests wcre performed over a long period of time. The earh,st tests

used a smaller set of test words and in general evaluated different a.-pects of the system Fali

evaluat llm r dh.scrid l h

T?aiuiNg Proce.s. One of the first uses of DT\V was to evaluate the first Kohonen net',. s

training Inl this instance, the DT\V testing was not yet automated. Ten arbitrary digits wer,

usd for temltlarvs Ten different digits were used to test for isolated speech recognition. and

eight utterance, of connected digits (containing another 48 digits) were used to test for continuous

S,,, -h r,.oglition The connected digits at this point were intentionally slurred together as much

as possibl. The)-TV stretch factors were set at 1.0. 0.5. and 0.5.

Tihe three types of training processes evaluated in Table 4.1 vary the presentation of the inputs

to tile net The first method takes an utterance containing all ten digits. with pauses between them.

and ret,,atedly presents the input vectors to the net in their natural sequence (called sequential

* training). The second method presents the input vectors from the same utterance to the net in

a random sequence (called random training). The last method takes 10 utterances of individual

digits and presents them to the net in a random sequence. Individual vectors within the randonly

selected word are presented in their natural sequence (called random word training).

No conscience is used in any of these nets. The sequential training process appears to provide

the overall best performance. The reasons behind the relative performances were not investigated.C1

However, it was noted that the random number generator did not produce a very uniform dis-

4-7

Table 4.2. Comparison of Stretch Factors

Stretch Factors I Isolated Words Connected Words

2.0. 0.5 75% 80%
1.5. 0.5 75% 807
1.0, 1.0 1007t 737
10. 0.75 907 8011_
1.0.0.5 801/ 84/t

0.75.0.75 100% 797t
0.75,0.5 901/ 767
05, 0.5 1007 71c

Notw: The 1007(/ isolated rate for equal stretch factors
confirrms that isolated words were spoken at the same
speed as the templates. The connected utterances
were actually spoken faster.

trilution Sino. sequential training worked best. whatever the reason. it is used in all later net

training "

STretch Factors. Variations in performance, as the stretch factors were changed. was ob-

served during development and debugging of the DTW routines. This suggests that additional

testing. where only the stretch factors are changed. could provide the best performance for the

given set of utterances

For the tests shown in Table 4.2, the best performing net at that time, "speakl", was used.

Only. the stretch factors in the right and up directions, respectively, are varied. The diagonal

stretch factor remains 1.0.

Note the tradeoff between results for isolated and connected speech. The fact that 100%,

accuracy is obtained for isolated speech whenever the off-diagonal stretch factors are equal implies

that the isolated words under test were spoken at the same speed as the templates. Likewise, when

the stretch factors are not equal, recognition of the faster spoken connected utterances improves.

At this point, comparisons of the envelopes of the connected speech utterances used here

with those used by Dawson (13) were made. It was found that Dawson clearly separated his words

in the continuous speech utterances For ease of comparison, a new set of connected utterances

4-8

Table 4.3. Tests of Clearly Spoken Connected Speecht

Stretch Factors Connected Words]

I ., 0.5 9017
0.75.0.75 91 7

Note: Connected speech recognition
improves when the words are spoken
clearly and are not slurred together.

Table 4.4. Conscience in First Kohonen Nets

Net Conscience Isolated Words Connected Words

speak] none 90.07 93.0 V
speak9 1.1 82.77 72.,117
speakl0 1.5 99.1% 90.7%
Note: A modest application of conscience (1.5) results in a
large improvement in isolated recognition, while too much
conscience (1.1) degrades performance.

wer,' generated in which the words were not slurred together. The results from these tests, using

"'speakl". art, shown in Table 4 3.

The improved results are dramatic and are now comparable to the results Dawson obtained.

Therefore. this set of connected utterances, as well as the stretch factors of [1.0. 0.75 and 0.75. are

used in all later tests.

Conscience. After finding that conscience assisted in training the second Kohonen net (see

the following sections). new first Kohonen nets were trained. Table 4.4 shows the results of DT\V

runs on those nets. For these (and later) tests, the number of isolated words being tested was

increased to 110.

Note that while conscience dramatically helps recognition of isolated words (when there is

not too much of it), it also slightly degrades recognition of connected words. During the training

run on "speak9', it was found that only 25 to 40 percent of the nodes were eligible each training

cycle (because of conscience) for matching the given input. Given the accuracies in Table 4.4, one

could infer that nodes are being under or improperly trained with a conscience factor of 1.1.

4-9

Tcvn1pLa1c.". Each of the prior DT\V tests used I I arbitrary templates -one for each of tt

ten digits and one for silence With the %ariability in trajectories between different instances of the

same digit, selecting specific templates might improve the recognition rate.

Thus. unsuccessful attempts were mad. to increase accuracy by using various templat. selhct-

ing algorithnm, One algorithm, that seems quite reasonable, resulted in the greatest degradation

Twenty examples of each of the ten digits were collected. The one example out of the twenty that

had the lowest average DT\V mininium path to the other nineteen was selected a,, the template

for that digit. Using these newly selected templates, stretch factors of 0.75 and 0.75. and net

"'s,'aklO. isolate'd recognition dropped from 99 17 to 94.57. The connected digit rf.cognitioll

rat,- dropped more--from 9.0 7V to 76.7V

C
A small amount of degradation might occur because of a change in relative strtchve, bet we-.t

the" templates and the utterances under test. However. the connected rate drop of 14V7 seent-

excessive. Apparently. the tested digits were not closest to the "average" template from each set

of 2(,

Sptfaker Indc1xndcn1 Spcech Recognition. A small number of tests were performed on

* utterances spoken by someone other than the net trainer (the speaker whose utterances trained

the Kohonen net). A deep female voice was used for these tests; whereas all other tests used a

mid-range male voice.

A set of 10 isolated digits and eight connected digit utterances (containing another 48 digits)

were tested using the templates in the male voice, net "speakl", and stretch factors of 0.75 and

0.75. The results were a 40% isolated and 31.3% connected digit recognition rates. It is expected

that if templates were generated from the female's speech, the results would improve.

4-10

Second Kohonen Neural Net

Extensive tests were run on a number of forms of the second Kohonen neural net. The driving

motivation was the possibility of decreasing computation time and providing a system where all

major components emulated simjililied neural activit.

Early Attempt-. Limited development took place for two types of inputs described in

Chapter I1. In both of these, an input vector had 225 components. In both cases each component

represented one of the 225 nodes in the first Kohonen net. In the first case. a component was

incremented (from zero) any timn. its respective node was lit in a word's trajector% In the second

cas,. ti. *actiatlion le el'" of each node was added to that nccde's cumulative activation from erx

input (ll i all utterance. Given a vector input to the first net. the activation lev.el for a node

is th, dot product of that node's weight vector with the input vector

The possibl advantage of these types of input is that they can be normalized. allowing

simple and fast computations in using and training a net. However, it deletes the time dependent

relation, hip of the various sounds in a digit.

Nin, ty word, (nine versions of each digit) were used to train these nets. After traiiiiiig, ti,.

90 words were input to the net and the nodes that lit up were identified. Unfortunately. less than

half a dozen nodes lit up in each case. At that point, these nets were considered unsuccessful, and

development of other forms proceeded.

Yet. there are at least two reasons why the labeling of these nets as unsuccessful is ques-

tionable. First, it was later noted that training and testing of the second Kohonen net took place

using dot product algorithms rather than Euclidean distance. Since the inputs at this point were

not normalized, dot products could not give valid results. Secondly, conscience had not yet been

implemented. It is quite possible that assigning random numbers to the initial weights gives only a

few nodes with vectorial representations even close to the cumulative activation surfaces described

above. Both reasons suggest that some additional testing might prove beneficial.

4-11

Ti"te 4.5. Conscience in Second Kohonen Nets

Net I Conscience Nodes Lit Different iat ion

path.5 none 587 91.lV

pathl 1 1.5 81(7 989(A

pathl2 1.1 89(79
Note: These results show that conscience increases
the effective number of nodes that "look" like th,
training inputs. They do not necessarily imply
comparable performance in recognizing words.

Trajectory input Net.. As described in the prior chapter. two alternate forms of input

were also explored. These consist of trajectories represented either as 100 scalar values or 100 x-v -

coorditiate pairs Shorter trajci ori,. are filled with trailing -1's llowever, initial development.

a.- de.,cribed below, used a 75 scalar input (trajectory of length 75 or less) with trailing zeros It

will later he seen that no significant improvement or degradation in accuracy arises from switching

b,tween 7:5 and 100 point trajectories.

Con.cicncc. As mettioned. initially a 75 point trajectory wasselected. Unfortunately.

aft, r training (with out conscince). onl. about .5S7 of the nodes lit up when the set of training

digits were .iint In addition, when looking at the nodes that lit up. only 91(7 of tbe 90 training

digits could be corructly differeutiated.

Figures 4.6 through 4.8 show the result of nets trained withi (a) no conscience. (b) a conscience

factor of 1.5. and (c) a conscience factor of 1.1. Each of these nets used 75 scalar inputs. Note that

the numbers represent which training digit lit up the respective node (only 90 training digits were

used for these tests).

Table 4.5, derived from the tests which generated these figures, shows numerically the advan-

tages of using conscience. Of course, these tests still do not show Kohonen net performance on a

different set of digits than those used in traini;,g.

4-12

9 1 9 .1 1 1.! 1 J.
--- 7 9 1t 1-

7 9 1 9

=" -"S' 9- -

3 4 9 9 4

7

6 7 7 88

twopic Mdr -> *pea.1 net ->path5 net

Figure 4.6. Net Path5 Trained with No Conscience. Note that only 58% of the

nodes are lit up when the traintng dtgits are applied at the inputs.

4-13

I *.. *

49 4 9 4 9 e

4 9 9 1 9 3 3 8 8
0.. 1

*0 0

- -I

3 9 8

C' 7 9 6

7 7 Q 7 0 4 3 6

7- 2 7 0 7 7

2 2 3 0 0 7 6 6. .. .

2 3 2 0 7 6

twaoic.hdr -> gpe*.Kl net - pathil.net

Figure 4.7. Net Pathi I Trained with Conscience = 1.5. With a moderate amount
of conscience, 81% of the nodes light up when the training digits are
applied at the inputs.

4-14

__ 1 :1 8185I _ _

I S~- E 4

3 0 9 9

2 3 0 3 3 9 4 41

Poo

*0

£*

I
* IIo o

7 7 7 7 4 4 114

o o 00.

0 - - -
0 0 7 6 6 6 9 4

£ 0 0 7 6 6 6 6 2 3

twopic.hdr -> speak, net - path2, net

Figure 4.8. Net Pathl2 Trained with Conscience = 1.1. When a large amount
of conscience is used, 89 nodes light up when the training digits are
applied. This does not necessarily imply a commensurate improvement
in word recognition performance.

4-15

€ i

Tablh 4.6. Scalar Input Net Tests

Method Accuracy

Euclidean search of training set 42%
DT\V search of training set 901/
DTXV search of non-training set 911/
Note: This implies that "recognizing" a

node's weight vector as a given digit is in-
effective when the stretch variable is not
taken into account.

Performance of 75 Scalar Input Nets. Initially, it was assumed that identification

of a node with tie training digit that caused it to light up was the proper way to use a net. That is,

input an unknown (non-training) digit, see which node lights up. and identify the unknown digit

a-, the training digit associated with that node.

Euclidean distance is the algorithm first used to identif% a lit node. But this achieved only

a 427t correct identification of a set of 100 test (non-training) digits. Possibly. this resulted from

the non-uniform strctch inherent in trajectories. Accordingly. a DT\V algorithm was substituted

for Euclidean distance (in test only. not training). This resulted in a 907(correct identification of

the test digits

However, it is possible for a node's weight vector to be "closer" to a training digit (say digit

A) which did not cause the node to light up than the training digit that did (e.g., digit B). This

occurs when two nodes should be lit up by digit A, but the software allows only one node to light

up (let it be the "first"). The problem occurs when the activation level of the "second" node, from

digit B. is less than its activation level from digit A. Because of the software, the second node is lit

by B. when in actuality its weight vector is closest to the input vector from digit A. This problem

was corrected by searching through a set of 100 non-training digits to find the closest one to each

node. This increased identification to 91%. Table 4.6 summarizes the above findings. All entries

use the net "pathl2'" trained with a conscience factor of 1.1.

With this data, one can now compare DTW with a second Kohonen net as word recognition

4-16

Table 4.7. Conscience in 100 Scalar Input Nets

Net Conscience Accuracy

pathl6(vl) 1.1 86%
pathl6 1.5 92%
Note: Too much conscience (1.1)
again reduces performance.

algorithms. With the DTW routine achieving up to 99% accuracy, the 91% seen here is not

impressive.

Performance of 100 Scalar Input Nets. After noting that a substantial number

of the digits had reduced trajectories between 75 and 100 points, the routines were updated for

100 scalar inputs. Additional tuning also took place in the DTW routine that replaced Euclidean

distance. The minimum path distance was normalized (divided by the number of elements in the

path) to give a local average path length. This replaced simply dividing by the number of node

weights not (trailing) zeros. Another change was to use the length of both the trajectory and the

number of node weights that were not trailing zeros. Prior to this point, the number of a node's --

weights not zero was used as the DTW length for both the node's weight vector and the word under

test.

Table 4.7 shows the results of the longer inputs and retuned DTW as the amount of conscience

in the second Kohonen net is varied. Unfortunately, the changes resulted in an accuracy only 1%

better than the best 75 scalar input net. However, it shows again that too much conscience degrades

performance. These tests used "speak10" as the first Kohonen net.

Performance of 100 X-Y Pair Input Nets. Since the scalar input nets provided

only 92% accuracy, and using mini-DTW rather than a Euclidean distance increased the compu-

tation time, another approach was tried. If the trajectories remained a sequence of x-y coordinate

pairs (instead of being translated to a sequence of scalar values), mini-DTW might not be necessary.

Also, the training effectiveness might improve if the 15 unit difference in the scalar representation

4-17

Table 4.8. Accuracy of 100 X-Y Pair Input Nets

Net Conscience DTW ITAXI
path21 1.1 86% 84%
path22 1.5 86% 85%
path23 none 73% 69%
Note: These results can not be com-
pared to that of scalar nets since the
set of training digits was changed.
Also, the improvement from DTW
over TAXI distance is very slight in
these tests.

Table 4.9. Differently Trained 100 X-Y Pair Input Nets

1st Net 2nd Net Conscience DTW TAXI

speakl0 path26 1.5 I 85% 80%"I
speak1 path27 1.5 91% 90%
Note: When the training set is the same for
both scalar and x-y pair nets, the performance is
comparable-91% to 92%

of vertically adjacent nodes is absent.

Thus, training and test routines were written to use 100 x-y coordinate pair inputs and both

DTW and Euclidean (actually TAXI) distance algorithms. Table 4.8 compares the performance of

nets using both algorithms as conscience is varied. During these tests, the training and test sets of

digits were changed. Both sets used only 90 digits and one word of silence. Also, all of the second

nets were trained using "speakl0" (conscience at 1.5) for the first net.

These tests suggest that using mini-DTW (in x-y pair nets) to identify a word provides only

marginal improvement over using TAXI distance. However, the results here do not justify going

from scalar to x-y pair inputs.

Remember though, the training and test sets were changed slightly. Thus, to prevent questions

about the validity of comparing these accuracies to those from the scalar nets, two other nets were

trained. These used the same sets of 100 training and test digits as "path 6" (the best scalar input

net). Table 4.9 shows the results; the conscience factors listed are for the second net.

4-18

Table 4.10. Scalar Input Nets Without Training

First Net No. Inputs Conscience DTW TAXI

speakl 75 none I 96% I 88%
speakl0 100 1.5 93% 86%,
Note: Training, with the procedure and training data
set used, was actually detrimental to net performance.

0|

An interesting point here is that "speakl", trained without conscience, resulted in the best

performance. Also, it should be pointed out that the 91% achieved here is not significantly different

than the 92% obtained for scalar input nets.

One should note that in the test of "path26", 8 of the 15 errors had zeros labeled as twos

on node number 16. Yet no twos were closest to that node. The logic is somewhat complex,

£ but this suggests the possibility of improvement to 93%. Unfortunately, it also emphasizes the

nonuniformity of trajectories within classes (of digits) and the need for supervised learning in the

first Kohonen net.

0i
Second Kohonen Nets Without Training. As was mentioned earlier, the second

Kohonen net is essentially a codebook of trajectories (as is, really, any Kohonen net). So, what

would be the result if the training set of 100 digits was simply assigned to the 100 nodes and no01
training performed? At the very least, one would obtain a baseline from which the effectiveness of

training could be assessed.

This approach is feasible for the second Kohonen net since the number of training inputs is

the same as the net size. For the first Kohonen, there were too many inputs.

Table 4.10 shows the results of assigning the zeros to the first row, the ones to the second,

I. etc. The results shown use scalar inputs and vary the training used in the first neural net. Both

the training (now just assignment) and the test sets of digits contained 100 words without silence.

The conscience listed is that used in the first Kohonen net.

This shows that the training employed here does not improve recognition accuracy of scalar

4-19

4

Table 4.11. X-Y Pair Input Nets Without Training

1st Net I No. Inputs IConscience I DTW] TAXI
speakI 75 none 95% 88%
speak I 100 none 95% 88

speaki 75 1.5 93% 85.
speakl0 100 1.5 93 0 85__

Note: Again, there is no significant difference between
scalar and x-y pair nets. Neither is there any differ-
ence when the trajectory length is 75 or 100 points.

input nets. But what does training do for x-y pair input nets? Table 4.11 shows the results of tests

where the inputs are x-y pair reduced trajectories. The data show the significance of the trajectory

length (75 or 100). Again, the conscience listed is for the first Kohonen net.

Clearly, the trajectory lengths used here do not affect the results. Also, it appears that

with the current forms of training and training data sets, training does not result in optimum

performance for either scalar or x-y pair input nets!

Connected Speech Recognition. A limited amount of development and testing was

performed using the second Kohonen for recognizing continuous speech. The initial results were

unsatisfactory and computationally intensive. Accordingly, effort was discontinued and the primary

emphasis was placed on isolated digit recognition.

However, the results do imply some promise if the productivity of the first and second nets

is improved. The basic routine takes a 100 slice (partial trajectory) window from a continuous

utterance and compares it, using the DTW algorithm, with all the nodes' weight vectors in a

second Kohonen net. As described earlier, a digit is selected for that window. The window is also

assigned a distance which is the normalized minimum path length-the smaller the better. The

window is moved one slice at a time from the start of the utterance to the end. This results in

a sequence of digits and path lengths where the sequence length is the number of slices in the

utterance. When the path length becomes a minimum, the beginning of a new digit (the one

assigned to that slice) occurs.

4-20

The second Kohonen used for the test was an untrained one developed from the trajectories

through the first net, "speak1". This had the highest isolated digit recognition rate at that time.

Two utterances containing a total of 16 digits were tested. One utterance was slurred together; the

other was spoken distinctly. The recognition rate was 81.25%.

Several simple, common sense rules were used to eliminate brief local minima. Additionally,

the computation time can be significantly reduced by anticipating the minimum number of slices

between words and using a gradient search algorithm rather than computing the comparison for

every slice. Because of the unsatisfactory recognition rate, the gradient search routine was not

implemented.

Summary

This chapter has quantified the performance of the speech recognition system developed as

well as the factors involved in its performance. Tradeoffs show the system works best with sequential

training of the first net, a conscience factor of 1.5, and DTW as the word recognition algorithm.

DTW in turn works best (for the utterances tested) with stretch factors of 1.0, 0.75, and 0.75.

When a second Kohonen net is substituted for DTW, performance falls. It doesn't seem to

matter whether scalar or x-y pair trajectories are used, or the length of the trajectories. Unfor-

tunately, training the second net, rather than simply assigning arbitrary trajectories to the nodes'

weight vectors, seems to further degrade the system.

These results, and their implications, are summarized in the next chapter.

4-21

V. Conclusions and Recommendations

A large number of programs were developed and tested to demonstrate the feasibility of

using neural nets and dynamic time warping in speech recognition. Some concepts proved to

be completely unworkable and are not mentioned here. Others showed some promise, but were

neglected for development of more promising approaches.

The most successful algorithms were the generation of net trajectories and one pass dynamic

time warping. But because of the intense computations required by DTW, much effort was spent in

developing a second Kohonen net to replace it. Unfortunately, the second Kohonen net implemented

here does not perform quite as well as DTW.

Conclusions

The preprocessing, first net training, and trajectory reduction algorithms apparently are

adequate to assure good isolated and connected digit recognition rates in speaker dependent speech.

Using conscience, rates of 99. 1% and 90.7%, respectively, can be achieved from a one pass dynamic

time warping algorithm. A second neural net can achieve up to a 96% isolated digit recognition

rate (but only 817 for connected speech).

Dynamic Time Warping. The computation and time requirements were reduced when the

DTW input vectors (points on trajectories) were two dimensional rather than the more traditional

16 to 256 dimensional (possibilities from FFT routines).

However, there are some deficiencies in the system. First, the DTW accuracy appears strongly

dependent on the choice of templates. Secondly, trajectories within a digit's class are not uniform

enough to provide excellent results. This appears to be a problem inherent in Kohonen nets trained

without supervision. They simply do not group all of the members of a class in the same region.

The latter problem appears to have two causes. The most obvious is the situation where a class

(a particular sound) consists of members in two disjoint regions in 15 dimensional hyperspace. The

5-1

other cause is the way that initial weights are assigned and then updated. A small, but significant

percentage of nodes, without supervision, can simply not be correctly trained. Correction of either

of these problems should improve consistency and performance.

However, any DTW algorithm will always be computationally intensive. As such, it is ex-

tremely limited when a larger vocabulary is needed.

Second Kohonen Net. Using a second Kohonen net in place of DTW appears to have

possibilities. Such a system can achieve at least a 92% isolated speech recognition rate (using

trained nets) or over 96% when the net acts as a codebook (no training).

The fact that untrained nets produced better results implies that either training produces

weights not representative of the data set to be recognized (i.e. the training equations are somehow

defective) or that the training procedure is in error, The latter is the most likely conclusion; most

probably, there was simply not enough data to effectively train this size net.

Irrespective of the reason for getting better results with untrained nets, the accuracy of the

trained nets is satisfactory to evaluate their performance. Thus, the following thoughts address.

for the most part, trained nets.

The accuracy of the net does not depend significantly on the form or length of the word

trajectories. Routines were developed where the trajectories were represented both as sequences

of scalar values and as sequences of x-y coordinate pairs (the two possible forms). Although

the scalar representation was expected to have more difficulties (because of the 15 unit distance

between vertically adjacent nodes), the achieved accuracy was actually 1% better ° than the x-y

pair representation. The scalar versions achieved 92% accuracy as compared with 91% for the x-y

pair.

However, there are drawbacks to using a second Kohonen net with trajectory inputs even if

the accuracy is improved. The non-uniform stretch in words requires using a mini-DTW algorithm

101% can not be considered a significant difference.

5-2

rather than a Euclidean distance (to compare and identify nodes and utterances) to achieve the best

performance. Using a mini-DTW, such a net could not be efficiently implemented in hardware.

When Euclidean (actually TAXI) distance is used, the recognition rate drops by on to several

percentage points. Further, a dot product is the preferred algorithm over Euclidean or TAXI

distance, but dot products require normalized arguments. The scalar and x-y pair trajectories used

as inputs here can not be normalized without destroying their information content. Alternate forms

of inputs, that could be normalized, were not pursued long enough to determine their feasibility.

Recommendations

There are several quite obvious tests that should be run. These include speaker independent

tests, larger vocabularies, and alternate (or multiple) feature sets. However, there are a few basic

changes to look at first. The most important of these is to obtain consistent in class trajectories."

Supervised learning of the first Kohonen could limit the locations of sounds, within a sound class,

to a particular region. Kohonen's learning vector quantization (LVQ) algorithm (19) could perform

this task.

After supervised learning optimizes the trajectories, the preprocessing procedure might be

retuned to eliminate any unnecessary processing. This could be done by repeatedly making a

change and observing the results on the automatic DTW tests.

To pe;mit larger vocabularies, and possibly speaker independence, the use of multiple feature

sets might be investigated. Dawson (13) and Kim (20) were successful at using a combination of

linear predictive coefficient (LPC) spectra, zero crossing rate, and frication frequency to identify

speaker independent speech. This might require two additional very small nets (possibly only one-

dimensional), with a small increase in processing time, to provide a large jump in performance.

If necessary, using multiple nets or templates might allow recognition of speaker independent
"In class" here refers to the set of trajectories for any given word. The current net produces out of class

trajectories that am separable, but does not produce in class trajectories that "look" alike.

5-3

speech. Tests should be run on multiple sets of utterances from various speakers and a larger

vocabulary. Kim (20) collected such a set of data.

Finally, in place of the second Kohonen nets developed here, one might try other algorithms.

A backward propagation net might work very well. Alternatively, one might delve further into the

use of activation surfaces as inputs to a second Kohonen net rather than simple trajectories. If a

second net becomes effective, it should be examined for use in identifying connected speech.

Summary

The purpose of this effort was to show the feasibility of using neural nets in speech recognition.

For speaker independent utterances from a small vocabulary, that was done.

Isolated digit recognition was achieved at up to 99.1% and connected speech recognition

at 93%. While this used only a small vocabulary, it also used relatively simple feature sets and

templates chosen without significant tuning.

By adding such characteristics as supervised learning and multiple feature sets or nets, the

prospect is bright that this approach could successfully handle larger vocabularies and speaker

40 independence while keeping additional computation time to a minimum.

6 5

5-4

6 9

Appendix A. Template Trajectories

The following figures show the reduced trajectories for the eleven templates used in the DT\%'

tests. The templates include the digits zero through nine and a short period of silence.

A-1

.,0.. - a. m m ml mmmlll - I Il-

27 7 --- - -1--2

i~~~ ~ I.. ilET I tI'uu

- - 1 - a -1 a14a -

26 27

30

6 2

Reduced Trajectory: zeroO tn - -> speak 10 net

Figure A.1. Reduced Trajectory of the Template Zero

A-2

6

A-3

II

LILILLLLIIIEEI
Reue T etry o i n -) eal nt

Figue A.. Rduce Trjectry f th Teplat On

iA-3

F -- 1 - - - I -, - -

I~~~~~~~ ! I! I11 1 J-1
Reduced Trajectory: twoO.trn -> speaklO.net

Figure A.3. Reduced Trajectory of the Template Two

A-4

.. _i- nn - - - - -in-a- -

- - -- - - - -- 22

-- - - - - - - - -- -7

- - - - - a fl -1-8

- -I J I0I

Reduced Trajectory: threeO trn -) peaklO net

Figure A. I. Reduced Trajectory of the Template Three

A-5

9

177 6

II

0

iI1 11111111
a L a a--a a a a

Reduced Trajectory: fourS.trn -- epeaklO.net

Figure A.5. Reduced Trajectory of the Template Four

A-6

71L

- - --- , - -] --

I I I II
II I ,7 I I

\ 4

Red ce :rJ c o y fi eIr p a l ~ e

, 116 I7

7A-7

- -_- - -- -- -

1==1 1111

II

EIIJFT] 1111 1 711E1T

14

J • 20

~2

lit Reduced Trajectory: sixS.trn -> speakIO-net

Figure A.7. Reduced Trajectory of the Template Six -1

A-8

.. a- - afa a a as a aII | I a..a.. .a I -

12

14

0

ECI I I -,L I \IC

Fiur A.8. Re ue raetr.f.h e plt ee

A-IHlL
R e dc- -rj c o y -ee O ~ r - -- -~l~ e

.. - - - -i~ - - - - -.-

I t I

Reue Taetr: eihOtn spalIe

F ige oi

A-10

i --- - - - -a

oE

Reduced Trajectory: eightO.trn -- sl~eak1O net

Figure A.9. Reduced Trajectory of the Template Eight _

A-10

I .. [11111 ThIIi iIIII III. I IZ] ,,.

5 0 22

151

12 . 14

Reduced Trajectory: nineO.trn -- speakiOnet

Figure A.10. Reduced Trajectory of the Template Nine

A-li

- - F- F -----

! ! ! I I , I I I I I II. , =, , , ,

A-12
4I/ - - - a a

' iIiIE111111].i11

711171KillLL

.. - a a,- i , nn a - mn i- - - aI a -

Appwndb B: Compter Program* Contents

Ax0Aamp8--cmJaurqrm

There are a few points about this appendix that make it easier fe he reader. Headers on each page show the
appendix title on the left and the appropriate program title on the right. At the top of the first page of each program the
link command for that program is listed. In the link command are those *.c fies used to create the program. Each
programt is showna below (in the sequence of its use in the body of this thesis) along with its page number and the files
used to create it. Source files. are only lised once, with the first program to use them.

Unfortunately, many of the programs and files use subroutines with the same names and either no or small
differences. Because of the difficulty of identifying the differences, such subroutines are listed repeatedly. The exception
to this is the trajectory reduction process (usually found in the subroutine read -word), which is only listed once. Its
complete and final form is found in the file autadtw.c. Thereafter, it is abbreviated as '...Trajectory Reduction..'.

Lia o Isgw mand les

autoffi: atatofft... B-2
neurai7: neural7.c, neural4 ... B-8
neural2 netaral2.c, nplot.c, nprinter.c, mat2.c, nweight4...................... B-16
neural4: neural4c, nplot.c, nprinterxc, mat2.c, nweight4...................... B-39
autodtw: autodtw.c... B-46
twokoh4: twokoh4.c, nweight8... B-55
twobas2: twobas2.c, nweightlO.c ... B-63
outdal: outdatc, ntraj.c.. B-72
twopic4: twopic4.c, nplot.c, nprinter.c, mat3b.c, nweight8..................... B-78
twomask: twomask.c .. B-85
twopic6: twopic6.c, nwin5.c, lookup6.c .. B-87
outdat3: outdal3.c, ntraj3.c... B-94
twobas3: twobas3.c, nweightIL .. B-98
twopic4b: twopic4b.c, nplot.c, nprinter.c, mat3.c, nweightl2.................. B-107
twopic8: twopic8.c, nwin6.c ... B- 118
outdat4 outdat4 ... B-125
twobas4: twobas4.c, nweight44 ... B-129
twomask5: twomask5.. B-137
twopic4c: twopic4c.c, nplot.c, nprinter.c, ma3c, nwt4.c......................... B-139
twopic8b: twopic8b.c, nwin6b.c .. B- 145
twopic6b: twopic6b.c, nwin5b.c, lookup6.c .. B-152
twopic&c: twopic8c.c, nwin6b.c .. B-188
twopic6c: twopic6c-c, nwin5b.c, lookup7.c .. B-161
codebk: codebk.c... B-166
codebkb: codebkb.c... B-172
codebk2: codebk2.c... B-178
codebk2b: codebk2b.c.. B- 183
coder: coder.. B-188
coderb: coderb.c ... BE- 194

B-1

Appendix B: Computer Program autofft

$ fink afttoptionsfile/opt
I'

INPUT: sound.hdr file

*.end file

OUTPUT: *tin file.

This routine takes the *.end files named in sound.hdr and transforms
them into *trn files while leaving the original *.snd files
unchanged. *.nd files must contain a leading eight bytes of
header (thrown away) and an unspecified number of bytes of sampled
sound data. The current assumption is that the sound is sampled
logarithmically at 16 kHz with each sample being one byte.

The transformation operates on 256 samples, moving forward in
turn 85, 85 and 86 samples so that an overlap ratio of 3:1 is
obtained. Each tranformation cycle takes the respective 256
samples, multiplies by a Hamming window function and then does
a 256 point FFT. The resulting 128 frequency magnitudes are
reduced to 15 by a pseudo-logarithmic reduction in which the
compression ratio is greatest at the higher frequencies. (The
Kohonen reduction scheme is also allowed by the code, but it
does not produce acceptable results since no fiiter is included.)
The resulting 15 components are averaged and the average in turn
is subtracted from each component. The resulting 15 components
are then energy normalized to one.

Each 15 component vector (corresponding to the initial 256
samples) is then written to a *.tin file.

include stdio

include math

define P13.1415926536

float ham[256];

main 0
{

FILE *fin, *fhdr, *fout
float xr[256] ;
int i, j, n, counter, c, limit, temp;

int eof flag ;
int pointer, ovelap, noise flag
char name in[30], name out[30], temp_name[30];
int sum, th limit, isnd, num files;
int reduction-flag ;

printf ("AUTOFFT: Time/Frequency Conversion for Kohonen Net ... ;

printf ("E.ter (0) logarithmic, or (1) Kohonen reduction: ")
scanf ('%d", &reductionflag);

n = 256;
setup_hamming (n);

fhdr = fopen ('sounds.hdr', ')

B-2

Appendix B: Computer Program. autofft

fecant (thdr, '%d", &num tile.);
for (Land =0 ; Lesnd < tium files ; leand++

fAcant (thdr, '%a", temnp name);
sprintf (name in, "%e&snd', temp namne)
fin =fopen (namein, "rb');
sprintf (name out, '%a-trn', temp name)
fout = fopen (name-out, "w') ;
prnt (" faa opened name-out)
limit = 3000;
th limit =0;

counter =0;

overlap =0;

= 0;
pointer =8;

noise flag = 0;
sum = 0;
Gof flag = 0;

fseek (fin, pointer. 0)

while (sot-flag ! = 1
c = getc (tin)
if (fect (fin) != 0)

sof flag 1;

I~DATA is in the range (0,2551 from the way the AID
software work~ed! 'I

else({
d (c > 127)

c -~ 256;
sum + = abs (c);
xr~i± + I (float) c

if ((i= n) && (eof flag =0)){

hamming (n, xr)
ffter (n, xi');
If (reduction flag = 0)

reduce log (xr)
Olse

reduce loh (xr)
subtract ave (xi')
if (normalize (15, xi') 1=0)
it ((sum > th limit)I

(noise flag =0)){

for 0 :Oi 15 ;j+ +)
fprintt (tout,
"%f~n", xrUD)

rf (i t- counter ==limit)
eot flag =1;

else
printt("\n Deleted %d @%d\n",

sum, counter)

i 0 .
if (overlap < 2){

pointer + = 85
tseek (fin. pointer, 0):

B-3

Appendix B: Computer Programs autoft

overlap + +;
}

eise
pointer + = 86,
fseek (fin, pointer, 0)
overlap = 0;
)

if (sum < th limit)
noiseflag = 1

else
noise-flag = 0;

sum = 0;
}

}
tclose (fin)
fclose (fout)
printf (" %d vectors.\n', counter);
}

fclose (thdr);

setuphamming (n)
int n

int i;

/I.... Set up the lookup table (ham[i]) for the hamming window ,,,

for (i = 0; i< n;i++)
ham[i] = 0.54 - 0.46 cos(2.0 PI * i (n - 1.0));

hamming (n, xr)
int n
float xr[256]

{
int i;

for (i = 0;i < n i++)
xr[i] *= ham[i]

fiter (n, xr) /* FFT */
int n ;
float xr[256]

int nv, nm, i, j, k, m, Le, Ld, p;
float xi(256], ur, ui, rt, it, wr, wi, up;

for (i = 0;i < n; i+ +)
xifi] = 0.0;

nv n / 2; nm = n - 1;
m Iog((n+ 1) * 1.0)/log(2.0)

for (i= 1 ; i <= n ;i++) {
xrtn - i + 1) = xr[n -i];

xi[n - i + 1) = xi[n - i;
B

B-4

Appendix B: Computer Program autofft

for(i= 1 ;i<=nm;i++){
i(i < D {

rt = xrWjl
it = xi(J
xrW = xr(qi xifj =xii]
xr(I) = rt;
xi(i] = it;
}

k = nv;
while (k <I) {

j-= k;
k/= 2;
I

j+= k;
) -

for(k= 1; k <= m; k++){
Ld = pow (2.0, k * 1.0);
Le = Ld /2;
wr = coo (PI / Le);
wi = -sin (PI / Le)
ur = 1.0;
ui = 0.0;

for u = I ;j <= Le ;j++) {
for (i = j; i <= n; i += Ld) {

p = i + Le;
rt = xr[p] * ur - xi[p] ui;
it = xr[p] * ui + xi[p] ur;
xr[p] = xr[i] - rt;
xi[p] = xi[i] - it;
xr[i] = xr[i) + rt;
xi[i] = xi[i] + it;
I

up = Ur* wr- ui *wi;

ui =ui * wr + ur *wi;
ur = up;

for(i = i<= n ;i++){
xr(i - 11 = xr(i]
xi~i - 1] xi~i];
}

for (i = 0 ; i < n/2.0 ; i+ +)/ get magnitude
xr(i] = sqrt (xr(i] xr(i] + xi(ij * xi(i])

normalize (n, xr)
int n,
float xr[256]

{
int i
double sum = 0;

for (i = 0; i < n ; i++)
sum + = xr(i] xr[i]

sum = sqrt (sum)
if (sum = 0.0) {

print1 (" An input vector found to be ZERO thrown away ...\n');
return (0)

B-5

II
Bpw~i : Computer Program atofft

for (i = 0; 1< n ; i++)--
xri]J = sum;

return (1);

reduce og (xr)
float xr[2561;

int i, j, counter;

xr[O) = xr[3] ;
xr[1] = xr[4) + xr[5];
counter = 6;
for (j=2;j < 13; j++){

xr[l = 0.0;
for (i = counter ; < counter + j; +)

xrW + = xr[i;
counter + =

I
xr[13] = 0.0;
for (i = 82 ;i < 102 i++)

xr[13] + = xr[i;
xr[14] = 0.0 ;
for(i = 102;i < 128; i++)

xr[141 + = xr(i]

reduce koh (xr)
float xr[256]{
int i, j, counter;

for (counter = 0; counter < 11; counter++) {
xr(counter] = 0.0;
for (i = counter *6 + 1; i < counter 6 + 7; i++){

xr(counter] + xri];
I

for (counter = 0 : counter < 5 ; counter+ +) {
xr[counter + 11] = 0,0 ;
for(i=67 +counter* 11;i<78 + counter* 11 ;i++){

xr[counter + 11] += xr[i]

for (i = 12; i< 128; i++)
xr(151 += xr(i]

II

subtract eve (xr)

float xr[256]
. {

int i
double sum;

sum = 0.0;
for (i = 0 ;i < 15 i+ +)

sum + = xr[i]
sum/= 15.0 ;
f (i 0; i< 15; i++)

B-6

Appendix 8: Computer Program autdfft

xrji] -~ sum;

B-7

Appendix B: Computer Programs neurai7

$ link neurI7,nwaight4optio leioptII
r,*****Ol******,*,g**,*,gti****t nswural7.c w

Routines to generate the first layer Kohonen network without
graphics. This version includes CONSCIENCE - the ability to
temporarllly remove nodes from conaideration for training when
they have already received more than their share of training.

Note that this version of conscience will only eliminate a nods
from being the "closest" to the input. It will still be trained
if it is in the region of a nods which is chosen as the "closest".

Implementation of Kohonen neural network algorithm as illustrated end

described in IEEE magazine, Apr 87, by Dr. Lippman.

Capt Gary Barmore, 25 Aug 88

GENERAL:
(1) Output nodes are stored in a m x n matrix with each node
represented by weights associated with each of the input
nodes. (Limited to 20 by 20 array)
(2) Output nodes are initialized with values between [-0.05, +0.051.
(3) For each iteration, inputs are taken from a *.trn file which
contains a sequence of 15 component vectors generated by
AUTOFFT.EXE
(4) Gain curves may be either linear, sigmoidal (not very successful),
or piecewise (two) linear.
(5) The size of the neighborhood is reduced as a function of the
percentage of loop completion. In piecewise linear gain runs,
the second "piece" is hardwired to have neighborhoods constant
at "1 1"; i.e. the closest node and its nearest neighbors (in
a rectangular region).

include math
include stdio
include time

int conscience[201[20] I* records # times closest 'I
int nodes ; /* number of nodes .1
double consc = 1.5; /* conscience factor '/
long its ;
long nodes slim;

float map[20][20][161 ; /* output nodes */
double input[161; /* input nodes */
double gain ;
double mcount;
double percent ;

int closest[2 ; /* closest node '/
int neigh[2] ; I neighbor /
int nrangex, nrangey ;/* neighbor range 'I
int nfactorx, nfrctory ;/ neighbor factorl
long count ; / # of iterations /
int graph; /* # between plots /
int seed ;

Sint maxneighx, maxneighy I* Starting area /

B-8

Appendix B: Computer Progrm neur&17

mnt minn..ghx. minnoighy I' Final area '
mnt xeize, yeiz; P Siz of arrayl
it number Inpuft;

Char training fil.[301. netfiI.[30j;
char net name(15J;

struct curve (
rnt type;
double maxgain;
double mingain;
double midgain:
int midtime,
I gcurve;

struct fig{
int md-in;
I flag,

ik (map)
float map[201(20J(16J;

mnt r, c, i;
float max-rand =pow(20,31.0) -1.0;

nodes eiim = 0;
nodes = ysize * xsize;
for (r = 0; r < ysize; r+ +){

for (c =0; c < xeize; c+ +){
conscience[rflc] 0;
for 0i = 0 ; i < number inputs; i ++){

mapr)(cl]i rand 0 (max-rand (10.0 -. 05;

mindist (map, inp, close)
double inp[161;
mnt close[21
float map[201(201(161;

double dot product;
double maximum = 0.0;

for (r =0; r < ysize ; r+ +) {
for (c =0; c < xsize ; c++){

if (conscience~r] [c] < consc * is9 nodes){
dotproduct = 0.0;
for (i = 0 ; i < number inputs ;i +)

dot product + = inp[i] * msp[r] (c) [i]
if (dot-product > maximum) {

maximum = dot-product;
close(0] = c;
close(1] = r;

else
nodes elim+ +

B-9

Appendix B: Computer Programse nour&l7

conecience(coee(1JJ(cloeO + = 1

useinp, 0

it line;
it C ;
struct tm flocalfime. *time;
it *bintirm

do printf ("NEURAL7 (Net training with conscience ontl) ..\k'

printf ("Enter size m nW (lor an mnx n) of array = 'tint int] 'I;
scarlf(%d %d", &yalze, &xaize);
if (ysize < 2)

ysize =2;
else if (y size > 20)

ysize =20;
it (xsize < 2)

xsize =2;
else if (xaize > 20)

xsize = 20;

printf ("Enter name of training fits [tn assumed): 'I
scant ("%a", net-name) ;
sprintf (trainingfit., "%a.tm", net-name),
printf(' Training fil, is: %s\n", training fits)

number inputs = 15;
it (number inputs < 2)

number -inputs = 2;
else it (number-inputs > 16)

number-inputs =16;

printf('Enter name of net file to create [.net appended]:)

scant ("U"', not-name);
sprintf (net fits, "%i.net", not-name);
printt(' Net its to be created: %9\n", net-fie);

printf ("Number of iterations =?(intl '

scant (%td", &count) ;
if (count < = 10 Icount > 130000)

count =100 ;
mcount = (double) count;

printf ("Number of iterations between status messages ?(intl "

scant ("%d", &graph) ;
if (graph < 1 11 graph > count)

graph = 10;

ingain 0

printt ("Do you want 0) sequential or 1) random izedtraining?")
scant ("%d", &flag.rnd in) ;

printf ("Starting size of neighborhoods 'yn xn' tin t intl)

scanf ('%d %d", &maxneighy, &maxneighx);

B-t0

Appendix B: Comnpter Program. neuruI7

dt (maxn..ghx < 2 11 maxneighx > xsize - 1)
maxneighx = 2;

if (maxnighy < 2 11 maxneighy > ysize - 1)
maxneighy = 2;

printi ("Final size of neighborhoods 'yn xn' ? [mnt irt])
scant (1/%d %d", &rninneighy, &minneighx);
0 (minn..ghx < 1 11I minneighx > maxn..ghx)

minneighx = 1 ;
It (minneighy < 1 11 minneighy > maxnighy)

minneighy = 1 ;

prin?("Initial seed for random # generator (0 SELECTS TIME) =? intl 1
scant ("%dl, &seed);
if (seed = = 0) f

time = locaitime (bintim);
time.tm sec % = 60 ;
time.tmn-min %= 60;
seed = time.tm soc time tm min;

srand (seed)

printt("Ready to begin? (yin))

while ((c =getc (stdii)) cI c==n' cI

}while (c!' y

ingamn 0

imt line;

print? ("For gain enter 0) LINEAR, 1) SIGMOIDAL, 2) PIECEWISE UINEAR:)

scant ("%dl", &gcurve.type) ;

if (gcuuve.type = = 0 11 gcurve.type =1){
prin? ("Maximum gain = ? [float]);
scanf ('%E", &gcurve.maxgain);
if (gcurve.maxgsin > = 1.0 IIgcurve.maxgain <= 0.0)

gcuuve.maxgain =.99;

print? ("Minimum gain = ? (float]);
scant ("%E", &gcurva.mingain) :
if (gcurve.mingain < = 0.0 1gcurve.mingain > =1.0)

gcurve.mingain =0.0;

else{
print? ("First segment searting gain = ? [float)
scant ("%E", &gcurve.maxgain) ;
if (gcurve.maxgain > = 1.0 gcurve.maxgain <= 0.0)

gcurve.maxgain =.99;

print? ("Second segment starting gain (float])
scant ("%E", &gcurve.midgamn) ;
if (gcurve midgain < = 0.0 1 gcurve.midgain > = 1.0)

gcurve.midgain =0.0;

prin? ('Second segment starting iteration =?[float] '

scant ('%d", &gcurve.midtime) ;

B-IlI

Appeidix B: Computer Programs neuraff

Nf (gcurve.midtime < 0 ((curvO.midtim. > count)
goumvemidjim. count / 2;

gcurve.mingain = 0.0;

galgain (t)
long I

Wt (geutv.tp 0)
gain (percent'* (gcurve.maxgasn - gcurve.mingain)) + gcurve mingain,

ese If (gcurve.tye==1
gain =0,9'* (gcurve.maxgazn - gcurve.mingain) / (1.0 + exp (i - count /2.0)) + .1;

it (I < gcurve.midtime)
gain = gcurve.maxgain' (1 .0.- (double) iI gcurve midtime)

els
gain = gcurv..midgain '(1.0 - (double) i/ count),

save net 0

FILE ne

fnet topen(net file,"'v)
Iprintf (fnet,'%d %d %d", ysizo, xsize, number-inputs)
for (r = 0; r < ysiz. ; r++) 4
for (c =0; c < xaize; c+ +)

for Q(= 0; i < number inputs ;i +-.)4
fprintf (fnet,' of", map~r] (c] (i])

fctoee (fnet)

maino

long
char silol0
intk;
it ws id=I

int clear -fag 1;
FILE *ft
extern unsigned _stklen;

-sticten = 8192;

userinp 0 I' Get input vatue/

nfactonc maxneighx - minneighx + 1;
nfactory =maxneighy - minneighy +I 1;
init (map) /*I Initiatize weights '

readirn tile 0 ;

for (i 1 1; i <= count ; ii- +){

B-12

ApperidK B: Computer Programs noura)7

its = i;
if (i % graph ==0){

printt ("NEURAL3: gain = %f, yrange =%d, ",gain, nrangey);
prnt (xArang. %d, iteration # %d", nrangex,i);
pnntdf (" (of %ld)\n", count) ;
k = nodes elhm / (double) graph;
printf ("%d ave nodes eliminaed'\n", k);
node. slim = 0;
I

percent =(mcourd - Q) mcount;
getgain () ;
if (flag.md in 0)

getin 0;

get mdjin 0;
mindist (map, input, closest),
if (gcuive type ! = 2) {

nrangex =minneighx + percent * nfactorx;
nrangey =minneighy +- percen* nfactory;

els it (i < gcurve.midtim.){
nrangex =minneighx + ntactorx

((double) (gcurv*.midtime - i)) / gcurve.midtime;
nrangey =minneighy + nfactoy 0

((double) (gcurve.midtime - i)) / gcurve.midtim.,

else{
nrarigex =minneighx;
nrangey =minneighy;

}eg[)=nagx
neighlil = nrangex;

weightemn (map);

save-net 0;
prinif ('MnNet file: %a saved!\n', net-file);

These routines allow training and testing of a first layer Kohonen
network. The training primarilly supports NEURAL7.CIEXE. Testing
(with true sound spectrum data) supports NEURAL2.CIEXE to recreate
sounds.

include math
include stdio
include stat

extern double input[161; 1. input nodes '
extern double gain ;

extern it closest[2]; P closest node1
extern int neigh[2] ; f* neighbor *I
extern int xsize, ysize; I. Size of array
extern int number -inputs
extern char training file[301

B- 13

Appendix B: Computer Programs neuraff

mnt tr length;
f"oat trdetaJ225003;
int trcounter 6 ;
mnt tryectora;
it node aound(2251
mnt num words;
int word limftai25l(21;

read tm file 0

FILE Vf
float value =1.0;
unsigned meory;

tf =fopen (trainng file, "r');
tr length = 0 ;
wh ile (feof(tt) = = 0){

fecanf (if, "W"*, &value);
*(tr _data +- tr-length) = value;
It length+ +--

fcloee (if);
tr -ength-;
tr vectors =floor (tr length I15,0)
tr-lenath = IS * tr vectors;

getir' 0

mnt

if tr counter ==tr-length)

ftrcounter = 0;
for (i = 0:1< 15; !++){

input(iJ = *(trdat* + tr-counter)
trcounter-I-i+

get rndjn 0

int i;
double max-rand = pow (2.0, 31.0) - 1.0;
int pointer;

pointer =15 *floor ((rando* (Ir _vectors - .0001) / max-rand))
for (i =0; i < 15; i-i-i)

inpul(i] = (tr data + pointer +Q

weightemn (map)
float map(20][201[16];

int nright, nieft, nup, ndown, r ,c,

if (neigh[0] > 0 && neigh[1I) > 0) (
nright = closest[0] +I neigh[0J - 1;
if (nright > = xsize)

nright =xsize - I;

B- 14

Appendix B: Computer Prograims nouraff

nieft = cloee0t[O - neghOJ + 1;
Nf (nieft < 0)

nleft = 0;
nup = cloeM~l] - neigh(1J + 1;
0 (nup < 0

nup = 0
ndown = cloe..[lI + neighfl - 1;
if (ndown > = ysiz.)

ndowri = ysize - 1;

es(nright = ctoaest 0];
nleft = closestfOJ;
nup = clos"(IJ
ndown clos"e(1I;

far (r nup; r <= ndown ;r+ +){
for (c= nleft; c < = nright; c+ +){

for (i =0; i < number -inputs; i+ +)
map(r] Cc)(il + gain * (Inputfil - map(r] Cc) [J)

4L}

B*1

Appendix B: Computer Progrm neuraI2

$link neural2,npkot,nprinter,mai,nweight4,options file/opt

Routine. to train first Kohonen neural net (with graphics) and
to display spectra of net after it is trained. During training,
the graphics show spectra. However, this slows down the training
greatty. Thus If time is important, run NEURAL7.EXE.

Implementation of Kohonen neural network algorithm as illustrated and
described in IEEE magazine, Apr 87, by Dr. Lippmnan.

Capt Gary Barrnore, 7 Feb 88

GENERAL:
* (1) Output nodes are stored in a m x n matrix with each node

represented by weights associated with each of the input
nodes. (Limited to 20 by 20 arrays).
(2) Output nodes are initialized with values between (-0.05, +0.051.
(3) For each iteration, input nodes receive values consisting of
15 component vectors taken from a '.tin file generated by
AUTOFFT.EXE.

((4) Gain curves may be linear, sigmoidal (not very successful) or
piecewise (two pieces only) linear.
(5) The size of the neighborhood is reduced as a function of the
percentage of loop completion. For piecewise linear gan runs,
the second "piece" is hardwired for a neighborhood of " 1 1 i.e.
it includes the closest node and its neares neighbors in a
rectangular grid.

include math
include stdio
include curses
include time
include <gksdefs.h>

Idefine bool n

float msp[20](20](16] ; / output nodes '
double input[161 ; I. input nodes/
double gain, noise;
double incount;
double percent;

mnt closest[2] ; 1' closest node '
int neigh[2] ; I' neighbor *I
tnt nrangex, nrangey ; I neighbor range '
it rifactorc, nfactory P 1 neighbor factor '
long count ; /* # of iterations *I
it graph ; /* # between plots '

(nt seed;:
tnt maxneighx, maxneighy ; I' Starting area
tnt minneighx, minneighy ; 1P Final area '
tnt xsize, ysize ;I' Size of array/
tnt number-inputs;

char net file[30J, net name[15];
char training file(301

B- 16

AppwnK& 8: Comper Program neura2

etruct curie
ie typO;
double maxgaln;
double mingain;
double midgain;
Int miditime;
} curve;

Stiruct fig{
int md-in;
)flNO;

ink (map)
float map[20)i2Ol(161

hIt r,c, i;
ft max-rand = pow(2.0, 31.0) - 1.0;

for (r 0; r < ysize; r+ +) f
for (C = 0; C < xsize ; C+ +){

tor Q= 0 ; i -c number -inputs; i ++){
map(rI[cliq rand 0 max rand /10.0 - 5

mindlat (map, inp, close)
double inp(161;
imt cloe(21
float map[20]120]1161;

it rc, ;
double dot-Product.
double maximum = 0.0,

for (r z0; r < ysize ; r++) {
for (c =0; C < xeize ,+ c+){

dot-Product = 0.0,
for (i= 0; i < number inputs; i+ +)

dot_product + = inpli] * map~r] (c) [i]
if (dotproduct > maximum) f

maximum = dotproduct;
close(0J = C;
closell) = r

userinp 0

mnt line;
imt c
struct tm lo0caltimeO, *tre
int *bintim;

do nitscr Q0

B- 17

Apperibc 8: Computer Program neuram

Clew 0;
printw ("NEUPAL2 (Training a Sound Net with GRAPHICS only!) .. \n\n;

prliftwC'VnEnter aize 'm n' (or an m x n) of array =? [int int)');
scanw("1%d %d", &ysize, &xsize);
I (yeize < 2)

ysize = 2;
es if (yaize > 20)

yslze = 20);
If (xaize <C 2)

xsize = 2;
elee df (xaize > 20)

xeize = 20

printw("Enter name of training file [lee. .tm]: 'I
scanw ("., not-name) ;
eprintf (trainingjfle. '%e.tm", net-name);
printw (" Training file is: %Mn", trainingfile);

number inputs = 15;
if (numbeor inputs < 2)

number -inputs = 2;
else if (number-inputs > 16)

number-inputs = 16;

printw("Envter name of net file to create [lees net]:')
scanw ('%a", net name) ;
sprintf (net file, "%.net", not-name);
printw (' Net file to be created: %s\n", not-file),

printw ("Number of iterations = ? [intl),
scanw ("%ld". &count);
if (count < = 10 11I count > 130000)

count = 100;
mcount = (double) count;

printw ("Number of iterations between plots =? [int]
scanw ('%d", &graph) ;
if (graph < I I Igraph > count)

graph = 10;

ingain 0 ;

printw ("Do you want (0) sequential or (1) random training?');
scanw ("%d", &flag.rnd en);

printw ('Starting size of neighborhoods 'yn xn' lin (t int]')
scanw ("%d %d-, &maxneighy, &maxneighx);
if (maxneighx < 2 11 maxneighx > xsize - 1)

maxneighx = 2 ;
it (maxneighy < 2 11I maxneighy > ysize - 1)

maxneighy = 2;

printw ("Final size of neighborhoods 'yn xn' lin(t intl 'I
scanw ("%d %d", &minneighy, &minneighx);
dt (minneighx < 1 11 minneighx > maxneighx)

minneighx = 1 ;
it (minneighy < I I I minneighy > maxneighy)

minneighy = 1:

B- 18

Appendix B: Computer Program neuraI2

("Initila seed for random # generator (0 SELECTS TIME) ? [Jim);
ecanw ('%d", Ueed
it (med = = 0) f

time = locaitims (brntim);
timne.tmeec %= 60;
time~rtmmin %- 60;
seed = time~trr,6 -ectim..tm-min;
I

wrand (seed)

printw("Fleady to begin? (yin)")
while ((c getch 0) 11' Ic==n I I c= V1

endwin 0;
) while (c I='y

ingain 0

mnt line;

printw("For gain enter 0) LINEAR, 1) SIGMOIOAL 2) PIECEWISE LINEAR:'I
scanw (1W", &gcufve.type);

if (gcurve.type ==0 Igcurve.type =1{

prinlw ("Maximum gain =? [float)');
scanm ("%E", &gcurve.maxgain) ;
if (gcurve.maxgain > = 1.0 11 gcurv..maxgain <= 0.0)

gcuuve.maxgain = .99;

printw ("Minimum gain = ? [float] 1
scaw ("%E", &gcuvve.mingain) ;
it (gcurve.mingain < = 0.0 1I gcurve~mingain > =1.0)

gourvemingain =0.0;

else (
printw, ("First segment starting gain = ? [float);
scanw ('%E", &gcurve.maxgain) ;
df (gcurve. maxgain > = 1.0 Igcurve.maxgain <= 0.0)

gcueve.maxgain .99 ;

printw ("Second segment starting gain =?[float]")

scsnw ("%E", &gcurve.midgain);
if (gcurve.midgain < = 0.0 Igcurve.midgain > = 1.0)

gcurvs.midgain =0.0;

printw ("Second segment starting iteration = ? [float] 1
scanw ("%d"' &gcurve.midtime) ;
if (gcurve.midtime < = 0 IIgcurve.midtime > count)

gcurve.midtime =count/ /2;

gcurve.mingain =0.0;

getgain (i)
long

If (gcurve.tye 0)

B-19

Appendh B: Computer Programs neura12

gain = (percent * (gcuri.maxgain - gcurve.mingairi)) +
gauvo. mingaln;

elwe (gcurve.type = = 1)
gain = 0.9 *(gcurve.maxgain -gcurw.mingain) / (1.0 + exp (I -

count / 2.0)) + .1;
else{

if (< gcuave.midtime)
gain =gcurve.fmgain (1.0 - (double) i /gcurve.mkdtirm)

ekse
gain = gcuav.mkdgain *(1 .0- (double) 1 count);

main 0

mnt c;

printf (VINEURAL2 (Sound net Training with GRAPHICS only!) ...\n');
printf ("\nDo you want to train a net? (yin) ');
while ((c getcharo)== fc ==n' I I

it (c = V)
train-not 0;

printf ("\nDo you want to draw spectra of a net? (yin) 1
while ((c =getcharQ) I I c I I c == t')

if(c = Y')
draw net spectra 0;

ave nt 0

int r, c, i;
char name[0);
FILE *tnet

Meti = topen (net-file, "w');
fprit (friet,"%d %d %d", yuize, xsize, number-inputs)
for (r = 0; r < ysiz.; r++,) {

for (c = 0; c < xsizs; c+ +)
for (i 0 :I < number inputs ; i ++){

fprintf (fnet," %f", map[r) [c] i])

fcloee (fnet)

save temp nsto

int r, c, i;
FILE *fnet;
char teipnet[301;

sprinti (temp net, "%a.mid", net name);
fnet = fopen (temp net, "w') ;
fprintt ",r"t%d %d %d., yuize, xaize, number inputs)
for (r =0 ; r < yaaze ; r+ +) (

for (c = 0;" c < *size; C+ +)

B-20

Appendix 8: Computer Program. neuraI

for Ql0: 1< number-inputs;i+ +){

fpht flet, rF' mc, 1,cJj, k

dr nt apectra 084,2,4,2,)

irK fftlagc ljk

chinif("~ye name(] no-il o tee

soat element;e)
fnt = ope (am, r ;
FILEn fsnM d d, fnsie sz, ubr-nu
ir (rdj = 0;43r3<21,47.9,r8,)},

printf ('\nanter name f netfile to teat: ')

scant (',~ nfa)

gnra fpet (name) ;

for (r -g0; < ysize ++) 4
fowspcra (map = 0 ; c xsize c)

scaantt, f,& apr(c(]

floeg (tet

pntf (Wsh s eertd by (01 F2o ()FT?
scnt ("%d" &tft flag 1

gextes (nae);stle

ifsftkla'= 81)2

draw scra mapigy ysie ih +sme I
scnt (a) ntaiz egt

411, ~tai ne otnfl 0

B42

Appendis B: Comiputer Program neuraI2

prep graph 0 ;
*for(I : il< =court i ++){

1(1% graph = 0){
fixcolor (map):
clearyiewport 0;
statusemn (gain, nrangey, nrangex.i)
draw spectra (map, ysiz., xaize);

*t i (%10000==0)
stviktwnp,nvt 0;

percent = (mcount - i) / mcount;
getgamn @I;
it (flag.md in 0)

getin 0;
else

get md in 0;
0 mindist (map, input, closest);

if (gcurve.typ. I=2) {
nrangex = minneighx +- percent * ntactorx;
nrangey = minneighy + percent'* nfactoiy;

else it (i < gcurve.midtime){
nrangex = mlnneighx + nfoctonc

* ((double) (gcurve.midtime - Q) / gcurve-midtim.:
nrangey = minneighy + nfactory*
((double) (gcurv.midtime - i)) /gcurve.midtim.;

also{
nrangex = minneighx;
nrangey = minneighy;

neigh[0J nralgex;
neighill =nrangex;
weightemn (map);

save net 0;
prinit (' nNet file; %s saved!\n., net-file);

* scant C%"e'sl)
end-graph 0 ;
print data (map);
distance histogramn (map, ysize, xsize),

graph test (name)
(char name[30];

char tnle[791, labetx(791,
float xloc(51 = (0, 639.0, 6390, 00.0})
floatl yloc(51 = (349.0. 349-0, 0.0.0.0. 348.01;
mnt points=5;
mnt ws id I ;
mft clear. flag = 1;
short length ;

sprint(title,"NEURAL-2: Kohonen %d x %d Neural Net %9"
yeize, xsize, namne)

graphon 0 ;
gks$cleaw w (&ws id, &clear_flag);

nk~olin (&Points, xloc, yloc);
f prepeolmat (ySize, xsaze);

B-22

Appwndk B ConipLAe Programs neuram

length = (short) strien title);
ouWte MWde length),;
length = (short) strien (labeix)
clipon 0.

prepjraph 0

char tftI.[791, labl[79J;
float xloc(5J = (0,639.0,8639.0 0.0, 0.0),
flog yloc[5J = (348.0, 348.0, 0.0, 0.0, 348.0);
mnt point=5;
it ws-id I ;
mnt clearjlag = 1;
mnt box =3;
short length;

sprinttltitle,"NEUPAL-2: Kohonen %d x %d Neural Net", ysize, xaize);
sprnff(labelx,

"[%4.2,%4.21 Gain, [%d,%d: %d,%d] Neighbors, %d Iterations",
gcurve.maxgain, gcurve.mingain, maxneighy, minneighy, maxneighx,
minneighx, count);

graphon 0 ;
gks$crsatsg (&box);
gks$polyllne (&pomnts, xloc, yloc);
gks$cloeeseeg (&box) ;
prepcolmat (yaie, xsie);
length = (short) strien (labetx);
outlabefx (labetx, length) ;
length =(short) strien title);
outie (title, length);
pickcolors 0;
clipon 0

end..graph 0

clipoff 0;
graphoft 0;

fixcolors (map)
float map[2Ofl20][l6]

imt max = U
double constant;
double tenmp(20](201

exter n t colmat[201l201;

for (r =0 ; r < ysmzo; r+ +){
for (c = 0; c < xsize ; c++){

temp~r](cJ = 0.0;
for (i = 0; i < number -inputs; i + +)

temp(rJ[cJ + = pow(map[r][c](i], 2.0)
if (tomp[r][cJ > max)

max = temp(r] (ci

B-23

Appendkx B: Computer Program. neuraI2

If (Max I = 0.0)
constant = 14.9991 max;

911ee,
constant = 14.99;

for !r = 0; r < ysize ; r+ +) I
for ce = 0; c < xeize ; C++){

colmat(r]lcJ = floor (ternp(rJ[c) constant) + 1;
It (colmat(r)[cJ > 15)

colmat~r](c) =15;

Routine, to enabl, graphics for Micro-VAX It workstation using OKS
for Kohonen network speech recognition.

include math
include stdlio
include <gksdefs.h>
Include <deecrph>

define MAX STRING 80

double xlow, xup, ylow, yup;
double xdlel. ydel;
float X11001. y00I1

graphon 0

int wsid=1
int error -status, category. inquire-okay;
imt dlummy-int, detMode, regenlag, ws,.type;
mnt rx, ry, units;
float x, y;
float XO= 0.0;
float x1 = 639.0;
float YO =0.0;
float yl = 349.0;

int deferral-mode = GKS$KASAP:
mnt regen mode = GKS$K lAG SUPPRESSED;

struct dsc$descniptor dummy dsc;
char dummy..string [MAX _STRING]
$DESCRIPTOR (error-file, "sys~error:');

inquire okay = 0;
dummy dmcdsc$apointer d cummy string;
dummy dsc.dsc$w length = (short) MAXSTRING;

gks~opengks (&error file);:
gks~inqws~category (&GKSSKWSTYPE DEFAULT, &error-status, &category);

* Make sure workstation type is valid.

if ((error status I=inquire-Okay)

B-24

Appenif B: Computer Program neuraI2

((category I GKS$K WSCAT-OUTIN) &&
(category I = GKS$KWSCAT MO))) {
wrnt (Th. specified workstation type is invalidAn');
pintt ("Error statue: %d~n", error statue);
return;

gksopenws (&ws id, &GKS&K CONID DEFAULT, &GKS$I(WSTYWE DEFAULT);
gka$actiae-ws (&we Id)

* Make sure deferral mode and regeneration flog are properly ed.

gk$eetdfersW@ (&ws Id, &deterral-mode, ®en mode);
gks~nqws type (&ws d, &error-staue, &dummy dsc. &ws type,

&dummyint) ;
gk4riie defer stat (&ws~jype, &error status, &def-mode,

®erijag) ;
If (error status I = inquire-okay){

printf ("The deferral inquiry caused an error\n)
printi ("Error status: %ft-", error status)
return;

* Set up viewport for drawing figures.

gksetwWindow (&ws id, &xO, U1l, &yO, &y1);
gkcsaelect-xform (&wsjd)

graphoff 0

int wosid= I

glcaSupdatews (aws,_id, &GKSSK -PERFORM-FLAG)
gks~deactivte-ws (&ws id);
gks~closee (&ws Id);
gka~cloe gks 0;

clipon 0

irit w92 =2;
float X0 =0.0;
float x1 560.0;
float yO =0.0:
float yl1 = 289.0;
float V4 = 0.183;
float wi1 = 0.881 ;
float vy0==O.1143;
float vyl1 = 0.9400;
it on =1 ;

gks$9eet window (&ws2, &x, Wx, &yo, &y1);
gks~eet vewport (&ws2, &vx0, &vxl, &vyO. &vy1);
gks$eelecxtorm (&ws2);
gks$eet clipping (&on);

clear viewport 0

float xlocD = (00, 560.0, 560.0, 0.0, 0.0):

B-25

Appendix 6: Computer Program neur&12

Rlod ylocfl = {28b.0. 299.0. 0.0, 0.0, 289.0):
int points =5;
int sold = I;
int background =0;
int black = I

gk SeetflUcolor Jndsx (&background)
gk4e*lflintstyl. (&solid) ;
gks$MLI.ams (&points. xioc, yioc);
gks$s@ tfIIlcolor index (ftlack);

cllpof 0

mnt off =0;
int wesid =1:
gka$a"lectxform (&ws -id);
gka$svt clipping (&off)

oue 0

mnt x. yy, points;

points = 2;
Y[OJ = y[1l = 39 ; x[OJ = W0: x[1J 820;
gka~potylin. (&points, x, y) P* Plot horizontal axis/

x(Ol = XIII = 60; yi0l = 329; y(1j = 40;
gka$polylin. (&point, x, y) P* Plot vertical axis '

x(OJ = 57 ; x[l) =59;
for (yy = 39 ; yy < = 329 ; yy + = S8) (1' Plot y ticks/

v1ol = AllJ = y
gkcspoyline (&point, x, y);
I

y[Ol = 38 ; y(1] = 36;
for (xx = 60 ; xx < = 620 ; xx + = 56) I"Plot x ticks *

x(0I = X111 = xx;
gka$polylin. (&points, x, y);

outlimits (x2,c2,e2,x1,dlel) I, x-axis then~ y-axis '
double xl, dl, xd2;
mnt al.e2;

char sf5]. sa9);
SDESCRIPTOR(sdsc,s) ;
$DESCRIPTOR(ssdac,s*);

int ticks(3], loop, xx, yy, flag;
double xypospI1, delta(3j;
double ;
flogt xloc. vioc

ticks[O) = 5 ; ticksil] = 10;

*1 = s2;

xlow =x2 * pow (10.0,.)

B-26

Appendix B: Cornpier Prograrms neuraI2

xup - xlow -10.0' * C * pow (10.0.e);
0 =01

ylow - xI * pow (10.00e);
yup -ylow + 5.0 * dl * pow (10.0,e);

deltsa(01 dl; deltll) =d2
xyPOGI(II = Xl; xypoG(1 I =)a
for (Nlo 0; fla <= 1 ; fNe+ +){

for (loop -0 ; loop < = ticks(fiagj loop+ +){
xx= 7 + loop'* 7;

printf (s,'%4. lf'xypoe(flagj);
xloc =1.0 +S8.0 (x2.0);
yloc =34.0;
gkoext (&xloc, &yloc, &a-dec),

sprinti (s,'"%4.1f',xypo.(ftagj);
xloc =2.0
yloc; = 349.0.- 16.0 - (5.0 - loop) 58.0;
gks~text (&xloc, &yloc, &s-dsc);

xypoo(flagj + = dolta[flagj;

it (s2 1 = 0){
sprint? (sai"x E%3dJ.e2);
xloc = 312.0;
yloc=220
gks~text (&xloc, &yloc, &sa-dsc);

If (01 I= 0)
xloc =-1.0;
yloc = 0.0;
gks$aot text upvec (&Jcloc, &yloc) P' rotate text to 90 dog '
sprinti (ss,i[x E%3d1',el)
xloc = 26.0;
yloc = 209.0;
gks$text (&xloc, &yloc, &sa~dsc),
xloc; = 0.0;
yloc = 1.0;
gks$sMetstxt upvec (&xloc, &yloc) I' change text to normal '

xdl= Iu xo)/500
xdlel = (xup - xlow) / 560.0;

outtitle (string, length)
short length;
char *string;

it title 1;
int bc,
floes xboc, yloc,
etruct dsecSdeecriptor strfng dec = {bngth,

DSC$K DTYPE T,
DSCSK CLASSFS,
string)

xloc = 320.0 -3.0 * lngth;

B-27

Appendix B: Computer Program. neur&12

yloc; = 343.0;
gku~creteseg (&title);
gk.$text (&xloc, &yloc, &string..dsc);
gkscdoe...eg (&title);

outtabehx (string, length)
short length;
char *string:

imt Iabex 2;
mnt oc ;
flOat xboc, yboc;
atruct dsc$deacniptor stningdsc (l{ength,

DSC$K DTYPE T,
DSC$k CLASdSS
atring};

xloc = 320.0 - 3.0 * length;
yloc = 10.0;
gks$create sg (&labelx)
gks~text (&xloc, &yloc, &stringdac)
gka$cbose g (&labex);

outlabely (string)
char string[80J,

int oc;
float xboc. yloc,
SDESCRIPTOR(stringdscstning),

boc = strben(string)
string[loc] = A'
xloc= -1.0;
yloc = 0.0;
gks$aet text upvec (&xloc, &yloc);
xboc =13.0;
yboc = 349.0 - 164.0 -4.0 * loc
gks~text (&xloc, &yloc, &string dsc)
XboC = 0.0;
yloc = 1.0;
gks$aet text upvec (&xloc, &yloc);

P

ese,..eenn,.*..,..,*.**.~.nprinter.c * *

Simulates printer output by storing Kohonen training data in a file
PRINTER.OUT. This tile was written when NEURAL*.EXE was still
being written and run on a Tandy 4000. The current version of the
Kohonen training routine. may not have the appropriate hooks in them
to run these printer routines.

include stdio
include math

FILE *fp, *fopenQ,

B-28

AppenidixB: Computer Program nsurI

double nei ;

extern mnt xsize, ysize, number inputs, wrap flag;
extern struct curve f

int type;
double maxgain;
double mingain;
double midgain ;
int midtime;

)gcurw*;

popeft 0

fp = topen ("printer.out,');
f1putc (15,ip);

pcloee 0

fclose (I p);

pfeed 0

fputc (\n',p);
I
p~retum (linee)

nt lines;

mnt i;

far (i I ; i <= lines; i+
fprintt (p,"ni;

print..data (map)
floatl map(201[20)[16J;

irtt r, c, i;

extern int count, maxneighx, maxneighy, minneighx, minneighy;
extern it seed;
extern double xoft, yoff;

printf ("\nDo you want parameters and weights printed out' (yin))
while((& getcharO) c A~=n'

d (c! = Y)
return (0)

popen 0;
pfeed 0;

fprintf(tp,1nNEURAL.. .\n------\Wnn);
fprintt(tp,"SIZE OF ARY: %d x %d\n".ysize,xsize).
tprintt~fp, "NUMBER OF INPUTS. %d\n",number inputs);
it (gcurve.type = = 0) (

tprintf(tp.'"GAIN CURVE IS: %s\n"LINEAR)
fpnintf(tp, "RANGE OF GAIN: [%g,%gJ~n",

B-29

Appendk B: Computer Program. neuralI

gcurA.msxgain,gcurv..mingain);

a"i (gcurv..typ. e 1){
fprint~ft,"GAIN CURVE IS:sn"

"SIGMOIDAL')
fprintftfp, "RNG3E OF GAIN: (%g,%g]\n'*,

gounle.msxgain,gcurve.mingain);
I

ele(fprintf(?p,"GAIN CURVE tS:*\"
"PIECEWISE UINEAR"J;
fprntp,"MAXIMUM GAJNS (AND BREAKPOINT): %g,%g C%d)\n",
gcurvw.maxgain. gcurv.midglain, gcurve.midtim.),

fprintf(fp,"NEIGHBORHOODS START AT : %d %d~n",
maxneighy, maxnaghx);

fpnnrtf(tp,"NEIGHBORHOOOS END AT : %d %dWn"
minneighy. minneighx);

fprintt(fp,"SEED :%d~n",sesd);
fprinttfop,"INITIAL X-OFFSET, Y-OFFSET: %g %gWn',xoff,yofl)
if (wrap flag = =0)

fprintf (tp,"WRAP :OFF\nj

fprintf (fp,"WRAP :ONWn')

p return (3) ;
fprinff (tp.'Final valuse for weights are:\n\n');

for (r = 0; r < ysize; r+-+) {
for (i =0 ; i < number -inputs; i ++){

for (c = 0; c < xsaze; c+- +)
tprintt (fp."%5.lf ' map(r][c](i])

p rtum (1);

p-return (1);

pctoee 0;

dietance-hi.togram (map, ysize, xaiz.)
mnt ysizo, xsize
float map(201[20]11;

int bing {.0, 0, 0 0,00,,0, 01
in? bin2D = {00,0O,0,0, 0,0,0.0,0. 0,00.0,0, 0.0.0.0,0);
float maximum =0.0;
float minimum =9999.0;

in? binmax =0;
int binmax2= 0;
float dist[20120][4], a, b, defta;
int r, ci, j:
double tot, sub;

printf ('Wno you want diatance histogram printed our'? (yin)")
while ((c gtcharo) IIc= An' I I c A=t)

if (c !='Y)
return (0)

popan 0;

B-30

Appendix 8: Computer Program neuraI2

Pleed 0:;
fprliW (fp.7h. distance histogram ma:\MWn);

for (r =0 ; r < yslze ; r+ +) (
for (c 0:0 c <xsizS; c+ +)

If (r =0)

dlstirflc)[0) = -1.0;

dlst~r](c)[0J = 0.0;
for 0 0: I number- inputs i it)

distfrflc)0) +=
pow(maplrllclul-mapir-1llc~l1,2.0);

distfr)(cJ[0) = sqirt ((double) dist~r][c][0]);
test maxinin (dist(rI[cJ (01, &maxmum, &minimum);

if (r ysz -1

dlst~r]jcJ[2 = -1.0;
elsee

dist~rI(c]t21 = 0.0;
for (i = 0 ; i < number inputs ; i + +)

dist[rflc)(2) + =
pow(map~rJIci[ij -map~r + 11 (c) [i] .2.0),

distir] (c] (2) sqrt ((double) dist(r) [c) (21),;
test -maxmin (dist(r](cI(21, &maximum, &minimum);

if (C= 0)
dist[rJ[cJ(1I = -1.0:

Oise{
dist~r)(c](11 =0.0;
for (i =0~ ;i < number-inputs : i +)

dist~[l[+-=
pow(rnapirJ [ci] mapir] (c-l](i] .2.0);

dist~r)(c)(1J sqirt ((double) dist~r)(cJ [1]);
testmaxrnin (dist(rJ[cj(l], &maximum, &minimum);

if (c xsiz* - 1)
distir)][31 =-1.0;

dist(rJ~cJ(31 =0.0:
for (i =0 ; < number-inputs ; itt)

dist[c)f3] +=
pow(mapjrllclji1.map~rI[ct 11[i].2.0);

dist~r](c)(3] sqrt ((double) dist(r](cl(31)
tet-Maxmin (digt~rJ(cJ[3). &maximum, &minimum);

tot =0.0;

sub = 0.0.
delta = 50 sqrt ((double) number inputs) / 20.0;
tor U= 0; ,j < 20; jtt){

a = *delta,

b = (j+ 1.0) * delta;
for (r = 0 ; r < ysize ; rt +){

for (c = 0 ; c < xsize C+ c+){
for (i = 0 ; i < 4; itt+){

if ((dist[r (c] [il <= b) &&
(dist(r][c][iJ >= a)){

bin2W + +
tot +4= 1.0;

B-31

Appendix B: Computer Programs neurl2

)}

)
If (bin2W > binmax)

binmax2 = birn[;
}

for(J = 0; j < 3; j++)
sub + = bin2Wl;

nei = sub Itot;

for(=0;j < 20; j+ +) {
a = j*delta;
b = U + 1.0)* deft;
fpnrnt (fp,"'M(.2f -> %6.2qJ %4d a, b, bin2W[,)
for (i = 0 ; i < 40* bn2lW / binmax2 ; i+ +)

fputc ('*',fp);
p return (1);

preturn (2);
delta = (maximum - minimum) / 10.0;
for =O;j< 10;j++) {

a = minimum + i * delta;
b = minimum + (+ 1.0) 'delta;
for (r = 0; r < ysize; r++) {

for (c = 0; c < xsize; C++) {
for (I = 0; i < 4 ; i+ +) {

if ((dist[r][c(i] <= b) &&
(dist(r][c)[i] > = a))

bin] + +;

}
}

if (binWjJ > binmax)
binmax = bin[;

}
for 0 =0;j < 10;j++) {

a = minimum + j* delta;
b = minimum + (j + 1 0) 'delta,
tprintf (fp,"[f%6. >%62%4d a b, binW);
for (i = 0 i < 40 ' binW / binmax; i+ +)

fputc ('*',fp)
preturn (1);

}} pclose 0;

forn (number, Ioc, in, ysize, xsize)
int ysize, xseze, number;
int ioc[64][2];
double in(641[161;

{
double dl, d2, alpha, sum, var;
int i,i, k ;
double max1, max2, nei, fig;

max1 = 10.0 * sqrt ((double) number inputs)
max2 = sqrt(pow((doube)ysize, 2.0) + Pow((double)xsize, 2.0));

sum = 0.0;

B-32

Appendix B: Computer Progrsme rwural2

for (I = 0; 1 < number- I ; I++){
for a = i+1 :I< number; j++) I

dl = 0.0;
for (k - 0 ; It< number inputs ; k+ +)

dl + =paw(inuqlkI - inW(kI 2.0)
dl =sqWt(dl)/maxl:;

C2- Wqi (Pow((doubiv) (locfiJ[0j - tocojJ[0J), 2.0) +
Pow((doubIe)0ocj~l1j - locW(1J), 2.0)) Imax2;
sum + - p~ (dl - d2.2.0);

= rt (sum);
fig =var (1.0 + fe);
popen 0;
ptaufi (2);
fpirinf (ft1The template tesd FOM is %7.4f , vat)
fpnintf (lp, AiThe neighborhood FOM is %7.4f ', rN)O
tprlntf (1P.InThe COMPOSITE FOM is %7.4r', fig);

~fed0;
pcloee 0;

teet maxmin (diet, max, min)
110o11 diet;
float rmax;

If (diet < 'nin)
*min= diet;

if (diet > *max)
*max =diet;

Routines to draw net diagrams (spectra), not trajectories, and
graphics for net training routines. All graphics are performed
using 09(5 routines.

include stdio
include math
include <gksdefs.h>
include <deecriph>

define BLACK 0
define WHITE 1

float ptsx[2OJ(20Jf51, ptsy(201[201(5J,
float px[201 [20), py[201120J.
int used(201[201 ;
int colmat(20) (20]
mnt pattem[16J=

prepcolmat (ysize, xsize)
iflt xize;
mnt yeiZe;

B-33

APPendb 8: COnMr Progral rinural2

irit r. c. xataat YOtWl
Iit cXdy;

dx = floor (5600 xaie);
dy = floor (276.0 /yeize);

xdtat = 260 - dx *xvize 12;
ydtat = 148 + dy *yeize / 2

for (c = 0 ; c < xsize; c++){
for (r =0 ; r < yeize ; r+ 4){

ptax(rI(c](41 = (ptex~r](c][31 = (ptax(r](c](Oj
xatai + c * dx));

ptax~r]tc)[2l = (ptax(rI[c](11 = ptsxlrl[c)[OJ *4dx- 1);

pfay(r](cj[4) (ptoyfrjtc)[11 (PtNY[r][c)(0)
ystart - r *dy));

ptsy~rJ[cJ(31 = (ptsy[rJ[cJ(2J = ptsy~r][c]10) *dy+ 1);
px~rI[cJ = ptax[rJ(cJ(0J + 8.0;
Wy~INc = ptsyvrjIcj(01 - 6.0;

for (r =0 ; r < 20; r+ 4){
for (c = 0; c < 20; c++)(

used[rllc] = 0;

showern 0

mnt i;
float recMI16l6I. r"cy[616
it points =5;

for (i 1 1; i < 16; ++){
rectx~i)(41 (recbl[i] =3 (recN(i)[1 =173 + 16 j)

rectxi][21 -(rect(illhI (recbliE01 + 15))

rectyli)[4) (rectyti)[1) (rectyli)[0J = 30))
rectyli](3) (recty(i)[21 = 23);

setfillstyle (patternfil, Q):
gks~fillI area (&poirnts, &rectx~il(01, &recty~il(O1)

etilletyle (pattern, pointer)
int pattern;
int pointer;

rnt styl.= 3 /* hatch/
int colorf 161 =(0, 7., 3,3, S,5, 4,4, 4, 6,6, 2,2, fl;

if (pattern > = 0){

gk9asat..fiIl~styla~fldex (&pattern);

B-34

Appmnidi 8: Computar Program nouraI2

draw-not (number, loc)
Int number, loc[641(21;

mnt wt;=0;
Int black = I
flot X, Y;
char 9141;
SO3ESCRIPTOR(s-dec,s)

for 0I 0; : < number; I+ i-){
x = ptsxjlocjij[1)jjlocji][0]fl0J +t 4.0;
y = ptsylloci(111floc(i(01](0 - 4.0;
old-value = used[loc(iJ[111(locli][0J);

gkaeootwx color index (&white)
sprintl (*j%3d",-old value);
gkcatext (&X, &y. &sdsc);

sprint! (*,%3d",i + 1) ;
gks$..t text color index (&black);
gkastexI (8*,&y, &e..dsc) ;

dt ((i+l != old -value) && (old-value 10)){
y - 6.0;

gkglaex (&x, &y, &a~dec);

used~loci]lhIIloci(01 i+1

draw-neighbors (number, loc)
mnt number, loc(641[2J;

mnt i, old-value;
int white =0;
int block = 1
flt xY;
char s[41
$DESCRIPTOR(sdac,s);

for (i 0; i < 1;: i ++) f
x = ptsxloc~iJ(1Ij(loci(0jIE0I + 4.0;
V = ptsyllocfi][111[loci][01][0 - 4.0;
old-value = usedflocimlfl1)[loclillOJ];

gkas$W textcolor index (&white);
sprintf (a,' %d", oldyvalue);
gkatext (&x, &y, &*edec) ;

sprinti (9,"%3d", (number+ 1))
gka$sektn xcolor index (&black);
gkastext (8*, &y. &_dsc) ;

if ((number+ 1 1=old -value) && (old-value =0))(

y - 6.0;
sprintf (,"

B-35

Appenbdix B: Comnputer Programs fleura2

gkaotex (Ax. &y, As dec);

II

dremi speech map (number, coc)
it number, Ioc(125112J;

mnt i, old-value;
it white =0;
mnt black = i;
flogt x. y, c[2I, yy[2J;
int point =2;
char sl4l ;
$DESCRIPTOR(sedec,s)

for (1 0;l 1 number; I++){
X = ptax[loc[Il(11(l[ocj[0il0] + 4.0;
y = ptsyjIoc[i1j11loc1110l1(0 - 4.0;
old-value = usedloc(il[1llloc(i]10]1

gka$e text color index (&white);
aprintf (i,'%3d", old value);
gkastext (Ax. ft, sedec);

gks$set -text color index (Ablack);
sprinti (s'-Aid", i;1);
gk='txi(Ax, &y, &sedec);

if f(i + I old-value) && (old-Value 1= 0))f
y . = 6.0;

gkstext (&x, &y, &s-dsc);

used[locil 11[loc(i] (Oil = ui;

Nf (i!= 0) f
XX(01 = px(IOCi-1I1[l c1100-(OMl
UPI1 = px(Ioc0iI111(loc01(0II
yy(0J = pylIocii-1)(1]J(Ioc0-1 1(01]
yy(1] = pyllocili(J(locifoj)
gks$poyline (Apoints, xx, yy);

draw-grid (ysiz.. xsize)
int xeize, ysize;

it points =5;
int r, c;

for (r =0 ; r < ysize ; r+ +){
for (c= 0 ; c < xsize ; c+ i-){

gks$polyline (&points, &ptsx(rJ (ci(01, &ptsy~r)(cflOj);

B-36

Appwwft 8: Computer Program neuraC2

drw-epectra (map, yw*z. Mize)
mlt Xaize. ysize;
rom map(20jfl(6J

int points =2;

int r, c, i;

for (r =0; r < ysiz*; r++) f
for (c =0;c c <xslze ; c++){

y[0J ptsyir][cJ(31
for (i= 0; i <15; i++){

x40) =ptaxr(cfl3) + 2-0 + (2.0

41): - Y01J 16.0* s ir(]1

gkspolylins (&points, x. y);
40]) 4=1.0 ;
X[1J += 1.0;
gkaspolyline (&points, x, y);

drvwger: (yokze, xa'z., subjiti., length)
int xsies, ysize;
char sub title[301,
short length;

ant points =5;
in? r, C;
float xloc, Yloc;
struct decd.criptor title dec = Wogh,

OSC$K OTYPET,
DSC$K CLASS S,
sub-title}

for (r = 0; r < ysize; r+e-) {
for (C = 0 ; c < xsizoe C++){

gks$potyline (&points, &ptax[r)(ci 101. &ptay(rJ [cI[0]);

xloc = 27.0 - 3.0 length;
Yloc = 2.0;
gks&text (&xloc. &yloc, &tftle-dsc):

statusern (gain, nrangey, nrangex, its)
double gain ;
in? nrangey, nrangex;
long its

float xloc, yloc;
char siGO)
SDESCRIPTOR(sdsc,s);

sprint? (a,
"Gain = %4.21 Neighbors = %2d,%2d Iteration # %5ld",
gain, nrangey, nrangex, its);
xloc = 76.0;

B-37

Appedx 8: Computer Progrs nour&12

yloc = 2.0;
gicatex (IXtoc, &yIoc, &e dsc);

colorem (uize. xeize)
Int xelzg, yemze;

int r, .color;
lot pont =5;

for (r =0; r < ysize; r+ +){
for (c 0 ;C < xadz. c+ +){

COWo = colmot(rJ(cJ;,
sefilletyle (pettern[color]. color);
gk4fllaree(&points, &ptsx(rj[cCol, &ptSy[rIjcI(0]):

piciccolors 0

return;

B-38

Appenix 8: Comp#Aer Progrm neural4

S link nmura4,npLotunpirer~md2,nwelgt4.optlanjIle/opt
/.

Thee. routines will optionally recreate *.snd file for replay, graph
trajectoles through notl, and crea a record of the full trjectry
reduction procese In a *.tj file.

Capt Gary Barmore, 7 Feb 86

'/

include math
#' include stdio
include curves
include time
include <gkadef.h>

define bool int

floa map[20]201[16] ;/* output nodes '1
double input(16] ;/ input nodes *1

int xsize, ysize ; /* Size of array */
int number inputs;
char trainingjlej30;

mindist (map, inp, close)
double inp[16];
imt cloee[21;
float map(20[20l[16]

{
int r, c, i;
double dot-product:
double maximum = 0.0;

for (r = 0; r < ysize; r++) {
for (c = 0 ; c < xsize ; c++) {

dot-product = 0.0;
for (i = 0 ; i < number inputs ; i++)

dotproduct + = inp[i] * map[r] (c) (i]
if (dotproduct > maximum) {

maximum = dotproduct;
close[0] = C;
close(] = r;

}
}

main 0
{

int c;

print! (C\nNEURAL4 (Sound TRAJECTORIES!) ...\n")
map speech 0;

B3

B-39

Appendix B: Computer Programs neura411

mapspeech 0

int fleg, r, c, ,1, k;
cher narnel301. nsae13OJ, sub title[601, s(1101 temp[301,
cher name trJ1201 ;
double in(161, dl. dZ d3. d4, d5;
rost element,
fi loc1125J[21, loc2[125J[2], loca3(125](21,
FILE 'tenid, 'Ins. 'to6;

int ~ sound, pon, replica, x[51, y(51;
5hO ~ length.;

int max-pte;
chat anawer(101,
in? snd_0eg. fjt, graphjfag;

prin? ("Do you want (0) sound file created or (1) not?,
scant ("%d", Land fag);
if (end flag ==0

prntf ("Enter name of training file used [lees tAm):'
scant ("%a", tamp);
sprintt (training file, '%s~tm", tamp);

printf ("Created with (0) FFT or (1) FFT2")
scant ('%d", &fftflag)j;

print? ("\nRsading training file into memoryf\n');
read tm file 0;

prin? ("Do you want (0) NO graphics or (1) TRAJECTORIES:'
scant ("U"', &graph flag)

pnntf (-knEnter name of net-fie to use [le net):'I;
scant ("%~a", temp) ;
sprint? (name, '%.nst", teamp);
tnet = fopen (name, 'rY);
tacant (tnst,'%d %d %d", Lyhize, &xsize, &number-inputs).
for (r = 0; r < ysizs; r+ +) (

for (c = 0 ; c < xsize ;c+ +){
for (i = 0. ;i < number-inputs ;i + +){

tocant (fnet," %1", &map[rj[c][i])

fclose (fnet)

it (end-.flag = 0)
correlate sounds (map)

for (;
print? (\nnter name (next] of speech file to map [less tin):)
scant ("%e", tamp) ;
sprint? (name2. '%a.trn". tamp)
fend = topen (narn.2, 'Y7 ;
sprint? (sub title, '%s -- > %e', name2. name),
sprnt? (namejd, "%a.trj", tamp);
to = topen (name tr, "w');

i(graphjfag = = 1) {
graphtest (name);

B-40

Appendix 8: CompuAe Program. neuraI4

lengh = sotstrlen (sub title)
drvwgrid2 (ymfts, xsize, sub itle, length);

sound = 0:

MlG = 0;
while (flag I= 1){

facart (fond, "%f', erent),
f (feoInd) I =0) I

flag = I;

*Is
inji) = (double) element;

if W(= 15) && (flag==0))(
mindlet (map, in, &loc[sound](01);

sound++-

tclose (tend)
if (graphjtag ==1){

draw speech map (sound, lc);

clipoff 0
graphof 0

tprintf (to, "%.\n". sub-totle);
fpintt (to, "\nTrajectoy through map. (%d)\nWn', sound),
for (i = 0: < sound: i+ +) (

point = Ioc(i](01 + loclilill xsize;
if ((i % 15) = =0)

fprintf (to, In%3d ". point);
else

fpnintt (to, "%3d ,point) ,

for (i = 0; i < sound; i+ +)
l0c311][0I = locli[i]0],
Ioc3il(1I = locii](11]

max pts = sound;

it 0!= 0)

j= ;max-pts = j

for (k = 0; k <3; k+ +t){
x~k] = loc3[k)(01
y~k) = loc3[k)[1j

dl = pow((double)(x0)x21), 2.0) +
pow((double)(y01-y2j1, 2.0)

d2= pow((double)(xj0j-xf 1)), 2.0) +
pow((double)(y(0].yjl]). 2.0)

d ((dl < 4.1) 11 (d2 <4.1))(
loc2OI (01 =x[01;
loc2Wljj = y[OJ;

for (i = I; i < maxpta-1 ; i4- +){

B-41

Appendix B: Computer Programs neura4

f I
for (k =1 ;,k< 5,;k ++){

xfk] = Ioc3(i+k-2]f0)
y~k] = Ioc3(i+k-21(1]

c12 = pow((double)(x[1J-x[2J), 2.0) +
pow(ouble)(y11-y[2), 2.0):

d3 = pow((double)(x(3-x(21), 2.0) +

M .;pow((doubl)(y[3-y[21), 2.0):

d5 = pow((doubl)(x(4J-x(21), 2.0) +
pow((doubi)(y41-y[21D, 2.0);

.1. df (i ==maxpt-2){

for (k = 0 ; k < 4; k +s){
x~k] = Ioc3[i+k-2][01
y~k) = loc3[i+k-21J

d2 = pow((doubl)(x1j-x(21) 2.0) +
pow((double)(y[1]-y[2J)) 2.0)

d3 = pow((double)(x(3j-x[2]). 2.0) +
pow((double)(y31-y211, 2.0):

d4 = pow((doube)(xjOj-x(2fl. 2.0) +
pow((double)(y[0]-y21). 2.0):

d5 = 5.0;

for (kc = 0; kc < 5; k + +){
x4k] = loc3[i+k-2](0];

y~kJ Ioo3[i~k-2](1J

d2= pow((double)(x[21.x~lfl, 2.0) +
pow((doubi)(y(2-y(j), 2.0)

d3 = pow((double)(x[3]-x[2fl, 2.0) +
pow((double)(y[3-y[21), 2.0);

d4 = pow((double)(x2-x[0D, 2.0) +
pow((doube)(y[21-y[01), 2.0);

d5 = pow((doubl)(x4-x(2]), 2.0) +
pow((double) (y[41.y2), 2.0)

I
if((d2 <4. 1) II(d3 <4. 1) II(d4 <4. 1)

I I (d5 < 4.1)) f
loc2U][0] = x421;
loc2(] = y(21J

for (kc 0; k < 3.' k+ +)
x4k] = lor3(max pts+k-3)[0)
y~k) = Ioc3[maxjyt+k-31]11

dl = pow((double)(x(0.x2), 2.0) +
pow((double) (y[0J -y[21), 2.0);

d3 =pow((double)(xll-x[2D, 2.0) +
pow((double)(y(lJ-y(2j), 2.0)

if ((di < 4.1) 11 (d3 < 4.!~))
Ioc2b][01 = x42];
Ioc2W(lI = y[21;

B-42

Appendb B: Compater Program. neurah4

fprintf (to, "\n\nkAfter elimination of tranaients (%d) :\n\n" I)
for (i = 0:1i < j ; i+I+) (

point = loc2[i[0I + loc2[i][1] - xsaz.;
df(pl% 15) ==())

fprin'I (to, "\n%3d ", poirnt)
else

fprinif (to, '%3d, point)

for (i = 0,1i < j; i+ +){
loc3(i)lOI = loc2[l[O)
Ioc3LiJ[1I = loc2(i)[11

max-pts=

for (i= 0; i < maxpts; i++) j
if (i = = 0) (

for (k = 2; k < 5; k+ +){
x[kj =loc3fk-2jf~j;
y(k) loc3[k-2J[1];

dl = 5.0 ; d2 =5.0:
M3 = pow((doube)(x[jJ-x[2j), 2.0) +

pow((double)(y3]-y(2J), 2.0);
d4 = pow((double)Qq(4]-x(2]), 2.0) +

pow((double)(y[4]-y(2j), 2.0);

else if (i max pts-i){
for (k = 0; k < 3; k++){

x(kl = loc3[i+k-2](01
y(k] = loc3[i+k-2)[1]

dl = pow((doube)(x[0.x[21), 2.0) +
pow((double)(y[01-y[2]), 2.0)

d2 = pow((double)(x(Ij-x(2J), 2.0) +
pow((double)(y(1J-y[21), 2.0);

d3 = 5.0; d4 = 5.0;

else if (i = 1){
for (k 1 1; k < 5:; k+ +){

x(k] = Ioc3[i+k-2]f01
y~k] = loc3[i+k-2f1]

dl = pow((double)(x[1]-x(2]), 2.0) +
pow((double)(Jy[]2]), 2.0)

d2 = 5.0;
d3 = pow((double)(x(3j-x[2D, 2.0) +

pow((double)(y[3-y[2J)) 2.0)
d4 = pow((doubIe)(x4j.xf2]). 2.0) +

pow((double)(y[4-yE21D, 2.0),
I

else if (i = = max pts-2){
for (k = 0 ; k < 4 ; k + +)

xpcj = loc3[i+k-2][O]
y(k] =loc3(i+k-2](1]

dl = pow((double)(x(IJ-x(2j), 2.0) +
pow((double)(yjl]-yf2J). 2.0);

d2 = pow((double)(xO].xf 2]), 2.0) +
pow((double)(y(0].y(2]), 2.0);

c14 = 5.0;

B-43

APPendk B: CompIter PrografrS neur.14

d3 pow((doubl)(x3-x[2D. 2.0) +
pow((doubl)(y3-y[2D. 2.0);

Wsfor (ki = 0 ; k < 5; k+ +){
xlk) - kc3fli+-21101;
y~k] = loc*~+k-21111;

dl = pow((doubl)(x(1I-x[21). 2.0) +
pow((double)(y[1]-y[2]). 2.0);

d2= pow((doubie)(x[0J-x!2D, 2.0) +
pow((double)([01-y[2). 2.0);

d3 =pow((doubl)(xL3-xJ21). 2.0) +
pow((double)(y[31-y[2). 2.0),

d4 = pow((doubl)(x(4-X(2D. 2.0) +
pow((doubl)(y4-y[21). 2.0);

if (((di < 4.1) && (d3 < 4. 1)) I
((dl < 4.1) && (d2< 4-1)) I
0(3 < 4. 1) && 0d4 < 4. 1))){
loc2[j][0] =x21
loc2Wj[1 = y[21;

fprinti (fo,'I n\n[Reduced Trajectory] Only three in a rowl NO%n D;
for (i 0; i <j ; I++) {

point = loc2(t]fOI + loc2fi)[11 'xalz.;
il ((i % 15) == 0)

fprintf (to, "\n%3d ", point):
gise

tprintf (to, '"%3d ", point);

for (i= 0; i < j; i++)4
loc3[i][01 = oc2(i] [01
loc3[i)[lJ loc2li[1h
I

MOXpJts =

if (and-flag = 0)
create.end..ile (temp, loc2, max..pta, Ift flag);

lor2[j)(0 = Ioc3[fl(01;
loc2W~lJ = lor-3b][ll
for (i 1 1;i < max-pts; i++) I

if ((loc3[il (01 I= loc-2bl [01) 11
(loc3[i](1] 1= loc2U[ll) f

loc2[j][1 = loc3[ij[1];

fprintt (to, In\nNow isting final trajectory' (%d)\n", 0)
for (i = 0; i < j; i++) f

point = loc2[i)(0] + Ioc2lill](xeize;
df((i % 15) = =0)

ele fprintf (to, \n%3d ", point),

eB-4e

A

Appwndk 8: Comnpter Program neuraI4

tprlnt Pto. '%wd point);

for (I = 0; i <j; lWr) f
loc3iJO = loc2[iJ[01;
loc3IIJIl = loc2(i][1];

max-Pts J
sprint[(sub itle,

"Reduced Trajectory: %a - > Ua", narnw2, namne);
graph test (namne) ;
length = (sh~) sArlan (sub title);
draw gri (ysize. xsize, sub title, length);
draw speech map (maxpyts, loc2;
scart "%e",a);

clipoff 0
graphoff 0;

tcloee (to);

graph test (name)
char name[30J;

char title 1791, labelx[791;
float xloc[51 (0, 639.0, 639.0, 0.0, 0;
float yloc[5] = 4349.0, 349.0,0.0, 0.0, 349.0);
mnt points 5;
mnt ws-id=I1;
mnt clear-flag = 1;
short length ;

sprinttptitle,'NEURAL4: Kohonen %d x %d Neural Net %"
ysize, xsme, name) ;

sprlntl(labebc,'Noiss Level : %g", noise);
graphon 0 ;
gks$clearWS (ws id, &clear flag);
gkcspolyine (&points, xloc, yloc);
prepcolmat (ysize, xsize) ;
length =(short) strien (title);
outtitle (title, length) ;
length = (short) strien (labelx)
outlabeix (labelx. length);
clipon 0;

B-45

Appendk 8: Computer Progrm autodtw

S link &Auodtwopftonsfileopt

Routines which use a first Kohonen neural net, file* generated by
autolft..xe (Is. tn), header files (9.hdr) describing the
contents of the tn fies and a header file describing the
templates to perform Noy's one pats dynamic time warping algorithm.

The algorithm allows recognition of bothi solated sand connected
speech without changing the program. Additionally, the stretch
factors wre ussr selectable. 0.75 and 0.75 wre suggested.

A grader routine automatically score the recognition process
from the data given in the *.hdr files. Note that some bugs
may still exit for grading isolated digits. Also note that
the grader routine gives + 1 for a correct digit, -1 for a wrong
digit, -1 for a deleted digit, and -.5 for an additional digit.
Rlecognized periods of silence awe ignored.

include stdio
include math

float map201201 [161 ; P' output nodes '
int xsize, ysiz ;IPSize ofarray/
mnt number-inputs;
floatl aa,bb;
char tralningjiie[30]
int num templates;
float total -digits;
float wrong digits
float min diet,;
mnt temrnaray(S01, uttarray(501:
it t-worda ;

float pwrcentl corr, cumper corr;

main 0

char tomp(301, temp filepO], utt~fiie(301
char file namepol1, file deecrf 801
char sub[151[301 ;
FILE *flog, *fnet, *fstd, *fin, *ftmp,
char templateil5ll3Ol ;
int tarray[15] (200] (2], u arrsy(2000J (2], t length[1 5]
int u length, diet, r, c, i ;
char std = "standard. hdr";
int entries std, entries cat;
mnt iestd, icat:

printi (\nVnAUTODTW: Tests standard se of utterances. \n\n").

printi ("Enter name of template file [less hdr]:'
scant ('%a", tamp) ;
sprintf (tempjfil, '%a.hdr", tamp),
ftmp = fopen (tempjfle, "r'),;
tscant (Itmp, "%d", &nmtemplates),
for (i = 0 ; i < num templates,; i-s+i')

B-46

Appendl B3: Computer Program autodtw

facard (fImp,"%sA", termplate(ID;

prid ("Enter name of log fie [add Jog):")I;
scan! ("%", tamnp) ;
flog = fopee temp. "WI)
fperf (hog, "Log File: %a for AUTOOTWAn~n", tamp).
prrd (VIEnter horizontal weight:");
scantf C%f', Ua4);
print! ('Enter vertical weight: 'I
wcard ("%V*, &bb) ;
fprrd (Piog "Horizontal and vertical weights are %g and %g~n",

pririf('vEnter name of not to use Iee net):)
scud (%e" tamp) ;
sprint trainingjile, '".net", tamnp);
friet = fopen (trainin file, 'Y) ;
facant (fn,"%d %d %d", &yslze, &xsize, &number-inputa)
for (r = 0; r < ysize; r++) I

for (c = 0; c < xeizt; c++){
for (i = 0 ; i < number-inputs.; i ++){

%scant (t"a," Wf", &mep(rj[cJ(iJJ

fclose (trial)
for (i = 0 ; i < num temptse; i ++){

get vectors(temnplate.1, &Itarrayi[0[0J,
&tlengthlil));

printf (" %a is %d vectors long\n",templatei.

fprintf(flog,'\nDynanic Time Warping using %a*ntramning file);

fold =fopen (std, 'r");
fwAca (fstd, "%d", &anieestd);
for (i-std = 0 ; i-std < entries std!; istd +.){

facant (tstd, '%e %a", file name, file deeco)
printf (' n%s\n", file deecr);
total-digits = 0.0;
wrong~.digits = 0.0;
tprintf (flog, "\n%e\n", file deecr)
fin =fopen (filenamne, "r*) ;
Wsanf (fin, '%d", &anvtres cat);
for (i-cat = 0 ; i cat < entries-cat ; i-ca-+ +){

fscani (fin, '%a %d", utt file, &twords);
for (i = 0; i < t words; i +

fecant (fin, '"%d", &tam arrayfi])
getyvectors(utt file, u array, &ulength);
printf (" %-129 is:

uftt file)
fprintf (flog," %-12s is:

utf file) ;
cdtw (t array,u arrayt length,u length,flog)

fcloee (fin)
I

fclose (fstd)
tcloee (flog)

B-47

Appsndk 8: Computer Programs aStodw

cdtw (t anw.t U-arr", t lerngth Ulength flog)
let terray(5jfWOJ[21, u..erey[00j[21;
int Itength15]. ujengt
FLE og

float sccum-dst2I[151t2DOI;
leit Ufernce(5O1;
Int ptr. btr ;
Irt back.cptr[151[200J;
lit frorn1templatsj2000J
mnt frorn ftre(20001;
imt 1, j,k, kk.
float dl 1, d3,diet;
float mi dIst;

ptr = 0 ;
for (k =0; k < num -templates ; k + +){

for aI 0; J < t lengh[cj j++){
if I 0) f

&ccum-distjptrjjkW =(diet

abe(u.ara[01(O1- t..arrayikW[0I) +-
ab*(uarray(0J(1]. terrsyfkJjll));

accum-ditfptr)[eJUJ = (diet + = bb(
abs(uarray[0j(0J - t array~kJ]fl(0J) +
aes(u..arrayfOj[j - tarray(k]jj1J)));

back..ptrlptri[k]W 0;

for (i 1:1 < u length; i++){
if (ptr == 0) {

ptr = 1;
b...pr = 0;

om(ptr = 0;
byr = 1I

for (k =0 ;k < num templates k-i+ +){
for Qj 0; j -< t tength(kJ j + +) f

diet =abs(u arrayli][0J - t arraypcl](01) +
abe(uarray[i(1) - tarrayjkW[11)

if U= 0) {
min diet = 99999.0;
for (kk = 0 ; kk < num templates; kk + 1-)(
it (min-diet >
accumdistfbptrkk] [tlengthkk-lJ)

min diet =
accumdist~bjptrllkklltlengthkkl1];

if (accum dist~tb ptr](kI [01 < min diet) f
accumdist[pr[kJ(0] aa *diet +
accumdist[bptrj[k][0]
back ptr[ptrl] [0] =
back..pr[bptrj(k(01,

else({

B-48

Appendlk B3: Conip'er Program autodtw

accum dmtpr[kl(0j
min dlit + diet ;
bsClc..ptr(ptWl)[jOI - -

dI = accm dietjbptr][kjl-1j + diet;
d2= accum ~dist[pr(k1-11 + (bb * dWQ)

d3 = eccum -dift(b...prllkjjf + (am *di)

If (d2 = cd && d d) {
accum dit(ptr~kWf =d2
back..ptrjptrjk]W =

backjrptr[kJFl-1J

eta. iN (d3 <= d2 &&d3 - dl){
accum distjptrflkJW d3;
back_.trtptr(kjW =

backjxprjb.ptrjEkIW;l

accumnditiptrlkW = dl
back.liprfptrj(kIW

back..ptr[bprj [ki D-I)

min diet =9999.0;

for (Ck = 0; k < numjtemplatee ; k ++)
dt (min dist > accum distfptr][kJf tlength[k-1J) f

min-dist = accum-dist[pr[k][tltength[kJ.];

from -templatelij = Ik;
from -fram(i] = back~ptr(ptrj(kkJftlengthkk]-1)
I

ptr u length - I;
S= -;

while ((ptr > 0) && (I < 49)){
utterance[++ +] = from-template~ptr];
ptr = from framelptr];

kc = 0;
for Qj = i ; j > = 0; j--) f

if (utteranceoj = 10) f {
printf ;
fprintf (flog,.....

else(
printf ("%d ", uttermncebi);
fprintf (flog, "%d ",utterance~l);
uttarray[k + +1 = utteranceW;

printf ('\n Should be: ');
fprintf (flog, 'An Should be: 1
for 0 = 0; j < twords; J+ +) f

printf ('%d ", tern array]);
fpuintf (flog, '%d ", tem arrayW);

B-49

Appendix 1B: Comter &rgasauodtw

grader (tema1 ra t.array, Lworde. ki)
prlnt (In correct = %5.31' cum-correct = 53t"

percant.coff, cumprn orr)
fpri* Olog, 'V correct = %53f cum ~correct =%S.3M".

percent-corr, cm-percom~

mkxdis (map. inp, close)
double inpJ161;,
mnt cloe(21;
60od map(201[201(161;

int r, ci;
double dot~product,
double maximum = 0.0,

for 1,r =0; r < ysize; r+ +) (
for (c = 0; C < xsiZe; c+ +){

dot-product = 0.0;
for QI = 0 ; I < number-inputs; i ++)

dotproduct + = inp(i) 'mp(ri c(i]
I (dotproduct > maximum){
maximum = dot-product;
C1oe0(01 = C
clooo(l) = r

getyecors (name, array, length)
char name[30)
int arrayt2000fl2l;
mnt 'length;

igit flag, r, c, i.j.k
double in[l6l. dl. d2, d3, d4, d5;
float element;

irit loc2[2000)[2]. loc3f2000J(21;
FILE *fend ;
int sound, point, x[5], y[51:
int MaX-pts

fsnd =fopen (name, "r')
sound = 0;
i = 0;
flag = 0;
while (flag I = 1){

tscanf (land, %W". &element);
it (tolf(fsnd) 1=0){

flag = 1

else({
in] = (double) element;

if((W 15) && (flag =0)){

B-50

Appendk B: ConWp4r Pmogwnsm~dt

mindist (map, in, &Ioc~isound [0I);

souJnd+ +

fclos (Ws4;
for QI 0; 1I< sound; 1++){

point= Ioc2(iI[01 + k0c2[illlxeize;

for QI 0; 1ic sound; 1++){
l0c3111101 = kc2[Qtlol
Ioc3[i][lj = Ioc2[QI(1;

max-pts =sound;
j0;

max-pts = 1

for (k = 0; It < 3; k~++)
x~k) = Ioc3[k][01J
y~kI = loc3([1)

dl = pow((doubl)(xj0-x[2), 2.0) +-
pow((doubl)(yOI-yt21), 2.0)

d2 =pow((double)(x0j.x[1]), 2.0) +-
pow((double) fy[0J-yfll), 2.0);

If((dl < 4.1) 11 (d2 <4.1)){
loc2U][01 = (l
loc2(jflIj = y(0j;

for(i 1;i <max -pts-1 i+ +){

for(k= 1 : k <5;k++){
x~kI = Ioc3ji~k-2j[0j:
y(k] = loc3(i+k-2][1J;

d2= pow((double)(x(IJ-xj2j), 2.0) +
pow((double)(yflj-y(2j), 2.0)

W3 = pow((double)(x[3)-x[2j), 2.0) +
pow((double)(y31-y[2I), 2.0);

d4 = 5.0;
d6 = pow((double)(x(41.x[2]). 2.0) +

pow((double)Wy4].y[2D, 2.0);

else if (i max pts-2) (
for (k = 0; k < 4; k + +){

x(kJ = loc3li+k-2][01;
y~k] = Ioc3(i+k-2111

c12 = pow((double)(x(1j.x[2fl, 2.0) +
pow((double)(y1j-y(21), 2.0)

d3 =pow((double) (x(3j-x(2fl, 2.0) +
pow((double) (y[31 -y[21), 2.0);

d4 = pow((double)(x(0]-x(2), 2.0) +
pow((double)(y[0]-y[2]), 2.0):

d5 = 5.0;

elso

B-51

Appwndk 8: Computer Program "aOlw

for (k 0; k < 5; k ++){
X[k = oc[i+c-2J[oI;
y~k] = 10c3(i+k-2](11I

d2=pow((doubl)(x[2j-xflj), 2.0) +
Pow((doubl)(y2J-y(1J), 2.0);

M3 - pow((doubl)(x31-xl2), 2.0) +
Pow((doubl)(y3-y[2D, 2.0);

d4 - pow((doubl.)(x2).x(0]), 2.0) +
pow((doubl) (Y[2J-Y(0p, 2.0)

d5 = pow((double) (x[4-x[2J), 2.0) +
pOw((double)(y[4]-Y[2]),2.0):

If *(< 4. 1) 11 W(-c 4. 1) 11 (d4 <4.1)
I I (d5 <4.1)) (
Ioc2W[0OI = x[21;
toc2fflJlI= y(21J

for(k = ;k <c 3; k++){
xCI] =Ioc3[msxpt*+k-3[0];
y(k] = oc3[max_,pts+k-3j[1J

dl = pow((doubl)(x[0-x[2]), 2.0) +
pow((double)(Y[0J-y(2]), 2.0);

M3 = pow((doubl)(x1I-x2j1, 2.0) +
pow((doube)(Y[1j-y[2J), 2.0);

if ((dl < 4.1) 11 (d3 <4.1)){
Ioc2UJ (01 = xi21 ;
loc2Wll= y[21;

I
for (! = 0;1< j ;i+ i){

point = loc2(i)[0J + Ioc2[iJ[1) xsize;

for (I = 0; 1 < J ; i++){
toc3[i][0J = Ioc2fi)[0J;
Ioc3li][1J = loc2li[1);l

max-pto

for (i= 0; i < maxpts; i+i-){
if 0I == 0) {

for (kc = 2; k -< 5; k++){
x~kl = Ioc3[k-2][0OJ
y(IcJ = Ioc3(I-2](11;
I

dl = 5.0 ; d2 = 5.0;
d3 = pow((double)(x3-x[2j), 2.0) +

pow((double)(y[3]-y[2)), 2.0)
d4 = pow((double)(x4j-x[2j), 2.0) +

pow((double)(y4-y121).2.0);

eose if (i ==maxjpta.1){

for (k = 0; k <3; k +-){
xCII = loc3(i+-2101;
yjl] = Ioc3[i+k-2J[1);

B-52

Appe-ndh B: Computer Program amodtw

dl = pow((double)(x0).x23), 2.0) +
pow((double)(y[0).y[2)), 2.0):

C2= pow((double)(x[lj-xj2p), 2.0) +
Pow((doubl.)((j-y21), 2.0):

d3 = 5.0; c14 = 5.0;

for(k= 1 ; k < 5k+ -){
xlkj = loc3fi+k-2)[0J;
y~k] = loc3[i+k-21(1i]
I

dl = pow((doubl)(x1J-xf2]), 2.0) +
pow((double) (y(1-y2), 2.0);

c2= 5.0;
d3 = pow((doubl)(x(3-x(21), 2.0) +

pow(doubl)(y1-y1), 2.0):
d4 = pow((doubl.)(x4j-x2), 2.0) +

pow((doub4e)(Y41-y2j). 2.0):
I

els .1 Fi = maxpts-Z {
for (k =t0; k -c 4; k++){

x(kJ= loc3(i+k-2][0J;
y(k] = 1oc3(i+k-2]111

dl = pow((double)(x(1j-x[2), 2.0) +
pow((double)(y1j-y(2jl, 2.0)

d2= pow((double)(x(0j-x(2]), 2.0) +l
pow((doubi)(y0-y2), 2.0);

d4 = 5.0;
d3 = pow((doubs)(x3-x2). 2,0) +

* pow((doub)eflyl3).yf2), 2.0);

for (k =0: k < 5; k++){
xjkj = loc3[i~k-2J[0J;
y~kJ = Ioc3ii~k-2][11)
I

* dl = pow((double)(x[1J-x(2fl. 2.0) +
pow((doubl)(y1-y[2), 2.0)

d2 = pow((double)(x[3.x[2)),2.0) +
pow((double) (y[0J-y(21), 2.0)

d3 = pow((doubl)(x(3-x21), 2.0) +
pow((double)(Y[33-y[2]), 2.0):

d4 = pow((double)(x[41-x[21), 2.0) +

I pow((double) (y[41-y[2]), 2.0)
if (((dl < 4.1) && (d3 < 4.1)) 11

((dl1 < 4. 1)&&(d2 <4. 1))
((d3 < 4.1) && (d4 < 4.1))){
foc2b] (01 = x(21J
loc2bJ[11 = y[2j;

flength =;

for (i = 0;,i < j; i++){
arrayi](0] = loc2(i](0I:
arrayli][11 = 1OC2[i][1hl

B-53

Appendix B: Compider Programs a4Aodtw

grader tansy. ukaray, tlenth. ujength)
mnt t..an'ay[SOJ, u arayjsoj;
we tjength, u _engtti;

Illog beckjptr[2J[50j;
float d, min, dig,. beck;

beck = 0.0;
pit = 1 ;
for (i 0; 1 < u -length; i++){

if (ptr =~

bptr = 0;
pt = 1;

bptr 1;I
ptr = 0;

if 0I 0){
for QI 0; j < t -length j ++) j

if (t arrayW = = 4_arayO))
diet = 0.0 + back;

diet = 1.0 + back;
back = diet;
backj~r[ptrW = digt;

for (i 0; j < t -length +i +) f
if (t arraybI] = usrry(i])

diet =0.0;

diet =1.0;

if a 0)
back ptr~ptr](OJ = beckjtr[bptr(0J +

else((0.5 O diet) ;

mini = beck ptr~bptrJ (j + (0.5*diat);
d = beck ptr[b ptrfjU-1J + diet;
if (d < min)

d = beck ptrtptrllj-11 + diet;
if (d < min)

beck -ptrfptr]W = min

if (ujlength > 0)
min-diet = backjPtr~ptr]tlength-1J;

min-diet = t-longth;
percent Corr = (t length - min diet) / tlength;
total dligits + = tilength ;
wrongdigite + = min diet;
cumpor-corr = (tota~cdigits - wrongdigte) / total dligits

B-54

Appendix B: Computer Program twokoh4

$ link twokohMlnwegiN.optionefile/opt

*00g00000,000000000**000twocoM-.c

Routines to train a second Kohonen net to process reduced
trajectories from first kohonen net. Number of points in the
trajectory is 75. Each point is repreeented as a scalar from 0
to 224. Short trajectories are filled with trailing 0.

Capt Gary Barmore, 8 Jul 88
0/

include math
include stdio
include time

float map[201[2012251 ;/ output nodes 'I
double input[225] ; /t input nodes '/
double gain, noise;
double mcount;
double percent;

int cloeest[21 ; P closest node /
imt neigh[2] ; / neighbor t/
int nrangex, nrangey ;/* neighbor range 0/

int nfactorx, nfactory ;/ neighbor factor '/
long count ; / # of iterations *1
int graph; I' # between plots 0/

int seed;
int maxneighx, maxneighy ;:/ Starting area*/
int minneighx, minneighy ; P Final area '/
int xsize, ysize ; P Size of array 0/

int number-inputs ;

char training file[301, net file[301, firstnet file[30]
char tempil[15]
char net name[15];

struct curve {
int type;
double maxgain;
double mingain;
double midgain:
int midtime;
} gcurve;

struct fig {
int rnd-in;
I flag;

init (map)
float map[2011201[f25;

{
int rc,i;
float max-rand = pow(2.0, 31.0) - 1.0;

for (r = 0; r < ysize ; r+ +) (
for (c = 0; c < xsize; c++) {

for (i = 0 ; i < number inputs ; i+ +) {

B-55

Appendix B: Computer Programs twoicoh4

map(r](c](oj rand 0 max-rand;

mindiet (map, inp, close)
double inp[225];
mnt ck~ee(2J
float map[20J [201 [225

mnt r. c, i;
double diet:
double minimum =999.0:

for (r =0; r < yeize : r++1) f
for (c =0;: c < xeize ; c+ i-){

diet = 0.0;
tor V(= 0 ; i < number-inputs i +-e)

dist + =pow (inp(i) - mapirl [c)l[i], 2.0)
if (diet < minimum) f

minimum = diet:
close(01 = C;
cloee[l1 = r

userinp 0

mnt line;

struct tm localtime0, *time;
mnt bintim;

do{
print? ("T1WOKOH4 net training (no graphics)... \n\n')

printfC"Enter size 'm n' (for an m x n) of array = ? [irn int])
scanf("%d %d", &ysize, &xsize);
if (ysize < 2)

ysize = 2;
else if (ysize > 20)

ysize = 20;
10if (xsize < 2)

xsize = 2;
else if (xsize > 20)

xsize = 20;

printf ("Do you want 0) sequential training,\n");
printf (" 1) randomized training? '

scant ('"%d", &flag.rnd in) ;
printf ("Enter name of header file containing words (lees .hdr):)

scant ("%s", temp file);
sprint? (training file, "%a.hdr', temp file)

number-inputs = 75;

print? ("Enter name of pre-processor Kohonen net file [less .net:')

B-56

Appendix B: Com~puter Programs twokoh4

scant ("anet-name);
sprintt (first netlfle, "%s.not"*, net name)

printi ("Enter name of not file to create [Ieee net]):
scant ("%*", net-name);
sprndt (net file, "%s.nat", net-name);

printt ("Number of iterations = ? [int),
scant ("%ld", &count) ;
if (count < = 10 count > 130000)

count =100 ;
mcount = (double) count;

printt ("Number of iterations between status message. l int])
scant ('%d", &graph) ;
it (graph < I I I graph > count)

graph = 10;

ingain 0 ;

printt ("Starting size of neighborhoods 'yn xn' = ? (t int) ~
scant ('%d %d", &maxneighy, &maxneighx);
it (maxneighx < 2 11I maxneighx > xsize - 1)

maxneighx = 2;
it (maxneighy < 2 11 maxneighy > ysize - 1)

maxneighy = 2;

primtf ("Final size of neighborhoods 'yn xn' lin (t int] '

scant ('%d %d", &minneighy, &minneighx);
if (minneighx < 1 11 minneighx > maxneighx)

minneighx = 1 ;
it (minneighy < 1 11 minneighy > maxneighy)

minneighy = 1;

printt
("Initial seed for random # generator (0 SELECTS TIME) =? lit]

scant ("Ud", &seed);
it (seed == 0) f

time = localtime (bintim)
time-tm sec %= 60;
time.tm min%= 60;
seed = time.tm sec *time tm mm;
I

srand (seed)

printf ("Ready to begin? (yin))
while ((c =getc (stdin)) = 'Ic =='\n' Ic =

I while (c = Y)

ingain 0

int line;

printt("For gain enter 0) LINEAR, 1) SIGMOIDAL, 2) PIECEWISE LINEAR:')
scant ("%d", &gcurve.type);

if (gcurve.type = = 0 11 gcurve.type ==1

printt ("Maximum gain = ? [float])

B-57

Appendbc B: Computer Programse twokoh4

scant ("EV, &gcurv..maxgain);
id (gcurvs.maxgasn > = 1.0 IIgcurvs.maxgairi <= 0.0)

gcunfO.maxgain =.98 ;

printf ("Minimum gain = ? (floatj 'I
scent ('E, &gcuuve.mingain);
ItI (gcurvs.mingain < = 0.0 1I gcurve.mingain > =1.0)

gcurvs.mingain 0.0;

els
printi ("First segment starting gain =? (float]);
scantf (%E", &gcurv..maxgain) ;
It (gcurve.maxgain > = 1.0 IIgcurve.maxgair, <= 0.0)

gcurve.maxgaln =.98;

prnt ("Second segment starting gain = ? [float);
scant ('E, &gcurve.midgain);
it (gcurve.midgain < = 0.0 1 gcurve.midgain > = 1.0)

gcurve.midgain =0.0;

printi ("Second stegment starting iteration = ? (float] 'I
scant ('"%d", &gcurve.midtims);
it (gcurve.midtime < = 0 I gcurve.midtime >. count)

gcurve.midtlmne =count/ /2;

gourvemingain = 0.0;

getgain @i
long i;

if (gcurve.type = = 0)
gain = (percent *(gcurve.maxgain - gcurve.mingain)) +

gcurve.mingain ;
else it (gcurve.type = 1)

gain = 0.9 * (gcurve.maxgain - gcurve.mingain) / (1.0 + exp (i.-
count/I 2.0)) + .1;

elsae(
if (i < gcurve.midtime)

gain = gcurve.maxgain a(1.0 - (double) i Igcurve.midtime)
else

gain =gcurve.midgain *(1.0.- (double) i/count)

save-net 0

it r, C, i
FILE *tnet.;

fnet f open(nettfile,"w'3;
fprintt (tnet.'%d %*d %d", ysize, xsize, number inputs)
for (r 0; r < ysize; f-+ +) {

tor (c = 0 ; c < xsize ; c+ +){
for (i = 0 ; i < number inputs ; i ++){

fprintt (tnet," %t", map~r][c] (i)

B-58

Appsndb B: Computer Programse twokoh4

fcloss, (fmet)

long
char 9l 1101;
mnt w id= I
imt clewiag =1;
FILE 'if;
extemn unsigned -stkion;

stklen = 8192;
userinp 0 ; I Got input values '
nfactorx = maxneighx - minneighx + 1:
ntactory = maxneighy - minneighy + 1;
ini (map) ; I Initialize weights '
resd tm file 0 ;

for= 1i ; i< =count i +*){
it (i % graph = 0){

printt ("TWOKOH4: gain =%f, yrange %d
gain, nrangey):

printf ("xrang. %d, iteration # %d", nraragex,i);
printi (" (of %Id)\n", count);
if (access (net filecO) = 0)

dlte (net file)
save not 0;

percent (mcount - i) / mcount.,
getgain (i) ;
it (flag.rnd in ==0)

getin 0;

get rndin 0;
mindist (map, input, closest),
if (gcurve type ! = 2) (

nrangex = minneighx + percent' nfactorx;
nrangey = minneighy +- percent' nfactory;

else if (i < gcurve.midtime){
nrangex = minneighx + nfsctonc'
((double) (gcurve.midtime - i)) / gcurve.midtime;
nrangey = minneighy + nfactoy'*

((double) (gcurve.midlime - i)) /gcurvemidtime;

else f
nrangex = minneighx;
nrangey = minneighy;

neiglflOj = nrangex;
neigh(1J = nrangex;
weightem (map);

save-net 0;
printi ('\nNet file: %a saved!\n", net-file)

B-59

Appendix 8: Computer Programs twokoh4

These routines allow training and testing of a second Kohonen
not of two not systm. Inputs are 75 point reduced trajectories
from the first net. Each point is a scaler from 0 to 224. Short
trajectories are filled with trailing 0'.

include math
include stdlo,
include stat

extern double input[225) ; 1 input nodes ~
extemn double gain ;
extern int clost(21 ; I' closest nodef
eOdom ant neigh[2] ; /* neighbor 1/
Wern int xsize, ysize ; P Size of array '
extern int number -inputs;
extern char training flle(30J;
extern char first net file[303;

int number discretes
int word counter;
irit num words;
char word number[100][15J;
i it fysize, f xsize, I number inputs;
float f-map20][20f16];

;ead trn file 0

FILE *tf, 'friet;
int i, r, c;

If = fopen trainingjfle, 'rT)
facarif (if, "%d", &num words),
for (i = 0 ; i< numwords ; i +-i)

facarif (ft. '%s", word-number[a),
fctose (Mf)
word counter = 0;

fnst = fopen (first net file, "r')
fscanf (fnet,'%d ')d %d,&jsize, &f xsize, &f number inputs);
for (r =0 ; r < fjysize ; r+i +t) (

for (c = 0; c < f xsize; c++
for (i = 0; i <1 number inputs; i++){

fan(ft,%f". &f- apr (c] [i])

fcloee (fnet)

getin 0

if (word-counter = num words)
word counter = 0;

read-word (word counter)
word-counter- +e-+

B-60

Appsndk 8: CofpA*r Program twolcoh4

get- md in 0

it I;
double max rand =pow (2.0. 31.0) -1.0
mnt pointer;

pointer =floor ((randO * (num-words - .0001) / max randl))
readwordl (politer);

weightemn (map)
float map(01l201(2;

mtd nright Net nup, nown, r, c, i

it (neigh[0J > 0 && neighf 13 > 0) (
might = cloeest[03 + neigh(0j - I;
df (might > = xeizs)

might = xeize - 1;
nMett = closest[01 - neigh(01 + 1:
df (nieft < 0)

nleft = 0;
nup = closest[lJ - neigh(1) + 1;
if (nup < 0)

riup = 0;
ndlown = cloeeet[1J +- neigh[1).- 1;
if (ndown > = ysizs)

ndown =ysizs - 1;

nright = closest[l]
nieft = closest(O];
nup = closeet(IJ;
nclown closeet[1];

for (r =nup; r < ndown ; r+ +){
for (c = nieft; c < = nright ; c++){

for (i =0 ; i < number -inputs: i+ +)
map[rJ [c][fi] + =gain (input[i] - map[r] (ci])

read-word (pointer)
imt pointer;

int flag, r, c, ij,lk
double in[16], d~l, d2, d3, d4, d5;
floot element ;

int loc212000][2], loc3[200] [2],
FILE *fsnd ;
mnt sound, point, x[51, y(51;
int max-pts;
double max;

for (i = 0; i < number Tinputs ; i + +)
inputij = 0.0;

fsnd = fopen (word number~pointerI, "r")

B-61

Appendix 8: Computer Programs twolcoh

sound = 0;
S=0;

Noa = 0;
while(fi"sIl= 1){

fecenf (fend. '%f', &enent);

elwe if (1 > 96)

else{
infi) (double) eeent;
i++;

it((iW 15) && (1ag=0)){
Lmindlet #_ map, in, &loc2[soundj [aD;

sound+ +

Mcose (tend);
for 0I = 0; i < sound; i++){

loc3[i][0J = loc2[i](0J;
Ioc3[i] LI] = loc2Lill](1

..Trajectory Reduction..

for (i = 0; i < j; i+ +) I
point = loc2[a](0J + loc2[i](1] L xsize;
inputf i) = point/ 225.0;

Lmindist (f _map, inp, close)
double inp(16];
mnt cloes(21
float f.~map[201[20][161

int r, c, i;
double diet ;
double minimum = 99.9;

for (r =0; r < fjfsize ; r+t +){
for (c 0 ; c < f xsiz. : c+- +){

diet = 0.0 ;
for (i = 0 ; i < f number input.; i + +)

diet + = pow (inp(i] - f..mapr [c] [i], 2.0)
if (dist < minimum) (

minimum = diet;
close[O] = c;
close(lJ = r

B-62

Appendix 8: Computer Programs twobas2

$ inkt twobss,nwelght10.options jfileopt

******..*..*..*.*a*.**..*twoba2c

Routine to train a second Kohonen net to process reduced 75
point trsectorle from first Icohonen net. The points are scalar
from 0 to 224. Short trajectories are filled wih trailing 0's.

Initial weights are randomly distorted from the first run of
inputs. Updates to weights use trajectories precalculated and
stored in path.dat file.

This version adds 'conscienice' to choosing closest node; i.e. Nf
node is chosen too often it is not considered for claoes status.

Capt Gary Barmore, 10 Aug 88

include math
include stdio
include time

mnt conscience20120] ;I records # times closest '
mnt nodes ; /I number of nodes '
douible consc = 1.1; PO conscience factor '
float map[20][20]L2251 ; P output nodes '
double input(225J ; P Input nodes '
double gain, noise;
double mcount;
double percent;

int cloees(2] ; I' closest node '
int neigh[2] ; I' neighbor 'I
int nrangex. nrangey P neighbor range '
int nfactorx, nfactory I' neighbor factor '
Ion gcount ; /* # of iterations */
int graph ; /'#btween plots/
int seed ;
int maxneighx, maxneighy ; 1* Starting area1
mnt minneighx, minneighy ; I' Final area '
int xsize, ysize ; 1* Size of array
int number-inputs;

char training file[30], netjfile[303, first net filef 30]
char temp-tils(15J;
char not name[15];

struct curve{
inttye
double maxgain,
double mingain.
double midgain,
int midtime,
) gcurve;

structfig f
int nd in;
}flag;

B-63

Appendix B: Computer Programs twob#e2

w~a (rAMp)
float mWp20jtfj2Mjf;

flog max-rand = pow(2.O, 31.0) - 1.0;

nodes = yell. * xsize;
for (r =0; r < yeize; r+ +) j

for (c = 0; c <xeze ; c++){
conbcienceIrflc] 0;
getin 0 ;
for (i = 0: i < number -inputs; i++){

map[r][c][i] inputi] +
rand 0 Imax rand;

mindist (map, inp, close, its)
double inp[2253
int close[21
flot map[20Jj2D] [251
long ite;

double diet ;
double minimum =9.99931;

for (r 0; r < ysize; r-i+){
for (c= 0 ; c < xsize ; c+ +){

diet = 0.0:;
if (conscience(r] [c] < consc dois nodes){

for (i = 0 ; i < number-inputs ; i ++)
diet + = pow(inp(iJ - mapfr] (c][1], 2.0);

ft (diet < minimum) f
minimum =diet;
closerol = C
close(1J = r

conscience~close(l]I[cloe[01 + = 1;

userinp 0

it line;
irit c ;
struct tmn locaftim.o, *time;
mnt *bintim;

do{
printf ('TWVO KOHonen net training (output only)... \n\n');

printf ('Enter size 'm n' (for an m x n) of array lin [t int);
scant("%d %d", &ysizs, &xsize);
If (yeize < 2)

ysize = 2;

B-64

Appendix B: Computer Program twobaa2

also it (ysize > 20)
yulz* = 20;

if (xaize < 2)
xaize = 2;

else it Desizs > 20)
xeize = 20;

Prntf ("Do You want 0) sequential training.\n"):
printf (" 1) randomized training? 1
scant ("%d", &fiag-md in) ;
Prnt ("Enter name of header file containing words (less hdrq:"
scant (".,tompjfl.) ;
sprint! (training file. "%e.hdr", ternpjibe),

number-inputs =75;

prnf ("Enter name of pre-proceseo Kohonen not file le". net]:)
scant ('%9a, net name);
sprintf (first netfle, "%eanet', net name);

Printt(Enter name of net file to create Iless net]:)
scant ("%s", net-namie) ;
spnintt (net file,"%.net", net-name);

printf ("Number of iterations = ? fint] 1
scant ("%ld", &court) ;
I (count < = 10 I count > 13000)0)

count =100 ;
mcount = (double) count;

pnintt ("Number of iterations between status message. =? [intl 1
scant ('%d", &graph) ;
if (graph < 1 I I graph > count)

graph = 10;

ingain 0 ;

prinif ("Starting size of neighborhoods 'yn xn* = ? [int int]")
scant ("%d %d", &maxneighy, &maxneighx):
it (maxneighx < 2 11 maxneighx > xsize - 1)

maxneighx = 2;
it (maxneighy < 2 11maxneighy > ys"z - 1)

maxneighy = 2;

printf ("Final size of neighborhoods 'yn xn= "(int int] '

scant ('4%d %d", &minneighy, &minneighx),
if (minneighx < I Iminneighx > maxneighx)

minneighx = 1 ;
it (minneighy < 1 11minneighy > maxneighy)

minneighy = 1;

printt
("Initial seed for random # generator =? (intj")

scant ("W'", &seed);
if (seed = = 0) 1

seed = 138;

srand (seed);

prinif ("Ready to begin? (y/n) 1

B-65

Appendk 8: Computer Programs twobaae

)while (c 1=V)

Ingain 0

int line;

prnntf(Ffor gain enter 0) UNEAB. 1) SIGMOIDAL 2) PIECEWISE UNEAR:
scant ("%d", &gcuve-typ.) ;

If (gcurve.type = = 0 11 gcurve.type ==1){

prin ("Maxilmum gain = ? (float] 1
scant ('%E", &gcuive.maxgain):;
it (gcurve.maxgain > =1.0 1 gcurve.maxgain <=0.0)

gcurve.maxgaln = .99;
print? ("Minimum gain = ? [float]")
scant ('%E", &gcurvs.mingain) ;
it (9curve.mingain < = 0.0 1I gcurve.mingain >= 1.0)

gcurve.mingain =0.0;

ew
print? ("First segment: starting gain =?(float]')

scant ('%E", &gcuIWo.maxgail) ;
it (gcurve.macgain > = 1.0 IIgcurve.maxgain <= 0.0)

gcurve.maxgain .9

print? ("Second segment starting gain =?[float) 1
scantf ('"WE', &gcurve.midgain) ;
Rf (gourve.midgain < = 0.0 11 gcurve.midgain > = 1.0)

gcurve.midgain = 0.0;

print? ("Second segment starting iteration =? (float])1
scant ("%d", &gcurve.midtime) ;
it (gcutve.midtime < = 0 Igcurve.midtime > count)

gcurve.midtime =count / 2;

gcurve.mingain = 0.0;

gotgain (i)
long i

if (gcurvs.type = =0)
gain =(percent * (gcurve.maxgain - gcurve.mingain)) +

gcurve.mingain;
*Ie if (gcurve.type 1

gain = 0.9 * (gcurve.maxgain - gcurve.mingain) /1(1.0 + exp (i -
count /2.0)) + .1;

else{
id (i < gcurve.midtime)

gain = gcurve.maxgain *(1.0 - (double) i Igcurve midtime)
else

gain = gcurve.midgain *(1.0 - (double) i Icount),

save net 0

B-66

Appendix B: Computer Programs twota@

it r, c, 1;
FILE fe;

frW = fop~n(net fil..');
fprintf (Inet,"%d %d %d". yeize. xuaze, number. nputa)
for (r =0; r < ysize; r+ +) I

for (c =0; c < xaize ; c+ +){
for (i = 0 ; i< number -inputs; i++){

fprintf (ft." % map(r(cil)

fclose (fnet);

long
char 81[10]
imt ws id=
int clear-flag 1;
FILE *tf :
Oxtern unsigned satklen;

-stkleri = 8192;
useninp 0 / J Get input values ~
ntactorx = maxneighx - minneighx + 1,
nfactory = maxneighy - minneighy + 1,
init (map) .1 Initialize weights '
read tm file 0:

for (i 1 1; i <= count; i+ +){
if (i % graph = = 0)(

print? ("IWOKOH7: gain =%f, yrang. =d
gain, nrangey);

print? ('xrange = %d, iteration # %d", nrangex,i);
print? (" (of %ld)\n', count);
iN (access (net file,O) = = 0)

delete (net-file)
save _net 0;

percent =(mcount - i) Imcount;
getgain @i);
if (flagrtnd in ==0)

getin 0;
else

getjrndin 0;
mindist (map, input, closest, i);
it (gcurve.type 1 = 2) f

nrangex = minneighx + percent *nfactorx;
nrangey = minneighy + percent nfactory;

else it (i < gcurve.midtime){
nrangex = minneighx + nfactorx

((double) (gcurve.midtime - i)) Igcurva.midtime;
nrangey = minneighy + nfactory*

((double) (gcurve-midtime - i)) /gcurte.midtime;

B-67

Appendix 0: Computer Programs twobas2

nrangex = minneighx;
nrangey = minneighy;
I

neigh[0I = nrangsx,
nighill = nrangex;
weightemn (map);

save _net 0:
printf (" nNst fife: %a savedfkn", not-fise);

The"s routines allow training and testing of a second Kohonen
net of two not system. Inputs are 75 point trajectories from the
first net. Points on the trajectories are scalar values from 0 to
224. Short trajectories are filled with trailing O's.

This version uses a set of input trajectories saved in path.dat
to save time reading *.trn files and running them through the
first trajectory on evew paas.

include math
include stdio
include stat

double innput(1001f751 1* input vectors '

extern double inputf225] ; input nodes1
extern double gain ;
extem imt closest[23 /*I closest node *
extem int neigh(2] ; I' neighbor *I
extern mnt xsize, Vsize ; P* Size of array *1
extern int number-inputs;
extern char training file[30];
extern char first net file(301;

int number discretes
int word-counter;
int num words;
char word number[100J[15];
int tysize, f xsize, f number inputs:

floatftmap20[20)[161

read -tn -Oleo0

FILE *tt, *fne;

f = fopen (trainingjfle, ')J
fscanf (ti, '%d", &num words);
for Vi = 0 ; i < num word. ; i + +)

fcloee (d) ;

Mnet =fopen (first net file, "r")
fscanf (fnet,"%d %d % dX &fysize, &f xsize, &tnumber-inputs);

B-68

Appendix B: Comnpute Programs twobas2

for (r -0; r -c fysize ; r+ +){
for (c = 0 ; C <f IXsiz. C+ +){

for (i =0; i < t number inputs; i+ +){
taeriant(at,".)Cf', &f mfaplrJ lei);

tclose (titt);

frot =lopen ("path.det", "r')
facant (Inst, "U", &num word.):
for 0; Oi < mum-words; 1i +){

forU Q 0 ;:j < number inputs j++)
Iscani fnt "I' &innput~iJW):

fclose MWne);
word counter =0;

getin 0

it (word~counter m um -words)
word counter = a0;

for a = 0; j < number -inputs ;j ++)
inputfi innput~wordcounterjW,'

word counter +- +;

gaktmndjn 0

double max-rand = pow (2.0, 31.0) - 1.0;
int pointer;

pointer =floor ((rando " (num words - .0001) / max-rand));
foraU = 0; j number -inputs ; j ++)

inputojJ = innput(word counterlfjj

weightemn (map)
float map[20][20](225]:

it nnight, nieft. nup, ndown, r, ci;

it (neigh[0) > 0 && neigh[1] > 0)
nright = closest(0j + neigh(0J - I

it (nright > = xsize)
nright = eize 1;I

nieft = closes(01 - neigh(0I + 1I
it (nieft < 0)

nieft = 0;
nup =closet[1I - neighfl] + I
it (nup < 0)

nup = 0;
ndown = closestfil + neigh(1J.- I;
it (ndown > ysie)

ndown =ysize - 1I

B-69

Appendix B: Computer Programs twobog

elsee
nright = clos..t(0J;
nieft clo...t[0J;
nup =cioseetfi];

ndown =closeds[IJ

I
for (r nup; r <= ndown ;r+ +){

for (c = nieft; c -<= nright; c+ +){
for (1 0; i < number -inputs; i ++)

mapfr~fcef ii += gemin (inputli] - map[r][c][i]);

read-word (pointer)
mnt pointer;

int flag, r,c,i, j. k
double in[161, di, d2, d3, d4, d5;
float element;

int loc2[2000) 121, loc3[2000)[2];
FILE *fsnd;
mnt sound, point, x[5], y[5];
mnt maxpts;
double max;

for V(= 0 ; i < number inputs; i + +)
inputf il = 0.0;

fsnd =fopen (word numberipointerl, "r');
sound = 0;
i= 0;

flag = 0;
while (flag I= 1){

tscanf (fsnd, '%f", &element);
if (feof(fsnd) ! = 0)

flag = 1;
else if (i > 99)

flag = I;
else {

in(i] (double) element;
i++.

if ((i == 15) && (flag ==0)){

fmindist (I map, in, &Ioc2(sound][O])

sound++;

fclose (fsnd);
tof (i = 0; i< sound; i+ +,){

loc3(iJ(01 = loc2[iflO];

maxpts =sound;

..Trajectory Reduction..

for (i = 0; i <j ; i+ +) (

Point =loc2[i][0] + loc2[iJJlJ fxsize;

B-70

Appendix B: Computer Programs twobea2

input[l = point / 225.0;

fmindiet (f.map, inp, cloee)
double inp[16];
int close[2];
float re[20[20 161

int r,c, i;
double dist;
double minimum = 99999.9;

for (r = 0; r < f_ysize; r++) {
for (c = 0 ; c < f_xsize; c++) {

diet = 0.0;
for (i = 0 ; I < f number.inpute ;i + +)

diet + = pow (inp[i] - f.mapjr[c][i], 2.0)
il (diet < minimum) {

minimum = dist;
close[O] = c;
closefil = r;

B
}

I|

B-71I

Appendk B: Computer Progra outdat

$ link outdat~ntrai~optlns file/opt

Routines to create a path.dal file containing 75 point scalar
trajectories from the first Kohonen not. Each scalar is from
0 to 224. Short trajectories are filled with trailing O's.

The *.dat file is used to train a net quickly, eliminating file
reading anid running data through the first net repeatedly.

Capt Gary Barmore, 3 Aug 88

include math
include stdio
include time

float map[20f20112251 ;1' output nodes '
double input[2251 I' input nodes '
double gain, noise;
mnt closes(2) ;I' closest node 'I
mnt xsize, ysiza ;IP Size of array '
mnt number-inputs;
char trainingjfle(30J, not~file[30l, first net file(301;
char tempfile[15]
char net nameji15;

int(a)float map(201[2 01[22 5]:

imt r, c, i,
FILE *fnet;

fnet =fopen(net-file,');

fscanf (fnet,"%d %d %d", &ysize, &xsize, &number-inputs);
for (r = 0; r < ysize; r+ +) I

for (c =0 ; c < xsize ;c+ +)
for (i = 0 ;i < number-inputs ;i ++){

fscanf (fniet,'%f', &map[r] (c][in])

fclose (fnet)

mindist (map, inp, close)
double inp[25]
int close(2]
flost map(201 (2011225]

double diet;
double minimum = 999999.0;

for (r = 0; r < ysize; r+ +) f
for (c = 0; c < xsize; c+ +){

diet = 0.0;
for (i = 0 ; i < number inputs i + +)

B- 72

Appendix B. Computer Program outdat

diet + = pow (inpi1 - map(r](c]([q, 2.0);
It (die < minimum) I

minimum =diet;
closei0J = C;
C10e4011 = r;
I

useinp 0

mlt line;

etruct tmn localtim.O, *time;
mt *bintim;

do{j
printi ("OUTDAT: Creatle path.dat for not training ..\~'

printf ("Enter name of header file containing words (teoe .dr):")
scant ('%s', tenp file) ;
sprintf (trainingfile. "%a.hdr', tompjlle);

number inputs = 75;

pririt ("Enter name of pre-processor Kohonen not file [Ies not]:)
scant ("%a", net-name) ;
sprintf (first net file, "%s.net", net-name);

pninttC"Enter namne of data file to create [less .At]:")
scant ('%a", net name) ;
spnintt (net file, "%s.dat", net name);

printf ("Ready to begin? (yin)') ;
while ((c getc (s.Win)) c=' W = c 'V)

}while (c = 1

save net 0

int r, c, i
FILE *fnet ;

fnet f open(net file,"w");
tprintt (fnet,"%d ;Ad %d", ysize, xsize, number inputs)
for (r =0; r < ysize ; r+ +) {

for (c =0; c < xsize; c++)(
for (i 0 0; i < number-inputs ; i'm+ +){

fpritf (fiet," %f", map[rJ(c][i])

fcloee (fnet)

long

B-73

Appendix B: Computer Programs out"e

char 81(101;
int wld = 1
mnt clea flag =1
FILE *tf;
axiom unsigned -stklen;

satklen = 8192;
userlnp 0 ; I Get input values '
init (map) ; I Initialize we!ghs"
read tflme, 0 ;

prinif M~Net file: %a savedl~n", net-file);

****tO***OO*i***,*,,**O*,*ntraj.c

Routines to save 75 point scalar trajectoires from the first
Kohonen net to save time in training the second Kohonen. Each
scalar is from 0 to 224. Short trajectories awe filled with
trailing 0's.

include math
include stdlo
include stat

double innputflio[75] I* input vectors '

extern double input[225] /* input nodes"
axiom double gain:;
extern int closest2j :1* closest node/
extern mt neigh[2] ;I' neighbor *I
extern mt xsize, ysize ; /* Size of array '
extern it number -inputs
extern char training file[3OJ:
extern char first-netfile(301:
extern char net file[30] ;

int number discretes;
int word-counter
int num words;
char word number[100J[15J
mnt fjysize, Itysize, f-number inputs:
float ftmap[20)[20)[16];

read tmn file 0

FILE 'ti, *tnet;

ff = topen (training file, r):
facant (t, "%d", &num words);
for (i = 0,; i < num words ; i+

fecant ft a, word-number~iJ);
fclose (01):;

fnet = fopen (first net file, '):
fscant (fnet,"%d %d %d", &jysize, &f xsize, &fnumber-inputs):

B-74

Appecidt B: Computer Program.e outdat

for (r = 0; r < fysize; r+ +){
for (c = 0; c < f xsmzo c++){

for (I =0;1I< f number inputs; i+ +)
flacari (frit,' 5;f, &f map~rljcIi)

tcloee (fnemQ

fnet = fopen (netjl., "w);
fprintf (OW, "Ud~n", numywords);
for (I = 0; 1 < num words; il-I){

read Word (0);
for a = 0 ; i < number inputsj+ +){

innput~qLO = inputUfl:
fprintf (friet. '4%\n", inputW)

fcose (ff01);

getin 0

rnt

if (word ~counter = num ~word.)
word counter = 0;

for U 0 ; j < number inputs ; + +)
inputW =innput~word-counterjW;

word courvter+ +

get md !in 0

int 1,;
double maxrand = pow (2.0, 31.0) - 1.0;
int pointer ;

pointer = floor ((rando* (num words -. 0001) / max-rand));
for aj = 0; j < number -inputs ; j + +)

inputW = innputword counter]]

weiglitemn (map)
float map[201[20I[225]

int nright. nieft, nup, ndown, r, c, i;

if (neigh(0I > 0 && neigh[1] > 0) (
nright = cloes"(0] + neigh[0] 1

df (nnight > =xsize)
nright = xsize 1;I

nleft = closestJOl - neigh[Ol + I;
if (nleft < 0)

nieft = 0;
nup = cloet[1] - neigh[1J + 1;
If (nup < 0)

nup = 0;
ndown = cloeee(1) + neigh(iJ - 1;
if (ndow n > = ysize)

B 7

umI,~.

Appendk B: Computer Program outdd

ndown = yize - 1;
}
elseef

nrlght = cloeet(0];
nleft = cloeet[O] ;
nup = closeet[1I:
ndown cloesest[l}

for (r = nup; r <= ndown ; r+ +) {
for (c = nMlt ; c <= nrlght c ++)

for (I = 0 i < number inputs ; i++)
map(r (c][i + = gain * (input[i - map[r](c][i])

}
}}

reed word (pointer)
int pointer;

{
int flag, r, c, i, j, k;
double in[16], dl, d2, d3, d4, d5;
floa element;

tnt Ioc2[2Ol[21, toc3[2000112];
FILE fund ;
int sound, point, x[5], y[5]
int max-pts;
double max;

for (i = 0; i < number inputs; 1+ +)
input[i] = 0.0 ;

fsnd = fopen (wordnumber[pointer, "r')
sound = 0;
i=O;

flag = 0;
while (flag!= 1) {

fscanf (fUnd, f", &element);
if (feo(fsnd) !=0)

flag= 1;
else if (I > 99)

flag = 1;
else {

inlil = (double) element;
i++;
}

if ((i == 15) && (flag == 0)) {
f mindist (fLmap, in, &loc2[sound][O) ;
i=0;
sound+ +;
}

}
fclose (fsnd);
for (i = 0: i < sound; i++) {

foc3[i][0 = Ioc2[i[01;
loo3[i][1] = ioc2[i][1];
}

max-pts = sound;

... Trajectory Reduction ...

B-76

AppenKW 8: Computer Program. outdat

for QI =0;i <I ji++i){
point = loc2(TI(01 + loc2f[I I fxaize;
input(IJ= point / 225.0;

fmindlst (1 map, inp. close)
double inp(16);
mnt cloe[21
"la f-Map[201[201[161;

double diet,;
double minimum =99969.9;

for (r =0; r < f..ysizo; r+ +){
for (c 0 ;c < fxsiz. ; C ++){

diet = 0.0;
for I0 ; i < f -number-inputs ;i+ +.)

diet += pow (inpi - I map[r][cJ[i), 2.0)
if (diet < minimum) (

minimum = diet;
clos.(01 =c;
clossil1 =;

B-77

Appendi B: Computer Program twopic4

W Ink twopic4,npWt.nprfntrma3.nwelgh.optlon l/opt

*************,**,**i*,*I**i**t,*e twoplc4.c

Routin, to show locations of words on second Kohonen net. The
final version assurnes a test set of 100 words. 10 each of zeros,
ones nines (respectively). The graph identifies the lat
digit which lit it up.

First Kohonen trajectories ae compared by Euclidean distance
algorithm. Trajectories are 75 scalar points long.

The routine was written to tot what nodes the training set will
light up. Basically, this allows one to determine the way the
training spread the inputs and the differentiability. It is not
a tet of the net.

* include math
include stdio
include time

float map[20120[225 ;/" output nodes 'I
double input[225] ;/P input nodes /
double gain, noise ;
double mcount;
double percent;
double xoff = 0.0;
double yoff = 0.0;
double nodediet;

int closest[2] ;/* closest node /
int neigh[21 ;/ neighbor */
int nrangex, nrangey I* neighbor range /
int nfactorx, nfactory ;/ neighbor factor '1
long count ;/ # of iterations */
int graph; / # between plots/
int seed ;
int maxneighx, maxneighy ;/* Starting area /
int minneighx, minneighy; /* Final area '/
int xsize, ysize ; i1 Size of array */
int number inputs
int wrapjlag = 0 ;
int train flag, train discrete;

char training file(30], temp.file[30], firstnet file[30]
char net file(30]

struct curve {
int type;
double maxgain;
double mingain;
double midgain;
int midtime;
I gcurve ;

extern it xy' ;/ array holding x,y ./
extern double xdel, ydal ;
extern double xlow, xup, ylow, yup;
extern int num words;

B-78

Appendix 6: Computer Program twopicl

Odomn char word number[100](15J;

mindia (map. inp, close)
double inp[225J
ilt close(2J;

Rlod map[20J20fl2;

double diet;
double minimum = 9.99e31;

for (r = 0; r < yaize; r+ +) f
for (c = 0 ; c < xsiz.; c++){

dial = 0.0;
for (i= 0 ; number inputs; i+ +)

* diet + = poW(irip[l]- mapir)[c)i], 2.0);
if (dial < minimum) {

minimum = dial;
close[0I = C;
close[lJ = r;

* node diat minimum;

main 0

it c;

* prnt ('nTWOPlC4 (Plot Words for 0/1 Reduced Queued TraD ...An');
map speech 0;

map speech 0

it r, c, i,j, k;
* char sub tftle[60], temppol;

char name trII2Ol;
int loc(125j(2J;
FILE *tnet, *flog;
irit sound;
short length;

printf ('\nErvter name of pre-processor Koh net-tile [loe net]:')
scant ("%a", temp) ;
sprin? (first net file, "%a.nsl", temp);

print? ("Enter name of header file containing words (loe .hdr).)
scant ('%a', temp file);
sprin? (training file, "%a.hdr', tempjfle)

print? ("Enter name of output Koh net-file [less net]: ')
scant ('%a", temp file) ;
sprin? (net-file, "%e.net", temp file)

read tm file 0
fnet = fopen (notfile, r) & sze &uTrjn us

facant (te,"%d id %d", &ysize, szUme-nu)

B-79

Appendix 6: Computer Progrurne twopiC4

for (r = 0 ; r < ysize; r+ +){
for (c= 0; cc < lze ; c++) f

for (I = 0 ; I < number inputs i i+){
fWcan MW.et" %r', &Map[rjjdlli])

fclosens)

sprintf (sub .title, '%o -> %e- %e'*,

sprintf (nam...trj, .tr temp);

flog = fopen ("tenlp.log","w") ;
tprintf (flog, "TWOPIC4: Ue", name tri)

graphjeet trainingjflle);
length = (short) strien (sub-title);
draw grki2 (yeize, xsize, sub-title, length);

printf ("\nExpect %d calcutlitons.\n", num words),
tor (sound =0 ;sound < numjwords ;sound ++){

getin 0 ;
mindist (map, Input, &loclsoundfloD;
printi ('"%d: (%d,%di diet =%ie\n",

sound, loc~sound][0I, Ioc(sound][1], node-diet);
fprintf (flog,"%d: [%d,%dI diet = ln"

sound, loclsoundllo], loc[sound)jl], node-diet)

printf ("\nCalculations finished.\ni;
fclosa (flog);
draw-speech-map (sound, loc)

scarif ("%a',temp);
clipoff 0
graphof? 0;

graph test (name)
char nanie[30],

char title[791, labelx[791;
float xlocE5l = {0, 639.0,63M.0, 0.0, 0.0);
float yloc[51 = (349.0, 348.0, 0.0, 0. 349.0);
int points=5;
int ws-id I1;
int clear-flag =1;
short length ;

sprintt(titio,'TWOPIC4: Kohonen TWO NETS -. %a, name),
sprintf(labelx,"');
graphon 0 ;
gks$clear-ws (&we-id, &learflag);
gks$polyline (&points, xloc, yboc);
Prepcotmat (yeize, xsize) ;
length = (short) strien (title);
outtitle (title, length) ;
length = (short) strien (labeix);
outlabetx (labekx, length);
clipon 0;

B-80

Appendk B: Cotpter Programs tWopic4l

)

*****,*,***g*O***O*******mat3b.c

Routines to perform graphics for net output. Note that the last
version assumed second Kohonen net input isa ade of 100 exemplars
divided into 10 even classes (10 each). Thus the first clas of
ton is represented as 0, and the lst as 9.

include stdio
include math
Include <gkodefs.h>
include <dscriph>

define BLACIK)
define WHIM~

float ptsx[201(20][5J, ptsy[201(201[51
float px[2(311201, pyj2D11201;
iryt uaed[20)120J,;
mnt colmat[201(201;
in pattem(161 =

prepcolmat (ysuze, xsize)
mnt xsize;
mnt ysuze;

mnt r, c, xstart, ystait;
int dx, dy,;

dx = floor (550.0/ xsizs);
dy =floor (276.0 /ysize);

xstart = 280 -dx xsize /2;
ystart = 148 + dy *ysize / 2

for (c = 0 ; c < xsize ; c+ +){
for (r =0; r < yeize ; r+ +){

ptsx~r][d114] = (ptax[r]LcJ(31 = (ptsx[r)[c)[0J
xstart + c *dx)) ;

ptsx[rJ(cJ(2] = (ptax[r](cJ(1J = ptsx[r][c)(01 ±dx- 1);

ptsy(rllc)(4] = (ptsy[r](c][11 = (ptsy(r](cI[0I
yetart - r * dy))

ptsy(r](d1131 = (ptay(r](c][21 ptay(rJ[c][Oj -dy+ 1);

px~r][d] = ptaxtritc][0 + 8.0;
py[rllcJ = ptay[rl[c)[0] - 8.0;

for (rV 0:; r < 20; r-t-+){
for (c= 0; c < 20 ; c++)

used~r)(c] = 0;

B-81

Appendbc 8: Computr Programs twopico4

showern 0

* mt i;
float rect([161(61, recty(16161;
int pont =5;

for (I I 1:I1< 16; i++)4
rec~fi)[4) =(rec~ji][3J (recx[ill] = 173 + 16

recty[iJ(41 =(recty(iJ(1) (racty[i)(Oj = 30));
rectyli][3J (rect[if2] 23);

gksfll area (%points, &rectx[ij(0], &recty(1(0J)

*I
setfifletyle (pattern, pointer)

int pattern;
mnt pointer;

int styl =3; /*hatch/
int color[161 (0, 7,7, 3,3, 5,5, 4,4, 4, 6,6, 2,2. 1};

it (pattern > = 0) 4
gks~sat fill mt style (&pattern);

gks$set fill style index (&pattern)
*gka~setfill it style (&sl):

draw-net (number, bec)
mnt number, loc(64fl2J;

int j, i. old value;
int white=0;
int black=1;
float x. Y;
char 9[41
SDESCRIPTOR(sdsc,s):

for (1 0; i < number; i++)4
(. x = Ptsxfbocii[1J](locti][Ofl[0 + 4.0;

y =ptsy~bocfi](1~jJ~ocijf0jj[0j- 4,0;
old-Value = umedfloclilill[bocil[OJ / 10.0;

glce$aet -text color index (&white):
sprinif (e,'%3d",old value);
gks$text (&x, &y, &edsec);

if/ 10.0;
sprintf(,%3 I
gks$set taxi color index (&black):
gkastext (&x, &y, &a-dac) ;

it ((i 1= old -value) U& (old-value 0)
y s6;

B-82

Appendix B: Computer Programs twopk:4

gksatex (&X. &y, &adac),

used(loc[i[1jllloclij[O] =i;

drawneighbors (number, 100)
mnt number, loc[641[21;

mnt 1, , old -value;
int white =0;
mnt black = 1
float X.Y;
char s[41
$OESCFIPTO(sdec,s);

for' (i= 0; i < 1 ; +-i+) f
x = ptsx[loc[i]Ellllloci(0](0 + 4.0;
y = ptsy[Iocli](111(Ioc(iJ(01)[0 - 4.0;
old-value = used[loc[il]Iloc[i(01] / 10.0;

gka$ssetjoxt color index (&white)
sprinti (a,"%3d", old value);
gks$text (&x, &y, &s dac)

j= number/ 110.0;
sprintf (,% D, D;
glcs$set-text color index (&black);
gks$text (&x, &y, &s-dsc) ;

dt ((number 1 = o~ld-value) && (old-value 1 0)){
y -6.0;
sprinti (s,"**,'
gks$text (&x, &y, &s-dsc);
I'

used(loci][11](loc(i](011 number;

draw speech mnap (number, loc)
int number, loc[125][2];

mnt white =0;
mnt black = 1 ;
f'loat x, y, xx[2], yy(21
it point =2;
char s[4]
SDESCRIPTOR(adsc,a);

for (i= 0; i < number; !++){
x = ptsx~boclil[Ifflhlocli)loll(0I + 4.0;
y = ptsy~boc[iI(1j](boc~iJ(0jj[0j - 4.0;
old-value = usedloc(i(111(loc[i]O]J / 10.0;

gks$set text color-indsx (&white);
aprinti (9.'%3d'% old-value);
gke$text (&x, &y, &adac);

B-83

Appenodix 8: Computer Programs twopic4

j = i/ 10.0;
gks$eet text color index (&black)
sprinti (*,%3d", D ;
gk*Utex (Ux. &y, &sadec);

ifiI= old-value) && (old value 0)) f
y - 6.0;
spro?(."

* gk*Utex (Ux, &y, &sdec);

usedloc[i)[11][IociL0II = i
d (1 I= 0) f

xx(0J = p4x001101-13lfoci11[011;
XX[1J = px[IocUi1]J[Ioc00iJ(OJ]
YY[01 = py[Iocbi-1][1 1J(IocV-1 11011

* YY1ll = py[Ioc~i][1)][Iocl[i0)]

gks$potylin. (&points, xx, yy);

* draw grid (yeize, xsiz.)
it xsizO, ysize;

in? points =5;
mnt r, c;

for (r = 0; r < ysiz., r+ +)4
*for (c = 0,c <xsize; c,-.) f

gks$potyline (&points, &ptsx[r][cd].] &ptsyrJ (c)[oD;

draw-Spectra (map, ysize, xsize)
*iilt xsize, ysize ;

float map[201(20J(16J;

int points =2;
float x[2], y [2)
it r, c, i;

4 for (r=0; r< ysize; rt+){
for (c 0; c < xsize; c++)4

y(0J ptsyfrl(cI(31
for (i= 0; i < 15; i+ +)4

x[0] = ptsxr)[cJ[31 + 2.0 + (2.0 *i)
X[1J = x[0J
y(1] = y[O] + 16.0' map(r] [c] (ii
glcs$pofline (&points, x, y);
x[0J + = 1.0 ;
x[11 += 1.0;
gks~polyline (&points, x, y)

B-84

Appendix 8: Computer Programs twomasi

$ fink twomask,opfionsfIleopll

*~*******C*****OO**iC~iO~twomask.c

Routine to create *.msc file from *.net file. The *.mak file is an
array of integers (mask(20(201) corresponiding to the modes of a
*.not file. Each intege ie the number of weights which are I = 0.

Since weights represent scat trajectories of 75 points, short
trajectories are filled with trailing O's. This obviously allows
for some inaccuracy in determining the trajectory length since
the first node is also represented as a 0. This will be corrected
in later version.

include math
include stdio

mnt mask[20][201
float mnap [20] (20][2251 ;IP output nodes *1
double node-diet ;
int xsize, ysize ;I' Size of array '
int number-inputs;
char training file(301, tempjile[30], first net filePO]1
char net filo[301

non-zero (map)
float map[201[2OJ(2S];

int r, c, i, number:

for (r =0; r < ysize; r+ +){
for (c =0; c < xsize; c++){

number = 0;
for (i = 0; i < number -inputs; [++){

printf ("%7.1& ", map(rJ[c][i])
if (map[rflc][i] > 5.0e-4)

number++;

printf ("** %d ""Wi', number)
mask~r][c] number;

main 0

print? ("\nWOMASK (Creates net mask\n\n)
find mask 0;

find mask 0

int r, c, i
FILE 'mnet;

print? ("Enter name of output Koh net-file [less net]:)
scant ("%a". temp file) ;
spnintf (net -file, "%s.net", temp file)
sprint! (training fil., '%s.msk", temp file)

B-85

Appndbc 8: Computer Programs twomasc

fnet - topon (notjfiI., "r)
faedn (fn*,"%d %d %d", &yuize, Ixaize, &number-inputs);
for (r = 0; r < ysize; r++) {

for (c = 0; c < xaze ; c++){
for (1 0 ;1 < number-inputs ; I + +)

tscard (fnet," %V, &map~r]Ccl(i]);

fcloee (fnet);

non zero, (map)
save-mask 0;

sawe mask 0

FILE 'I mask
mnt r, C,

Imak = topen (training file, "w');
for (r = 0; r < ysize; r4-+) j

for (c= 0 ; c < xsize ; c+ +){
fpnnrtf (fmaek, "%d ,mask~rjfc]);

folose (fmak)

B-86

Appendix B: Computer Programe twop"c

$ link t*opic6,rnwin5,ioup6,optiona fileopt

*******i*****,************twopice.c

This routine identifies (w/o graphics) the node from a second Kohonen
net which is closest in 01W distance to each of the digit, in a

-pciie el
In the original version, the trajectory inputs were 75 points long
and scalar (1-225). In this version, the trajectories are 100
points long.

The DTW routine uses maska as the node length and lengtho for the
input length (i.e. number of trailing points not 0).

include math
include stdio
include time

float map[20](201[2251 ; /* output nodes '
double input[2251 ; * input nodes/
double node-diet;

mnt xsiz. yaize ; 1' Size of array *I
mnt number-inputs;

char training fiie[30J, tempjfilef 30], first_net_file[30];
char net file[301 ;

extem inl num words;
mnt mask[20](201
int map2[20J[20](100](2J
float as = 0.75;
float bb = 0.75;
extern mnt f-xsize, fjysize;
extem inl lengthf200] ;
extemn mt location[2000] [2];

mindist (close)
mnt close[2]

int r, c, i
double dist ;
double distance;
double minimum =9.99031

double pl. p2;

for (r 0; r < ysize ; r+ ±){
for (c =0; c < xsize ; c++){

dtw (&map2[rJ [cJ[0] [0]. location, maskir)(c],
length[0J. Mdist):

if (dial < minimum) f
minimum = dist;
close[0J = C;
close[l] = r;

node-diet =minimum;

B-87

Appendk B: Computer Programs twopice

main 0

mnt c;

prinif ('\nWOPICS (01W Words for 0/1 Reduced Oueued TrSD ... \n'l
map speech 0;

map..sp..ch 0

imt r, c,1, 1, k;
char sub title[601. temp(30);
char name -tj[20];
mnt loc[21 ;
FILE 'Inet, 'flog, 'fmask;
mnt sound;
short length;

printf ("\nEntsr name of pro-processor Koh net-file [loss not])
scant ("atemp) ;
sprintf (first net file .%not", tamnp);

printf ("Enter name of header file containing words (les. .hdr):")
scant ('%a.", tempjfie);
sprintf (traningjile, "%a.hdr", tempjile):

prnt ("Enter name of output Koh net-file Iless net]: 'I
scant ('"%s", tempfile);
sprintf (net file, %snet", tempjtle)
sprini (temp. "%e meW', ternpfIle);

Mnet = fopen (net-file, 'rY);
focanf (fnet,2%d %d %d", &ysize, &xsize, &number-inputs);
for (r = 0; r < ysize; r+ +) (

for (c =0; c < xsizs; c++){
for 0I = 0 ; i < number inputs ;i ++){

fscanf (fnet," %f", &map(rj~c](i])

fclos. (fnet)
read tm file 0;
fmask =fopen (temp, 'r")
for (r = 0; r < ysize; r++){

for (c 0 0: c < xsize ; c++){
fscarit (fmask,"%d", &mask[rjjcj)

tclose (tmask)

flog = fopen ("temp.log","w");
fpnintf (flog, "TWOPIC6: %a\n", nrme-trj);
fprintf (flog, "-> %s -> %s ->\n", first_net-file, net-file)
fprintf (flog, "Size is %d by %d nodes\n", xsize, ysize);

printf ("\nExpect %d calculations.\n", num words);
fprintf (flog. "Expect %d calculations.\n", num words);
for (sound = 0 ; sound < num words ; sound++i){

B-88

Appendix B: Computer Programs twop"c

getin 0 ;
mindist (lop)
k = loc(OJ + loc(1J * xeize;
prin (Vt%d : %d,%dj diet = %le'

sound, locI.1 loc(1], node-dimt)
prlntdigft (k) ;
fprint (flog, "\n%d : (%d.%d] diet =%I

sound, loc[O), loc[i 1, node-diet):
fprirvt digit (k, flog);

prlntf (InCalculatione flniahed.\n')
fcloee (Rlog);

diw (template, utterance, t .Jngth. u _engfh, ave..dist)
mnt template(2101(21, utteranc.(2001I[2J;
mnt tilength, u!length;
double ;ave diet

float back patli(21(200J;
int b~p[2] [2001;
int r, c;
int ptr, b-ptr,
float dl, d2,dW, diet;

dist = 0.0;
bptr = 1;
bp(01[0J 1
for (r = 1; r < t length; r+ +)

bp[01(rl = b~p(0J(r-11 + 1;
for (r = 0 ; r < t length ; r+ +) f

back..pahOllrI (diet + = bb
aba(utterance[0][0] - tomplte[r][0]) +
abs(utteranc[O)llJ -templateir][11)))

for (c =1; c < ulongth c ++){
ift(bjptr = =0){

b _ptr =1;

ptr = 0;

else{
bptr = 0;
ptr = 1;

for (r =0; r < t length; r-- +){
diet = abe(utterance[cJ (0) - templater) [01) +

abe(utterrmce(c](iJ - template(r][IJ)
it (r ==0)

back path[ptri[r] =back~path~bptrj[r] +
(aa * diet) ;

b...p(ptr][rI = b plbptr][rJ + 1;

else{
dI = back path~b ptrJlr-1] + diet;
d2 = back path~ptr][r-1J + (bb odiet)

d3 = back-pathjb ptrjr] + (aa diet)
if (d2 < =d3&& d2 <dl)(

back path(ptrj(rI = d2;
bp[ptr](rj = b pfptr](r-11 + 1;

B-89

Appendix B: Computer Program twopI"

elsei (M3 <= dl2&&d3 < d1)
back.,patlpitrllrJ = d3;
b.,p~tjrJ = b~pfbptrJlr) + 1I

back p*th~ptr)[rj = dl
bp[ptrlrJ = b..p~b..ptrljr-1I + 1;

'ava-diet =backpahjptrj[tjength-1jI b~pfptrLlngh-lj;

This routine supporth IVJOPICS.CIEX which finds the node closest
in DTW(maska,lengthfl) to a given digit.

Traiectories are 100 (not 75 as in the first version) point scalars
filled with trailing zeros.

include math
include stdio,
include stat

extern double inputf25) ;IP input nodes '
e"am double gain ;

extern it closest[2] ; 1' closest node '
extem int neigh[21 ; I' neighbor */
exter n t xsize, ysize ;I'* Size of array '
extern mnt number inputs;
eoxtern mnt train-discrete;
extern char trainingjlo[3Oj
extern char firet-net-jile(301;

int number -discrete.;
int word-counter
int num words;
char word number[200](15J;
mnt length[2001 ;

mnt fysize, t Xuize, f-number-inputa;
float ftmap[20][20fl161;
int location[2000J[21 ;
extem mnt map20O[20][1001[21;
extem float map[20ll2Ofl(25J;

read trn tile0

FILE *ft, *fnet;
mnt i, in, c, k, ternp;

ft = topen (trainingjfle, -r)
tecent (ft. '%d-, &nmwords);
for (i = 0 ; i num words ; i ++)

B-90

Appenk 8: Computer Programs twopice

fwcen (if, '%s", word number[j);
kla.. (d) ;
word coureter = 0;

fr,.1 = oper, (firsk etfile. "r')
facari (fnet"%d %d %d", &fjeize, &fLxsaz, &Lnumber..inputs);
for (r = 0;: r < fysize ; r+ +) (

for (C = 0 ; C < fxeaz. ; c++){
for (i = 0; I <f number inputs; i+ +){

fecanwnet". ');r &f-map~r] [c)[il)

fcloee(ne)

for (r =0; r < ysize; r+ +){
for (c= 0 ;c < xeize ; C+ +){

for (i= 0; i < number -inputs ;i-i+ +){
temp = (int) (map~rJ[c)[i] - 226.0 - 1.0)
k = temp % f-xsize;
map2[rJ~cjij~lj = (temp - k) / fxsize;
map2(r[c][i]lOJ = k

getin 0

if (word-counter ==num words)
word-counter = 0;

read-word (word-counter)
word counter+ +;

get md in 0

int
double maxrarnd = pow (2.0, 31 .0) -1.0
mnt pointer ;

pointer = floor ((rando* (num words - .0001) / max-rand));
read-word (pointer);

read-word (pointer)
int pointer;

int flag rc, i,j, k
double in(161, di, d2, d3, d4, d5;
flood element ;

int Ioc2[20001[21, Ioc3[2000](2];
FILE *fsnd ;
int sound, point, x[51, y[5],
int maxpts;
double max;

fsnd = fopen (word number[poinvter], 'r).
sound = 0;

B-91

Appendix 8: Compter Prograrm twopicS

I =0;
&Va = 0;
while (flag I= 1){

Weard ((end, "%*, &slernent);
if pfofd" 1=0)

flag = 1;
else If QI > 99)

flag = 1;

in~l] = (double) element;
i+4;
I

If ((W= 15) && (ft" =0)){
Lmindist (I map. in, &loc2[soundl [01)

= 0;
sound+ +

Iclose (fend);
for (I = 0; i < sound; i+ -){

loc3(i)[01 = l0c2[i](0I;
loc3[i][1) = loc219J[1J

maxpt.s =sounld;

..Trajectory Reduction..

for (i = 0; 1 < j; i++4) {
locationji][0j = loc2[i]lOJ;
location~i][lI = loc2u](1J;

length[01 j ;
for (i =J; i < 2000; i+ +)

location(i](1) = (location[i](0J 0)

Lmindist (Lmap, inp, loe)
double inp[161;
mnt close(2]
float f-Map[20(20] 16];

double dist ;
double minimum =9999.9;

for (rV 0; r < f..ysize ; r+ 1-){
for (c 0 ; c < f xeize; C++

diet =0.0;

for (i =0 ;i < f -number-inputs i 1+ +s)
diet + = pow (inpi - f.meipfr] (c] (i], 2.0)

if (diet < minimum) (
minimum = diet;
close01 = C;
close[1] = r;

B-92

Appendix 8: Comptier Programs twopm6

/*

~~~ ~~loolcup6.c **.*..*****.,**..

This is a look-up table that supports TWOPIC:*.C/EXE. Once
nodes are identified (either with TWOPIC4* or TWOPIC 6), those
assignments are stored in the table below.

*/

# include stdlo

Int Iook-up(10]J = (9,9,9.3,7,7.7,6,6.6
9,9,3.3,3,3,6,6,6,6,
9,9,3,2,3,0,6,6,6,6,
1,1.1.3,3,0,3,6,6,6,
1,1,1,3,0,0,0,4,4,4,
3.1,9,3,0,0,00,4,4,
5,3,3,3.3,3,7,0,4,0,
55,3,2,7,7,7,8,2,
5,5,2,2,3,3,7,4,8,8,
5,5,930,3,3,8,8};

char digt[11][10J = {"zero",
"one",
'two",
"three",
"four",

"five",

"seven",
"eight".
"nine",
"noise"};

printdigit (node)
int node;

f
printf ( /", digit[Iook up(node.);}

fprint digit (node, flog)
imt node;
FILE *flog;

{
fprintl (flog, "%s", digft[look_up(nodejj)

B-93



Appendix B: Comiputer Programs outdat3

S ik otdat3,ntraj3,options fle/opt

,***t*,*,**,***,***,,**,outdat3c

This routine create a sot of stored trajectories in the file
path.dat for use in training a second Kohonen not.

Input trajectories are 100 point scalars (1 -225) filled with
trailing O0s.

Capt Gary Barmore, 25 Aug 88

# include math
# include stdio
# include time

float map(20](201I2251 ;I' output nodes '
double input[225] ; I' input nodes *1

int xsize, ysize ;I, Size of array 0/
mnt number-inputs;

char trainingjfioe30), net file[301, first-net tile[30];
char temp-ffiler151,
char net naie[1 5];

mindist (map, inp, close)
double inpE225];
int ciose[2J;
float map(20J (20] [225

in? r, c, i
double diet;
double minimum = 9.9e31;

for (r =0 ; r < ysize; r+ .s) {
for (c =0; c < xsize ; c+ i-){

diet = 0.0;
for (i = 0 ;i < number inputs ; i + 9-)

diet + = pow (inpiJ- map(r] (c) (1], 2.0)
if (diet < minimum) (

minimum = diet;
close[0] = c;
close(l1 r

useninp 0

int line;
int ;
struct tm o0caltimeO. *time;

int *bintim

do{(
prnt ("OUTDAT3: Prepare training data, second kohonen... \nn');

B-94



Appendix B: Computer Program outdat3

prnt ("Enter name of header file containing words (lees .hdf): 'I
scand ("%", temp file) ;
aprintf (training file. '%a.hdr", temp file),

number inputs = 100;

prin? ("Enter name o pre-processor Kohonen net file [Iee. net]:")
scant ("%s", net-name);
sprinti (first net file. "%a.net", net-name);

printf('Enter name of data fil, to create [Iee .dat]: )
scant ("ant namne);
sprint? (net file, '%e.dat", net-name);

prinif ("Ready to begin? (y/n) ');
while ((c getc (stdin)) ==~ c= n Ic t

I while (cz Iy'

extem unsigned -stklen;
stklen = 8192;-

userinp 0 ; P' Get input values/
read tm-file 0 ;
printf ('\nNet file: %s savedl\n", not-file)

ntraj3.c

This routine supports OUTDAT3.C/EXE in creating a set of stored

trajectories (path.dat) for training a second Kohonen net.

Trajectories are 100 point scalars (0-225) filled with trailing O's.

G. Barmore25 Aug 88

# include math
# include stdio
# include stat

double innput[ 100][1001J*j input vectors '

extern double input[2251 P' input nodes '
extern double gain ;

extern it closest[21 I' closest nodse'
extern it neigh(2J ; /* neighbor 1/
extern it xsize, ysize ;/ Size of array '
extern mt number-inputs;
extern mt train-discrete ;
extern char training filef 30];
extern char first net file[30];
extern char net file3Oj,

B-95



Appendix 8: Coniputer Programns outdat3

int number discretee;
jut word counter
mlt num, words;
Char word number(100I(15]

mnt f-ysize, f xsize, f-number-inputs;
float Lmrap(2D](20J(16]

read tn file 0

FILE *tf, 'Inat;
mntjir.c

tf = topen (training file, rY);
facant (i, '%d", &num words);
for 0i = 0 ; I < num-words ;i +,)

fecant (If, "IN" wdnumber(i]);
fcloee M lst)or-

fnet = fopen (first net file, 'rY)
facanf (fne,"%d %d %d'," &fysize, &f xuize, &fnumberrinputs);
for (r = 0; r < lysize; r++) (

for (c = 0; c < fxsze ; c+ +){
for (I =0 ; I < f-number inputs ; i ++){

tscanf (fnet," ', &f Mapfri(c](i])

Iclose (Inet)

fnet = topen (net-tile, "w');
Iprinytt (tnet, '%d\n", num words);
for (i = 0; i < num -words; i++){

read word (i);
for o ; j < number-inputs ;j + +) f

innputiJlj] = input~l ;
Iprintf (Inst, '%le\n", inputfi])

fclose (tnet)

read-word (pointer)
int pointer;

int flag r, c, i,j, k
double inf 16), dl, d2, d3. d4, d5;
float element ;
mnt loc2[2000J(21, loc3(2000)[21;
FILE *fsnd ;
imt sound, point, x[5], y[51
mnt max-pta,
double max,

for (i = 0 ,1 < number-inputs ; i + +t)
input[i) = 0.0,

fsnd = fopen (word number~pointer], "r');
sound =0;
S=0 ;

flag = 0;



.. . .. .. i I I I I i II, , I,

Appendx B: Computer Programs outdat3

while (flag I= 1) {
f.ant (tend, "%.', &elment);
if Vfeof(lni) 1=0)

flag= 1;
else if (I > 99)

flag = 1;
else {

in[i = (double) element;
i++ ;

i((i == 15) && (flag == 0)) {
.mindist (Lmap, in, &loc2[sound][01);
i=0;
sound++;}

fcloe (find):
for (i = 0; i < sound; i++) {

Ioc3[i][0 = loc2[i)[O];
foc3 (illh = foc2fil [;
}

maxpts = sound;

... Traectory Reduction ...

for (i = 0;i < j; i++) {
point = 1 + loc2[i][0] + loc2[i][1] fxsize;
input(i] = point / 226.0;
}

frmindist (Imap, inp, close)
double inp[16];
int close[2
float f_map(20] [20][16];

double dist ;
double minimum = 99999.9;

for (r - 0; r < f..ysize ; r+ +) {
for (c = 0 ; c < fxsize ; c++)

dist = 0.0 ;
for (i = 0; i < f number inputs;i+ +)

dist + = pow (inp[i] - fmap[r][c][i], 2.0)
if (dist < minimum) {

minimum = dist;
close[O] = c;
close1l] = r;
}

}

Ilk

B-97



Appendix B: Computer Programs twoba&3

$ link twobain3,nweightl 1,options file/opt

These routines train a second Kohonen net to procese 100 point
scalar trajectories filled with trailing O's.

Initial weights are random. Stored training trajectories are
found in a pathdal file. Conscience is an user supplied variable
in this version.

Capt Gary Barmore, I Sep 88

# include math
# include stdio
# include time

int conscienc[20]120] ;/* records # time. closest1
mnt nodes ; I' number of nodees'
double consc = 1.1; 1 conscence factor '
float map[20][201[25] ;I' output nodes 0

double inputI225) / I input nodes 0

doubt. gain, noise;
double mcount;
double percent ;
double xoff = 0.0;
double yoff = 0.0 ;

int closest(21 :1* closest node '
int neigh[21 ;1' neighbor 1/
int nrangex, nrangey /*I neighbor range '
int nfactorx, nfactory ;/* neighbor factor ~
long count ;I' # of iterations 1/
mnt graph ; I' # between plots '
int seed ;
mnt maxneighx, maxneighy ;I' Starting aresa
mnt minneighx, minneighy ;I' Final area '
mnt xsize, ysize ;1/ Size of array '
int number-inputs;
mnt wrapjlag =0;
mnt train-flag, train-discrete;

char training file[301, net file[301, first net tile(303
char temp file[15]
char net name(15];

struct curve (
int type;
double maxgain;
double mingain;
double midgain;
imt midtime;
I gcurve;

struct fig f
int rnd-in
}flag;

B-98



Appendix B: Computer Programs twobas3

extem int xyU] ; /* array holding x,y */
extem double xdel, ydel ; 4
extem double xlow, xup, ylow yup
extem int tr-length;

init (map)
float map(20][201(225

{

int r,ci
float max-rand = pow(2.0, 31.0) - 1.0;

nodes = ysize * xsize;
for (r = 0; r < ysize; r++) {

for (c = 0; c < xsize; c++){
conscienceirlc] = 0;
for (i = 0 ; i < number-inputs ; i++) {

map[r][c][i] = rand 0 I max-rand;
}

}
}

mindist (map, inp, close, its)
double inp[225];
int close[2]
float map[20](20][225];
long its;

{
int r, c,i;
double dist ;
double minimum = 9.99e31

for (r= 0; r < ysize; r++){
for (c =0; c < xsize;c+±) {

dist = 0.0 ;
it (conscience[r][c] < consc * its / nodes) {

for (i = 0; i < number inputs ; i++)
dist + = pow(inp[i] - map[rf[c] [i], 2.0);

if (diet < minimum) {
minimum = dist;
cloSe[O] = c
close[l] = r
}

}
}

}
ccnscience(close(1]](closeO]] += I

userinp 0
{

int line;
int C;

do {
printf ("TWOBAS2: TWO KOHonen net training (output only)... \n\n"'

printf ("Enter conscience factor (> 1.0): (float] ';
scanTf ('-%f, &consc);
if (consc < 1.0)

B-99

i



Appendix 8: Computer Programs twobea3

cone=15

0prntf("Ener sze'm n(foran m xn) ofarray ?[lint int 'I
scanfC%d %d", &ysiz. &xsize);
if (yeize < 2)

you.e 2;
els, if (ysize > 20)

yie =20;
it (xsize 2)

xsiz. = 2;
els if (xsie.> 20)

xsize = 20;

printf ("Do you want 0) sequential trainingn')
pnintf (" 1) randomizod training?"),
scant ("W", &fag.md-in);

printf ("Enter name of header file containing words (lee hdr):")
scant ('%s", temp tile);
spnintf (training_ file, "%s.hdr", temp file)

train discrete = I1,
number inputs = 100;

printf ("Enter name of pre-processor Kohonen net file [les. net] ')

scant ("%s", net-name) ;
sprintf (first net file, '%a. net", net name);

printf ("Enter name of net file to create [less nat]: '

scant ('%s", net_name):;
* sprintf (net file, "%a.net", net-name);

printf ("Number of iterations = ? [intl '

scant ("%ld", &count) ;
if (count < = 10 IIcount > 200000)

count =100 ;
mcount = (double) count;

printt ("Number of iterations between status messages =? lint] '

scant ("%d", &graph) ;
it (graph < 1 11 graph > count)

graph = 10;

ingqin 0;

printf ("Starting size of neighborhoods 'yn xn' = ? [int int]
scant ("%d %d", &maxneighy, &maxneighx);
if (maxneighx < 2 11I maicneighx > xsize - 1)

maxneighx = 2:
if (maxneighy <z 2 11 maxneighy > ysize - 1)

maxneighy = 2;

printf ("Final size of neighborhoods 'yn xn = ? lint intl "

scant ("%d %d", &minneighy. &minneighx)
if (minneighx < 1 11 minneighx > maxneighx)

minneighx = 1 ;
if (minneighy < I I Iminneighy > maxneighy)

minneighy = 1,

printt

B- 100



Appendix B: Computer Program twoba*3

("Initial seed for' random # generator int] )

Scant ("%d", &sesd)
It (seed = =0) (

seed = 138;
1

srand (seed),

wrapjfag = 0;

printiC"Ready to begin? (yin)")
while &( =getc (irtdin)) '=' c \n' c At

}while (c I= y

ingain 0

mnt line;

printf("For gain enter 0) UNEAR, 1) SIOMOIDAL, 2) PIECEWISE UNEAR:
scant ("d.&gcurve.type) ;

if (gcurve-type = = 0 j1 gcurve-type ==1){
printf ("Maximum gain = ? [float]);
scant ('%E", &gcurve.maxgamn) ;
it (gcurve.maxgain > = 1.0 1gcurve.maxgaien <= 0.0)

gcurv..maxgain =.99;

printl ("Minimum gain = ? [float]")
scant ("%E", &gcurve.mingain) ;
if (gcurve.mingain < = 0.0 Igcurve.mingain > =1.0)

gcurve.mingain =0.0;

else{
printf ('First segment starting gain = ? [float] "

scant ('%E", &gcurve.maxgain) ;
it (gcufve.maxgain > = 1.0 1 gcurve.maxgain <= 0.0)

gcurve.maxgain =.99 ;

printf ("Second segment starting gain = ? [float]")
scant ("%E", &gcurve.midgain) ;
if (gcurve.midgain < = 0.0 1I gcur.eo.midgain > = 1.0)

gcurva.midgain =0.0;

printt ("Second segment starting iteratior, ?float] )
scant ("%d", &gcurve.midtime) ;
if (gcurve.midtime < = 0 11 gcurve midtime > count)

gcurve. midtime = count /2;

gcurve.mingain = 0.0;

getgain (i)
long

if (gcurve type = = 0)
gain = (percent *(gcurve maxgain - gcurve.mingain)) +

gcurve.mingain,
else it (gcurve.type ==1

B-101



Appendi:K B: Computer Programs twobas3

gain =0.9 * (gcurve.maxgain - gcurve.mingain) /1(1.0 + exp (i -
count / 2.0)) + .1;

if (I < gcurv..midtim.e)
gain = gcurve.maxgain *(1 .0- (doubls) i Igcurve.midtime);

else
gain = gcurve.midgain * (1.0 - (double) i/count);

save~net 0

tnt r, c, i;
FILE *fngt ;

fnet f open(ntfile,'wi
fprintf (fnot."%d %d %d", ysizs, xsize, number-inputs)
for (r = 0; r < ysizs; r++) {

for (c =0; c < xsize; c+ i-){
for (i = 0 ; 1< number inputs ; i +-s){

fprintf (mnet,' %1", map~[rfc)l)

fcloee (fnet)

maino

long
char 91[10]
int ws id=1I
int clear -flag =1;

FILE *tf;
extern unsigned _stkdn;

-stklen =8192;
userinp 0 P Get input values1
nfactorx = maxneighx.- minneighx + 1I
nfactory = maxneighy - minneighy + 1;
init (map) ; 1 Initialize weights '
read trn-file 0;

for (i 1 1; i < = count; i-s-+){
if (i% graph 0)= {

print? ("TWOBAS3: gain =%f, yrange =%dc,

gain, nrangey) ;
printf ("xrange = %d, iteration # %d", niangexi);
print? (" (of %1d)\n", count)
if (access (net -filesO) = =0)

delete (net-file)
save-not 0;

percent =(mcount - i) /mcount;
getgain (i)
if (flag.rnd_in ==0)

getin 0;
else

get mnd in 0;
mindist (map, input, closest, i)

B- 102



Appendix B: Compter Programs twobaa3

If (gcurvt.type I = 2)4
nrangex = mlnneighx + percent * nfactoux
nrangey = minnoighy + percent *nfactoiy;

ela. if (i < gcurve.midtime){
nrangW = minneighx + nfactonc

((double) (9curve.midtime - Q)) / gcurve.midtimne;
nrangey = minricighy + nfactory*

((double) (gcurve.midtiffw - / gcurve midtkne,

else f
nrangex = minneighx;
nrangey = minneighy;
I

neigh[OJ = nrangex;
neigh[1J = nrangex;
weightem (map);

save net 0;
printf ("\nNet file: %a saved!\n', not-file)

~~~~ n~~~~~rweightl 1.c **********O*.g**

Thoe routines support TWOBAS3.C/EXE in training a second Kohonen
not with 100 point scalar inputs filled with trailing O's. It
uses stored training inputs in a path.dlat file.

G. BARMORE25 AUG 88

include math
include stdio
0 include stat

double innput[100[IOOI /* input vectors ~

extern double input[225] I' input nodes1
extern double gain ;

extem int closest[2] ; I closest node '
extern int neigh[21 ;I' neighbor *I
extern mt xsize, ysize; /* Size of array ~
extern mnt number-inputs;
extern it train discrete ;
extern char training file[30];
Motrn char first net file[30J;

int number discretes;
mnt word counter
int num words;
char word-numberjloo][15J

mnt f-ysize, f-xsize, f-number inputs
float f-M&p(201120[161

read tmn file 0

FILE *tf, *tnet;

B- 103

Appenrdix B: Computer Programs twots*3

if = topen traningfile, "ri;
fecat 01f, "U"', &num words);
for QI = 0 ; i < num-words ; i++)

fWant (1:1, '%a", word-number[iD,
Iclose (to -

fne tfopen (first net file, "r');
faiat (ft.%d %d %d", &fjsiz, &f xsize, &f number inputs);
for (r = 0; r < f~ysize; r++) (

for (ce 0 ; c <f Ixsize;c+)
for (i = 0; 1< number inputs; i+±){

fscanf (fnet, 5f", &f map[rIfclfi))

fclos (fnet)

Inet = fopeii ("path.dat", rY);
IscanI (fnst. "%d", &num words);
for (i = 0; i < num-words; i+ +){

foro = 0 j< number nputs; I+)
fecant (Inst. "le", &innput(i]W);

fclose (Inet)
woid counter = 0;

getin 0

int

if (word-counter ==num words)
word-counter = 0;

for U = 0;i < number -nputs + +)
inputWj innput~wordcounter]W;

word counteri +;

get md in 0

int ij
double max rand = pow (2.0, 31.0) - 1.0;
int pointer ;

pointer = floor ((rando* (num words - .0001) / max-rand));
for U = 0 j < number -nputs ; j + +)

inputbjJ = innput~word counter]U]

weightemn (msp)
float mapf 20] [20] [225]

mnt nright, nleft, nup, ndown, r, c, i;

If (neigh[0] > 0 && neigh[1] > 0) (
nright = closast[0) + neigh[0J - 1:
df (nright > = xsize)

nright = xsize - 1I

B- 104

Appendix B: Computer Program. twoba*3

nleft = cloewt[O] - neigh[O] + 1
if (nief < 0)

nlet = 0;
nup = clomt[ll] - neigh[l] + 1
if (nup < 0)

nup = 0;
ndown = cloeet(1] + neigh(l] - 1
i (ndown > = ysi.ze)

ndown = ysize - 1;

nright = clo"ee[OI:
nleft = closeet[0;
nup = cloeest(1] ;
ndown = closet[I]j;

for (r - nup; r <= ndown ; r++) {
for (C = nleft; c <= nright ;c++) {

for (i = 0i < number inputs; i+ +)
map[r][c][i) + = gain * (input[i] - map[r][c][i])}

}

read-word (pointer)
int pointer;

{
int flag, r, c, i, j, k;
double in[16], dl, d2, d3, d4, d5;
float element ;

int Ioc212000][2], loc3[200012],;
FILE *fend ;
int sound, point, x[5], y(5]
int max-pts;
double max;

for (I = 0 ; i < number inputs; i + +)
inputi] = 0.0;

fsnd = fopen (word number[pointer, "r)
sound = 0;

flag = 0;
while (flag!= 1) {

fscanf (fsnd, "%f", &element);
if (teof(fand) !=0)

flag = 1;
else if (i > 99)

flag = 1;
else {

inji) = (double) element;i++;

}
if ((i = = 15) && (flag = = 0)) {

ftmindist (fmap, in, &loc2[sound][0)

sound + +

B1

B-105

_I

Appendi 8: Computer Programs twoba&3

Wcoes (W4nc;
for (I=0; 1 < sound; i+ i-){

loc3filf0l = loc2fiJ(0);
Ioc3[iJ[1) = Ioc2jli[1);

maxpts sound;

..Trajectory Reduction..

for (i = 0; 1 < j 1+ i+) f
point =1 + loc2t11j01 + loc2i1[11 * txsiz.;
inputfil = point / 226.0;

Lmindist (f map, inp, close)
double inpflSJ;
mnt closs[2];
float f Map[201[20][16];

it r, c, i;
double diet :
double minimum =9.99.31,

for (r =0;, r < fysize, r++){
for (c =0, c < fxsize; c+ +){

dint = 0.0;
for (i =0 ;i< f-number inputs; i+ +)

dint + = pow (lnp(i] - I map(rJ (cI (iJ, 2.0)
id (dint < minimum) {

minimum = dint;
closeO] = c
closeli] = r

B- 106

Appendix 8: Computer Programs twopic4b

S link twopic4b~nplotnprlnter,mat3,nweigtl2,options fle/opt

h*****e*********e*e~**h.**twopic4b.c

This routine is used to show graphically those nodes which 'light
up' using Euclidean distance when the training set of inputs is
applied to a second Kohonen not.

Inputs are 100 point scalar (1-225) trajectories filled with
trailing O's.

" include math
include etdio
" include time

float map(20] [20](2251 ;1' output nodes1
double input[225) ;1P input nodes '
double gain, noise;
double mcount;
double percent;
double xoff =0.0;
double yoft = 0.0;
double node-dist;

int closest(21 P/ closest nodes'
im neigh[2j ; P neighbor '1
mnt nrangex, nrangey ;/* neighbor range '
int nfactorx, rifactory P I neighbor factor '

* long count ; P # of iterations */
int graph ; P' # between plots '
int seed ;
int maxneighx, maxneighy I P Starting area
int minneighx, minneighy ; P' Final area '1
mnt xsize, ysize ; P' Size of array ~
mnt number -inputs
mnt wrap_ flag = 0;
int trainflag, train-discrete;

char training filo[30], temp tile[30], first-netfile[30]
char net tile[30]

struct curve{
inttye
double moxgain;
double mingain;
double midgain;
int midtime;
) gcurve;

extern int xyO ; 1* array holding x~y ~
extern double xdel, ydel ;
extern double xlow, xup, ylow, yup;
extern int num words ;
extern char word -number[100][1 SI

mindist (map, inp, close)
double inp(225J
int ctose(21
float map[20]120][225];

B- 107

Appendk B: Computer Programs twopic4b

mnt r, c, i;
double diet ;
double minimum = 9.99*31;

for (r = 0; r < yeize; r+ +) f
for (c = 0; c < xsaze; c++){

diet = 0.0;
for (I = 0;1I < number inputs; i ++)

diet + = pow _(inp(i] - mapfr] (c]j(iI, 2.0)
if (dint < minimum) {

minimum =dist;
cloee(OI = C;
close(l1 r

node-diet =minimum;

main 0

int c;

printf ("\nTWOPICfb (Plot Words for 0/1 Reduced Queued Tral).. \n");
map speech 0;

map speech 0

mnt r, ci,j, k;
char sub title[601, tempt 301
char name trj(20]:
int loc[125][2);
FILE *fTnet *flog;
mnt sound;
short length;

printf (\ nEnter name of pre-processor Koh net-file [less net]: 1
scantf ("%s, temp);
spnintf (first net file, "%s.net", temp);

printf ("Enter name of header file containing words (less hdr): ~
scanf ('%a", temp file);
sprintf (training file, "%s.hdr", tempjfile)

printf ('Enter name of output Koh net-file [less net]: '

scarif ("%s", tempjfile);
sprintf (net-tile, %s.net', temp file);

read tin _file 0;

fnet = fopen (net file, 'r')
fscanf (tnet,"%d id %d", &ysize, &xsize, &number-inputs)
for (r = 0; r < ysize; ri-i) {

for (c =0; c < xsize ; c- i-){
for (i = 0 ; i< number-inputs ; i-i-+){

fscanf (fnet," %f", &map(r] (ci[ii)

B- 108

Appendx 8: Computer Programs twopio4b

fcloee (triat);

sprntt (sub _title, '%6 -> %a ->, first net file, net file);

flog = fopen ("temvp.log",'') ;
f1printf (flog, "1WCPIC~b: %e", name-trD;

graphjeet (traningjlle) ;
length = (short) strien (sub-ttle);
drswugriQ (ysize. xelze, sub-title, I vngth);

prnt ('AnExpect %d calculafic .. \n', num -words);
for (sound = 0 ; sound < num words ; sound+ +){

getin 0 ;
mindist (map, input, &loc~soundllofl;
printi ("%d : %d,%d] diet= ln,

sound, loclsound][0], loc[sound](1J, node-diet)
tprintl (flog, "%d: (%d.%d] dist =%le\n".

sound, loc(sound](01, loc(sound)(IJ, node dist);
I

printf ('Wnalculations finiahed.\n)
Wcos (flog):
draw speech map (sound, 100);
scamt ("%a"',terp)
clipofi 0.1
graphofi 0;

graphtest (name)
char namne(301,

char titleL79), labe14791
float xloc[5] ={(, 63.0, 639.0, 0.0, 0.0);
float yloc(5] = f349.0, 348.0, 0.0, 0.0, 349.0),
int ponts 5;
mnt wsid=1I
int clear-flag =1;

short length ;

sprintf (tile,"TWiOPIC4b: Kohonen TWO NETS -- %a", name);
sprintf(labetx,'")
graphon 0 ;
gks$clear-ws (&ws -id, &clear-flag)
gks~polyine (&points, xloc, yloc);
prepcolmat (ysize, xsize);
length =(short) strien (title);
outtitle (title, length) ;
length =(short) strien (labelx)
outlabelx (labeix, length);
clipon 0;

*t*S,******tt@********t***mat3.c

These routines support graphics operations in showing which node in
a second Kohonen net lights up when the training set of trajectories
is applied.

B- 109

Appendkc B: Comiputer Programu twopic4b

Trajectories awe 100 point scalars with trailing O's.

include stdio
include math
include <gkedfeh>
include <deecriph>

define BLACIKJ
define WHITE1

flog ptsx(201(201151, ptsy(201(201(51,
float px[20][201. py[20]1[201,
tnt uaedi2Oll2OI:;
tnt colmat[2Oli2OI;
tnt pattern(161=

prepcolmat (ysize. xsize)
int xsize;
int ysize;

mnt r, c, xstart, ystart;
mnt dx, dy ;

dx = floor (550.0 / xsize)
dy= floor (276.01J ysize);

xstart = 280 - dx * xsize /2
ystart = 148 +dy ysize /2;

for (c = 0; c < xsize ; c++){
for (r = 0; r < ysize ; r-* +){

ptsx[r][c]141 (ptsxlrj[c)[3] = (ptsx~r][cJ[0]
xstast + c * dx));

ptaxc~r][c][21 = (ptsx(r](ci(1J = ptsx(r]fcJ(01 +dx- 1)

ptsy(r][c](4] (ptsy(r][c](1] = (ptey~rl[c][0]
ystart - r * dy))

ptsy(r](c][31 (ptsy(r](c](21 = ptsy(r][c][0] -dy+ 1)

px~r][c(= ptsx~r](c](01 + 8.0
py(r](c] ptsy[r](c](0] - 8.0

for (r =0; r < 20 ; r-i--s){
for (c = 0 ; c < 20 ; c+ +){

used[r](c] = 0

showemn 0

int
float rectxrl(l16161 recty 161161;
it points =5 ;

for (i 1 1; i < 16 ; i++){

B-lb1

Appendix 13: Computer Program twopic4bI

rectx[i)[4] = (rocM[i][3J = (rect[illO] =173 + 16
rec[i](12J = (roctx~ij(1] = (rectxb][O] + 15));

rectyi][4] = (recty[i]f11 = (racty[i](0] = 30));
rectyfi][31 = (recty[i](21 23);

setfillatyl. (patternfij, Q
gka$fill -area (&points, &rectx[i)[01, &rect[i][OJ)

setfillstyle (pattern, pointer)
mnt pattern;
int pointer;

int style =3; I* hatchI
int color[161 = (0, 7,7, 3,3, 5,5. 4,4, 4, 6,6, 2,2, 1};

if (pattern > = 0) f
gksSeet till mnt style (&pattern);

else{
gks$set till stylejindex (&pattern);
gksasetfill int style (&style);

draw-net (number, loc)
int number, loc[8411]

mnt i, old-value;
mnt white= 0:
mnt black = I
float X, Y;
char s[4)
$DESCRIPTOR(sdsc,s);

for (i =0; i < number; i+ +)
x = ptsxjlocji)[1J][loc[illO]][0] + 4.0;
y = ptsy[loc~ifll lilboc~il[01110] -4.0;
old-value = usediloci](1]loc~i][0]

gks$set -text -color-index (&white)
sprintf (s,"%3d",-old value);
gks$text (&x, &y, &s-dsc);

sprintf (s,"%3d'i+ 1)
gks$set -text -color -index (&black);
gks$text (&x, &y, &sdsc) ;

it ((il ± != old -value) && (old-value =0)){

y - 6.0;
sprintf (a,"**),
gks~text (&x, &y, &s-dsc);

usedloc~i][11](loci(011 = i +1;

draw neighbors (number, loc)

B-Ill

Appendix B:. Computer Programs twopic~b

mnt number, lo04641[21;

int i, old value;
mnt white= 0
int black = 1
float X. y
char 9[41
SOESCRIPTOR(a-dac,s)

for (1 0; i < 1 ; i4-+) {
x = ptsxjlociEllllloc[i(0J[0j + 4.0;
y =ptey[loci][111(locilli]jfOI - 4.0 ;
old value = ueed~locl[i11(loc[i] (011

gks$Wtextcolor ndex (&white)
aprinti (9,"%3d", old value);
gks$text (&x, &y, &a-dec) ;

sprintf (9,'%3d", (number+ 1))
gks$settextcolorjindex (&black)
gks$text (&x, &y, &s~dec) ;

if ((number-.1 !=old value) && (old-value 1= 0)){
y - 6.0;

gks$text (&x, &y, &s-dsc);

usedloc(i][111[loc~i)l(0] number+1

draw speecn map (number, loc)
mnt number, loc[125112];

mnt iold-value;
mnt white =0;
int black 1

*float x, y, xx[2], yy[2];
int points = 2:
char s[41]
$DESCRIPTOR(s_dsc,s);

for (i= 0; i < number; i+ +){
x = ptsx[loci(1j](boc~ij[0j]]0j + 4.0;

* y = ptsylloci][111[boci(01110 - 4.0;
old-value = used[locill]][boc[i][O]]

gks~set text colorjindex (&white)
sprintf (s,'%3d", old-value)
qka$text (&x, &y, &a-dsc) ;

gks$settextcolor index (&black);
sprintt (9,"%3d", 1+1) ;
gks$text (&x, &y, &s-ds');

if ((i+1 9= old -value) && (old-value =0)){

y - 6.0;

gks$text (&x, &y, &sdsc);

B-112

Appendix 8: Comtpter Programis twopic4b

usad(loc(i[1illloc(IIfOH = i+I;

N Q!'= 0)
XX[O) = px~locti-1llhI1(locli-1ltll
XX(1) = pX(1IiIIIloctillol;
yy[O1 pyllocli-llhIIloc~-11011;
Wyill = py[ocI11101 oil;

gkapolfln (&points. xx yy);

dlrawj ridl (yuize, xsize)
int xeiZe, yuizo;

int pointa= 5
mnt r,c ;

for (r = 0 ; r < ysize r+ 1-){
for (c = 0 : c < xslz. C+ +){

gkcapolyline (&pointa, &ptax(rJ (cJ LOI, &ptsyrLdll[0)

draw-spectra (map, ysize, xeize)
mnt xs~ze, ysize ;
float map[2011201[161;

mnt point =2;
float x[21, y[21;
mnt r, c, i,

for (r =0; r < ysize; r+ +){
for (c =0; C < xsize C+ c+){

y(0I ptey~r](c][31
for (i= 0 ; i < 15 ; i+ +){

x[ol = ptsxjrllc][3] + 2.0 + (2-0
X(11 = X(01
y(1] = y[03 + 16.0 * map~r](c][i]
gks$polyline (&points, x, y)
X1O] + = 1.0 ;
X11) += 1.0;
gks$poyline (&points, x, y)

draw grid2 (yeize, xsize, sub -title, length)
int xezo, ysmze ;
char sub title[301
short length;

mnt ponts 5;
mnt r, c;
float xloc, yloc;
struct dwAcdeecriptor title-cdec ={length,

DSC$K-DTYPE-T,

B- 113

Appendix B: Computer Program twopic4b

DSCUK CLASSS,
sub-title 1

for (r = 0; r < ysize; r+ +)(
for (c = 0 ; c < xs&*; c+ +){

glcapolyline (&points. &ptax(r(c][OJ, &ptsy~[ldllO;
I

xloc = 277.0 - 3.0 ft length;
yloc =2.0;
gkstext (&xloc. &yloc, &title dac);

stausem (gain, nrangey, nrangex, t)
double gain ;
mtd nraflgey, nrangex;
long its;

float xlOC, Yloc;
char 8(601
$DESCRIPTOR(,dsc.s);

sprintt (9.
"Gain = %4.21 Neighbors =%2d,%2d Iteration # Mild",

gain, nrangey, nrangex, its);
xloc: = 76.0;
Yloc = 2.0;
gks~tex (&xloc, &yloc, &sdsc);

colorem (ysize, xsiz.)
int xsize, yaizs;

imt r, c, color;
mnt points =5;

for (r 0; r <ysize; r +){
for (c= 0; c < xsize ; c+ +){

color = colrnat(rfl c);
seffillstyle (patterm(colorj, color);
gks~filare(&points, &ptsx(rI(cilOJ. &ptsy[rJ] i0]);

piclccolors 0

return;

nyweightl2.c

These routines support 7WOPIC4B.C/EXE in showing which nodes of
a Kohonen net light up when the training Me of trajectories is
appited.

Trajectories are 100 point scaar (1-225) inputs filled with
trailing 0'.

B-114

Appendic B: Computer Programns twopiCAb

include moth
iinclude stdio
iclude Stat

edern double input[225I :1 input node. 4/
wemr double gain;

extern int clossst:!21 P I cloeset node*/
Weern t nigh[21 ;1' neighbor */
ucten mnt xeizs. ysize ; / Size of array '
extem int number-inputs
extern Int train discrete;
extern char training fll(301;
extem Char firstnetfle30J,

it number diacretes;
it word counter;
int nurn words ;
char word numnberllOO]il51j

it l~yuize. tjwize. 1number inputs
float t-map2O1I2OflJIj;

rawdtMileO0

FILE *tf. fnet;

Iff foper' (trainingjle, ')j
fsan (tt, '"W", &num-worde);
for i = 0;. i < num words ; i + +)

fecanf (If, '%a", word numberfi]);
cose (11)

word counter =0;

Mret =toperl (first net fil,'rY)
fscarif (tnet,"%d %d %d". &fysize, &f xeize, &f number inputs);
for (r = 0; r < fjysize ; r+ +) {

for (c= 0 ; c < f-xaize ; c+ +)
for (i = 0; i < 1-number-inputs; i+ +){

fscanf (fnet'" %V*, &f~mapjrj[c)[i])

Mcoes (tw)

getin 0

df (word-counter z=num words)
word counter = 0;

read word (word counter)
word counter + +;

gtjndj-n 0

int

B- 115

Appemdk B: Comper Program tWpic4b

double max rand = pow (2.0, 31.0) - 1.0;
int pointer;

pointer = floor ((rando * (nurn-worde -. 0001) / max randl))
read word (poinvt);

wevgona (Map)
float mapL20J20l251;

Int nrght. nlknup, nown, r ,cI

0 (neigh[0] > 0&& neigh(l] >0){(
nright = closet[0J + neigh(oJ - 1;
Wf (niright > = xeize)

nright = xaiz* - 1
nMelt = clos..t(0j - neigh(0] + I:
df (nieft < 0)

nieft = 0;
nup = cloe"e(1] - neigl + 1;
dt (riup < 0)

nup = 0:
ndown = closest[) + neigh[1] - 1I
if (ndown > = yaize)

ndown = yaize - 1I

nright = closee[0];
nleft = closest! 0]
nup = clost[1],
ndlown =clos.st(1J;

for (r =nup; r <= ndown ;r+ +) I
for (c= nleft ; c <= nright; c++){

for (i= 0; i < number-inputs; i + +)
map~r](cl [ii + = gain *(input(il - mapr](c](i])

read-word (pointer)
int pointer;

int flag, r, c, i14, k;
double in(161, dl, d2, d3, dM, d5;
flt element;

int Ioc2[2000J (21, loc3[2000f 2];
FILE *fsnd ;
imt sound, point, x[51, y[5j;
int maxpts;
double max;

for (i = 0; i < number-inputs ; i + +)
input[i) = 0.0;

fend = fopeti (word numberlpointer], "r);
sound = 0;
i =0;
flag = 0;

B- 116

Appendix B: Computer Prograrns twopio4b

while (11"a1= 1){

flag 1
0"s 0 (1 > 99)

flag =1

inlU) -(double) element,

i((=15) && (fa =0))4

fmindiet (1 map, in, &loc2[eound)[0);
S= 0;

sound++;

Wcoes (land)
for (i = 0; I sound; i++){

loca[i][0] = 0c2iill0);
Ioc3[iJ[1J = oc2(i][1ll

Max-Pt sound;

..Trajectory Reduction..

for (I = 0; i <j; i++) f
Point = 1 + loc2[i](0j + Ioc2(ijIjl I xsize;
input[ji = point, 126.0;

fmindist (Imap, inp, close)
double inp[163;
mnt close(2];
float f-map20]120][16],

int r,C, i;
double diet ;
double minimum .99

tor (r =0; r < tysiz.; r+ +){
for (c =0 ; c < f xsize , c+ 4-){

dist =0.0,
for (i= 0 :. <tfnumber inputs ; +i i-)

diet + = pow (inpli] -Lmapfr][c)[i]. 2.0);
ff (diet < minimum) f

minimum = diet.
C108610] = c
closeill = r,

Appendix 8: Compuwe Program twopice

$ link twvop 8.nwinS,optlons fileopt

These routines find the closest digit, from a specified (usually non-
training) seM of digits, to each node in a second Kohoneri net.
mm. i used to identify nodes for later use of the not in recognizing
unknown digits.

Inputs to the net wre 100 point scaler (1 -225) trajeconiee filled
with trailing O's.

The cloest' proces, uses D'IW(maskalongthfl) distance.

include math
include stdio
include time

float map[201120J[2251 ; P* output nodes
double input[2251 I' / input nodes 'I
double node-diet;

int cloeest21 ;1P closest nodes
mnt xsize, ysiz ; /'Size of array/
int number-inputa;

char training_ filepl emp tile[30), first net-file[303;
char netile[30J;

extern int num word.;
mnt mask[201(201;
int map2[20][20)[100J[2];
float a&a=0.75;
float bb = 0.75;
MOternmt t-xslze, f-jsize;

extern mnt location(20001(21;
mnt innput[200If 1001(21
extern int length[2001 ;
extern char word number[20011151;

mindist (r, c, close)
int r, c;
mnt *close;

int sound;
double diet ;
double minimum = 9.9W31

for (sound = 0 sound < num_words ; sound++){
dtw (&map2jrjtdllOjl~l, &innputtsoundltOllOl, mask~r][c].

lengthleound), &diat);
if (diet < minimum) f

minimum =dist;
*cloee = sound;

node-diet = minimum;

B-1 18

Appendk 8: Conipt~r Progrms twopic8

main 0

fit c;

print ('NnTWOPlCO (Gives closest word for each nods: 100 wts) ... \n)
mapasp..ch 0;

map speech 0

int r, c, i,jk;
char name trj301, tomP(30I,
mnt oc ;
FILE ftnet, *flog, *fmaak,

prlntf ('\nEnter name of pro-processor Koh net-fle floss .nt]:)

swant ("IM", tamp) ;
sprintf (first net file, '%&.not", tamp);

printf ("Enter nam, of header file containing words (less .hdr):')
scant ('%s", temp -file) :
sprnff (training file. "%a.hdr", temp file)

printf ("Enter name of output Koh net file [lose. net):)
scamt r%*-, tempfile)
sprintf (nskfile, "%a.net", tenipjie);
sprintf (temp. "%9-mac", temp file)

fnet = fopen (netilie, 'Yri;
fscanf (tnet."%d %d %d", &ysize, &xsize, &number -inputs);
for (r = 0; r < ysize; r+ +) (

for (c= 0 ; c < xsize ; c+ +){
for (i = 0 ; i < number -inputs; ii- +){

fscantf (fnet," %C", &map[rj (cji ()

fcboee (fnet)

read tm file 0;

fmask = fopen (temp, 'Y")
for (r = 0; r < ysize; r+ +){

for (c =0; c < xsize ; c+ +){
fsant (fmnask,'%d", &maskjr] [cj)

telose (fmaslQ,

flog = fopen ("temp.Iog",');
fprintf (flog, "'TWOPICS: %a\n", name trj)
fprintf (flog, "-> %s -> %9 ->\n", first nt file, net file);
fpnintf (flog, "Size is %d by %d nodes\n", ;size, ysie0);

printi ("\nExpect %d calculations.\n", num words) ;
fpnintf (flog, "Expect %d caiculations.\n". num words);
prmntf ('\nReading word: ') ;
for (r = 0 ; r < num-words ; r + +){

printf ('%d ",r);

B-119

Appendi B: Computer Programs twopice

getin 0 ;
for (c = 0 ; c < number inputs; c ++)4

innputfrjjc][0J = Iocation~c)[01
innput~rI[c)(1) = locationflc][lJ

for (r =0; r < yeize; r+ -s)4
for IC= 0; c < xsaze c+ +) f

k = c + r *xeize;
print? (VINode %3d : word # %3d, diet %i

k, boc, node-diet)
print? (%" word number[iocfl
fprintf (flog, 'InNode %3d : word # %3d, diet = l

k, loc, node -diet);
tprintt (flog, "(%e)", word number[bocl);

printf (\nWalculations flnished.\nl
tclose (flog)

dtw (template, utterance, t length, u length, ave dist)
int tomplate[2001 (21, utterance(2001[2];
imt t length, u length;
double ' ave-divt;

float back path[21(2001;
int b..p[2][200J;
int r, c;
mnt ptr, bjtr;
float dl, d2, d3, diet;

diet = 0.;
b-ptr =1 ;
bp[OJ(0J = 1;
for (r = 1 ;r < t -length ; r + +)

bpOllr] = b p(011r-1I + I;
for (r = 0; r < t length; r+ +) {

beck path[0J[r] (diet + = bb'
abs(utterance[0][(01 - template~r] (01) +-
abs(utterance[O](1] - templater](11)))

for (c I 1 c < u length: c ++){
if (bptr = =0){

bptr =

ptr = 0;

ele(
bptr =0;

ptr =1

for (r =0. r < t length ; r+ +){
diet a ba(utterance[c][0] - template[r][0]) +

abo(utterance(cJ (1J - template[rJ [11)
it (r 0)(

back path~ptrl[r] = backpathjbptr)r] +
(a * diet) ;

b~plptrl(r] = b..p~b ptrir + 1I

B- 120

Appsndbi 8: Computer Programns twopice

di = backpath(bjptrJ(r-1J + diet,
d2= back~path~ptr)Jr-1) + (bb *diet),

d3 = backpath[bjptr(r) + (a*diet);

backpathptrJfrJ =d2
b.pfprllrI = b..pWprlr-1] + 1;
I

els if (d3 <= d2 && d3 <d1) f
bsck~pah~ptrJfrJ = W3
b~p[ptrl[rI b..p[bptr)[r) + 1;

beck pathiptrll = dl;
bplptrl(rj bp(bptrlr-li + I;

*ave-diat =backpath(ptr](tjngth-1J / b~pfptr][t length-I);

These routine, support TWOPICA.CIEXE in finding the closest digit
to each node in a second Kohonen net.

Inputs are 100 point scalar (1-225) trajectories filled with
trailing O's.

The distance routine in DTW(maskallengthfl).

G. Barmors25 Aug 88

include math
include stdio
includ, stat

extern double input[2251 P input nodes '
extern doubl, gain ;

extern it closest[21 P' closest node .
extem mnt neigh(21 ; I' neighbor *i
extern mnt xsize, ysize; 1 Size of array '
extern mt number -inputs
exter n t train discrete ;
extern char training file[30];
extern char first net file(301;

int number discrete.;
mnt word-counter;
mnt num words;
char word number[200](15J
mnt length(2001 ;

mnt fysize, f-xsize, f number inputs
nl I map[201[20][1B);

B-121

Appendix B: Computer Program twopice

mlt location(20001[2j;
extem int map20I(20llI0I[2j;
extern 60og map(2020I0]M(;

reed trn file 0

FILE V, *tnri
int i. r, c, k, temp.

f = open (training file, r'): :
faa ' f.%d", &num kword.),

for QI = 0 ; 1 < num word., Ii+ 4.)
facant if.t '%.", word number[iJ)

fcloe (tI ;
word-counter = 0;

fnet = foperi (first net file, "r')
fecagnt (fn.t, "%d %d %d", &fysize, &f xsze, &fnumber-inputs)
for (r =0; r < fjruize ; r+ 4-) (

for (C = 0 ;c < f xeize ; C+ +){
for (i = 0 ; i -c f number inputs ; i + +){

facanf (oet." 5;f. &f map(r] Cc][iI)

felose (fnet)

for (r 0 ; r < ysize; r++4){
for (c 0; c < xeize; C++){

for (i 0 0; i < number-inputsa: i ++){
temp = (int) (mapir)(c](il 226.0 - 1.0);
k =temp % f-xslze ;
mapo[r)[c)[iJ[1J = (temp.- k) I fxaize
map~[r][c)[i][0) = k

getin 0

6 (word counter =num words)
word-counter = 0;

read-word (word counter)
word counter + +;

get md in 0

int
double maxrarid = pow (2.0, 31.)-10
int pointer;

pointer = floor ((rendo * (num words - .0001) / max-rand));
read-word (pointer);

read-word (pointer)
mnt pointer;

B- 122

Appendix 8: Computer Program twopicS

Ind flog, r, c, 1.j, k
double in(161, di, dZ d3, d4, d5;
rost slement ;

int oc2(2000)[2). locrf2000J[21;
FILE tmnd ;
int sound, point, x[51, y(5J;
int maxypts;
double max;

fend =fopen (word number~pointeij, 'r)
sound = 0;
I =0 ;
flog = 0;
while (flag 1 = 1){

fecant (fsnd. '"W*, &element)
if (feotnd) 1 0)

flag = 1I
else ff (i > 99)

flag = 1
else(

ini) = (double) element;

il ((i= 15) && (flag ==0)){
Lmindist (1 map, in, &Ioc2[sound][0);
i =0 ;
sound++;

felose (fend)
for (i =0; i < sound; i++t){

locafi)(01 = 10c2fi](0);
loc3fi)(1] = loc2[iJ(I;

maxipta sound;

..Trajectory Reduction..

for (i = 0; i < i;i++) {
Iocationfi)(01 = 1oc2f i)0I;
Iocationfi][1) = Ioc2fi](11J
I

lengthipointerl = i
for (i= i < 2000 ; i+ +)

Iocation(i)[1) = (location~i][0] 0)

I-mindist (fmap, inp, close)
double inp(ISI;
int closp[2J
float ftmap[20)[2011161,

double diet ;
double minimum = 99.9.

for (r = 0; r < fjysize; r+ +){
for (c = 0 ; c < I xelze; c+ +)

diet = 0.0;

B- 123

Appendbc 8: Computer Progrwms twopice

f" (i = 0 ; i < f number inputs ; i + +)
diet + = pow (inplil - t map(r](cli, 2.0)

if (diet < minimum) {
minimum = diet;
cloe(0 = C;
clo..(IJ = r;

B- 124

Appendix B: Computer Programs outdaM4

$ link outdat4,optionlfile/opt

******************************* outdat4.c *

This routine creates a *,dat file containing stored trajectories
to train second Kohonen note.

Trajactonries are 100 x-y pairs filled with trailing -I's.

Capt Gary L armors, 2 Sep 88
'/

include math
include stdio
include time

float map[20][20 [2251 ; / output nodese/
double input[225] ; I' input nodes "/

int xsize, ysize ;/P Size of array '/
int number inputs;

char training file(30], net file[30], firstnet file(301
char temp tile[15];
char netname[15]1;
double innput[100][100] I* input vectors '/
int number discrete
int word counter,
int num words;
char wordnumber[1O0][15]
int t ysize, t xsize, tnumber inputs;
float f-map[20](20][16];
int location[2000][2];

mindist (map, inp, cloee)
double inp(225]
int close[2;
float map[201[201[225]

{
int r,c,i
double diet ;
double minimum = 9.9e31

for (r =0; r < ysize; r+ +-) (
for (c =0; c < xsize; c+ +){

diet = 0.0;
for (i = 0; i < number-inputs ;i++)

diet + = pow (inp[ij - map(r][c](i], 2.0)
if (diet < minimum) {

minimum = dist;
closefo] = c;
closefi] = r;
}

}

userinp 0
{ 12

B- 125

Appendix 8: Computer Program outdaM

mnt line;
int
struct tm tlocaltimeO, *time;
int *bintim;

do{
printf ("OUTDAT4: Prepare training data (x,y], second kohonen... \n\n"')

prnt ("Enter name of header file containing words (lees .hdr):"
scant("a" tempjfle):
sprintf (training file, '%a.hdr", temp jfile)

number-inputs = 100;

printi ("Enter name of pre-proceesr Kohonen net tile (lees net]:)

scant ('%a'*, net name) ;
sprntf(firtnet-file, "%s. net", net name):

printf ("Enter name of data file to create [lo*e .dat]:)
scant "%" net-name) ;
sprintf (net-file, "%a.dat", not-name);

printt("Ready to begin? (yin)') ;
while((& getc:(stdin)) c '~=\n' IIC==

}while (c = 'y')

maino

extern unsigned _stklen;
atien = 8192:

userinp 0 ; /* Get input values '
prnt ("\nil;
read tmn file 0;
printf ("\n.DAT file: %a saved!\n". net-file):

read trn file 0

FILE 'tf, *fnet;
Wil j, ir, c;

if = fopen (training fle, "r")
fscanf (if. '%d", &mum-words);
for 0i = 0 : i < num-word ;i + +)

fscanf (if, '%s", word numberfi));,
McOSS (M ;

Mnet = fopen (first net tile, "r')
fscanf (fnet%d %d1 %d". &tysize, &f-xsize, &f-number inputs)
for (r = 0: r < ftysize : r+ +) j

for (c 0; c < f xsize ; c+)
for (i = 0; i < f number inputs ; i + +){

fscanl! (fnet," %f", &f-mapjr][c][i])

fcloee (tnet)

B- 126

Apsd6: Computer Programs Outdat4

Met = fopen (net tile. W);
"fri Ieidn", num words);

for (i - 0; 1 < num-words ; i+ +e){
prinff("%d'*,
read word (1);
for (10 ; i < number inputs; i-s+ +s){

Wirndt, iet d %dfn",
IocatbonIIO], location(i),

fOOsD (fIat)

read word (pointer)
mnt pointer;

int ~flag, r, c, i, j, It
double in[16), di, d2, dW, d4, d5;
float element;

mnt loc2[2000)j2), loc3[2000J[2J,
FILE *fand ;
mnt sound, point, x[5J, yf5J;
int max-pts;
double max;

fend = fopen (word number~pomnter], 'Y):
sound = 0;
i =0;
flag = 0;
while (flag 1= 1){

fscanf (tsnd, "%F', &elemnnt);
if (feof (fsnd) i =0)

flag = I;
else It (i > 99)

flag = 1;
ohme{

infi] (double) element;

If ((i ==15) && (flag ==0)) 1
timndist (1 map. in. &boc2[sound][O0D)

sound++s-

fda.. (land)
for (i = 0; i < sound; i-i-){

boc3ji][0J = loc2[i)[0];
Ioc3[ijjl) = loc2li[fll

mva-pts = sound;

..Trajectory Reduction..

for QI = 0; 1 < j ; i--s.) (

locationji)(1) =boc2[i][I);

B- 127

APPendix 8: Compter ProgrMMO outdat4

for I; i i< number Inft, i)
loctio(Q1(0 = (Iocetloni][1) -1);

f-mndist O(Imap, inp, clos)
double inp(16J;
rnt cloee(21

flost tmap[~J20J0[16J;

mnt r, Ci:
double diet ;
double minimum =99M9.9;

for (r =0; r < fysize ; ri-i-){
for (c =0; c f xeize ; c+ +){

diet 6 .0;
for (i =0; 1 < t number inputs i +i i-)

diet + = pow (inp(i] - f..mapirl (c] (1], 2.0)
if (die < minimum) f

minimum = diet;
cloeelOJ= C;
closetli = r

B-I 128

Appendki B: Compeder Program twobs4

.*....*.*.....*.*.*.twobes4.c ... **..,t*,.,O..*

Routine to train a second Kohonen ne using stored tralectorie
in a '.da file (created with OUTDAT4.EX.

Traoecories are, 100 x-y pairs filled with trailing -1. This
version includes conscience.

Capt Gary Barrnore, 7 Sep 88

include math
include stdlo
include time

mnt conecence(201[201 V* records # times closst
mnt nodes; P' number of nodes '
double conac = 1.1, P conscience factor1
float map(20J(20](100](21 ; I' output nodes '
double input[1001(21 , P input nodes '
double gain, noise,
double mcount;
double percent ;
double xoff = 0.0;
double yoUf 0.0;

mnt closa"t2) ; P' closest: node1
it nelgh[2) ;1P neighbor *I
mnt nrangex, nrangey I' neighbor range .
mnt nfactorx, niactory P' neighbor factor ei
long count ; I' # of iterations */
it graph;I'u #between plows'
mnt seed ;
mnt maicneighx, maxneighy ;1P Starting area '
it minneighx, minneighy ;1P Final area
it xsize, ysize ;IP Size of array'
it number -inputs
it wrap~f~ a= 0;

int trainjfag, train-discrete

char training file[30J, net tile[301, first net file[301
char tempjfle[15j;
char net-name[Is]

struct curve{
imt type;
double maxgain;
double mingain
double midgain,
int midtime,
) gcurve;

struct fig f
imt md-in,
I flag;

extern int word counter
extemn double innput[1O0j[100J(2],
int L-xsize, fjf size;

init (map)

B-1 29

Appendix B1: Computier Prograins twobs*4

#0od map1201 120)100112);

mnt r, C,1;
flog max-rand = pow(2.O, 31.0) - 1.0;

nodes -ysize * xslze ;
for (r =0 ; r < ysiz*; r+ +){

for (c 0; c < xsizs,- c+ +)
conscienr10[c) =0;
for QI = 0 ; i < number inputs; i ++){

mapir)[c[i[5J = fxsize*(rand 0 / maxrand
m~p[rlcJ~iJ[1) = f..ysize*(rand 0 / mwaxrand)

mindiet (inp, clowe its)
double inp[100][21;
mnt cloee[21
long its;

int r, c, i;
double diet ;
double minimum = 9.99.31;

for (r 0; r < ysize: r++) {
for (c =0; c < xsiz ; C+ +){

diet =0.0;
Nf (conscienceirl (c] < consc its Inodes){

for (i = 0 ; i < number inputs ; i ++
diet + =fas(inp[i] [0) -msp(r [c il 101) +
fabs(inp[ifll3-mapirlc][i)[1J);

if (diet < minimum) {
minimum = diet;
clossf0J =c;
close(1I = r;

conscience[closefifl~close0J] + = 1;

userinp 0

int line;
mnt c;

do{
Printf ("TWOBAS4: Train 2nd Koh with 2-D trajectonies ... nWWI
Ixsdzs = (fysize = 15);

printf ("Enter conscience factor (> 1.0): [float])
scanf("t" &conac),
it (conac < 1.0)

conec = 1.5,

printf("Enter size 'm n' (for an m x n) of array =?(mt intj I;
scant ('%d %d", &ysiz., &xsize) ;

B- 130

Appendix B:' Computer Program twoba4

it (yelze < 2)
ysize = 2;

else I (yell. > 2D
yaieo = 20

I cXazO < 2)
xalze = 2;

else if (xelze > 20)
xeaze = 20;

prnt ("Do you want 0) sequential trainingM\');
printf C" 1) randomized training? '
scant ("%d", &fag.mdjin);

train discrete = I1;
number-lnput. = 100;

printf(Enter name of training file [lese .AtM ':
scant ('%a", net name);
sprintf (trainingjille, "%a.dat", nst-nam.);

printf ("Envter name of net file to create (ieae net]:1
scant ('%e', net name);
aprintf (net file, '%*.nek", net-name);

printi ("Number of iterations = ? (Intl)

scant ("%ld", &counvt) ;
it (count < = 10 11 count > 200000)

count = 100;
mcount = (double) count;

printi ("Number of Iterations between status messages l(it])

scant ("%d". &graph) ;
if (graph < 1 11 graph > count)

graph = 10;

ingain 0 ;

printi ("Starting size of neighborhoods 'yn xn' = ? [int int])

scant ("%d %d", &maxneighy, &maxneighx);
if (maxneighx < 2 11 maxneighx > xsize - 1)

maxneighx =2 ;
it (maxneighy < 2 11 maxneighy > yssze - 1)

maxneighy = 2;

printi ("Final size of neighborhoods 'yn xn = ? [int int]);
scant ('"%d %d", &minneighy, &minneighx);
it (minneighx < 1 11 minneighx > maxneighx)

minneighx = 1 ;
iN (minneighy < 1 I I minneighy > maxneighy)

minneighy 1 I;

printf ("Initial seed for random # generator l int)*
scant ('%d", &seed)
if (seed = =0) {

seed = 138;
1

srand (eed

wrsp~flag = 0,

B- 131

Appendkx B: Compter Programs twobas4

printt("Ready to begin? (yin)")
while((& gtc (tdin))==jc =~Ic=~

}whie (c 1=y)

ifigan 0

mnt line;

prnhf('For gain enter 0) UNEAR 1) SIOMOIDAL, 2) PIECIEWISE UNEAR:)
acan ("%d", &gcurvo-type) ;

Nt(ocuwve.type ==0 11 gcurv.type=1)
Printff ("Maximum gain = ? [float]);
wcant ("%E", &gcwve.maxgamn) ;
if (gcuuve.mAxgaan > = 1 .0 11I gcurv..maxgain <= 0,0)

gcurve.maxgain = .99;

prinit ("Minimum gain =? [float]");
scant ("%E", &gculve.mingain);
if (gcurv..mingain <C = 0.0 IIgcurve~mingain > =1.0)

gcuuve.migain =0.0;

prnt ("First segment starting gain = ?"[float]);
scant ("%E", &gcurve.maxgain) ;
it (gcurve.maxgain > = 1.0 11 gcurve maxgaln < 0.0)

gcufve.maxgain = .99;

prinif ("Second segment starting gain ="?[float]")
scant ('"%E", &gcurve.midgain) ;
if (gcurve.midgain < = 0.0 1 gcuive.midgain > = 1.0)

gcurva.midgain =0.0;

printf ("Second segment starting iteration = ? [float]")I
scant ("%d", &gcurve.midtime);
if (gcurve.midtime < = 0 Iigcurve.midtime > count)

gcurv. midtims count / 2,

gcufve.mingain = 0.0;

getgain @on

log
If (gcurve.type = = 0)

gain =(percent *(gcufve.maxgain - gcurve.mingain)) +
gcurve.mingain;

else if (gcurve.type = = 1)
gain = 0.9 *(gcurve.maxgain - gcurve.mingain) / (1.0 + exp (i -

* count / 2.0)) + .1;
else(

it (i < gcurve.midtime)
gain = gcurve.maxgan e(1.0 - (double) i Igcurve midtime)

a"s
gain = gcurve.midgein *(1.0 - (double) i Icount);

B- 132

AppendlK 8: Computer Program twobasS

ewe net 0

mnt r, c, i,x. y;
FILE Ofnet ;
fle remx rey

fnst = topen(nstfile.'W");
Wpntf (tnet"%d %d %d", ysiz., xsize, number-inputs)
for (r =0 ; r < yslze - r+ +) f

for (c= 0; c < xlze; c+ +){
for (1 0: ; number inputs ; i ++){

x = rnap(r]fc]i](0)
rem x = map(r]fcJWij(0 - X;
y = Map(rJ(cJ(i](11J
rerny = map(r](c](i)[1) y
if (rsm-x > 0.49)

else it (remx < -0.48)

if (rernj, > 0.49)

else III (rem~y < -0.49)

N (X < -1)

else if (x > = txsize)
x = Ixsize - 1

i(y <-1)
y .1;

else if (y > =f-jsize)

y =fjsize - 1;
fprintl (fnet," %d %d', x, y)

Walse (Inet),

long
char S11(101
imt wsid=1I
irit cleow-flag=1
FILE Vtf;
extern unsigned -stklen;

_stklsn = 8192;
userinp, 0 /- Got3 input values 'I/
nfactorx = maxneighx - minneighx + 1;
nfactory = maxneighy -minneighy + 1I
init (map) :1' Initialize weights '
read tm -file 0 ;

for (i =1 ; i < = count; i+ +){
if 0I % graph = = 0){

print! ("TWOBAS4: gain =%f, yrarige =%d,

gain, nrangey) ;
printf ('xrsnge = %d, iteration # %d", nrangex~i);

B- 133

Appmnda 8: Computer Prograims twobas4

printi C' (of %kQ\n", count);
it (access (net tile.0) = =0)

delste (net file)
svv'_net 0;
I

percen = (mcount - 1) Imeouvt;
geegain (I);
it (klg.md ~n ==0)

ele getin 0 ;

getrndin 0;
mindist (&innput~word countrj(OJ[0J, cloet, i);
it (gcurvs.typ. I = 2) f

nrangex = minneighx + percent * nfactoro;
nrarngs = minneighy + percnt nfactory;

else if (I < gcurvs.midtim.e) (
nrangex = minneighx + nfactorx
((double) (gcuive.midtime. -Q) / gcurve.midtime;
nrangey = minneighy + ntactory
((double) (gcurv.midtirne - Q) gcurva.midtim.,e

nrangex = minneighx;
nrangey = minneighy;
I

nsegh[0I nrangex;
neigh[1J nrangsx;
weightern (map);

save-net 0;
printt (\nNet file: %a savedl\n", net file);

Thee, routines support TWOBAS4.CIEXE in training a second
Kotionen neural net. Inputs are stored in a 'dAt file.

Inputs are 100 x-y pair traoectories filled with trailing -1's.

G. BARMORE25 AUG88e

include math
include stdio
*include stat

double innpt(100](1001[2j I' input vectors *1

extem double input(100 (21 ; P input nodes '
extern double gain ;

extem int cloeee(21 ; I' closest node '
extem mnt neiglfl21 ; 1' neighbor *1
extern int xsize, ysize ; P. Size of array '
extern int number -inputs
extem int train discrete
extern char training. fIle301;

B- 134

Appenk 8: Computer Program twobae4

GUctM Char AMrst not -file(30J;

int number discrete.:
ii W word-c~untor;
int num words;
char word numnber(100J(15J:

reed trn-file 0

FILE *11, *fnet;
it 1. ,r, c,,y;

fnst = fopei (training file, 'r) ;
facarnf t. "Ud", &num ~words):
for (! = 0; i< num -words ; i+ 1-){

for (I=0; j < number inputs; i++)
fscanf (fnet, '%d %d", Ux, &y);
innputfilb][01 x
innputfQ[iW = y;

Iclose (mnet)
word counter =-1;

getin 0

int

word counter+ +;
if (wordcounter = = num words)

word counter = 0;

got md !in 0

mnt i,;
double max -rand =pow (2.0, 31.0) - 1.0;
int pointer;

pointer =floor ((rando* (num words -,0001) / max rand)).

weinghtemn (map)
ft map(201(20J(100](21:

mnt nrighl, nieft, nup, ndown, r, c, i

if (neigh[OJ > 0&& neigh(1) > 0) (
nright = closet[Ol + neigh[0] - 1;
if (nigt > = xsize)

nrnght = xeize - 1;
nMelt =closest0J - neigh(Ol + 1;
it (nief < 0)

nleft = 0;
nup =closeetfi - neigh(l] + 1;
if (nup < 0)

nup = 0;
ndown =closesetiJ + neigh(l) - 1;
If (ndown > = ysize)

B- 135

Appendix B: Computer Program.s twobe4

ndlown =ysizs 1;I

milght = cWoseet0I;
nWef closet[oJ
nup ckweetilJ;
ndown =cloeest(1J;

for (r =nup; r -c= ndown ;r+ +){
for (c nieft; c < = nright; c+ +)

for (1 0, ; numbor inputs; i ++){
mapr)Lc]i](5[0 + = gain*

(innput~word-countri](OI - map(r[c](i][0I);
map~r][cE1l[1I + = gain*

(innputtword-counter(i)[1I - map(r](ci][11)

B- 136

Appmndix B: Computler Programs twornask5

$ link twom&ek,opbonfleopt

twornaaic

Routine to create *.mek file from *.net file where .mak file
ie aray of integers maak[20[1201 corresponding to nodes of *.net
file.

Each integer is the number of weights which are not -1.
Trectories (node weights) are 100 x-y pairs filled with
trailing -1's.

include math
include stdio

int mask[201[20;,
float map(20](20](100[2] ; /* output nodes '/
double nodediet ;

int xsize, ysize ; /P Size of array '1
int number-inputs ;

char training.file(30], temp_file(30], first net file[30;
char net file[301;

nonrzero (map)
flost map[201[201[100][21;

{
int r, c, i, number, x, y;

for (r =; r < ysize; r++) { i
for (c = 0; c < xsize c++) {

number = number inputls+ 1
y = (x = -1);
while ((y == -1) && (x -1) 8 (number > 1)){

number-- ;
x = map(r][c][number-11[0)
y = map(ri[cl[number-1111;
print ('"%2d %2d " x, y);

I
printf (in * "*" %d ""'\n, number)
masklr[c] = number;

main 0
{

printf ("\nTWOMASK4 (Creates net mask for 2-D traectornes\n\n) .;
findmask 0;

findmak 0
{

int rc, i, x,y;
FILE 'fnet;

printl ("Enter name of output Koh net-file [less. net)
* scant ("%s", tempfile)

B-137

6 -

AppendixB: Computer Program twomaalc5

aprinti (netjlk, '%acnet", temp ile)
aprinit (trainingjfie. "%asmok', temp file)

fnet = fopen (netjtile, 'r").
fwAWa~ "f~,%d %d %d", &ysize, &xsize, &number-inputs),
for (r =0; r < ysize; r+ +1) {

for (c = 0; c < xsize; c++){
for (i 0; < number-inputs; j+ +){

facard (tnet," %d %d", U, &y);
mapir]~[lill = X;
maprlcIlil(I] = Y;

felcee (fwiet)
nonzero (map);
save mask 0;

save mask 0

FILE 'fmask
int r, c;

fmamk = foperi (training file, "w");
for (r = 0 ; r < ysize ; r+ +) {

for (c =0; c < xeize ;c++)
fprintf (frnaak, '%d mask[r)[c))

fcloee (fmask)

B- 138

Appendix 6: Computer Programs twopic4C

$ link twopc~nplonpriter,mat3,wt4,optlonsileiopt

twopic4c.c
This routine is used to show graphically those nodes which 'light
up' using Euclidean distance when the training ad of inputs is
applied to a second Kohonen not.

Inputs are 100 x-y pair trojectoriee filled with trailing -l's.

include math
include stdlo
* include time

#lOdt map[20)[20][100](21 ;1/ output nodes1
double input[100][2] , I' input nodes/
double gain, noise;
double mcount;
double percent ;
double xoff = 0.0;
double yoff = 0.0;
double node-dist;

mnt closest[2J /* closest nodesh
mnt neigh[2) : P neighbor *I
mnt nrangex, nrangey /*I neighbor range h

mnt nfectorx, nfactory P I neighbor factorI
long count ; I # of iterations */
mnt graph /0 # between plots1
int seed ;
tnt maxneighx, maxneighy ; /* Starting area h

int minneighx, minneighy ; /4 Final ae
int xeize, ysize ; 1' Size of array *1
int number -inputs
int wrapjflag = 0;
int train-flag, train-discrete;

char trainingjtle[301, temp ile(301, first netjile[301
char net fileol0

struct curve{
imt type;
double maxgain
double mingain;
double midgain;
int midtime;
I gcurve:

extern int xyG ; 1' array holding x,y/
extern double xdel, ydel ;
extern double xlow, xup, ylow, yup;
extern mt num words;
extem char word number[1O0l(151;

mindist (map, inp, close)
double inp(100J(21;
int close(21
float map(201(20](10 0 1(21;

mnt r, c, i;

B- 139

Appendix B: Comhputer Programse twopic4c

double dd
double minimum = 9.98.31;

for (r =0; r < ysize ; r+ +) {
for (c =0; c < xelze C+ c+){

didt = 0.0;
for (I =0 ; I< number-inputs;I i++)

diet + = fabs(inpi]lO] - map~r][clh][OJ) +
fabe(inpliJ1J - rntapirlicfli[1J)D

If (diet < minimum) I
minimum = diet;
cloe[0 = C;
closeji] = r

node-diet =minimum;

main 0

mnt c;

printf ('\nTWOPIC4c (Plot Words for 2-0 Reduced Queued TraD ... \n');
map speech 0;

map speech 0

mnt r, c, i, jk, xy;
char sub tKIO 60], temp(301;
char nanetrj(201;
mnt loc[125](21j;
FILE tfnet. 'flog;
imt sound;
short length;

printf ("\nEnter name of pre-processor Koh net-file [Is". net])
scanf (%,temp) ;
sprintf (first net file, '%a.net", tamp);

printf ("Enter name of header file containing words (loe hdr):)
scanf("s' temp file);
sprintf (trajinngjfile, "%.hdr', temp file)

printi ("Enter name of output Koh net-file [lesn net]:'),
scanf ('%a", tempJfile)
sprintf (not-file, %*.net", tempJie);

read tm file 0 ;

Mnet = fopen (net-file, 'r')
fscarnf (fnet,%d %d %d", &ysize, &xsize, &number-inputs)
for (r =0; r < ysize ; r+ +) {

for (c =0; c < xsize ; C++)
for (I = 0 ; i < number -inputs, i-+ +){

fecant Pant.' %d %d", Ux. &y).
map[r)[c)fi)[OJ X=
map~r)[c)[i][lJ =y

B- 140

Appendix B: Computer Program twopricc

fclose (Wrso)

sp"ii (subtitle. '%a -> %e ->". first net file, net-file);
spri (namrejI ts, %..sf., tamp);

flog = fopen ("temp.log"."'I ;
fprna (flog. "1WOPlC4c: %a", name ~trD:

graph_ test (traningfile) -
length = (short) strien (sub-title):
draw grkl1 (ysize, xsuzs, subjitle, length);

prinif (\knExpec %d cahculationeAn", num words),
for (sound = 0 ; sound < num words sound + 4-){

getin 0 ;
mindist (map, input, &loc(sound)(0j);
prnt ("%d: (%d,%dl diet =%4e\n",

sound, loc[soundlO], loc(sound](11, node-diet)
tprintt (flog, "%d :[%d,%d] dist = %le\n",

sound, loclsound] [03, loclsound][1J, node-diet)
I

printf ('nWalculatlons finished\n");
fcloee (flog)
draw speech map (sound, loc);
scanf ("%e',tenip);
clipo"f 0
grapholf 0;

graph..est (name)
char nanie(30j;

char tftle[79J. labelx(791,
float xloc(5J = (0, 639.0. 6390 0.0, 0.0
float yloc(53 = (349.0 3490.00,0.0, 349.0}
mnt points 5;
mnt wsid 1 ;
int clear-nag = 1I
short length ;

sprintf(title. "TWOPIC4c: Kohonen TWO NETS - %s", name):
sprintt(labetx,"");
graphon 0 ;
gks~clear-ws (&ws id. &clear flag);
gks$potyline (&points, xboc, ylo)
prepcolmat (ysize, xsize) ;
length = (short) strien (title);
ouftitle (title, length) ;
length = (short) strien (labetK);
outlebeix (labeix, length)
clipon 0

These routines support TWOPIC4C.C/EXE in finding which nods lights
up in a second Ir-honen not when a training digit is applied.

B- 141

AppWnK& 8: ComPuter Programs lwopic4c

Inpts are 100 x-y pair trajectories filled with trailing -I'$.
Euchieen distance is used in finding which node lights up.

Include meth
Include stdo
0 Include sW

were double inputJ1OO)f2) P input nodes*.
axteom double gain ;

extern It closeuE2J ; P closest nods ,
Odomern t nighfl2J ; /* neighbor1
externi It)C51ze, yaize; P Size at array *1
extern mt number -inputs
Wotrn int train-discrete;
etern char troining..flle(30J;
extern char first net filelsol;

mnt number discretes:
mnt word co unter
mnt numwords;,
char word..numberl 001(151

int tfysize. I xsize, f number-inputs
float Lmap[21(201116-1

rad im ftle 0

ie 'if,'fc;

ff = fopen (trainingjfle, "r),
fsc&Ar (tf, "U" &num words);
for (I -0 ; i < num words ; i ++)

fecoMi (tf, '%a", word number(ifl,
Iclose Mt1;
word..countsr = 0;

t = fopen (first-netfile. Y
fecanf (fnet.'%d %d %d", &f..yaize, &f xsize, &fnumberminputs);
for (r =0 ; r -c fysize ; r+ +){

for (c = 0; c < I xs~ize ; c ++)
for (i = 0 ; i < t number inputs : i + +)

Wsnf (tnst," %f., &f map[r][c)(i])

fcloee (fwnet);

getiri 0

if (word~counter = num words)
word counter =0;

read-word (word counter
word counter + +;

B- 142

Appendix 13: Computer Programs twopic4c

gwjmdin 0

hIt I;
double MOVxrnd =pow (2.0, 31.0) -1.0;
Int pointer;

Pointer =floor ((rondO * (nuni words.- 0001) / mnaxrand));
read word (pointer);

read-word (poi~.
hIt pointer;

in flag, r. c.1, j, k;
double in(I6J, dl, d, d3, d4l, d5;

it loc2[2000)(2). Ioc3[2000][21;
FILE *fend;
it sound, point, x[5), y(5];

imt fmiaxs.
double max;

tend =fopen (word number~pointerI, ',
sound = 0;
I= 0;

flag =0:
while (flag I= 1)

ftcant (fand, '"%f ', &.lament);
If (feof(fand) 1=0)

flag = 1'
else it (i > 99)

flag = 1;

inji) = (double) element;

dt((i == 15) && (flag == 0)){
fmindist C mop, in, &Ioc2[sourid](101)

= 0;
sound+ +

tclose (fend);
for (I = 0; 1< sound; i+1-){

loc3(i](01 = loc2(iJ(0J;
loc3tli(1) = Ioc2[i)(1I;

maxpts = sound;

.Trajectory Reduction..

d (J > =number -inputs)
i= number-inputs;

for (1 0; i< j;: i++) I
input(i][0J = Ioc2i[0I;
input~i)[i] = ioc2lijil1]

for (I i j~< number-inputs ; i ++){

B- 143

Appendix B: Computer Programrs twopic4c

inple[J[Oj = (inputllI -1.0);
)

double inp[16J;
int close[2);
foa LmspJ20)(2016);{
int r, c, 1;

double dist;
double minimum 9.9s31;

for (r 0; r < fjoze ; r+-) {
for (c 0; c < f xeize; c++) {

diet = 0.0;
for (i = 0; i < fnumber inputs; i+ +)

diet + = pow (inp[) - Lmapir}[c)[i], 2.0)
If (diet < minimum) f

minimum = diet;cloem(O] = ;l

clo(1] r;
B

}
tI

I1

B-144

APPendk B: Computer Program twoplcb

$ link twopicb,nwIib,optiona flieopt

I* ~~ twopic6bc

This routine finds the closedt digit (from a group ot digits) to
each node in a second Kohonsn not. In particulair, this routine
uses 100 x-y pair trajectories fiWe with trailing -Va.

For each node, the routine searches through the whole list for the
digit 'cloest to that node's weight. 'Closest' in this case
is found through a mini-DTW that uses both the node's maskead
length (without trailing -1 ') and the isngth of the trajectory
(also without -1Is).

da output includes the node number, distance to the digit
found closest, and the name of the .tin file of the digit.

include math
include stdio
include time

float mapL201[20]1100](21 : P output nodes *1
double input[1001[21 ;IP input nodes *1
double node-dlst ;

mnt cloesW12j ; Pclosest nodeI
mnt xsize, ysize ;IPSize of arayI
mnt number-inputs

char trainingle[30], teinp.ile[301, first net file(301
char net flle[30) ;

extern int num-words;
eret mask[20J [20];
mnt map21201E20)[100112];
float an = 0.75;
float bb =0.75;
extemn mt f-xsize, f-yeize;

extern int location[200L0J[2];
int innput(200J(1001[2J
extern iret length(2001 ;
extern char word number(200](151;

mindist (r, c, close)
int r, c;
mnt *close;

int sound;
double diet ;
double minimum = 9.99*31

for (sound = 0 ;sound < num words ;sound + +){
dtw (&map2(rllc] 0[0], &nputisound]loll0l, mask~r]lc],

length[sound), &diet);
If (diet < minimum) (

minimum = diet;
*close = sound;

B-145

Appendix 8: Computer Programs twopiceb

I
node-diet = minimum;

main 0

int c:

print? (t*nTWOPICSb (Closest word for each node: 100 wts/2-O) .. Wn1)
map speech 0;

mapespeech 0

mnt r, c.1,j,cx. V;
char namrnpOJ3, tempE3Oj,
mnt too;
FILE 'fnet, *fioa, *fmask;

print? ("\nEnter name of pre-proceasor Koh net-tile [les net]:")
wcad ('%a*, tamp) ;
sprint? (first neilso ~d, tamp);

print? ("Enter name of header file containing words (lfe .hdr):')
scanm ('%a", temp-flle) ;
sprint? (training file, '%e.hdr', tempjtle);

print? ("Enter name of output Koh net-file [less net]:1
Scam ('%a", tempjfile)
sprint? (net file, "%s. net", temp file)
sprint? (tamp, '%s.mns", temnpjfle)

Meat = fopon (not-file, 'rY);
facant (fnat,"%d %d %d", &ysize, &xsize. &number-inputs),
for (r = 0; r c ysize; r+ +) {

for (c =0; c < xsize; c+ +){
for (i = 0 ; i -c number-inputs ;,,+ +){

fsc&Mt (nst" %d %d", U, &y):
mWp[rflc)[i[O] X;
map~[rllc][iflh] =y;

fclose (fmet);

read tn file 0;

fmasc = topen (temnp. ')
for (r = 0; r < ysize; rn-, +){

for (c =0 ;c < xsize; C++)
facan? (fmasl,"%d", &mask[rflc);

fcloee (fmask);

flog = fopen ("temnp-log"'"w");
fprintf (flog, "TWOPICSb:\n') ;
fprint? (flog, "-> %s -> %9 ->\n", first net file, net file);
fprintf (flog, 'Size is %d by %d noden, xsize, ysize);

B- 146

Appendix B: Computer Program* twopieft

pdnl ('\nExpect %d calcuietione\n". num-words),
fpui" (flog. "Expect %d calculation..\n", num words);
prifW ('nReding word:")
for (r =0; r < numn words; r+ +){

prlfo(%d"..r);
goti 0 ;
for (c = 0; c <number-inputs; c+ +)

innput[r][cllOI = locAtion[c)llOI
ininputirlic](1) =location[c][13;

print (in")
for (r 0;* r < yeize ; r++){

for (c = 0; c < xeize ; c++){
mindist (r, c, WIoc);
k =c + r *xsiz.;
prin? (\nNods %3d : word # %3d. diet %4

k. loc. node -diet);
print? ("(%.) ", word numberfloci);
fprintf (flog, "\nNode %3d :word # %3d, dialt %les

k. loc, node -dist):;
fprintf (flog, "(%say, word numbwr~locfl

pnintf ("\naiculations finished An')
fcloee (fog);

diw (template, utterance. t length, u length. ave-dist)
mnt tempbaie[200)[2], utterance[200][2];
mnt t length, u length;
double w;6e diet;

fla beck path[21(2001;
mnt bp(2][2001;
int r, c;
int ptr, b-ptr:
float dl, d,Mdit;

diet =0.0;
b -ptr =1:
b p01101 I 1
for (r = I ;r < tjlength ; r+ +)

bp0I(r] = b~.p[0J[r-11 + 1;
for (r = 0; r < t length; r+ +) (

backpath[j [r] = (diet + = bb
abs(utterance[0J0 - templte[r[0J) +
abs(utterance[OJ[1J - templater][1))))

for (c =1; c < u length ; c ++)
if (b..ptr = =0) (

b-ptr = 1;
ptr = 0;

else{
b-ptr =0;
ptr =1

for (r =0 ; r < t length ;r+ 4.)4
diet = aba(utterancec](0J - tomplate(r](01) +

B-147

Appendbe 8: Computer Programs twopicfb

ab~eFtrsnc)ctl - teimplate(r](1])

beckj~peh~ptr~rJ = beclcpath(bpr~rJ +
(am' diet);*

b..pbptr[rj= bp~b~ptr[r] +1I

dl = be kpth~bptrJ~r-1J +- diet;
d2 = beck.p~th(ptrJ(r-1J + (bb * diet);
d3 = beckjath(bj.prJfrJ +t (as * dat)
if(d2< = d3 &&d2 < dl)(

backpath(ptr(rj d2;
b~p(ptrj(r) = b...p~ptr](r-1) + 1
I

elee If (d3 < = d2 && d3 < d1){
beckpath(ptefl= d3;
b~pfptrlr] = bpkbptrflr] + I;

else(
back pathfptrflr) = di;
bp[ptr)[r] = b..pfbjtrjr-13 + 1

it (b~.pfptrj ft length-] 1) = 0)
lave dist =baclcpth(ptr][tlength-i] bpptrJ~t.length-Il;

elso
*ave dist =9.9&31;

These routines support TWOPICSS.C/EXE in finding a digit from a

specified set that is closest to each node in a second Kohonen net.

Inputs awe 100 x-y pair trajectories filled with trailing -1's.

0. Barmors25 Aug 86

include math
include stdio,
include stat

extern double input[100][2) ; I' input nodes '

extern double gain ;

exiom int clos"e[23 ; I' closest nodes'
extern mt neigh(21 ; P' neighbor 'I
extern it xsize, ysize ; P' Size of array '
exterri mt number -inputs
exter n t train-discrete ;
extern char trainingjflo[30I
extemv char first net file[30];

mnt number discretes;
int word counter
imt num words;

B-148

Appends B: CoMPuter Programs twopic8b

chakr word -.numbert200l[151;
it Ienth[2001;

int fyuize, f,.xetze. Lnumberjinpute,
4011A fmap[f2OJ2[16J;
ird location[2000J[2J ;
extem m map2[201[201[100)[2);
extern flod rnep12D1l2OJ1l0O1[2J;

read tinfile 0

FILE 'ti, 'mnet;
mnt i. r, c,k,temnp;

1:1 fopen (training file, "r0
fscant 01t. "Ud", &num-word.);
for (I = 0; i< num-words; i+

fscanf (if. "%e", word number(iq)
Ida.. (u)
word counter = 0;

Mnet =topen (first net ile, Yr);
tscant (tnetj%d %d %d", &fJys4z, &f xaize, &f numb*r inputs);
for (r =0; r < fysize; r+ +) {

for (c = 0; c < f-xeize;c+ +){
for (i = 0 ; i <f-number-inputs; i+ +){

fsant (triet,' W", &t mapir)[c]EiI)

Weoes (t1net)

getin 0

if (word-counter = num words)
word-counter = 0;

read word (word counter)
word counteri- +i

getjrnd-in 0

mt
double max -rand = pow (2.0, 31,0) - 1.0;
int pointer ;

pointer = floor ((rando * (num words -.0001) / max-rand));
read-word (pointer);

rew- word (pointer)
int pointer;

mnt Hiag, r, c, i,L jk
double 01f16), dl, d2, d3, d4., d5;
float element;

imt 101:2120001121, loc-3[20001[2),
FILE 'tend;

B- 149

Appendix 8: Compuiter Progrem. twopicfb

mnt sound. point, x[51, y[5];

double mau;

fend = topen (word numbr(poirnterI, 'r")
sound -0;

11"=0;

while (flag I= 1){
tecanf (fend, "V', &elefmrt);
If (feond) =0)

flag 1;I
else iN(> ge)

flog = 1

ini (double) element;

i+
if ((i = 15) && (flag ==0)){

Lmindist (f map, in, &Ioc2[sound] [0);

sound+ +

Mcoss (fend);
for Vi = 0; i< sound; i+-+){

loc3[iI(0I = 10c2li][0I;
loc3[i](1J = 10c2[iI(1I;

maxipts sound;

.Trajectory Reduction..

for (I = 0: i < j;: i+ +) {
locationjiJ [0] loc2[i][0);
locationi)[1J = loc2fi)[11J

length(pointerJ = j;
for (I = j; 1 < 2000; i+

location(i](11 = (location(iJ[01 -1)

fmindist (f map, inp, close)
double inpIls];
mnt cloee[2]
float 1tmap20[20[16]

it r, Ci:
double diet;
double minimum =99999,

for (r =0; r < fjysize ; r+ +){
for (C = 0; c f xsiZe C+ +){

diet 0.0,
for (i = 0 ; i < fnumber inputs i +-i +)

diet + = pow (inpli - i mapil] jil, 2.0)
id (diet < minimum) {

minimum = diet;
close[0]
closell)=

B-150

Appendbc B: Comnputer Progrs twopic~b

B-1511

Appendbx 8: Computer Program.s twopk~b

S link twoplc~,nwn5blookup6,optlonsjile/opt

1* twopics.c

This routine finds the closest nods in a second Kohonen net (and
the digit assigned to it from twopic~b.c) to each digit in a set
of test diglts.deigits). In particular, this routine
uses 100 x-y pair trajectories filled with trailing -i's.

For each test digit, the routine seaches through every node in the
Kohonen net for the node 'closes to that digit. 'Closest' in this
case is found through a mini-m'W that uses both the node's masked
length (without trailing -I's) and the length of the trshecory
(also without -1 ').

Once the closes node is identified, the digit assigned to it
from twopicab is found by a look-up table (lookupS.c).

Data output includes the digit number (actually the place in the
test set that the digit resides at), distance to the node
found closest, and the name of the *tn file of the digit, and
the digit assigned to the closest node.

Thus, this is the end test of the second Kohonen net. Will
test digits light up a node assigned to the same class of digit'.

include math
include stdio
include time

float map[20][201[100][2J ; P output nodes '
double inputfioofl2) ;I' input nodes '
double node-dist ;

mnt xsize, ysize ; /' Size of array/
int number inputs;

char trainingjfle(301, temp fil(301, first net fill(301
char net felo[301

extern mt num words;
int masif2oJ[20J
int map2[201120)[100][2];
float s= 015;
float bb =0.75;
extern mnt fxsize, fysize;
extern mt length[2001 ;
extern it Iocation(20001[2J,

mindist (close)
int cloe21

double dist ;
double distance,
double minimum =9.99*31

double pl, p2;

for (r = 0; r < ysize ; r ++){

B- 152

AppendiK B: Computer Programs twopicb

for (c= 0; c < xeiz ; c+ +){
dtw (&mnap2[rlldllOjt0), location, maskir)[c),

length(OI, &dist);
if (diet < minimum) (

minimum =diet;
close(O] C;

node-diet minimum;

main 0

int c;

printf ("\nTWOPIC6b (DiW Words for 2-D Reduced Queued TraD... \n");
map-speech 0

map speech 0

int r, c,i, j, k,x, y;
char sub title(60J, temp[301;
char name etri(201
imt loc[21 ;
FILE 'fnet. *flog, *imasIk;
int sound;
short length;

print! ('\nEnter name of pre-processor Koh net-tile [less not]: 1
scant ('%s", temp) ;
eprintf (fir*_st eti, "%a.net", tamp);

printf ("Enter name of header file containing words (Ieee hdr):')
scant ('%e', tempfile);
sprintf (trainingjile, "%e.hdr", tempfile)

printf ("Enter name of output Koh net-lite [jissnetl:");
scant ("stempjle);
sprint! (net t ile, "%s.net", temp file)
sprintf (temp, "%s.mek", temp file)

Mnet = fopen (not file, 'rY);
f'scarf (tnet,'%d id %d", &ysize, &xsize, &number-inputs);
for (r =0 ; r < ysize; r+ +) f

for (c =0; c < xsize; c+ +){
for (I= 0~ ;i < number -inputs; i-+ +){

fscent (fnef,' %d %d", Ux, &y)
msp2(r(cJ(ijfOj = x;
map2[rjdlljll(=y

Mcoss (mnet)

read titn file 0;

fmask fopen (temp, 'in);

B-153

Appendt B: Computer Programs twopic6b

for (r = 0; r < ysiz.; r+ +){
for (C =0; C < xsize; c+ +){

facanf (fmask."%d", &mask[rllcD;

I
foo-eOak

flog = topen ("tr.pog"'Wi;
tprintf (flog, 'IWOPIC~b:\n'l);
11print (flog, "-> %a -> %6 ->\n", first nfe, net-file)
tpnt (flog, "Size is %d by %d nodes\n", xsize, Ysizs);

prnt (InExpoct %d calculstionsA.n", num word.) ;
tprintf (flog, "Expect %d calculations.\n", num words);
for (sound = 0; sound < num words sound+ + 4)(

getln 0 ;
mindist (bc);
It ioc(0! + loc~i] xsize;
printi (An%d: (%d,%d] dist Ve

sound, loc[01, bocflJ, nod.-dimt)
print digit (k) ;
fprltFd (flog, \1n%d : [%d,%dl diet =%I

sound, bocjO], Ioc[1], node dist);
lprint digit (k, flog);

printf ('Wnalculatione flnahed.\n');
fcioee (flog);

dtw (template, utterance, t length, ujeongth, ave-dist)
imt template(2001 [21, utterance[200][21;
int t-eigth, u - ength;
double 'ave-diet;

float back path[2)[2001;
mnt by(2J(2001;
int r, c:
int ptr, b-ptr;
float dl, d2, d3, diet;

diet = 0.0;
b-ptr = 1 ;
by[0][0J] = 1 ;
for (r = I r < t length ;r+i +)

bP[0I[r] = by([0[r-1] + 1;
for (r = 0; r < t -length ; r+ +) f

back path(OI(r] = (diet + = bb'
abe(utterance(0I (01 - templatefr](01) +
abs(utterance(0J (11 - template(r] (11)))

for (c= 1; c < u length; c++){
if (byptr = =0) f

b _ptr = 1;
ptr =0;

else{
b-ptr = 0,
ptr = 1;
I

for (r =0 ; r -e t length; r+ +){

B- 154

Appendb 8: Comnpute Programs twopicb

diet abeouflranc[c[Oj - temPlate[r)(OJ) +
abe(utterancec)[1I - templatelrI[1),

beckpethfpprl(rj = bsck..peh[bj~ptrj +
(aa * diet) ;

bp(ptrlj - b..p(bptrlfrj + 1;

I
ele di back..path(b.ptrlfr-II + diet;

d2=backc.pathiptrr-11 + (bb * diet);
d3 =backc.pathjbptrj + (a* * diet);
if (d2< =d3&& d2 <dl)(

back peth[ptrI[r] =d2
b..p~ptr](r] = bp~ptr](r-t) + 1;

elseelt(d3< = d2 &&d3 < di){
back path[ptrl[r) = d3;
bpjptrj~rl = b..pfbj..trflrl + 1I

else(
back..pathtptrjr] = di:
b~p[ptrj[rJ b..pfb~ptrflr-lJ + 1;

*ave diet backpsth(ptrj(tIsngth-lj / bpjptrjfltlength-i];

*~~ nwin~b.c

These routines support TWOPIC6'.C/EXE in finding the closest node
to a given input digit in a second Kohonen net.

Trajectories are 100 x-y pairs filled with trailing -l's.

includ, math
include stdlo,
include stat

extem double input[100fl2J 1'P input node.s.
extern double gain;,

extern it clos"et2) ; /* closest nodes'
extem int neigh[2] 1 / neighbor *1
extern mt xsize, ysize ; /* Size of array1
exter nmt number-inputs;
extern mt train discrete ;
extern char training file(301;
extern char first net file[301;

mnt number discrete.
int word-counter;
int num words:;
char word-numbert2001115];
int longth[200J;

B-155

Appendb B: Computer Program. twopdk6b

ird ~fjlze, Ifxeize, f number inputs;
float f..mp2112011161
mnt locatlon[00[21 ;
extem mnt mp201120111001121;
extem fiog mapI20))1100U21;

read tm file 0

FILE *V. f, tne
int ,I. c, Ittemp;

f = fopen training file, Yrj;
iscant itt, "%d", &knum words);
for 0 ; I < num-words ; i + +)

fsecanf (tf. "Wa', word numberlil)
Wos (to ;
Word~counter = 0;

tnot =fopen (first net 'file,rj;
fscant (frw.t."%d %d %d", &f~yulze, &f xsize, &fnumber-inputs);
for (r =0; r < fjslze; r+ 4-) {

for (c -0, 0 < Itxsme .C+ +){
for (i =0;1I< f number inputs; 11-){

Wcove (tnet)

getin 0

if (word-counter ==num-words)

word-counter = 0;
read word (word-Counter)
word-counlter + +;

get~rndin 0

double max rand = pow (2.0, 31,0) - 1.0;
int pointer;

pointer = floor ((rando* (num words -. 0001) / max rand));
read~word (pointer);

read word (pointer)
mnt pointer;

mnt f'lag, r, , i, j, k;
double in[16J, dI, d2, d3, d4, d5;
float element ;

int 1oc2[20001121, loc3f20001 (2]
FILE *fond ;
int sound, point, x[51, y[S];
Int maxpte;
double max;

B-156

Appendik B: Computer Progra twopicb

fand =fopen (word**numberlpointerl, "ri;
sound = 0;

flag =0;

Iscant (hind, '%r', &elemenl;
I (lsoqlend) 1 -0)

flag = 1;
aleI 1> so)

flag = 1

ini] = (double) element;

i1
I Q 15) && (flag 0)){

fLmindlist (f map, in, &Ioc2lsound]fOJ);
i =0 ;
sound++;

fclose (fend);
for (i = 0; 1< sound; i+ +)

loc31i](OJ loc2(i](OJ;
1003fiI(1] loc2[i(1]h

max-pte =sound;

..Trajectory Reduction..

for (i = 0; i < j ; i++s) {
locationjiJ[0] = Ioc2liJ[0];
location~i]flJ = IocajI[i]1I

longth(0J j;
for (I = j; i< 2000; i+

locatioriji][1) (locetion[iJ[0] -1);

Itmindlst (f map, inp, close)
double inpjlB];
it close[21

float I map(20J(20j (16];

double diet;
double minimum =99999.9;

for (r =0; r < tysize; r+ +){
for (c =0; c < f xsiz.; c+ +){

diet 0 .0;
for 0; i 0 f -<number -nputs; i + +)

diet +- = pow (inpi - I map(r](c](i], 2.0);
if (diet < minimum) {

minimum = diet;
close[O] = C
closell) = r

B-157

Appendk 6: Computer Programs twopicec

$ Ink twAolct,nwnsb,optlnsfil.op1

twopicec.c

This routine finds the closest digit (front a group of digits) to
each nods in a second Kohonen net. In paticular, this routine
uses 100 x-y pair trajectories filled with trailing -I's.

For each nods, the routine searches through the whole liet for the
digit closestto that node's we!g^t2Closest' in this case
is found through a TAXM distance.

Data output includes the nods number, distance to the digit
found cloest, and the name of the *tin file of the digit.

include math
" include stdio
" include time

float map(201(201f 1001(21 ;(Poutput nodes '
double inputfl1001 21 ; /' input nodes '
double nods diet ;

rnt clost(21 ;IP cloeest nodse'
mnt xsize, ysize ; P Size of array '
mnt number-inputs ;

char training_ file[301, temp file[30], firtnotjilef 301
char not -file[301;

extent mt num ~words;
int mask[20]f201
int map2[20](201[100112];
float aa = 0.75;
float bb =0.75;
extern mnt Jfxsize, fjsze;

extern int location[20001[2];
mnt innput[20011100)(21,
extern it length[2001 ;
extem char word number(2001(15J;

mindist (r, c, close)
mnt r, c
mnt *close;

int isound;
int comp-length;
double diet:;
double minimum = 9.99e31;

for (sound = 0; sound,< num -words; sound+-+){
I (lengthisound] > mask(r][cJ)

comp length = isngth(eound];
elwe

comp length = mask~r1(c1;
diet =0.0;

-for (i = 0; i < comp-eth ; + +){
diet += abs (map2[r)[c~ji][0j - innputisound][i]l0]) +

B- 158

Appendi B: Computer Program twopicac

*bs (map~[r)](i](1) - innput(soundifID

If (diet < minimum) { 4
minimum = diet,
*close = sound;

node-diet = minimum;

main 0

mnt c;

prin? ("\nrWOPICSc (Closest (tax) to each node: 100 wts/2-))...\nW1
map speech 0;

map speech 0

it r, c, i,jk, x,y;
char name -rt1130, tormppOJ,
int boc;
FILE *fnet, fog, *fmask;

prin? ("\nEnyter name of pre-processor Koh not-file (less net):)
scanif ('%9", temp) ;
sprint? flrte tie ~ etmp);

print? ("Enter name of header file containing words (loes hdr):')
scard ('%s", temp file);
sprint? training file, "%a.hdr", temp file)

print? ("Enter name of output Koh net-file [less net):');
scan ('%e", temp_ file)
sprint? (net-file, %s. nt, temp file)
sprint? (temnp. "%.msk", temp file)

Mnet =fopen (net-ile, 'Y) ;
fscanf (fnet,"%d %d %d", &ysize, &xsize, &number-inputs)
for (r = 0; r < ysize; r+. i-) {

for (C 0; C < xsize; C+ i-)
for (i = 0; i< number-inputs; i+ +i){

facant (fnet," %d %d" U, &y)
map2[r] (c) i][0] =x;
map2r[cjij[1j = y;A

Moss. (fnet)

reed tm ~file 0;

fmask =fopen (temp. 'Y);
for (r = 0; r < ysize; r+i +){

for (c 0; c < xsize ;c+i +){
fecarif (fmask,"%d, &msskirlic]);

fcloee (fmask)

B-159

Appendbc 8: Compute Program. twopicac

flog = topen ("tenp.og."w);
Iprini (flog. 'TWOPlCSb:~n");
fprinti VIMog"-> %ae-> %& ->\n", firtnet-file, netjlile);
fpd riitfo. ,Size in %d byr %d nodee\n", xsIze, ysaze),

W"nt (-\napect %d caicullon..\n", numyworde) ;
tPrtnif (Nlog, "Expect %d calculations.\n", numyworde);
print! ("\n~mding word:');
for (r =0 ; r . num,.words ; r+ +){

prInti ("%d ", rI
getln 0 ;
for (c = 0 ; c < number inputs; c ++){

innputfr](cI(0I = Iocation(c]1;
innput~rj(c](1] = location(c](1];

printf (Wj")
for (r 0; r < yaize; r+ +){

tor (c = 0; c < X840e; c+ +){
mindist (r, c, &Joc)
k = c + r *xsz.;
printf ("\nNode %3d :word # %3d, diet = %e

k, loc, node diat) ;
printf ('(%.), word numberlloc);
fprndt (flog, \nNode %3d :word # %3d, diet =%le

k, loc, node -diet) ;
fprinti (flog. "(%*y', word number[locI)

printi ("\nCaculations finiahed.\n;

B- 160

Appendix B3: Computer Programs codebk

$ ikcodebk,optionsf1l.Iopt

codekjk.c

Routine to generate and test an untrained second Kohoneri nst.

An untrained not is generate by taking stored tra~ectonse from
path.dat and storing them s weights In respective nodes. That
Is, the first raw wre assigned the zero& through to the las
raw asigned the nines

A test at of digits is specified, and tested using D1'W(maskD,
lengthoW. All trajectores~ are lO0scalars filled with
trailing O's.

G. BARMORE1 Sep 86

#f include math
if include stio
#f include stat

int number discrete.
mnt word counter;
mnt num words;
char word number[100J(1];

mnt fysize, f xsize, f-number-inputs;
float f-map[20[20J(16J ;

float map[201[201[251 ;IP output nodes '
double input[2251 P1 input nodes '
double node-diet

mnt closee[2J P' closest node '
int xsize, ysize : P Size of array '
mnt number-inputs;

char training fil9f30] temp _file[30], first net file[30)
char net tilgf 301;

int mask[20)[201
int mnap2j2011201[100][2
float asa=0.75;
f'loat bb = 0.75;
int length(200J
mnt location[20001[21;

mindist (close)
int *cloe

imt r,c;
double diet
double minimum = 9.99931

for (r =0; r < ysize; r+ +) (
for (c = 0; c < xsize ; c+ +){

dtw (&map2(r)[0](0], location, mask(r](c],
longth[0], &diet);

if (diet < minimum) I

B- 166

Appendix 0: Compter Programs codebk

minimum = dist;
*Close= C;

node-diet =minimum;

main 0

int C;

pnntdf ('%nCOOEBK:, Uses path-dot as codebook ... W1)
map speech 0;

map..spesch 0

mnt r, c,1, j,k;
char name...tri[30), temp[30];
mnt iocc;
FILE *bne, 'flog, 'twiaskc

printi (\nnter name of pro-processor Koh net-file (less net])
scant ("%s", temp) ;
sprintf (first net~flle, "%s.nat", temp);

prnh ("Enter name of header file containing words (lss hdr). 1
scant("e" tempjfle);
sprint f trainingj.le, "%..hdr", tempfile);

read tm -file 0.;

flog = foperi ('lemp.log","w');
fprnt (flog, "COOEBK: %9\n", nan'eyD;
fprintt (flog, "-> %9 -> path.dst ->Wn% first net -file),
tprnt (flog, "Size is %d by %d nodes\n", xsiza, yeize),

printf ("\nxpoct %d calculations.\n", num words),;
fprintf (flog, "Expect %d calculations An", num..words),
for (r = 0 ; r < num words; r+ +){

gelmn 0 ;
mindist (&Ioc)
printf ('Word %3d is: %3d\n", r, loc);
fprintf (flog, "Word %3d is: %3d\n", r, Icc):
I

printf ("\nCaiculstions finished\n');
fcloee (flog);

diw (template, utterance, t -length, ujlegth. ave dist)
mnt template[200[23, utterancef200][2J;
int t length, u length;
double 'ave diet;

float bacK _path[21(200);
it bpf211200];
mnt r, c;
int ptr, b-ptr;
float di,d3, dist;

B- 167

Appendk B: Computer Program. codebk

diet = 0.0;
bj&t = 1 ;
bp[O)(01 = 1I
for (r = 1 ; r < t length; r+ 1.)

bp(01[r] b~p[01[r-11 + 1;
for (r = 0; r < t -ength; r++) {

backpah01(rJ = (diet + =bb'
abe(utteranc"o(0J1 temnpat(r][0I) +
obe(utteraice(OI(1J tenipatr(11)))

for (c= 1; c < ulength; c++){
if (b..pr ==0) f

b..ptr =1I
ptr = 0;

bptr =0;

for (r =0; r < t length; r+ +){
diet abe(utterance(c] (01 templater (01) +

aba(utterance(c] (11 - tomplate(r] (1j)
If (r ==f

back-pth(ptr~r] = back~path[bptr[rI +
(a" Idit);

b..p[ptrj(rl = bp~bptr][r] + 1;

*Is
dl = backpathjb ptrjr-1j +t dist;
d2 = backpath[ptr](r-11 + (bb' diet);
M3 = back pathlb.ptr][r] + (aa *diet);

Of (d2 < =d&& d2 <dl){
back path~ptri(r) d2;
b~pjpr[r] = b..p~ptrllr-1] + 1;

else if(d3 < = d2 && d3 <dl){
back path(ptr](rJ = d3;
bp(ptrj Cr1 = b.p~bptr](r] + 1

else{
back path[ptr)[r) = di;
bpptr)jr) = b _ptb~.ptr~jr-i1 + 1;

*ave diet =back psth[ptrj~tlength-i] b-p[ptr](tlength-i];

read tmn file 0

*FILE *tf, fret;
rnt j, i,r,c ;
mnt temp. k, number;

tt = fopen (training file, ');
fscant (if, '"U", &num word,),

*tor (i0 ; i< num-word ;I + +)

B-168

Appwndk B: Computer Programs codebk

fecant (tf, '%a", word..numnber(iI);
Iclose (to

Inst =lopen (first netfile, 'rJ;
lewd "In'-%d %d %d", S&ljiize, &l xils, &lnumbermiputs);
for (r = 0; r < fysize; r++) {

for (c = 0 ; c < f xize; c++){
for (i =7 0; i < I number-inputs ; i ++){

Iclome (Met);

ysiis = (xii. 10);
numberjinputs = 100;

Inst = lopsii ("path.dt, "r")
tacanl Ment, "Ud", Mnum -words);
for (r =0 ; r < ysize ; r+ +) (

for (c =0 ; c < xii. ; c++){
for (i = 0 ; i < number-inputs; i ++){

tscant (Inst.' %Is", &rapjr~jcji)

Iclose (nt

for (r =0 ;r < yie; r+ +)
for (c= 0 ; c < xeiie ; c+ +){

number = 0;
for QI = 0 ; i < number-inputs ; i + +){

II (map(r](dllhl > 5.0.-4)
number++ ;

temp =(int) (mapirl [c][ij 2260- 1.-0)
k = temp % f-xstze;.
map2r] [c] h[11 = (temp - k) / Ixsize
map2[rIdflh]EOJ = k;

mask(r](c] = number;

word-counter =0;

getin 0

if (word-counter = num-words)
word counter = 0;

read _word (word counter);
word counter + +;

read-word (pointer)
int pointer;

imt flag, r,c, i,j,kIt
double in (161, dI, C12 d3, d4. d5;
fiod element;

B- 169

Appendix B: Computer Progrm codebc

imt koc2(j2D01121, loc3[2000112);
FILE 'fend;
int sound, point, x[5), y[5];
int maxpt.
double MX

for (i = 0; i < number-inputs; i+ +)
input(I] = 0.0;

fend = topen (word..numberlpointor), 'r")
sound = 0;
S=0;

flag = 0;
while (flag I= 1){

fecant (lend, "%f ', &element);
If (tosnd) =0)

flag =1
ewse If Q > 99)

flag 1;I

in~i] = (double) element;

if((W 15) && (flag==0)){
f-mindist (1 map. in, &Ioc2(soundl(0ll;
i=0;
sound++;

fclose (tend);
for (i = 0: i < sound ; i++){

loc3li][0] = loc2[i][0)
loc3[i)[1] = Ioc2[illhl

maxpta = sound;

.Trajectory Reduction..

for (! =0; i <j; 1+ +) {
locatiori(i](01 = loc2[i](01;
locationfi](1I = loc2(iJ(1)]
I

length[0] = j;
for (i = j; i< 200;i)

locationi(11 = (locationhil[OI 0);

Lmindist (Lmap, inp, close)
double inp[16];
int closef~
float f-map[2011201116];

int r, c, m;
double diet ;
double minimum =9.99e31;

for Vr 0 ; r < fysize; r+ +){
for (c = 0 ; c < f xeize ; c++

diet = 0.0;
for (i = 0; i < f-number inputs ; i + +)

diet + = pow (Inpll - 1 mapirllc)i1, 2.0);-

B- 170

Appendix B: Comnputer Program. codebk

id (diet < minimum){
minimum diet;
close[O =
close[l] = r;

B- 171

Appendix B: Computer Programs codeblb

$ link codebkb,optionejile/opt

Routine to generate and test an untrained second Kohonen net.

An untrained net is generate by taking stored trajectories from
pathold.dat and storing them as weights in respective nodes. That
is, the first row are assigned the zeros through to the last
row assigned the nines.

A test set of digits is specified, and tested using D1V4(maskfl,
lengthj]). All trajectories are 75 scalars filled with
trailing O's.

G. BARMORE I Sep 88

include math
include stdlo
include stat

int number discretes;
mnt word counter
imt num words;
char word numberf 100]f 15];

int tysize, f Xsize, f -number inputs
float f-map2][20][161;

float msp[20] (20][2251 ;IP output nodes '
double input[2251 I' input nodes '
double node-dist

int closest[2J /*I closest node '
int xsize, ysize ; /* Size of array '
int number inputs;

char training flle[30], temp file(30]. first net file[301
char net-file[30];

int mask[201(20J
int map2[20](20J(I00] (21;
float as = 0.75;
float bb = 0.75;
it length[200];
int location[2000fl2];

mindist (close)
int *close;

int r, c;
double diet;
double minimum = 9.99e31;

for (r = 0; r < ysize; r+ +) {
for (c = 0 ; c < xsize ; C+ +)

dtw (&map2[rjlc]IOjll0] location, mask~r]lc],
Iength(0], diet);

if (diet < minimum) (

B- 172

Appendix B: Computer Programs codebcb

minimum =dist;

*close =C

nods-diet = minimum;

main 0

mnt C;

printi ('knCOOEBIKb: Uses pathold.dat as codebook ... \n');
map..speech 0;

map speech 0

mnt r, c, i,. k;
char name tri[301, temp(301;
in? lbc;
FILE 'fri.?, 'flog, 'tmasc;

printi (-\nEntar name of pro-processor Koh net-file [to". net]:')
scan ('%C, tamp) ;
sprint? (first net _file, "%a.net", tamp);

print? ("Enter name of header fil, containing words (lss .hdr):")
scant ('%a", temp file) ;
sprint? (trainingfie, '%s.hdr", temp fle)

read tn file 0 ;

flog = open ("temp.Iog"2w');
fprintl (flog, "CODEBKb: %a\n", namne-tri)
fprint? (flog, "-> %a -> path.dat ->\n", first net file)
Iprint? (flog, "Size is %d by %d nodes\n". xsize, ysize):

print? ('\nExpect %d cslculations.\n", num words) ;
tprmntf (flog, "Expect %d calculations.\n", num words)
for (r = 0 ; r < num words ; r + +){

getin 0 ;
mindist (&loc);
print? ('Word %3d is: %3d\n", r, loc),
tprnt? (flog, "Word %3d is; %3dan", r, loc);

print? ("\nCalculations finished\n");
tcloee (flog)

dtw, (template, utterance, t length, u length, ave-dist)
int tem'plate[2001[21, uttefance[2001[2]
in? t length, u length;
double 'ave diet;

float back path[2) (2001
int b..p[21(200J;
in? r, c;
int ptr, b-ptr;
float d I, d3, diet;

B.173

Appendix 8: Comnpter Program codebkb

diet = 0.0;
bpjtr 1 I;
b.9[0IOI = 1I
for (r = 1 ; r < t-length ; r+ 4-)

bA.pOllrI = b~pJ01jr-11 + 1I
for (r =0; r < tjIength ; r++) f

back~pathjolljr) = (diet + = bb
abecutteranceo)(01 template(r][01) +
abs(utterance[0][hj - terplate(r(11)))

for (c 1; cc < length; c+ +) f
I (bptr = =0){

bptr =1;
ptr = 0;

bptr = 0;
ptr = 1;

for (r =0 ;r < t -length ; r + 4-){

diet = abe(utterance[c] [0) - template[rl[01) +
akbe(utterance[c][1] - template[r][11)

if Vr == f
backjothiptr[r] = back_*pah~b*trl(rJ +

(sas* diet);
bpiptr][r) = b _p~bjtrfrj + 1:

else(
dl =backpathjbpjr-1] +- diet;
d2 =backpath[ptrlr-11 + (bb *diet)
W = back path~b*ptrj(r] +- (as* diet);
df (d2 < = d3 && d2 < d1){

back pathtptrl~rI = d2:
b..pptr]lr] = b~pfptrj(r-lJ + 1;
I

else it (d3 <= d2 && d3< d1){
back p&th~ptrj(rj = d3;
bp(ptrl(rJ = bp(bptrlr] + I;

else({
back path(ptr](r] = dl;
b..pjptr](r] = b..p~b ptrl(r-11 +- 1;

'eve diet =backpath[ptrjft length-i] /bp[ptrj[tIsngth-1];

read tm file 0

FILE tf, *fnet;
int ,irc
int temp, k, number;

If = fopen (training_ file, 'Y);
ftAanf If, '%d", &num words),
for 0i 0 0; i < num words,; i + +)

B- 174

Appendt 13: CompLAer Programe codobkb

fecanf (if. "%a". word..numberli);
fclose (f) :

tnot - open (firmt..-fi -e
fsea (fnet."%d %d %d", &f~ysiz., &J xsizo, &fnumberjnputs);
for (r = 0; r < f~yaize; r+ +) I

for (c = 0 ; c <1f xaiz, C++) {
for (i - 0, 1 < f number inputs; i+ +)

faan fnt." %,&Lmoplr]Ic~tiD;

folose(rt)

ymize =(xe~re =10);
number-inputs 75;

fnel fopen ('pathold.dt. "r')
fecant (fnst, "Ud", &num-words);
for (r = 0; r < ysize; r+ +) 4

for (c= 0 ; c < xsize ; C+ +)4
for (i = 0; i < number -inputs; i + +) I

fecant (fniet," %I*", &mnapir][ci [1i)

fclo..et)

for (r =0; r < ysize; r+ 4) I
for (c =0 ; c < xeize; c+ +)

number = 0;
for (i = 0 ;i < number inputs;- Ii-)4

it (maplIc~li] > 5-")
number++ :

temp = (int) (mapir] [c) IQ 250)
k = temp % f-xsze ;
map2(r)(c](i][1J = (temp.- k) I Lxsize
map2[rl(c)[i]l01 = k

maal~r)(c) = number;

word counter =0:

* getin 0

if (word-counter = num-words)
word-counter =0,

read word (word counter)
word- counter ++;

reed word (pointer)
int pointer;

int flag, r, c, i,j, k
double 0n1161, dl, d2, Q., d4, d5,
flost element;

B-175

Appendbc 13: Computer Progrm codebcb

mnt loc2[20001121. loc3(3WOJ[2j'
FLE *mn;
int sound. poit. x[S],y(b1;
int maxpl;
double MUx;

for Q = 0; 1 c numberjinputs; i++)
input (IJ= 0.0;

fand = fope (wordjiumber~pointerl, "rI')
sound =0;

flag 0

Wsard (land, "%V', &elernsnt);
ff (toot (fand) =0)

flag 1,
e0" af (i > 99)

infil (double) element;

df(W 15) && (flog ==0)) 1
tmindiat (f map, in, &koc2(soundj f0il
i =0
sound++;

fcloee (tsnd)
for (i = 0; i < sound ; i+ i-) I

loc3[iI[0I = loc2fiElOI:
loc3(i](1I = lo02(illhI;
I

max-pt = sound;

..Trajectory Reduction

for (! = 0;'<j ;i++) I
locationi)lOI loc2[i)[0];
locationji)[ll = loc2[Q[11;
I

lengtlfloJ = j
for (i =;j i < 200; i++)

tocationf iii1] = (locationji][0) 0);

fImindist (f map, inp, close)
double inp[16i,
it ClosO[21
float Lmap2JE20](161,

double diet,
double minimum =999.31,

for (r =0 ; r < f~ysize; r++){
for (c = 0;c<f-ie ++

for (i= 0 ; I < f number inputs i 1+ +)
diet + pow (inp~il - f mapfrifelfiJ. 2.0)

B-176

AppendkB(: Computer Program codotb

ii (dist < minimum){
minimum =diet;

clos.(Oj = C

B- 177

Appendix B: Computer Programs codebk2

$ link codeb~t2optionsfile/ot

.O*,,,,***,*******codeblQ.c *O**@***t******O

Routine to generate and tet an untrained second Kohonen nat.

An untrained net is generate by taking stored tralectoriee from
path.dat and stourig them an weights in respective nodes. That
is, the first row are assigned the zoe through to the last
row assigned the nines.

A test set of digits is specified, and tested using TAXI distance.
All trajectories are 100 scalars filled with trailing O's

G. BARMOREl Sep 8

include math
" include stdio
" include stat

int number discretes;
int word counter;
int num words;
char wordjnumber[100([151;

int t_ysize, fxsize, f number inputs;
float Lmap[20](20][16]:

float map[20][20][225] ; P output nodes '/
double input[225 ;P/ input nodes ./
double node diet;

int cloeest[2] P' closest node */
int xsize, ysize ;/ Size of array'/
int number inputs ;

char training.file(30], temp.file[30, first net file(30];
char net file(30] ;

int mask[201[20;
int map2[20 20][100] [21;
float as = 0.75;
float bb = 0.75;
int length[200]
int location[2000][2];

mindiat (close)
int *cloee;

{
int i,r,c ;
double diet ;
double minimum = 9.99e31

for (r 0; r < ysize; r+ +) (
for (c 0 ; c < xsize c++) {

diet = 0.0 ;
for (i = 0 ; i < number inputs i++) {

diet + = abs(map2[r][c[i][0]-location[i][0]) +
abs(map2lr][c] [i][1-locationli)[1])

B-178

Appendix B: Comipuer Programso codob&W

If (diet < minimum){
minimum =diet;

*close = c;

node-diet =minimum;

main 0

unt c;

printf ('VnCODEBK: Uses path.-dot as codabook ... \nW1
map speech 0.

map speech 0

int r, c, i.jk;
char name -tJf3OI, tenip(30]
mnt boc;
FILE *fnet, 4flo, 'fmaek;

printi ("1\nEnter name of pro-processor Koh not-file fleet .not]:
wcant ('%S", temp) ;
sprintl (first nstjfile, "%a.net", temp);

print? ("Enter name of header file containing words (loe Ahdro:"
scant ("%.", temp fIl) ;
sprnt (traningjll., '%a.hdr", tempII.)

read tm file 0 ;

flog =fopen ("temp.bog","W")
tprintf (flog. "COOEBK: %sn", name tri)
fprinti (flog, "-> %s -> path.dat ->\n", first -net -file)
Iprint? (flog, "Size is %d by %d nodes\n". xsize, ysize)

print! ('\nExpect %d calculations.\n', num words) ;
?print! (flog, "Expect %d calculatiorisAn", mum-words)
for (r = 0 ; r < num words ; r + +){

getin 0 ;
mindist (&loc);
printt ('Word %3d is: %3d~n", r, Icc)
tprintf (flog, "Word %3d is: %3d~n", r, Icc)

printf (\nCalculations hnshed kn)
fcloee (flog)

read tmn ile 0

FILE 'if, *fnet;
mnt j, i,r, c;
mnt temp, k, number,

if = topen (training.le, ';

B- 179

Appendix B: Computer Programs codebc2

fscani (tt, '%d", &numnwords);
for PI = 0; 1 < riumyords; i+ +)

facanf (tf, '%a", word numberlil);
ficloes (tf) ;

fnet = fopen (frstnst fit.s, r"):
fwcan (fnt.'%d %d %d", &f~ysizo, &I.xsize, &fnumberjinputs);
for (r =0 -, r < t~ysize -, r+ +) (

for (C = 0 ; cC < xsize; C+ +){
for (I =0 0: <f number inputs; i++) f

facanf(ft.. %r, &fmep(r](ld[11;

tcloss et

ysizs = (xsiz. = 10);
number-inputs =100;

fnet =fopen ('patdat"'Y r
feari (fne, "%d", &num words);
for (r = 0; r < ysizs : r+ +) (

for (c= 0; c < x64.; c+ +){
for (i = 0;, 1 < number -inputs; i ++){

fscanf (friet," %Ie', &map~rllcI (ii)

fcloee (fnet);

for (r 0 0: r < ysize ;r+ +){
for (c = 0; c < xsize ; c++){

number =0;
for (i = 0 ; i< number inputs ; i ++){

ft (mapjr)] l > 5.0e-4)
number++;

temp = (int) (mapirl [c] Eil 0 226.0 - 1 .0);
k= temp % f-xsizs ;

map2[r] [c] [i][11J = (temp - k) Ifxsize
map2[r)[cI[i][0) = k
I

maskir][c] = number;

word counter =0;

getin 0

if (word counter = num wwords)
word counter = 0;

read word (word counter)
word counrter+ +;

read-word (pointer)
int pointer;

imt flag, rc, i, j, k;
double in(16), dI, d2. W., d4, d5;

B- 180

Appendix B: Courv Program.s codeblc

float elemnent;

int loc2[2000112J, Ioc3[20003[123
FILE *fend;
mtd sound, point. 451. Y[51;
it maxptaS
double max;

for QI = 0 ; I< number-inputs ; +)
imputtiJ = 0.0;

fend = fopen (wordnumbr[pointer), 'Y")
sound = 0;

= 0;
flag = 0;
while (fa I= 1){

fecanf (fend. '%f", &element);
I (fefnd) 1=0)

flog = 1;

flag = 1;

inWi = (double) element;
i++.

NI ((1= 15) && (flag ==0)){

Lmindist Of map, in, &loc2[sound) [0))
= 0;

sound+

Ncose (tend)
for (I = 0; i < sound; i+ +){

loc3li][01 = loc2li](01;
Ioc3[il(1I = Ioc2fi)(11

max-pte sound;

Trajectory Reduction..

for (I = 0; i < j; i+
iocation(i](OJ = loc2[i][01;
locationji][1I = loc2li][11I

iength(OI j;
for (i = j ; i < 200 ; i+ +)

location[i)[1] = (location[iflO] 0);

Lmindist (I map, inp, close)
double inp[16J;
mrt close [2]
float tmap[20(201[161

double diet ;
double minimum 9.99e31;

for (r = 0 ; r < fjysize ; r+ +){
for (c = 0 ; c <f-Xsize ; c ++){

diet = 0.0;

B-181

Appendk B: Computer Programe codeWi

for (i =0 1 < f numbr inut;1+ +)
diet + = pow (inpli) - fjnepr) [c] [1]. 2.0);

it (diet < minimum) (
minimum = diet;
clooo[O] = C;
cloe[1 = r

B- 182

Appendi B: Computer Programs codbk2b

ink codebk~b~optlonsfil~opt

codebk2b.c

Routine to generate and test an untrained second Kohonsn net.

An untrained net is generate by taking stored tralectorles from
pathoid.dt and storing them as weights in respective nodes. That
is, the fint row are assigned the zeros through to the last
row assigned the nines.

A test set of digits I specified, and tested using TAXI distance.
All trajectories are 75 scalars filled with trailing 0's.

G. BARMORE1 Sep88

include math
include stdio
include stat

int number discretes;
int word ounter;
int num words;
char word number[100] [151;

int fysize, f.xsize, f number inputs;
float fmap[2o] [20][16 ;

float map[20][20][225] ;/ output nodes '/
double input[225) ;/* input nodes /
double node diet;

int closet[21 ;/* closest node *1
int xsize, ysize ; / Size of array '/
int number inputs :

char training.file[30], temp file[30], first netfile[30]
char net file(30] ;

int mask(20](201;
int map2[20 [20][100J[2];
float a& = 0.75;
float bb = 0.75;
int length[200];
int location(20001[21;

mindist (close)
int *close;

{
int i,r,c;
double dist ;
double minimum = 9.99.31

for (r = 0; r < ysize ; r+ +) {
for (c = 0; c < xsize; c+ +) {

dist = 0.0;
for (i = 0 ; i < number-inputs ; i+ +) {

dist+ =aba(map2[r][c][i][0]-locaton[i][0]) +
abe(map2[r] [c[i][1]-locationfi)[1);

B-183

Appsndk B: Computer ProgMs codebk2b

df (digt < minimum) I
minimum = diet;
*close = C

node-diet =minimum;

main 0

mnt c;

pririt ('\nCOOEBv2b: Uses pathold-dat & TAXI ...\nW1
map speech 0;

map speech 0

mnt r, c., ,j,k;
char name trJ[30], tomp(301;
mnt boc;
FILE 'fnet, 'fog, 'fmask;

prmntf ("knEnter name of pro-processor Koh net-file flosw -net]:');
scant ('%a", temp) ;
sprntf(first net file, '%s.nsC', temp);

printf ('Enter name of header file containing words (less .hdr):")
scant ('%a", temp file)
sprinif (trainingfile, "%a.hdr", tempte)

read tm file 0 ;

flog = fopen ("temp.Iog",W"),
fprintf (flog, "CODEBKb: %s\n", name trj)
fprintf (flog, "-> %a -> path.dat ->\n", first net -file)
Iprintf (flog, "Size is %d by %d node.\n", xsize, ysize);

prni ("\nExpect %d calculations.\n", num words);
fprintf (flog, "Expect %d calculations.\n", num words);
for (r = 0; r < num -words ; r+ i-){

getin 0 ;
mindist (&loc);
printf ("Word %3d is: %3d\n", r, loc)
fprinif (flog, "Word %3d is: %3d~n", r, loc);

printf ("\nCalculations finished \i');

fcboee (flog)

read tmn file 0

FILE 'if'et;
int ji,r, c;
mnt temp, kc, number;

f fopen (trainingjfile, 'r");

B- 184

Appwndk B: Computer Progirams cocleIi2b

facard (Of. 'U", &num words);
for (I=0; i < flum words; !+

fscAnf(i,1d word number(Il);
fcose (to ;

Met =fopen (first..nstfile, "r)
facari "?..'d %d %d", &fjyize. &f-xsize, &f number inputs)
for (r = 0; r < fjyslz.; r+t +) {

for (C = 0 ; c < f xsizs; c++){
for (i =0; i < f number inputs ; 1++){

facnt fn~," f",&f msplrJlc][i])

folose (fnt);

ysiz. = (xeize = 10);
number-inputs = 75;

fnet = fopen ("pathold.det", 'Y')
facanf (fnet. "%d", &num-worde);
for (r = 0; r < ysize ; r+ i-) {

for (C = 0 ; c < xsize ; C++){
for (I =0 ; i < number-inputs; i +-+){

fecarf (fiiet," %Ie', &msap~r)[cl(i])

fMoss (fnet)

for (r =0; r < yalle ; r+ +){
for (c =0 ; c < xezs ; c+ +){

number 0;
for (i = 0; 1 < number-inputs ;i ++){

if (map(rJ[cJ[i] > 5.0o-4)
number+ +;

temp = (int) (map[r)[cI[il * 22.0)
k = temp % f-xsize ;
map2[rl [c][jil 1 (temp - k) /f xelze;
map2(r](c](i](01 k

maskqr][c) = number;

word-counter =0;

getin 0

it (word counter = num wordls)
word-counter = 0;

read-word (word counter)
word-counter + +

read-word (pointer)
irit pointer;

int flag, rc, i, jk
double in(16J, dl, d2, W3, M4, d5;

B- 185

Appendix 8: Computer Programs codebc2b

float elernant ;

mnt loc2[2000ll2I, loc3(2000](23;
FILE *fmnd ;
int sound, point, x[5], y[5]
mnt max-pte;
double max ;

for (i = 0 ; i< number inputs;- i ++)
input~il = 0.0;

land = fopen (word ~numberlpointerl, "rJ
sound = 0;
i = 0;
flag = 0;
while (flag 1) 1)

fecant (tend, "W", &element);
id (feof (fend) !=0)

flag = 1;
else if (I > 99)

flag =1
else {

in[i) = (double) element;

if ((i = 15) U& (flag == 0)){
fmindisf (f map, in, &loc2[sound](OJ)
i= 0;

sound+ +

fclose (land)
for (i = 0; i < sound: i+ +){

loc3[i] [0] = loc2[il [01
loc3[i](1 I = loc2fi](1J

max-pts = sound;

Trajectory Reduction..

for (i = 0; i < j; i++){
location[i][01 = 10c2[i][01
location~i](II = loc2[i][11

length[03 j;
for (i = j; i < 200; i++)

locationi)[1] (Iocationi](O] 0)

fImindist (f map, ip, close)
double inp(16J;
imt close(21
float f map[20[20)[16]

mnt rem ;
double dist ;
double minimum =9.99e3l

for (r =0 ; r < f~ysize ; r+ +){
for (c = 0; c < f xsize;c+)

diet =0.0;

B-I186

Appendix B: Computer Progrms codobk2b

for (i = 0 :i < fnumberinputs ;i++)
dit + = pow (inph] - Lmaprl[c[i], 2.0):

* if (diet < minimum) {
minimum = dist;
cIoeO) = C;
clo e(1] = r;
}

|•}

B- 187

Appendix B: Computer Programs coder

S link coderoptolneflopI

******O*****4*************cod.c ,**O*******4*O**

This routine creates an untrained second Kohoner with stored
trajectories from a *.dat file and test them on a specified set
of digits using DTW distance.

Trajectories we 100 x-y pairs filled with trailing -1's. The
user may choose the length used in DIW distance.

G. BARMORE2S Sep 88'/

include math
include stdio
include stat

int number discretsee
int word counter;
int num words;
char word number[100][15];

int fLysize, fIxsize, fInumber.inputs
float f.map[20]1201116] ;

float map[201[201[2251 ; P output nodes *I
double input[225] / input nodes '/
double node-diet

int cloeet[21 P/ closest node '/
int xsize, ysize ; I Size of array '/
int number-inputs;

char training file(301, tempfile[301, firstnet.fie(30]
char net file[30 ;

imt mask(20J (201
int map2[201120][10 0] [21;
float as = 0.75;
float bb = 0.75;
int length[200);
int location[2000][2];

mindist (close)
int *close;

{
int r, c;
double diet;
double minimum = 9.99e31;

for (r 0; r < ysize; r+ +) {
for (c = 0; c < xsize ; c+ +) {

dtw (&map2[r][cJ[0][0], location, mask(r](c],
length(O], &dist)

if (diet < minimum) {
minimum = diet;
*close = C

B-188

Apperidk B: Computer Programs coder

node-di = minimum;

main 0

mnt c;

print? ('\nCODER: Create codebooc using x-y pairoldtw ... \ni;
mapspeech 0;

map~sp..ch 0

it r, c, i, j,;
char name -trij3O], temp(30];
mnt boc;
FILE *friet, *flog, *fmaal'

ptrni ('\nEnter name oi pro-processor Koh net-tile tiesa net] ');
scat01%" temp) ;
sprint? (frt-neje, '%*,not", temip);

printf ("Enter name of header file containing words (lees hdr):1
scant ("atemp_ file);
sprint? (trainingjfiie. "%shdr", temp file);

prin? ("Enter .dat file for net generation (les.dat) ")

scant (%,temp tile);
sprint? (nettile, '%s.dat", temp ile)

printi ("Enter [number -inputs) desired (<=I 100):
scant ("%d", &numbernputs);

read tm file 0 ;

flog = fopen ("temp.log,w)
tprintt (flog, "CODER:\n) ;
tprlnt? (flog, '%a -> %9 -> %s\n", trainingjile,

first not-tile, not-file) ;
fprit (flog, "Size is %d by %d nodes\n", xsize, ysize);

print? ("\nExpect %d calculations.\n", num-words);-
iprint? (flog, "Expect %d caiculationu.\n", num words);
for (r =0 ; r < num-words ; r+ +) {

getin 0 ;
mindist (&loc)
print? ("Word %3d is: %3d\n', r, loc);
fprint$ (flog, "Word %3d is: %3d'~n. r, loc)

print? (\ nCaculations finished.\n")
Iclose (flog)

dtw (template, utterance, t length, u length. ave-dist)
int tomplte[200][2), utterance[200][2];
mnt tbeongth, u length;
double 'ave-dist;

float baclc~path[2][200];

B- 189

Appendk B: Conipuler Programn coder

it b~p[1)200];
let r, c
in& ptr, bpti;
Sloo dl. d, d3 didt;

diet = 0.0,

for (r =1; r,< tlength; r++)
b..pOIfrJ b~p[O~jr-11 + 1;

for (r = 0; r < t -length ;r+ +) I
beckWpah(01(rI = (diet + = bb

inbe(utteranc.(0J (0) - templaer)[01) +
abe(Littrance[O[1 1] template[r]I11))):

for (c 1; c < Ulength; c++){
df (bjptr = =0){

b..pr I 1
ptr =0;

else(
bjptr = 0;
ptr =1;
I

for (kr 0 ; r < t length ; r+ +)(
diet =abe(utterance~c][0] - templat[rlOJ) +

abe(utterance(c(1J . templat.[r[1])
if (r =)

back pathfptrlfrl = backpathfb.ptri(r] +
(a* diet);

b..pfptrllrJ= bjpfbptrjfr] + 1I

else f
dl = back..pathfb _ptrjfr-1j +s diet;
d2 = backpath[ptr)r-1] + (bb * diet);
d3 =backpath~bptrj[rJ + (aa * diet);
if (d2 < = d3 && d2 < di){

back path~prj (r) d2;
b..p(ptr)[r] bptrr-1] + 1;
I

else df (d3 <= d2 && d3 < dl){
back pathf ptr](r] = d3;
bypfptr)lr] bjplbptr[rl + 1;

else{
baCk path[ptrjfrJ = di;
bp~ptr)[r] = bpkbptrJjr.1] + I;

*ave dist back~psthjptr][tlength-1] Ibpjptrflt,_length-1)

reed tm file 0

FILE *11, Otnet;
irfl j, i,r, c;
iet temP, k, number;

B-190

Appermk B: Computer Program. coder

1t = fopen (trainingile., "e;)
facmi~ (d. '%d". &num words);
for 0; 1< num words; i++)

tecanf f, " ", wordnumberf])D

bid = fope (first-na.file, "e);
tuc nd "vid %d %d", aMf size, &f xze, &f number inputs);
for (r = 0; r < f ysize ; r++) {

for (c = 0 ; c < f.xe ; c+ +)
for (i = 0 ;i <1 number inputs; i+ +) {

fecani(friet." %f", &f mOapr][c]i))
)

}
fcloee (fnt);

ysize = (xOize = 10):

fnet = fopen (net file, "r';
ftcarif (fri", "%d", &numwords);
for (r = 0; r < ysize ; r++) {

for (c = 0 ; c < xsize ; c + +) {
for (i = 0;i < 100; i++) {

fscant (finet," %d %d", &map2[r][c]iJ[OI,
&map2[rj[c] i][1)}

}
}

fcloee (fet);

for (r = 0; r < ysize; r+ +){
for (c = 0; c < xsize; c++) {

number = 0;
for (= 0; i < number inputs; i+ +) {

if (map2[r[cJ[i][0J > -1)
number++;

}
mask(r][cl = number;

word-counter = 0;

getin 0
{

if (word counter = = num words)
word counter = 0;

read-word (word-counter)
word counter+ +;

read-word (pointer)
int pointer;

{
int flag, r, c, i, j, k;
double in[161, dl, d2. d3, d4, d5;
float element;

B-191

Appendix B: Comnputer Progrwme coder

int loc2[20M0121. 10032001121;
FILE *end ;
int sound, point, x(5J, y(51;
int max-pts;
double max,

fend = fopen (word numberlpoiterl, 'r")
sound = 0;

= 0;
flag =0;
while (flag I= 1){

faCant (fend. '"% &elernn);
if (feo(fsnd) I=0)

flog 1;I
else If Q > 99)

flag =1;
else(

info] = (double) element;

if((i == 15) && (flag==O0)){
Lmindist (f map, in, &loc2[sound3[O]);
I =0;
sound++;

fclose (fend);
for (i = 0; i < sound; i++s)

lor3(tf[l= loc2[i][0J;
loc3[i][1) =locfi][1);

maxpte =sound;

..Trajectory Reduction..

for (i = 0; i < j; i+ +) {
Iocationi](01 = loc2[illOI;
locationi][11 = loc2[illhJ;

Iength(OJ j;
for (i = j; i< 200; i++)

locationfi][1) = (Iocationi)[O] -1);

Lmindist (f map, inp, close)
double inp(161;
int close[2I;
float f-Map[201l20][16)

mnt r, c, i;
double diet ;
double minimum = 9.99e31,

for (r =0; r < fj'size; r+ +){
for (c 0; c < f xsize, c+ +){

diet = 0.0 ;
for 0i = 0 ;i<I -number inputs ; +- +)

diet + = pow (in pij - f msp(rJ(c]fi], 2.0)
if (diet < minimum) f

minimum = diet,

B-192

Appwxdk B: Com r Prograrm coder

cIos10j = C;

B- 193

Appwndb B: Computer Program. coderb

S linki coderboptions file/opt

********,*,t**O*,,O***Ocoderb.c

This routine creates an untrained second Kohonen net from a *.dat
file ol stored trajectories and tests It with a specified sot of
digit using TAXI distance.

Trajectories wre 100 x-y pairs filled with trailing -1's. The
user may Input the length used In TAXI distance.

G. BARMORE25 Sep 88

" include math
" include etdlo
" include stat

irit number-discrete.:
int word couniter;
int num words;
char word numberf1001(151;

mnt fysize, f xstize, f number inputs
float frnap[201[201[16] ;

float map[20][20)][25J ;I' output nodes '
double input[225J P1 input nodes '
double node-diet;

it closest[2] P' closest node '
int xsize, ysize ;IP Size of array '
imt number-inputs;

char training fil(30], temp file(301, first netjile303;
char net file(301 ;

mrt mask [20] [20)
int map2[20j[20] 100112];
float aa =0.75;
float bb = 0.75;
int Iength(200];
int location[2000)[2];

mindist (close)

imt i, r, C;
double diet ;
double minimum =9.99031

for (r =0; r < ysize ; r ++) f
for (c =0; c < xsize c+±+){

diet = 0.0 ;
for (I = 0; i < number inputs; i + +){

dist+ =abs(map2[r(c]i](0-location(i](0) +

diet/1= length(0I;
if (diet < minimum){

B- 194

Appendbi B: Computer Programs coderb

minimum =did;

*close = c;

nod. diet = minimum;

mean 0

Int c;

prtnt ('ViCOOE~jb: Create codebooc using x-y pairstai ...);
mapespesch 0;

map speech 0

int r, c, i,j, k;
char name~trJ130, temp[3Ol;
int icc;
FILE *fret. *fog, *fmesk;

printi (\nEnvter name of pre-proceseor Koh net-file [loe -net]:"

scant ('%a", temp) ;
sprintt (firsknetfile, "%s.net", tomp);

printf ("Enter name of header file containing words (less. hdr):)

sWanf ("%*", temp file)
Sprnntf (trainingjlile, '%..hdr", ternpjle);

priritf ("Enter .dat file for net generation (loe .d): 1
scant ('%a", tempjile) ;
sprintt (net-file, "%e.dat", tempjlo)

prit ("Enter [number ,inputs < = 1001: 1
scant ('%d", &numberinputs);

read-tmjile 0 ;

flog =fopen ("temp.log","'WI
fprintt (flog. "COOER:\ni;
fprintf (flog. "%s -> %a - > %\n, tralning.fle,

first net file, net-file) ;
tpriritf (flog, "Size is %d by %d nodes\n", xaaze, ysize)

printf ("\nExpect %d cafculations.\n", num,.words) ;

fprintf (flog, "Expect %d calculatiot)5 \n", num words);
tar (r = 0; r < num -words; r+ +s){

getin 0 ;
mindist (&loc);
printi ("Word %3d is: %3\n". r, Ioc)
fprintf (flog, 'Word %3d is: %3d\n", r, Ioc);

printt ('\nCelculatioris finished\n')
Icdces (flog)

read tm file 0

B- 195

Appendk B: Computer Programs odr

FLE V.f tnet;
int j. 1,r, c;
int temp, k. number;

ft = fopen (trainingjl., 'rJ ;
fscanf (tf, "Ud', &num ~word.);
for (i = 0 ; I < num..words ; i+

facant (f. '%a.", word..numberli1);
tcloee (d);

fnt= fopen (frktnetile, Yr);
fscant "tn,"%d %d %d", &tysize, &f xsize, &f-numberrinputa);
for (r = 0 ; r < tysize; r+ +) f

for (c=0;<for iz 7 +
oi= 0; i<f Lnumber inputs, i++){

fscaWt(t," %t",;r &f-map~r][c][i])

tclose (tnet);

ysize = (Xsiz. = 10);
number inputs = 100;

fnet = fopen (net-file, "r")
fscanf (Inet. '"%d, &num words);
for (r = 0; r < ysize ; r++) I

for (c = 0; c < xsize ; c+ +){
for (i = 0; 5 < 100; i++) j

tscanf (Inst.' %d %d". &map2[r](cj[i)(03,
&map2[r] Lcl[ij[1])

Ida..e (fnet)

for (r = 0; r < ysize; r+-+){
for (c = 0 ; c < xsizs ; c++){

number = 0;
for (i = 0 ;i < number inputs ;i + +){

it (map2[r](c][i][0J > -1)
number+ +

I
mask(rJ[c) = number;

word-counter =0;

getin 0

dt (word-Counter = num -words)
word-counter = 0;

reed-word (word counter)
word cournter+ +;

reed word (pointer)
int pointer;

B- 196

Apperd* 8: Computer Progrm coderb

mnt flog, rc,1.j k;
double in(161, di. d2, d3. d4. d5;

int (oc2(2=00ll2. lo=3(20001(21;
FILE *fsnd ;
int sound, point. x[5], y[5J;
Int max-pes;
double maW;

fsnd =fopen (word numbr~poinyterI, "r)
sound = 0;

= 0 ;
flag = 0;
while (&Vg I= 1){

fecAn (fend, 'W', &element);
if (feof(fnd) 1 -0)

flag = 1;
elme if (I > 99)

flog = 1

inji] = (double) element;
il-i-
I

if W(15) && (flg == 0)){
fjnindiet (fmap, in, &loc2(sound][0j);
i= 0;
sound++i-

fcloee(fnd
for (I = 0; i < sound; i++i){

loc3[i] [0] =Ioc2(i][0J;
Ioc3[iJ(1J = oc2(i][lJ

maxyte sound;

..Trajectory R~eduction..

for (i= 0; i< j ; i) f
location[i] [0) = 0c2[i](O1;
locationE i] [1) = oc2[i][11J

Iength(0] j;
for (i i <; 1200; i++)

location[i)(l] (location[i] 101 -1);

fLmindist (f map, inp, close)
double inp[16];
int close[21
float f-map[20][20][161

double diet ;
double minimum =9.99e31;

for (r =0; r < fysize; ri-i)4
for (c = 0 ; c < f-xsize; c+ .){

B-197

Appendbc B: Computer Programs coderb

digt = 0.0;
for (I=0 ; i <I fnumber inputs ; i + +)

dist + = pow (inp, -... map(rJ(] (lI, 2.0);
If (diet < minimum) {

minimum = dist;
cieCOl = c;
clos.(1I = r

B- 198

Appendix C. Software User's Manual

Introduction

The purpose of this user's manual is twofold. First, it will demonstrate how to use the "C"

programs developed by Capt Barmore for his thesis, Speech Recognition Using Neural Nets and

wj
Dynamic Time Warping. Secondly, it provides adequate information for someone with a raw copy

of the backup tape containing source, executable, and sound files to modify and recompile that

information on his own system.

Since this manual is written as an appendix to the subject thesis, it does not have a table of

contents or index. Thus, it is suggested that the reader skim the manual before beginning to read

in depth. The section headings should provide adequate information about the manual's layout.

Please note that no attempt is made to describe all of the programs generated for this thesis

or even all of the options within the programs described below. When an option or program is not

described, its function can usually be determined by the input parameter prompt or the comments

in the source code, respectively. Also, the author does not guarantee the performance or use of any

program provided and is not liable for any damage pursuant to the use of any of these programs.

* Finally this code was developed under Air Force funding and is therefore the property of the United

States Air Force.

The Backup Tape

The backup tape is simply that-a copy of all of the files used in the subject thesis that were

stored on the VAX 11/780 (with node-name [780A). The author is not an expert on backups and

* magnetic tape format; thus, the only information available is that the data was transferred using

the "backup" utility under the VMS operating system. The directories were "purged", but no

attempt was made to remove data or program files that were either superceded or just not useful.

C- I

The sections immediately following this paragraph provide a general description of the con-

tents of each of the directories. Sample runs of the most significant programs are provided in

later sections. The names of the following subsections actually correspond to the names of the

directories-or rather, that part of the path name corresponding to the subdirectories beneath

* [KABRISKY.GBARMORE].

Dev. This directory contains the source (*.c), object (*.o), executable (*.exe), and *.com files

generated during program development. Not all of the *.o and *.exe files were saved. However, they

can be regenerated by compiling the appropriate source file (*.c) with a "cc filename" command,

or by relinking the object files using the respective *.com files in a "'filename" command. Notice

that the *.com files contain the link command for the appropriate program. Also, if the user is not

on a VMS system, he may have to modify the two commands just described.

When r(compiling on a VMS system, the following two commands should be executed prior

to the "cc" command:

DEFINE LNK&LIBRARY SYS$LIBRARY:VAXCCURSE.OLB
DEFINE LNK&LIBRARYJ SYS$LIBRARY VAXCRTL.OLB

* The "include" commands in each source file should also be examined for correct format. VMS

does not (in most cases) use the UNIX "<*.h>" format. Additionally, some programs use GKS

graphics. The source files for these programs contain the line -# include <gksdefs.h>". For these

programs to run effectively, the workstation used should have at least the capability of a Micro-VAX

11.

Lin. Most of the work performed in this thesis used sound files sampled and digitized using

a logarithmic sampling scheme to increase dynamic range. However, tests were run to see if there

was any difference when normal, linear sampling was used. This directory contains the files used

for those tests.

C-2

Net. A number of small sound files that approximate "pure" phonemes are found in this

directory. These were used to see where a particular sound was placed in the first Kohonen net.

Snd2. This directory contains an assortment of *.trn files (generated by the AUTOFFT

routine with a *.snd file as input) used in the early development and testing of the DTW routines.

Notice that the Kohonen nets in this directory are named in the "speech*.net" series. This series

was an early version of the first Kohonen net and is not used in any of the results reported in this

thesis.

SndS. The files in this directory are used to perform AUTODTW runs. Notice that the first

Kohonen net files in this directory are the named in the final series, "speak*.net".

Sndw. Most of the sound files used in this thesis were sampled with a resolution of eight

bits per sample on an ATARI microcomputer. The files in this directory were sampled using a 16

bit A/D converter. Only limited tests were performed on these files.

Sounds. The files in this directory are the sound (*.snd) files from which the *.trn files were

generated that trained both the first and second level Kohonen nets as well as testing the first

* Kohonen nets. These files include a large number of isolated words identified by "'*word*.snd"

where "word" is replaced by one choice from the following set: {one, two, three. nine, silence}.

The content of the files should be obvious.

Also included in this directory are several continuous speech utterances. These include the

first net training utterances, usually identified as "*dig*.snd", and connected utterances used in

AUTODTW tests (either "b*.snd" or "g*.snd"). The "*dig*.snd" files contain the sequence of digits

zero through nine spoken in order, usually with short pauses between the digits. The background

noise (silence) is a quiet computer hum.

The "b*.snd" and "g*.snd" files contain selected sequences of digits that were chosen to

C-3

. . . .a4r I H l ~!. .

correspond to the utterances used by Capt Dawson in his thesis (13) the preceding year. The

contents of each file can be determined simply by examining how the "*" is replaced in the file

name. For example, if the file is "b282828.snd", it contains the sequence of words 2-8-2-8-2-8.

The "b*.snd" series were spoken clearly and distinctly. The "g*.snd" series were spoken in a fast,

slurred fashion.

Sounds2. This directory contains the sound files from which the *.trn files were generated

to test the second Kohonen nets. It also contains the "m*.snd" series of connected utterances.

These connected utterances were spoken by a different speaker than all of the other utterances.

The "m*.snd" series were spoken by a female with a relatively deep voice, while all of the other

utterances are in a mid-range male voice. See the preceding section entitle "Sounds" for the naming

conventions.

Src. This directory was an early attempt to separate the source files (*.c) for shorter, limited

backups. The plan was abandoned early, and all of these files are duplicated in the directory [.DEV].

Test. These files were used in the first tests of the AUTODTW program.

Programs

Each of the programs described below are found in the directory [DEV]. The preceding

subsection, "Dev", should be referenced for comments on how to recompile the programs. It is

recommended that most of these programs be run in the batch mode. With few exceptions. any

of these programs will run from 1.5 to 12 hours given typical input parameters and a Micro-VAX

workstation.

Each program description states the purpose of the program, the required inputs, and the

form of the output. A sample interactive session is included where it is appropriate, and when

necessary, additional comments are made.

C-4

Autofft. The program AUTOFFT converts a sound file (*.snd) into a file (*.trn) containing

a sequence of 15 component vectors. The *.snd file is binary, has eight bytes of header information,

and contains an unspecified number of sound samples (one sample per byte). In the sound file, the

binary integers from -128 to -1 are mapped into the range +128 to +255. Basically, AUTOFFT

performs the preprocessing functions on the sound waveform.

To simplify the user's effort in preprocessing a large number of files, AUTOFFT reads the file

"sounds.hdr" to obtain the names of the *.snd files to preprocess. An example of "sounds.hdr" is:

1780A>type sounds. hdr
2
lzero
six2
1780A>

Notice that the "2" corresponds to the number of files to be processed. and that each filename

does not include the three letter file-type. Files "lzero.snd" and "six2.snd" must be present in the

current directory or an error will result when AUTOFFT is executed. The following is a sample

run:

1780A>run autofft
FFT3: Time/Frequency Conversion for Kohonen Net ...
Enter (0) logarithmic, or (1) Kohonen reduction: 0

lzero.trn opened ... 84 vectors.
six2.trn opened ... 63 vectors.

1780A>

The type of reduction (from 128 to 15 components) described in the thesis is (0) logarithmic.

The (1) Kohonen style reduction approximates the methods described in Kohonen's articles. but

does not work very well since no corresponding filter is used.

Neural7. Once a training file (*.trn) is preprocessed using AUTOFFT. it can be used to train

the first level Kohonen ncural net with the program NEURAL7. The net created with NEURAL7

is a two dimensional net limited to no more than 20 nodes in either direction (400 nodes total).

The program is "hardwired" for 15 inputs (a 15 component input vector) and a conscience factor of

C-5

1.5. The conscience factor is easily changed since it is a global variable set at the beginning of

the "neural7.c" file. Simply change the value and recompile. Alternatively, one can easily modify

the program to make 8 an input variable (by changing the subroutine "userinp" in "neural7.c").

A sample run shows the input parameters and the status information:

I780A>run neural7
NEURAL7 (let training with conscience only!) ...
Enter size 'n n' (for an a z n) of array = ?tint int] 15 15
Enter name of training file C.trn assumed]: ldig3

Training file is: ldig3.trn
Enter name of net file to create [.net appended]: speakl

Net file to be created: speakl.net
lumber of iterations = ? tint] 90000
Number of iterations between status messages = ? Cint) 45000
For gain enter 0) LINEAR, 1) SIGMOIDAL, 2) PIECEWISE LINEAR : 2
First segment starting gain = [(float] .1
Second segment starting gain [(float] .01
Second segment starting iteration = ? (float] 20000
Do you want 0) sequential or 1) randomized training? 0
Starting size of neighborhoods 'yn xn' = ? Eint int] 7 7
Final size of neighborhoods 'yn xn' =? int int) 1 1

Initial seed for random * generator (0 SELECTS TIME) ? tint) 33
Ready to begin? (y/n) y

NEURAL3: gain=0.006428, yrange=1, xrange=l. iteration #45000 (of 90000)
37 ave nodes eliminated
NEURAL3: gain=O.000000, yrange=l. xrange=l, iteration #90000 (of 90000)
36 ave nodes eliminated
Net file: speakl.net saved!
1780A>

Most of the questions are self explanatory, but the request for a gain curve is not. The gain

curve can be either linear, sigmoidal, or , iecewise linear (hardwired for two segments). The linear

gain curve is simply a linear (continuously decreasing) change in gain. A sigmoidal curve starts

high and ends low, but such a gain curve (as implemented here) does not seem to properly train a

net. The piecewise linear curve works well, with both gain segments ending in zero gain.

The application of 15 component training vectors to the inputs of the net can be either

sequential or random. In the former, the first vector in the file is applied first, and the rest in order.

If the number of training iterations required is greater than the number of vectors in the file, the

C-6

sequence of vectors is simply repeated. Random training picks a vector from the training file at

random for each application of an input.

The size of the training neighborhood is changed in a linear fashion. The neighborhood is

specified by a value, r (actually two such values), such that the size of the neighborhood in the

respective direction is 2r + 1 nodes. Thus a starting neighborhood of "7 7" is actually a "15 x 15"

array of nodes.

The seed for the random number generator should be selected by the user. The code for

obtaining the seed by examining the time still has a bug in it; also, specifying a seed allows

reproduction of the resulting net.

Finally, note the program title is not correct in the status message (an oversight), and the

"results" of conscience are reported. The average number of nodes eliminated is the average number

of nodes, per training iteration in the reporting period, not eligible to "light up" (as the center

node in the neighborhood).

Neural2. This program displays a first Kohonen net graphically. Each node is represented

by 15 vertical bars in a small spectrum-like graph. The 15 bars correspond to the 15 positive and

negative weights. The spectra are shown in an array corresponding to the size of the actual net.

GKS graphics routines are used. The following is a sample run:

1780A>run neural2
NEURAL2 (Sound net Training with GRAPHICS only!) ...
Do you want to train a net? (y/n) n
Do you want to draw spectra of a net? (y/n) y
Enter name of net-file to test: speakl.net
Was this generated by (0) FFT2 or (1) FFT3 ? 1
... graphics displayed now ...
1780A

Notice that you can also train a net (without conscience); however, it is much slower since

graphics are provided as status messages. The current version of preprocessing, incorporated into

AUTOFFT, corresponds to FFT3. After the graphics display is complete, the program is exited

C-7

by the user entering any string followed by a carriage return. This is the standard way to leave all

graphics displays in these programs!

Neural4. This program permits the user to graph trajectories through the first Kohonen

net. Again GKS graphics routines are used. The following is a sample run:

IT80A>run neural4
IEURAL4 (Sound TRAJECTORIES only?) ...
Do you want (0) sound file created or (1) not? 1
Do you want (0) 10 graphics or (1) TRAJECTORIES: I
Enter name of net-file to use [less .net]: speaki
Enter name [next] of speech file to map [less .trn]: zero3
... full trajectory graphed here ...
1

... reduced trajectory graphed here ...
1
Enter name [next] of speech file to map [less .trn]: zeroS
... full trajectory graphed here
1

reduced trajectory graphed here ...
"C
1780A>

Notice that a *.snd file can be regenerated from the trajectory (if you know what file was

used to train the net and if the training utterance's *.snd and *.trn files are located in the current

directory). However, creating a sound file is slow and incorporates distortion from various sources.

If no graphics are desired, an ASCII file (*.trj) is created (it's actually created in either case) which

contains the various steps in the trajectory reduction process. Each graphics display is left by

entering a string (here it's "") and a carriage return.

Autodtw. This program uses dynamic time warping to test a set of standard utterances.

Trajectories are created for a set of templates, which in turn are compared with the trajectories

created for the set of standard utterances. The templates are listed in a file such as "t2.hdr"

1780A>type t2.hdr
11
lzero3.trn
lone3. trn
ltwo3. trn

C-8

lthree3. tru
four5.trn
f ive3. trn

six8. trn
lseven3.trn
leight3,trn
inine3 trn
silence3 trn
1780A>

A file called "standard.hdr" which contains the names of the files listing the standard utter-

ances must be in the current directory. For example:

I780A>type standard.hdr
4
iso.hdr
SpeakerDependent_ Isolat edWords
con.hdr
SpeakerDependentConnect edWords
indiso .hdr
Speaker_.INDEPEDETI solatedWords
indcon.hdr
SpeakerINDEPENDENTConnectedWords
1780A>

The strings following each file name in standard.hdr are printed out during an AUTODTW

run prior to the tests on that file's set of utterances. Scoring is performed automatically in

AUTODTW, and cumulative scores are reported for each file's set of utterances. An example

of a set of utterances is:

1780A>type iso.hdr
5
kzerol.trn I
0
konel.trn 1
1
ktwol.trn 1
2
kthreel.tru I
3
idig3.trn 10
0123456789

1780A>

C-9

Notice that the first number in the file is the number of utterances to test. Then comes the

file names of each utterance followed by the number of digits in the respective utterance and what

those digit(s) are.

With all of the above files in the current directory, along with a trained net, AUTODTW can

be run:

I780A>run autodtw
AUTODTV: Tests standard set of utterances ...
Enter name of template file [less .hdr]: t2
Enter name of log file [add .log]: teap.log
Enter horizontal weight: .7

Enter vertical weight: .75
Enter name of net to use [less .net]: speakl

lzero3.trn is 76 vectors long
lone3.trn is 66 vectors long
ltwo3.trn is 52 vectors long
lthree3.trn is 68 vectors long
fourS.trn is 69 vectors long
lfive3.trn is 52 vectors long
six8.trn is 66 vectors long
lseven3.trn is 70 vectors long
leight3.trn is 37 vectors long
lnine3.trn is 82 vectors long
silence3.trn is 16 vectors long

SpeakerDependentIsolatedWords
kzerol.trn is: 0

Should be: 0
correct = 1.000 cum-correct = 1.000
koenl.trn is: I

Should be: I
correct = 1.000 cum-correct = 1.000

ldig3.trn is: 0 1 2 3 .. 4 5 6 7 .. 8 9

Should be: 0 1 2 3 4 5 6 7 8 9
correct = 1.000 cum-correct = 1.000

SpeakerDependentConnectedWords

... results continue ...

1780A>

C-10

The weights requested are the stretch factors used in the DTW routine. In addition to

printing the results on the terminal's screen (about five seconds per digit), the results are written

to the log file, "temp.log". The ".." seen in the output represents silence. Note that substitutions

and deletions count as one error while insertions only count as half an error (this is hardwired in

the scoring DTW routine's stretch factors). Also be aware that there are unusual cases where the

scoring will make a mistake on isolated speech. Check all results by examining the log file.

Outdat4. To save time in training the second level Kohonen nets, a set of trajectories is

precalculated and stored (for later use in TWOBAS4) by OUTDAT4. The list of utterances, from

which the trajectories are made, is kept in a header file. For example:

I780A>type twokoh2 hdr
100
zeroO trn
oneO. tra
toO. trn
threeO.trn
fourO.trn

five9 trn
six9.trn
seven9.trn

eightg trn
nine9. trn
1780A>

In the example shown, 100 trajectories are created, 10 of each of the 10 digits. The actual

run might be:

I780A>run outdat4
OUTDAT4: Prepare training data [x,y), second kohonen
Enter name of header file containing words (less .hdr): twokoh2
Enter name of pro-processor Kohonen net file [less net]: speakl
Enter name of data file to create (less .dat]: qpath
1780A>

The trajectories are stored in the ASCII file, "qpath.dat".

C-l1

Twobas4. This program trains the second Kohonen net and requires input parameters very

similar to NEURAL7. The biggest differences are the precalculated trajectories (isolated digits)

and user selectable conscience factor (,3). A sample run is:

I780A>run twobas4
TWOBAS4: Train 2nd Koh with 2-D trajectories ...
Enter conscience factor (> 1.0): [float] 1.5
Enter size ' n' (for an a z n) of array = lint int] 10 10
Do you want 0) sequential training,

1) randomized training? 0
Enter name of training file Cless .dat]: qpath
Enter name of net file to create [less .net]: path2l
Number of iterations = ? tint] 150000
Number of iterations between status mesgages =? int] 10000
For gain enter 0) LINEAR, 1) SIGMOIDAL, 2) PIECEWISE LINEAR :2
First segment starting gain = [(float] .1
Second segment starting gain = ? [float] .01
Second segment starting iteration = ? (float] 30000
Starting size of neighborhoods 'yn xn' = ? lint int] 4 4
Final size of neighborhoods 'yn xn' 2 ? tint int] I I
Initial seed for random # generator = ? tint] 33
Ready to begin? (y/n) y

TWOBAS4: gain=O.066669, yrange=3, xrange=3, iteration#10000 (of 150000)

TWOBAS4: gain=O.000000, yrange=1, xrange=l, iteration#*S0000 (of 150000)
Net file: path2l.net saved!
1780A>

TwomaskS. Since a lot of the "trailing" weights at the end of any node's weight vector

are -l's, a *msk file is created by TWOMASK5 (where "'" corresponds to the "*" in the net

file *.net" created by TWOBAS4). The *.rsk is an ASCII file used in the TWOPIC series of

programs to identify the effective length of the trajectories represented by each node's weight vector.

Running the program is simple:

1780Arun twomaskS
TWOMASK4 (Creates net mask for 2-D trajectories
) ... Enter name of output Koh net-file [less .net]: pathl-
... status information ...

17800>

Obviously, correcting prompt messages had a low priority in the thesis work.

C-12

Twopic4c. This program shows graphically which nodes light up (using Euclidean distance)

when a set of isolated digits are applied to a second Kohonen net. This program uses GKS graphics

routines. For example:

I780A>run twopic4c
TWOPIC4c (Plot Words for 2-D Reduced Queued Traj) ...
Enter name of pro-processor Koh net-file [less .net]: speaki
Enter name of header file containing words (less .hdr): twokoh2
Enter name of output Koh not-file [less .net]: pathil
... graph not ...
1

1780A>

Notice that the header file containing the utterances has the same format as that used in

OUTDAT4. Again, a string and carriage return exit the graphics display.

Twopic8b. This program finds the appropriate digit, with which to label each node in a

second Kohonen net, by looking through a list of trajectories and finding the closest one (by a

mini-DTW) to each node's weight vector. Again, the file listing the utterances is in the same

format used by OUTDAT4. A sample run is:

I780A>run twopic8b
TWOPIC8b (Closest word for each node: 100 wts/2-D)...

Enter name of pro-processor Koh net-file [less .net]: speaklO
Enter name of header file containing words (less .hdr): test3
Enter name of output Koh net-file [less .net]: path22
Expect 100 calculations

Reading word: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
95 96 97 98 99

lode 0 : word 0 22, dist = 9.465583e-01 (dtvo2.trn)

lode 99 : word 0 87, dist = 0.423736e-00 (deight7.trn)
Calculations finished.
1780A>

C-13

The output is written to "temp.log" in addition to being displayed on the terminal's screen.

Notice how the program "labels" a node-by giving the user the closest trajectory. In this example,

node 99 is identified as an eight. The output of this program should be saved for use in TWOPIC6b.

Twopic6b This program takes the node labels determined by TWOPIC8b and tests a set

of unknown utterances (using mini-DTW as the distance algorithm). Unfortunately, each time

TWOPIC8b is run and the labels are changed, the file "lookup6.c" must be modified and recom-

piled and then TWOPIC6b relinked. This process could be modified with code changes to both

0• TWOPIC8b and TWOPIC6b. But for now, this is the portion of "lookup6.c" that must be changed

to reflect the results of TWOPIC8b:

I780A>type lookup6.c

int look-up[100] {9,9,9,3,7,7,7,6,6,6,
9,9,3.3,3,3,6,6,6,6.
9,9,3,2,3,0,8,6,6,6,

1,1,1,3,3,0,3,66,6,

1,1,1,3,0,0,0,4,4,4,
• 3,1,9,3,0,0,0,09,4,

5,393,333,7,0,4,0,
5,5,2,3,2,7,7,7,8,2,
5,5,2,2,3,3,7,4,8,8,
5,5,9,3,0,3,4,3,8,8};

I780A

In this lookup table, each row of integers corresponds to the digits labelling a row of nodes.

The first node is the first integer, the last node is the 1 0 0 11 integer. Note that the program is

4L hardwired for a 10 by 10 Kohonen neural net. The update process is:

1780A>edit lookup6. c

1780A>cc lookup6
1780A>Gtwopic6b
1780A>

In this case twopic6b.com consists of:

4 I780A>type tuopic6b.coni

C-14

L --- -Ill ili ii lc-im 4

$ del twopic6b.exe

$ link twopic6b,nvin6b,lookup ,optionsfile/opt
1780>

Now, the user is ready to run TWOPIC6b to actually test the speech recognition capability

of a second Kohonen net. For example:

1780A>run twopic~b
TWOPICTB (DTW Words for 2-D Reduced Queued Traj) ...
Enter name of pro-processor Koh not-file [less .net]: speaktO
Enter name of header file containing words (loss .hdr): test3
Enter name of output Koh net-file [less ,net]: path2l

* Expect 100 calculations.

0 [0,41 dist = 1.350917e+00 zero

99 (8,6] dist 0.938755e-01 nine
Calculations finished.

* 1780A>

Notice that each word from "test3.hdr" is identified by a sequential number (here 0 through

99) according to its order in "test3.hdr". The node that lit up is in braces, and the d'-it the

utterance was found to be is spelled out in the far right column. Scoring this output requires

knowing what word is in what position in "test3.hdr". To simplify the scoring procedure, the

author (almost) always used 10 examples of each of the 10 digits in order.

Twopic~e. This is a later version of TWOPIC8b where the mini-DTW distance algorithm

is changed to a TAXI distance.

Twopic6c. This is a later version of TWOPIC6b where the mini-DTW distance algorithm is

changed to a TAXI distance. In this case, "lookup7.c" (instead of "lookup6c") should be updated

with the results from TWOPIC8c.
4

Coder. This program creates (and tests) an "untrained" second Kohonen net from a file of

precalculated trajectories (created by OUTDAT4). The trajectories are transferred directly to the

1

C- 15

I

nodes' weight vectors without any training. Tests are run on the untrained net for a set of test

utterances. The distance algorithm is a mini-DTW. The following is a sample run:

1780Arun coder
CODER: Create codebook using x-y pairs/dtw ...
Enter name of pro-processor Koh not-file [less .net]: speakl
Enter name of header file containing words (loss .hdr): testl
Enter .dat file for net generation (less .dat): qpath
Enter [number-inputs] desired (<=100): 75
Expect 100 calculations.

Word 0 is: 0
Word 1 is: 0

Word 99 is: 9
Calculations finished.
I780A>

The far right column corresponds to the calculated content of the word being tested. It

assumes that "qpath.dat" was generated from 100 words, 10 of each digit in sequence. For simplicity

in scoring, the author placed a similar sequence of digits (using other examples) in "test I.hdr".

Notice that the number of inputs is variable in this program.

Coderb. This program is the same as CODER, except that the mini-DTW distance algo-

rithm is changed to d TAXI algorithm.

Summary

The above paragraphs describe both the contents of the backup tape and the most significant

programs found on that tape. Further questions can be answered by contacting the author or

perusing the source code found in the directory [.DEV] or Appendix B of this thesis.

C-16

Bibliography

1. Wallich, Paul. "Putting Speech Recognizers to Work," IEEE Spectrum, 24: 55-57 (April 1987).
2. Doddington, George R. and Thomas B. Schalk. "Speech Recognition: Turning Theory to

Practice," IEEE Spectrum, 18: 26-32 (September 1981).
3. Levinson, Stephen E. and Mark Y. Liberman. "Speech Recognition by Computer," Scientific

American, 244: 64-76 (April 1981).

4. Routh, Capt Richard L., USA. A Spoken English Recognition Experl System. MS the-
sis, AFIT/GCS/EE/83S-1. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, September 1983.

5. Rothfeder, Jeffrey. "A Few Words About Voice Technology," PC Magazine, 5: 191-205 (30
September 1986).

6. Kohonen, Teuvo. "The 'Neural' Phonetic Typewriter", Computer, 21: 11-22 (March 1988). - -

7. Lippmann, Richard P. "An Introduction to Computing with Neural Nets," IEEE ASSP Mag-
azine, 4: 4-22 (April 1987).

8. Kohonen, Teuvo and others. "Phonotopic Maps-Insightful Representation of Phonological
Features for Speech Recognition," Proceedings of the Seventh International Conference on
Pattern Recognition. 182-185. Los Angeles: IEEE Computer Society, 1984.

9. Kohonen, Teuvo. "Dynamically Expanding Context, with Applications to the Correction of
Symbol Strings in the Recognition of Continuous Speech," 1986 International Conference on
Pattern Recognition. 1148-1151. Los Angeles: IEEE Computer Society Press, 1986.

10. Ludeman, Lonnie C. Fundamentals of Digital Signal Processing. New York: Harper & Row,
Publishers, 1986.

11. O'Neill, Mark A. "Faster Than Fast Fourier," Byte, 13: 293-300 (April 1988).
12. Ney, Hermann. "The Use of a One-Stage Dynamic Programming Algorithm for Connected

Word Recognition," IEEE Transactions on Acoustics, Speech, and Signal Processing, 32: 263-
271 (April 1984).

13. Dawson, Capt Robert G. Spire Based Speaker-Independent Continuous Speech Recognition
Using Mixed Feature Sets. MS thesis, AFIT/GE/ENG/87D-14. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1987.

14. Rabiner, Lawrence R. "Considerations in Dynamic Time Warping Algorithms for Discrete
Word Recognition," IEEE Transactions on Acoustics, Speech, and Signal Processing, 26: 575-
582 (December 1978).

15. Juang, Bliing-Hwang and Lawrence R. Rabiner. "Mixture Autoregressive Hidden Markov Mod-
els for Speech Signals," IEEE Transactions on Acoustics, Speech, and Signal Processing. 33:
1404-1413 (December 1985).

16. Hussain, Capt Ajmal, PAF. Limited Continuous Speech Recognition by Phoneme Analysis. MS
thesis, AFIT/GE/EE/83D-31. School of Engineering, Air Force Institute of Technology (AU).
Wright-Patterson AFB OH, December 1983. (A138 021)

17. Dixon, ILt Kathy R. Implementation of a Real-Time, Interactive, Continuous Speech Recogni-
tion System. MS thesis, AFIT/GE/ENG/84D-26. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, December 1984.

18. Montgomery, 2Lt Gerard J. Isolated Word Recognition Using Fu:zy Set Theory. MS the-
sis, AFIT/GE/EE/82D-74. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1982. (A124 851)

BIB-i

19. Kohonen, Teuvo. "Learning Vector Quantization and the K-Means Algorithm," 1988 Interna-
tional Conference on Neural Networks, Tuatorial # 10, Self-Orgnizing Feature Maps, Appendix
4: 1-2. San Diego: IEEE Computer Society Press, 1988.

20. Kim, Capt Peter Y. F-16 Speaker-Independent Speech Recognition System Using Cockpit Com-
mands (70 Words). MS thesis, AFlT/GE/ENG/88D-18. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB 0OH, December 1988.

BIB-2

Vita

Captain Gary D. Barmore

received a Bachelor of Science degree in
Physics from Purdue University in May 1978. He spent two years as an engineer for McDonnell-

Douglas Astronautics before entering Washington University School of Law. In 1981 he left law

school to enter the USAF. He received his commission through OTS in February 1982, and then

attended Louisiana Tech University in an AFIT/C[program. He received a Bachelor of Science in

Electrical Engineering from Louisiana Tech in May 1983. His follow-on assignment was at Space

Division (AFSC) in the Navstar/Global Positioning System Joint Program Office where he became

chief of the Satellite Systems Division. He entered the School of Engineering, Air Force Institute

of Technology, in June 1987.

VITA- !

SECUIT CLASSIFICATION OF THISPAG UNCLASSfFIED
Form Approved

REPORT DOCU MENTATION PAGE OMB No. 0704-018

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GEO/ENG88D-1

68. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
School of Engineering (If alplicable) -A

AFIT/ENG
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology

Wright-Patterson AFB OH 45433-6583

Ba. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFIC4N NUMBER
ORGANIZATION (If applicable)

i.. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT ;TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)
Speech Recognition Using Neural Nets and Dynamic Time Warping UNCI ASFF1FT~

12. PERSONAL AUTHOR(S)
Gary D. Barmore, Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
MS Thesis FROM TO _ 1988 December 297

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Speech, Speech Recognition, Neural Nets, Dynamic Time Warping, Kohonen

I r 4 Neural Nets
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman: Dr. Matthew Kabrisky, PhD, Professor of Electrical Engineering

A speech recognition system is described that uses neural nets and dynamic time warping to recognize speaker indepen-

dent, isolated and connected speech. The system uses a Kohonen neural net to characterize an utterance as a trajectory

through a two dimensional space. The trajectories are input to a word recognition algorithm---either one pass dynamic time

warping (DTW) or a modified second Kohonen neural net---to determine the content of the utterance. For a small vocabulary

consisting of the digits zero through nine, DTW correctly identifies up to 99% of isolated speech and 93% of connected

speech. On the same vocabulary, the modified second Kohonen neural net correctly identifies up to 96% of isolated speech.

The second Kohonen net processing was not designed to efficiently identify connected speech.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED E3 SAME AS RPT C DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Dr. Matthew Kabrisky, GS-15 (513) 255-5276 AFIT/ENG

00 Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

