-
N
1O
o
©
N
T
Q
<

.

Bkl o s,

i a peih

. DEPARTMENT OF THE AIR FORCE

‘L _‘ ~AIR FORCE INSTITUTE OF TECHNOLOGY =
f' KR S - = ,» .

L AFIT/GEO/ENG /88D-1

SPEECH RECOGNITION USING NEURAL
NETS AND DYNAMIC TIME WARPING

THESIS

Gary Dean Barmore
Capt, USAF

AFIT/GEO/ENG/88D-1

DTIC

S JANli 8 lgq.*—

Approved for public release; distribution unlimited

AFIT/GEO/ENG/88D-1

SPEECH RECOGNITION USING NEURAL NETS
AND DYNAMIC TIME WARPING

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

Gary Dean Barmore, B.S., BS.E.E
Capt, USAF

December, 1988

Approved for public release; distribution unlimited

)
Preface
k The purpose of this effort is to demonstrate the feasibility of using Kohonen neural nets in
recognizing speech. A dual level system of two Kohonen neural nets accomplished this. The first
net breaks an utterance into a sequence of phonemes, a trajectory. The second net recognizes those

trajectories as distinct words.

In performing the study, I am deeply indebted to my faculty advisor, Dr. M. Kabrisky, for
his suggestions, support, and most particularly, acting as a sounding board for ideas. I would also

like to thank Capt S. Rogers for his assistance and suggestions.

Gary Dean Barmore

euPY

INQPECTED

Accegsion Yor

TIS GRAXI A

DTIC TaB O
Unaanounced 0 -
Justification _
By ..
| Distribution/

—]

Av,!labiltty Qogps
‘Avatl and/or
Dist | <nantad

A
Rl

n

Table of Contents

Page

Preface N i
Tableof Contents e iid
Listof Figures e e iv
Listof Tables v
Abstract L e e e e vi
L Introduction L. 1-1
Problem 1-1

Background 1-2

Definitions 1-2

Connected Speech.o . 1-2

Speaker Independence. L. 1-3

Feature Set.. 1-3

Neural Net. 1-3

Trajectories. e 1-5

Dynamic Time Warping. 1-6

Scope . . . L e 1-6

Approach 1-7

Sequence of Presentation, 1-7

IL. Development Environment 2-1
Sound Sampling 2-1

Software Development 2-1

Run-Time Environment 2-2

f .

' -
Page
III. Speech Recognition System 31
Preprocessing 31
Windowing. e e 33
Fast Fourier Transform. 34
Frequency Reduction. 34
Average Subtraction. Lo L 36
Energy Normalization. 3-6

First Level Kohonen Neural Net 3-7 -
Training. e 3-7
Use. e 310
Post-Net Processing 311
Rationale. 311
Method. 311

Word Recognition Algorithms 312 _

Dynamic Time Warping. 3-12 o

Second Kohonen Neural Net. 317
SUMMATY o o e e e e e e e e e e 3-22
IV. Resultsand Discussion 4-1
First Kohonen Neural Net 4-1
Trajectories e e e 4-1

Dynamic Time Warping 4-7 i
Training Process. 4-7
Stretch Factors. 4-8

CONSCIENCE. o vt e 4-9 -
Templates. 4-10
Speaker Independent Speech Recognition. 410

Second Kohonen Neural Net 411

Page

Early Attempts. 411

k Trajectory Input Nets. 412

Summary e 421

V. Conclusions and Recommendations 5-1
Conclusions 5-1 -

Dynamic Time Warping. 5-1

Second Kohonen Net. 5-2
Recommendations, 53 B

Summary 5-4

A. Template Trajectories A-1

B. Computer Programs B-1

C. Software User’s Manual C-1

Introduction L C-1

The Backup Tape, C-1

Dev. e C-2

Lin. C-2

Net. . . . C-3

Snd2. C-3

Snd3. . .. C-3

Sndw. . . . L C-3

Sounds. C-3

Sounds2. C-4

Sre. . L C-4

Test. C-4

Programs C-4

Autofft. C-5

Twopicde

Twopic8b. e

Twopic6b

Twopic8¢

Twopicbe

C13
C-13
C-14
C-15

C-15

Figure

1.1.

3.1.
3.2.
33.
3.4.
3.5.
3.6.
3.7.
3.8.

3.9.

4.1.
4.2.
43.
44,
4.5.
4.6.
4.7.

4.8.

Al
A2
A3.
A4,
A5,

A6.

List of Figures

Page
A Sample Kohonen Neural Net_ 1-5
The Speech Recognition System 3-2
Ramming Windows 33
FFT Inputsand OQutputs 3-4
Frequency Reduction 3-5
Average Subtraction Ll L 36
Energy Normalization 37
DTW Array e 314
A Simplified DTW Example 315
DTW Used for Scoring 3-18
Net Speakl Trained with No Conscience 4-2
Net Speakl10 Trained with Conscience =1.5 4-3
Full Trajectory of the Word Zero 4-4
Reduced Trajectory of the Word Zero 4-5
Reduction Process for the Word Zero 4-6
Net Path5 Trained with No Conscience 413
Net Pathll Trained with Conscience =15 414
Net Path12 Trained with Conscience = 1.1 4-15
Reduced Trajectory of the Template Zero A-2
Reduced Trajectory of the Template Onre A-3
Reduced Trajectory of the Template Two A-4
Reduced Trajectory of the Template Three A-5
Reduced Trajectory of the Template Four A-6
Reduced Trajectory of the Template Five A7

vii

Figure
A.7. Reduced Trajectory of the Template Six . .
A 8. Reduced Trajectory of the Template Seven
A 9. Reduced Trajectory of the Template Eight
A.10.Reduced Trajectory of the Template Nine .

A 11.Reduced Trajectory of the Template Silence

Page
A-8
A-9

A-10

A-11

A-12

List of Tables

Table Page
4.1. PresentationofInputs L Lo L. 4.7
4.2. Comparison of Stretch Factors 4-8
4.3. Tests of Clearly Spoken Connected Speech 49
4.4. Conscience in First Kohonen Nets 49
4.5. Conscience in Second Kohonen Nets 412
46. ScalarInput Net Tests 4-16
4.7. Conscience in 100 Scalar Input Nets 4-17
4.8. Accuracy of 100 X-Y PairInput Nets 4-18
4.9. Differently Trained 100 X-Y Pair Input Nets 4-18
4.10. Scalar Input Nets Without Training, . 419

4.11. X-Y Pair Input Nets Without Training, 4-20

AFIT/GEO/ENG/88D-1

"r\{

The purpose of this study is to demonstrate the feasibility of using Kohonen neural nets in

Abstract

speech recognition. This is done by combining a first level Kohonen net with a word recognition

algorithm which is either dynamic time warping (DTW) or a second Kohonen net.

A digitized utterance is sliced and processed to obtain a sequence of 15 component vectors.
Each component corresponds to the energy in a selected frequency range. An utterance of the
digits zero through nine is used to train the first Kohonen net. After training, an utterance input
to the net produces a trajectory through the net. Each point on the trajectory corresponds to a

node and a particular sound.

These trajectories are input to a word recognition algorithm. The first of these, DTW, com-
pares unknown utterances to template utterances. It is a computationally intense, mathematical
algorithm, and it was used primarily to test the preprocessing and neural net training procedures.
The second algorithm is a second Kohonen neural net. Digits are assigned to each node so that
when an unknown trajectory is input to the second net, the node that “lights up” identifies the

utterance.

Using DTW, 99% isolated and 93% connected speech recognition rates are achieved. With the

second Kohonen net, isolated speech is recognized at up to 96%, depending upon the net format.

Recommendations for future effort include increasing the vocabulary, using multiple feature
sets and nets to attempt speaker independent speech recognition, and substituting a backward

propagation multi-layer perceptron net for word recognition. -

SPEECH RECOGNITION USING NEURAL NETS

AND DYNAMIC TIME WARPING

I. Introduction

As our society becomes more technically oriented, the ability to efficiently direct both ma-
chines and computers becomes essential. One very promising way of increasing that control is
through voice direction of computer controlled devices. Not only could the worker use hands and

feet to control conveyances, appliances, computers or weapons, he could also use voice.

However, in addition to simply expanding the number of methods by which devices are
controlled, voice recognition permits simplification of the interface process. Remember the last
time you tried to play a tape on your friend’s new stereo? How long did it take you to find
the ON/OFF button? Imagine simply saying, “Stereo, power on”. Considering the vastly more
complicated process of controlling a fighter aircraft, the anticipated benefits from voice control in a
cockpit are immeasurably greater. Thus, iv today’s complicated weapons environment, the benefit

to the military of a working voice recognition system is obvious.

Problem

Accordingly, the purpose of this effort is to demonstrate the feasibility of a speech recognition
system for connected speech—a system which uses neural nets to simulate the activity of neurons

and potentially take advantage of parallel processing techniques. The feature set used to charac-

terize speech, the neural net training process, and the word recognition algorithms (which process

the output from the ncural net) are varied to obtain the best performance.

v

Background

Unfortunately, the current state of the art in voice recognition does not allow an efficient
transfer of information between humans and machines. Speech recognizers limited to the speech
of one person, with distinct pauses between each word, have recognition efficiencies around 98%
(1:57)—in ideal or noise free environments (2:29-32). These recognizers fail when the speech
becomes continuous (without distinct pauses) or is not spoken by the one person who trained the

recognizer.

Attempts to have machines recognize continuous speech as well as speaker independent speech
are limited to small vocabularies, require immense amounte ~* ...mputation, and are relatively
unsuccessful (1:56; 2:29; 3:74-76; 4). Speaker independent speech recognition, in particular, requires
using multiple templates (5:199) ; ie., training the recognizer with more than one voice, thus

limiting the usable vocabularies because of the increased computation.

Attempts to use a form of parallel processing (or at least a serial simulation) to minimize
the impact of computation time include Kohonen’s work with neural nets (6:15; 7:18; 8:184; 9).
However, his work is directed more towards producing a phonemic transcription of speech rather

than actual whole word recognition.

Problems involved in using neural nets to recognize speech include choosing the feature set
with which to train the net (the age old problem of traditional pattern recognition), finding a net

with the optimurmn performance, and processing the net output into actual words and sentences.

Definitions

Connected Speech. Since the problem involves recognizing connected speech, a definition
is essential. Connected speech is simply an utterance in which distinct pauses are not intentionally
provided between words. When distinct pauses are included, the utterance is identified as isolated

speech. In connected speech, words may be pronounced distinctly (that is, the pronunciation is

not chopped or smeared) or they may be run together (where the words are chopped or smeared

at the boundaries). Additionally, the speed with which words are spoken varies. Typically, when
isolated speech is performed, words are spoken more slowly than during typical conversations. The
difference in speeds becomes an important factor in properly processing the neural net output into

reccgnized words.

Speaker Independence. While the same person generally pronounces the same words simi-
larly time after time, different individuals have different speech organs and distinguishably different
sounding voices. In addition, a person from the Midwest pronounces words differently than someone
from the South. Such differences create significant problems in recognizing speaker independent
speech. Accordingly, the speech recognition system described here is developed using speaker de-

pendent utterances.

Feature Set. A feature set represents or characterizes utterances in such a way that they
ate distinguishable from other utterances. Usually, the feature set characterizes only a small slice
of time, thus requiring a sequence of slices to represent the whole utterance. Hence, the speech
waveform is broken up into distinct time slices (possibly overlapping) which are then transformed

into vectors defined from the chosen feature set.

For example, in this research, the feature set is the narrow band frequency spectrum. The
components of the vectors representing each time slice correspond to the energy in sequential
frequency bands. Thus an appropriate transformation is either the fast Fourier transform (FFT)
(10:272-285) or a fast Hartley transform (FHT) (11) with some postprocessing to reduce the number

of frequency bands to a usable number.

Neural Net. After the feature set is chosen and the representative utterance is sliced up

and transformed into vectors, it is time to train and use a neural net.

The neural net simply approximates or simulates a set of interconnected neurons. In the

1-3

present work, a “Kohonen neural net” (6:15-18; 7:18-20; 8:182-185) is a simplified simulation of a

single two dimensional layer of interconnected neurons. Each node in the two dimensional Kohonen
net corresponds to a neuron and is associated with a set of weights. The weights correspond to the
strength of the connection between the inputs and each node, and can alternatively be thought of

as multi-dimensional vectors (in a hyperspace) which characterize the respective nodes.

For example, if each input to the net consists of 15 components (such as a 15 component vector
corresponding to a spectral slice of a speech waveform), each node is associated with 15 weights.
The output of each node, corresponding to a given input, is the summation of the products of the
weights to that node and the input components:

N
%= Zu;,,—z,- (1.1)

j=1
where y; is the output of node i, N is the number of input components, w; ; is the weight connecting
the i*® node to the j*» component of the input, and z; is the value of the j** component of the
input. For clarity, let the set of weights associated with a node be called that node’s “weight
vector”. Figure 1.1 shows the relationship between the nodes, weights, and inputs in graphical
form for a net having four nodes and two input components. The figure includes the equations

describing a node’s output as well as the weight update process (described in detail in Chapter II).

Training the net with a set of input vectors results in the weight vectors of the nodes approxi-
mating the input vectors. Also, the weight vectors associated with nodes in localized regions of the
neural net tend to be similar to one another; i.e., the Euclidean distances between weight vectors,

corresponding to a local region of the net, is relatively small.

Another way to think of a Kohonen net is a8 a codebook. If the input vectors representing time
slices are thought of as phonemes, each node’s weight vector represents a characteristic phoneme

from the training set. Thus, when a phoneme is input to the net (as an input vector), the node

1-4

OUTPUT Y| s T wi, X

TRAINING: wy, (t+1) = wis(t) vl t) (xs(t) - wis(t))

Figure 1.1. A Sample Kohonen Neural Net. The first Kohonen net in this system
actually has 225 nodes (in a 15 by 15 array) and 15 inputs.

(i) whose weight vector represents that phoneme will have the largest output (y). Obviously, each

weight vector is just one of the codes from a codebook.

Trajectories. After a net is trained with an utterance representative of the vocabulary to
be recognized (by repeating the utterance many times), the net is ready to characterize speech.
Given an input, only one node of the net most closely resembles the input. Thus a sequence of time
slices or vectors generate a trajectory through the neural net, with each point on the trajectory

corresponding to the node most closely resembling the respective input vector.

Hence a neural net characterizes an utterance by a unique trajectory. It is these trajectories,
whether they correspond to a single word, a string of spoken digits, or a sentence, which are

processed to obtain the content of an utterance.

The trajectories may be thought of as either pictures of a complex meandering line or as
sequences of two dimensional coordinates. The former representation suggests using traditional
pattern recognition algorithms for processing images. The latter suggests traditional speech recog-
nition processes such as dynamic time warping (DTW) (12:263-271; 13:Ch 3,6-16) or state tran-
sition mapping (14). This work examines the latter processes (DTW in particular) as well as the

possibility of using a second neural net to process the Kohonen net output.

Dynamic Time Warping. A method is needed to evaluate the performance of different
nets. For this purpose, Ney’s one step dynamic time warping algorithm (12) is useful. This
algorithm allows a near optimum recognition of connected speech while minimizing errors due to

word boundaries and stretching of words during pronunciation.

Running a standard set of utterances through a net and then a dynamic time warping algo-
rithm characterizes the performance of the net (including its training procedures and the feature set
chosen for speech characterization) by the percentage of words correctly identified. Doing this for
several nets (or feature sets) permits comparison of the nets (or feature sets) based on the variable
being changed. And of course, this algorithm also provides a version of the last step in a speech

recognition system, the word recognition algorithm.

Scope

The evaluation and selection of feature sets, the neural net training process, and the trajectory
processing algorithm are all based upon a vocabulary of the spoken digits zeto through nine. A
set of standard utterances consisting of both single and connected digits is used to compare and

optimize the various processes in the system.

Initial evaluations use the standard set of utterances and the one step dynamic time warping
algorithm to evaluate both the feature seta and the neural net training process. Both DTW and a

second Kohonen net are evaluated as word recognition algorithms.

Approach

In developing a system to recognize connected speech, the first task is to select a feature set.
Once the feature set is selected, alternate training procedures for the Kohonen net are evaluated.
After the net training process is tuned for optimum performance, by testing standard utterances
with DTW, comparisons are made between likely algorithms to process the net trajectories and
provide the sequence of words contained in the input utterances. Algorithms considered include
variations of dynamic time warping (12; 14), state transition (15), phoneme analysis (16), reduced
phoneme trajectories (17), fuzzy set analysis (18), and a second neural net. Time considerations

limited tests to dynamic time warping and a second Kohonen neural net.

During each step, the evolving system is evaluated for its utility in recognizing both connected

and isolated speech.

Sequence of Presentation

Chapter two presents the hardware and software environments used to digitize and process
the utterances. Chapter three defines the speech recognition system and describes alternatives
that were evaluated. Details are provided on each step and algorithm in the recognition process.
Chapter four presents the results of the tests on those versions of the system which demonstrated
reasonable performance. Results include tests for speaker dependent, isolated and connected speech.

Chapter five provides conclusions and recommendations for further application and expansion of

the recognition system. The Appendices contain additional data and the computer programs.

II. Development Environment

Every speech recognition system requires an analog to digital (A/D) convertor to sample
the sound. This was provided by a Digisound Professional cartridge attached to an Atari 520
ST microcomputer. The sound data files were transferred to a VAX 11/780 where they were run

through preprocessing and FFT routines.

All computer programs were developed »n the VAX 11/780 in the C language under the VMS

operating system. Most of the progr=ris were run on either Micro-VAX II’s or I1I's.

Sound Sampling

The Digisound Professional digitizer cartridge for the Atari 520 ST has a sampling range of 5
to 40 kHz. It takes eight bits (one byte) per sample in either a normal or logarithmic mode (where
logarithmic mode allows a greater dynamic range than the normal mode). The data files generated
by the Digisound software contain eight bytes of header information followed by N bytes of sound
data, where N is the product of the number of samples per second times the number of seconds
of data recorded. The format of each byte, assuming sound data has positive and negative values
ranging about an average value translated to zero, has the negative values (—128 to —1) translated

to the (+128 to +255) range by addition of 256.

Most of the data files generated for this work were sampled logarithmically at 16 kHz. Normal
mode sampling was tested on a smail amount of sound data and found to not significantly affect
the performance of the system (at an early point in the system’s development). The selection of 16

kHz and logarithmic sampling was arbitrary, but assured a “good” characterization of the sounds.

Software Development

All software was developed on a VAX 11/780 running the VMS operating system. Programs

were developed exclusively in the “C” language using the Graphics Kernel System (GKS). The use

2-1

of C and GKS permits porting of the system to other host computers with only minor software
changes. Additionally, all sound files were stored on the VAX 11/780. This permitted one back-up

tape to record all essential sound and program source files.

The programs were developed in a modular fashion. Generally, each step in the process was
tested as it was developed. The use of *.com files (corresponding to the MAKE utility on UNIX

machines) allowed modular compilation of routines and quick linking into executable modules.

Run-Time Environment

Most of the programs developed on the VAX 11/780 wete run on either a Micro-VAX Il or III.
The exception to this was the transformation of sound files (*.snd) into files containing frequency
domain vectors (*.trn) and dynamic time warping routines. These two sets of software were usually

run real-time on the VAX 11/780 at about one million instructions per second (1 MIP).

All other software was usually run batch (on the Micro-VAX III at 3 MIP) or required GKS
graphics (on the Micro~-VAX II at .7 MIP). The software run on the Micro-VAX machines included

training and testing of the neural nets.

Summary

A concise summation reveals the Atari 520 ST as the host for speech digitizing and VAX
machines for all other work. Coding was done in C using GKS for graphics and VMS as the
operating system. Finally, after identifying hardwate and software used for development, its about

time to describe the speech recognition system itself.

III. Speech Recognition System

The speech recognition system consists of a preprocessor, a first level Kohonen neural net,
post-net processing, and a word recognition algorithm. The word recognition algorithm is either
a dynamic time warping (DTW) algorithm or a second Kohonen neural net. The dynamic time
warping algorithm works for either isolated or connected speech, while the second Kohonen neural
net provides acceptable results only for isolated speech (with only limited continwous speech testing
of the second Kohonen neural net). Figure 3.1 diagrams the steps in the system. Each step is

described below in detail.

Preprocessing

This stage of the system was developed before the word recognition algorithm (see the section

on Word Recognition Algorithms) and remained essentially unchanged after the initial development

- period. The preprocessing method was “frozen” when it created “reasonable” reduced trajectories
(see the section on Post-Net Processing) through the first Kohonen neural net. Thus, it is possible
that other, possibly simpler, preprocessing schemes will work as well, or even enable better overall

system performance.

The preprocessing was initially very simple. The sound data, sampled at 16 kHz, was broken
up into consecutive non-overlapping windows of 128 samples each. Each slice was run through an
FFT routine to produce a set of 64 complex frequency coefficients. The amplitudes of these 64
frequencies were reduced to a set of 15 values corresponding to 15 frequency ranges. The extent of
each range increased linearly as the frequency increased. Thus, for each time slice of 128 samples
a 15 component vector, representing the frequency domain of the slice, was produced. The final
preprocessing step was energy normalization of each vector to remove variations in the volume of

the utterance.

31

L IR

Digitized \: Hamm1ing FFT
: >
Utterance /- Windows {256 Points)

k PREPROCESSING

Energy Average Frequenoy
Normalization Subtraction Reduction

1

§ Net Kohonen
: Tralnlng Net

Trajectory
Reduction

Kohonen Net f
DTW Net Trainlng ﬂ

Figure 3.1. The Speech Recognition System. The second Kohonen net is de-
veloped and tested as an alternative to DTW as the word recog-
nition algorithm.

@
‘ 4+ et T
A m(” 1S rF"""PNP
>
. I]]
“~U.LLLJ“J ‘MJWJ
18 as
| Window #1 -- 256 samples 21.3 me
o 0 ms L Window #2 -- 256 samples 26 6 ms
5.3 us { Window #3 -- 256 samples |
10.6 as

¢ :

Figure 3.2. Hamming Windows. The ringing effects caused by rectangular
windows are reduced by using hamming windows.

e Unfortunately, this initial preprocessing scheme did not work. However, at this point, the
preprocessing procedure was evaluated using untested first net training procedures and the full (not
reduced) trajectories through the net. Accordingly, the following set of procedures was developed.

P Because of the reservations just listed, it is possible that this set provides more processing than is
necessary.

Windowing. A hamming window reduces the high frequency ringing effects that would be
¢
caused by sampling speech with a rectangular window. And, since the period represented by each
time slice is very short, the window length is increased to 256 samples. Thus, each hamming window
covers 16 ms. An overlapping scheme of 3:1 is used to minimize boundary effects of the hamming
¢
windows. Thus, each 16 ms window begins 5.3 ms after the start of the prior window. The relation
is depicted graphically in Figure 3.2. Please note that the sound envelope is shown compressed in
time simply to assure that the viewer recognizes the data as that for speech.
¢

256 Samples 5 FFT +—o IES !;‘riﬁguenoy

Figure 3.3. FFT Inputs and Outputs. The 128 complex coefficients are con-
verted to positive amplitudes; the phase data are thrown away.

Fast Fourier Transform. A typical 256 point complex FFT routine processes each 256
sample hamming window. The imaginary components of the input are set to zero. The amplitudes
of the resulting 128 frequency components are calculated from the real and imaginary outputs.
This array of amplitudes is passed to the next preprocessing step. To complete the pictorial

representation of preprocessing, Figure 3.3 is included.

Frequency Reduction. To reduce the time to obtain trajectories, the 128 amplitudes are
reduced to 15. In speech, since there is less energy at the higher frequencies, a nonlinear compression
of the frequencies provides some equalization of the spectral amplitudes (energies). In this work,
a pseudo-logarithmic (nearly quadratic) reduction is used. In general, this allows a one-to—one
transformation at the lower frequencies and simple summation of amplitudes from ever larger
groups at the higher frequencies. It should be noted that the human auditory system uses an

approximately logarithmic coding of frequencies.

This mapping was set up to provide a 15 component vector corresponding to each time slice
(window) where each component on the average is of the same order of magnitude. Figure 3.4

provides some additional detail on the actual mapping.

34

] 19 12 20
| I 1 1 1 L i i i

il 1 [T T T T

-ﬂmHHm 1 2 15

{ Thres eul loves: 2)

Figure 3.4. Frequency Reduction. After reduction, the sounds are still sepa-
rable, but can be manipulated more quickly.

OS]
NSNS

Figure 3.5. Average Subtraction. This process distributes the input vectors
throughout a 15 dimensional hyperspace—not just the positive
sector.

Average Subtraction. Since each slice is reduced to a 15 component vector, a sequence of
slices can be thought of as a trajectory through a 15 dimensional hyperspace in which only the
positive sector is used.! By finding the average value of the 15 components and then subtracting
that average from each component, the components become both positive and negative, and all

sectors of the hyperspace are used. This is shown in Figure 3.5.

Energy Normalization. Energy normalization of the 15 component vectors has two bene-
fits. The first is that variations in the loudness of the speech will not create differences in the same
sound’s vectorial representation. Hence a word can be recognized no matter what its volume—
assuming no other differences in pronunciation. Figure 3.6 shows the normalization process in

terms of a unit hypersphere.

The second advantage of energy normalization is that neural net processing of normalized

inputs allows use of dot products in place of Euclidean distance calculations (see Equation 1.1).

1Each frequency amplitude resulting from an FFT is defined as a positive value. And sums of these amplitudes
are assigned to the 15 components of each vector. Thus all components of the vectors are positive. The positive
sector in a hyperspace contains all of those vectors and is simply that region where all the coordinates of a point are
positive.

3-6

Untt
Hypersphere

Vi
Longthened

Unatt
Hypersphere

>

ve

D

o>

Figure 3.6. Energy Normalization. Variations in volume are removed when
each slice is normalized to one.

ve
Shortened

This improves the speed of net training, testing, and use.

First Level Kohonen Neural Net

Preprocessing produces a file that consists of a sequence of normalized 15 component vectors.
Each of these vectors, when applied to a Kohonen neural net, will “light up” a node. A node is
defined as “lighting up” when the distance between the node’s weight vector and the input vector
is smaller than the distance between any other node’s weight vector and the input vector. Hence, a
sequence of input vectors (corresponding to the slices of an utterance) is represented by a trajectory

of nodes lighting up.

Training. To get trajectories to use as templates for known words or as representations of
unknown utterances, one must first have a trained net. The purpose of training the net is to get

a two dimensional representation of the 15 dimensional space which produces: (a) very similar

37

trajectories for different utterances of the same word, and (b) significantly different trajectories for

utterances of different words. If these two requirements are not met, word recognition will not be

successful.

Size. But what size net can meet these requirements? Since the vocabulary is the
digits zero through nine, the number of significantly different sounds in those words should dictate
the size of the net. Using an arbitrary set of phonemes (sounds), the ten digits were broken up into
combinations of about 20 different phonemes. Assuming each region on the neural net corresponds
to a phoneme, and assuming the reasonable size of a region is 9 nodes (to allow variations), the
desired rectangular net has at least 180 nodes. This allows 9 versions of each of the 20 phonemes
and theoretically accounts for most differences in pronouncing the same word. Thus, to allow
margin for background noise in the training input data, the net was chosen to be 15 by 15 (a total

of 225 nodes) with 15 weights per node.

Initialization. The weights for each node are initially assigned random values between
—~0.05 and +0.05. Since the inputs are normalized to unit energy, the average input component

(corresponding to a weight) is Z; qve = %1/ 75 = £0.258.

Training Cycles. The actual training of the net requires applying an input (a 15
component vector) and updating the node’s weights. This cycle is done repeatedly. The actual input
vectors are chosen sequentially from an utterance which contains the spoken digits, in sequence,
with brief pauses between words. When the number of training cycles is greater than the number
of vectors (slices) in the training utterance, the training utterance vectors are simply applied again.
The final nets were trained between 90,000 and 150,000 iterations (cycles). In analyses of early

tests, most of the weight changes were accomplished within the first 10,000 iterations.

Random application of the vectors and random application of the words were also tried, but

resulted in no improvement in recognition accuracy.

38

Neighborhoods. As previously described, when an input vector is applied, a node

lights up. During any training cycle, only the weights of those nodes. in a neighborhood about the

node that lit up, are updated. Of course, the neighborhood includes the node that lit up.

Neighborhoods are rectangular? in shape, and are truncated (where applicable) at the edge
of the net. Neighborhoods are specified by their radius (or half their length and width). Thus a
neighborhood specified as ‘4 3’ actually includes an array of nodes sized 9 by 7. A typical training
process on a 15 by 15 net running 90,000 iterations starts with neighborhoods sized ‘7 7' and
linearly reduces them to ‘1 1’ at iteration number 20,000. Thereafter, the neighborhoods stay at a

constant ‘1 1°.

In the training processes used here, neighborhoods are never reduced to only the node which
lit up. Since the minimum neighborhood includes the nearest neighbors, weights in complete regions

(nine nodes) wili be adjusted during all training cycles.

Gains. A gain curve specifies how much the weights of each node are changed during
each training cycle (within the specified neighborhood). Outside of the neighborhood, node weights
are not changed. Typical gain curves are piecewise linear in two sections. For example, the gain
might start at 0.1 and reduce linearly to 0.0 at 20,000 iterations. Thereafter it might reset to 0.01

at 20,001 iterations and reduce linearly to 0.00 at 90,000 iterations.
The actual equation used to update a weight within the given neighborhood is:
wij(t+ 1) = wi j(t) + a(t)(z;(t) — wi (1)) (3.1)

where w is the weight connecting node i to the j** component of the input z, ¢ is time (or cycle),

and a is the gain.

Conscience. While training a Kohonen neural net as described above, one usually

finds that several nodes in the net (during the training cycle) are not often lit up by the inputs.

2Although the software allows neighborhoods to be rectangular, all of the nets in this effort were trained using
square neighborhoods.

39

i

This results in under-training of certain nodes and a corresponding under-utilization of the same

nodes during later use of the net. Specifically, the possible set of trajectories representing the

chosen vocsbulary will never, or seldom, include some of the nodes.

This is a problem only if different classes (regions in the 15 dimension hyperspace representing
different sounds) tend to be pushed together in a region of the net, not allowing sufficient resolution

for adequate speech recognition.

One possible cure for such a problem is applying “conscience”. The name is derived (rumor
has it) from the assumption that given a large enough set of random inputs, any node should light
up with equal probability. Supposedly, the net training routine is “bugged” when this does not

occur and thus activates its “conscience”.

The version of conscience used here is simple. It assumes that during training, the inputs
should have lit up each of the nodes about an equal number of times at every cycle of the training
process. Thus, when the program is searching through the 225 nodes to find the one that lights up
(for each cycle), it does not consider those nodes which have already been lit up too often. The

routine specifically uses the following equation for eligibility of the node:
t
a(t) < f- (3.2)

where c is the number of times node ¢ has been lit up prior to time (cycle) ¢, n is the total number
of nodes, and 3 is a conscience factor (usually 1.5).3 If the consci~ - factor is changed to any
number much greater than 1.5, the program effectively implements no conscience. If Equation 3.1

is true for a given node, it is eligible for consideration as the closest node to that input.

Use. After the net is trained, it is ready for use. Using a net is the same whether the desired
output is the trajectory for a template (a known utterance) or an unknown utterance. A sequence

of 15 component vectors, prepared by preprocessing, is presented one at a time as input to the

3Note that even if a node is not eligible as the closest node to a given input, its weight vector will still be updated
if it is within the neighborhood of the node that did light up. When a node’s weight vector is updated this way, the
value of ¢, is not incremented. .

3-10

net. The resulting sequence of nodes that light up is the output—a trajectory. The length of the

trajectory equals the number of slices (windows) generated in preprocessing.

Depending on the use of the output, the nodes are identified either as an x-y coordinate pair
or as a scalar. When the x-y representation is used, the range of both x and y is 0 to 14. When
the nodes are represented as scalars they range from 0 to 224 with 0 to 14 assigned to the first row

of nodes and 210 to 224 assigned to the last row.

Post-Net Processing

After a trajectory is generated it can be input to a word recognition algorithm such as DTW
or a second Kohonen neural net. However, examination of typical trajectories suggests that some

post-net processing be applied prior to using a trajectory as input to a word recognition algorithm.

Rationale. One expects the trajectory to stop at certain places on the net for periods of
time. Such pauses in the trajectory should correspond to the pronunciations of distinct vowel
phonemes* within each word. Of course, because of the dynamic nature of human speech, one
would expect a given phoneme to wander within a region of the net {assuming the net trained each
phoneme to a specific region). And if the net trained any given phoneme to more than one region
of the net, a trajectory might pause either on multiple, non-adjacent regions during a phoneme’s
pronunciation or on different regions during different utterances of the same word. But in any case,
the expected trajectory is a sequence of pauses at certain locations with transitory jumps between
those pauses. This is observed. Since the transitory jumps between pauses are inconsistent between

different utterances of the same word, one expects their elimination to improve accuracy.

Method. The actual implementation requires two passes through a stored trajectory. If any
point on the trajectory is not within two node units (using the x-y coordinate pair representation)

of another point on the trajectory within two time slices in either direction, it is eliminated. In the

$Even if the phonemes are arbitrarily defined.

second pass, all points on the trajectory which are not part of three consecutive points, each point

within two node units of the others, are eliminated.

This procedure leaves only those points on the trajectory that pause in a given phoneme
region for at least 26.6 ms (three overlapping time slices). Phoneme regions sized differently than

two node units were not tested. This processed trajectory is called a “reduced trajectory”.

Tests were run on both the full trajectory, the reduced trajectory, and a reduced trajectory
with consecutive pauses at any particular node reduced to one point on the trajectory. The second

form (the reduced trajectory) performed best.®

Word Recognition Algorithms

Two generic types of word recognition algorithms were developed. The first was an imple-
mentation of Ney’s one pass dynamic time warping algorithm (DTW) (12). This DTW algorithm
permits recognition of either isolated or connected digits. Unfortunately, it is rather time consum-
ing. Thus, a second Kohonen net was also developed to recognize words. The second Kohonen
net can recognize isolated words, but does not approach the performance of DTW in recognizing

continuous speech.

Dynamic Time Warping. Ney’s one pass dynamic time warping (12) was adapted almost
unchanged using the output of the first Kohonen net. The significant changes are the much simpler
inputs (trajectories), testing of the “stretch” factors, and adapting the routine to test a set of

standard utterances automatically.

Description. Although significant memory can be saved by coding shortcuts, it is
easiest to describe the algorithm by thinking of one latge array. Figure 3.7 shows a simplified view
of a completed array. Assign to each column one vector or time slice of the utterance under test.

In the process here, that vector is an x-y coordinate pair cortesponding to a point on the reduced

3See Figures 4.3 through 4.5 for examples of full and reduced trajectories and the reduction process.

3-12

trajectory. The first column is assigned the first vector, the last column the last vector. To each
row is assigned a vector from one of the 11 templates. The templates are typical utterances of the
ten digits, one each, and a short period of background noise (silence). Thus, the first vector of the
digit zero is assigned to the bottom row and the last vector of the trajectory for silence is assigned
to the top row. Silence is included since it is part of any recording of natural speech. Using a

template for silence alleviates the need for trimming such periods from a digitized recording.

To explain DTW and how the array is processed, first assume a simplified array with only one
template (e.g., a two) and an utterance to be identified which also happens to be a two. Vectors
from the two trajectories are assigned to the rows and columns of an array. The size of the array
obviously depends on the lengths of the trajectories. Fill in the array by assigning to each element
the distance between the vectors assigned to that element’s row and column. Now, if both words

were spoken identically, the diagonal would be filled with zeros.

Of course, the same word, spoken twice by the same person can be either longer or shorter, and
ger;erally is stretched non-uniformly throughout the utterance. The DTW algorithm tries to find
the best possible match between two words despite such stretching. To do so, the algorithm starts
at the bottom left element of the distance array (just generated) and finds the shortest cumulative
path to the upper right element. Any path can go diagonally (the theoretical best match), right
one element (utterance stretched more than template), or up one element (template stretched more
than the utterance). Factors are assigned to each of these directions which show preference for the
direction and amount of stretch expected by the programmer. Figure 3.8 demonstrates this process

with two short, hypothetical twos.

Thus, the cumulative minimum path, V, is assigned a value according to the following equa-

tions:
V = min(6); = min(}_ 7 dr.o)s (3.3)

where V represents the best match between the two trajectories, i represents all possible paths

3-13

UTTERANCE UNDER TEST

Figure 3.7. DTW Array. The problems caused by stretching and word
boundaries are handled efficiently in a one-pass dynamic time
warping algorithm.

L (1) Dtstance Array
(9.8) 15 7 2
Template (4.6) 8 0 4
Two
(4 5) 4 1 8
(01) 1 9 16
(t.1) (4.6) (8.9)
Test Two
(2) Stretch Factors
(3) Cumulative Minimum Paths
(9 8) 31 9 4
Template (4.6) 16 2 9
Two
(4 5) 8 2 10
(0.1) 1 10 26
(1 1) (486) (8 9)
Test Two
Note: The cumulative minimum path is tn bold
characters. V equals 4
L

Figure 3.8. A Simplified DTW Example. This simple problem shows how the
basic routine works when the utterance under test is compared
to only one template.

3-15

through the distance array, ¥; is a coefficient depending on which of the three possible directions,
J, is chosen (usually 1, 0.75, and 0.75 for diagonal, right, and up), and d, . is the distance between
vectors assigned to row r and column c. If values of V' are found for a given unknown utterance
when compared to each of the 11 templates (in 11 arrays), the unknown utterance is probably the

word represented by the template with the smallest V.

In the simple case where one unknown word is compared to one template (doing this eleven
times), the coding to find V is simple. Just start at the bottom of the left column of the dis-
tance array and proceed upwards—column by column. As each element in the array is reached, a
cumulative minimum partial path value is assigned to the same element of a different array (of
the same size). The partial path value is found by adding the distance assigned to that element
(multiplied by the appropriate stretch factor) to the minimum value chosen from the partial values
calculated for the elements to the left, diagonal, or down directions. Thus, the value of V' is just

the cumulative minimum partial path value of the top right element.

When the unknown utterance contains connected digits, the process is slightly more comph-
cated and the array of Figure 3.7 must be used. The same column by column calculations are made
(proceeding upward through each column), but special rules take effect as template boundaries are
crossed. When a boundary is reached, one assumes either a word just ended or else stretch is occur-
ring in the existing word. Thus, at the first row after each template boundary, the minimum partial
value is chosen from the elements corresponding to the last row of each template (words ended) in
the prior column, and the element just to the left of the one under consideration (stretching of the
word). Finally, one must also assume that the end of the trajectory for the utterance under test

corresponds to the completion of a digit (or silence).

To find the contents of an utterance, the minimum path through the array is traced from the

upper right element to the lower left, tracing out the various templates as the path progresses. As

mentioned earlier, there are coding schemes which do not require saving more than two rows of

pointers and two columns of partial path values at any one time.®

Stretch Factors. The stretch factors assigned to the three path directions seem to
have a large impact on the success of recognizing both isolated and connected digits. The greatest
success was found when factors of 1.0, 0.75, and 0.75 were assigned to the diagonal, right, and up
directions, respectively. This differs from Ney's suggested values of 1.0, 2.0, and 0.5. The best

values actually depend on the specific utterances used.

Automatic Scoring. As previously mentioned, a set of standard utterances and tem-
plates are used to evaluate the success of particular versions of the system. To minimize the

operator’s efforts, an automatic scoring routine was developed.

A scoring DTW array is used where sequences of digits are assigned to the rows and columns.
For example, if the utterance is known to be the words 1-2-3, those integer values are assigned to
the three rows of the DTW array. After running through the DTW process described earlier, the
utterance might be found to be 1-2-4. Thus, 1, 2, and 4 are assigned to the three columns of the
scoring DTW array. The distances assigned to each element are either zero or one. Zero is chosen

if the row and column match; one if they do not. Figure 3.9 shows this example.

The stretch coefficients are set to 1.0, 0.5, and 1.0 for diagonal, right, and up directions. in the
scoring DTW array, these correspond to a match that is a substitution (or correct). an insertion. or
a deletion. Therefore, when V is calculated it becomes the number of errors. Knowing the number

of actual digits in the utterance allows calculation of the percentage correct.

Second Kohonen Neural Net. Obviously, the computation time needed to use a DTW
algorithm increases in direct proportion to the size of the vocabulary (number of templates) to
recognize. In an attempt to reduce computation time, a second Kohonen neural net was evaluated

as an alternative to the DTW algorithm.

6See the routine “cdtw” in the program “autodtw™ in Appendix B. page B-48.

3-17

(1) Distance Array

T

o 3 1 1|

m

ifa] o | 1

?

o | 0 | R
1 2 4

Test

(2) Stretch Factors

Insertion = 0.5

O > 9

Substitutton or
Correct = 1

Deletion = 1

(3) Cumulative Mintmum Paths

T !
e 3 2 1 1 '
m
R 2 ! 0 0.5
T
e 1 0 065 1

] 2 4

Test
Note: The cumulative minimum path to the upper _
right element ts the number of errors

Figure 3.9. DTW Used for Scoring. This example shows how DTW is
adapted to automatically score the results of a test of connected
speech recognition.

Inputs. Because DTW works well on reduced trajectories, the “reduced trajectory”
contains enough information to identify words. But trajectories vary in length and cannot be energy

normalized without destroying the information.

Thus, the first form of input considered was simply a set of 225 values corresponding to the
225 nodes of the first net. Each value is the number of times the trajectory hit that node. The
second idea is not as simple, but includes more information in the input vector. When a slice
(vector) is input to the first net, it produces an activation surface identified by 225 values (the
dot product of the input vector with the node’s weight vector for each node). Summing’ these
surfaces produces a composite surface which might have local maxima where the trajectory paused
longest. Both forms of input can be normalized. However, they inherently do not contain the
time dependent information in the trajectories. Success was not achieved using either of these

techniques.

Alternate forms of input vectors which retain the time dependency are either a set of 200
values corresponding to 100 x-y coordinate pairs or 100 values corresponding to 100 scalars. Both
sets of values are simply “reduced trajectories” through the first net. The vast majority of isolated
digits produce reduced trajectories of less than 100 points. When the trajectory lengths are less
than 100 points, both of the alternate forms of input vectors are filled with —1’s to maintain a

constant length input. Both of the alternate forms were reasonably successful.

Size. The desired output is either one of the 10 digits or silence; that is. eleven words.
Assuming some variation in the words, regions of nine nodes should adequately represent each word.
Thus a net of 10 x 10 nodes provides more than the 99 nodes desired. The number of weights in
a node's weight vector is either 100 or 200 depending on the form of input selected (scalar or x-y

pair).

7Summing two surfaces simply adds the height at any point on one surface to the height at the corresponding
point on the second surface.

3-19

Training. Training is very similar to that of the first net. The biggest difference is
that here the number of training input vectors is the same as the number of nodes. In the first net,

the number of inputs was almost an order of magnitude larger than the number of nodes.

Additionally, initial weights are randomly assigned from sets consisting of the integers from
0 to 225 (where the inputs are 100 scalars) or 0 to 14 (where the inputs are 100 x-y coordinate

pairs).8

Traditional Training. Two sets of training inputs were selected and used for
various nets. The first of these was a set of 100 words, 10 each of the 10 digits. The second was a

set of 91 words, 9 each of the 10 digits and 1 example of silence.

Training runs included cases for no conscience as well as conscience factors of 1.1 and 1.5. To
account for the decreased eligibility of nodes during training with conscience, the training process

was increased to 150,000 cycles.

Upon completion of each net's training, the set of training inputs was applied to the trained
net. With no conscience, only about 58% of the nodes light up. This implies a need for conscience

in training the second net.

Finally, there is an obvious question implied by training a net with 100 scalar inputs. The
nodes are made to reflect the inputs by pulling their weights towards the input components. But
two points on a trajectory can be adjacent nodes on the first net while being 15 units apart on
the scalar input representation. Thus, can the existing training process be effective in overcoming

those 15 unit discontinuities?

Abbreviated Training. Clearly, using a second net is little more than select-
ing a set of codebook trajectories. As such, does one expect training to generate 100 codebook

trajectories that are better than an arbitrary 100 original trajectories (10 each of the 10 digits)?

8Note that when scalar inputs are used, both the scalar input components and the initial node weights are scaled
by Z—;E to keep the values in the range of zero to one.

3-20

To answer this question, nets were generated for each of the two forms of inputs (100 scalars
and 100 x-y coordinate pairs) without any training. In these nets, the reduced trajectories for ten
examples of each digit were assigned directly to the weight vectors of each row of nodes. No other

training was provided.

Use In Isolated Speech. Once a net is trained, a digit is assigned to each node.
Thereafter, when a reduced trajectory is applied to the input of the net, the net identifies the input

as the digit assigned to the node that lit up.

Digits are assigned to nodes by comparing the weight vector of a node to the trajectory
representations of a set of 100 digits (ten each) not used in training the net. The digit whose
trajectory is “closest” to the node wins. Finding the “closest™ trajectory involves either Euclidean

distance or performing a mini-DTW.

Euclidean Distance. In this case, the distances are simply the sum of the
squares of the differences between the weights and input components. At times, a TAXI distance
is used rather than Euclidean. In TAXI space, distance is the sum of the absolute values of the

differences between the weights and the input components

Dynamic Time Warping. When DTW is used, the 100 scalar trajectories are
converted to 100 x-y coordinate pairs. The lengths of the utterance and template trajectories are
always adjusted to eliminate the portion of the trajectories filled with trailing —1's. Use of DTW

to find the closest digit considers the variations in stretch inherent in any utterance.

Use In Connected Speech. To use the second Kohonen net to identify connected
speech, the same training and node assignment procedures are used. However, the methods tested

to identify connected speech used only DTW to identify the closest node.

Each slice of the utterance under test is assigned a digit and a distance. The slice in question

3-21

F

and the following 99 in the sequence are used to generate a trajectory through the first Kohonen
net. The trajectory is then used to find which node lights up in the second Kohonen net. The
comparison method here is DTW where the template and utterance (trajectory) lengths are both
assigned the number of weights in the appropriate node’s weight vector which are not —1’s. The

digit assigned to the node which lit up is the digit assigned to the slice. That slice is also assigned

a weight or distance which is merely V (the cumulative minimum path distance) normalized by

dividing it by the number of array elements in the minimum cumulative path.

Thus, when a sequence of distances assigned to a sequence of slices (i.e. an utterance) has
an obvious local minima (one that lasts for more than about 50 ms and is at least 100 ms from
another minima), it is assumed that the utterance begins a new digit at that point. In particular,

it begins the digit assigned to that slice. In turn, the sequence of digits assigned to the sequence

of local minima is interpreted as the content of the utterance under test.

Summary

This chapter has described in detail the speech recognition system developed in this effort.
The description included preprocessing of the digitized speech, training of the first Kohonen net
for production of trajectories, processing those full trajectories to eliminate transitory points, and
evaluating the reduced trajectories by either a DTW algorithm or a second Kohonen neural net to
obtain the content of an utterance. At no time was any attempt made to quantify the performance

of the system®—that data was saved for the next chapter.

9 Although at times it was necessary to verify some hypothesis or state that some procedure did or did not work.

3-22

o

Y. esul n t ston

First Kohonen Neural Net

An ideally trained Kohonen net should place inputs from a given class within the same region
(group of nodes). Is it possible to tell whether this result is obtained just by looking at a net? To
some extent, yes. Figure 4.1 displays the net “speakl”. Each of the 225 nodes is represented by
its weight vector, shown as a small spectrum. The spectrum is simply the 15 weights drawn as
vertical bars. It is easy to see that various regions of the net have similar spectra, and the changes

between adjacent nodes are very graceful.

“Speak]™ was trained with no conscience. Figure 4.2, “speakl10”, was trained with a con-
science factor of 1.5. Again, one observes that within a region, the node spectra are very similar. In
fact, without prior knowledge, there is no way visually to tell that conscience was used in training
“speak10” and not in “speakl”. This is expected. It shows that training has occurred, but does

not show whether a net will be successful in producing identifiable trajectories.

Trajectories

Trajectories can be viewed either graphically, or as a sequence of integers representing the
225 nodes. Figure 4.3 graphs a full trajectory for the word zero. Figure 4.4 shows the reduced
trajectory of the same word. Figure 4.5 shows the reduction process from a full trajectory to a
reduced trajectory as a printout of integers {each integer one of the 225 nodes). The graphs contain
the number of the slice which lights up a node in the rectangle representing that node. If a node is
lit up more than once, only the last slice number is identified and three asterisks are added to the

rectangle. Note that slice numbers are only “effective” values for the reduced trajectories.

Appendix A shows the reduced trajectories for the templates (the digits zero through nine
and silence) used in the DTW algorithm. When comparing the eleven templates they appear

separable—even to the eye.

41

b e o ot iy U tig, lig W g g by iy
Lot et g g g g g g g g S g g s,
NPT AN 0 T W0 N O W Y N
YN I T T Y Y YO 0 A Y
TPYUDY I T TN W Y W T U T N
TP N YN N N U U O Y
FITFINYINY U W S WY W U U Y W
VR PO TN 1N 7Y WP Y W 0 T Y W Y O
e e i G L L Lo L L
R O O PO O Y Y O W A W YT
Y S UK R O O T YW))) GOt
il e e o et Lt ot L L L L L a1y
0 NN S S N S U P PP Y Y B T O
et e ed o b i sl Wl ey M o

Figure 4.1. Net Speakl Trained with No Cosc . Note the regio Iml
dhgradalhgfmd d dg gnon.

42

Mo by bl b o d o L L Lin A i Gl
VI N Y N Y WY Y WU PO O N
bk g L d Db by i o o
RN A I T W WY VYOV B A
Ao o g g b h L AR R b bt
G Y Y Y Y O N Y
SO Y U Y T W W I WO Y
Y O W W T Y T WO Y WOV Y O
N W P W WY N W Y
G V0V S W WY W W 0 T
O O Y Y N T Y
VU W N N S YO U Y AP O I I
b i o g g g g g b it)
g gy thg U g by Ly g bt bt b L 0 2 b
thg skl Hg g vy U 1 bt g o i 1 e iy

—

Figure 4.2. Net Speak10 Trained with Conscience = 1.5. Without prior knowl-
edge, there is no way to visually determine the amount of conscience
used to train a net

4-3

zeroS.trn --> speaki0.net

Figure 4.3. Full Trajectory of the Word Zero. The numbers represent the last
time slice to light a node. When a node is lit more than once, three
asterisks are printed.

Reduced Trajectory: zeroS.trn --> speakiO.net

Figure 4.4. Reduced Trajectory of the Word Zero. Transitory points not near
other points are eliminated. The “shice” numbers shown are actually
the respective location of a lit node in the reduced trajectory. Note
the much simpler curve when the trajectory is reduced.

45

zercS.trn --> speakll.net

Trajectcry througr map: (98

145 119 100 10C 93 122 93 83 93 190
148 179 177 192 193 176 93 138 138 153
184 140 154 154 154 154 154 183 95 95
66 €& 66 BC 64 S50 50 64 4 4
33 33 18 33 33 33 33 33 33 €3
63 €3 32 63 63 63 66 137 137 122
145 145 145 220 133 32 32 127

Afrter eliminat:on of transients (89,

£ 118
7182
4 154
8 64
33 13
€3 63

1
1
1

LV LIRS I

[Reduced Trajectory) Only three

115 100
193 138
154 153
4 4
33 63
115 145

100 100 93 93 93 93 190 19°¢
193 176 138 138 153 153 154 15¢
154 154 153 95 95 66 66 66
50 S0 64 4 4 4 18 33
33 33 33 33 63 33 33 63
137 137 122 115 99 145 145 145

100 93 93 93 93 190 190 175
138 153 153 154 154 154 154 154
66 66 66 66 66 66 66 66
4 18 33 33 33 33 133 218
33 33 63 48 33 63 63 63
145 145 145 145

Now listing final trajectory! (37)

115 100
154 153
48 33

Figure 4.5.

93 190 175 160 175 190 177 192
66 B0 64 50 64 4 18 33
63 137 122 115 145

Reduction Process for the Word Zero.

190 175 162 175 199
153 154 154 154 1%4¢
66 66 66 66 66

33 33 63 48 33
115 99 32 14% 14%

175 160 175 190 179
154 154 154 14C 154
66 66 66 66 66
33 33 33 33 18
48 33 63 63 63
145 145 32 32

in a row! (81,

160 175 190 177 192
140 154 154 154 154
80 64 S0 50 64
33 33 33 313 33
63 63 137 137 122

193 138 153 154 140
18 33 63 33 63

Each point in a trajectory

represents a node. “0" is the upper left node, “14" is the upper right,

and “224" is the bottom right node.

46

Table 4.1. Presentation of Inputs
[___f\'vt i}’rocoss Llsolau-d Words L(‘-onneded \\'urd.~1

speakl | sequential 95% %
speakd | random 90% T34
speakd | random word 100% 56%
Noter Berause sequennial training resulted in overall best

performance. it is used to train all later nets,

Dynamic Time Warping

Dynamic time warping tests were performed over a long period of time. The earliest tests
used a smaller set of test words and in general evaluated different aspects of the system Earh

evaluation i~ deseribed below

Training Procesxz. One of the first uses of DTW was to evaluate the first Kohonen net's
training. In this instance. the DTW testing was not yet automated. Ten arbitrary digits were
used for templates Ten different digits were used to test for isolated speech recognition. and
eight uttrrances of connected digits (containmng another 48 digits) were used to test for continuous
sprech pecognition. The connected digits at this point were intentionally slurred together as much

as possible The DTW stretch factors were set at 1.0. 0.5. and 0.5

The three types of training processes evaluated in Table 4.1 vary the presentation of the inputs
to the net. The first method takes an utterance containing all ten digits. with pauses between them.
and repeatedly presents the input vectors to the net in their natural sequence (called sequential
training). The second method presents the input vectors from the same utterance to the net in
a random sequence (called random training). The last method takes 10 utterances of individual
digits and presents them to the net in a random sequence. Individual vectors within the randomly

selected word are presented in their natural sequence (called random word training).

No conscience is used in any of these nets. The sequential training process appears to provide
the overall best performance. The reasons behind the relative performances were not investigated.

However. it was noted that the random number generator did not produce a very uniform dis-

47

Table 4.2. Comparison of Stretch Factors
[‘Stretch Factors | Isolated Words | Connected Words |

20.05 75% 80%
15.05 5% 80%
1.0,1.0 1007 3%
1.0.0.75 90% 80%
1.0.05 80% 84
0.75.0.75 100% 79%
0.75.0.5 90% 76%
0.5. 05 100% ’ 1%

Note: The 100% isolated rate for equal stretch factors
confirms that isolated words were spoken at the same
speed as the templates. The connected utterances
were actually spoken faster.

tribution. Since sequential training worked best. whatever the reason. it is used in all later net

training

Strctch Factors. Variations in performance, as the stretch factors were changed. was ob-
served during development and debugging of the DTW routines. This suggests that additional
testing. where only the stretch factors are changed. could provide the best performance for the

given set of utterances

For the tests shown in Table 4.2, the best performing net at that time, “speakl”, was used.
Only. the stretch factors in the right and up directions, respectively, are varied. The diagonal

stretch factor remains 1.0.

Note the tradeofl between results for isolated and connected speech. The fact that 100%
accuracy is obtained for isolated speech whenever the ofl-diagonal stretch factors are equal implies
that the isolated words under test were spoken at the same speed as the templates. Likewise, when

the stretch factors are not equal, recognition of the faster spoken connected utterances improves.

At this point, comparisons of the envelopes of the connected speech utterances used here
with those used by Dawson (13) were made. It was found that Dawson clearly separated his words

in the continuous speech utterances. For ease of comparison, a new set of connected utterances

Table 4.3. Tests of Clearly Spoken Connected Speech

[Stretch Factors | Connected Words |

1.0.05 90%

0.75. 0.75 1%
Note: Connected speech recognition
improves when the words are spoken
clearly and are not slurred together.

Table 4.4. Conscience in First Kohonen Nets
[Net [Conscience [Isolated Words | Connected Words |

speak]l none 90.0% 93.0%
speaky 1.1 82.7% 72.1%
speak10 1.5 99.1% 90.7%

Note: A modest application of conscience (1.5) results in a
large improvement in isolated recognition. while too much
conscience (1.1) degrades performance.

were generated in which the words were not slurred together. The results from these tests, using

“speakl”. are shown in Table 4.3.

The improved results are dramatic and are now comparable to the results Dawson obtained.
Therefore. this set of connected utterances. as well as the stretch factors of [1.0.) 0.75 and 0.75. are

used in all later tests.

Conacience. After finding that conscience assisted in training the second Kohonen net (see
the following sections). new first Kohonen nets were trained. Table 4.4 shows the results of DTW
runs on those nets. For these (and later) tests, the number of isolated words being tested was

increased to 110.

Note that while conscience dramatically helps recognition of isolated words (when there is
not too much of it), it also slightly degrades recognition of connected words. During the training
run on “speak9”, it was found that only 25 to 40 percent of the nodes were eligible each training
cycle (because of conscience) for matching the given input. Given the accuracies in Table 4.4, one

could infer that nodes are being under or improperly trained with a conscience factor of 1.1.

49

Templates. Each of the prior DTW tests used 11 arbitrary templates—one for each of the

ten digits and one for silence. With the variability in trajectories between different iustances of the

same digit. selecting specific templates might improve the recognition rate.

Thus. unsuccessful attempts were made (o increase accuracy by using various template select-
mg algorithms. One algorithm. that seems quite reasonable. resulted in the greatest degradation
Twenty examples of each of the ten digits were collected. The one example out of the twenty that
had the lowest average DTW minimum path to the other nineteen was selected as the template
for that digit. Using these newly selected templates, stretch factors of 0.75 and 0.75. and net
“speak 107 isclated recognition dropped from 99 1% to 94.5%. The connected digit recognition

rate dropped more—from 90.7% to 76.7%

c]
A small amount of degradation might occur because of a change in relative stretches betwern
the templates and the utterances under test. However. the connected rate drop of 14% seems
excessive. Apparently. the tested digits were not closest to the “average”™ template from each set
@
of 20
Speaker Independent Speech Recognition. A small number of tests were performed on
@ utterances spoken by someone other than the net trainer (the speaker whose utterances trained
the Kohonen net). A deep female voice was used for these tests; whereas all other tests used a
mid-range male voice.
A set of 10 isolated digits and eight connected digit utterances {(containing another 48 digits)
were tested using the templates in the male voice, net “speakl”, and stretch factors of 0.75 and
0.73. The tesults were a 40% isolated and 31.3% connected digit recognition rates. It is expected
C , . :
that if templates were generated from the female’s speech, the results would improve.
¢

—w

Second Kohonen Neural Net

Extensive tests were run on a number of forms of the second Kohonen neural net. The driving
motivation was the possibility of decreasing computation time and providing a systein where all

major components emulated simplified neural activity

Early Attempt«. Limited development took place for two types of inputs described in
Chapter 111. In both of these, an input vector had 225 components. In both cases each component
represented one of the 225 nodes in the first Kohonen net. In the first case. a component was
incremented (from zero) any time 1ts respective node was lit in a word’s trajectory. In the second
case. the "activation level” of each node was added to that ncde's cumulative activation from every
mput {shice) m an utterance. Given a vector input to the first net. the activation level for a node

1s the dot product of that node’s weight vector with the input vector

The possible advantage of these types of input is that they can be normalized. allowing
simple and fast computations in using and training a net. However. it deletes the time dependent

relationship of the various sounds in a digit.

Ninety words (nine versions of each digit) were used to train these nets. After training. the
90 words were input to the net and the nodes that lit up were identified. Unfortunately. less than
half a dozen nodes lit up in each case. At that point, these nets were considered unsuccessful, and

development of other forms proceeded.

Yet. there are at least two reasons why the labeling of these nets as unsuccessful is ques-
tionable. First. it was later noted that training and testing of the second Kohonen net took place
using dot product algorithms rather than Euclidean distance. Since the inputs at this point were
not normalized, dot products could not give valid results. Secondly, conscience had not yet been
implemented. It is quite possible that assigning random numbers to the initial weights gives only a
few nodes with vectorial representations even close to the cumulative activation surfaces described

above. Both reasons suggest that some additional testing might prove beneficial.

4-11

Table 4.5. Conscience in Second Kohonen Nets
[Net] Conscience T Nodes Lit | Differentiation |

pathb none 58% 91.1%
pathll 1.5 81% 98.9%
path12 T 89% 08 .9%

Note: These results show that conscience increases
the effective number of nodes that “look™ like the
training inputs. They do not necessarily imply
comparable performance in tecognizing words.

Trajectory input Netx. As described in the prior chapter. two alternate forms of input
were also explored. These consist of trajectories represented either as 100 scalar values or 100 x-y .
coordinate pairs Shorter trajectones are filled with trailling —1's. However. initial development.
as described below. used a 75 scalar input (trajectory of length 75 or less) with trailing zeros. It

will later be seen that no significant improvement or degradation in accuracy arises from switching

between 75 and 100 point trajectories,

Conscience. As mentioned. imtially a 75 point trajectory was selected. Unfortunately.
after traming (without conscience). only about 3%% of the nodes lit up when the set of training
digits were input In addition. when looking at the nodes that lit up. only 91% of the 90 training

digits could be correctly differentiated.

Figures 4.6 through 4.8 show the result of nets trained with: (a) no conscience. (b) a conscieuce
factor of 1.5. and (c) a conscience factor of 1.1. Each of these nets used 75 scalar inputs. Note that
the numbers represent which training digit lit up the respective node {only 90 training digits were

used for these tests).

Table 4.5, derived from the tests which generated these figures, shows numerically the advan-
tages of using conscience. Of course, these tests still do not show Kohonen net performance on a

different set of digits than those used in trainii.g.

S] 4 4 3 1 Q
[X X 3 L X X 3 e e coe e LE X J
a4 3 1 9 1
LR X] LA X4
- 7 z 9 1 Q
L X X 2 sew
C 3 4 9 9 1 a
*oee L X X]
w ¢ 7 5 5
¢ ¢] 7 7 3 3 s 5
aee L X X L X X]
7 2 5
LE X
[) 2 3 3 4 - 3
ase L X X] L X X L X X]
6 2 2 8
sen L 2
6 7 7 B 8 8
sese see aes L X X]

twopic.hdr -> speaki net -> pathS net

Figure 4.6. Net Path5 Trained with No Conscience. Note that only 58% of the
nodes are lit up when the training digits are applied at the inputs.

4-13

twopic.hdr -> speak] net -> pathii. net

Figure 4.7. Net Path1] Trained with Conscience = 1.5. With a moderate amount
of conscience, 81% of the nodes light up when the fraining digits are
applied at the inputs. ‘

4-14

8 2] 6 8 8 £ 1] S S g

aee s

& & [) E] 1 1

& z 3 0 9 S 9 1 1

L E X]
e < 3 0 3 3 S a4 4 1
L X X] “ane L X X]

< F] 2 3 -3 4) 3 q
L

z 7 7 7 7 4 4 1 1 4

LXK X 2
7 7 (s} 2 3 S S 3
aee

0 0 (4 [[5] 1
®

0 [o] 7 1) 6 6 e 4

[3 0 ° 7 7 6 3 6 6 2 3

L XX}
twopic.hdr -> speaki.net -> pathiz.net
‘.
Figure 4.8. Net Path12 Trained with Conscience = 1.1. When a large amount
of conscience is used, 89 nodes light up when the framming digits are

¢

applied. This does not necessarily imply a commensurate improvement
in word recognition performance. ﬁ

4-15

Table 4.6. Scalar Input Net Tests

[Method [Accuracy |
Euclidean search of training set 429%
DTW search of training set 90
DTW search of non-training set 917

Note: This imphes that “recognizing™ a
node’s weight vector as a given digit is in-
eflective when the stretch vaniable is not
taken into account.

Performance of 75 Scalar Input Nets. Initially, it was assumed that identification
of a node with the training digit that caused it to light up was the proper way to use a net. That is,
input an unknown (non-training) digit. see which node lights up. and identify the unknown digit

as the training digit associated with that node.

Euchdean distance is the algorithm first used to identify a lit node. But this achieved only
a 42% correct identification of a set of 100 test (non-training) digits. Possibly. this resulted from
the non-uniform stretch inherent in trajectories. Accordingly. a DTW algorithm was substituted
for Euclidean distance (in test only. not training). This resulted in a 90% correct identification of

the test digis

However. it is possible for a node’s weight vector to be “closer” to a training digit (say digit
A) which did not cause the node to light up than the training digit that did (e.g., digit B). This
occurs when two nodes should be lit up by digit A, but the software allows only one node to light
up (let it be the “first™). The problem occurs when the activation level of the “second” node. from
digit B. is less than its activation level from digit A. Because of the software, the second node is lit
by B. when in actuality its weight vector is closest to the input vector from digit A. This problem
was corrected by searching through a set of 100 non-training digits to find the closest one to each
node. This increased identification to 91%. Table 4.6 summarizes the above findings. All entries

use the net “path12” trained with a conscience factor of 1.1.

With this data, one can now compare DTW with a second Kohonen net as word recognition

Table 4.7. Conscience in 100 Scalar Input Nets

[Net [Conscience [Accuracy |
pathl6(vl) 1.1 86%
pathi6 5 99%

Note: Too much conscience (1.1)
again reduces performance.
algorithms. With the DTW routine achieving up to 99% accuracy, the 91% seen here is not

impressive.

Performance of 100 Scalar Input Nets. After noting that a substantial number
of the digits had reduced trajectories between 75 and 100 points, the routines were updated for
100 scalar inputs. Additional tuning also took place in the DTW routine that replaced Euclidean
distance. The minimum path distance was normalized (divided by the number of elements in the
path) to give a local average path length. This replaced simply dividing by the number of node
weights not (trailing) zeros. Another change was to use the length of both the trajectory and the
number of node weights that were not trailing zeros. Prior to this point, the number of a node’s
weights not zero was used as the DTW length for both the node’s weight vector and the word under

test.

Table 4.7 shows the results of the longer inputs and retuned DTW as the amount of conscience
in the second Kohonen net is varied. Unfortunately, the changes resulted in an accuracy only 1%
better than the best 75 scalar input net. However, it shows again that too much conscience degrades

performance. These tests used “speak10” as the first Kohonen net.

Performance of 100 X-Y Pair Input Nets. Since the scalar input nets provided
only 92% accuracy, and using mini-DTW rather than a Euclidean distance increased the compu-
tation time, another approach was tried. If the trajectories remained a sequence of x-y coordinate
pairs (instead of being translated to a sequence of scalar values), mini-DTW might not be necessary.

Also, the training effectiveness might improve if the 15 unit difference in the scalar representation

Table 4.8. Accuracy of 100 X-Y Pair Input Nets

[Net] Conscience | DTW [TAXI |

path2i 1.1 86% | 84%
path22 1.5 86% | 85%
path23 none 73% | 69%
Note: These results can not be com-
pared to that of scalar nets since the
set of training digits was changed.
Also, the improvement from DTW
over TAXI distance is very slight in
these tests.

Table 4.9. Differently Trained 100 X-Y Pair Input Nets
[1st Net | 2nd Net | Conscience | DTW | TAXI |
speakl10 | path26 1.5 85% | 80%
speakl | path27 1.5 91% | 90%
Note: When the training set is the same for

both scalar and x-y pair nets, the performance is
comparable—91% to 92% .

of vertically adjacent nodes is absent.

Thus, training and test routines were written to use 100 x-y coordinate pair inputs and both
DTW and Euclidean (actually TAXI) distance algorithms. Table 4.8 compares the performance of
nets using both algorithms as conscience is varied. During these tests, the training and test sets of
digits were changed. Both sets used only 90 digits and one word of silence. Also, all of the second

nets were trained using “speak10” (conscience at 1.5) for the first net.

These tests suggest that using mini-DTW (in x~y pair nets) to identify a word provides only
marginal improvement over using TAXI distance. However, the results here do not justify going

from scalar to x-y pair inputs.

Remember though, the training and test sets were changed slightly. Thus, to prevent questions
about the validity of comparing these accuracies to those from the scalar nets, two other nets were
trained. These used the same sets of 100 training and test digits as “path16” (the best scalar input

net). Table 4.9 shows the results; the conscience factors listed are for the second net.

4-18

Table 4.10. Scalar Input Nets Without Training

| First Net | No. Inputs | Conscience | DTW | TAXI |

speakl 75 none 96% | 88%
speak10 100 1.5 93% | 86%
Note: Training, with the procedure and training data
set used, was actually detrimental to net performance.

An interesting point here is that “speakl”, trained without conscience, resulted in the best
performance. Also, it should be pointed out that the 91% achieved here is not significantly different

than the 92% obtained for scalar input nets.

One should note that in the test of “path26”, 8 of the 15 errors had zeros labeled as twos
on node number 16. Yet no twos were closest to that node. The logic is somewhat complex,
but this suggests the possibility of improvement to 93%. Unfortunately, it also emphasizes the
nonuniformity of trajectories within classes (of digits) and the need for supervised learning in the

first Kohonen net.

Second Kohonen Nets Without Training. As was mentioned earlier, the second
Kohonen net is essentially a codebook of trajectories (as is, really, any Kohonen net). So, what
would be the result if the training set of 100 digits was simply assigned to the 100 nodes and no
training performed? At the very least, one would obtain a baseline from which the effectiveness of

training could be assessed.

This approach is feasible for the second Kohonen net since the number of training inputs is

the same as the net size. For the first Kohonen, there were too many inputs.

Table 4.10 shows the results of assigning the zeros to the first row, the ones to the second,
etc. The results shown use scalar inputs and vary the training used in the first neural net. Both
the training (now just assignment) and the test sets of digits contained 100 words without silence.

The conscience listed is that used in the first Kohonen net.

This shows that the training employed here does not improve recognition accuracy of scalar

Table 4.11. X-Y Pair Input Nets Without Training

{ st Net | No. Inputs | Conscience | DTW | TAXI]
speak1 75 none 95% 88%
speak 100 none 95% 88%
speakl0 75 1.5 93% 85%
speak10 100 1.5 93% 85%
Note: Again, there is no significant diflerence between

scalar and x-y pair nets. Neither is there any differ-
ence when the trajectory length is 75 or 100 points.
input nets. But what does training do for x-y pair input nets? Table 4.11 shows the results of tests
where the inputs are x—y pair reduced trajectories. The data show the significance of the trajectory s

length (75 or 100). Again, the conscience listed is for the first Kohonen net.

Clearly, the trajectory lengths used here do not affect the results. Also, it appears that
with the current forms of training and training data sets, training does not result in optimum

performance for either scalar or x-y pair input nets!

Connected Speech Recognition. A limited amount of development and testing was
performed using the second Kohonen for recognizing continuous speech. The initial results were
unsatisfactory and computationally intensive. Accordingly, eflort was discontinued and the primary

emphasis was placed on isolated digit recognition.

However, the results do imply some promise if the productivity of the first and second nets
is improved. The basic routine takes a 100 slice (partial trajectory) window from a continuous
utterance and compares it, using the DTW algorithm, with all the nodes’ weight vectors in a -
second Kohonen net. As described earlier, a digit is selected for that window. The window is also
assigned a distance which is the normalized minimum path length-—the smaller the better. The
window is moved one slice at a time from the start of the utterance to the end. This results in -
a sequence of digits and path lengths where the sequence length is the number of slices in the
utterance. When the path length becomes a minimum, the beginning of a new digit (the one

assigned to that slice) occurs.

The second Kohonen used for the test was an untrained one developed from the trajectories
through the first net, “speak1”. This had the highest isolated digit recognition rate at that time.
Two utterances containing a total of 16 digits were tested. One utterance was slurred together; the

other was spoken distinctly. The recognition rate was 81.25%.

Several simple, common sense rules were used to eliminate brief local minima. Additionally,
the computation time can be significantly reduced by anticipating the minimum number of slices
between words and using a gradient search algorithm rather than computing the comparison for
every slice. Because of the unsatisfactory recognition rate, the gradient search routine was not

implemented.

Summary

This chapter has quantified the performance of the speech recognition system developed as
well as the factors involved in its performance. Tradeoffs show the system works best with sequential
training of the first net, a conscience factor of 1.5, and DTW as the word recognition algorithm.

DTW in turn works best (for the utterances tested) with stretch factors of 1.0, 0.75, and 0.75.

When a second Kohonen net is substituted for DTW, performance falls. It doesn’t seem to
matter whether scalar or x-y pair trajectories are used, or the length of the trajectories. Unfor-
tunately, training the second net, rather than simply assigning arbitrary trajectories to the nodes’

weight vectors, seems to further degrade the system.

These results, and their implications, are summarized in the next chapter.

4-21

V. Conclusions and Recommendations

A large number of programs were developed and tested to demonstrate the feasibility of
using neural nets and dynamic time warping in speech recognition. Some concepts proved to
be completely unworkable and are not mentioned here. Others showed some promise, but were

neglected for development of more promising approaches.

The most successful algorithms were the generation of net trajectories and one pass dynamic
time warping. But because of the intense computations required by DTW, much effort was spent in
developing a second Kohonen net to replace it. Unfortunately, the second Kohonen net implemented

here does not perform quite as well as DTW.

Conclusions

The preprocessing, first net training, and trajectory reduction algorithms apparently are
adequate to assure good isolated and connected digit recognition rates in speaker dependent speech.
Using conscience, rates of 99.1% and 90.7%, respectively, can be achieved from a one pass dynamic
time warping algorithin. A second neural net can achieve up to a 96% isolated digit recognition

rate (but only 81% for connected speech).

Dynamic Time Warping. The computation and time requirements were reduced when the
DTW input vectors {points on trajectories) were two dimensional rather than the more traditional

16 to 256 dimensional (possibilities from FFT routines).

However, there are some deficiencies in the system. First, the DTW accuracy appears strongly
dependent on the choice of templates. Secondly, trajectories within a digit's class are not uniform
enough to provide excellent results. This appears to be a problem inherent in Kohonen nets trained

without supervision. They simply do not group all of the members of a class in the same region.

The fatter problem appears to have two causes. The most obvious is the situation where a class

(a particular sound) consists of members in two disjoint regions in 15 dimensional hyperspace. The

51

other cause is the way that initial weights are assigned and then updated. A small, but significant
percentage of nodes, without supervision, can simply not be correctly trained. Correction of either

of these problems should improve consistency and performance.

However, any DTW algorithm will always be computationally intensive. As such, it is ex-

tremely limited when a larger vocabulary is needed.

Second Kohonen Net. Using a second Kohonen net in place of DTW appears to have
possibilities. Such a system can achieve at least a 92% isolated speech recognition rate (using

trained nets) or over 96% when the net acts as a codebook (no training).

The fact that untrained nets produced better results implies that either training produces
weights not representative of the data set to be recognized (i.e. the training equations are somehow
defective) or that the training procedure is in error. The latter is the most likely conclusion; most

probably, there was simply not enough data to effectively train this size net.

Irrespective of the reason for getting better results with untrained nets, the accuracy of the
trained nets is satisfactory to evaluate their performance. Thus, the following thoughts address,

for the most part, trained nets.

The accuracy of the net does not depend significantly on the form or length of the word
trajectories. Routines were developed where the trajectories were represented both as sequences
of scalar values and as sequences of x-y coordinate pairs (the two possible forms). Although
the scalar representation was expected to have more difficulties (because of the 15 unit distance
between vertically adjacent nodes), the achieved accuracy was actually 1% better!® than the x-y
pair representation. The scalar versions achieved 92% accuracy as compared with 91% for the x-y

pair.

However, there are drawbacks to using a second Kohonen net with trajectory inputs even if

the accuracy is improved. The non-uniform stretch in words requires using a mini-DTW algorithm

1019 can not be considered a significant difference.

rather than a Euclidean distance (to compare and identify nodes and utterances) to achieve the best
performance. Using a mini-DTW, such a net could not be efficiently implemented in hardware.
When Euclidean (actually TAXI) distance is used, the recognition rate drops by on. to several
percentage points. Further, a dot product is the preferred algorithm over Euclidean or TAXI
distance, but dot products require normalized arguments. The scalar and x-y pair trajectories used
as inputs here can not be normalized without destroying their information content. Alternate forms

of inputs, that could be normalized, were not pursued long enough to determine their feasibility.

Recommendations

There are several quite obvious tests that should be run. These include speaker independent
tests, larger vocabularies, and alternate (or multiple) feature sets. However, there are a few basic
changes to look at first. The most important of these is to obtain consistent in class trajectories.!!
Supervised learning of the first Kohonen could limit the locations of sounds, within a sound class,
to a particular region. Kohonen’s learning vector quantization (LVQ) algorithm (19) could perform

this task.

After supervised learning optimizes the trajectories, the preprocessing procedure might be
retuned to eliminate any unnecessary processing. This could be done by repeatedly making a

change and observing the results on the automatic DTW tests.

To peimit larger vocabularies, and possibly speaker independence, the use of multiple feature
sets might be investigated. Dawson (13) and Kim (20) were successful at using a combination of
linear predictive coefficient (LPC) spectra, zero crossing rate, and frication frequency to identify
speaker independent speech. This might require two additional very small nets (possibly only one-

dimensional), with a small increase in processing time, to provide a large jump in performance.

If necessary, using multiple nets or templates might allow recognition of speaker independent

11¢In class” here refers to the set of trajectories for any given word. The current net produces out of class
trajectories that are separable, but does not produce in class trajectories that “look™ alike.

speech. Tests should be run on multiple sets of utterances from various speakers and a larger

vocabulary. Kim (20) collected such a set of data.

Finally, in place of the second Kohonen nets developed here, one might try other algorithms.
A backward propagation net might work very well. Alternatively, one might delve further into the
use of activation surfaces as inputs to a second Kohonen net rather than simple trajectories. If a

second net becomes effective, it should be examined for use in identifying connected speech.

Summary

The purpose of this effort was to show the feasibility of using neural nets in speech recognition.

For speaker independent utterances from a small vocabulary, that was done.

Isolated digit recognition was achieved at up to 99.1% and connected speech recognition
at 93%. While this used only a small vocabulary, it also used relatively simple feature sets and

templates chosen without significant tuning.

By adding such characteristics as supervised learning and multiple feature sets or nets, the
prospect is bright that this approach could successfully handle larger vocabularies and speaker

independence while keeping additional computation time to a minimum.

54

Il]

Appendic A. Template Trajectories

The following figures show the reduced trajectories for the eleven templates used in the DTW

tests. The templates include the digits zero through nine and a short period of silence.

20
y
J/

24
LT X]

Z6 17

r/
7 1119 1

N 12

/ =
/)
//// 29
30
4{9 8
— -
“1-\\ = /§/
31

Reduced Trajectory:

zerol. trn -->

speaki0.net

Figure A.1. Reduced Trajectory of the Template Zero

A-2

Reduced Trajectory: one0.trn --> speakiC.net

Figure A.2. Reduced Trajectory of the Template One

A-3

15

14 16

/}9/

17

lie

Reduced Trajectory:

twvo0.trn -->

speaki0. net

Figure A.3. Reduced Trajectory of the Template Two

A-4

a

Q2 1

- /f

18 Bl 4
=
=

Reduced Trajectory: threed.trn --)> speaki10.net

Figure A.1. Reduced Trajectory of the Template Three ﬁ

A-5

B
Sttt e e

17 \\ 71 6
e _1
N 1\

,..

-

-

e "

=™

Reduced Trajectory: fourS5.trn --> speakil.net

Figure A.5. Reduced Trajectory of the Template Four

A-6

1]

ENE

~i
s J

Reduced Trajectory:

fived.trn -<>

speakil.net

Figure A.6. Reduced Trajectory of the Template Five

A7

Reduced Trajectory: six8.trn --> speakiO.net

Figure A.7. Reduced Trajectory of the Template Six

A-8

} 15

3 ~C <
N
\\ RN

v /P'"
110 A...f

0%\

- e .

Reduced Trajectory: sevenO.trn --> speakil.net

Figure A.8. Reduced Trajectory of the Template Seven

A-9

.

N

/
J /
\
\

N

R

Reduced Trajectory: eightO.trn --> speaki10(. net

Figure A.9. Reduced Trajectory of the Template Eight

A-10

Reduced Trajectory: ninel0.trn --> speaki0.net

Figure A.10. Reduced Trajectory of the Template Nine

A-11

Reduced Trajectory: silence3.trn --> speakil0.net

Figure A.11. Reduced Trajectory of the Template Silence

A-12

Appendix B: Computer Programe Contents

Appendix B- Computer Programs

There are a few points about this appendix that make it easier fc .he reader. Headers on each page show the
appendix title on the left and the appropnate program title on the right. At the top of the first page of each program, the
link command for that program is listed. In the link command are those *.c files used to create the program. Each
program is shown below (in the sequence of its use in the body of this thesis) along with its page number and the files
used to create it. Source files are only lisied once, with the first program to use them.

Unfortunately, many of the programs and files use subroutines with the same names and cither no or small
differences. Because of the difficulty of identifying the differences, such subroutines are listed repeatedly. The exception
to this is the trajectory reduction process (usually found in the subroutine read_word), which is only listed once. Iis
complete and final form is found in the file autodiw.c. Thereafier, it is abbreviated as °...Trajectory Reduction...”.

List of Programs and Files
autofft: autofft.c B-2
neural7: neural7.c, nevrald.c B-8
neural2: neural2.c, nplot.c, nprinter.c, mat2.c, nweightd.c B-16
neural4: neurald.c, nplot.c, nprinter.c, mat2.c, nweightd.c B-39
autodtw: autodtw.c B-46
twokoh4: twokohd.c, nweight8.c B-55
twobas2: twobas2.c, nWeight10.C.........cvcinenrereennecs B-63
outdat: outdat.c, ntraj.c B-72
twopicd: twopicd.c, nplot.c, nprinter.c, mat3b.c, nWeight8.C.......cceoercrererverernnenen B-78
twomask: twomask......... B-85
twopich: twopic6.c, nwins.c, lookupé.c B-87
outdat3: outdat3.c, ntraj3.c B-94
twobas3: twobas3.c, nweightll.c......c..ccovrmncnnncnee. . B-98
twopicdb: twopicdb.c, nploL.c, nprinter.c, mat3.c, nweight12.c........coceovverervcenncs B-107
twopic8: twopic8.c, nwiné.c B-118
outdat4: outdatd.c B-125
twobas4: twobasd.c, nweightdd.c B-129
twomaskS: twomaskS.c. ..B-137
twopicdc: twopicdc.c, nplot.c, nprinter.c, mat3.c, nwid.c B-139
twopic8b: twopic8b.c, nwin6b.c B-145
twopichb: twopichb.c, NWInSD.C, J00KUPE.C...cocurmrcnrrmrracerirrnrsseseers et sessneanes B-152
wwopic8c: twopic8e.c, nwinbb.c ceverensrsaerssn s srsansasraes B-188
tWOPpIC6C: tWOPICHC.C, NWINSD.C, I00KUPT.Coceurvereercrrermnrceneirersretsscssrsesseceresessens B-161
codebk: codebk.c .B-166
codebkb: codebkb.c . B-172
€OAEDK2: COUEDK2.Counnrnrenrincvnasrcniecrerarinenreses cororsersens B-178
codebk2b: codebk2b.c . B-183
coder: (V757 1) 1 O B-188
coderb: COUCTD.C .ovrivriinircvvartisisescesiessssscsss st ses e snsesenseassasanes B-194

Appendix B: Computer Programs

$ link autofft,options_file/opt
I.

SERCRCEANRERNARORBRARRANANEADO SR Mm c RAREARARAARAREEREENAANEANRNEABEI RS

INPUT: sound.hdr file
* snd filee

OUTPUT: *.trn files

This routine takes the *.snd files named in sound.hdr and transforms
them into *.trn files while leaving the original *.snd files

unchanged. *.snd files must contain a leading eight bytes of

header (thrown away) and an unspecified number of bytes of sampled
sound data. The current assumption is thet the sound is sampied
logarithmically at 16 kHz with each sample being one byte.

The transformation operates on 256 samples, moving forward in
turn 85, 85 and 86 samples so that an overlap ratio of 3:1 is
obtained. Each tranformation cycle takes the respective 256
samples, multiplies by a Hamming window function and then does
a 256 point FFT. The resulting 128 frequency magnitudes are
reduced to 15 by a pseudo-logarithmic reduction in which the
compression ratio is greatest at the higher frequencies. (The
Kohonen reduction scheme is also aliowed by the code, but it
does nat produce acceptable results since no filter is included.)
The resulting 15 components are averaged and the average in turn
is subtracted from each component. The resulting 15 components
are then energy normalized to one.

Each 15 component vector (corresponding to the initial 256
samples) is then written to a *.trn file.
*/

include stdio
include math

define PI13.1415926536

float ham{256) ;

main ()
{
FILE *tin, *thdr, *fout ;
float xr{256] ;
int i, j, n, counter, ¢, limit, temp ;
int eof_flag ;
in pointer, overiap, noise_flag ;
char name_in[30], name_out[30], temp_name|[30] ;
int sum, th_limit, i_snd, num_files ;
int reduction_flag ;

printt (*“AUTOFFT: Time/Frequency Conversion for Kohonen Net ...\n\n") ;

printf (“Enter (0) logarithmic, or (1) Kohonen reduction: "} ;
scanf (“%d", &reduction_flag) .

n =256,
setup_hamming (n) ;

fhdr = fopen ("'sounds.hdr”, "'r'} ;

B-2

Appendix B: Computer Programs

fscant (thdr, “%ed”, &num_files) ;

for (i_snd = 0 ; i_snd < num_files ; i_snd++) {
fscant (thdr, “%s”, temp_name) ;
sprintf (name_in, “%s.snd”, temp_name) ;
fin = fopen (name_in, “rb") ;

sprintt (name_out, "%e.trn”, temp_name) ;

fout = fopen (name_ouwt, “w") ;
printf (“ %s opened ...", name_out) ;

fimit = 3000 ;
th_limit =0 ;
counter = 0 ;
overlap = 0 ;
i=0;

pointer = 8 ;
noise_flag = 0.
sum =0 ;
eof_flag =0,

tseek (fin, pointer, 0) ;

while (eof_flag 1= 1) {

¢ = getc (fin) ;
it (feof(fin) t= 0)
eof flag = 1;

[**** OATA is in the range [0.255] from the way the A/D

software worked! *****#/

else {
if (c > 127)
c-=256;
sum += abs (c) ;
xr(i++] = (float) ¢ ;

it ((i == n) && (eof_flag == 0)) {

hamming {n, xr) ;
fiter (n, xr) ;

it (reduction_flag = = Q)
reduce_iog (xr) ;

else

reduce_koh (xr) :

subtract_ave (xr) ;

it (normatlize (15, xr) '= 0) {

if ((sum > th_timit) ||

(noise_flag = = Qj) {
fOf(j:O;i(15;i++)

it (+ +countet = = limit)

}

else

printt("\n Deleted %d @ %d\n",
sum, counter) ;

}
i=0:
if (overlap < 2) {

pointer + = 85 ;
tseek (fin, pointer, 0) ;

B-3

autofft

m

Appendix B: Computer Programs autofft

overlap + + ;
}

pointer += 86 ;
fseek (fin, pointer, 0) ;
overiap = 0 ;

else {

it (sum < th_limit)
noige_flag = 1:
else
noise_flag = 0 ;
sum =0;
}
}
fclose (fin) ;
fclose (fout) ;
printf (** %d vectors.\n", counter) ;

}
fclose {thdr) ;
}
setup_hamming (n)
int n,
{
int i;
[***** Set up the lookup table (ham(i]) for the hamming window ***/
for(i=0;i<n;i++)
ham(i}] = 0.54 -0.46 *cos20*PI*i/(n-1.0);
}
hamming (n, xr)
int n,;
float xr(256] ;
{
int i
for(i=0;i<n;i++)
xr[i] *= hamii} ;
}
fiter (n, xr) /* FFT */
int n;
float xr(256] ;
{

intnv,nm, i,), k. m Le Ld p;
float xi[256}, ur, ui, rt, it, wr, wi, up ;

for(i=0;i<n;it+)
xifi] = 0.0;

w=n/2,nm=n-1;j=1;
m = log((n+1) * 1.0) / log({2.0) ;

for{i=1;i<=n;i++){
xrfn-i + 1) =xrfn -1} ;
xi[n -i + 1} =xi[n -4} ;

Appendix B: Compister Programs autofft

fori=1;i<=nm;i++){

ti<p{
it = xr(f} ;
it = xiff} :
xr{j] = xr{i] ; xi(i] = xifi] :
xr{il =nt;
xifi] = it;
}
k=nv;
while (k <) {
i-=k;
ki=2;
}
j+r=k;

for(k=1;k<=m ;k++) {
Ld = pow (2.0, k * 1.0) ;
le=1d/2;
wr = cos (Pl / Le) ;
wi = -gin (P1/ Le) ;
ur=10;
ui =00;

forj=1;j<=Le;j++){
for(i=j.i<=n;i+=Ld){

p=i+lLe;

rt = xr{p) * ur - xi[p] * ui;
it = xrlp] * ui + xi[p) * ur;
xrfp] = xrlij - rt ;
xilp] = xifi] - it ;

xr{i] = xrfi} + rt;

xifi] = xili] +it;

up =ur*wr-ui*wi;
Uiz ui*wr+ur*wi;
ur = up;

}

for(i=1,i<=n;i++){
xefi - 1] = xrfi] ;
xifi - 1] = xii] ;

for (i = 0;i< nf2.0;i++)/* get magnitude */
xr(i] = sqrt (xr{i] * xr{i] + xii] * xi{i]) ;

}
normalize (n, xr)

int n,

float xr(256] ;
{

int [
double sum =0 ;

for(i=0;i<n;i++)
sum += xr[i] * xrli} ;

sum = sqrt (sum) ;

if (sum == 0.0) {
printt (* An input vector found to be ZERO thrown away ..\n");
return (0) ;

B-5

Appendix B: Computer Programs

for(i=0;i<n;i+t+)
xr{i] /= sum ;
retum (1) ;
}

reduce_log (xr)
fioat xr[256] ;
{

int i, j, counter ;

xr[0] = xr[3} ;
xr[1) = xr[4] + xr[5] ;
counter = 6 ;
for(j=2,j<13;j++){
xr[j] =00;
for (i = counter ; i < counter + j; i+ +)
xri] += xr{i] ;
counter +=j;

}

xr{13] = 0.0;

for (i=82;i<102;i++)
xr[13) += xrfi} ;

xr[14) = 00;

for (i =102;i< 128 ;i++)
xr{14] += xrfi] ;

}

reduce_koh (xr)
float xr{256] :
{

int i, j, counter ;

for (counter = 0 ; counter < 11 ; counter+ +) {
xr[counter] = 0.0;
for (i = counter *6 + 1 ;i < counter *6 + 7 ; i++) {
xr{counter] + = xr{i] ;

for (counter = O ; counter < 5 ; counter+ +) {
xrfcounter + 11] = 0.0 ;
for (i = 67 + counter * 11 ;i < 78 + counter * 11 ;i++) {
xrjcounter + 11] + = xr[i} ;

}
for{i=122,i< 128;i++)
xr[15] += xr{i] ;

}

subtract_ave (xr)
fioat xr[256) ;
{

int i;
double sum;

sum = 00 ;

for(i=0;i<15;i++)
sum += xrfi] ;

sum /=150 ;

for (i=0;i<15;i++)

Appendix B: Computer Programs
autofft

xrfi} -= sum ;

Appendix B: Computer Programs neural?

$ link neural7,nweight4, options_file/opt
,.

PEEBRRBAERNERNAAARNACS L ANSR N ARG ATARS n'u'm c ERARARERAERNERCERA IR RN LENAASEANRARS

Routines ta generata the first layer Kohonen network without
graphics. This version includes CONSCIENCE - the ability to
temporarilly remove nodes from consideration for training when
they have aiready received more than their share of training.

Note that this version of conscience will only eliminate a node
from being the “closest” to the input. it will still be trained
it it is in the region of a node which is chosen as the "‘closest”.

AAERRR RS RNAAARNEENENRRAREAE RN RN AR RDERANRNAARAESNORRANENAANRERS

Implementation of Kohonen neural network algorithm as illustrated and
described in JEEE magazine, Apr 87, by Dr. Lippman.

Capt Gary Barmore, 25 Aug 88

GENERAL:
(1) Output nodes are stored in a m x n matrix with each node
represented by weights associated with each of the input
nodes. (Limited to 20 by 20 array)
(2) Output nodes are initialized with values between {-0.05, +0.05].
(3) For each iteration, inputs are taken from a *.trn file which
contains a sequence of 15 component vectors generated by
AUTOFFT.EXE
{4) Gain curves may be either linear, sigmoidal (not very successtul),
or piecewise (two) linear.
(5) The size of the neighborhood is reduced as a tunction of the
percentage of loop completion. In piecewise linear gain runs,
the second “'piece" is hardwired to have neighborhoods constant
at 1 1", i.e. the closest node and its nearest neighbors (in
a rectangular region).

i

include math
include stdio
include time

int conscience{20]{20] ./* records # times closest */

int nodes ; /* number of nodes */
double consc =15; /* conscience factor */

long its ;

long nodes_elim ;

float map(20][20}{16] ; /* output nodes */

double input{16] ; /* input nodes */
double gain ;

doubie mcount ;

double percent ;

int closest(2] ; /* closest node */
im neigh(2) ; /* neighbor */
int nrangex, nrangey ,/* neighbor range */
int nfactorx, nfactory ; /* neighbor factor */
long count ; /* # of iterations */
int graph ; /* # between plots */
int seed ;
in maxneighx, maxneighy ./* Starting area */
B-8

Appendix B: Computer Programs neural7
int minneighx, minneighy ./* Final area */
int xsize, ysize ; /* Size of array */

int number_inputs ;

char training_file{30], net_file{30] ;
char net_name[15] ;

struct curve {
int type
double maxgain ;
double mingain ;
double midgain ;
int midtime ;
} geurve ;

struct fig {
int md_in ;
} flag ;

init (map)
tioat map[20](20](16] ;
{
int rnei;
float max_rand = pow(2.0,31.0) - 1.0;
nodes_elim =0 ;
nodes = ysize * xsize ;
tor(r=0:r<ysize;r++) {
for{c=0;c<xsize;c++) {
conscience(r]c] = G
for (i = 0, i < number_inputs ; i+ +) {
map{rj{c]{i] = rand (/ max_rand / 10.0- .05 ;
}
}
}
}
mindist (map, inp, close)
double inp(16] ;
int close(2] ;
fioat map([20](20](16] ;
{
int r,C i,
double dot_product ;
double maximum = 0.0,

for(r=0,r<ysize;r++) {
for (c =0, c < xsize; c++) {
if (conscience(r][c] < consc * its / nodes) {

dot_product = 0.0 ;

for (i = 0,;i < number_inputs ; i+ +)
dot_product + = inp[i] * maplr][c][i] :

if (dot_product > maximum) {
maximum = dot_product ;

close[0] = ¢;
close{1] =r;
}

}

nodes_elim+ + ;

}

usering ()

{

Appendix B: Computer Programs neural7

}

conscience|close[1]]{close[0]] += 1 ;

int
struct tm
int

do {

fine ;
-

*jocaltime(), *time ;
*bintim ;

printf ("NEURAL7 (Net training with conscience oniy!) ... \m\n") ;

primtf(“Enter size ‘m n' (for an m x n) of array = ? {intint]) ;
scanf(“%d %d", &ysize, &xsize) ;

if (ysize < 2)
ysize = 2 ;
else i (ysize > 20)
ysize = 20 ;
if (xsize < 2)
xsize = 2 ;
eise if (xsize > 20)
xsize = 20 ;

printf("Enter name of training file [.trn assumed): ") ;
scanf ("%s", net_name) ;

sprintf (training_file, “%s.trn", net_name) ;

printf(* Training file is: %s\n", training_file) ;

number_inputs = 15 ;

it (number_inputs < 2)
number_inputs = 2 ;

else if (number_inputs > 16)
number_inputs = 16 ;

printf("Enter name of net file to create [.net appended]:) ;
scanf ("%s", net_name) ;

sprintf (net_file, “%s.net”, net_name) ;

printf(" Net file to be created: %s\n", net_file) ;

printt (“Number of iterations = ? (int] "} ;

scanf (“%ld"”, &count) ;

if (count <= 10 {| count > 130000)
count = 100 ;

mcount = (double) count ;

printf (“Number of iterations between status messages = ? (int] ") .
scanf ("%d", &graph) ;
if (graph < 1 || graph > count)

graph = 10 ;

ingain (.

printf {*Do you want 0) sequentiai or 1) randomizedtraining? ™) ;
scant (“%d", &flag.rnd_in) ;

printt (“Starting size of neighborhoods 'yn xn' = ? {intint] ") ;
scant (“%d %d", &maxneighy, &maxneighx) ;

B-10

Appendix B: Computer Programse

if (maxneighx < 2 | | maxneighx > xsize - 1)
maxneighx = 2 ;

if (maxneighy < 2 || maxneighy > ysize - 1)
meaxneighy = 2,

printt (“Final size of neighborhoods ‘yn xn' = ? [int int])

scanf (“%d %d", &minneighy, &minneighx) ;
if (minneighx < 1 || minneighx > maxneighx)

minneighx = 1 ;
if (minneighy < 1 || minneighy > maxneighy)
minneighy = 1 ;

printf(*Initial seed for random # generator (0 SELECTS TIME) = ? [int] "):
scant (“%d", &seed)
if (seed == 0) {

time = localtime (bintim) ;

time.tm_sec %= 60 ;

time.tm_min %= 60 ;

seed = time.tm_sec * time.tm_min ;

}
srand (seed) ;
printf("Ready to begin? (y/n) ") ;
while ((c = getc (stdin)) =="'|]c==\n"|| c =="W)
} while (¢ 1= y) ;
}
ingain
A
im line ;

printt(“For gain enter 0) LINEAR, 1) SIGMOIDAL, 2) PIECEWISE LINEAR : ");
scanf ("%d", &gcurve.type) ;

it (gcurve.type == 0 || gcurve.type == 1) {
printt (“Maximum gain = ? {float])) ;
scanf (“%E", &gcurve.maxgain) :
it (gcurve.maxgain >= 1.0 || gcurve.maxgain <= 0.0)
geurve.maxgain = .99 ;

printf (‘Minimum gain = ? [float) ") ;

scanf (“%E", &gcurve.mingain) ;

it (gcurve.mingain <= 0.0 || gcurve.mingain > = 1.0)
geurve.mingain = 0.0 ;

}

printf (“First segment starting gain = ? [float] ") ;

scant ("%E", &gcurve. maxgain) ;

if (gcurve.maxgain >= 1.0 || gcurve.maxgain <= 0.0)
gcurve.maxgain = .99 ;

oise {

printf ("Second segment starting gain = ? [float] "} ;

scanf ("%E", &gcurve.midgain) ;

if (gcurve. midgain <= 0.0 || gcurve.midgain > = 1.0}
geurve.midgain = 0.0 ;

printf (“Second segment starting iteration = ? [float] ") ;
scanf (“%d", &gcurve.midtime) ;

neural?

Appendix B: Computer Programs neural7

if (gcurve.midtime <= Q | geourve.midtime > count)
geurve.midtime = count / 2 ; -

geurve.mingain = 0.0 ;

}
}
Qetgain (7)
{
it (geurve.type == Q)
gain = (percent * (gcurve.maxgain - gcurve.mingain)) + gcurve.mingain ;
else it (Qcurve.type == 1)
gain = 0.9 * (gcurve.maxgain - gcurve.mingain) / (1.0 + exp (i - court / 2.0)) + .1 ;
olge {
it (i < geurva.midtime) -
gain = gcurve.maxgain * (1.0 - (double) i / gcurve.midtime) ;
olse
gain = gecurve.midgain * (1.0 - (double} i / count) ;
}
}
save_net ()
{
in rc,i;
FLE *fnet ;
fnet = topen(net _file,"w") ;
fprintf (fnet,"%d %d %d", ysize, xsize, number_inputs) ;
for (r = 0;r < ysize; r++) {
for (¢ =0 ;c < xsize ; c++) {
for (i = 0 ;i < number_inputs ; i+ +) {
torintt (fnet,” %f”, map(r]{c}{i]) :
}
}
fclose (fnet) ;
}
main{)
{
long il
char s1{10] ;
int L
int ws_id =1
int clear_tlag = 1, -
FILE .

extern unsigned _stklen ;

_stklen = 8192 ;

userinp () ; /* Get input values */
nfactorx = maxneighx - minneighx + 1 ;
nfactory = maxneighy - minneighy + 1 ;
init (map) ; /* Initialize weights */

read_trn_file () ;

for(i=1;i<=count;i++){

m

Appendix B: Computer Programs neural7

ts =i,
it (i % graph == 0) {
printt (“NEURAL3: gain = %f, yrange = %d, ", gain, nrangey) ;
printt (“xrange = %d, iteration # %d", nrangex.i) ;
printt (** (of %ld)\n", count) ;
k = nodes_elim / (double) graph ;
printt (“%d ave nodes eliminated\n", k) ;
nodes_elim = 0 ;

}
percent = (mcount - i) / mcount ;
getgain () ;
it (lag.rd_in == 0)

getin () ;

get_md_in () ;

mindist (map, input, closest) ;

it (geurve.type != 2) {
nrangex = minneighx + percent * nfactorx ;
nrangey = minneighy + percent * nfactory ;

else

else if (i < gcurve.midtime) {
nrangex = minneighx + ntactorx *
((double) (gcurve.midtime - i)) / gcurve.midtime ;
nrangey = minneighy + nfactory *
({(double) (gcurve.midtime - i)) / gcurve.midtime ;

else {
nrangex = minneighx ;
nrangey = minneighy ;

neigh[0] = nrangex ;
neigh[1] = nrangex ;
weightem (map) ;

}

save_net () ;
printf (‘\nNet file: %s saved\n", net_file) ;

/’

REARAEREER AR RN R NN RN RN NANEANSARANY nwelght4 ¢ RARURRRARRRAN IR R AR AT AR ATNORSR

These routines allow training and testing of a first layer Kohonen
network. The training primarilly supports NEURAL7.C/EXE. Testing
(with true sound spectrum data) supports NEURAL2.C/EXE to recreate

sounds.

*/

include math

include stdio

include stat
extern double input[16] ; /* input nodes */
extern double gain ;
extern int closest[2] ; /* closest node */
extern int neigh{2] ; /* neighbor */
extern int xsize, ysize ; /* Size of array */
extern int number_inputs ;

extern char training_file[30] ;

Appendix B: Computer Programs

int tr_length ;
float tr_data{22500] ;
int tr_counter =0 ;
int tr_vectors ;
int node_sound(225] ;
int num_words ;
im word_limits{25}(2] ;
read_trn_file ()
{
FiLE " ;
float value = 1.0;
unsigned memory ;
tf = fopen (training_file, “r") ;
tr_length = 0 ;
while (fecf(tf) == 0) {
fscanf (if, “%f", &value) ;
*(tr_data + tr_length) = value ;
tr_tength++ ,
}
fclose (tf) ;
tr_iength-- ;
tr_vectors = floor (tr_length / 15.0) ;
tr_length = 15 * tr_vectors ;
}
getin
{
im i
it (tr_counter == tr_length)
tr_counter = 0,
for(i=0:i<15;i++){
input(i] = *(tr_data + tr_counter) ,
tr_counter+ + ;
}
}
get_rnd_in
{
int i,
double max_rand = pow (2.0,31.0)-1.0;
int pointer ;
pointer = 15 * floor ((rand() * (tr_vectors - .0001) / max_rand)) ;
for(i=0:i<15;i++)
input(i] = *(tr_data + pointer + i) ;
}

weightem (map)

{

float

int

map{20]{20}{16] .

nright, nleft, nup, ndown, r ., ¢, i;

it (neigh[0} > O && neigh{1] > 0) {
nright = closest[0] + neigh[0] - 1 ;
it (nright > = xsize)

nright = xsize - 1,

neural7

Appendix B: Computer Programs

else {

nleft = closest[0] - neigh[0] + 1;
it (nleft < 0)
nleft =0 ;
nup = closest[1] - neigh{1] + 1;
if (nup < 0)
np =0,
ndown = closest[1} + neigh{1} - 1 ;
if (ndown > = ysgize)
ndown = ysize - 1;

}
aright = closest{0] ;
nleft = closest{0] ;

nup = closest(1] ;
ndown = closest(1] ;
}

tor {r = nup; r <= ndown ; r+ +) {

for (c = nleft ; ¢ <= nright ; c+ +) {
for (i = 0 ;i < number_inputs ; i+ +)

map(rj{c](i] += gain * (input(i] - map(rl[c](i]) :

B-15

neural7

Appendix B: Computer Programa neural2

$ link neural2,nplot,nprinter, mat2, nweightd,options_file/opt
,C

AN ARAER RSN D ANAENAENERARNASN NN Y mrm‘c RO ERABRNEANRREEANRRARE RN REAANAREAD

Routines to train first Kohonen neural net (with graphics) and

to display spectre of net after it is trained. During training,

the graphics show spectra. However, this slows down the training
greatly. Thus if time is important, run NEURAL7 EXE.

SERASRRERERE AN AR ER RN RER R AN R AN E AR R AN T ENENREN ARG RANRANS

Implementation of Kohonen neural network aigorithm as iliustrated and
desacribed in IEEE magazine, Apr 87, by Dr. Lippman.

Capt Gary Barmore, 7 Feb 88

GENERAL:
{1) Output nodes are stored in a m x n matrix with each node
represented by weights associated with each of the input
nodes. (Limited to 20 by 20 arrays).
(2) Output nodes are initializea with values between {-0.05, +0.05].
(3) For each iteration, input nodes receive values consisting of
15 component vectors taken from a *.trn file generated by
AUTOFFT.EXE.
(4) Gain curves may be linear, sigmoidal (not very successtuf) or
piecewise (two pieces only) linear.
(5) The size of the neighborhood is reduced as a function of the
percentage of ioop completion. For piecewise linear gain runs,
the second “piece" is hardwired for a neighborhood of "1 1"; i.e.
it includes the closest node and its nearest neighbors in a
rectangular grid.

*

include math

include stdio

include curses

include time

include <gksdefs.h>

define bool int

float map{20][20][16] ; /* output nodes */
double input[16] ; /* input nodes */

double gain, noise ;

double mcount ;

double percent ;

int closest([2] ; /* closest node */

inm neigh[2] ; /* neighbor */

int nrangex, nrangey ; /* neighbor range */
int nfactorx, nfactory ; /* neighbor factor */
long count ; /* # of iterations */

int graph ; /* # between plots */

int seed ;

int maxneighx, maxneighy ; /* Starting area */
int minneighx, minneighy ; /* Final area */
int xsize, ysize ; /* Size of array */

int number_inputs ;

char net_file(30). net_name[15) ;
char training_file{30] ;

B-16

map{20}{20](16] .

int *bintim ;

{
int ¢,
float max_rand = pow(2.0,31.0) - 1.0 ;
for(r=0;r < ysize;r++) {
for (c =0;c < xsize;c++) {
for (i = 0 ;i < number_inputs ; i+ +) {
map(r][c]{i} = rand () / max_rand / 10.0 -
}
}
}
}
mindist (map, inp, close)
' double inp{16] ;
int close{2] ;
float mapf20][20][16) ;
{
int rnei;
double dot_product ;
double maximum = 0.0 ;
for(r=0.r<ysize;r++){
for(c =0;¢c<xsize;c++) {
dot_product = 0.0;
for (i = 0 ;i < number_inputs ; i+ +)
dot_product + = inp(i) * map|r][c](i] ;
it (dot_product > maximum) {
maximum = dot_product ;
close{0] = ¢ ;
close[1] =r;
}
}
}
}
userinp ()
{
im line ;
int c,
struct tm *localtime(), *time ;

Appendix B: Computer Programs neurat2

clear () ;
printw (“NEURALZ2 (Training a Sound Net with GRAPHICS onlyl) ... \r\n") ;

printw(‘\nm\nEnter size ‘'m n' (for an m x n) of array = ? {int int) *) ;
scanw("%d %d", &ysize, &xsize) ;
it (ysize < 2)
ysize = 2;
elee if (ysize > 20)
ysize = 20 ;
if (xsize < 2)
xsize = 2 ;
olse it (xsize > 20)

xgize = 20 ;

printw("Enter name of training file [less tm): ™) ;
scanw (“%s’", net_name) ;

sprintf (training_file, “%s.trn", net_name) ;
printw (" Training file is : %a\n”, training_file) ;

number_inputs = 15 ;

it (number_inputs < 2)
number_inputs = 2 ;

elgse if (number_inputs > 16)
number_inputs = 16 ;

printw(“Enter name of net file to create [less .net]:) ;
scanw (“%s", net_name) ;

sprintf (net_file, “%s.net”, net_name) ;

printw (Net file to be created: %s\n", net_file) ;

printw (“Number of iterations = ? [int] ") ;

scanw (“%ld", &count) ;

it (count <= 10 || count > 130000)
count = 100 ;

mcount = (double) count ;

printw (“Number of iterations between plots = ? [int] ™) ;
scanw (“%d", &graph) ;
it (graph < 1 || graph > count)

graph = 10;

ingain () ;

printw ("Do you want (0) sequential or (1) random training?) ;
scanw ("%d", &flag.rnd_in) ;

printw (“Starting size of neighborhoods ‘'yn xn' = ? [int int] ™) ;
scanw ("%d %d"”, &maxneighy, &maxneighx) ;
if (maxneighx < 2 || maxneighx > xsize - 1)
maxneighx = 2 ;
if (maxneighy < 2 || maxneighy > ysize - 1)
maxneighy = 2 ;

printw (“Final size of neighborhoods 'yn xn' = ? {int int] ") ;
scanw ("“%d %d", &minneighy, &minneighx) ;
it (minneighx < 1 || minneighx > maxneighx)

minneighx = 1 ;
it (minneighy < 1 || minneighy > maxneighy)
minneighy = 1 ;

B-18

Appendix B: Computer Programse neural2

(“Initial seed for random # generator (0 SELECTS TIME) = ? [int]);
acanw (“%d", &seed) ;
i (s0ed == 0) {

time = localtime (bintim) ;

time.tm_sec %= 60 ;

time.tm_min %= 60 ;

seed = time.tm_sec * time.tm_min ;

}
srand (seed) ;

printw(“Ready to begin? (y/n) ") ;
while ((c = getch () ==""[|c=="|[| ¢ == 1)

endwin o';
} while (c 1=ty :

e
in line ;

printw(“For gain enter 0) LINEAR, 1) SIGMOIDAL . 2) PIECEWISE UNEAR :);
scanw (“%d"”, &gcurve.type) ;

it (geurve.type == 0 || geurve.type == 1) {
printw (“Maximum gain = ? [fioat] ") ;
scanw ("%E", &gcurve.maxgain) ;
if (gcurve.maxgain >= 1.0 || geurve.maxgain <= 0.0)
geurve.maxgain = .99 ;

printw (“Minimum gain = ? [fioat]) .

scanw (“%E", &gcurve.mingain) ;

if (geurve.mingain <= 0.0 || gcurve. mingain > = 1.0)
geurve.mingain = 0.0 ;

else {
printw (“First segment starting gain = ? [float]) ;
scanw ("“%E", &gcurve.maxgain) ;
if (gcurve.maxgain >= 1.0 || gcurve.maxgain < = 0.0)
geurve.maxgain = .99 ;

printw (“Second segment starting gain = ? [fiost] ") ;

scanw (“%E", &gcurve.midgain) ;

it (geurve.midgain <= 0.0 || gecurve.midgain > = 1.0)
geurve.midgain = 0.0 ;

printw (“Second segment starting iteration = ? [float] ™) ;

scanw ("%d", &gcurve.midtime) ;

it (gcurve.midtime <= 0 || gcurve.midtime > count)
geurve.midtime = count/ 2 ;

geurve.mingain = 0.0 ;
}
}

getgain (i)
long i
{

it (gcurve.type == 0)

B-19

Appendix B: Computer Programs

gain = (percent * (gcurve.maxgain - gcurve.mingain)) +
geourve.mingain ;
oise if (Qcurve.type == 1)
gain = 0.9 * (gcurve. maxgain - gcurve.mingain) / (1.0 + exp (i -
count/20)) +.1;

olse {
if (i < gcurve.midtime)
gain = geurve.maxgain * (1.0 - (double) i / gcurve.midtime) ;
else
gein = geurve.midgain * (1.0 - (double) i / count) ;
}
}
main
{
int c,
printf (‘"\nNEURAL2 (Sound net Training with GRAPHICS only!) ..\n") ;
printt (‘\nDo you want to train a net? (y/n) ") ;
while ({c = getcharQ) =="'|lc==n"||c =="1)
te ==y
train_net () ;
printf ("\nDo you want to draw spectra of a net? (y/n) ") ;
while ((c = getchar() =="''|]c==n"}| c == ")
e ==Y)
draw_net_spectra () ;
}
save_net ()
{
int rci,;
char name[30) ;
FILE *“tnet ;
fnet = fopen (net_file, "w') ;
fprintf (fnet,"%d %d %d", ysize, xsize, number_inputs) ,
for{(r=0;r<ysize;r++) {
for{(c =0, ¢ < xsize;c++) {
for (i = 0.1 < number_inputs ; i+ +) {
tprimtt (fnet,” %f", map[r](c}{i]) :
}
}
}
fclose (fnet) ;
}
save_temp_net()
im [
FILE *fnet ;

char temp_net{30] ;

sprintf (temp_net, “%s.mid", net_name) ;
fnet = fopen (temp_net, “w") ;
tprintt (fnet,%d %d %d", ysize, xsize, number_inputs) ;
for(r=0;r<ysize ;r++){
for{c =0:c < xsize;c++) {

B-20

neural2

Appendix B: Computer Programs

for (i = 0 ;i < number_inputs ; i+ +) {
fprint (inet, * %t”, map[r](c][i]) :

}
}
}
fclose (fnet)
draw_net_spectra ()
{
int flag. r.c, i j k;
char name{30), 8[10] ;
double in[16] ;
float olement ;
int locf2] ;
FILE *fsnd, *fnet ;
int sound[] = {8,43,3,21,47,9,28,1} ;
int sounds =8 ;
int 1ft3_flag ;

}

printf (‘“\nEnter name of net-file to teet: ") ;

scanf (“%s", name) ;

fnet = fopen (name, ") ;

fscant (inet,"%d %d %d", &ysize, &xsize, &number_inputs) ;

for(r=0.r<ysize;r++){

for(c =0;c < xsize;c++) {
for (i = 0 ;i < number_inputs ; i+ +) {

fecant (fnet,” %t", &mapir}[c](i)) ;
}

}
fciose (inet) ;
printt (“Was this generated by (0) FFT2 or (1) FFT3? ") ;
scant (“%d", &3 _flag) ;

graph_test (name) ;
if (M3_flag!=1)

draw_grid (ysize, xsize) ;
draw_spectra (map, ysize, xsize) ;
scant (“%s",s) ;
clipoft () :
graphoft () ;

train_net ()

{

long i,

char s1[10} ;

in we_id =1;
int clear_fiag =
FILE “t,

extern unsigned _stklen ;

_stklen = 8192 ;

userinp () ; /* Get input values */
nfactorx = maxneighx - minneighx + 1 ;
nfactory = maxneighy - minneighy + 1 ;
init (map) ; /* Initialize weights */
read_trn_file () ;

B-21

neural2

Appendix B: Computer Programs

}

prep_graph () ;
for(i=1;i<=count;i++){
(1% graph ==0) {
fixcolors (map) ;
clear_viewport () ;
statusem (Qain, nrangey, nrangex, i) ;
draw_spectra (map, ysize, xsize) ;

}
i (i % 10000 == 0)
save_temp_net () ;
percent = (mcount - i) / meount ;
getgain (i) ;
it (flag.md_in == 0)
getin 0 ;

get_md_in () ;

mindist (map, input, closest) ;

it (geurve.type = 2) {
nrangex = minneighx + percent * nfactorx ;
nrangey = minneighy + percent * nfactory ;

}

oise if (i < gcurve.midtime) {
nrangex = minneighx + nfactorx *
((double) {gcurve.midtime - i)) / gcurve.midtime ;
nrangey = minneighy + nfactory *
((double) (gcurve.midtime - i)) / gcurve.midtime ;
}

else {
nrangex = minneighx ;
nrangey = minneighy ;
}

neigh(0] = nrangex ;

neigh[1] = nrangex ;

weightem (map) ;

}

save_net J ;

primt (“\nNet file: %s savedi\n", net_file) ;
scanf (“%s".81) ;

end_graph () ;

print_data (map) ;

distance_histogram (map, ysize, xsize) ;

graph_test (name)

{

char name(30] ;

char titie[79], labelx(79) :
flost xloc[5] = {0, 639.0, 639.0, 0.0, 0.0} :
float yioc{5] = {349.0, 349.0, 0.0, 0.0, 349.0} ;

int points = 5 ;
int ws_id = 1;

int clear flag = 1;
short length ;

sprintf(title, 'NEURAL2: Kohonen %d x %d Neural Net -- %s",
ysize, xsize, hame) ;

graphon () ;

gks$clear_ws (&ws_id, &clear_flag) ;

gks$polyline (&points, xioc, yloc) ;

prepcolmat (ysize, xsize) ;

B-22

neural2

Appendix B: Computer Programs neural2
length = (short) strien (titie) ;
outtitle (title, length) ;
length = (short) strien (labebx) ;
clipon () ;

}

l{l‘P_ﬂflPh 0

% char titie[79), labeix[79)] ;

flost xioc[5) = {0, 639.0, 639.0, 0.0, 0.0} ;
float yloc[S] = {349.0, 349.0, 0.0, 0.0, 349.0} ;
int points = 5;
int ws id=1,;
inm clear_flag = 1,
int box = 3 ;
short length ;

sprintf(title,"NEURALZ2: Kohonen %d x %d Neural Net", ysize, xsize) ;

sprinmt(labetx,
“[%4.21,%4.21] Gain, [%d,%d : %d,%d] Neighbors, %d iterations”,
gcurve.maxgain, gcurve.mingain, maxneighy, minneighy, maxneighx,
minneighx, count) ;

graphon () ;

gks$create_seg (&box) ;

gks$polyline (&points, xloc, yloc) ;

gks$close_seg (&box) ;

prepcoimat (ysize, xsize) ;

length = (short} strien (labetx) ;

outiabeix (labeix, length) ;

length = (short) strien (title) ;

outtitle (title, length) ;

pickcolors () ;
clipon () ;
}
t{*ﬂd_graph 0
clipoft () ;
graphoff) ;
}
fixcolors (map)
float map[20]{20}{16] ;
{
in rci;
int max = ¢ ;
double constant ;
double temp(20]{20] :
extemn int colmat[20)[20] ;

for(r=0;r<ysize; r++){
for(c =0:c < xsize;c++) {
tempir](c] = 0.0;
for (i = 0 ;i < number_inputs ; i+ +)
tempir](c] += pow(map(r][c][]. 20) :
if (temp(r}c] > max)
max = temp]r](c] :
}

B-23

Appendix B: Computer Programe

}
/.

if (max {= 0.0)
constant = 14.986 / max ;
olse
consatant = 14.968 ;
forir=0;r<ysize;r++){
for(c =0;c < xsize;c++) {
coimat{r]{c] = fioor (temp(r}ic] * constant) + 1 ;
it (coimat[r}[c] > 15)
colmat{rj[c] = 15;
}

RERERBREADC RN RARERA NN ENSARS npm c RN AREARRARLARRAERERANERARNARGRER

*

Routines to enable graphics for Micro-VAX Ii workstation using GKS
for Kohonen network speech recognition.

include math
include stdio
include <gksdefs.h>
include <descrip.h>

define MAX_STRING 80

double xlow, xup, ylow, yup ;
double xdel, ydel ;
float x[100], y{100] ;
?raphon 0
int ws_id =1;
int error_status, category, inquire_okay ;
int dummy_int, def_mode, regen_fiag, ws_type ;
int ™, ry, units ;
fioat Xy,
fioat x0 =00,
float x1 = 639.0;
float y0 =00;
float y1 =3490;
int deferral_mode = GKS$K_ASAP ;
int regen_mode = GKS$K_IRG_SUPPRESSED ;
struct dsc$descriptor dummy_dsc ;
char dummy_string [MAX_STRING] .

"3

$OESCRIPTOR (error_file, “sys$error:™) ;
inquire_okay = 0 ;

dummy_dsc.dsc$a_pointer = dummy_string ;
dummy_dsc.dsc$w_length = (short) MAX_STRING ;

gks$open_gks (&error_file) ;
gks$inq_ws_category (&GKS$K_WSTYPE_DEFAULT, &error_status, &category);

Make sure workstation type is valid.

if ((error_status ! = inquire_okay) | |

B-24

A

Appendix B: Computer Programe

-3

*

Il
]
*

}

((category 1= GKS$K_WSCAT_OUTIN) &&
(category | = GKS$K_WSCAT_MOY))) {

printt (“The specified workstation type is invalid\n") ;
printt (“Error status: %d\n", error_status) ;

retum ;

}
gksSopen_ws (&ws_id, &GKS$K_CONID_DEFAULT, &GKS$K_WSTYPE_DEFAULT);
gkeSactivate_ws (&ws_id) ;

Make sure deferral mode and regeneration flag are properly set.

ghs$eet_defer_state (&ws_id, &deferral_mode, ®en_made) ;
gke$ing_ws_type (&wa_id, &error_status, &dummy_dsc, &ws_type,
&dummy _int) ;
gke$ing_del_defer_state (&ws_type, &error_status, &def_mode,
®en_flag) ;
it (error_status | = inquire_okay) {
printf (“The deferral inquity caused an error\n") ;
printf (“Error status: %d\n", error_status) ;
return ;

}
Set up viewport for drawing figures.

gkeSset_window (8ws_id, 8x0, &x1, &y0, &y1) ;
gksSeelect_xform (&ws_id) ;

{(;raphdl 0

clipon ()
{

}

int we_id=1;

gksSupdate_ws (&ws_id, &GKS$K_PERFORM_FLAG) ;
gksSdeactivate_ws (&ws_id) ;

gks$ciose_ws (&ws _id) ;

gks$close_gks () ;

int ws2 =2,
float x0=00;
float x1 = 5600 ;
float y0 =00;
fioat y1 =2890;
float vx0 = 0183 ;
float vxi = 0.881 ;
float vy0 = 0.1143
fioat vyl = 0.9400 ;
int on=1;

gke$eet_window (&ws2, 8x0, &x1, &y0, &y1) ;
gks$set_viewport (8&ws2, &vx0, &vx1, &vy0, &vy1) ;
gksSeelect_xform (&ws2) ;

gks$eet_clipping (&on) ;

clear_viewport ()
{

flost xloc[] = {0.0, 560.0, 560.0, 0.0, 0.0} :

neural2

Appendix B: Compiter Programe

clipoft
{

}

flost yloc[} = {280.0, 286.0, 0.0, 0.0, 289.0} ;
int points =5 ;

int solid = 1;

int background = 0 ;

int black = 1;

gksSeet_fili_color_index (&background) ;
gks$eet_fill_int_style (&solid) ;
gka$till_area (&points, xloc, yloc) ;
gksSeet_fill_color_index (&black) ;

int off =0;

int ws id=1;
gks$select_xiorm (8ws_id) ;
gksSeet_clipping (&off) ;

outaxes ()

{

}

int XX, yy, points ;

points = 2 ;
y[0] = y[1) = 39; x[0} = 60 ; x[1) = 620 ;
gks$polyline (&points, x, y) /* Piot horizontal axis */

x{0] = x[1] = 60 ;y[0] = 329 .y[1] = 40;
gks$polyline (&points, x, y) /* Plot vertical axis */

x{0} = 57 ; x[1) = 59;

for (yy = 39 yy <= 329 ;yy += 58) {/* Plot y ticks */
yl0) =y[1]) = yy:
gks$polyline (&points, x, y) .
}

y{0] =38.y[1] = 36;

for ox = 60 ;¢ <= 620 ; xx + = 56) {/* Plot x ticks */
x[0] = x{1] =x;
gks$Spolyline (&points, x, y) ;
}

outlimits (2,d2,62,x1,d1,81) /* x-axis then y-axis */

double x1,d1, 2, d2;
int el 62,
char s[5}, s8f9} ;

$DESCRIPTOR(s_dsc.s) ;
$DESCRIPTOR(ss_dsc,ss) ;

int ticks(3], loop, xx, yy, flag ;
double xypos{3], defta(3]
double e,

fioat xloc, yloc ;

ticks{0] = 5 ; ticks[1) = 10;

e =62;
xlow = x2 * pow (10.0,0) ;

B-26

neurat2

Appendix B: Computer Programs neural2

xup = xiow - 10.0 * d2 * pow (10.0,e) ;
=0

ylow = x1 * pow (10.0,e) ;

yup = ylow + 5.0 * d1 * pow (10.0¢) ;

deita[0] = d1 ; deita{1] = d2;
xypos(0] = x1 ; xypos(1] = x2;
for(flag =0 flag <=1 flag++) {
for (loop = 0 ; loop < = ticks[fiag] ; lcop+ +) {
w=7+loop*7;
it (flag) {
sprintt (s,"%4. 11" xypos{fiag]) ;
xloc = 1.0 + 80 * (xx-2.0) ;
yloc = 340 ;
gks$text (&xioc, &yloc, &s_dsc) ;
}

sprintf (s,"%4.1t" xypos|fiag]) .

xloc = 220 ;

yloc = 349.0 - 16.0 - (5.0 - ioop) * 58.0 ;
gksS$text (8xioc, &yloc, &s_dsc) ;

}
;vpo-{ﬁ-al += dehalflag] :

}
it (621=0) {
sprintt (89,"(x E%3d]",62) ;
xloc = 3120 ;
yloc = 220 ;
gkaS$text (&xioc, &yloc, &ss_dsc) ;

}
te1!=0){
xloc = -10;
yloc =00
gksSeet_text_upvec (&xloc, &yloc) ; /* rotate text to 90 deg */
sprintf (se,"[x E%3d]".e1) ;
xloc = 26.0;
yloc = 209.0;
gks$text (8xloc, &yloc, &ss_dsc) ;
xloc = 00 ;
yloc = 10;
gksSaet_text_upvec (8xloc, &yloc) ; /* change text to normal */
}

xdel = (xup - xlow) / 560.0 ;
ydel = (yup - ylow) / 280.0 ;

}
auttitle (string, length)
shont length ;
char *string
{
in title = 1 ;
int loc ;
float xioc, yloc ;
struct dec$descriptor string_dsc = {length,
DSC$K_DTYPE_T,
DSC$K_CLASS_S,
string} ;
xloc = 320.0 - 3.0 * length ;
B-27

m

Appendix B: Computer Programs

yloc = 343.0;

gks$create_seg (&title) ;

gksStext (8udoc, &yloc, &string_dsc) ;
gkeSclose_seg {(Stitle) ;

}
outiabetx (string, length)
short length ;
char *string .
{
int labelx = 2 ;
int loc;
float xloc, yloc ;
struct dsc$descriptor string_dsc = {length,
DSC$K_DTYPE T,
DSC$K_CLASS S,
string} ;
xloc = 320.0 - 3.0 * length ;
yloc = 10.0;
gks$create_seg (&labeix) ;
gks$text (8xioc, &yloc, &string_dsc) ;
gks$close_seg (&labebx) ;
}
outlabely (string)
char string[80] ;
{
im loc ;
float xloc, yloc ;
$DESCRIPTOR(string_dsc,string) ;
loc = strien(string) ;
string[loc] = \0';
xioc = -1.0;
yloc = 00;
gks$set_text_upvec (&xloc, &yloc) ;
xioc = 13.0;
yloc = 349.0 - 164.0-4.0* loc ;
gksaStext (8xloc, &yloc, &string_dac) ;
xloc = 0.0;
yloc = 10;
gks$set_text_upvec (&xioc, &yloc) ;
}
/'

RSN AERD AN RIS NN R AN A ANRNSANTAANERR np"nterc AREE SRR A AN R A AN RAEAANE R R RN R AN

¢/

Simulates printer output by storing Kohanen training data in a file
PRINTER.QUT. This file was written when NEURAL*.EXE was still

being written and run on a Tandy 4000. The current version of the
Kohonen training routines may not have the appropriate hooks in them
to run these printer routines.

include stdio
include math

FiLE *fp, *fopen(;

B-28

neurat2

Aty

o

Appendix B: Computer Programs

A

double nei ;
extern int xsize, ysize, number_inputs, wrap_fiag ;
extern struct curve {
int type ;
double maxgain ;
double mingain ;
double midgain ;
inm midtime ;
} geurve ;
?opon 0
fp = fopen (“printer.out”,"w") ;
fputc (15.fp) ;
}
pelose (
fclose (fp) ;
}
;{;food 0
fpute (\n'fp} ;
}
p_return (lines)
int lines ;
in i,
for(i=1;i<=lines;i++)
fprintt (fp,"\n") ;
}
print_data (map)
¢ fioat map(20]{20](16] .
int tei,;
extern int count, maxneighx, maxneighy, minneighx, minneighy ;
extern int seed ;

extern double xoff, yoff ;

printf (“\nDo you want parameters and weights printed out? (y/n) ") ;
while ((c = getchar() ==""||c=="\n"|] c == V)

t(ct=y)
return (0) ;

popen (;
pleed ()

tprintf(fp, \nNEURAL...\n-----\n\n") ;
tprimti(fp, "SIZE OF ARRAY : %d x %d\n" ysize xsize) ;
tprintf(ip,"NUMBER OF INPUTS : %d\n".number_inputs) ;
it (gcurve.type == 0) {
tprintf(fp,"GAIN CURVE IS : %s\n","LINEAR") ;
tprintf(fp,"RANGE OF GAIN : [%g,%g]\n",

neural?

Appendix B: Computer Programs neural?

geurve. maxgain,geurve. mingain) ;

}
eolse if (gcurve.type == 1) {
tprintf(tp,"GAIN CURVE IS : %e\n",
“SIGMOIDAL") ;
fprintf(fp, "RANGE OF GAIN : [%g,%g]\n",
geurve. maxgain,gcurve. mingain) ;
}

fprintf(fp,"GAIN CURVE IS : %s\n",
“PIECEWISE UNEAR") ;
fprintf(fp, "MAXIMUM GAINS (AND BREAKPOINT) : %g,%g (%d)\n",
gcurve.maxgain, gcurve.midgain, gcurve.midtime) ;

}
fprintf(fp, ‘NEIGHBORHOODS START AT : %d %d\n”,
maxneighy, maxneighx);
fprintt{fp, "NEIGHBORHOODS END AT : %d %d\n",
minneighy, minneighx);
tprintf(fp,"SEED : %d\n" seed) ;
fprintf(fp, "INITIAL X-OFFSET, Y-OFFSET : %g %g\n" xoff,yoff) ;
it (wrap_flag == 0)
fprintf (fp, "WRAP : OFF\n") ;
elas
fprintt (fp."WRAP : ON\n") ;

p_return (3) ;
tprintf (fp,"Final values for weights are:\n\n") ;

for(r=0;r<ysize;r++) {
tor (i = 0 ;i < number_inputs ; i+ +) {
for (c = 0;c < xsize ; c++)
tprintt (Ip,"%5.11 *, map{r}[c](i]) ;
p_return (1) ;
p_return (1) ;

peiose () ;

distance_histogram (map, ysize, xsize)

im ysize, xsize ;
float map(20](20](16] ;
{
int binf] = {0,0,0,0.0,0,0,0,0,0} ;
int bin2[} = {0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0.0.0,0} :
float maximum = 0.0 ;
float minimum = 99990 ;
int binmax = 0 ;
im binma@2= 0 ;
fioat dist{20){20}[4]. a. b, delta ;
int neij;
double tot, sub ;
printf ("\nDo you want distance histogram printed out? (y/n) ") ;
while ((c = getchar()) ==""||c==n" || c == ")
tct=y)
return (0) .
popen () ;
B-30

W

Appendix B. Computer Programe neural?

L pleed () ;
fprintt (Ip,"The distance histogram is:\n\n") ;

for(r=0;r<ysize;r++)
for(c=0;¢c<xeize;c++)(
t(r==0)
dist[r}{c][0]) = -1.0 ;
oloe {
dist[r}[c][0) = 0.0 ;
for (I = 0;1 < number_inputs ; i+ +)
dist[r][c}{0]) +=
pow(map]r}(c][i}-mapfr-1][c][),2.0);
dist[r][c]{0] = sqrt ((doubie) dist{r](c}{O]) :
test_maxmin (dist{r][c][0]), &maximum, &minimum);

if(r==ysize-1)
dist[r){c}{?] = -1.0;
slse {
dist[r}(c]{2] = 0.0;
for (i = 0;i < number_inputs ; i+ +)
distir]{c]{2] +=
pow(mapl(rj[c][i}-map[r + 1](c](i].2.0):
dist[r][c][2] = sqrt ((doubie) dist{r][c](2]) ;
test_maxmin (dist[r]{c](2], &maximum, &minimum);

if{c ==0)
dist[r])[c][1] = -1.0;
eise {
dist[r}{c]{1] = 0.0;
for (i = 0 ;i < number_inputs ; i+ +)
dist{r}{c](1] +=
pow(map(r][c][i]-map(r][c-1](i],2.0);
dist[r][c](1] = sqrt ((double) dist{r){c}{1]) ;
test_maxmin (dist[rj{c](1], &maximum, &minimum);

#f (c == xsize - 1)
dist{r){c][3} = -1.0;
else {
dist(r]{c]{3] = 0.0;
for (i = 0 ;i < number_inputs ; i+ +)
dist[r])[c][3] + =
pow(map(rj[c}{i]-map(r][c+1][i].2.0);
dist[r][c]{3] = sqrt ((double) dist{r][c](3]) :
test_maxmin (dist(r][c][3]. &maximum, &minimum);

}
tot =00;
sub =00;
delta = 5.0 * sqrt ({double) number_inputs) / 20.0 ;
for (j=0;j<20;j++){
a =j*delta;
b = (j + 1.0) * delta ;
for(r=0:r<ysize . r++){
for(c =0;c<xsize;c++) {
for(i=0:i<4;i++){
if ((dist[r)[c][i) <= b) &&
(dist{r]{c](i] >= a)) {
bin2{j} + + ;

tot +=10; _ﬂ

B-31

Appendix B: Computer Programe

}
}
) }
if (bin2{j] > binmax2)
binmax2 = bin2{j] ;
}
for(=0,j<3;j++)
sub += bin2fj) ;
nei = sub / tot ;

for(=0;j<20;j++){
a=j*delta;
b=(j+10)*dehta;
fprintt (fp,"{%8.2f -> %6.21) %4d ", a, b, bin2(j]) ;
for (i = 0, i < 40 * bin2(j] / binmax2 ; i+ +)
fpute (*'1p) ;
p_return (1) ;

p_return (2) ;
delta = (maximum - minimum) / 10.0 ;
for=0;j<10;j++){
a = minimum + | * defta ;
b = minimum + (+ 1.0) * delta ;
for(r=0;r < ysize; r++) {
for(c=0,c<xsize;c++) {
for(f=0;i<4;i++){
if ((distr][c}{i] <= b) &&
(dist[r)[c][i) >= a))
binfij+ + :

}

}
it (bin{j] > binmax)
binmax = bin(j] ;

}
for =0;j<10;j++){
a = minimum + j * delta ;
b = minimum + (j + 1.0) * delta ;
fprintt (fp,"{%6.21 - > %6.21] %4d ", a, b, bin{j)) :
for (i = 0 ;i < 40 * bin(j] / binmax ; i+ +)

tpute (*'tp) ;
p_return (1) ;
pclose () ;
}
fom (number, loc, in, ysize, xsize)
int ysize, xsize, number ;
int loc[64][2] ;
double in[64]{16] ;
{
double d1, d2, alpha, sum, var ;
int Wi k;
double max1, max2, nei, fig ;

max1 = 10.0 * sqrt ((double) number_inputs) ;
max2 = sqrt(pow((double)ysize, 2.0) + pow((double)xsize, 2.0)) ;

sum =00 ;

B-32

neural2

Appendix B: Computer Programe

for(i=0;i<number-1;i++){
for =141 ;] < number; j++) {
d1=00;
for (k = 0 ; k < number_inputs ; k+ +)
d1 += pow(infiJ(k] - in[jl(x] , 2.0) ;
dl =sqrt (d1) / maxt ;
d2 = sqrt (pow((double) (loc{i}{0] - loc[j]{0]). 2.0) +
pow((double)(locii)(1] - loc(i][1]), 2.0)) / max2;
sum += pow (d1-d2,20);
}
}
ver = sqrt (sum) ;
fig=var* (1.0 + nej) ;
popen () ;
p_return (2) |
fprintt (fp,"\nThe tempiate test FOM is %7.4f", var) ;
fprintf (fp,"\nThe neighborhood FOM is %7.4f", nei) ;
tprintf (fp."\nThe COMPOSITE FOM is %7 41", fig) ;

pteed () ;
pciose () ;
}
test_maxmin (dist, max, min)
flost dist ;
float *max ;
flost *min ;
{
it (dist < *min)
*min = digt ;
if {dist > *max)
*max = dist ;
}
/C

ARERRAERAREBANERARREENAGRICR TR RNEN m c ARRRNEANERARNBARAECURLANEANNSARENERNROD

Routines to draw net diagrams (spectra), net trajectories, and
graphics for net training routines. All graphics are performed
using GKS routines.

*/

include stdio
include math
include <gksdefs.h>
include <descrip.h>

define BLACK 0
define WHITE 1

float ptex(20](20](5]. ptsy(20}{20](S] ;
fioat px([20)[20], py[20}[20] ;

int used{20]{20] ;
int colmat([20}{20] ;
int pattern[16] =

{0, -15,-15, -12,-12, -11,-11, -1 -1, -2,-2, 4,4, 5.5, 1} ;
prepcoimat (ysize, xsize)
in xsize ;
int ysize ;

B-33

Appendix B: Computer Programs

int r, c, xstart, ystart ;
int o, dy ;

dx = floor (550.0 / xsize) ;
dy = floor (276.0/ ysize) ;

xatert = 280 - dx * xeize /2 ;
ystart = 148 + dy * ysize /2;

for (c = 0;c < xsize ; c++) {
for(r=0;r<ysize;r++) {
ptax{r](c](4] = (ptax]r}{c](3] = (ptax{r]{c]{0] =

xstart + ¢ * dx)) ;

prax[r](c](2) = (ptax{r](c}(1) = ptax{r][c][0} +ax- 1)

pey(rl(c}{4) = (ptey[r](c]{1) = (ptey(r](c](O] =
ystart - r * dy)) ;

N
ptay[r)[c){3) = (ptsy[r}[c}[2) = ptey(r}[c][0] -dy+ 1) :

pxirl[c] = pax[r](c](0] + 80;
t;v[fl(cl = pray{ri(c}{0] - 80

}
for(r=0;r<20:r++){
1or(c=0;c<20;c++)(
usedr)[c] = 0;
}

}
}
showem ()
{
int i
float rectx[16)(6]. recty[16]{6]
int points = 5 ;
for(i=1;i<16;i++){
rectx(i](4] = (rect[i](3] = (rectx(i}{0] = 173 + 16*9);
rectx(i){2] = (rectx(il[1} = (rectx[i][0] + 15)) :
rectyli}[4) = (recty[i)[1) = (recty[i)[0] = 30)) :
recty(i]){3] = (recty(i][2] = 23) ;
setfillstyle (pattern[i], i)
gkeS$fill_area (&points, &rectx(i](0], &recty[i}(O]) :
}
}
setfillstyle (pattem, pointer)
int pattern ;
int pointer ;
{
int style = 3 ; /* hatch */
int color{16] = {0,7.7. 33,55, 4,4, 4,66, 22 1}
it (pattern > = 0) {
gka$set_fill_int_style (&pattern) ;
}

oise {
gksS$set_fill_style_index (&pattern) ;
gkaSeet_fill_int_style (&style) ;
}

B-34

neural2

r__m

A _J

Appendix 8: Computer Programs

}

draw_net (number, loc)
int

{

}

int
int
im
flost
char

number, loc[64](2] ;

i, old_value ;
white = 0 ;
black = 1;
XYy,
(4] ;

$SOESCRIPTOR(s_dsc,s) ;

for(i=0:i< number;i++) {

x = ptaxfloc(i)[1])(loc(i}[0)){0] + 4.0
y = ptay(loc{ij(1]]{loc(il(0]](0] - 4.0 :
old_value = used(loc(i}{1]]flocli}{0}] ;

gksSeet_text_color_index (&white)
sprintf (s,"%3d",-old_vaiue) ;
gksStext (&x, &y, &s_dsc) ;

sprintf (8,"%3d",i+1) ;
gksSeet_text_color_index (&black) ;
gha$text (&x, &y, &s_dsc) ;

it ((i+1 1= old_value) && (old_value != 0)) {
y-=60;
sprintf (8, ***") ;
gksStext (&x, &y, &s_dsc) ;

}
;J“dlloC(illﬂllloclil[Oll =i+

draw_neighbors (number, loc)

{

int

int
int
int
fioat
char

number, ioc[64](2] ;

i, old_value ;
white =0 ;
black = 1;
XY,

s{4]

$DESCRIPTOR(s_dsc.s) ;

for(i=0;i<1;i++4){

x = ptex[loc(ij{ 1]} (loc(i](0}]{0] + 4.0 ;
y = ptay[locil{1]]){loc(i)[0]][0] - 4.0 ;
old_value = used[loc{i])[1)]{loc[i}{0]] ;

gks$set_text_color_index (&white) ;
sprintf (s,"%3d", oid_value) ;
gkaStext (8x, &y, &s_dsc) ;

sprintf (s,"%3d", (number+1)) ;
gkeS$set_text_color_index (&black) ;
gks$text (&x, &y, &s_dsc) ;

if (number+1 != old_value) && (old_valye ! = 0)) {

y-=60;
sprintf (8,"***") ;

B-35

Appendix B: Computer Programs

gkeStext (8x, &y, &s_dsc) ;

}
‘;'Odllocl‘l(ﬂllbclﬂlol] = number+1;

}
draw_speech_map (number, ioc)
int number, loc(125](2] ;
{
int i, old_value ;
int white = 0;
im black = 1 ;
float x.y xx[2], yy{2] ;
in points = 2;
char s[4] ;
$DESCRIPTOR(s_dsc,s) ;
for (i =0;i < number ; i+ +) {
x = ptexfloci]{1]]{loc[i}(0]]{0) + 4.0;
y = ptsyllocfil[1]][loc(il[0]][0] - 4.0 ;
old_value = used(loc[i}{1]]lloci] (0] ;
gksSeet_text_color_index (&white) ;
sprintf (s,"%3d", oid_vaiue) ;
ghsStext (8, &y, &s_dsc) ;
gks$set_taxt_color_index (&black) ;
sprintf (s,7%3d", i+1) ;
gkaStext (8x, &y, &s_dsc) ;
i#((i+1!= old_value) && (oid_value != Q)) {
y-=60;
sprintf (8,"***") ;
gksStext (&x, &y, &s_dac) ;
}
used(loc(i]{1]][bocli}(0)] = i+1;
it(i'=0){
xx[0] = px(loc(i-1](1]]{loc(i-1](O]] :
(1] = px(loc(i][1]](loc(i}{0]] :
yy{0] = pyfloc(i-1}(1]){loc(i-1}{0]] ;
yy(1] = pylloc(i]{1]]{loc(il{O]] :
gks$polyline (&points, xx, yy) ;
}
}
}
draw_grid (ysize, xsize)
int xsize, ysize ;
{
int points = 5 ;
in rnc,;
for(r=0;r <ysize;r++) {
for(c =0, c < xsize ; c++)
gks$polyline (&points, &ptsx(r](c][0], &ptsy(r][c]{0]);
}
}
}

B-36

neural2

Appendix B. Computer Programs neurat
draw_spectra (map, ysize, xsize)
int xsize, ysize ;
(flost map(20]{20){16] ;
int poins = 2 ;
flot x{2],y[2);
it rnei;
for(r=0;r<ysize;r++){
for{c =0;c<xsize;c++) {
y[0] = ptay{r])[c](3] .
for(i=0;i<15;i++){
x[0] = ptax[r}[c}[3) + 20 + (20*) ;
x{1] = x{0] ;
y(1] = y{0] + 16.0 * map(r](c](i} :
gksSpotyline (3points, x, y) :
x[0] +=10;
x[1) +=10;
gks$polyline (&points, X, y) ;
}
}
}
}
draw_gri 2 (ysize, xsize, sub_title, length)
int xsize, ysize ;
char sub_title{30] ;
short length ;
{
int points = 5 ;
im rc;
fioat xlog, yloc ;
struct dac$descriptor title_dsc = { length,
DSC$K_DTYPE T,
DSCSK_CLASS S,
sub_title } ;
for{r=0;r<ysize;r++){
for{c =0:.c<xsize ;c++) {
gks$potyline (&points, &ptsx[r][c][0]), &ptay[r}(c](O});
}
}
xloc = 277.0 - 3.0 * length ;
yloc = 20;
gksStext (&xioc, &yloc, &title_dsc) ;
}
statusem (gain, nrangey, nrangex, its)
double gain;
int nrangey, nrangex ;
long its ;
{

float xlac, yloc ;
char s[60] ;
$OESCRIPTOR(s_dsc,s) ;

sprintf (s,
"Gain = %4 2f Neighbors = %2d,%2d teration # %Sid",

gain, nrangey, nrangex, its) ;
xloc = 76.0 ;

B-37

Appendix B: Computer Programs neural2
yloc =20,
ghkeStext (&xioc, &yloc, &s_dac) ;
}
colorem (ysize, xsize)
int xsize, ysize ;
{
int r, ¢, color ;
int points = 5 ;
for(r=0;r<ysize;r++) {
for (¢ =0, ¢ < xsize ; c++) {
color = colmat{r](c] ;
setfillstyls (pattern[color), color) ;
?kéﬁll_uu(&poim. &ptax{r][c](O]. &ptsy[r]{c](O]);
}
}
pickcolors ()
{
return ;
}

m

Appendix B: Computer Programs neural4

* $ lnk neurald nplot.nprinter,mat2,nweightd, options_file/opt
,.

BRSSO RGENEARNANEANASS m“ c SEERASRBARERERANESENR ARSI RCERNRES

Theee routines will optionally recreate *.snd files for replay, graph
trajeciories through nets, and create a record of the full trjectory
reduction process in & * trj file.

SN RNRNLRANRERNRARNBABNSRSANNERNASAMAENSRNOS

Capt Gary Barmore, 7 Feb 88
*/

include math

include stdio

include curses -
include time

include <gksdefs.h>

define bool int

float map([20)[20]{16] ; /* output nodes */
double input[16] ; /* input nodes */

im xsize, ysize ; /* Size of array */
int number_inputs ;
char training_file{30) ;

mindist (map, inp, close)

double inp(16] ;
int close(2] ;
(float map{20][20][16) :
int re i,
double dot_product ;
double maximum = 0.0 ;
for(r=0;r<ysize;r++) {
for(c =0;¢c < xsize ; c++) { -
dot_product = 0.0;
for (i = 0 ;i < number_inputs ; i+ +)
dot_product + = inp[i] * map(r][c][i]
if (dot_product > maximum) {
maximum = dot_product
close[0] = ¢,
close(1] =r; -
}
}
}
}
main () -
{ .
int c

printt (\n"NEURAL4 (Sound TRAJECTORIES!) ..\n") ;
map_speech () ;

Appendix B: Computer Programe neurai

L ?-p.-pooeh 0

int flag,r,c i, j k;

char name[30], name2(30], sub_title[80), 8{10], temp{30] ;

cher name_trj{20] ;

double in[16), d1, d2, d3, d4, d5 ;

flost slement ;

in loc[125][2), loc2[125][2). loca[125)(2] ;

FILE *fend, *fnet, *fo ;

int sound, point, replica, x[S], y(5] :

short length ;

int max_pts ;

char answer({10] ;

im snd_fiag, ft_fiag, graph_fiag ;

print! (*Do you want (0) sound file created or (1) not?) ;
scant (“%d", &snd_flag) ;
it (snd_flag == 0){
printf (“"Enter name of training file used [lees .trn): ") ;
scant (“%s", temp) ;
sprintf (training_file, “%s.trm”, temp) ;

printt (“Created with (0) FFT or (1) FFT2: ™) ;
scanf (“%d", &t_flag) .

printf (“\nReading training file into memoryi\n™) ;
read_trn_file () ;
}

printf (Do you want (0) NO graphics or (1) TRAJECTORIES: ™) ;
scant (“%d", &graph_flag) ;

printt (“\nEnter name of net-file to use {less .net]:) ;

scant (“%s", temp) ;

sprintt (name, “%s.net”, temp) ;

fnet = fopen (name, “r") :

fscant (fnet,"%d %d %d", &ysize, &xsize, &number_inputs) ;

tor(r=0;r<ysize;r++) {

for(c=0;c<xsize.c++){
for (i = 0.i < number_inputs ; i+ +) {

tscant (fnet,” %f", &map(r]{c}{i]) ;
}

}
felose (tnet) ;

it (snd_flag == 0)
correlate_sounds (map) ;

for (;) {
printt (\nEnter name [next] of speech file to map (less .trn): ™) ;
scant (“%s", temp) ;
sprintf (name2, “%s.trn", temp) ;
tsnd = fopen (name2, "'r") ;
sprintf (sub_title, “%s --> %s”, name2, nama) ;
sprintf (name_trj, “%s.trj", temp) ;
fo = fopen (name_trj, “w™) ;

it (graph_flag == 1) {
Qraph_test (name) ;

Appendix B: Computer Programe neural4

length = (short) strien (sub_title) ;
draw_gQrid2 (ysize, xsize, sub_title, length) ;
}

sound =0 ;
i=0;
flag =0;
while (flag 1= 1) {
facanf (fend, “%f’, &element) ;

it (tecttiend) 1=0) {
flag=1;
}
oise (
in[i} = (double) element ;
i++

}
it (i == 15) && (fiag == 0)) (
mindist (map, in, &loc{sound]}{0]) ;
i=0;
sound+ + ;

}

}
fclose (fsnd) ;
if (graph_flag == 1) {
draw_speech_map (sound, loc) ;
scant ("%e".9) ;
clipoft () ;
graphoﬁ 0.

fprintt (fo, “%s\n", sub_title) ;
fprintf (fo, “\nTrajectory through map: (%d)\n\n", sound) ;
for(i=0:i<sound:i++){
point = locfi][0] + loc[i][1] * xsize ;
it (i % 15) == 0)
fprintt (fo, “\n%3d ", point) ;
olse

}

for(i=0:i<sound;i++){
loc3[i){0] = loc]i)(0] ;
loc3{ij{1] = locli)[1});
}

max_pts = sound ;

j=0:

tG!=0)
max_pts = j ;

tprintt (fo, "%3d . point) .

i=0;

for(k =0.k<3;k++){
x[k] = loc3[k](0] :
y(k] = loc3[k](1)

}
d1 = pow({double)(x[0]-x[2]). 2.0) +

pow({double) (y(0]-y(2]). 2.0} ;
d2 = pow((double) (x[0)-x[1}). 2.0) +

pow((double){y(0)-y[1]). 2.0) .
#((d1<41) || (d2<41){

loc2{j}{0} = x{0] ;

loc2(j}{1] = y{0] :

jit+

}

for(i =1;i< max_pts-1;i++){

B-41

A Jd

Appendix B: Computer Programs neural4

it == 1)
for(k=1;k<5;k++){

xfk] = loc3{i+k-2}{0] ;

ylk} = loc3[i+k-2](1] ;

}
d2 = pow((double) (x{1]-x[2]), 2.0) +
pow((double) (y{1)-y[2]), 2.0) ;
d3 = pow((double)(x(3]-x(2]), 2.0) +
pow((double)(y[3)-y[2)), 2.0) ;
d4=50;
d5 = pow((double)(x{4]-x{2]), 2.0) +
pow((double)(y(4]-y([2]), 2.0)

}
elge if (i == max_pts-2) {
for(k=0;k<4;k++){
x[k} = loc3[i+k-2][0] ;
y[k} = loc3fi+k-2][1) ;

}
d2 = pow{(doubie)(x[1]-x[2]). 2.0) +
pow({double){y{1}-y[2]}), 2.0) ;
d3 = pow((double)(x[3]-x[2]). 2.0) +
pow((doubie)(y(3]-y{2]), 2.0) .
d4 = pow{(doubie)(x[0}-x[2]), 2.0) +
pow{(double)(y[0]-y(2]). 2.0) ;
a5 =50;
}

for(k =0.k <5 k++){
x[k] = loc3[i+k-2][0] ;
y(k] = loc3[i+k-2](1] ;

eise {

d2 = pow((double)(x[2]-x[1]). 2.0) +
pow((doubie)(y[2]-y{1]), 2.0) |
d3 = pow((double){x[3)-x[2]). 2.0) +
pow({doubie)(y[3]-y(2}). 2.0) ;
d4 = pow((double)(x[2]-x[0]}, 2.0} +
pow({(double)(y[2]-y[0}), 2.0) |
dS = pow((double) (x[4]x[2]). 2.0) +
pow((double)(y{4]-y[2]). 2.0) ;

it{((d2<41) || (d3<4.1) || (04 <4.1)
I (d‘5 < 4.1){
loc2(j][0] = x[2]
loc2(](1] = y(2] :
jt+
}

}

for(k =0: k<3 k++){

x[k] = loc3[max_pts +k-3}(0] ;
ylk] = loc3[max_pts +k-3){1]

}
d1 = pow((double) (x{0]-x[2]). 2.0 +

powi((double)(y[0]-y[2)). 2.0) ; o
d3 = pow((double)(x[1}-x[2}), 2.0) +

pow((double)(y(1]-y(2]). 20) ;
#((d1 < 4.1) |] (d3 < 4.1) {

loc2i}(0] = x(2] ;

loc2(il(*] = y(2] :

i++;

| .

B-42

Appendix 8: Computer Programs neural4

tprintt (fo, ‘\n\nAfter elimination of transients (%d) :\n\n",) ;
for(i=0;i<j.i++){
point = loc2[i}{0] + loc2[i]{1) * xsize ;
(% 15) ==
tprin’t (fo, “\n%3d ", poin) ;

fprintf (fo, “%3d , point) ;
for(i=0;i<j;i++){

toc3(i)[0] = loc2[i][0} ;
I}ocS[f][ﬂ = loc2(i]{1] ;

max _pts = j ;

i=0;

for(i=0;i<max_pts;it++){
fi==0){

for(k =2, k<5 ;k++){
x[k] = loc3{k-2]{0] ;
ylk] = loe3[k-2][1} ;

}

dt =560;d2=50;

d3 = pow((double) (x[3]-x[2]), 2.0) +
pow({double)(y(3]-y[2]), 2.0) ;

d4 = pow((double)(x{4]-x{2]). 2.0) +
pow((double) (v(4]-y[2]), 2.0) ;

else if (i == max_pts-1) {
for(k =0;k<3;k++)
x(k] = loc3{i+k-2){0] ;
ylk] = loc3(i+k-2)[1} ;

}
d1 = pow({double)(x[0)-x[2]), 2.0) +
pow((double) (y[0]-y[2)). 2.0) ;
d2 = pow((double)(x[1]-x{2]), 2.0) +
pow((double)(y[1]-y{2]), 2.0)
d3 =50,d4=50;

}
elseif (i == 1)
for(k =1;k<5;k++){
x(k] = loc3{i+k-2){0] ;
ylk] = loc3[i+k-2)[1] ;

}
d1 = pow({double){x[1]-x[2]), 2.0) +
pow((double)(y{1]-y[2]). 2.0) ;
d2 =50,
d3 = pow((double) (x[3]-x[2]). 2.0) +
pow((double)(y[3)-y[2)). 2.0) ;
d4 = pow((double)(x[4]-x[2]). 2.0) +
pow((double)(y[4]-y[2]). 2.0) ;

}
eise if (i == max_pts-2) {
for(k =0 k<4 :k++){
x[k] = loc3([i+k-2]{0] ;
y(k] = loc3[i+k-2){1] ;

}
d1 = pow((double)(x{1]-x(2]}. 2.0) +
pow({double){y[1]-y{2]}. 2.0) ;
d2 = pow((double)(x{0]-x[2]), 2.0) +
4 =50 pow({double) (y[0]-y([2]), 2.0) ;

B-43

Appendix 8: Computer Programs

d3 = pow((double) (x[3]x{2]), 20) +
, pow((double) (y[3]-y[2]), 20) :

oise {
for(k=0;k<5;k++){
x[Kk] = loc3[i+k-2)[0] ;
y[k] = loc3[i+k-2][1] ;

}
d1 = pow((double)(x{1]-x[2]). 2.0) +
pow((double)(y[1]-y[2]). 20) ;
d2 = pow({double)(x[0)-x[2)), 2.0} +
pow((double) (y[0]-y(2]). 2.0) ;
d3 = pow((double)(x[3]-x{2]), 2.0) +
pow((double) (y[3]-y(2]). 2.0) :
d4 = pow((double)(x[4])-x[2]), 2.0) +
pow((double)(y[4]-y[2]), 20) ;

}

it ((d1 < 4.1) 8& (83 < 4.1)) ||
((d1 < 4.1) 88 (42 < 4.1)) ||
(03 < 4.1) 88 (d4 < 4.) {
loc2[j}[0) = x{2] :
loc2l}{1] = yl2]:
j*+ .

}

}
fprintt (fo,"\m\nfReduced Trajectory] Only three in a row! (%d)\n", D ;
tor(i=0;i<j:it+){
point = loc2(i){0] + toc2(i]{1] * xsize ;
it (i % 15) == 0)
tprintf (fo, “\n%3d ", point) ;

fprintt (fo, “%3d ", paint)

for(i=0;i<j:i++){
10c3(i][0] = loc2[i][0]
loc3fi}[1] = loc2[i)[1]
}

max _pts = j ;

if (snd_flag == 0)
create_snd_file (temp, loc2, max_pts, tft_fiag) ;

j=0;:

loc2(j}[0] = toc3Ii}[0] :

toc2(i{1] = loc3h][1) :

for(i=1;i< max_pts;i++) {

it ((tloc3[i][0] ! = loc2(j][0)) ||

(loc3{i}(1] t= toc2(iH 1 {
j++
loe2(j)[0] = loc3(i][0] ;
l)°c2[j][1) = loc3(iJ[1] ;

}
j++ .
fprintf (fo, “\n\nNow listing final trajectory! (%ed\n".) .
for(i=0;i<j.i++){

point = loc2(i](0] + loc2[i][1] * xsize ;

if (i % 15) ==

fprintt (fo, '\n%3d ", point) ;
eise

B-44

neural4

Appendix B: Computer Programe neural4

tprintt (fo, “"%3d *, point) ;

for(i=0;i<j;i++){
toc3(i)[0] = loc2fi}[0] ;
|}°°3[i]l‘] = loc2[il[1)

it (graph_fiag == 1) {
max =j;
sprintf (sub_title,
“Reduced Trajectory: %8s --> %s", name2, nhame) ;
graph_test (name) ;
length = (short) strien (sub_title) ;
draw_grid2 (ysize, xsize, sub_title, length) ;
draw_speech_map (max_pts, loc2) ; ,
scanf (“%s"8) ; !

clipoff () ;
graphotf (;

}
fclose (fo) :
}

graph_test (name)
char name[30j ;
{

char title[79), labelx[79] ;
float xloc[§) = {0, 639.0, 639.0, 0.0, 0.0} ;
fioat yloc[S) = {349.0, 349.0, 0.0, 0.0, 349.0} ;

int points = 5 ; -
int we id=1;

int clear_flag = 1,

short length ;

sprintf(titie, "NEURAL4: Kohonen %d x %d Neural Net -- %s",
ysize, xsize, name) ;
sprintf(iabetx, "Noise Level : %g", noise) ; -
graphon () ;
gksSclear_ws (&ws_id, &clear_flag) ;
gks$polyline (&points, xloc, yloc) ;
prepcoimat (ysize, xsize) ;
length = (short) strien (title) ;
outtitle (title, length) ;
length = (shon) strien (labelx) ; --
outlabelix (labelx, iength) :
clipon () :

,.

Appendix B: Computer Programe autodtw

$ link autodtw,options_file/opt

*/

® SEeRNESANS “m.c VANENREANEEN AR ERARANREAN AN ER OV RO EANES

Routines which use a first Kohonen neural net, files generated by
autofft.exe (i.e. *.trn), header files (*.hdr) describing the
contents of the *.trn files, and a header file describing the

templates to perform Ney's one pass dynamic time warping algorithm.

The aigorithm allows recognition of both isoiated and connected
apeech without changing the program. Additionally, the stretch
factors are user selectable. 0.75 and 0.75 are suggested.

A grader routine automatically scores the recognition process
from the data given in the *.hdr files. Note that some bugs
may still exit for grading isolated digits. Also note that

the grader routine gives +1 for a correct digit, -1 for a wrong
digit, -1 tor a deleted digit, and -.5 for an additional digit.
Recognized periods of silence are ignored.

AERARAVARANARN AR RRRANASASARANEANENSRERNNDRNAERARNRANSARESOANRIS

include stdio
include math

main ()

float map{20]{20][16] ; /* output nodes */
int xsize, ysize ; /* Size of array */
int number_inputs ;

fioat aa, bb ;

char training_file{30] ;

int num_tempiates ;

flost total_digits ;

fioat wrong_digits ;

fioat min_dist ;

int tem_array({50], utt_array(SO} ;
int t_words ;

float pefcent_corr, cum_per_cofr ;

char temp{30], temp_file(30], utt_file(30] ;
char file_name(30}, file_descr[80] ;

char sub{15][30} ;

FILE *fiog, *fnet, *fstd, *fin, *fmp ;

char template({15](30] ;

int t_array[15](200])(2], u_array[2000](2}, t_length{15] ;
int u_length, dist, r, ¢, i ;

char *std = “standard.hdr” ;

int entries_std, entries_cat ;

im i_std, i_cat;

printf (\n\nAUTODTW: Tests standard set of utterances...\n\n") ;

printt ("Enter name of tempiate file [less .hdr}: ™) ;
scanf ("%s", temp) ;

sprintt temp_file, “%e.hdr", temp) ;

ftmp = fopen (temp_file, “r) ;

fscant (ftmp, “%d", &num_tempiates) ;

for (i = 0;i < num_templates ; i+ +)

Appendix 8: Computer Programe autodtw

facant (Rmp, “%s", templateli)) ;
fclose (ftmp) ;

printt ("Enter name of log file [add .log): ") ;
scanf (“%e”, temp) ;
flog = fopen (temp, “w") ;
forintt (flog, “Log File: %e for AUTODTW.\n\n", temp) ;
printf (“\nEnter horizontal weight: ") ;
scant (“%f", &as) ;
printf ("Entec vertical weight:) ;
scant (“%f’, &bb) ;
tprintf (flog, “Horizontal and vertical weights are %g and %g.\n",
aa, bb) ;
printt('\nEnter name of net 10 use [lees .net): "} ;
scant (“%s", temp) ;
sprintf (training_file, “%s.net”, temp) ;
fnet = fopen (trainin_file, “r") ;
facant (fnet,"%d %d %d", &ysize, 8xsize, &number_inputs) .
for(r=0;r<ysize;r++) {
for(c =0;c<xsize;c++) {
for (i = 0;i < number_inputs ; i++) {
f;canf (tnet,” %f", &map{r][c](i) :

}
fcioss (fnet) ;
for (i = 0;i < num_templates ; i+ +) {
get_vectors(template(i], &t_array(i}[0}{0],
&t_lengthi]) ;
printf (* %s is %d vectors long\n" templateli],
t_length(il) ;

}
fprintf(ficg, \nDynamic Time Warping using %s\n" training_file),

fstd = fopen (std, “r") ;
fscant (fstd, “%d", &entries_std) ;
for (i_std = O ; i_std < entries_std ; i_std++) {
fscanf (fstd, “%s %s", file_name, file_descr) ;
printf ("\n%se\n", fils_descr) ;
total_digits = 0.0 ;
wrong_digits = 0.0,
tprintf (log, “\n%s\n", file_descr) ;
fin = fopen (file_name, “r") ;
fscant (fin, “%d", &entries_cat) ;
for (i_cat = 0 ; i_cat < entries_cat ; i_cat++) {
fscant (fin, “%s %d", utt_file, &t_words) .
for(i=0;i<t words;i++)
facant (fin, “%d", &tem_arrayli]) ;
get_vectors{utt_file, u_array, &u_length) ;

printf (“ %-12s is: ",
utt_file) ;
tprintf (flog,” %-128 is: ",
utt_file) ;
cdtw (t_array.u_array.t_length,u_length.tlog) ;
}
fclose (fin) ;
}
fclose (fstd) ;
fcioee (flog) ;

B-47

Appendix B: Computer Programs

m(t_uny u_array, t_length, u_length, flog)
t_array{15](200}(2], u_array(2000}(2] ;
|m t_length[15], u_length ;
FILE *flog ;

flost accum_dist[2][15]{200] ;
int utterance{50] ;

int ptr, b_ptr ;

int back_ptr(2]{15][200] ;
int from_tempiate[2000] ;
int from_frame{2000] ;

int Lk Kk ;

float d1, d2, d3, diet ;

float min_dist ;

ptr=0;
for (k = 0 ; k < num_templates ; k+ +) {
for = 0;j<t_length{k] ;j++) {
ti==0
accum_dist[ptr)[k][j) = (dist =
abs(u_array(0](0]- t_arrey{k](il(0]) +
abs(u_array(0]{1]- t_array[k](j]{1])):

else {
accum_dist{ptri[k]){j) = (dist + = bb * (
abs(u_array(0][0] - t_array(k](j][0]) +
abe(u_array(0](1] - t_array(k](J(11));

}
;J‘Ck.Ptf[P‘fl[klﬂl =0;

for (i = 1;i < u_length ; i++) {
it (ptr == 0) {
ptr=1;
bptr=0
}

ptr=0;
bptr=1;
}

else {

for (k = 0 k < num_templates ; k+ +) {
for(j =0;j < t_lengthfk] ; j+ +) {
dist = abs(u_array(i][0] - t_array[k][j]{0]) +
abs(u_array(i}{1] - t_array(k}()(1)) :
tG==0){
min_dist = 99999.0 ;
for (kk = 0 ; kk < num_tempiates ; kk++) {
if (min_dist >
accum_dist[b_ptr]{kk][t_length[kk]-1])
min_dist =
accum_dist[b_ptr]{kk][t_length{kk]-1];

if (accum_dist[b_ptr])[k][0] < min_dist) {
accum_dist{ptr][k](0] = aa * dist +
accum_dist[b_ptr}[k]{0] ;
back_ptr{ptr](k](0] =
back_ptr{b_ptr](k]{0] .

eise {

B-48

autodtw

Appendix B: Computer Programs

sccum_dist{ptr)[k](0] =
min_dist + dist ;
;"ckﬂ[mfllkllol =k1;

}

d1 = accum_dist[b_ptr]{k]{j-1] + diet ;
d2 = accum_dist{ptr)(k][j~1] + (bb * dist) ;
a3 = accum_dist(b_ptr}[k}{i] + (aa * dist) ;
fdR<=dl38& d2 < dl){
accum_dist{ptr]{k]{j] = o2 ;
back_ptriptri(ki(i] =
back_ptr{ptr){k][j-1] |

}

eloe if (d3 <= d2 && d3 < d1) {
accum_dist(ptr])[k][j] = d3;
back_ptr{ptrj (k][] =

) back_ptr{b_ptr][k](j ;
else {

accum_dist{ptr][(k](i] = d1;

back_ptr{ptr](K](i] =

} back_ptr[b_ptr]{k][j-1) ;
}

}

}
min_dist = 99989.0 ;
for (k = 0 ; k < num_templates ; k++) {
it (min_dist > accum_dist[ptr][k][t_length[k])-1)) {
min_dist = accum_dist{ptr][k][t_length{k]-1] ;
kk =k ;
}

from_template{i] = kk ;
from_frame([i] = back_ptr(ptr](kk][t_length{kk]-1] :
}

ptr = u_length - 1 ;

i=-1;

while ((ptr > 0) 8& (i < 49)) {
utterance(+ +i] = from_template(ptr] ;
ptr = from_frame|ptr] ;

}
k=0;
for=i;j>=0;j-){

i (utterance(j] == 10) {
printt (.. "} ;
tprintf (flog, ..) ;
}

eise {
printf (“%d ", utterancelj]) ;
fprintf (flog, "“%d ", utterance(j]) ;
utt_array[k + +] = utterance(j] ;
}

}

primtf ('\n Shouid be: ") ;

fprintf (flog, '\n Shouid be:) ;

for (j =0;j < t_words ; j++) {
printf (“%d ", tem_arrayf(j}) :
tprintf (flog, “%d “, tem_array(j]) ;

Appendix B: Computer Programs autodtw

}

grader (tem_array, utt_array, t_words, k) ;

printf (“\n correct = %5.3f cumn_correct = %5.90n",
pefcent_corr, cum_per_cof) ;

tprintf (flog, 'An correct = %5.3f cum_correct = %5.3\n",
percent_cofr, cum_per_corr) ;

}
mindist (map, inp, close)
double inp{16] ;
int close(2]
¢ flost map{20}(20](16] ;
int re i,
double dot_product ;
double maximum = 0.0 ; _
for{r=0;r<ysize;r++){
for (c =0;C < xsize ; c++) {
dot_product = 0.0 ;
for (i = 0;i < number_inputs ; i+ +)
dot_product + = inp(i] * map(r][c](i] :
it (dot_product > maximum) {
meximum = dot_product ;
close(0) = ¢ ;
cloas[1] =r;
}
}
}
-}

get_vectors (name, array, length) -
char name[30] ;
int array{2000}(2] ;
int *tength ;

int flag,r. ¢, i j. k;
double in[16], d1, d2, d3, d4,d5 ;
float element ; -

im l0c2{2000][2). loc3[2000j(2] ;
FILE *fsnd ;

int sound, point, x[5}, y[5) :

int max_pts |

fsnd = fopen (name, "'r') ;
sound =0,
i=0;
flag =0,
while (flag ! = 1) {
fscant (fsnd, "%f", &element) ;
it (feof(tsnd) 1=0) {
flag = 1,
}
else {
in{i} = (double) element ;
it+,

}
((i == 15) 8& (flag == 0)) {

Appendix 8: Computer Programs autodtw

mindist (map, in, &loc2[sound}[0)) ;
i=0;

sound+ + ;

}

}
fciooe (fend) ;
for(i=0;i<sound;i++){
point = loc2(i][0] + loc2[i)(1] * xsize ;

for(1=0;i<sound;i++) {
loc3(i}[0] = loc2(i}{0] :
'}°°3[ill1l = loc2[ij(1] ;

max_pts = sound ;
j=0;

Kgl=0)
max_pts = j;
j=0;
for(k=0;k<3;k++){
x{k] = loc3{k][0] ;
ylk] = loc3[k][1]} :

}
d1 = pow((double)(x[0]-x[2], 2.0) +
pow((double)(y([0]-y(2]), 2.0) ;
d2 = pow((doubie)(x[0]-x[1]), 2.0) +
pow{(double)(y[0}-y(1]), 2.0) ;
it{(d1 < 4.1)|] (d2 < 4.1)) {
loc2(j][0] = x{0} :
loc2il{1] = y(o]
j++;
}
for (i = 1;i < max_pts-1;i++) {
@ ==1){
for(k=1;k<5;k++){
x[k] = loc3{i+k-2][0) :
ylk] = toc3(i+k-2]{1] ;

}
d2 = pow((double)(x[1]-x{2]). 2.0) +
pow((double)(y(1]-y(2]). 2.0) ;
d3 = pow((double)(x{3)-x[2]). 2.0) +
pow((double) (y[3]-y[2]}. 2.0) ;
d4 =50
d5 = pow((double){x{4]-x[2]), 2.0) +
pow((double)(y(4]-y[2]), 2.0) ;

else if (i == max_pts-2) {
for(k =0 k<4 ;k++)({
x[k] = loc3[i+k-2}[0] ;
y{k] = loc3[i+k-2){1] :

}
d2 = pow((double)(x[1]-x[2]). 2.0) +
pow((double)(y[1]-y(2]). 2.0)
d3 = pow(({doubie) (x[3]-x(2]), 2.0) +
pow((double)(y[3]-y[2)), 2.0) ;
d4 = pow((double)(x(0}-x[2]), 2.0) +
pow({(double) (y(0)-y[2]), 2.0)
d5 =50;
}

o

B-51

Appendix B: Computer Programe

for(k =0 ;k<5;k++){
x[k] = loc3{i+k-2}{0] ;
;[k] = loc3(i+k-2}{1] ;

d2 = pow((double) (x[2)-x{1}), 2.0) +
pow((double)(y[2]-y{1]), 2.0) ;
d3 = pow((double) (x[3]-x[2]), 2.0) +
pow((doubie) (y({3]-y(2]), 2.0) ;
d4 = pow((double)(x[2]-x[0]), 2.0) +
pow((double)(y[2]-y[0]). 2.0) ;
d5 = pow((double)(x[4]-x[2}), 2.0) +
pow((double)(y[4]-y(2]). 2.0) ;

f((d2<41)||(d3<4.1)]| (d4<4.1)
|1 (d5 < 4.1)) {
loc2({i}{0] = x(2} ;
loc2(i}(1] = y{2] ;
jt+,

}

}

for(k =0, k<3;k++){
x[k} = loc3[max_pts+k-3][0] ;
y(k] = loc3[max_pts+k-3}{1] ;

}
d1 = pow((double)(x[0]-x[2]), 2.0) +

pow((double)(y(0]-y[2]), 2.0) ;
d3 = pow((double)(x{1]-x{2]), 2.0) +

pow((doubie) (y[1}-y[2]), 2.0) ;
it ((d1 <4.1) || (d3<4.1){

loc2(i][0] = x[2]

loc2li){1} = y[2}

v+

for(i=0;i<j;i++){
poinm = loc2{i}[0] + loc2[i){1] * xsize ;
}

for(i=0;i<j;i++){
loe3[i}){0] = loc2(i}{0] :
I}oc3[i)[1] = loc2[i)f1) ;

max_pts = j.;

i=0;

for(i=0;i< max_pts;i++)(
ti==0){

for(k =2;k<5;k++)
x[k] = loc3[k-2][0]} ;
{[k] = loc3(k-2J(1] ;

d1 =50,d2=50;

d3 = pow((doubie)(x[3]-x{2]). 2.0) +
pow((double)(y[3]-y[2]), 2.0)

d4 = pow((double)(x[4]-x[2]), 2.0) +
pow((double) (y[4)-y[2]), 2.0) :

olse if (i == max_pts-1) {
for(k=0; k<3 k++){
x(k] = loc3{i+k-2]{0} ;
yik) = loc3[i+k-2)[1] ;
}

B-52

Appendix B: Computer Programs autodtw

d1 = pow((double)(x[0]-x[2]), 20) +
H. pow((double) (y[0]-y[2]), 2.0) ;
d2 = pow((double)(x[1]x[2]), 2.0) +
pow((double) (y{1]-y{2]), 2.0} ;
d3=50;d4=50;

}.
olse if (i == 1) {
for(k =1, k<5;k++){
x[k} = loc3[i+k-2}[0] ;
y(k] = loc3[i+k-2){1} :

}
d1 = pow((double)(x{1)-x{2]), 2.0) +
pow((double)(y[1]-y(2]), 2.0) ;
d2=50;
d3 = pow((double) (x{3]-x[2]), 2.0) +
pow((double) (y{3]-y{2)), 2.0) ;
d4 = pow((double)(x{4}-x{2}), 2.0) + -~
pow((double)(y[4])-y(2]). 2.0) :

else if (| == max_pts-2) {
for(k =0, k<d;k++){
x[k] = loc3(i+k-2]{0] ;
y(k] = loc3li+k-2]{1] ;

}
d1 = pow((double) (x{1]-x[2]), 2.0) +
pow((double)(y{1]-y[2)), 2.0) ;
d2 = pow((doubie}(x{0]-x[2]), 2.0) +
pow((doubie)(y[0]-y[2)), 2.0) :
d4 =50;
d3 = pow((doubie)(x[3]-x[2]). 2.0) + --
pow({double){y[3)-y{2)), 2.0) ;

for(k=0; k<5 k++){
x[k] = loc3]i+k-2){0] ;
yik] = loc3[i+k-2)[1] ;
}

d1 = pow((double)(x{1]-x[2]). 2.0} +
pow((double)(y[1]-y(2)), 2.0) ;
d2 = pow((double){x[0}-x[2]}, 2.0) +
pow((double)(y{0]-y(2]), 2.0) ;
d3 = pow((double) (x{3]-x(2]), 2.0) +
pow((double)(y[3)-y[2)), 2.0)
d4 = pow((double)(x[4]}-x[2]), 2.0) +
pow((double) (y[4]-y([2]), 2.0) ;

#(((d1 < 4.1) && (3 < 4.9)) ||
((d1<4.1)88 (d2 < 4.9)) ||
((d3 < 4.1) 88 (d4 < 4.1))) {
loc2{j]{0} = x{2]
loc2[){1] = y[2)
]++ \

}

}
*length = j ;
for(i=0;i<j;i++)(
array(i][0] = loc2[i][0] ;
array[il{1] = loc2(il{1] ;
}

Appendix B: Computer Programs autodtw

mcmqum-y.thnothuwh)
t_array(S0), u_array[50] ;
im t_length, u_length ;

i, | ptr, b_ptr ;
back_ptr[2]{50] ;
d, min, dist, back ;

00;

Ji<u_length ; i+ +) {
lf(ptr = 0){
b_ptr=0;
ptr=1;
}
else {
b_ptr=1;
pr=0;

}
it@i==0){
for(j=0;j<tlength;j++){
it (t_array(] == u_array[0})
dist = 0.0 + back ;

int

float
float
back
ptr =
for (i

1

else

dist = 1.0 + back ;
back = dist ;
back_ptr(ptr][j] = dist ;
}

}
else {
for(1=0;j<tlength:j++){
it (t_array(j] == u_array(i})
dist = 00;
else
dist = 1.0;
#G==0
back_ptr{ptr]{0] = back_ptr{b_ptr][0] +
(0.5 * dist) ;
eise {
min = back_ptr(b_ptr](j] + (0.5*dist) ;
d = back_ptr[b_ptr][j-1] + dist ;
if (d < min)
min =d,
d = back_ptr{ptr][j-1] + dist;
if (d < min)
min=d;
back_ptr{ptr}{ij} = min ;
}

}
it (u_length > 0)
min_dist = back_ptr(ptr]{t_length-1] ;

else
min_dist = t_length ;
percent_cofr = (t_length - min_dist) / t_length ;
total_digits + = t_length ;
wrong_digits + = min_dist ;
cum_per_cort = (total_digits - wrong_digits) / total_digits

B-54

..

Appendix B: Computer Programe twokoh4

$ link twokoh4,nweightB,options_file/opt
,Q

CENASRACNENNREONEOREACAARBAIARANRS tw“w c SRR RRNAARNAARSERANREARSRIRRORANBENS

—

Routines to train a second Kohonen net to process reduced
trajectories from first kohonen net. Number of points in the
trajectory is 75. Each point is represented as a scalar from O
1o 224. Short trajectories are filled with trailing O's.

RELRRBANCEARAANSABA AN LR N LA SRV ARNAANRACLERADARDGACARNREGNENRRCER

Capt Gary Barmore, 8 Jul 88

*/
include math
include stdio
include time
float map{20][20)(225] ; /* output nodes */
double input[225] ; /* input nodes */
double gain, noise ;
double mcount ;
double percent ;
int closest(2] ; /* closest node */
int neigh(2] ; /* neighbor */
int nrangex, nrangey ; /* neighbor range */
int nfactorx, ntactory ; /* neighbor factor */
long count ; /* # of iterations */
int graph ; /* # between plots */
int seed ,
int maxneighx, maxneighy ; /* Starting area */
int minneighx, minneighy ; /* Final area */
int xsize, ysize ; /* Size of array */
int number_inputs ;
char training_file[30], net_file[30], first_net_file{30] .
char temp_file{15] ;
char net_name{15) ;
struct curve {
int type ;
double maxgain ;
double mingain ;
double midgain ;
int midtime ;
} geurve ;
struct fig {
int md_in ;
} flag |
init (map)
‘ float map([20}{20][225] ;

im rc i,
float max_rand = pow(2.0,31.0) - 1.0;

for(r=0:r<ysize; r++) {

for(c =0;c < xsize ;c+ +) { 4

for (i = 0;i < number_inputs ; i+ +) {

B-55

Appendix

B: Computer Programs

map(rj(c](i] = rand (/ max_rand ;
}

}
}
}
mindist (map, inp, close)
double inp[225] ;
int close[2] ;
‘ float map(20](20]{225] ;
int rci,
double dist ;
double minimum = 9999980 ;
for(r=0;r<ysize;r++){
for (c =0;c < xsize;c++) {
dist = 0.0 ;
for (i = 0,1 < number_inputs ; i+ +)
dist + = pow (inpli] - map{r]{c][i]. 2.0) :
it (dist < minimum) {
minimum = dist ;
close[0] = ¢ ;
close[1] =r;
}
}
}
}
- userinp
int line ;
int c,
struct tm *localtime(), *time ;
int *bintim ;

do {
printt (“TWOKOHM4 net training (no graphics)... \n\n") ;

printt(“Enter size ‘'m n’ (for an m x n) of array = ? [intint] ") ;
scanf("%d %d", &ysize, &xsize) ;
if (ysize < 2)

ysize = 2 ;
else it (ysize > 20)

ysize = 20 ;
if (xsize < 2)

xsize = 2 ;
else if (xsize > 20)

xsize = 20 ;

printt ("Do you want 0) sequential training,\n™) ;

printt (* 1) randomized training?) ;

scanf (“%d", &flag.rnd_in) ;

printt ("Enter name of header file containing words (less .hdr): ") ;
scanf ("%s", tamp_file) ;

sprintf (training_file, “%s.hdr"”, temp_file) ;

number _inputs = 75 ;

printf (“Enter name of pre-processor Kohonen net file [iess .net): ") ;

B-56

twokoh4

Appendix B: Computer Programs twokoh4

scanf (“%s", net_name) ;
sprintf (first_net_file, “%s.net”, net_name)

printf(“Enter name of net file to create {less .net}: ") ;
scant (“%s", net_name) ;
sprintf (net_tile, “%s.net”, net_name) ;

printt (“Number of iterations = ? [int]) ;

scant (“%ld", &count) ;

it (count <= 10 |} count > 130000)
count = 100 ;

mcount = (double) count ;

printf (“Number of iterations between status messages = ? [int] ") ;
scanf ("“%d", &graph) ;
if (graph < 1 || graph > count)

graph = 10;

ingain () ;

printf (""Starting size of neighborhoods 'yn xn' = ? {int int} 7} ;
scanf (“%d %d”, &maxneighy, &maxneighx) ;
it (maxneighx < 2 | | maxneighx > xsize - 1)
maxneighx = 2 ;
it {maxneighy < 2 || maxneighy > ysize - 1)
maxneighy = 2 ;

printf (“Final size of neighborhoods ‘ynxn' = ? (intint]) ;
scanf {“%d %d", &minneighy, &minneighx) ;
if (minneighx < 1 || minneighx > maxneighx)

minneighx = 1 ;
if (minneighy < 1 || minneighy > maxneighy)
minneighy = 1 ;

printt
(“Initial seed for random # generator (0 SELECTS TIME) = ? [int] *);
scanf (“%d", &seed) ;
if (seed == 0) {
time = localtime (bintim) ;
time.tm_sec %= 60 ;
time.tm_min %= 60 ;
seed = time.tm_sec * time.tm_min ;
}
srand (seed) ;

printf(“Ready to begin? (y/n} "}
while ((c = getc (stdin)) ==""[[c=="\n"|{c ==1)

} while (¢ 1= 'y) :

ingain (}

int line ;

printf("“For gain enter 0) LINEAR, 1) SIGMOIDAL, 2) PIECEWISE LINEAR : ');
scant (“%d"”, &gcurve.type) ;

it (gcurvetype == 0 || gcurvetype == 1) { .
printt (“Maximum gain = ? [float) ") ; 7

B-57

Appendix B: Computer Programs

scant (“%E", &gcurve.maxgain) ;
it (gcurve.maxgain >= 1.0 || gcurve.maxgain < = 0.0)
geurve.maxgein = .99 ;

printf (“Minimum gain = ? [fioat] ") ;

scanf (“%E", &gcurve.mingain) ;

it (gcurve.mingain <= 0.0 || gcurve.mingain >= 1.0)
geurve.mingain = 0.0 ;

}
eise {
printf (“First segment starting gain = ? [fioat] ") ;
scanf (“%E", &gcurve.maxgain) ;
it (gcurve.maxgain >= 1.0 || gcurve.maxgain <= 0.0)
gcurve.maxgain = 99 ;
printt (“Second segment starting gain = ? [float]) ;
scanf (“%E", &gcurve.midgain) ;
it (gcurve.midgain <= 0.0 || geurve.midgain > = 1.0)
gcurve. midgain = 0.0 ;
printf (“Second segment starting iteration = ? [fioat] ") ;
scanf (“%d", &gcurve.midtime) ;
if (gcurve.midtime <= 0 || gcurve.midtime > count)
geurve.midtime = count/ 2 ;
geurve.mingain = 0.0 ;
}
}
getgain (i)
long i;
{
it (gcurve.type == 0)
gain = (percent * (gcurve.maxgain - gcurve.mingain)) +
gcurve.mingain ;
else it (gcurve.type == 1)
gain = 0.8 * (gcurve.maxgain - gcurve.mingain) / (1.0 + exp (i -
count/20)) + .1;
else {
if (i < gcurve.midtime)
gain = gcurve.maxgain * (1.0 - (double) i / gcurve.midtime) ;
else
gain = gcurve.midgain * (1.0 - (double) i / count) ;
}
}
save_net ()
{
int fr.ci;
FILE *tnet ;

fnet = fopen(net_file,"w") ;
fprintf (fnet,"%d %d %d", ysize, xsize, number_inputs) ;
for{r=0.r<ysize,r++){
for(c =0;c < xsize:c++) {
for (i = 0 ;i < number_inputs ; i+ +) {
fprintt (fnet,” %f", map(r][c](i}) ;
}

twokoh4

Appendix B: Computer Programs twokoh4d
fclose (inet) ;
}
main()
{
long i
cher s1{10] ;
in ws_id = 1;
int clear_flag = 1;
FILE .

axtern unsigned _stllxhn ;

_stklen = 8192 ;

userinp () ; /* Get input values */
nfactorx = maxneighx - minneighx + 1 ;
nfactory = maxneighy - minneighy + 1 ;
init (map) ; /* initialize weights */

read_tm_file () ;
for{i=1;i<=count;i++){
if (| % graph == 0) {
printf (“TWOKOHA4: gain = %f, yrange = %d, ",
gain, nrangey) ;

printt (“xrange = %d, iteration # %d", nrangex,i) ;
printf (* (of %Id)\n", count) ;
if (access (net_file,0) == Q)
delete (net_file) ;
save_net () ;

percent = (mcount - i) / mcount ;
getgain () ;
it (flag.rnd_in == 0)
getin () .
eise
get_rnd_in () ;
mindist (map, input, closest) ;
it (gcurve.type !=2) {
nrangex = minneighx + percent * nfactorx ;
nrangey = minneighy + percent * nfactory ;

eise if (i < gcurve.midtime) {
nrangex = minneighx + nfactorx *
((double) {gcurve.midtime - i)) / gcurve.midtime ;
nrangey = minneighy + nfactory *
{(double) (gcurve.midtime - i)) / gcurve.midtime ;

else {
nrangex = minneighx ;
3 nrangey = minneighy ;

neigh({0] = nrangex ;
neigh{1] = nrangex ;
weightem (mapj) ;

}

save_net () ;
printf ("\nNet file: %s saved'\n", net_file)

,.

REREAANERERERARAREAENESAARERANR TR nwe'ghte c ARERRARNRARREANRINNERNNR DN SNORNENND

B-59

Appendix B: Computer Programs twokoh4

Theee routines allow training and testing of a second Kohonen
net of two net system. inputs are 75 point reduced trajectories
from the first net. Each point is a scalar from 0 to 224. Short
trajectories are filled with trailing 0's.

AENORNARANAB VARV ERAANRANRLENERNCAE NI RRRANREEARLASANRNSRANSRNGRS

*/
include math
include stdio
include stat
extern double input[225] ; /* input nodes */
extern double gain ;
extern int closest(2] ; /* cliosest node */
extern int neigh[2] ; /* neighbor */
extern int xsize, ysize ; /* Size of array */
extern int number_inputs ;
extern char training_file{30] ;
extern char first_net_file[30) ;
int number_discretes :
int word_counter ;
i num_words ;
char word_number{100][15] ;
i f_ysize, t_xsize, f_number_inputs ;
fioat f_map[20)(20][16] ;
read_trn_file ()
FILE *tf, *inet ;
int i,r.c,
tf = fopen (training_file, “r") ;
fscanf (tf, “%d", &num_words) ;
tor (i = 0;i < num_words ; i+ +)
fscant (tf, “%s", word_numberli]) ;
fclose (tf) ;
word_counter = 0 ;
fnet = fopen (first_net_file, “r") ;
tscant (fnet,"%d %d %d", &f_ysize, &t_xsize, &f_number_inputs) ;
for(r=0;r<f{ ysize;r++) {
for{c =0;¢c < xsize,c++){
for(i = 0,i < f_number_inputs ; i+ +) {
fscanf (fnet,” %f", &t_map(r]{c][i])
}
}
}
fclose (fnet) ;
}
getin ()
{
it (word_counter == num_words)
word_counter = 0 ;
read_word (word_cournter) ,
word_counter + + ;
}

B-60

:

Appendix B: Computer Programs

get_rnd_in

{
int i,
double max_rand = pow (2.0, 31.0) - 1.0;
int pointer ;

pointer = floor {(rand() * (num_words - .0001) / max_rand)) ;
read_word (pointer) ;

}

weightemn (map)
fioat

{

map(20](20](225] ;
int nright, nleft, nup, ndown, r, ¢, i ;

it (neigh[0] > O && neigh[1] > 0) {

nright = closest[0] + neigh[0] - 1 ;
it (nright > = xsize)

nright = xsize - 1;
nleft = closest[0] - neigh{0] + 1 ;
if (nleft < 0)

nieft = 0 ;
nup = closest{1] - neigh(1] + 1
it (nup < Q)

nup=0;
ndown = closest[t] + neigh(1] - 1;
if (ndown > = ysize)

ndown = ysize - 1 ;
}

nright = closest{0] ;
nieft = closest[0] ;
nup = closest{1] ;
ndown = closest|[1] ;
}

for (r = nup; r <= ndown ; r++) {
for (c = nleft ;¢ <= nright; c++) {
for (i = 0 ;i < number_inputs ; i+ +)

map(r][c][i] += gain * (input(i] - map[r]{c}(i}) :

}
read_word (pointer)

int pointer ;
{

int flag.r.c. i, j k;
double in[16), d1, d2, d3, d4, d5 ;
float element ;

int loc2{2000} (2}, loc3{2000](2] .
FILE *fsnd ;

int sound, point, x{5], y{5] :

int max_pts ;

double max ;

for (i = 0 ;i < number_inputs ; i+ +)
inputli} = 0.0;
fsnd = fopen (word_number|[pointer], “r") ;

twokoh4

sound =0,
i=0;
flag =0
while (flag I= 1) {
fscant (fand, “%f’, &element)
it (feci(fand) |=0)
flag =1;
olse if (i > 98)
flag =1,
eise {
infi] = (double) element ;
i++;

}
it (1 == 15) && (flag == 0)) {
f_mindist (f_map, in, &loc2[{sound}(0]) ;
i=0;
sound+ + ;

}

}
fclose (fsnd) ;
for(i=0;i<sound;i++){
loc3[i]{0] = toc2(i}{0] ;
l;>¢3[ill1l = loc2[{(1) :

... Trajectory Reduction ...
for(i=0;i<j;i+4){

point = loc2(i)(0] + loc2[i][1] * f_xsize ;
input{i] = point/ 225.0 ;
}

}
t_mindist (f_map, inp, close)
double inp(16] ;
int close(2] ;
float f_map(20][20)[16] ;
{
int rnei;
double dist ;
double minimum = 99999.9 ;
for(r=0;r<{_ysize r++) {
for(c =0,c < f xsize;c++) {
dist = 00;
for (i = 0 ;i < f_number_inputs ; i+ +)
dist += pow (inp(i] - f_map]r}{c](i}, 2.C) ;
it (dist < minimum) {
minimum = dist ;
closef0) = c;
close[1] =r;
}
}
}
}

B-62

twokoh4

Appendix 8: Computer Programs twobas2

$ link twobas2,nweight 10,options_file/opt
,t

------ » * ch RENRRNENOENNERNRRAENNCEURRRERNO RN

Routine to train a second Kohonen net to process reduced 75
point trajectories from first kohonen net. The points are scalare
from O to 224. Short trajectories are filled wih trailing 0's.

Initial weights are randomly distorted from the first run of T
inputs. Updates to weights use trajectories precalculated and
stored in path.dat file.

This version adds ‘conscience’ to choosing closest node,; i.e. if
node ia chosen too often it is not considered for closest status.

EARRENRANCERAANRNSONELEANSRSNARERDANROERRASNNREAAARAARCRAS SRS

Capt Gary Barmore, 10 Aug 88

*/

include math

include stdio

include time
int conscience[20){20] ;/* records # times closest */ ;
int nodes ; /* number of nodes */
double consc = 1.1; /* conscience factor */

fioat map[20)[20}{225] ; /* output nodes */
double input[225] ; /* input nodee */

double gain, noise ;

double mcount ;

double percent ;

im closest(2] ; /* closest node */

int neigh(2] : /* neighbor */

int nrangex, nrangey ; /* neighbor range */
int nfactorx, nfactory ; /* neighbor factor */
fon geount ; /* # of iterations */

int graph ; /* # between plots */

int seed ;

int maxneighx, maxneighy ; /* Starting area */
int minneighx, minneighy ; /* Final area */
int xsize, ysize ; /* Size of array */

in number_inputs ;

char training_file[30), net_file[30), first_net_file[30] ;
char temp_file[15] ;
char net_name[15] ;

struct curve {

int type ;
double maxgain ;
doubie mingain ;
double midgain ;
int midtime ;
} geurve ;

struct fig {
int rnd_in ;

} flag ;

Appendix B: Computer Programs twobas2
ink (map)
(map(20}(20](225] ;

im re,i;

float max_rand = pow(2.0, 31.0) - 1.0;

nodes = ysize * xsize ;
for(r=0;r<ysize;r++){
tor(c=0;c<xsize;c++) {
conscience(r]{c] =0
getin () ;
for (i =0 ;i < number_inputs ; i+ +) {
map[r){c]{i) = input[i] +
rand () / max_rand ;

}
}
}
}
mindist (map, inp, close, its)
double inp[225] ;
int close[2] ;
float map[20]{20]{225] ;
long its ;
{ .
int rei,;
double dist ;
double minimum = 9.99e31 ;
for(r=0;r<ysize;r++) {
for(c =0;c < xsize;c++) {
dist = 0.0 ;
if (conscience[r]{c] < consc * its / nodes) {
for(i =0, i < number_inputs ; i+ +)
dist + = pow(inp([i] - map(r](c](i]. 2.0):
if (dist < minimum) {
minimum = dist ;
close[0] = ¢
close{1] =r;
}
}
}
conscience[close(1]][close{0]] += 1
}
userinp ()
int line ;
im c,
struct tm *localtime(}, *time ;
int *bintim ;
do {

printf (“TWO KOHonen net training (output only)... \n\n") ;

printt("Enter size ‘m n’ (for an m x n) of array = ? [intint] ™) ;
scanf("%d %d", &ysize, &xsize) ;
if (ysize < 2)

ysize = 2 ;

B-64

Appendix B: Computer Programe twobas2

elee if (ysize > 20)
ysize = 20 ;

if (xsize < 2) s
xgize = 2;

olse it (xsize > 20)
xsize = 20 ;

printf (“Do you want 0) sequential training,\n") ;

printf (" 1) randomized training? ") ,

scanf (“%d", &flag.rmd_in) ;

printt (“Enter name of header file containing words (less .hdr): ™) ;
scanf ("%s", temp_file) ;

sprintt (training_file, ‘‘%e.hdr", temp_file) ;

number_inputs = 75 ;

printf (“Enter name of pre-processor Kohonen net file [less .net):) ;
scanf (“%s", net_name) ;

sprintf (first_net_file, “%s.net”, net_name) ;

printf(“Enter name of net file to create [less .net]:) ;
scanf (“%s”, net_name) ;
sprintf (net_file, “%s.net", net_name) ;

printf (“Number of iterations = ? [imt] ") ;

scant (“%id"”, &count) ;

if (count <= 10 || count > 130000)
count = 100 ;

mcount = (double) count ;

printf ("Number of terations between status messages = ? [int] ") ;
scant (“%d", &graph) ;
if (graph < 1 || graph > count)

graph = 10;

ingain () ;

printf (“Starting size of neighborhoods ‘yn xn' = ? [int int] ") ; ’
scanf (“%d %d", &maxneighy, &maxneighx) ; -
if (maxneighx < 2 || maxneighx > xsize - 1)

maxneighx = 2 ;
if (maxneighy < 2 || maxneighy > ysize - 1)

maxneighy = 2 ;

printt (“Final size of neighborhoods 'yn xn' = ? [intint}) ;
scant (“%d %d", &minneighy, &minneighx) ;
if (minneighx < 1 || minneighx > maxneighx)

minneighx = 1;
if (minneighy < 1 || minneighy > maxneighy)
minneighy = 1 ;

printf
(“Initial seed for random # generator = ? {int] ');
scanf (“%d", &seed) ;
it (seed == 0) {
seed = 138 ;
}
srand (seed) ;

printf(“Ready to begin? (y/n) ™) ;

Appendix B: Computer Programs twobas2

while ((c = getc (stdin)) =="" || c == W' || ¢ == ")
‘ }whih(c;|= A28
}
ingain ()
| ¢ in line ;

primtf(“For gain enter 0) LINEAR, 1) SIGMOIDAL, 2) PIECEWISE LINEAR :);
scant (“%d", &gcuive.type) ;

if (qeurve.type == 0 || gcurve.type == 1) {

printt (“Maximum gain = ? (fioat] ') ;

scanf (“%E", &gcurve.maxgain) ;

it (gcurve.maxgain >= 1.0 | | gcurve.maxgain < = 0.0)
gcurve.maxgain = .99 ;

printt (“Minimum gain = ? [float] ™) ;

scant (“%E", &gcurve.mingain) ;

it (gecurve.mingain <= 0.0 || gcurve.mingain >= 1.0)
gcurve.mingain = 0.0 ;

}
else {
printt (“First segment starting gain = ? [float]) ;
scanf (“%E", &gcurve.maxgain) ;
if (gcurve.maxgain >= 1.0 || gcurve.maxgain <= 0.0)
gcurve.maxgain = .95 ,
printt (“Second segment starting gain = ? [float] ") .
scanf (“%E", &gcurve.midgain) ;
if (geurve.midgain <= 0.0 || gcurve.midgain >= 1.0)
geurve.midgain = 0.0 ;
printf (*Second segment starting iteration = ? [float] ™) ;
scant ("%d", &gcurve midtime) ;
if (gcurve.midtime <= 0 || gecurve.midtime > count)
gcurve.midtime = count/ 2 ;
geurve.mingain = 0.0 ;
}
}
getgain (i)
long i;
{
it (gcurve.type == Q)
gain = (percent * (gcurve.maxgain - gcurve.mingain)) +
gcurve.mingain ;
elise if (gcurve.type == 1)
gain = 0.9 * (gcurve. maxgain - gcurve.mingain) / (1.0 + exp (i -
count/2.0)) +.1;
else {
it (i < geurve.midtime)
gain = geurve.maxgain * (1.0 - (double) i / gcurve.midtime) ;
elge
gain = gcurve.midgain * (1.0 - (double) i / count) ;
}
}
save_net ()

B-66

| Appendix B: Computer Programs

int rei;
FILE *fnet ;

fnet = fopen(net_file,"w") ;
fprintf (fnet,“%d %d %d", ysize, xsize, number_inputs) ;
for(r=0;r<ysize;r++){
for(c =0.c < xsize;c++) {
for (i = 0 ;i < number_inputs ; i+ +) {
fprintt (fnet,” %f", map(rl(c}[i]) ;

}
}
}

fclose (fnet) ;
long i
char s1{10] ;
int ws_id=1;
int clear_flag = 1;
FILE "

extern unsigned _stkien ;

_stklen = 8192 ;

userinp () ; /* Get input values */
nfactorx = maxneighx - minneighx + 1 ;
nfactory = maxneighy - minneighy + 1;
init (map) , /* 'nitialize weights */
read_trn_file () ;

for(i=1;i<=count;i++) {
if (1 % graph == Q) {

printf ("'TWOKOH?: gain = %f, yrange = %d, ",
gain, nrangey) ;

printf (“xrange = %d, iteration # %d", nrangex,i) ;

printf ((of %Id)\n", count) ;

if (access (net_file,0) == 0)
delete (net_file) ;

save _net () ;

percent = (mcount - i) / mcount ;
getgain (i} ;
it (flag.rnd_in == Q)
getin () ,
else
get_rnd_in () ;
mindist (map, input, closest, i) ;
it (geurve.type 1= 2) {
nrangex = minneighx + percent * nfactorx ;
nrangey = minneighy + percent * nfactory ;

else if (i < gcurve midtime) {
nrangex = minneighx + nfactorx *
((double)(gcurve.midtime - i)) / gcurve midtime ;
nrangey = minneighy + nfactory *
((double) (gcurve.midtime - i)) / gcurve.midtime ;

B-67

Appendix B: Computer Programs

nrangex = minneighx ;

' nrangey = minneighy ;
}

neigh[0] = nrangex ;

neigh[1] = nrangex ;
‘;"iﬁht'm (map) ;

save_net () ;
b printf (‘“\nNet file: %s savedi\n”, net_file) ;

,.

ARERBANAREDARPAERANERNNERARASNAARD rm.igm1° c AARNNAERAEEARTNARCR RS EACRANRBEPOS

These routines allow training and testing of a second Kohonen
net of two net system. Inputs are 75 point trajectories from the
first net. Points on the trajectories are scalar values from 0 to
224. Short trajectories are filled with trailing O's.

This version uses a set of input trajectories saved in path.dat
to save time reading *.trn files and running them through the
first trajectory on every pass.

ERARENEEARAR AN E IR A E RN A RAR AN A R R AN RAAANNANA AN SNARANAC AT AND RS

*
include math
include stdio
include stat
double innput(100}{75] /* input vectors */
extern double input[225] ; /* input nodes */
extern double gain ;
extern int closest[2] ; /* closest node */
extern int neigh(2] ; /* neighbor */
extern int xsize, ysize ; /* Size of array */
extern int number_inputs ;
extern char training_file[30] ;
extern char first_net_file{3Q] ;
int number_discretes ;
int word_counter ;
int num_words ;
char word_number{100](15] ;
int t_ysize, f_xsize, f_number_inputs ;
float 1_map[20][20](16] ;
read_trn_file ()
{
FILE *t, *inet ;
int L e,

tt = fopen (training_file, “r") ;
fscant (tf, “%d", &num_words) ;
for (i = 0 ;i < num_words ; i+ +)
facant (tf, “%s", word_numberl[i) .

fclose (tf) ;

tnet = fopen (first_net_file, "r") ;
fscant (fnet,"%d %d %d", &f_ysize, &t_xsize, &f_number_inputs) ;

B-68

twobas2

e

Appendix B: Computer Programs twobas2

for(r=0;r<f_ysize;r++){
& for (c =0;c < f xsize; c++) {

for (i = 0;i <t _number_inputs ; i++) {
;ncanf (fnet,” %f", &1_map(r]ic](i]) ;

}
fciose (tnet) ;

fnet = fopen ("peth.det”, “r") ;
fscant (fnet, “%d"”, &num_words) ;
for (i=0;i < num_words ; i++) {
tor (§ = 0;j < number_inputs ; j+ +)
fscant (fnet, “%le", &innput[il{i)) :

}
fclose (fnet) ;
word_counter = 0 ;
}
getin 0
{
int i
if (word_counter == num_words)
word_counter = 0 ;
for j = 0 ;) < number_inputs ; j+ +)
input(j] = innput{word_counter][j} .
word_courter+ + ;
}
get_rmd _in ()
{
int Wi
double max_rand = pow (2.0, 31.0)-10;
int pointer ;
pointer = fioor ((rand() * (num_words - .0001) / max_rand)) ;
for (j = 0;j < number_inputs ; j+ +)
input{j] = innput{word_counter}j} :
}
weightem (map)
float map[20][20](225] .
{
int nright, nleft, nup, ndown, r, ¢, i ;

it (neigh{0} > 0 && neigh[1] > 0) {
nright = closest[0] + neigh{0] - 1 ;
if (nright > = xsize)
nright = xsize - 1 ;
nieft = closest(0] - neigh{0] + 1 ;
if (nleft < 0)
nieft =0 ;
nup = closest[1] - neigh{1] + 1 ;
it (nup < 0)
nup =0;
ndown = closest(1] + neigh{1] - 1,
if (ndown > = ysize)
ndown = ysize - 1,
}

B-69

Appendix B: Computer Programs twobas2

elso {

nright = closest{0] ;
? nieft = closest[0] ;
nup = closest{1] ;
ndown = closest(1] ;

}
for (r = nup; r <= ndown ; r++) {
for (¢ = nleft ; c <= nright; ¢+ +) {
u for (i = 0;i < number_inputs ; i+ +)
mapfr][c](i] += gain * (inputli] - map{r}[c}[7)) :

}
}
read_word (pointer)
int pointer ;
{
int flag.r. ¢, i, j k ;

double in{16}, d1, d2, d3, d4, d5 ;
float olement ;

int 10c2{2000} {2}, loc3{2000}[2] ;

FILE *fsnd ;

int sound, point, x[5), y[5] ;
int max_pts ;

double max;

for (i = 0 ;i < number_inputs ; i+ +)
input[i] = 0.0;
fsnd = fopen (word_number{pointer), “r") ;
sound = 0 ;
i=0;
flag =0;
while (flag t= 1) {
fscant (fsnd, “%f", &element) ;
if (feof(fsnd) ! =0)

flag = 1;
else if (i > 99)
flag = 1;
else {
in(i] = (double) element ;
i++

}
it (i == 15) && (flag == 0)) {
f_mindist (f_map, in, &loc2(sound][0)) ;
i=0;
sound++ ;

}

}
fclose (fsnd) ;
for(i=0;i<soundi++){
loc3(ij[0] = loc2(i]{0] ;
loc3[i)[1] = loc2fi](1] : ﬂ
}]

max_pts = sound ;

... Trajectory Reduction ...
for(i=0;i<j;i++){
point = loc2[i](0] + loc2(i}{1] * t_xsize ; } ﬁ
B-10 |
|
_ -

Appendix B: Computer Programs twobas2
h input(i] = point / 225.0 ;
}
}

f_mindist (f_map, inp, close)
doubie

inp[16] ;
int close{2] ;
¢ fioat f_map({20][20]){16] ;
int rci;
double dist ;
double minimum = 999938.9 ;
for(r=0;r<f ysize; r++) {
for(c=0;c<fxsize;c++){
dist = 0.0 ;
for (i = 0;1 < f_number_inputs ; i+ +)
dist + = pow (inp(i] - f_mapfr]{c]{i), 2.0) ;
if (dist < minimum) {
minimum = dist ;
closs{0] = ¢;
close[1] =r;
}
}
}
}

B-71

Appendix B: Computer Programs outdat

$ link outdat,ntraj,options_file/opt
,‘

SAARANRARNACANALAAARNCARASAARRSUNESY outdu.c EAREARREERAACANNNEARECARNNEAARAEESN

Routines to create a path.dat file containing 75 point scalar
trajectories from the first Kohonen net. Each scalar is from
0 to 224. Short trajectories are filled with trailing 0's.

The *.dat file is used to train a net quickly, eliminating file
reading and running data through the first net repeatedly.

AEARRENENARRANENA NN EAN R AN SR ERR AN AN ANEARERANACAARNS NN RANNNNR D

Capt Gary Barmore, 3 Aug 88

*f
include math
include stdio
include time
fioat map[20}{20}{225] ; /* output nodes */
double input[225] ; /* input nodes */
double gain, noise ;
int closest{2] ; /* closest node */
im xsize, ysize ; /* Size of array */
int number_inputs ;
char training_file(30], net_file{30], first_net_file(30] ;
char temp_file[15) ;
char net_name(15] ;
init (map)
float map(20][20][225] .
{
int rci;
FILE *tnet ;
fnet = fopen(net_file,"r") ;
fscant (fnet,"%d %d %d", &ysize, &xsize, &number_inputs) ;
for(r =0;r<ysize; r++) {
for (c = 0;c < xsize ;c++) {
for (i = 0;i < number_inputs ; i+ +) {
fscanf (fnet,"%t", &map(r](c][i]) ;
}
}
fclose (fnet) ;
}
mindist (map, inp, close)
double inp[225} ;
inm close(2] ;
float map(20][20](225] .
{
int rci;
double dist ;
double minimum = 999999.0 ;

for(r=0;r < ysize;r++) {
for(c =0,c < xsize;c++){
dist =00 ;
for (i = 0 ;i < number_inputs ; i+ +)

B-72

Appendix B: Computer Programs outdat

dist += pow (inp[i] - map(r]{c}(i}, 2.0) ;
#f (dist < minimum) {
minimum = dist ;

close[0) = ¢ ;
close[1] =r;
}
}
}
}
userinp ()
int line ;
int c,;
struct tm *localtime(}, *time ;
int *bintim ;]
do {
printf (‘OUTDAT: Create path.dat for net training ... \n\n") ;
printt (“Enter name ot header file containing words (less .hdr): ") ;
scanf (“%s", temp_file) ;
sprintf (training_file, “%s.hdr", temp_file) ;
number_inputs = 75 ;
printf (“Enter name of pre-processor Kohonen net file {less .net]:) ;
scanf (“%s", nst_name) ;
sprintt (firgt_net_file, “%s.net", net_name) ;
printf("Enter name of data file to create {less .dat]: ") ;
scant (“%s", net_name) ;
sprintf (net_file, “%s.dat", net_name) ;
printf("Ready to begin? (y/n) "} ;
while ((c = getc (stdin)) ==""jlc=="\n'||c == ")
} while (c'!= Y}
}
save_net ()
{
int rci;
FILE *tnet ;
fnet = fopen(net_file,"w") ; o
fprintt (fnet,"%d %d %d", ysize, xsize, number_inputs) ;
for(r=0;r < ysize;r++) {
for (¢ =0, c < xsize;c++) {
for (i = 0;i < number_inputs ; i+ +) {
')Pﬁnﬂ {tnet,” %", mapir}(c](i]) :
}
}
fcloee (fnet) ;
}
main(

Appendix B: Computer Programs outdat

}
/'

AERERRARARNTAENE L L EARCASNNACEERS N mK‘i c RARBEAARAAEEAGRNAARRSENRASRARANGS

*

char

im

int

FILE

extern unsigned

_stklen = 8192 ;

userinp () ; /* Get input values */
init (map) ; /* initialize weights */

read_trm_file () ;

printf (“\nNet file: %s saved!\n", net_file) ;

Routines to save 75 point scalar trajectoires from the first
Kohonen net to save time in training the second Kohonen. Each
scalar is from 0 to 224. Short trajectories are filled with

trailing O's.

SRR EEBAERNEN RN AR AR A AR AN A E AR AAN R AR AR A AN A RARE R ERA RGN GOSN

include math
include stdio
include stat

double

extern double
extern double
extern int
extern int
extern int
extern int
extern char
extern char
extern char

in
int
int
char
int
tloat

read_trn_fiie ()

{

FILE
int

tt = fopen (training_file, "r") ;
fscant (tf, “%d", &num_words) ;
for (i =0,;i < num_words ; i+ +)
fscanf (tf, “%e", word_number(i]) ;

fclose (tf) ;

tnet = fopen (first_net_file, “r") ;
fecant (fnet,"%d %d %d", &f_ysize, &f xsize, & _number_inputs) ;

81{10] ;
ws id=1;
clear_flag = 1;

_stl'don ;

innput[100][75]) /* input vectors */

input[225] ; /* input nodes */
gain ;

closest{2] ; /* closest node */
neigh[2] ; /* neighbor */

xsize, ysize ; /* Size of array */
number_inputs ;
training_file{30] ;
first_net_file[30] ;

net_file{30] ;

number_discretes ;

word_counter ;

num_words ;
word_number[100][15) ;

f_ysize, f_xsize, f_number_inputs ;
t_map(20)(20]{16] ;

*f, *tnet ;
jirne;

B-74

Appendix B: Computer Programe

for(r=0;r<f_ysize ;r++) {
for(c=0;c<fxsize;c++){
for (i =0 ;i < f_number_inputs ; i+ +) {
;wln'(fmt." %f", &f_maplrl{c](i]) :

}
fcloee (inet) ;

fnet = fopen (net_file, “w'") ;
fprintf (fnet, “%d\n", num_words) ;
for | = 0;i < num_words ; i+ +) {
read_word (i) ;
for = 0;j < number_inputs ; j+ +) {
innput(i][] = input(j] :
tprintf (fnet, “%le\n", input(j]) ;

}
}
fciose (fnet) ;
}
getin 0
{
int i
it (word_counter == num_words)
word_counter =0 ;
for = 0;j < number_inputs ; j+ +)
input(i] = innput{word_counter](j) ;
word_counter+ + ;
}
get_rnd_in
{
int Wi
double max_rand = pow (2.0,31.0)-10;
int pointer ;
pointer = floor ((rand() * (num_words - .0001) / max_rand)) ;
for (j = 0;j < number_inputs ; j+ +)
inputlj] = innput{word_counter][j] ;
}
weightem (map)
float map{20)[20)[225] ;
{
int nright, nleft, nup, ndown, r, c. i ;

if (neigh{0] > O && neigh[1] > 0) {
nright = closest[0] + neigh[0] - 1 ;
it (nright > = xsize)
nright = xsize - 1 ;
nleft = closest{[0] - neigh{0] + 1
it (nieft < 0)
nleft =0;
nup = closest[1] - neigh[1] + 1 ;
it (nup < 0)
nup =0 ;
ndown = closest[1] + neigh(1} - 1;
it (ndown > = ysize)

Appendix B: Computer Programs

ndown = ysize- 1 ;
}
olse {
nright = closest([0] ;
nieft = closest(0] ;
nup = closest(1] ;

ndown = closeet{1] ;

for {r = nup; r <= ndown ; r++) {
for (c = nieft ; ¢ <= nright ; c+ +) {
for (i = 0;i < number_inputs ; i+ +)
map(ri(c]{i] += gain * (input(i] - map{r}(c](i]) :

}
}
read_word (pointer)
int pointer ;
{
int flag, 1, ¢, i, j. k ;
double in[16], d1, d2, d3, d4, d5 ;
float element ;
int 10¢2{2000}(2], {oc3{2000}(2] .
FILE *fsnd ;
int sound, point, x[S], y[5) ;
int max_pts ;
double max ;

for (i = 0;i < number_inputs ; i+ +)

input]i] = 0.0;
fsnd = fopen (word_number[poainter], “r") ;
sound =0 ;
i=0,;
flag =0;

while (flag != 1) {

fscanf (fsnd, "%f", &element) ;

if (tect(fsnd) ! =0)
flag = 1;

oise iff (i > 99)
flag=1;

eise {
infi} = (double) element ;
i++;

}
if ((i == 15) 8& (flag == 0)) {
f_mindist (f_ map, in, &loc2{sound](0]) ;
i=0;
sound++ ;

}
}
fciose (fsnd) ;
for(i=0.i<sound;i++){
loc3{i](0] = loc2[i]{0] ;
loc3(i)[1] = loc2[i}[1] :
}
max_pts = sound ;

... Trajectory Reduction ...

B-76

Appendix B: Computer Programs outdat

for(i=0;i<j i+ +){
point = loc2(i](0] + loc2(i](1] * f_xsize ;
input(i] = point/ 2250 ;
}

}
t_mindist (f_map, inp, close) -
double inp{18] ;
in close(2] ;
float f_map[20]{20]{16] ;
{
int r,ci;
double diat ;
double minimum = 999989 ;

tor{r=0;r<t ysize ;r++) {
for{c=0;c<fxsize;c++){
dist = 0.0 ;
for (i =0 ;i < {_number_inputs ; i+ +)
dist += pow (inp[i] - _map(r}[c][i}. 2.0) ;
it (dist < minimum) {
minimum = dist ;
close(0] = ¢ ;
closefi] =r;
}

Appendix B: Computer Programs twopicé

$ link twopic4,npict,nprimer, mat3b, nweightB, options _file/opt
,.

LA Sttsanstinen Mop‘“'c AR ABANRARSESERER NS R RO RASOARSRTAN

Routine to show locations of words on second Kohonen net. The
final version assumes a test set of 100 words. 10 each of zeros,
ones, ..., nines (respectively). The graph identifies the iast

digit which it it up.

First Kohonen trajectories are compared by Euclidean distance
algorithm. Trajectories are 75 scalar points long.

The routine was written to test what nodes the training set will
light up. Baasically, this allows one to determine the way the
training spread the inputs and the differentiability. It is not
a test of the net.
VEIIVEFARNCOERE AN SRR AR ARNARANENARANL A AR AN ERANEANNEARAERER
*/
include math
include stdio
include time

float map[20][{20]{225] ; /* output nodes */
double input{225] ; /* input nodes */

double gain, noise ;

double mcount ;

double percent ;

double xoff =00 ;

double yoff =00

double node_dist ;

int closest(2] ; /* closest node */

im neigh{2] ; /* neighbor */

int nrangex, nrangey ; /* neighbor range */
int nfactorx, nfactory ; /* neighbor factor */
long count ; /* # of iterations */

int graph ; /* # between plots */

int seed ;

int maxneighx, maxneighy ; /* Starting area */
int minneighx, minneighy ; /* Final area */
int xgize, ysize ; /* Size of array */

int number_inputs ;

int wrap _flag = 0 ;

int train_flag, train_discrete ;

char training_file[30], temp_file{30), first_net_file[30] ;
char net_file(30] ;

struct curve {
int type .
double maxgain ;
double mingain ;
double midgain ;
int midtime ;
} geurve ;
extern int xy(] ; /* array holding x,y */

extern double xdel, ydel ;
extern double xlow, xup, ylow, yup ;
extern int num_words ;

B-78

Appendix B: Computer Programs

k extern char word_number(100](15] ;

mindist (map, inp, close)
double inp(225] ;

int close(2] ;

map[20][20]{225] ;

in ne i,
dist ;
minimum = 9.99e31 ;

g

o
4!

for(r=0;r<ysize;r++) (
for{c =0, c < xsize;c++) {
dist =0.0;
for (i =0 ;i < number_inputs ; i+ +)
@ dist += pow (inp[i] - mapf{r}[c}li), 20) ;
if (dist < minimum) {
minimum = dist ;
close[0] = ¢ ;
close{1] =r;

}

}
}
¢ node_dist = minimum ;

main ()
int c;

@ printt (\nTWOPIC4 (Plot Words for 0/1 Reduced Queued Traj)..\n") ;
map_speech () .
}

map_speech ()
{

int rcijk;
o char sub_title[60), temp{30]
char name_trj[20] ;
int loc{125](2] ;
FILE *fnet, *flog ;
int sound ;
short length ;

< printt (“\nEnter name of pre-processor Koh net-file [less .net}:) ;
scanf (“%s", temp) ;
sprintt (first_net_file, “%s.net", temp) ;

printt ("Enter name of header file containing words (less .hdr):) ;
scanf ("%s", temp_file) ;
sprintf (training_file, “%s.hdr", temp_file) ;
¢ printf (“Enter name of output Koh net_file (less .net): " ;
scant (“%a", temp_file) ;
sprintf (net_file, “%s.net", temp_file) ;
read_trn_file () ;

fnet = fopen (net_file, “r") ;
¢ fscanf (fnet,"%d %d %d", &ysize, Sxsize, &number_inputs) ;

B-79

Appendix B: Computer Programs

tor(r=0;r<ysize;r++){
for{c=0;c<xsize;c++){
for (i = 0; i < number_inputs ; i+ +) {
'}uln'('mt %f", &maplrj[c][i]) :

}
fciose (fnet) ;

sprintf (sub_title, “%s -> %8s -> %s",
training_file, first_net_file, net_file) ;
sprintt (name_trj, “%e.trj", temp) ;

flog = fopen (“temp.log”,"w') ;
tprintf (flog, “TWOPIC4: %s”, name_tr)) ;

graph_test (training_file) ;
length = (short) strien (sub_title) ;
draw_grid2 (ysize, xsize, sub _title, length) ;

printf ("\nExpect %d caiculations.\n", num_words) ;
for (sound = 0 ; sound < num_words ; sound+ +) {
getin (;
mindist (map, input, &loc[sound}[0]) ;
printt ("%d : [%d,%d] dist = %le\n",
sound, loc[sound][0], loc[sound](1), node_dist) ;
fprintf (flog, "“%d : [%d,%d] dist = %le\n",
sound, loc[sound]}(0], loc[sound][1], node_dist) ;

}
printf (“\nCalculations finished.\n") ;
fclose (flog) ;
draw_speech_map (sound, loc) ;
scanf (“%s" temp) ;
clipoff § ;
graphoft () ;

graph_test (name)

{

char name[30] ;

char title[79), labelx[79] ;
float xloc[5] = {0, 639.0, 639.0,00,0.0} ;
tioat yloc{5] = {349.0, 349.0, 0.0, 0.0, 349.0} ;

int points =5 ;
int ws_id =1;

nt clear_flag = 1,
short length ;

sprintf(titie,” TWOPIC4: Kohonen TWO NETS -- %s", name) ;
sprintf(ilabebe,” ™) ;

graphon § ;

gkeS$clear_ws (&ws_id, &clear_fiag) ;
gks$polyline (&points, xioc, yloc) ;
prepcolmat (ysize, xsize) ;

length = (short) strien (title) ;
outtitle (title, length) ;

length = (short) strien (labelx) ;
outlabeix (labeix, length) ;

clipon () ;

B-80

}

,.

*® fAeeR FENENNRASAN - m.c RRAREAARAARDARRAAANRARRRCARNARDERRNARD
Routines to perform graphics for net output. Note that the last
version assumed second Kohonen net input is a set of 100 exemplars
divided into 10 even classes (10 each). Thus the first class of
ten is represented as 0, and the last as 9.

*

include stdio

include math

include <gksdefs.h>

include <deacrip.h>

define BLACKO

define WHITE

float ptsx[20]{20][S]. ptsy(20{5) :
float px{20}{20}, py{20}{20] ;
int used|[20][20] ;
int colmat[20)(20] ;
int pattern(16] =
{0, -15,-15, -12,-12, -11,-11, -1,-1, 2,2, 4,4, -5,-5, 1} ;

prepcolmat (ysize, xsize)

int xsize ,
im ysize ;
{
int r, c, xstart, ystart ;
int dx, dy ,
dx = floor (550.0 / xsize) ;
dy = floor (276.0 / ysize) ;
xstart = 280 - dx * xsize / 2 ;
ystart = 148 + dy *ysize /2 ;
for(c =0;c < xsize;c++) {
for(r =0;r <ysize; r++) {
ptax(r](c](4] = (ptsx(r]{c}{3] = (ptsx[r}[c}[0] =
xstart + ¢ * dx)) ;
ptsx(r](c}(2] = (ptax[r}[c][1] = ptsx[r][c][O0] +dx- 1) ;
ptsy[r}[c}(4] = (ptsy[r](c](1] = (ptey[r}{c}{0] =
ystart - r * dy)) |
ptsy(rl(c}(3] = (ptsy(r){c](2] = ptay(rl{c][O] -dy+ 1)
px(riic] = ptsx(r]{c][0] + 8.0
;w[rl[c} = ptsy[r]{c}[0} - 8.0;
}
for(r=0:r<20;r++){
for(c=0;¢c<20;¢c++){
used|r][c] =0
}
}
}

B-81

¢
Appendix B: Computer Programs twopic4
showem ()
{
® int i;
float rectx[16](6), recty[16](6] ;
int points =5 ;
for(i=1;i<16;i++){
rectx[i)[4] = (rectx{i}[3] = (rectx{i}[0) = 173 + 16 *) ;
® rectx{i}[2] = (rectxfil{1] = (rectx{i}{0] + 15)) ;
recty(i][4] = (recty(i][1] = (recty[i][0] = 30)) ;
recty[i][3] = (recty[i){2] = 23) ;
setfillstyle (pattern(i], i) .

gkssfill_area (&points, &rectx[i}(0], &recty(i}[0]) ;
}

}
seffilistyle (pattern, pointer)
int pattern ;
int pointer ;
{
int style = 3 ; /* hatch */
int color{16] = {0, 7,7,3.3,55,4,4,4,66,22, 1} ;
it (pattern > = 0) {
gks$set_fili_int_style (&pattern) ;
}
eise {
gks$set_fill_style_index (&pattern) ;
gks$set_fill_int_style (&style) ;
}
}
draw_net (number, loc)
int number, loc{64]{2] ;
{
int j, i, old_value ;
in white = 0 ;
int black = 1;
float Xy,
char s(4] ;

$OESCRIPTOR(s_dsc.s) ;

for (i=0;i < number ; i++) {
x = ptax{loc(i}{1]}{loc(i}{0]}[0] + 4.0;
y = ptsy(loc(i]{1]j{loc(i][0]](0] - 4.0 ;
old_value = usedflocli}{1}){locli]{0]} / 10.0 ;

gks$set_text_color_index (&white) ;
sprintf (s,"%3d",old_value) ;
gks$text (&x, &y, &s_dsc) ;

j=i/100;]
sprintt (s,"%3d"j) ;

gks$set_text_color_index (&black) ;

gks$text (8x, &y, &s_dsc) ;

it ((i != old_value) && (old_value ! = 0)) {

y-=60; ﬂ

B-82

Appendix B: Computer Programs

Opﬂﬂ“ (.."-an") ;
QkeStext (8x, &y, &s_dsc) ;

}
;‘“dlloc[illﬂl['oc[illoll =i;

}
draw_neighbors (number, loc)
int number, loc[64][2] ;
{
int j, i, old_value ;
int white = 0 ;
int black = 1;
float XY,
char s[4} ;
$OESCRIPTOR(s_dsc,s) ;
for(i=0;i<1;it++){
x = ptsxfloc(i]{ 1]](loc(i][0]](0] + 4.0;
y = ptsy[locfi](1]]{loc{i}{0]}[0] - 4.0 ;
old_value = usedfloc[i]{1]]{lec[i]{0])} / 10.0 ;
gks$set_text_color_index (&white) ;
sprintf (8,"%3d", old_value) ;
gks$text (8x, &y, &s_dsc) ;
j = number/10.0;
sprintf (8,%3d", j) :
gks$set_text_color_index (&black) ;
gks$text (8x, &y, &s_dsc) ;
if ((number 1= old_value) && (old_value ! = 0)) {
y-=60;
sprintt (8,"***") ;
gks$text (&x, &y, &s_dsc) ;
}
used{loc[i]{1]](loc(i] [0]] = number ;
}
}
draw_speech_map (number, loc)
im number, loc[125){2] ;
{
int j. i, old_value ;
int white =0 ;
int black = 1 ;
fioat x, vy, xx[2], yy[2] :
int points = 2 ;
char s[4] ;

$SDESCRIPTOR(s_dsc.s) ;

for (i = 0 ;i < number;i++) {
x = ptsx{loc{i][1]}{loc(i](0)][0) + 4.0;
y = ptsy(loc[i][1]](loc(i}{0]][O] - 4.0 ;
old_value = usedfioclil{1]][loc[i]){0]] / 10.0;

ghks$set_text_color_index (&white) ;

sprintt (8,"%3d", old_value) ;
gke$text (8x, &y, &s_dsc) ;

B-83

twopic4

Appendix B: Computer Programs

j=i/100;
gkeSeet_text_color_index (&biack) ;
sprintt (s,"%3d", D ;

gke$text (&x, &y, &s_dsc) ;

if ((i != old_value) && (old_vaiue ! = 0)) {
-=60;
spﬂm' (.'"tt'") ;
gke$text (&x, &y, &s_dsc) ;

}

used[loc{ij[1]]floc([0]] = i;

it(i!=0){
(0] = px{ioc(i-1][1]]{loc(i-11{0]) ;
ax[1] = pxfloc(i][1]]{locli}{O]] ;
yy[0] = py(loc(i-1][1]){loc{i-1)[q)] ;
yy(1] = py{lecfi}[1]){loc(i}{O]] ;

/t
gks$polyline (&points, xx, yy) ;
*/
}
}
}
draw_grid (ysize, xsize)
int xsize, ysize ;
{
i points = 5 ;
int nc,
for(r=0;r < ysize;r++) {
for{c =0 ;c < xsize;c++) {
gks$polyline (&points, &ptax[r](c]{0], &ptsy(r][c](0]);
}
}
}
draw_spectra (map, ysize, xsize)
int xsize, ysize ;
float map{20}(20}{16] ;
{
int points = 2 ;
fioat x[2], y[2] :
im r,ci;
for(r=0;r < ysize; r++) {
for{c =0;c<xsize;c++) {
y[0] = ptsy(r][c](3] :
for(i=0:i<15;i++){
x[0] = ptsx[r]{c}[3] + 20 + 20*) ;
x[1] = x[0) ;
y[1] = y{0] + 16.0 * map(r](c](i] :
gks$polyline (&points, x, y) ;
x[0) +=10;
x[1] +=1.0;
gks$polyline (&points, x, y) ;
}
}
}
}

B-84

I.

*

Appendix B: Computer Programe

$ link twomask,options_file/opt

ERBRRAGAENSEERESAAREEARNASREANRREON twomask ¢ CRURAB A AR AR SR T AR RSN ANSS SR AANIAS

Routine to create *.msk file from *.net file. The *.msk file is an
array of integers (mask([20]{20]) corresponding to the nodes of a
* net file. Each integer is the number of weights which are !|= 0.

Since weights represent scalar trajectories of 7S points, short
trajectories are filled with trailing 0's. This obviously allows

for some inaccuracy in determining the trajectory length since
the first node is also represented as a 0. This will be corrected
in |ater versions.

AARRANAEARREAEENRNANATSARED: (R CRARANANIARANCERARREERARSCRARARS

include math
include stdio

int mask[20}{20] ;

float map[20}[20]{225] ; /* output nodes */

double node_dist ;

int xsize, ysize ; /* Size of array */

int number_inputs ;

char training_file[30}, temp_file[30], first_net_file[30] ;
char net_file{30} ;

non_zero (map)

ficat map{20](20)(228) ;

{
int t, C, i, number ;
forr=0:r<ysize;r++) {
for(c =0;c < xsize;c++) {
number = 0 ;
tor (i = 0 ;i < number_inputs ; i+ +) {
printt (“%7.1e . map[r][<](i}) :
it (map]r][c][i] > 5.0e-4)
number+ + ;
}
printf (“\n**** %d ****"\n", number) ;
mask(r}[¢] = number ;
}
}
main ()
printf ("\nTWOMASK (Creates net mask\n\n) ... ") ;
find_mask () ;
}
find_mask ()
{
int rci,
FILE *tnet ;

printt (“Enter name of output Koh net_file [less .net]:) ;
scant (“%s", temp_file) ;

sprintt (net_file, “%s.net", temp_file) ;

sprintf (training_file, “%s.msk", temp_file)

B-85

twomask

Appendix B: Computer Programs

fnet = fopen (net _file, “r") ;
’ fecant (fnet,"%d %d %d", &ysize, &xsize, &number_inputs) ;
for(r=0;r<ysize;r++) {
for (c = 0; c < xsize ; c++) {
for (i = 0; i < number_inputs ; i++) {
fscant (fnet,” %f, &map(ri(c](i]) ;
}
}
}
fclose (fnet) ;
non_zero (map) ;
save_mask () ;
}
save_mask ()
{
FILE *fmask ;
int rc,
fmask = fopen (training_file, “w") ;
for (r=0;r<ysize;r++) {
for(c =0;c < xsize;c++) {
fprintt (fmask, “%d ", mask{r]{c]) :
}
fciose (fmask) ;
}

B-86

twomask

Appendix B: Computer Programs twopict

$ link twopic8,nwinS,lookup6,options_file/opt
I.

RARREAREERARLARNEENEDERNARANRRRRNERAS Mopm ¢ REXAERAAR NS RN RE AR RNARAE AR ARL SR ERAND

This routine identifies (w/o graphics) the node from a second Kohonen
net which is closest in DTW distance to sach of the digits in a
specified set.

in the original version, the trajectory inputs were 75 points long

and scalar (1-225). in this version, the trajectories are 100

points long.

The DTW routine uses mask(] as the node length and length(] for the
input length (i.e. number of trailing points not 0).

EERANEEE RN RN RN D EARNNAAR AR AN RAN AN AN ESARONERARARARAA SN RCAEANS LS

*f
include math
include stdio
include time
float map[20][{20][225] ; /* output nodes */
double input[225] ; /* input nodes */
double node_dist ;
int xsize, ysize ; /* Size of array */
int number_inputs ;
char training_file[30], temp_file[30), first_net_file[30] ;
char net_file[30] ;
extern int num_words ;
int mask([20]{20] :
int map2(20}(20](100}(2] ;
fioat aa = 0.75;
fioat bb =075;
extern int f_xsize, f_ysize ;
extern int length{200] ;
extern int location[2000)[2] ;
mindist (close)
im close[2] .
{ .
int rci,
double dist ;
double distance ;
double minimum = 9.99e31 ;
double pl, p2;

for (r = 0;r < ysize ; r++) {
for(c =0;c<xsize;c++) {
diw (&map2([r}{c][0][0]. location, mask]r}{c].
length{0]. &dist) :
it (dist < minimum) {
minimum = dist ;

close[0] = ¢ ;
close[1] =r;
}
}
}
node_dist = minimum ; _ *

B-87

Appendix B: Computer Programs twopicB
}
main (
{
int [

printt (‘“\nTWOPICS (DTW Words for 0/1 Reduced Queued Tra)..\n") ;
} map_speech () ;

f{ﬂlp_wh 0
int rneijKk;:

cher sub_title{60], temp{30] ;
char name_trj[(20] ;

int loc[2] ;
FILE *net, *flog, *fmask ;
int sound ;
short length ;

printt (\nEnter name of pre-processor Koh net-file [leas .net]. ™) ;
scanf (“%s”, temp) ;
sprintf (first_net_file, “%s.net", temp) ;

printt (“Enter name of header file containing words (less .hdr):) ;
scanf (“%s", temp_file) ;
sprintt (training_file, “%s.hdr”, temp_file) .

printt (“Enter name of output Kobh net_file {less .net]:) ;
scanf ("%s", temp_file) ;

sprintt (net_tile, “%s.net”, temp_fils) ;

sprintf (temp, “%s.msk", temp_file) ;

fnet = fopen (net_file, “r") ;
tscanf (fnet,"%d %d %d", &ysize, &xsize, &number_inputs) ;
for(r=0;r < ysize,;r++) {
for (c =0, ¢ < xsize;c++) {
for (i = 0;i < number_inputs ; i+ +) {
fscanf (fnet,” %f", &map(ri[c]{i]) :
}

fclose (fnet) ;
read_trn_file () ;
fmask = fopen (temp, “r'} ;
for(r=0;r<ysize r++){
for(c = 0;c < xsize ; c++) {
tscant (fmask,"%d", &mask[r}{c]) ;
}

fclose (frmask) ;

flog = fopen (“temp.log”,"w") ;

fprintf (flog, “TWOPICE: %s\n", name_trj) ;

fprimtf (flog, "'-> %s -> %s ->\n", first_net_file, net_file) ;
fprintf (flog, "'Size is %d by %d nodes\n", xsize, ysize) ;

printf (“\nExpect %d calculations.\n", num_words} ;

fprintf (flog, “Expect %d caiculations.\n", num_words) ;
for (sound = 0 ; sound < num_words ; sound+ +) {

B-88

Appendix B: Computer Programs twopics

b getin () ;
mindist {loc) ;
k = loc[0] + loc[1] * xsize ;
printt ("\n%d : [%d,%d] dist = %le ",
sound, loc[0], loc{1], node_dist) ;
print_digit (k) ;
tprintf (flog, '\n%d : [%d,%d] dist = %le ",
sound, loc[0], loc[1], node_dist) ;

f}pfim_digit (k, flog) ;
printf (‘\nCalculations finished.\n") ;
fclose (flog) ;
}
diw (template, utterance, t_length, u_length, ave_dist)
int template{200][2], utterance(200](2] :
in t_length, u_length ;
double *ave_dist ;
{

fioat back_path[2]{200] ;
int b_p[2){200] ;

int fnec,

int ptr. b_ptr ;

float d1, d2, d3, dist ;
dist = 0.0 ;

bptr=1;

b_p[0j(0] = 1;

for(r=1;r<t_length;r++)
b_p(0][r] = b_p[O}{r-1] + 1;
for{r=0;r<tfength;r++){
back_path[0](r] = (dist +=bb * (
abs(utterance[0] (0] - template!r}(0]) +
abs(utterance[0){1] - template{r}[1]))) :
}
for(c = 1;c<u_length;c++) {
it (b_ptr ==0) {
bptr=1;
ptr=0;
}
else {
b ptr=0;
ptr=1;
}
for(r=0;r <1t length;r++) {
dist = abs(utterance(c](0] - template{r}[0]) +
abs(utterance(c]{1] - template(r]{1]) ;
it (r==0){
back_path{ptr](r] = back_path[b_ptr][r] +
(aa * dist) ;
;) _plptrl(r] = b_plb_ptr][r] + 1;

else {
d1 = back_path[b_ptr][r-1] + dist ;
d2 = back_path(ptr](r-1] + (bb * dist) ;
d3 = back_pathjb_ptrj[r] + (aa * dist) ;
it (d2 <= d3 && d2 < d1){
back_path(ptr](r] = d2;
;:.plptr][rl = b_p[ptr}[r-1] + 1

B-89

Appendix B: Computer Programs

olse it (d3 <=d28&d3 < d){
back_pathiptr]{r) = d3 ;
?.PIW)[!) =b_p[b_ptrjlr] + 1;

sios {

back_path(ptr}{r] = d1 ;
;’.P[W]lfl = b_p(b_ptr][r-1] + 1;

}

}
*ave_dist = back_path{ptr][t_length-1} / b_p[ptr}{t_length-1] ;

}
,.

ARBERP AR EARE AN EROACEARRSARNRADEN mins (] RNENRANARCACRASEERRSNRUREARERDONN

This routine supports TWOPICE.C/EXE which finds the node closest
in DTW(mask(].length(]) to a given digit.

Trajectories are 100 (not 75 as in the first version) point scalars
filled with trailing zeros.

ARAAGCE DB ERARENRR G ERNARERARRNNEANRAANNEANN LS ERANANRCENRENCONNEE

*!

include math
inciude stdio
include stat

extern double
extern double

extern int
extern int
extern int
extern int
axtern int
extern char
aextern char

in
int
int
char
int

int

fioat

int

extern int
extern float

read_trn_file ()
{
FILE
int

input{225} ; /* input nodes */
gain ;

closest[2] ; /* closest node */
neigh{2] ; /* neighbor */

xsize, ysize ; /* Size of array */
number_inputs ;

train_discrete ;
training_file{30] ;
first_net_file[30] ;

number_discretes ;
ward_counter ;
num_words ;
word_number[200](15] ;
length(200] ;

f_ysize, t_xsize, f_number_inputs ;
f_map[20]{20}{16] ;
location[2000][2) ;
map2{20][20][100}[2] :
map[20][20)[225] ;

*tf, *fnet ;
i,r, ¢ k, temp ;

#f = fopen (training_file, “r") ;
tscant (1, “%d", &num_words) ;
for (i =0;i < num_words ; i+ +)

B-90

Appendix B: Computer Programe

facant (if, “%a", word_number(i]) ;
fclose (tf) ;
word_courter =0 ;

fnet = fopen (firet_net_file, “r'") ;
fecant (fnet,"%d %d %d", &1_ysize, &f_xsize, &1_number_inputs) ;
for(r=0;r<{fysize;r++){
for{c=0;c<fxsize;c++){
for (i = 0 ;i < f_number_inputs ; i+ +) {
f}acw (tnet,” %f", &_mapir)(c][]) ;

}
fciose (fnet) ;

for (r=0;r < ysize; r++) {
for (¢ =0;c<xsize;c++){
for (i = 0;i < number_inputs ; i+ +) {
temp = (int) (map|r][c}[i] * 226.0 - 1.0) ;
k = temp % f_xsize ;
map2{r][c](i][1] = (temp - k) / f_xsize ;
;ﬂa&lrltcm]lol =k

}
}
}
getin (
{
it (word_counter == num_words)
word_counter = 0 ;
read_word (word_counter) ;
word_counter+ + ;
}
get_md_in {
{
int i
double max_rand = pow (2.0,31.0) - 1.0;
int pointer ;
pointer = floor ((rand() * (num_words - .0001) / max_rand)) ;
read_word (pointer) ;
}
read_word (pointer)
int pointer ;
{
int flag.r. c,i. j k ;
double in{16], d1, d2, d3, d4, d5 ;
float element ;
int loc2(2000] (2], loc3[2000)(2] ;
FILE *fsnd ;
int sound, point, x[5], y{5] .
int max_pts ;
double max ;

fsnd = fopen (word_number[pointer], ‘r") ;
sound =0 ;

B-91

e

b flag =0;
while (flag 1= 1) {

fscanf (fand, “%f”, &element)

if feok(tend) =
flag =1;

else if (i > 90)
flag=1;

else {
in[i] = (double) element ;
i++

}
it (i == 15) && {flag == 0)) {
f_mindist (f_map, in, &loc2(sound][0)) ;
i=0;
sound++ ;

}
}
fclose (fand) ;

for (i = 0;i < sound ;i++) {
loc3[i)[0] = toc2i}{O] ;
n)ocsmm = loc2[i)[1] ;

max_pts = sound ;

... Trajectory Reduction ...

for(i=0;i<j;i++){
location(i}[0) = loc2[i][0] ;
location(i]{1] = loc2{i](1] ;
}

length[0) = j ;

for (i = j;i < 2000;i++)
location{i}[1] = (location[i}(0]) = 0) ;

}
f_mindist ({_map, inp, close)
double inp(16] ;
int close[2] ;
float f_map(20]{20][16] ;
{
int rci;
double dist ;
double minimum = 99999.9 ;
for(r=0;r<f_ysizer++) {
for(c =0;¢c <t xsize ;c++) {
dist = 00 ;
for (i = 0, i < f_number_inputs ; i+ +)
dist += pow (inp[i] - f_map(ri(c]{i], 2.0) ;
it (dist < minimum) {
minimum = dist ;
close[0] =c;
close{1) =r;
}
}
}
}

B-92

Appendix B8: Computer Programs twopicé

,.

..... s mmc AERREEABARASAREDERANNEERNERALOARSERRNAD

This is a look-up table that supports TWOPIC6* . C/EXE. Once
nodes are identified (either with TWOPIC4* or TWOPICS*), those
sasignments are stored in the table below.

*/

include stdio

in look_up[100] = {9.9.9,3,7,7,7,6,6.6,
9.93,33,3,666.6,
9,9,32,3,0,6,6,66,
1,1,1,3,303.6.66,
1,1,1,3,00,04,44,
3.1,93,0,0,00,4,4,
53,33.33,7,04,0,
5523277782,
552233,7488,
5593034388} ;

char digit{11][10] = {"zero",
“one",
“two",
‘three”,
“tour"”,
“five”,
“gix”,
“geven”,
“eight”,
"nine”,
“noise’’} ;

print_digit (node)
int node ;

printt (“%e", digit{look_up{node}]) :
fprint_digit (node, flog)

int node ;

FILE *flog .

fprintf (flog, “%s", digit{look_up([node])) :

B-93

Appendix B: Computer Programs outdet3

$ link outdat3, ntraj3,options_file/opt
/.

* AREERURDENANNEBRNAUNERNCERANRDBERNS Mm c SRR RREARARANRSEARESRENACRRARBARNS

Thie routine creates a set of stored trajectories in the file
path.dat for use in training a second Kohonen net.

Input trajectories are 100 point scalars (1-225) filled with
trailing O's.

SRNECOANENAERRTERRNEANVAELRRESLEARDONFREIRRANRANRASNNANASSENDE

Capt Gary Barmore, 25 Aug 88

*f
include math
inciude stdio
include time
float map({20}(20]{226] : /* output nodes */
double input[225] ; /* input nodes */
int xsize, ysize ; /* Size of array */
int number_inputs ;
char training_file{30], net_file[30], first_net_file[30]
char temp_file(15] ; -
char net_name[15] ;

mindist (map, inp, close)

double inp[225] ;
int closef2] ;
¢ float map([20}{20][225] ;
int r.ci;
double dist ;
double minimum = 9.9e31 ;
for(r=0;r < ysize ; r++) {
for{(c =0.c < xsize;c++) {
dist = 0.0;
for (i = 0 ;i < number_inputs ; i+ +)
dist += pow (inp(i] - map(r](c](i]. 2.0) ;
if (dist < minimum) {
minimum = dist ;
close[0] = ¢ ;
close(1} =r; -
}
}
}
}
userinp ()
int line ;
int c,
struct tm *localtime(), *time ;
inm *bintim ;

do {
printt (*OUTDAT3: Prepare training data, second kohonen... \n\n") ; -

Appendix 8: Computer Programs outdat3

printf (“Enter name of header file containing words (less .hdr): ™) ;
scanf (“%a", temp_file) ;
sprintf (training_file, “%e.hdr", temp_file) ;

number_inputs = 100 ;

printt (“Enter name of pre-processor Kohonen net file [lese .net]:) ;
scant (“%s”, net_name) ;

sprintt (firgt_net_file, “%s.net", net_name) ;

printf(“Enter name of data file to create [less .dat]: ") ;

scant (“%s", net_name) ;

sprintt (net_tile, “%s.dat”, net_name) ;

printf("Ready to begin? (y/n)) . T a

-}

while ((c = getc (stdin)) == "'{|c==n"||c == 1)
} while (=) ;
}
main()
{
extern unsigned _stkien ;
_stklen = 8192 ;
userinp () ; /* Get input valyes */
read_trn_file () ;
printf (\nNet file: %s saved\n", net_file) ;
/t

BEREBANERANAAERRANERARARATRANNRON mraja c ARERENRARR RN RS ARRARNLRRAANNCANRRR

This routine supports OUTDAT3.C/EXE in creating a set of stored
trajectories (path.dat) for training a second Kohonen net.

Trajectories are 100 point scalars (0-225) filled with trailing O's.
AN RN R AR AR AN RO R AN R A AR RN RN R AARA R TR AT A AANACRCARAARRNE NN AN T
G. Barmore25 Aug 88
*/

inciude math
include stdio
include stat
double innput{100][100) /* input vectors */

extern double input{225] ; /* input nodes */
extern double gain ;

extern int closest[2] ; /* closest node */

extern int neigh(2] ; /* neighbor */ -
extern int xsize, ysize ; /* Size of array */

extern int number_inputs ;

extern int train_discrete ;

extern char training_file{30] ;

extern char first_net_file[30] ;

exterin char net_file[30] ;

Appendix B: Computer Programs outdatd
int number_discretee ;
int word_counter ;
int num_words ;
char word_number[100]{15] ;
int f_ysize, f_xsize, {_number_inputs ;
float f_map({20][20][16] ;
read_trn_file (
{
FILE *tf, *fnet ;
im hirc;

tf = fopen (training_file, “r") ;
facant (tt, “%d", &num_words) ;
for i =0;i < num_words ; i+ +)
fscant (tf, “%s", word_numberli]) ;
felose (tf) ;

fnet = fopen (first_net_file, "r") ;
fscanf (fnet,"%d %d %d", &f_ysize, &t xsize, &f_number_inputs) ;
torr=0;r<{ysize;r++) {
for(c=0;c < f xsize;c++) {
for (i = 0 ;i < t_number_inputs ; i+ +) {
tscanf (fnet,” %1, &_map(rj(c]{i]) :
}

fciose (fnet) ;

tnet = fopen (net_file, “w™) ;
tprintt (fnet, "%d\n", num_words) ;
for (i =0;i < num_words ; i+ +) {
read_word (i) ;
for (j = 0 ;) < number_inputs ; j+ +) {
innput(il(j] = input(i] ;
fprintf {fnet, “Y%le\n™, inputj]) :

}
fclose (fnet) ;
}
read_word (pointer)
int pointer ;
{
int flag.r. c, i, j, k:
double in{16}, d1, d2, d3, d4, d5 ;
float element ;
int l0c2[(2000] (2}, loc3{2000](2] ;
FILE *fsnd ;
int sound, point, x[5], y[5] .
int max_pts ; 4
double max ; B %
for (i = 0 ;i < number_inputs ; i+ +)
inputfi) = 0.0;
fsnd = fopen (word_number[pointer], "r") ;
sound = 0 ;
i=0;
flag =0; ﬂ

Appendix B: Computer Programs

while (flag (= 1) {
b fecant (fand, “%f’, &element) ;
it (fecf(fand) 1=0)
flag = 1;
eise if (i > 99)
flag =1;
elge {

infi] = (double) element ;
i++;

}
it ((i == 15) && (flag == 0)) {
f_mindist (f_map, in, &loc2{sound][0}) ;
i=0;
sound+ + ;

}

}
fclose (fsnd) ;
for(i=0;i<sound;i++){
loc3(i] [0} = loc2[i]{0] ;
loc3(ij(1] = loc2{i](1] ;
}

max_pts = sound ;
... Trajectory Reduction ...
for(i=0;i<j;i++){

point = 1 + loc2(i][0] + loc2[ij[1] * f_xsize ;
input(i] = point/ 226.0 ;
}

}
t_mindist (f_map, inp, close)
double inp[16) ;
int close(2] ;
float t_map{20][20](16] ;
{
int nei,
double dist ;
double minimum = 99999.9 ;
for{r=0;r<fysize;r++){
for(c =0.¢c < f xsize;c++) {
dist = 0.0;
for (i = 0;i <t number_inputs ; i+ +)
dist + = pow (inp{i] - f_map(r]{c}][i], 2.0) ;
if (dist < minimum) {
minimum = dist ;
close[0] = ¢ ;
close{1} =r;
}
}
}
}

B-97

Appendix B: Computer Programs

$ link twobas3,nweight11,options_file/opt
,.

ARRBRAARIEERANARARAAEANAIASRRNORON Mob..a c AEERARNAARRAAANCERASANENASAARNRATEREN

These routines train a second Kohonen net to process 100 point

scalar trajectories filled with trailing O's.

initial weights are random. Stored training trajectories are
found in a path.dat file. Conscience is an user supplied variable

in this version.

PARNERARE LSRR RDERALLERANRAANENEDER ARSI RNL S ROANINNNRNENIRGNINRS

*

include math
include stdio
include time

int

int
double
float
double
double
double
double
double
double

int
int
int
int
long
int
int
int
int
int
int
int
int
char

char
char

Capt Gary Barmore, 1 Sep 88

conscience[20][20) ./* records # times closest */
nodes ; /* number of nodes */
consc = 1.1; /* conscience factor */

map[20][20][225] ; /* output nodes */
inpwt[225) ; /* input nodes */

gain, noise ;

mcount ;

percent ;

xoff = 0.0 ;

yoft =0.0;

closest(2] ; /* closest node */

neigh[2] ; /* neighbor */

nrangex, nrangey ; /* neighbor range */
nfactorx, nfactory ; /* neighbor factor */
count ; /* # of iterations */

graph ; /* # between plots */
maxneighx, maxneighy , /* Starting area */
minneighx, minneighy ; /* Final area */
xsize, ysize ; /* Size of array */
number_inputs ;

wrap flag = 0;

train_flag, train_discrete ;

training_file[{30], net_file[30], first_net_file[30] ;
temp_file{15] ;
net_name(15] ;

struct curve {

int type ;
double maxgain ;
double mingain ;
double midgain ;
int midtime ;
} geurve ;

struct fig {
int md_in ;
} flag ;

B-98

o

Appendix B: Computer Programs twobas3

extern int xy[] ; /* array holding x,y */
extern double xdel, ydel ;
extern double xiow, xup, ylow yup ;

extern int tr_length ;
init (map)
map(20](20](225] ;
{
int rnei;
ficat max_rand = pow(2.0,31.0) -1.0;
nodes = ysize * xsize ;
for(r=0;r<ysize;r++) {
for(c =0;¢c < xsize;c++) {
consciencelrj(c] = 0;
for (i = 0 ;i < number_inputs ; i++) {
map(r][c][i] = rand () / max_rand ;
}
}
}
}
mindist (map, inp, close, its)
double inp[225) .
int close(2] ;
fioat map[20](20]{225] ;
long its ;
{
int rci,;
double dist ;
double minimum = 9.99e31 ;
for(r=0:r <ysize r++) {
for{c =0;c < xsize ;c++) {
dist = 0.0;
it (conscience(r}[c] < consc * its / nodes) {
for (i = 0 ;i < number_inputs ; i+ +)
dist + = pow(inpli] - map]r)[c]{i}. 2.0);
if (dist < minimum) {
minimum = dist ;
clos2[0] = ¢ ;
close(1] =r;
}
}
}
censcience[close[1]}(close(0]] += 1
}
userinp ()
int line ;
int ¢
do {

printf (“TWOBAS2: TWO KOHonen net training (output onty}... \m\n™ ;

printt {"Enter conscience factor (> 1.0): [float]) .
scanf (“%t", &consc) ;
it (consc < 1.0)

Appendix B: Computer Programs twobas3

consc = 1.5;

print(“Enter size ‘m n’ (for an m x n) of array = ? [intint] ™) ;
scant(“%d %d", &ysize, &xsize) ;
it (ysize < 2)
ysize = 2 ;
olse if (ysize > 20)
ysize = 20 ;
if (xsize < 2)
® xgize = 2 ;
else if (xsize > 20)
xsize = 20 ;

printf ("Do you want 0) sequential training.\n'") ;
printf (1) randomizod training? ") ;
scanf ("“%d", &flag.rd_in) ;

printf ("Enter name of header file containing words (lees .hdr):) ;
scanf (“%s", temp_file) ;
sprintf (training_file, “%s.hdr", temp_file) ;

train_discrete = 1 ;
number_inputs = 100 ;

printf (“Enter name of pre-processor Kohonen net file [lees .net]: ™) ;
scant ("%s", net_name) ;
sprintt (first_net_file, “%a.net”, net_name) ;

printf(“Enter name of net file to create [less .net]: ") ;
scanf (“%s", net_name) ;
sprintt (net_file, “%s.net", net_name) ;

printf (“Number of iterations = ? {int] ") ;

scanf (“%Id", &count) ;

it (count <= 10 || count > 200000)
count = 100 ;

mcount = (double) count ;

printt (“Number of iterations between status messages = ? [int] ") ;
scanf (“%d", &graph) ;
it (graph < 1 || graph > count)

graph = 10 ;

ingain () ;
printf {(*'Starting size of neighborhoods ‘yn xn' = ? [intint] ") ;

scanf ("%d %d", &maxneighy, &maxneighx) ;
if (maxneighx < 2 || maxneighx > xsize - 1)

maxneighx = 2 ;
if (maxneighy < 2 || maxneighy > ysize - 1)
maxneighy = 2,

printf (“Final size of neighborhoods 'yn xn' = ? {intint]) ;
scanf ("%d %d", &minneighy, &minneighx) ;
it (minneighx < 1 || minneighx > maxneighx)

minneighx = 1 ;
if (minneighy < 1 || minneighy > maxneighy)
minneighy = 1,
printf !ﬂ

Appendix B: Computer Programs twobas3

(“initial seed for random # generator = ? [int]);
scanf (“%d", &seed) ;
it (seed == 0) {

soed = 138 ;

}
srand (seed) ;

wrap flag =0 ;

printf(“Ready to begin? (y/n) ") ;
while ((c = getc (stdin)) =="'" || c ==n" || c ==)

} while (c 1= y) ;

ingain (
{
int line ;

printt(“For gain enter 0) LINEAR, 1) SIGMOIDAL, 2) PIECEWISE LINEAR :);
scanf (“%d", &gcurve.type) ;

if (gcurve.type == 0 || geurve.type == 1) {
printt (“Maximum gain = ? [float] ") ;
scant (“%E", &gcurve.maxgain) ;
it (gcurve.maxgain >= 1.0 || gcurve.maxgain < = 0.0)
gcurve. maxgain = .99 ;

printf (“Minimum gain = ? (float] ™) ;

scanf (“%E", &gcurve.mingain) ;

if (gcurve.mingain <= 0.0 || gcurve.mingain >= 1.0)
gcurve.mingain = 0.0 ;

else {
printf (“First segment starting gain = ? {fioat]) :
scanf ("%E", &gcurve.maxgain) ;
it (gcurve.maxgain >= 1.0 || gcurve.maxgain <= 0.0)
gcurve.maxgain = .99 ;

printf (“Second segment starting gain = ? [float] ") ;

scanf ("%E", &gcurve.midgain) ;

if (gcurve.midgain <= 0.0 || gcur.e.midgain > = 1.0)
gcurve.midgain = 0.0 ;

printf (“Second segment starting iteratior, = ? [float] ") ;

scanf (“%d", &gcurve midtime) ;

it (gcurve.midtime < = 0 || gcurve. midtime > count)
geurve.midtime = count / 2 ;

geurve.mingain = 00 ;
}
}

getgain (i)
long i
{

it (gcurve.type == 0)
gain = (percent * (gcurve maxgain - gcurve.mingain)) +
geurve.mingain ;
eise if (gcurve.type == 1) W

Appendix B: Computer Programs

gain = 0.9 * (gcurve.maxgain - gcurve.mingain) / (1.0 + exp (i -
count/2.0)) +.1;

else {
if (| < geurve.midtime)
gain = gcurve.maxgain * (1.0 - (double) i / gcurve.midtime) ;
else
gain = gcurve.midgain * (1.0 - (double) i / count) ;
}
b }
save_net ()
{
im rei;
FILE *fnet ;
fnet = fopen(net_file,"w") ;
fprintt (fnet,"%d %d %d", ysize, xsize, number_inputs) :
for(r =0;r < ysize; r++) {
for(c =0;c<xsize;c++) {
for (i = 0 i < number_inputs ; i+ +) {
forintf (fnet,” %f", mapir](c}li]) ;
}
}
}
fclose (fnet) ;
}
main()
{
long i,
char 81[10] ;
int ws_id=1;
int clear_fiag = 1;
FILE *tf;

extern ungigned _stklen ;

_stklen = 8192 ;

userinp () ; /* Get input values */
ntactorx = maxneighx - minneighx + 1 ;
nfactory = maxneighy - minneighy + 1;
init (map) ; /* Initialize weights */
read_trn_file () ;

fori=1;i<=count;i++){
i (i % graph == 0) {
printt ("TWOBAS3: gain = %f, yrange = %d, ",
gain, nrangey) ;
printf (“xrange = %d, iteration # %d", nrangex,i) ;
printf (*' (of %id)\n", count) ;
if (access (net_file,0) == 0)
delete (net_file) ;
save_net () ;
}
percent = (mcount - i) / mcount ;
getgain (i) ;
it (flag.rnd_in == 0)
getin () ;
else
get_rnd_in () ;
mindist (map, input, closest, i) ;

B-102

twobas3

Appendix B: Computer Programs twobas3

#t (geurvetype |=2) {
nrangex = minneighx + percent * nfactorx ;
nrangey = minneighy + percent * nfactory ;

}
else if (i < gcurve.midtime) {
nrangex = minneighx + nfacton *
((double) (gcurve.midtime - i)) / gcurve.midtime ;
nrangey = minneighy + nfactory *
((doubls) (gcurve.midtime - i)) / gcurve.midtime ;

else {
nrangex = minneighx ;
nrangey = minneighy ;
}

neigh[0] = nrangex ;

neigh[1] = nrangex ;

weightem (map) ;

}

save_net () ;
printf ("\nNet file: %s saved!\n", net_file) ;
}

/.

HEABA AN ERRARREAANRARANNARANRARS DWClghﬂ‘ c ARANESRRRREANABEANNERBONRERaRNNEE

These routines support TWOBASS3.C/EXE in training a second Kohonen
net with 100 point scalar inputs filled with trailing 0's. it
uses stored training inputs in a path.dat file.

AR RN R E AR EAN AN R AN R A NN RN AR PN RSN R AR AN SN RN I NN ER

G. BARMORE2S AUG 88

*/
include math
include stdio
include stat
double innput[100}{100] /* input vectors */
extarn double input[225) ; /* input nodes */
extern double gain ;
extern int closest[2] ; /* closest node */
extern int neigh{2] ; /* neighbor */
extern int xsize, ysize ; /* Size of array */
extern int number_inputs ;
extern int train_discrete ;
extern char training_file(30] ;
extern char first_net_file[30] ;
int number_discretes ;
int . word_counter ;
int num_words ;
char word_number[100][15] .
int f_ysize, {_xsize, f_number_inputs ;
fioat t_map(20][20][16] ;
read_trn_file ()
{
FILE *tf, *fnet ; ﬂ

B-103

Appendix B: Computer Programs

int hi,ne;

tf = fopen (training_file, "r") ;
fscant (tf, “%d", &num_words) ;
for (i =0;i < num_words ; i++)
fscant (tf, “%s", word_numberli)) ;
fclose (tf) ;

tnet = fopen (first_net_file, “r") ;
fscant (fnet,"%d %d %d", &f_ysize, &f_xsize, &f_number_inputs) ;
for(r=0;r<{_ysize;r++) {
for{c =0;c<fxsize;ct++){
for (i=0;i<f number_inputs ; i+ +) {
fscant (fnet,” %!, &f_mapirl(c]{i}) ;
}

}
fciose (fnet) ;

fnet = fopen {“path.dat”, “r") ;
fscant (tnet, “%d", &num_words) ;
for (i =0;i < num_words ; i+ +) {
for (= 0; j < number_inputs ; |+ +)
fscanf (fnet, “%le", &innput(i]fi]) ;

}
fclose (fnet) ;
word_counter = 0 ;
}
getin
{
int i
it (word_counter == num_words)
word_counter = G ;
for § = 0 ;j < number_inputs ; j++)
input(j] = innput{word_counter](j] ;
word_counter+ + ;
}
get_rnd_in (
{
int Lis
doubie max_rand = pow (2.0, 31.0)- 1.0;
int pointer ;
pointer = floor ({rand() * (num_words - .0001) / max_rand)) ;
for j = 0; j < number_inputs ; j+ +)
inputfj] = innput{word_counter](j] ;
}
weightem (map)
float map[20]{20}[225) ;
{
int nright, nleft, nup, ndown, r, ¢, i ;

it (neigh[0] > O && neigh{1] > 0) {
nright = closast[0} + neigh[0] - 1 ;
it (nright > = xsize)
nright = xsize - 1;

B-104

twobasd

Appendix B: Computer Programs twobas3

nieft = closest[0] - neigh[0] + 1;
it (nleft < 0}
nieft =0 ;
nup = closest{1] - neigh[1] + 1;
it (nup < Q)
nup =0;
ndown = closest{1] + neigh(1] - 1:
it (ndown > = ysize)
ndown = ysize - 1 ;
}

nright = closest(0] ;
nieft = closest[0) ;
nup = closest(1] ;
ndown = closest[1] ;
}

for {r = nup; r <= ndown ; r++) {
for (¢ = nleft; ¢ <= nright; c++) {
for (i = 0 ;i < number_inputs ; i+ +)
mapir](c]li] += gain * (inputli] - map[r{c](i}) :

}
}
read_word (pointer)
int pointer ;
{
int flag.r.c, i, j k;

double in{16], d1, d2, d3, d4, d5 ;
float element ;

int l0c2(2000j(2), loc3{2000][2] ;
FILE *fsnd ;

int sound, point, x[8], y{5] ;

int max_pts ;

double max ;

for (i = 0.i < number_inputs ; i+ +)

input[i}] = 0.0;
fsnd = fopen (word_number[pointer], “r") ;
sound =0 ;
i=0;
flag =0

while (flag !'= 1) {
fscanf (fsnd, “%f", &element) ;
it (feof(fsnd) !=Q)

flag = 1;
else if (i > 99)
flag = 1;

else {
in[i) = (double) slement ;
it+;

}
if ((i == 15) && (flag == 0}) {
f_mindist ({_map, in, &loc2{sound][0]) ;
i=0;
sound++ ;

}

B-105

m

]
Appendix B: Computer Programs twobas3
fciose (fend) ;
} for (i=0;i<sound;i++) {

loc3(i]{0] = foc2(i]{0] ;
'}003[0[1) = loc2fi][1) ;

max_pts = sound ;

... Trajectory Reduction ...

for(i=0;i<j;i++){
point = 1 + loc2(i}(0] + loc2(i][1] * t_xsize ;
input[i] = point / 2260 ;
}

}
f_mindist (f_map, inp, ciose)
double inp[16] ;
int close[2] ;
float f_map{20][20]{16] ;
{
im rci;
double dist ;
double minimum = 9.99e31 ;
for(r=0;r<f_ysize;r++) {
for(c =0;c < f xsize,c++) {
dist = 0.0;
tor (i = 0.i < f_number_inputs ; i+ +)
dist += pow (inp(i] - f_map(r][c](i], 2.0} ;
it (dist < minimum) {
minimum = dist ;
close[0] = c;
close[1] =r;
}
}
}
}

B-106

Appendix B: Computer Programe twopic4b

$ link twopic4b,npiot,nprinter,mat3,nweight 12 options_file/opt
/.

ARRAEACNRSRANANARNIRARANRRARERERS W“b c SARRRAERAENAERDAAARAEAREAREROREGCAR

This routine is used to show graphically those nodes which ‘light
up' using Euclidean distance when the training set of inputs is
applied to a second Kohonen net.

Inputs are 100 point scalar (1-225) trajectories filled with
trailing O's.

SEAERNRNE NN ANREN AR E AR CARDENRASARAENARNNEOURENAERNEARNSRES

*/
include math
include stdio
include time
fioat map{20]{20}[225] ; /* output nodes */
double input[225] ; /* input nodes */
double gain, noise ;
double mcount ;
double percent ;
double xoff = 0.0 ;
double yoft = 0.0 ;
double node_dist ;
int closest{2] ; /* closest node */
int neigh{2] ; /* neighbor */
int nrangex, nrangey ; /* neighbor range */
int nfactorx, nfactory ; /* neighbor tactor */
long count ; /* # of iterations */
im graph ; /* # between plots */
int seed ;
int maxneighx, maxneighy ; /* Starting area */
im minneighx, minneighy ; /* Finai area */
im xsize, ysize ; /* Size of array */
int number_inputs ;
int wrap_flag = 0 ;
int train_flag, train_discrete ;
char training_file[30), temp_tile[30], first_net_file{30] ;
char net_tile[30] ;
struct curve {
int type .
double maxgain ;
double mingain ;
double midgain ;
int midtime ;
} geurve ;
extern int xy[] ; /* array holding x.y */
extern double xdel, ydel ;
extern double xlow, xup, ylow, yup .
extern int num_words ;
extern char word_number{100][15] ;
mindist (map, inp, ciose)
doubie inp(225] ;
int closef2] ;
float map(20}(20](225} ; dﬂ

B-107

Appendix B: Computer Programs twopic4b

{ .
int rnei;
double dist ;
double minimum = 9.99e31 ;
for(r=0.r < ysize; r++) {
for(c =0;¢ < xsize ; c++) {
dist = 00;
for (i = 0;i < number_inputs ; i+ +)
dist += pow (inp(i] - map{r](c](i]. 2.0)
if (dist < minimum) {
minimum = dist ;
cloee[0} = ¢ ;
close{1] =r;
}
}
}
node_dist = minimum ;
}
main 0 s
{
int c;
printt (“\nTWOPIC4b (Plot Words tor 0/1 Reduced Queued Traj)..\n"} ;
map_speech () ;
}
map_speech ()
{
int r.cijk,;

char sub_title[60], temp(30] ;
char name_trj(20] ;

int loc[125)[2] ;
FILE *tnet, *fiog ;
int sound ;
short length ;

printf (“\nEnter name of pre-processor Koh net-file [less .net}: ") ;
scanf (“%s", temp) ;
sprintf (first_net_file, “%s.net”, temp) ;

printf (“Enter name of header file containing words (less .hdr): ") ;
scant ("%s", temp_file) ;
sprintf (training_file, “%s.hdr", temp_file) ;

printf (“Enter name of output Koh net_file {less .net]:) ;
scanf ("%s", temp_file) ;
sprintt (net_file, “%s.net”, temp_file) ;

read_trn_file () .

fnet = fopen (net_file, “r") ;
fscanf (fnet,"%d %d %d", &ysize, &xsize, &number_inputs) ;
for(r=0,r<ysize;r++){
for(c =0;c<xsize.c++) {
for (i = 0 ;i < number_inputs ; i+ +) {
fscant (fnet,” %f", &map(r](c][i]) :
}

B-108

Appendix B: Computer Programs twopicdb

}
fclose (fnet) ;

sprintf (sub_titie, “%s -> %s ->", first_net_file, net_file) ;
sprintt (name_trj, “%e.trj", temp) ;

flog = fopen (“temp.log","W™) ;
fprintf (flog, “TWOPIC4b: %s”, name_trj) ;

graph_teet (training_file) ;
length = (short) strien (2ub_title) ;
draw_grid2 (ysize, xsize, sub_title, iangth) ;

printf (*\nExpect %d calculaticiis.\n", num_words) ;
for (sound = 0 ; sound < num_words ; sound+ +) {
getin () ;
mindist (map, input, &loc{sound](0}) :
printt (“%d : [%d,%d] dist = %le\n",
sound, loc[sound]{0], loc[sound][1], node_dist) ;
tprintf (flog, ‘%d : [%d,%d] dist = %le\n",
sound, loc[sound](0]. loc[sound][1], node_dist) ;

}
printt (“\nCaiculations finished.\n") ;
fclose (flog) ;
draw_speech_map (sound, loc) ;
scanf (“%s" temp) ;
clipoft () ,
, graphotff (;

graph_test (name)
char name(30] .
{

char title[79), labeix[79) ;
fioat xloc[S] = {0, 639.0, 639.0, 0.0, 0.0} ;
flost yloc[S] = {349.0, 349.0,0.0, 0.0, 349.0} ;

im points = 5 ;

int ws_id=1;

int clear_flag = 1

short length ;

sprintf(titie,” TWOPIC4b: Kohonen TWO NETS -- %s", name) ;
sprintf(labelx,” ") ;

graphon () ;

gks$clear_ws (&ws_id, &clear_flag) .
ghks$polyline (&points, xloc, yloc) ;
prepcolmat (ysize, xsize) ;
fength = (short) strien (titie) ;
outtitle (title, length) ;
length = (short) strien (labebx) ;
outlabelx {labelx, length) ;
clipon () ;

}

I.

AARRANNAAN SRR A SRR AR NS RASNEERNEN mas ¢ AARAEERAANERRREREARNERRASAREOINIDLNNED

These routines support graphics operations in showing which node in
a second Kohonen net lights up when the training set of trajectories
is applied.

B-109

Appendix B: Computer Programs

Trajectories are 100 point scalars with trailing O's.
-
!

include stdio
include math
include <gkedefs.h>
include <deecrip.h>

define BLACKD
define WHITE?Y

flost ptsx[20](20](S], ptsy(20](20](S] ;
flost px{20]{20], py[20}{20] ;
int used[20](20] ;
im colmat{20]{20] ;
int pattern{16]=
{0, -15,-15, -12,-12, -11,-11, -1,-1, -2,-2, 4,4, 5,5, 1} ;

prepcoimat (ysize, xsize)

int xsize ;
int ysize ;
{
int r, ¢, xstart, ystart ;
int dx, dy ;
dx = fioor (550.0 / xsize) ;
dy = floor (276.0 / ysize) ;
xstart = 280 - dx * xsize / 2 ;
ystart = 148 + dy *ysize /2 ;
for(c =0;c < xsize;c++) {
for(r=0;r<ysize;r++){
ptsx[r){c][4] = (ptax(r][c](3) = (ptsx[r][c][0] =
xstart + ¢ * dx)) ;
ptax[rlic](2] = (ptsx(r](c](1] = ptax[r][c] (0] +dx- 1) :
ptsy(r](c](4] = (ptsy(r](c](1] = (ptsy[r]{c](O] =
ystart -r * dy)) ;
ptsy(r](c]{3] = (ptsylrl(c}{2] = ptsylr]{c]{O] -dy+ 1) .
px(rl[c] = ptsx[r]){c]{0] + 8.0,
;w(rl[d = ptey[r]{c](0] - 8.0,
for(r=0;r<20;r++) {
for{c =0,¢c<20;c++){
used{r](c] =0
}
}
}
showem ()
{
int i;
float rectx{16][6], recty[16][6] :
int points = 5 ;

for(i=1;i<16;i++){

B-110

twopic4b

m

- -

Appendix B: Computer Programs twopicdb
rectx[i)[4] = (rectx[i}[3) = (rectx[i}[0] = 173 + 16 *) ;
rectx[i][2] = (rectx{i][1] = (rectx(i][0] + 15)) ;

recty(il{4] = (recty(i]{1] = (recty[i}{0] = 30)) .
recty[i)[3] = (rectyfi)f2] = 23) ;

setfilistyle (patternfi], i) ;

gks$fill_area (&points, &rectx(i][0), &recty(i}[0]) ;
}
}
setfilistyle (pattern, pointer)
int pattern ;
int pointer ;
{
im style = 3 ; /* hatch */
inm color[16] = {0,7,7,33,55,44,4,66,22, 1} ;
if (pattern >= 0) {
ghks$set_fill_int_style (&pattern) .
}
else {
gks$set_fill_style_index (&pattern) ;
gks$set_fill_int_style (&style) ;
}
}
draw_net (number, loc)
in number, loc[64](2] ;
{
int i, old_value ;
int white = 0 ;
int black = 1;
float Xy,
char s[4} ;
$DESCRIPTOR(s_dsc,s) ;
for (i=0;i < number ;i++) {
x = ptsx[iocfi}[1)]{loc[i][0)][0) + 4.0;
y = ptsy[loc[i]{1]][loc{i](01){0] - 4.0 ;
old_value = used[loc[i][1]]{loc[i]{0]]
gks$set_text_color_index (&white) ;
sprintf (s,"%3d"-old_value) ;
gks$text (&x, &y, &s_dsc) ;
sprintf (s,"%3d",i+1) ;
gks$set_text_color_index (&black) ;
gks$text (&x, &y, &s_dsc) ;
if ((i+1!= old_value) && (old_value ! = 0)) {
y-=60;
sprintf (s,”***") ;
gks$text (8&x, &y, &s_dsc) ;
}
used(loc[i][1]]{locli){0]] = i+1;
}
}

draw_neighbors (number, loc)

B-111

al. _a]

ol

Appendix B: Computer Programs twopic4b
L int number, loc{64}[2] ;
{
int i, old_value ;
int white = 0 ;
int black = 1;
float XY;
char s(4] ;
$DESCRIPTOR(s_dsc,s) ;
for(i=0;i<1;i++){
x = ptsx{locfi]{1]][loc[i] [0}][0]) + 4.0 ;
y = ptsy[loc(il{1]](loc[i}[01](0] - 4.0 ;
old_value = used(loc(i][1]]{loc[i}{0]]
gks$set_text_color_index (&white) ;
sprintf (8,"%3d", old_value) ;
gks$text (8x, &y, &s_dsc) |
sprintt (8,"%3d", (number+1)) ;
gks$set_text_color_index (&black) ;
gks$text (&x, &y, &s_dsc) |
if {(number+1 != old_value) && (old_value != 0)) {
y-=6.0;
sprintf (8,"***") ;
gks$text (&x, &y, &s_dsc) ;
}
used{loc(il{1]}[locli}(0]] = number+1 ;
}
}
draw_speech_map (number, loc)
int number, loc[125]{2] ;
{
int i, old_value ;
in white = 0 ;
int black = 1
float x, v, xx[2], yy{2] ;
int points = 2 ;
char s[4] ;

$DESCRIPTOR(s_dsc.s) ;

for (i = 0;i < number ;i++) {
x = ptsx[loc[i]{1]])(loc{i] (0]){0] + 4.0.
y = ptsy[loc[i}{1}}lloc(i}{0]}[0] - 4.0 ;
old_value = used[loc[i){1]][loc[i}[O]]

gks$set_text_color_index (&white)
sprintf (s,"%3d", old_value) ;
gks$text (&x, &y, &s_dsc) ;

gks$set_text_color_index (&black) ;
sprintf (8,"%3d", i+1) ;
gks$text (8x, &y, &s_dsc) ;

if ((i+1!= old_vaiue) && (old_value != 0)) {
y-=60;
sprintf (s,"***") ;
gks$text (&x, 8y, &s_dsc) ;
}

B-112

Appendix B: Computer Programe twopic4b

used(loc(ij{1]]{loci}{O]] = i+1:

Ho'=0(
xx[0] = pxflocli-1}{1]}(loc(i-1]{0]] ;
(1] = pfloc(il{1]]{locti} (0]} ;
yy[0] = py(loc{i-1)[1]}lloc{i-1}{0]] :
yy[1] = pylloclii{1]]{lec(i] (0] :

,C
o gke$polyline (&points, xx, yy) ;
}
}
}
draw_grid (ysize, xsize)
int xsize, ysize ;
{
int points = § ;
i f.c;
for(r=0;r<ysize r++){
for(c =0;c < xsize ; c++) {
?ksspdvlim (&points, &ptax[r][c]{O]. &ptsy(r](c](O]):
}
}
draw_spectra (map, ysize, xsize)
int xsize, ysize ;
float map[20)[20]{16] ;
int points = 2 ;
fioat x[2]. y{2]
int r¢i;
for(r=0;r<ysize;r++) {
for(c =0;c < xsize . c++) {
y{0] = ptsy(ri(c][3] :
for(i=0;i<15;i++){
x[0} = ptex[r]{c]{3] + 20 + 20 *i);
x{1} = x{0] ;
(1] = y[0) + 16.0 * map(r]{c]{i] ;
gks$polyline (&points, x, y) ;
x[0] +=1.0;
x[1) +=10;
gks$polyline (&points, x, y) ;
}
}
}
}
draw_grid2 (ysize, xsize, sub_title, length)
int xsize, ysize ;
char sub_title{30] ;
short length ;
{
im points = 5 ;
im rne,

float xloc, yloc ;
struct dsc$descriptor title_dec = { length,
DSC$K_DTYPE_T,

Appendix B: Computer Programs

}

DSCS$K_CLASS_S,
sub_title } ;

for (r =0;r<ysize; r++) {
for(c=0;c<xsize;c++){

?knspo'ylim (&points, &ptax{r}{c]{0]. &ptey[r}{c]{O));

}
xloc = 277.0 - 3.0 * length ;
yloc = 20;
gks$text (&xioc, &yloc, &title_dsc) ;

statusem (gain, nrangey, nrangex, its)

double gain ;
i nrangey, nrangex ;
long ite;

{
float xloc, yloc ;
char 8(60] ;
SDESCRIPTOR(s_dsc.s) ;
sprintf (s,
“Gain = %4.21 Neighbors = %2d,%2d Rteration # %5id",
gain, nrangey, nrangex, its) ;
xioc = 760 ;
yloc =20,
gks$text (&xloc, &yloc, &s_dsc) ;
}
colorem (ysize, xsize)
int xsize, ysize ;
{
int r, ¢, color ;
im points = 5 ;
for(r=0;r<ysize;r +){
for{c =0; ¢ < xsize ; c++) {
color = coimat|r}[c} ;
setfilistyle (pattern{color}, color) ;
gks$fill_area(&points, &ptsx(r}{c](0]. &ptsy[r](c}{O));
}
}
}
pickcolors ()
{
retum ;
}
,Q

RERAANRRARE RN LR EENANASRAINERNANS nw’.gm12c CENERRRANSRASRRATRANAORNRAROANRRAGS

These routines support TWOPIC4B.C/EXE in showing which nodes of
a Kohonen net light up when the training set of trajectories is
applied.

Trajectories are 100 point scalar (1-225) inputs filied with

trailing O's.

AR ARNE R RS RN RARNERERNER LR ENR AR AR PR AN ANAREREACRARRARNAICRRASASRNAES

B-114

Appendix 8: Computer Programs

¢/
include math
include stdia
include stat
extern double input[225]) ; /* input nodes */
extern double gein ;
extern int closest[2] ; /* closest node */
extern int neigh[2] ; /* neighbor */
extem int xsize. ysize ; /* Size of array */
extern int number_inputs ;
extern im train_discrete ;
extern char training_file(30] ;
extern char first_net_file[30] ;
int number_discretes ;
it word_counter ;
int num_words ;
char word_number[100}[15] ;
im {_ysize, t_xsize, f_number_inputs ;
fioat t_mapi{20j[20}{186) ;
read_trn_file ()
{
FILE *ff, *fnet ;
int i,re.
tf = fopen (training_file, "'r") ;
tscant (if, “%d", &num_words) ;
for (i = 0;i < num_words ; i+ +)
fscanf (f, “%s", word_numberfi]) ;
fclose (tf) ;
word_counter = 0 ;
fnet = fopen (first_net_file, “r') ;
fscanf (tnet,"%d %d %d", &f_ysize, &f_xsize, &f_number_inputs) ;
tor(r=0;r<t_ysize;r++) {
for(c =0;c<fxsize;c++){
for (i = 0 ;i < f_number_inputs ; i+ +) {
fscant (fnet,” %f", &f_maplr]{c]li]) :
}
}
}
fciose (fnet) ;
}
getin 0
{
it (word_counter == num_words)
word_counter =0 ;
read_word (word_counter) ;
word_counter+ + |
}
get_md_in
{

int

Appendix 8: Computer Programs twopic4b
double max_rand = pow (2.0, 31.0) - 1.0;
n pointer ;

pointer = floor ((rand() * (num_words - .0001) / max_rand)) ;
read_word (poiner) ;

}
weightem (map)
(float map(20](20}{225] ;
int nright, nieft, nup, ndown, r, c, i
if (neigh({0] > 0 && neigh(1] > 0) {
nright = closest[0] + neigh[0] - 1 ;
if (nright > = xsize)
nright = xsize - 1 ;
nieft = closest[0] - neigh{0] + 1 ;
it (nieft < Q)
nieft =0 ;
nup = closest{1] - neigh{1] + 1
it (nup < 0)
nup=0,;
ndown = closest[1] + neigh[1] - 1;
it (ndown > = ysize)
ndown = ysize - 1 ;
}
else {
nright = closest[0) ;
nleft = closest{0] ;
nup = closest[1) ;
ndown = closest[1] ;
}
tor {r = nup; r <= ndown ; r++) {
for (c = nleft ; ¢ <= nright ; c++) {
for (i = 0 ;i < number_inputs ; i+ +)
map(r(c}[i] += gain * (input(i] - map(r][c][i]) :
}
}
read_word (pointer)
int pointer ;
{
int flag.r, c. i, j. k;
double in[16], d1, d2, d3, d4, d5 ;
fioat element ;
int loc2{2000](2], loc3{2000}{2] ;
FILE *isnd ;
int sound, poirt, x{5), y[5] ;
int max_pts ;
double max ;
for (i = 0 ;i < number_inputs ; i+ +)
inputfi} = 0.0;
fsnd = fopen (word_number|[poirnter}, "r") ;
sound =0,
i=0;
flag = 0;

B-116

olse it (i > 909)
flag =1,

olee {
in{i} = (double) siement ;
i++;

}
it (1 == 15) && (flag == 0)) {
f_mindist (f_map, in, &loc2[sound][0)) ;
i=0;
sound+ + ;

}
}
fclose (fand) ;

for(i=0;i<sound;i++){
loc3[i][0] = loc2(i][0) ;
loc3[il{1] = loc2(il{1] :

}
max_pts = sound ;
... Trajectory Reduction ...
for(i=0;i<j;i++)

point = 1 + loc2[i][0] + loc2(i][1] * ¢ xaize ;
input]i] = point / 226.0 ;
}

}
t_mindist ({_ map, inp, close)
double inp[16] ;
im close[2] ;
float t_map[20][20][16] ;
{
int [-
double dist ;
double minimum = 99999.9 ;
for(r=0;r<{ ysize;r++){
for(c =0;c < f xsize ;c++) {
dist = 0.0;
for (i =0:i < f number_inputs ; i+ +)
dist + = pow (inp[i} - f_map(r}{c}{i]. 2.0) ;
if (dist < minimum) {
minimum = dist ;
close{0] =c¢;
close(t] =r;
}
}
}
}

B-117

Appendix B: Computer Programe

$ link twopic8,nwing, options_file/opt
/.

-----] tetsgean m c SABREAREENRCEAARNER AR EDACELSECRREN

These routines find the closest digit, from a specified (usually non-
training) set of digits, to each node in a second Kohonen net.

This is used to identify nodes for later use of the net in recognizing
unknown digits.

inputs to the net are 100 point scalar (1-225) trajectovies filled
with trailing O's.

The ‘closest’ process uses DTW(mask[] length{]) distance.

BERRRN RS CARRANSCARNRANRERAAREA RO ANENNRRRRARNRONPEERANNACROONRAED

*
include math
include stdio
include time
float map[20]{20][225]) ; /* output nodes */
double input[225] ; /* input nodes */
double node_diet ;
int closest{2] ; /* closest node */
int xsize, ysize ; /* Size of array */
int number_inputs ;
char training_tile[30], temp_tile[30], first_net_file[30] ;
char net_file[30) ;
extern int num_words ;
int mask[20]{20] ;
int map2[20][20}(100){2] :
float aa = 0.75;
fiost bb =075;
extern int f_xsize, f_ysize ;
extern int location(2000](2] .
it innput{200]{100}(2] ;
extern int length{200] ;
axtern char word_number{200}){15] ;
mindist (r, c, close)
int rc,
int *close ;
{
int sound ;
double dist ;
double minimum = 9.99e31 ;
for (sound = 0 ; sound < num_words ; sound + +) {
dtw (&map2(r](c][(0]{0]. &innput{sound]{0}(0}, mask(r]{c],
length{sound], &dist) ;
if (dist < minimum) {
minimum = dist ;
*close = sound ;
}
}
node_dist = minimum ;
}

B-118

twopic8

printt ("\nTWOPICS (Gives closest word for each node: 100 wis)...\n") ;

map_speech () ;
r{rnp_spuch 0
int rcijk;
char name_trj[(30], temp[30] ;
int ;

FILE *tnet, *flog, *fmask :

printf (“\nEnter name of pre-processor Koh net-file [less .net]: ") ;
scanf (“%s”, temp) ;
sprintf (firat_net_file, “%s.net”, temp) ;

printf (“Enter name of header file containing words (less .hdr): ") ;
scanf (“%s", temp_tile) ;
sprintf (training_file, “%s.hdr", temp_file) ;

printt (“Enter name of output Koh net_file [less .net):) ;
scanf (“%s", temp _file) ;

sprintf (net_file, “%s.net", temp_fiie) :

sprintf (temp, “%s.mak”, temp_file) ;

fnet = fopen (net_fite, "r") ;
fscant (fnet,"%d %d %d", &ysize, 8xsize, &number_inputs) ;
for(r=0;r<ysize;r++){
for (¢ = 0;c < xsize; c++) {
for (i = 0 ;i < number_inputs ; i+ +) {
tscant (fnet,” %f", &maplri[c](i]) ;
}

fclose (fnet) ;
read_trn_file () ;

fmask = fopen (temp, "¢’} ;
for(r=0;r<ysize r++){
for{c =0,;c < xsize ;c++) {
fscant (fmask,"%d", &mask(r]{c]) :
}

}
fclose (fmask) ;

flog = fopen (“temp.log","w") ;

fprintt (flog, “TWOPIC8: %s\n", name_trj) ;

fprintt (flog, '-> %8 -> %s ->\n", first_net_file, net_file) ;
fprintf (flog, “Size is %d by %d nodes\n", xsize, ysize) ;

printt ("\nExpect %d calculations.\n", num_words) ;
forintt (flog, “Expect %d calculations.\n", num_words) ;
printf (‘"\nReading word: ") ;
for (r =0, r < num_words ; r++) {

printt (“%d ", 1) ;

B-119

j Appendix B: Computer Programs twopic8
getin 0 ;
for (¢ = 0. ¢ < number_inputs ; c++) {

) innput{r}[c}[0] = locationfc][O)

i)ﬂﬂPUl['llClUl = location([c][1] ;

}
printf ('\n") ;
for{r=0;r<ysize;r++){
for (¢ = 0. c < xsize; c++) {
mindist (r, c, &loc) ;
k =¢ + r* xsize ;
printt ("\nNode %3d : word # %3d, dist = %le “,
k, loc, node_dist) ;
printt (“(%s)", word_number{ioc]) ;
fprintf (flog, “\nNode %3d : word # %3d, dist = %ie ",
k, loc, node_dist) ; -
fprintt (flog, “(%s)", word_number[loc)) ;
}

}
printt ("\nCaiculations finished.\n") ;
fclose (flog) ;

dtw (template, utterance, t_length, u_length, ave_dist)
inm template{200](2], utterance(200]{2] ;
int t_length, u_length ;
double *ave_dist ;

float back_path{2][200] ;
int b_pl2}{200] :

int re,;

int ptr, b_ptr ;

float dt, d2, d3, dist ;
dist = 0.0 ;

b ptr=1;

b_p(o}{0] = 1;

for(r=1;r<tlength;r++)
b_p{O}[r] = b_p{Q](r-1] + 1
for(r=0;r <t length;r++) {
back_path{0}[r} = (dist + = bb * {
abs(utterance[0][0] - template(r]{0)]) +
abs(utterance{0][1] - template{r]{1]))) ;

for{c = 1;¢c < u_length;c++) {

if (b_ptr ==0) { -
bptr=1;
ptr=0;
}
else {
b ptr=0:
ptr=1;

for(r=0,r<t_length;r++)
dist = abs(utterance(c][0] - template[r][0]) +
abs(utterance[c][1] - template(r](1]) ;
#(r==0)
back_path(ptr]{r] = back_path[b_ptr}[r] +
(aa * dist) ;
b_plptr](r) = b_p{b_ptr](r] + 1;

Appendix B: Computer Programs twopic8

}

d1 = back_path{b_ptr]{r-1] + dist ;

d2 = back_path[ptr][r-1] + (bb * dist) ;

d3 = back_path[b_ptr][r] + (aa * dist) ;

it (d2 <= d3 &8 d2 < d1){
back_path{ptr]{r] = d2;
I;.P[mrllr) = b_plptr}{r-1] + 1;

olse if (d3 <= d2 8& d3 < d1) {
back_path(ptrj[r] = d3 ;
;:_p(mrurx =b_p[b_ptrllr] +1;

eloe {

olse {
back_path{ptr](r] = d1;
;Lp(ptrl(fl = b_p[b_ptr}{r-1] + 1; - 4

}
}
*ave_dist = back_path{ptr][t_length-1] / b_p[ptr][t_length-1} ;

SRSV LPRAARNREAASARNAEAAARNSINAARNAD nwirﬁ ¢ (f2 2222 2222722222 222 Y2222 2272])

These routines support TWOPIC8.C/EXE in finding the closest digit
to each node in a second Kohonen net.

Inputs are 100 point scalar (1-225) trajectories filled with
trailing O's.

The distance routine in DTW(mask[} iength{]).
AANEAE AR R AN E R A SRS T RN N PR R A S PR R R RPN AR N R PR RSN AN RN R AANLINN S
G. Barmore25 Aug 88
*

include math
include stdio)
include stat

extern double input{225] ; /* input nodes */
extern double gain ;

extern int closest[2] ; /* closest node */

extern int neigh[2] ; /* neighbor */ -
extern int xsize, ysize ; /* Size of array */

extern int number_inputs ;

extern int train_discrete ;

extern char training_file[30}] ;

extern char first_net_file(30]

int number_discretes ; -
int word_counter ;

int num_words ;

char word_number{200](15] ;

int length(200] ;

im f_ysize, f_xsize, {_number_inputs ;

float f_map{20)[20}[16] ;

Appendix B: Computer Programs

int location(2000}{2] :

extem int map2(20](20}(100]{2]

extiem flost map[20][20](225] .
read_trn_file (

FILE *f, *fnet ;

i ir,c k temp ;

tf = fopen (training_file, “r'") ;
fscant (if, “%d", &num_words) ;
for (i=0;i< num_words ; i+ +)
tecant (if, “%s", word_numberl(i]) ;
fclose (1) :
word_counter = 0 ;

fnet = fopen (first_net_file, “r'") ;
fscanf (fnet,"%d %d %d", &f_ysize, &! xsize, & number_inputs)
for(r=0;r<f_ysize ;r++) {
for(c=0;c <t xsize;c++){
for (i = 0 i < {_number_inputs ; i++) {
facanf (tnet,” %t", &f_map{r]{c]{i]) :
}

}
fcloge (fnet) ;
for(r=0;r < ysize;r++) {

tor{c =0;¢c < xpize ;c++) {
for (i = 0. i < number_inputs : i+ +) {

temp = (int) (mapfr][c](i] * 226.0 - 1.0) ;

k = temp % f_xsize ;
map2{r}{c}{i}[1] = (temp - k) / t_xsize ;
map2[r)[c][i}[0} = k.

}
}
}
}
getin
{
if (word_counter == num_words)
word_counter = 0 ;
read_word (word_counter) ;
word_counter + + ,
}
get_rnd_in
{
int i
double max_rand = pow (2.0,31.0)-10;
int pointer ;
pointer = floor ({rand() * (num_words - .0001) / max_rand)) .
read_word {pointer) ;
}
read_word (pointer)
in pointer ;
{

B-122

Appendix B: Computer Programs

i flag.r,c i j k;
double in[186), 81, d2, d3, d4, d5 ;
flost slement ;
im loc2{2000}{2}, loc3({2000)(2] ;
FLE *fand ;
int sound, point, x[5), y|5]
int max_pts ;
doubile max ;
fsnd = fopen (word_number[pointer], “r') ;
sound =0 ;
i=0,
flag =0,
while (flag '= 1) {
fscanf (fsnd, "“%f", &element) ;
i (feof(fend) 1=0)
flag =1
eise it (i > 99)
flag = 1,
oise {

in[i} = (double) element
i++,

}
#t (i == 15) && (flag == 0)) {
{_mindist (f_map, in, &loc2[sound}{0]) ;
i=0;
sound++ ;

}
}
tclose (fsnd) ;

for(i=0;i<sound;i++){
loc3(i}{0] = loc2{i}){0] :
loc3(i]{1] = loc2(il{1} ;
}

max_pts = sound ;
... Trajectory Reduction ...

for(i=0:i<j;i++){
location(i] (0] = loc2(i](0] :
location{ij(1] = loc2{i](1] ;
}

length{poiner] = j ;
for(i=j,i<2000;i++)
location(i){1] = (location[i}{0] = 0) ;

}
i_mindist (f_map, inp, close)
double inp{16] ;
int closa(2] :
fioat t_map[20][20]{16] ;
{
in rei,;
double dist ;
double minimum = 89999.9 ;

for(r=0;r<t_ysize r++){
for(c =0;c <f xsize;c++) {
dist = 0.0;

B-123

twopic8

Appendix B: Computer Programs

for (i = 0;i < f_number_inputs ; i+ +)

dist += pow (inpfi} - t_map(r}{c){i]. 2.0) ;
if (dist < minimum) {

minimum = dist ;

close{0] = ¢ :

close{1] =r;

}

B-124

twopic8

a

Appendix B: Computer Programs outdat4

$ link outdat4,options_file/opt
,‘

HENRIAENABERAISEIRSER BN ANANNER Md.t‘ C YERABARARRRERARACARREARRSRARNRONNE

This routine creates a *.dat file containing stored trajectories
to train second Kohonen nets.

Trajectories are 100 x-y pairs filled with trailing -1's.

AR AR AR AR AN N A AN NN RS AS AN SN A RN R RAR RN AERORNANNASGONNER

Capt Gary . armore, 2 Sep 88
*/

include math
include stdio
include time

ficat map(20][20)[225] ; /* output nodes */
double input[2285] ; /* input nodes */
int xsize, ysize ; /* Size of array */
in number_inputs ;
char training_file(30], net_file[30], first_net_file[30) ;
char temp_file[15] ;
char net_name([15) ;
double innput[100][100] /* input vectors */
int number_discretes ;
int word_counter ;
int num_words ;
char word_number[100][15] ;
int t_ysize, t xsize, t_number_inputs ;
float t_map[20](20]{16] ;
int location{2000](2] ;
mindist (map, inp, close)
double inp(225] ;
int close(2] ;
float map{20](20]{225] ;
{
int rei,
double dist ;
double minimum = 9.9e31 ;

for(r=0.r < ysize ;r++) (
for(c = 0;c < xsize ; ¢+ +) {

dist = 0.0 ;

for (i = Q ;i < number_inputs ; i+ +)
dist + = pow (inpli] - mapi{r]{cl{i]. 2.0} :

it (dist < minimum) {
minimum = dist ;
close[0]) = ¢ ;
closefl] =r;

}

Appendix B: Computer Programs

int line ;

int c,

struct tm * ime(), *time ;
int *bintim ;

do {

printf (“OUTDAT4: Prepare training data [x,y], second kohonen... \n\n"} ;

printf ("Enter name of header file containing words (lees .hdr):) ;
scanf (“%s", temp_file) :
sprintf (training_file, “%s.hdr", temp_file) ;

number_inputs = 100 ;

printf (“Enter name of pre-processor Kohonen net file (less .net): ™) ;
scant (%s”, net_name) ;

sprintf (first_net_file, “%s.net”, net_name) ;

printf(“Enter name of data file to create {less .dat}: ") ;

scanf (“%s", net_name) ;

sprintt (net_file, “%s.dat”, net_name) ;

printt(“Ready to begin? (y/n) ") ;

while ((c = getc (stdin)) ==""|{¢c==n"|| ¢ ==)
} while (¢ = y) ;
}
main(
{
extern unsigned _stklen ;
_stkien = 8192 ;
userinp () ; /* Get input values */
printt ("\n") ;
read_trn_file () ;
printf (“\n.DAT file: %s saved\n", net_tile)
}
read_trn_file ()
{
FILE *tf, *fnet ;
in hhrc.

tf = fopen (training_file, "'r*) ;
fscanf (tf, “%d", &num_words) ;
for (i = 0:i < num_words ; i+ +)
fscanf (i, “%s", word_number[i)) ;
fclose (tf) ;

fnet = fopen (first_net_file, "r) ;
fscanf (fnet, "%d %d %d", &f_ysize, &f_xsize, &f_number_inputs) ;
for(r=0,r<f_ysize ;r++) {
for (c = 0;c < { xsize ;c++) {
for (i = 0;i < {_number_inputs ; i+ +) {
fscant (fnet,” %", & _map|r)[c][i)) ;
}

}
fclose (fnet) ;

outdaté

B 2B

Appendix B: Computer Programs

fnet = fopen (net_file, “w") ;

fpringt (fInet, “%d\n", num_words) ;
for (i = 0 ;i < num_words ; i+ +) {
printf (" %d™,) ;
read_word (i) ;
for (j = 0;j < number_inputs ; j+ +) {
fprintf (fnet, “%d %d\n”,
) location(jj (0], location(]]{1]) ;
}
fclose (fnet) ;
}
read_word (pointer)
int pointer ;
{
int flag.r.c.i j k;
double in{16), d1, d2, d3, d4, d5 ;
float element ;
in loc2{2000)[2), loc3{2000)[2) ;
FILE *tsnd ;
int sound, point, x[5), y{5] ;
int max_pts ;
double max ;

tsnd = fopen (word_number([pointer], “'r") ;

sound =0 ;
i=0;
flag = 0;
while (flag != 1) {
fscant (fsnd, “%f", &element) ;
it (feof(fsnd) !=0)
flag=1;
else if (i > 99)
flag =1,
else {
in[i] = (double) element ;
i+t+;
}
#{(i == 15) 8& (flag == 0)) {
t mindist (f_map, in, &loc2[sound][0)) :
i=0;
sound+ + ;
}
}
fclose (fsnd) ;

for (i = 0;i < sound; i+ +) {
Yoed[i}{0) = loc2[i)[0] ;
toc3[i}[1) = loc2[i){1) ;
}

max_pts = sound ;

... Trajectory Reduction ...

for(i=0;i<j:i++){
location[i}[0]) = loc2[i}{0} ;
location[i][1) = loc2[i}[1} ;
}

Appendix B: Computer Programse outdatd

for (i = j; i < number_inputs ; i+ +)
location(i}{0] = (location(i][1] = -1) ;

t_mindist (f_map, inp, close)
double

inp[16] ;
int close|2]
. float t_map{20)[20)[16) ;
int rei;
double dist ;
double minimum = 99999.9 ;
for(r=0;r<fysize;r++)(
for(c=0;c <t xsize;ct++) {
dist =00 ;
for (i =0 ;i < f_number_inputs ; i+ +)
dist += pow (inp(i] - {_map(r}(c](il, 2.0) ;
it (dist < minimum) {
minimum = dist ;
close[0) = c;
close{l] =r;
}
}
}
}

B-128

BARRORAREACREEAAARS] W‘c BAEARRARRNREERNE SRR LR RN CRNAA NN ENAD

Routine to train a second Kohonen net using stored trajectories
in & *.dat file (created with OUTDAT4.EXE).

Trajectories are 100 x-y pairs filled with trailing -1. This
version includes conscience.

ARBRSDAPLERERARRAAAARNRSACENAAREARRENEANAANR AR NSACANCSNEEROO O

Capt Gary Barmore, 7 Sep 88
*f

include math
include stdio
include time
int conscience(20][20] ./* records # timee closest */ -
im nodes ; /* number of nodes */
double consc = 1.1, /* conscience factor */
fioat map(20][20]{100}([2] : /* output nodes */
double input(100(2] ; /* input nodes */
double gain, noise ;
double mcount ;
double percent ; .
double xoff = 0.0,
double yoft = 0.0;
int closest[2] ; /* closest node */
i neigh{2) ; /* neighbor */
im nrangex, nrangey ; /* neighbor range */
int nfactorx, nfactory ; /* neighbor tactor */
long count ; /* # of iterations */
int graph ; /* # between piots */ -
int seed ; i
im maxneighx, maxneighy ; /* Starting area */
int minneighx, minneighy ; /* Final area */
i xsize, ysize ; /* Size of array */
int number_inputs ;
int wrap _flag =0
int train_flag, train_discrete ; -
char training_file[30], net_tile[30], first_net_tile[30] :
char temp_file[15] ;
char net_name[15]
struct curve {
int type . -
double maxgain ;
double mingain ;
double midgain ; -
int midtime ;
} geurve ;
struct fig {
int md_in ;
} flag ;
extern int word_counter ;
extern double innput{100][100](2] ;
int t_xsize, f_ysize ;

init (map)

Appendix B: Compiter Programs

. float map(20}[20](100}{2] ;
int e i,
fioat mex_rand = pow(2.0, 31.0) - 1.0 ;
nodes = ysize * xsize ;
for (r=0;r<ysize;r++) {
for{c=0;c<xsize;c++){
conscience{r][c] = 0;
for (i = 0;i < number_inputs ; i+ +) {
map|rl{c]{i}[0] = f_xsize*(rand () / max_rand) ;
;n‘p(rllcllilm = {_ysize*(rand () / max_rand) ;
}
}
}
mindist (inp, close, its)
doublie inp(100){2] ;
in close(2) :
long its ;
{
int rnei;
double dist ;
double minimum = 9.99e31 ;
for(r=0;r<ysize;r++) {
for(c =0;¢ < xsize; c++) {
dist = 0.0;
if (conscience([r}(c] < consc * its / nodes) {
tor (i = 0,i < number_inputs ; i+ +)
dist+ =tabs(inpi){0]-map]r)[c](i](0]) +
tabs(inp[i}[1}-meplr][c](i)[1]):
if (dist < minimum) {
minimum = digt ;
close[0} = ¢ ;
close(1] =r;
}
}
}
conscience|close[1])[close[0]] += 1;
}
userinp ()
int line ;
in c,
do {

printf (“TWOBASA: Train 2nd Koh with 2-D trajectories ... \n\n") ;
f xsize = (f_ysize = 15) ;

printt ("Enter conscience factor (> 1.0): [float] ™) ;
scant (“%f{", &consc) ;
it (consc < 1.0}

consc = 15;

printf(“Enter size ‘m n’ (for an m x n) of array = ? (intint] ™) ;
scanf("“%d %d", &ysize, &xsize) ;

B-130

Appendix B: Computer Programs twobas4

ysize = 2;
elge if (yeize > 20)
ysize = 20 ;
if (xsize < 2)
xsize = 2;
olse it (xsize > 20)
xsize = 20 ;

“ i (ysize < 2)

printf ("Do you want 0) sequential training,\n") ;
printf (“ 1) randomized training? ™) :
scant (“%d", &flag.md_in) ;

train_discrete = 1 ;
number_inputs = 100 ;

printf("Enter name of training file [less .dat): ") ;
scanf ("%s", net_name) ;
sprintt (training_file, “%s.dat”, net_name) ;

printf(“Enter name of net file to create (lees .net}:) ;
scant (“%s”, net_name) ;
sprintt (net_file, “%s.net", net_name) ;

printf (“Number of iterations = ? [im] ") ;

scanf (“%ld", &count) ;

if (count <= 10 || count > 200000)
count = 100 ;

mcount = {(double) count ;

printt (“Number of fterations between status messages = ? {im] ") .
scant (“%d". &graph) ;
if (graph < 1 || graph > count)

graph = 10

ingain () ;

printt (“Starting size of neighborhoods ‘'yn xn' = ? [int int] ™) ;
scant (“%d %d", &maxneighy, &maxneighx) ;
if (maxneighx < 2 || maxneighx > xsize - 1)
maxneighx = 2 ;
if (maxneighy < 2 || maxneighy > ysize - 1)
maxneighy = 2 ;

printt (“Final size of neighborhoods ‘yn xn' = ? [intint] ™) ;
scant (“%d %d", &minneighy, &minneighx) ;
if (minneighx < 1 || minneighx > maxneighx)
minneighx = 1 ;
if (minneighy < 1 || minneighy > maxneighy)
minneighy = 1;

printf (“Initial seed for random # generator = ? [int] *);
scanf (“%d", &seed) ;
if (seed == 0) {
seed = 138 ;
}
srand (seed) ;

wrap flag =0,

B-131

BN

Appendix B: Computer Programs twobas4

printt("Ready to begin? (y/n) '} ;
while ((c = getc (stdin)) ==""'||c==W"|} ¢ == 1)

} while (c 1= y) ;

‘{ﬂoﬂﬂ 0
int line ;

printf(“For gain enter 0) LINEAR, 1) SIGMOIDAL, 2) PIECEWISE LINEAR : ");
acanf (“%d", &gcurve.type) ;

if (geurve.type == 0 || geurve.type == 1) {
printt ("Maximum gain = ? {float] ") ;
scant (“%E", &gcurve.maxgain) ; -
it (gcurve.maxgain >= 1.0 || gcurve.maxgain < = 0.0)
gcurve.maxgain = .99 ;

printt (*Minimum gain = ? [float} ") ;

scant ("%E", &gcurve.mingain) ;

it (gcurve.mingain < = 0.0 || geurve.mingain > = 1.0)
geurve.mingain = 0.0 ;

}

printt (“First segment stanting gain = ? [fioat) ™) ;

scanf (“%E", &gcurve.maxgain) ;

#f (gcurve.maxgain >= 1.0 | | gcurve. maxgain < = 0.0)
geurve.maxgain = .99 ;

else {

printt (“Second segment starting gain = ? [float] ™) ;

scanf (“%E", &gcurve.midgain) ;

it (geurve.midgain <= 0.0 | | gcurve.midgain >= 1.0)
geurve.midgain = 0.0 ;

printf (“Second segment starting iteration = ? [fioat] ™) ;

scanf (“%d", &gcurve.midtime) ;

if (geurve.midtime < = 0 || gcurve.midtime > count)
geurve. midtime = count/ 2 ;

geurve.mingain = 0.0 ;
}
}

getgain ()
long i;

it (geurve.type == 0)
gain = (percent * (gcurve.maxgain - gcurve.mingain)) +
gcurve.mingain ;
else if (gcurve.type == 1)
gain = 0.9 * (gcurve.maxgain - gcurve.mingain) / (1.0 + exp (i -
count/2.0)) + .1,
else {
it (i < geurve.midtime)
gain = gcurve.maxgain * (1.0 - (double) i / gcurve.midtime) ;

else
}

gain = gcurve.midgain * (1.0 - (double) i / count) ;

Appendix B: Computer Programs twobasé
save_net ()
{

in nLe Xy,

FILE *fnet ;

flost rem_x, rem_y .

fnet = fopen(net_file,"w™) ;
fprintt (fnet,"%d %d %d™, ysize, xsize, number_inputs) ;
for(r=0;r<ysize;r++) {
for (¢ = 0. c < xsize ; c++) {
for (i = 0 ;i < number_inputs ; i+ +) {
x = map(r]{c](i][0} :
rem_x = map(r]{c]{i}(0] - x ;
y = map(ric]{il[1] ;
rem_y = map(rl{c](il[1] -y .
it (rem_x > 0.49)
x++
olse if (rem_x < -0.49)
X
it (rem_y > 0.49)
y++
eise if (rem_y < -0.49)
y-.
itix <-1)
X=-1;
elee it (x > = {_xsize)
x =1 xsize-1;

ity <-1)
y=-1,
eise it (y >={_ysize)
y ={ysize-1;
tprintf (fnet,” %d %d", x, y) ;
}
}
}
fclose (fnet) ,
}
main()
{
long i
char s1{10] ;
int ws_ id=1;
int clear_flag = 1;
FILE tt,

extern unsigned _stkien ;

_stkien = 8192 ;

userinp () ; /* Get input values */
nfactorx = maxneighx - minneighx + 1 ;
nfactory = maxneighy - minneighy + 1 ;
init (map) ; /* Initialize weights */
read_trn_file () ;

for (i =1 ;i<=count;i++){
#(i% greph ==0) {
printf (“TWOBASA4: gain = %f, yrange = %d, ",
gain, nrangey) ;
printt (“xrange = %d, iteration # %d", nrangex.i) ;

B-133

Appendix B: Computer Programe

printt (* (of %id)\n", count) ;
it (access (net_file0) == Q)

delete (net_file) ;
save_net () ;

percenmt = (mcount - i) / mcount ;
getgain (1) ;
(lag.md_in == 0)

getin () ;

get_md_in () ;

mindist (&innput(word_counter](0](0], closest, i) ;

if (geurve.type 1= 2) {
nrangex = minneighx + percent * nfactorx ;
nrangey = minneighy + percent * nfactory ;

}

elee if (i < geurve.midtime) {
nrangex = minneighx + nfactorx *
((double){gcurve.midtime - i)) / gcurve.midtime ;
nrangey = minneighy + nfactory *
({(double)(gcurve.midtime - i)) / gcurve.midtime ;
}

eise {
nrangex = minneighx ;
nrangey = minneighy ;

}
neigh{0] = nrangex ;
neigh(1] = nrangex ;
;voiahtom (map) ;

save_net () ;
printf ("\nNet file: %s saved!\n", net_file) ;

/.

ARNRC AN EAN AN RSN EANRSCE SR N AANA GRS migm“ ¢ EARERNAAERARGOTNARNARNAASTENARENOES

These routines support TWOBAS4.C/EXE in training a second
Kohonen neural net. inputs are stored in a *.dat file.

Inputs are 100 x-y pair trajectories filled with trailing -1's.
AR RN RN A RN A RN A R AR SRR TR RN AN AN AR RN NS ENAAN R ERANNDAR NS
G. BARMORE25 AUQG 88
*
include math
include stdio
include stat
double innput[100](100} (2] /* input vectors */

extern double input(100](2] ; /* input nodes */
extern double gain ;

extern int closest(2] ; /* closest node */
extern int neigh(2] . /* neighbor */
extern int xsize, ysize ; /* Size of array */
extern int number_inputs ;
extern int train_discrete ;
extern char training_file{30] ;

B-134

Appendix B: Computer Programs

extern char first_net_file{30] ;
int number_discretes ;
int word_counter ;
i num_words ;
char word_number{100){15] ;
read_trn_file ()
{
FILE *t, *fnet ;
int birnexy;
fnet = fopen (training_file, “r'} ;
facand (fnet, “%d", &num_words) ;
for (i=0;i < num_words ; i+ +) {
for (j = 0; j < number_inputs ; j+ +){
fecant (fnet, “%d %d", &x, &y) ;
innputli)[[0] = x
innput{iJ[§f1) =y ;
}
}
fclose (fnet) ;
word_counter = -1 ;
}
getin
{
int i
word_counter+ + ;
it (word_counter == num_words)
word_counter = 0 ;
}
get_rnd_in ()
{
int ij.
double max_rand = pow (2.0, 31.0) - 1.0;
int pointer ;
pointer = floor ((rand() * (num_words - .0001) / max_rand)) ;
}
weightem (map)
) float map(20j(20]{100](2] :
int nright, nleft, nup, ndown, r . ¢, i,

it (neigh[0] > 0 && neigh(1) > 0) {
nright = closest[0] + neigh{0] - 1;
it (nright > = xsize)

nright = xsize - 1 ;
nieft = closest{0] - neigh{0] + 1 ;
if (nleft < 0)

nieft = 0;
nup = closest{1] - neigh(1] + 1;
if (nup < 0)

nup =0;

ndown = closest[1] + neigh[1] - 1 ;
if (ndown > = ysize)

B-135

twobasé

Appendix B: Computer Programs
ndown = ysize - 1 ;
}

nright = closest([0] ;
nieft = closest{0] ;

oise {

nup = ciosest{1] ;
ndown = closest(1] ;
}

for (r = nup; r <= ndown ; r++) {
for (c = nleft ; ¢ <= nright ; c++) {
for (i = 0; i < number_inputs ; i+ +) {
map[r)(c][i][0] += gain *
(innput{word_counter][i}(0] - map(r]{c]{i}(0]) ;
map(r}{el{ij[1] += gain *
(innputiword_counter]{i}{1] - mapl{r][c](il[1]) ;

B-136

o

Appendix B: Computer Programe twomaskS
$ link twomaek5,options_file/opt
,.
--------------- Mm.c FENRNBANR LSV RANNGAL A ARNNORNERNESARRS
Routine to creste *.msk file from *.net file where *.mak file
is array of integers mask[20]{20] corresponding to nodes of *.net
file.
Each integer is the number of weights which are not -1.
Trajectories (node weights) are 100 x-y pairs filled with
trailing -1's.
SEREREANRRNENS AR SRS AR AN AANSRRCR AR AR R OARRRAREOeRRa RO RRSS
¢/
include math
include stdio
im mask{20]{20] ;
fioat map(20]{20](100]{2] ; /* output nodes */
double node_dist ;
int xsize, ysize ; /* Size of array */
int number_inputs .
char training_file[30], temp_file[30], first_net_file{30] ;
char net_tile[30] ;
non_zero (map)
float map{20][20][100](2] :
int r, ¢, i, number, X, y ;
for(r=0;r<ysize;r++){
for(c =0;c < xsize ;c++) {
number = number_inputs+1 ;
y=x=-1;
while ((y == -1) & (x == -1) && (number > 1)){
number-- ;
x = map(r][c]{number-1)[0] ;
y = map[r](¢][number-1]{1]
printf (“%2d %2d . x, y) .
}
printt (\n**** %d ****"\n", number) ;
mask({rj{c] = number ;
}
}
}
main
{
primtt (\nTWOMASK4 (Creates net mask for 2-D trajectories\r\n) ... ") ;
find_mask () ;
}
find_mask ()
{
int e iLxy,
FILE *fnet ;

printt (“Enter name of output Koh net_file [less net). ™) ;
scant (“%s", temp_file) ;

B-137

Appendix B: Computer Programs
sprintf (net_iile, “%s.net”, temp _file) ;
} sprintt (training_file, “%e.mak", temp_file) ;

fnet = fopen (net_file, “r") ;

fscanf (fnet,"%d %d %d”, &ysize, &xsize, &number_inputs) ;

for(r=0;r<ysize;r++) {

for{c =0;c<xsize;c++) {
for (i = 0 ;i < number_inputs ; i+ +) {

facant (fnet,” %d %d", &x, &y) ;
map[r][c][i}[0] = x ;
;naplr]lcllilm =y,

}
}
fclose (fnet) ;
non_zero (map) ;
save_mask () ;
}
save_mask ()
{
FILE *fmask ;
int f.c.
fmask = fopen (training_file, “w”) ;
for(r=0;r<ysize;r++) {
for{c =0, c < xsize ; c++) {
fprintt (fmask, “%d ", mask(r)[c]) :
}
}
fclose (tmask) ;
}

B-138

twomaskS

"

Appendix 8: Computer Programe twopicdc

$ link twopicdc,nplot,nprinter, mat3,nwi4, options_file/opt
,.

(¢ £ NEARNDEERDRENRNRE L2 d 4 Mopmc.c AAREERANAEACANERRENERANECARNRRRSANY
This routine is used to show graphically those nodes which ‘light
up’ using Euclidean distance when the training set of inputs is
appiied to a second Kohonen net.

Inputs are 100 x-y pair trajectories filled with trailing -1's.

ASNENBLERCAN RN ARG RAAR RN SAERENERNALRACEARAAEANANERANANELANRERTS

*
inciude math
inciude stdio
include time
float map[20}{20}(100](2] . /* output nodes */
double input{100}[2] ; /* input nodes */
double gain, noise ;
double mcount ;
double percent ;
double xoff = 0.0;
double yoff = 0.0;
double node_dist ;
i closest[2) ; /* closest node */
in neigh[2] ; /* neighbor */
int nrangex, nrangey ; /* neighbor range */
int nfactorx, nfactory ; /* neighbor factor */
long count ; /* # of iterations */
int graph ; /* # between piots */
int seed ;
int maxneighx, maxneighy ; /* Starting area */
im minneighx, minneighy ; /* Final area */
int xsize, ysize ; /* Size of array */
int number_inputs ;
int wrap_flag = 0 ;
int train_fiag, train_discrete ;
char training_file[30), temp_file[30), first_net_file{30] ;
char net_file[30] ;
struct curve {
int type ;
double maxgain ;
double mingain ;
double midgain ;
int midtime ;
} geurve ;
extern int xy{] ; /* array holding x,y */

extern double xdei, ydel ;
extern double xlow, xup, ylow, yup ;

extern im num_words ;
extern char word_number[100](15] .
mindist (map, inp, close)
double inp{100}{2] ;
int close(2] :
float map(20]{20]{100}(2] .
{
int rne, i

B-139

Appendix B: Computer Programe twopicdc

double dist;
double minimum = 9.98e31 ;

for(r=0;r<ysize;r++) {
for{c =0;c < xsize;c++) {
dist = 00 ;
for (i = 0 ; i < number_inputs ; i+ +)
dist + = fabe(inp(i] (0] - map(r][c][i]{O]) +
fabe(inp(i}{1) - map[r)[c]{il[1]) :
if (dist < minimum) {
minimum = dist ;

close[0) = ¢ ;
closefi] =r;
}
}
node_dist = minimum ;
}
main ()
{
int c,
printt (‘\nTWOPIC4¢ (Plot Words for 2-D Reduced Queued Traj)..\n") ;
map_speech () ;
}
r{nap_spooch 0
int neijkxy;

char sub_title{60}, temp{30] ;
char name_trj(20] ;

int loc[125][2] ;
FILE *fnet, *flog ;
in sound ;
short length ;

printf (‘“\nEnter name of pre-processor Koh net-file (less .net]:) ;
scanf (“%s", temp) ;
sprintf (first_net_file, “%a.net", temp) ;

printt (“Enter name of header file containing words (less .hdr):) ;
scanf (“%s", temp_file) ;
sprintf (training_file, “%s.hdr", temp_file) ;

printf (“Enter name of output Koh net_file [less .net}: "} ;
scanf (“%s", temp_file) ;
sprintf (net_file, “%s.net", temp_file) ;

read_ten_file () .

fnet = fopen (net_file, “r") ;

fscanf (fnet,"%d %d %d", &ysize, &xsize, &number_inputs) ;

for(r=0;r<ysize;r++) {

for(c=0;c<xsize;c++){
for (i = 0 ;i < number_inputs ; i+ +) {

facant (fnet,” %d %d", &x, &y) .
map{r}{c]{i}{0] = x
;nap[r)[cl[ilm =y,

B-140

Appendix B: Computer Programs twopicac

}
fclose (net) ;

sprintf (sub_title, “%s -> %as ->", first_net_file, net_file) .
sprintf (name_trj, “%s.trj", temp) ;

flog = fopen (“temp.log"."w'") ;
tprintf (flog, “TWOPIC4Ac: %s”, name_tr :

graph_test (training_file) ;
length = (short) strien (sub_title) ;
draw_grid2 (ysize, xsize, sub_title, length) ;

printt (‘\nExpect %d calcuiations.\n", num_words) ;
for (sound = 0 ; sound < num_words ; sound+ +) {
getin (;
mindist (map, input, &loc{sound](0}) ;
printf (“%d : (%d,%d] dist = %le\n”,
sound, loc{sound){0], loc[sound](1]. node_dist) ;
tprintf (flog, “%d : [%d,%d] dist = %le\n",
sound, loc[sound)[0], loc[sound][1], node_dist) ;

}
printt (“\nCalculations finished.\n") ;
fciose (flog) :
draw_speech_map (sound, loc) ;
scanf (“%s" temp) ;
clipoft () ;
, graphoft () ;

graph_test (name)
char name({30] ;
{

char titie(79], labeix(79] ;

float xloc[S) = {0, 639.0, 639.0, 0.0, 0.0} ;
flost yloc[5] = {349.0, 349.0, 0.0, 0.0, 349.0} ;
int points = § ;

int we_id = 1;

int clear_flag = 1;

short length ;

sprintf(title, " TWOPIC4c: Kohonen TWCO NETS - %sg", name) :
sprintf(labeix,”) ;
graphon ()
gks$clear_ws (&ws_id, &clear_fiag) ;
gks$polyline (&points, xioc, yloc) ;
prepcolmat (ysize, xsize) ;
length = (short) strien (title) ;
outtitie (title, length) ;
length = (short) strien (labetx) ;
outlabeix (labelx, length) ;
clipon () ;

}

l.

REEEERAAANANRANENRR T RANAARABERNNER M‘ ¢ ARERRRREAARRREAABANATRNRARNGRRRASER

These routines support TWOPICAC.C/EXE in finding which node lights
up in a second f ohonen net when a training digit is applied.

B-141

Appandiix 8: Computer Programe

inputs are 100 x-y pair trajectocies filled with trailing -1's.
Euclidean distance is used in finding which node lights up.

WREORARNEBGEAANGERR AN RSN AN AAEANE GRS AGLAAANNONNA BT RS A N LR SNANED

*/
include math
include stdio
include stat
extern double input[100)[2) ; /* input nodes */
extern double Qain ;
extern int closest[2) ; /* closest node */
extern int neigh(2] ; /* neighbor */
extern int xsize, ysize ; /* Size of array */
extem int number_inputs ;
extern int train_discrete ;
extern char training_file{30] ;
extern char first_net_file{30] ;
int number_discretes ;
int word_counter ;
(1.3 num_words ;
char word_number[100j[15] ;
int t_ysize, f_xsize, {_number_inputs ;
floet {_map{20][{20][1€] ;
read_tmn_file ()
{
FILE *tf, *tnet ;
int Wt e,
tf = fopen (training_file, “r") ;
fscanf (if, “%d”, &num_words) ;
for (i = 0 ;i < num_words ; i+ +)
fscanf (tf, “%s", word_number(i]) ;
fclose (tf) ;
word_counter = 0;
fnet = fopen (first_net_file, “r") .
fscant (fnet,"%d %d %d", &f_ysize, &f xsize, & _number_inputs) ;
for {r =0;r<f ysize ;r++) {
for{c =0;c<f xsize;c++){
for (i = 0;i < t_number_inputs ; i+ +) {
fscant (fnet,” %f", &f_map|r][c][i}) ;
}
}
}
fcloge (fnet) ;
}
getin O
{
it (word_counter == num_words)
word_counter = 0 ;
read_word (word_counter) ;
word_counter+ + ;
}

B-142

Appendix B: Computer Programs

get_nd_in (

{
int A
double max_rand = pow (2.0,31.0)-10;
int pointer ;

pointer = floor ((rand() * (hum_words - .0001) / max_rand)) ;

read_word (pointer) ;

}
read_word (pointer)
int pointer ;
{
int flag.r.c. i j k:
double in[16), d1, d2, d3, 04, d5 ;
flost element ;
in loc2{2000][2], loc3[2000}[2] ;
FILE *fsnd ;
int sound, point, x{5}, y(S} ;
int max_pts ;
double max ;
fand = fopen (word_number{pointer], “r") ;
sound = 0;
i=0;
flag=0:
while (flag != 1) {
fscanf (fsnd, “%f", &element) ;
i (teof{tsnd) ! =0)
=1;
olse if (i > 99)
flag =1,
else {
in{i] = (double) element ;

++;

}
#((== 15) & (flag == 0)) {
t_mindist (f_ map, in, &loc2[sound][0}) ;
i=0;
sound+ + ;

}

}
fclose (fsnd) .
for(i=0.i<sound;i++){
loe3(i}(0] = loc2fi}(0]
toc3(i){1] = toc2{i](1] ;
}

max_pts = sound ;

... Trajectory Reduction ...

it (j >= number_inputs)
j = number_inputs ;

for(i=0:i<j;i++){
input{i}[0] = loc2(i][0] ;
inputfij[1] = loc2{ij(1] ;

}
tor (i = j.i < number_inputs ; i+ +) {

Appendix B: Computer Programs

;Wlﬂ[ol = (input(i)[1] = -1.0);

}
t_mindiet (f_map, inp, cices)
double inp[16) ;
im close[2] ;
] float 1_map{20}{20]{16) ;
it rel;
double dist ;
double minimum = 9.9¢31 ;
for(r=0;r<t_ysize r+r)
for(c=0;c<fxsize;c++)
dist = 0.0;
for (i = 0 ;i <t _number_inputs ; i+ +)
dist + = pow (inp{i} - t_mapirl{c}li), 2.0) ;
if (dist < minimum) {
minimum = dist ;
close{0] = ¢ ;
closs{t] =r;
}
}
}
}

B-144

Appendix B: Computer Programs twopicBb

$ link twopicBD, nwinéb,options._file/opt
,‘

---------- M‘c ARRAEERVOSERNONERABNSARNRSARANRANES

This routine finds the closest digit (from a group of digits) to
each node in a second Kohonen net. in particular, thie routine
usee 100 x-y pair trajectories filled with trailing -1's.

For sach node, the routine searches through the whole list for the
digit ‘closest’ to that node’s weight. ‘Closest’ in this case

is found through & mini-DTW that uses both the node's masked
length (without trailing -1's) and the length of the trajectory

(alec without -1's).

Data output includes the node number, distance to the digit
found ciosest, and the name of the *.trn file of the digit.

SR ARACRER R R RN ENEARERINRNLENS PR RNRNL AR EENRORANSRANASAANRANES

4/
include math
include stdio
include time
flost map(20][20](100]{2] : /* output nodes */
double input[100}[2] ; /* input nodee */
double node_dist ;
in closesti2] ; /* closest node */
int xsize, ysize ; /* Size of array */
int number_inputs ;
char training_file{30], temp_file{30], firet_net_file(30] ;
char net_file[30] ;
extern int num_words ;
int mask{20){20] ;
int map2[20}{20}[100}{2} ;
fioat aa =075;
fioat bb =0.75;
extern int t xsize, f_ysize ;
extern int location{200C) (2] ;
int innput{200}{100}(2] ;
extern int length({200] ;
extern char word_number{200]{15] ;
mindist (r, ¢, close)
int rc,
int *close ;
{
int sound ;
double dist ;
double minimum = 9.99e31 ;

for (sound = 0 ; sound < num_words ; sound++) {
diw (&map2[r](c][(0][0). &innput{sound][0][0]. mask(r}{c].
length[sound], &dist) ;
it (dist < minimum) {
minimum = dist ;
*close = sound ;

}

B-145

Appendix B: Computer Programe twopicB8b

}
node_dist = minimum ;

}
main ()
{
int c:
printt (\nTWOPIC8b (Closest word for sach node: 100 wts/2-D)..\n") ;
map_speech () ;
f{ntp.opooch 0
int rnc ik xy.
char name_trj{30}, temp[30) ;
int loc ;

FILE *inet, *flog, *tmask ;

printf (\nEnter name of pre-processor Koh net-file [less .net): ") ;
scant (“%s", temp) ;
sprint! (first_net_tile, "%s.net”, temp) ;

printf ("Enter name of header file containing words (less .hdr):) ;
scant ("%s”, temp_file) ;
sprintt (training_file, “%s.hdr", temp_file) ;

printf (“Enter name of output Koh net_file [less .net]:) ;
scant (“%se", temp_file) .

sprintt (net_file, “%s.net"”, temp_file) ;

sprintf (temp, “%s.msk", temp_file) ;

tnet = fopen (net_file, “r") ;

fscant (fnet,"%d %d %d", &ysize, &xsize, &number_inputs) ;

for (r=0;r<ysize;r++) {

for(c =0;¢c < xsize;c++) {
for (i = 0 < number_inputs ; i+ +) {

fscant (fnet,” %d %d", &x, &y) ;
map2{r][c]li}{0] = x;
;Mp?I'llc}[i)Ul =y,

}
fclose (fnet) ;
read_trn_file () ;

tmask = fopen (temp, “r') ;
for{r=0:r<ysize;r++){
for(c =0 ;¢ < xsize . c++) {
facant (fmask,"%d", &mask(r}[c]) ;
}

}
fclose (fmask) ;

flog = fopen ("temp.log”,"w'") ;

tprintt (log, "TWOPIC8b:\n") ;

tprintt (flog, "-> %s -> %s ->\n", first_net_file, net_file) ;
forintf (flog, "Size is %d by %d nodes\n", xsize, ysize) ;

B-146

Appendix B: Computer Programa twopic8b

printf (“\nExpect %d caicuistions.\n", num_words) ;
fprintf (flog, “Expect %d calculations.\n", num_words) ;
printf (‘\nReading word: "} ;
for (r = 0;r < num_words ; r++) {
printt (“%d ",) ;
getin § ;
for (¢ = 0; ¢ < number_inputs ; c++) {
innput(r][c}{0] = location[c}[0] ;
)mnwtlr)!c}[ﬂ location]c){1] ;

}
printf ('\n") ;
for{r=0;r<ysize;r++) {
for(c=0;c<xsize;c++) {
mindist (r, ¢, &loc) ;
k =¢ + r*xsize;
printf ("\nNode %3d : word # %3d, dist = %le ",
k, loc, node_dist) ;
printf (“(%8)", word_numberfloc]) :
fprintt (flog, ‘“\nNode %3d : word # %3d, dist = %ie ",
k, loc, node_dist) ;
tprintf (flog, *(%s)", word_number(loc]) :
}

}
printt (‘\nCalculations finished.\n") ;
fclose (flog) ;

dtw (template, utterance, t_length, u_length, ave_dist)
int template{200}[2], utterance{200}(2] ;
int t_length, u_length ;
double *ave_dist;

{
float back_path{2]{200j ;
int b_p(2](200] ;
int rne,
int ptr, b_ptr ;
fioat d1, d2, d3, dist ;
dist =00,
bptr=1;
b_pl0j{0] = 1;

for(r=1,r<t length;r++)
b_p{0]{r] = b_p[O}{r-1] + 1
for(r=0,r<t length r++) (
back_path[0][r] = (dist +=Dbb * (
abs(utterance[0]{0] - template{r][0]) +
abs(utterance[0)[1) - template[r)[1])))

for{c =1;c <u_length;c++) {

if (b_ptr ==0) {
b_ptr=1;
ptr=0;
}
eise {
bptr=0
ptr=1;
for(r=0;r<t_length;r++) {]
dist = abs(utterance|c][0] - template{r][0]) + q
- =

B-147

Appendix B: Computer Programe twopicBb
abs(utterance|c){1] - template([r])(1]) :
#(r==0)
back_path[ptr]{r] = back_path{b_ptr][r] +
(oa * dist) ;
;.P(P"l[fl =b_plb_ptr]fr] + 1
eive {
d1 = back_path{b_ptr](r-1] + dist ;
d2 = back_path{ptri(r-1] + (bb * dist) ;
d3 = back_path{b_ptr]{r] + (aa * dist) ;
if(d2 <=d3 && d2 < d1){
back_path{ptr](r] = d2 ;
t;.p(ptfllrl = b_pfptrl(r-1} + 1;
olse ff (43 <= d2 && d3 < d1) {
back_path{ptr}{r] = d3 ;
b_plptr}lr] = b_p[b_ptrlfr] + 1.
olse {
back_path[ptr}ir}) = d1 ;
;’_P[P"l[fl =b_p[o_ptr)[r-1] + 1;
}
}

}
l'

}
if (b_p{ptr][t_length-1]) != Q)
*ave_dist = back_path(ptr][t_length-1] / b_p[ptr}{t_length-1] ;

*ave_dist = 9.9e31 ;

AREANERAERNEARNARCRIRRREANSARENNES nwirsb c SREBEREARIEACEN AR ENARARNENSANSANS

*f

These routines support TWOPIC8B.C/EXE in finding a digit from a
specified set that is ciosest to sach node in a second Kohonen net.

inputs are 100 x-y pair trajectories filled with trailing -1's.

RS ANE R R A AN R EERA TR AR PR E RN LR L RN IENNNN AN DEONERRANARNESRANAR

G. Barmore2S Aug 88

include math
include stdio
include stat

extern double input[100}[2] : /* input nodes */
extern double gain ;

extern inmt closest[2] ; /* closest node */
extern int neigh(2] ; /* neighbor */
extern int xsize, ysize ; /* Size of array */
extern int number_inputs ;
extern int train_discrete ;
extern char training_file[30] ;
extern char first_net_file{30] ;
int number_discretes ,
int word_counter ;
int num_words ;
B-148

m —

Appendix B: Computer Programs twopicBb
char word_number{200](15] ;
int length(200] ;
int f_ysize, f_xsize, t_number_inputs ;
float f_map(20]{20}(16} ;
int location[2000}{2] :
extern int map2{20){20)[100}[2) ;
extern float map{20][20](100}[2) ;
read_tm_file ()
FILE *tf, *fnet ;
int i.f, ¢k temp;

tt = fopen (training_file, "™} ;
fecant (if, “%d", &hum_words) ;
for (i =0;i < num_words ; i++)
facanf (1f, “%s", word_number(i]) ;
fciose () ;
word_counter = 0 ;

fnet = topen (first_net_file, "r") ;
tscant (fnet,"%d %d %d", &f_ysize, &f xsize, &1_number_inputs) ;
for(r=0;r<1tysize;r++){
for{c =0;c < f xsize;c++) {
for (i = 0;i < f_number_inputs ; i+ +) {
fscant (fnet,” %f", &_map(r][c]{i])

}
}
}
fclose (fnet) ;
}
getin (
{
if (word_counter == num_words)
word_counter = 0 ;
read_word (word_counter) ;
word_counter+ + ;
}
get_rnd_in
int [
double max_rand = pow (2.0,31.0)-10;
int pointer ,
pointer = floor ((rand() * (num_words - .0001) / max_rand)) ;
read_word (pointer) ;
}
read_word (pointer)
int painter ;
{
int flag, r, c.i j k;
double in{16), d1, d2, d3, d4, d5 ;
fioat eloment ;
int 10c2(2000]{2], 1oc3[2000](2) ;
FILE *fsnd ;

B-149

Appendix B: Computer Programe

}

int sound, point, x[5], y(5) ;
int mex_pts ;

double max ;

fend = fopen (word_number{pointer], “r) ;
sound =0 ;

i=0;

flag = 0;

while (flag 1= 1) {
tacant (fend, “%{", Selement) ;

if (fect(fsnd) ! =0)
fag = 1;
else it (i > 99)
flsg=1;
eise {
in(i] = (double) element ;
i+t+;

}
if (i == 15) && (flag == 0)) {
!_mindist (t_map, in, &loc2[sound}[0]) :

i=0;
sound+ + ;
}
}
fciose {fsnd) ;

for(i=0;i<sound;i++) {
loc3(i][0] = loc2{i](0] ;
loc3(i)(1] = loe2(i][1] ;
}

max_pts = sound ;

... Trajectory Reduction ...

for(i=0;i<j;i++){
location[i][0] = loc2[i}{0] ;
location(i}{1] = loc2[i}[1] ;
}

length{painter] = j ;

for(i=j.i<2000;i++)
location(i](1] = (location(i]{0] = -1} ;

t_mindist {_map, inp, close)

doubie inp[16) ;

im close(2] ;

float 1.map[20){20}{16} ;
int rc i,

double dist ;

double minimum = 99999.9 ;

for(r=0;r <1t ysize;r++) {
for(c =0,¢c<fxsize, ct+){
dist = 00;
for (i = 0 ;i < {_number_inputs ; i+ +)

dist += pow (inpli] - {_map(rl{c]{i}, 2.0) ;

it (dist < minimum) {
minimum = dist ;
closef0) = ¢ ;
close[t) =r;

B-150

twopic8b

Appendix B: Computer Programs twopicBb

$ link twopicBb,nwinSb, lookup6,options_file/opt
/.

SORRANTANASERNNARSEASANN RN RARTEAND m c EAANEARRANTERNAARNRNARNASANROANSTANRS

This routine finds the cloeest node in a second Kohonen net (and
the digit assigned to it from twopic8b.c) to each digit in a set

of test digits.digits). In particular, thig routine

uses 100 x-y pair trajectories filled with trailing -1's.

For each test digit, the routine searches through every node in the
Kohonen net for the node ‘closest’ to that digit. ‘Closest’ in this

case is found through a mini-DTW that uses both the node's masked
length (without trailing -1's) and the length of the trajectory

(also without -1's).

Once the closest node is identified, the digit assigned to it
from twopic8b is found by a look-up table (lookup6.c).

Data output includes the digit number (actually the place in the
test set that the digit resides at), distance to the node

found closest, and the name of the * trn file of the digit, and
the digit assigned to the closest node.

Thus, this is the end test of the secand Kohonen net. Will
test digits light up a node assigned to the same class of digit?

CEEEEERERAEAACAARERNSINNRNANRAR RN A RS AR ANSRARRGREANARRACANRRANSR

*/
include math
include stdio
include time
ficat map[20}[20}{100}[2] ; /* output nodes */
double input[100][2] ; /* input nodes */
double node_dist ;
int xsize, ysize ; /* Size of array */
int number_inputs ;
char training_file[30], temp_file(30]. first_net_file{30] ;
char net_file[30] ;
extern int num_words ;
int mask([20][20) ;
int map2{20)[20][100}[2] ;
fioat aa =075;
float bb =075;
extern int f_xsize, f_ysize ;
extern int length[200] ;
extern int location(2000](2] ;
mindist (close)
int close(2] ;
{
int rnci,
double dist ;
doubie distance ;
double minimum = 9.99e31 ;
double pl. p2;

for(r=0;r<ysize;r++) {

B-152

m

close(0] = ¢ ;
close{l] =r;
}
}
}
node_dist = minimum ;
}
main ()
{
int c;
printf (*\nTWOPICEb (DTW Words for 2-D Reduced Queued Traj)..\n") ;
map_speech () ;
}
r{nap_spooch 0
int rneijkxy;
char sub_title(60], temp{30] ;
char name_tri{20] ;
int loc[?) ;
FLE *fnet, *flog, *imask ;
int sound ;
short length ;

Appendix B: Computer Programs twopicSb

printf ("\nEnter name of pre-processor Koh net-file {less .net): ") ;
scant (“%s", temp) ;
sprintf (first_net_file, “%s.net", temp) ;

printf (“Enter name of header file containing words (less .hdr): ") ;
scanf (“%s", temp_file) ;
sprintf (training_file, “%s.hdr", temp_file) ;

printf (“Enter name of output Koh net_file {less .net]:) ;
scanf (“%s", temp_file) ;

sprintt {net_file, “%s.net”, temp_file) ;

sprintf (tlemp, “"%s.msk"”, temp_file) ;

tnet = fopen (net_file, “r") ;
fscanf (fnet,"%d %d %d", &ysize, &xsize, &number_inputs) ;
for{r =0 ;¢ < ysize ; r++) {

}
}
fclose (fnet) ;
read_trn_file () ;
fmask = fopen (temp, “r") ; - !ﬂ

tor(c=0;c < xsize;c++){
ditw (&map2[r}{c}{0}{0}, location, mask|r}{c],
fength({0], &dist) ;
if (dist < minimum) {
minimum = dist ;

for(c =0;c < xsize;c++) {
for (i = 0 ;i < number_inputs ; i+ +) {
fscanf (fnet,” %d %d”, &x, &y) ;
map2(r]{e](ij (0] = x;
;nap2lr1lc1li1l11 =y,

B-153

e

Appendix B: Computer Programs

for(r=0;r<ysize;r++){
foric=0.c < xsize;c++){
fscant (fmask,"%d", &mask([r][c]) :
}
}
fclose (fmask) ;

flog = fopen (“temp.log”,"w") ;|

tprintt (flog, “TWOPICBb:\n") ;

fprintf (flog, “-> %8 -> %e ->\n", first_net_file, net_file) ;
fprintf (log, “Size is %d by %d nodee\n", xsize, ysize) ;

printf (\nExpect %d calculations.\n", num_wordas) ;
fprintf (flog, “Expect %d calculations.\n", num_words) ;
for (sound = 0 ; sound < num_words ; sound+ +) {
getin § ;
mindist (loc) ;
k = focf0] + foc(1] * xsize ;
printt (“\n%d : [%d,%d] dist = %le ",
sound, 10¢[0}, loc{1], node_dist) ;
print_digit (k) ;
fprintf (flog, ‘“\n%d : [%d,%d] dist = %le ",
sound, locf0), loc[1), node_dist) ;
fprint_digit (k, fiog) ;
}

printf (‘\nCaiculations finished.\n"} |
fciose (flog) ;

ditw (template, utterance, t_length, u_length, ave_dist)

int termnplate[200][2], utterance{200][2] ;
int t_length, u_length .
double *ave_dist ;

float back_path[2}{200] ;

int b_p(2}{200] ;
int rne,

int ptr, b_ptr ;

float d1, d2, d3, dist ;
dist = 0.0,

b ptr=1;

b_plO]{0] =1

for(r =1;r<t_length r++)
b_p(0lir] = b_p[O]r-1] + 1:
for (r =0;r <t length; r++) {
back_path[0]{r] = (dist += bb * (
abs(utterance{0](0] - template(r](0]) +

abs(utterance{0](1] - template{r](1])))

for(c =1,;c<u_length;c++){

it (b_ptr ==0) {
bptr=1;
ptr =0,
}

eise {
bptr=0;
ptr=1;

}
for(r=0.r<tlength;r++) {

B-154

Appendix B: Computer Programs

dist = abe(utterance[c][0] - template[r][0]) +
abs(utterance]c){1] - template(r][1]) ;
#(r==0)
back_path{ptr]{r] = back_path{b_ptr]{r] +
(aa * dist) ;
?_p(ptrltrl =b_p[b_ptr}{r] + 1

eise {
d1 = back_path{b_ptr]{r-1] + dist ;
d2 = back_path{ptrj(r-1] + (bb * diet) ;
d3 = back_path{b_ptrj[r] + (aa * dist) ;
if (d2 <= d3 && d2 < d1){
back_pathi{ptr}{r] = d2;
b_p(ptrllr] = b_plptr)(r-1) + 1;
elesif (d3 <= d2 88 d3 < d1) {
back_path{ptr][r] = d3;
?_p[ptrllrl =b_p[b_ptr][f] + 1
eise {
back_pathptr](r} = d1 .
;’.plptrllrl = b_p{b_ptr][r-1} + 1;
}
}

}
*ave_dist = back_path{ptr](t_length-1] / b_p(ptr}[t_length-1] ;

}
,.

PAREERS AR EARNLANASAAENAAARRAGRASN nwinsb] AREAAREAREEEARAAR AR ANEANENRRLANERS

These routines support TWOPIC6* C/EXE in finding the closest node
to a given input digit in a second Kohonen net.

Trajectories are 100 x-y pairs filled with trailing -1's.

ANES AR R ERE AR AN RERRERA AR CAARADENAANADANARNRLANNRNARCARAARRLARS

*

include math
include stdio
include stat

extern double
extem doubie

extern int
extem int
extern int
axtern int
extern int
extern char
extern char

int
im
int
chas
int

input[100}[2] ; /* input nodes */
gain ;

closest[2] ; /* closest node */
neigh(2] ; /* neighbor */

xsize, ysize ; /* Size of array */
number_inputs ;

train_discrete ;
training_file{30] ;
first_net_file[30] ;

number_discretes ;
word_counter ;
num_words ;
word_number{200]{15) ;
length{200] ;

B-155

twopicht

Appendix B: Computer Programs twopicbd
int t_ysize, f_xsize, {_number_inputs ;
float t_map{20]{20](16] ;
int location[2000]{2] ;
extern int map2{20][20][100](2] ;
extem flost map|20){20]{100}{2} .
read_trn_file ()
{
FILE *f, *inet ;
int i,r.ck temp;

tf = fopen (training_file, “r") ;
fecant (tf, “%d", &num_words) ;
for (i = 0;i < num_words ; i++)
fecant (it, “%s", word_number(i]) ;
fclose (tf) ;
word_counter = 0 ;

tnet = fopen (first_net_file, “r") ;
tacant (fnet,"%d %d %d", &f_ysize, &f xsize, &f_number_inputs) ;
for{r=0;r <t ysize;r++) {
for(c=0;c<fxsize.ct++){
for (i = 0; 1 < number_inputs ; i++) {
facant (fnet,” %f", &f_map(rl(clli]) :
}

}
}
fclose (inet) ;
}
getin)
{
if (word_counter == num_words)
word_counter = 0 ;
read_word (word_counter) ;
word_counter+ + ;
}
get_md_in
{
int [N
double max_rand = pow (2.0,31.0) - 10,
int pointer ;
pointer = floor {(rand() * {(num_words - .0001) / max_rand)) ;
read_word (pointer) ;
}
read_word (pointer)
im pointer ;
{
int flag, r.c i j k.
double in{16], d1, 42, d3, d4, d5 ;
float element ;
int loc2{2000}(2], loc3{2000}{2] ;
FILE *fsnd ;
int sound, point, x(5], y[5] ;
int max_pts ;
double max ; q

B-156 1

Appendix B: Computer Programs twopictb

fand = fopen (word_number{pointer], “r") ;

sound =0 ;
i=0;
flag=0;
while (flag 1= 1) {
it (feot(fend) 1 =0)
flag =1;
oise it (| > 99)
flag =1
elee {
infi) = (double) element ;
i++

}
#{(i == 15) && (flag == 0)) {
f_mindist (_map, in, &loc2[sound}[0]) ;

i=0;
sound++ ;
}
}
fclose (fand)

'°f(i=0;i<.sound;i++)(
loc3(i](0] = loc2(i]{0] ;
loc3{il{1] = loc2{i]{1] ;

}

max_pts = sound ;

... Trajectory Reduction ...

for(i=0;i<j;i++){
location(i}{0] = loc2(i}[0] ;
focation(il{1] = ioc2fil(1] ;
}

length[0] = j;

for(i=);i<2000;i++)
location[i][1) = (location(i){0] = -1) ;

}
t_mindist (f_map, inp, close)
double inp[16] :
int close[2] ;
float {_map(20](20}{16] .
{
int re,i;
double dist ;
double minimum = 99999.9 ;

for{r=0;r<1t_ysize;r++) {
for(c =0;c <1 xsize; c++) {

dist = 0.0;

for (i = 0;i < f_number_inputs ; i+ +)
dist + = pow (inp(i] - f_map(r](c]{i], 2.0} ;

if (dist < minimum) {
minimum = dist ;
closef0) = ¢ ;
close{1) =r;

}

Appendix B: Computer Programe twopic8c

$ link twopicBc,nwinBb,options_file/opt
,.

------------- mom.c AARNONERNAOERANENANS LN ONANROTANRES

This routine finds the closest digit (from a group of digits) to
each node in a second Kohonen net. In particular, this routine
uses 100 x-y pair trajectories filled with trailing -1's.

For sach node, the routine searches through the whole list for the
digit ‘closest’ to that node's weight. ‘Closest’ in this case
is found through a TAXI distance.

Data output includes the node number, distance to the digit
found closest, and the name of the *.trn file of the digit.

BEREERNRREXEAEENRSNNRSBENEENEENAAREERBARAEANAAERNTUNEREASERAARNRD

*
inciude math
include stdio
include time
float map(20](20]{100]{2] : /* output nodes */
double input[100][2] ; /* input nodes */
double node_dist ;
int closest[2] ; /* closest node */
int xsize, ysize ; /* Size of array */
int number_inputs ;
char training_file{30], temp_tile[30], first_net_file[30) ;
char net_{ile[30] ;
extern int num_words ;
int mask({20]{20] ;
int map2([20][20](100]{2] ;
float aa =0.75;
float bb =075;
extern int f_xsize, f_ysize ;
extern imt location[2000](2] :
int innput[200]{100}{2] ;
extern imt length[200] ;
extern char word_number(200][15] ;
mindist (r, c, close)
int rc,
int *close ;
{
int i, sound ;
int comp_length ;
double dist ;
double minimum = 9.99e31 ;

for (sound = 0 ; sound < num_words ; sound+ +) {
if (length{sound] > mask{r]{c])
comp_length = length(sound] ;

else
comp_length = mask(ri[c] ;
dist = 00 ;
for (i = 0;i< comp_length ; i++) {
dist + = abe (map2[r){c][i)[0] - innput{sound][i][0]) +

B-158

Appendix B: Computer Programs twopic8c

abe (map2(r}(c}(i]{1] - innput(sound](ij[1]) :

}
i (dist < minimum) {
minimum = dist ;

*close = sound ;
}
}
node_dist = minimum ;
}
maein ()
{
int c:
printt ("\nTWOPIC8¢ (Closest (taxi) to sach node: 100 wts/2-D)..\n") ;
map_speech () ;]
}
;mp_spooch 0
int reijkxy;
char name_trj[30], temp{30] ;
int loc ;

FILE *fnet, *fiog, *fmask ;

printf ("\nEnter name of pre-processor Koh net-file [less .net]: ") ;
scanf (“%s", temp) ;
sprintf (firet_net_file, “%s.net”, temp) ;

printf (“Enter name of header file containing words (less .hdr): ") ;
scant (“%e", temp_file) ;
sprint! (training_file, “%s.hdr", temp _file) ;

primf (“Enter name of output Koh net_file [less .net): ") ;
scanf (“%s", temp_file) ;

sprintt (net_file, “%s.net", temp_file) ;

sprintt (temp, “%s.msk", temp_file) ;

tnet = fopen (net_file, “r") ; -
fscant (fnet,"%d %d %d", &ysize, &xsize, &number_inputs) ;
for(r=0;r<ysize;r++)
for(c =0;c < xsize ; c++) {
for (i = 0 ;i < number_inputs ; i+ +) {

fscanf (fnet," %d %d", &x, &y) ;

map2[r)(c]{i}[0] = x;

;ﬂap2[fl[61(51[11 =y -

}
fciose (fnet) ;

read_trn_file () ;

fmask = fopen (temp, "“r"}) ;
for(r=0.r<ysize;r++) {
for(c =0;c<xsize;c++){
fscanf (fmask, "%d", &mask{r}{c]) .
}

}
fclose (fmask) ;

Appendix B: Computer Programs twopicBc

flog = fopen (‘temp.log"."w") ;

fprintt (flog, “TWOPIC8b:\n") ;

fprintf (flog, -> %e -> %s ->\n", first_net_file, net_file) ;
fprintt (flog, “Size is %d by %d nodea\n”, xsize, ysize) ;

printf (“\nExpect %d caiculations.\n", num_words) .
fprintt (flog, “Expect %d calculations.\n", num_words) :
pringt ("\nReading word:) ;
for (r = 0;r < num_words ; r++) {
printf (“%d ", 1) |
getin 0 ;
for (¢ = 0 ¢ < number_inputs ; c+ +) {
innput{r}(c][0] = location[c]{0] ;
innput{r](c](1] = location[c}{1] .
}

i
printf (A0}
for(r =0;r<ysize r++){
tor(c =0;c<xsize;c++) {
mindist (r, c, &loc) ;
k=c +r*xsize;
printf (“\nNode %3d : word # %3d, dist = %le ",
k, loc, node_dist) ;
printf (“(%8)", word_number{loc)) ;
forintt (flog, “\nNode %3d : word # %3d, dist = %le ",
k, loc, node_dist) ;
fprintt (flog, “(%e)", word_numberf{loc)) ;
}

}
printt (*\nCalculations finished.\n") ;
fclose (fiog) ;

B-160

Appendix B: Computer Programs

$ link codebk,options_file/opt
,.

SERARGRL RS ARAAN LNV ERAREDNNERRENES M (] AR RN ENRERALLLRLARAANEASROTREND

Routine 1o generate and test an untrained second Kohonen net.

An untrained net is generate by taking stored trajectories from
path.det and storing them as weights in respective nodes. That
is, the first row are assigned the zeros through to the last

row assigned the nines.

A test set of digits is specified, and tested using DTW(mask[],
length{]). Al trajectories are 100scalars filled with

trailing O's.

ORI PANENREARURBANBANENRANEARDRA RN SAAARAEAAANNANENNSAELONERS

G. BARMORE1 Sep 88

*/
inciude math
include stdio
include stat
int number_discretes .
int word_counter ;
int num_words ;
char word_number{100J{15] ;
inm f_ysize, f_xsize, f_number_inputs ;
fioat f_map[20]{20)(16] ;
float map(20](20}[225] ; /* output nodes */
double input[225) ; /* input nodes */
double node_dist ;
int closest[2] ; /* closest node */
int xsize, ysize ; /* Size of array */
in number_inputs ;
char training_file[30], temp_file[30], first_net_file[30) ;
char net_tile[30] ;
int mask[20)[20] ;
int map2{20]{20](100](2] :
fioat aa =075;
fioat bb =075 ;
int length{200] ;
int location[2000]{2] ;
mindist (close)
int “ciose ;
{
int rc,;
double dist ;
double minimum = 9.99e31 ;

for(r=0;r<ysize;r++) {
for(c=0;c<xsize;c++) {
dtw (&map2(r][c]{0][0]. location, mask(r]{c],
tength{0], &dist) .
it (dist < minimum) {

minimum = dist ;
*close = ¢ ;
}

}

}
node_dist = minimum ;

int

printf ("\nCODEBK: Uses path.dat as codebook..\n") ;

¢,

map_speech () ;

}
f{mp_spooch 0

im
char
int
FILE

printf (“\nEnter name of pre-processcor Koh net-file [less .net].) ;

r,cijk;
name_trj[30}, temp[30} ;
loc ;

*et, *flog, *fmask ;

scanf (“%s", temp) ;
sprintf (first_net_file, “%s.net", temp) .

printf (“Enter name of header file containing words (less .hdr): ™) ;

scant (“%e", temp_file) ;

sprintf (training_file, “%s.hdr", temp_file) ;

read_trn_file (;

flog = fopen (“temp.iog"”."w") ;

tprintt (flog, “CODEBK: %s\n", name_trj) ;

tprintf (flog, -> %s -> path.dat ->\n", first_net_file) .

tprimtt (flog, “Size is %d by %d nodes\n", xsiz2, ysize) ;

printt ('"\nExpect %d calculations.\n", num_words) ;

tprintt (flog, “Expect %d calculations.\n", num_words) ;
for(r =0

i r < num_words ; r++) {
getin § ;
mindist (&loc) ;

printf ("Word %3d is: %3d\n", r, loc) :
tprintf (flog, “Word %3d is: %3d\n”, 1, loc) ;

}
printf ("\nCalculations finished.\n") ;
fclose (flog) ;

}

dtw (templiate, utterance, t_length, u_length, ave_dist)

int
int
double

float
int
int
int
float

templata[200](2], utterance{200](2] .

t_tength, u_length ;
*ave_dist ;

back_path[2](200] ;
b_p{2](200] :

re;

ptr. b_ptr;

d1, d2, d3, dist ;

B-167

Appendix B: Computer Programs codebk

dist = 0.0;
bptr=1;
b_p[0}{0] = 1;
for (r = 1;r < t_length; r+ +)
b_p[0]lr] = b_p[O]{r-1] + 1;
for(r=0;r<t_length;r++){
back_path[0j{r] = (dist += bb * (
abe(utterance{0](0] - tempiate(r]{0]) +
abe(utterance(0](1] - tempiate(r]}{1]))) ;

}
tor(c = 1; ¢ < u_length ; c++) {

it (b_ptr ==0) {
bptr=1;
pr=0;
}

else {
bptr=0;
ptr=1,;

}
tor(r=0;r<t_length;r++) {

dist = abe(utterance(c](0] - template(r}{0]) +
abs(utterance(c](1] - template(r}{1]) ;

if{r == 0){
back_path{ptr]{r] = back_path{b_ptr](r] +

{aa * dist) ;

;’_Plptrl[r] =b_plb_ptr{r} +1;

else {
d1 = back_path[b_ptr){r-1] + dist ;
d2 = back_path[ptrj[r-1] + (bb * dist) ;
d3 = back_path{b_ptr]{r] + (aa * dist) ;
it (d2 <= d3 8& d2 < d1){
back_path{ptr][r] = d2;
§>_plmr1lr1 = b_p[ptr][r-1] + 1;

else if (d3 <= d2 && d3 < d1) {
back_path{ptri{r] = d3 ;
b_p{ptri{r] = b_p[b_ptrl{r] + 1:

eise {
back_path[ptr}{r] = d1;
o_plptr}ir} = b_plb_ptriir-1} + 1 ;
}
}
) }
*ave_dist = back_path[ptr][t_length-1} / b_p[ptr][t_length-1] .
}
read_tm_file ()
{
FILE *tf, *fnet ;
int pi.rc;
int temp, k, number ;

tt = fopen (training_file, “r") ;
fscanf (if, "%d", &num_words) ;
for (i = 0;i < num_words ; i+ +) 1

B-168

Appendix B: Computer Programs codebk

fecant (if, “%s", word_numberf{i]) ;
fclose () ;

fnet = fopen (first_net_file, “r") ;
focant (Inet,"%d %d %d", &1_ysize, &1_xsize, &¢_number_inputs) ;
for(r=0;r<fysize;r++){
for(c =0;c <fxsize;ct++){
for (i = 0; i < f_number_inputs ; i+ +) {
f)-c-m (tnet,” %F", &_map(r)[c](i] ;

}
fclose (fnet) ;

ysize = (xsize = 10) ;
number_inputs = 100 ;

fnet = fopen (“path.dat”, "r") ;
tscant (fnet, “%d", &num_words) ;
for (r=0;r<ysize;r++) {
for (c = 0;¢ < xgize; c++) {
for (i = 0;i < number_inputs ; i+ +) {
tecant (tnet,” %le”, &mapjr)[c]li)) ;
}

}
fciose (fnet) ;

for(r=0;r<ysize;r++) {
for (¢ =0;c < xsize ; c++) {

number =0 ;

for {i = 0;) < number_inputs ; i+ +) {
it (map(r}(c]{i] > 5.0e-4)

number+ + ;

temp = (int) (map(r](c]{i] * 226.0 - 1.0) .
k = temp % {_xsize ;
map2[r}[c}{i}{1]) = (temp - k) / f_xsize ;
map2[r][c][i][0] = k

mask(r}j{c] = number ;

}
word_counter = 0 ;
}
getin ()
{
if (word_counter == num_words)
word_counter = 0 ;
read_word (word_counter) ;
word_counter+ + ;
}
read_word (pointer)
int pointer ;
{
int flag,r.c.ij. k.

double in[16], d1, d2, d3, d4, d5 ;
float element ;

B-169

m

Appendix B: Computer Programs codebk
int loc2{2000]{2}, loc3[2000}(2] ;
FILE *fand ;
it sound, point, x{5}, y{5] :

im max_pts ;
double mex ;
for (i = 0 ;i < number_inputs ; i+ +)
input(ij = 0.0;
tsnd = fopen (word_number[pointer], “r") ;
sound =0
i=0;
flag =0;
while (flag 1= 1) {
fscant (fsnd, “%{", &elament) ;
it (feot(fsnd) 1=0)
flag = 1;
eise it (i > 99)
flag = 1,
eise {

in{i] = (double) element ;
i++;

}
if (i == 15) 8& (flag == 0)) {
t_mindist (I_map, in, &loc2(sound](0]) :
i=0;
sound+ + ;

}

}
fclose (fend) ;
for(i=0;i<sound;i++){
loc3[i){0) = loc2(i}[0] :
loca[i)[1] = loc2fi][1]) ;

max_pts = sound ,

... Trajoctory Reduction ...

for(i=0;i<j;i++){
location([i} (0] = loc2[i}{0] :
location(i}[1] = toc2[i](1] ;
}

length({0} = j .

for(i=];i<200;i++)
locationli][1] = (location(ij[0] = 0} :

}
t_mindist (f_map, inp, close)
double inp(16]) ;
int closef?) :
float f_map(20][20][16] ;
{
im rei;
double dist ;
doubie minimum = 9.99e31 ;

for(r=0;r<fysize r++){
for(c =0,c <f xsize ,c++){
dist = 0.0 ;
for (i = 0 ;i < f_number_inputs ; i+ +)
dist + = pow (inp(i] - {_map{r]{c]{i]. 2.0} ;

B-170

-

_!

Appendix B: Computer Programs codebk
it (dist < minimum) {
b minimum = dist ;
close[0] = ¢ ;
close[1] =r;
}
}
}
}
B-171

m ——— .

Appendix B: Computer Programs codebkb

$ link codebkb,options_file/opt
/.

ARERREEESNEERAANEABRRANERNASANERR cmb ¢ AREARASRANERE RS RARRERNSEANRANRN SR

Routine to generate and test an untrained second Kohonen net.

An untrained net is generate by taking stored trajectories from

pathold.dat and storing them as weights in respective nodes. That

is, the first row are assigned the zeros through to the last -
row assigned the nines.

A test set of digits is specified, and tested using DTW(mask(],
length(]). All trajectories are 75 scalars filied with

trailing O's.
AARREARENERARAASRENNANRRNNEANRERESAAIRNNNNRANNENRRRRARRNAARNSS

G. BARMORE1 Sep 88

*/
include math
include stdio
include stat
int number_discretes ;
int word_counter ;
int num_words ;
char word_number[100][15] ;
i f_ysize, t xsize, f_number_inputs ;
float 1_map[20}{20){16) ;
float map[20]{20]{225] . /* output nodes */
double input[225) ; /* input nodes */ -
double node_dist ;
int closest[2] ; /* closest node */
im xsize, ysize ; /* Size of array */
im number_inputs ;
char training_file{30], temp_file(30], first_net_file{30] ;
char net_file[30] ;
int mask[20](20] ;
int map2(20](20]{100](2] ;
float aa = 0.75;
float bb =075 ;
int length[200) ;
int location{2000){2] ;
mindist (close)
int *close ;
{
int f,.C.
double dist | ;
double minimum = 9.99e31 ;

for(r=0;r < ysize;r++){
for{c =0.c < xsize;c++) {
dw (&map2[r][c]{0]{0]. location, mask{r}{c],
length({0), &dist) ;
if (dist < minimum) {

Appendix B: Computer Programs codebkb

minimum = dist ;
*ciose = ¢ ;
}

}

}
node_dist = minimum ;

main ()
int c.

printt (‘"\nCODEBKD: Uses pathoid.dat as codebook...\n") ;
) map_speech () ;

;mp.spooch 0

int r.cijk;

char name_trj[30], temp{30] ;
int loc ;

FiLE *inet, *flog, *fmask ;

printt (“\nEnter name of pre-processor Koh net-file [less .net]: ™) ;
scanf (“%8", temp) ;
sprintf (first_net_file, “%a.net", temp) ;

printt (“Enter name of header file containing words (less .hdr): ™) ;
scant (“%s", temp_file) ;
sprintf (training_file, “%s.hdr", temp_file} ;

read_trn_file () ;

flog = fopen ("“temp.log”,"w") ;

fprintt (fiog, “CODEBKD: %s\n", name_trj) ;

fprintf (flog, *-> %s -> path.dat ->\n", first_net_file) ;
fprintt (flog, "'Size is %d by %d nodes\n™, xsize, ysize) ;

printt (“\nExpect %d calculations.\n", num_words) ; -
fprintf (flog, “Expect %d calculations.\n"', num_words) ;
for (r =0, r < num_words ; r++) {

getin () ;

mindist (&loc) ;

printt (“Word %3d is: %3d\n", r, loc) ;

fprintf (Hlog, “Word %3d is: %3d\n", 1, loc) ;

}

printt ("\nCalculations finished.\n") ;

tclose (flog) :
}

ditw (template, utterance, t_length, u_length, ave_dist)
int template{200](2], utterance[200}(2} ;
int t_length, u_length ;
double *ave_dist ;

fioat back_path{2]{200] :
int b_p{2}{200] ;

int re,

int ptr, b_ptr ;

float d1, d2, d3, dist ;

Appendix B: Computer Programs

dist = 0.0;
b ptr=1;
b_p[o}[0]) = 1:
for{r=1;r<tlength;r++)
b_pl0](r] = b_p(O}{r-1] +1;
for(r=0;r<t length;r++){
back_path{0][r] = (dist +=Dbb * (
abe(utterance[0]{0] - template(r}{0]) +
abe(utterance[0][1] - template(r](1]}))} ;

}
for(c =1;c<u_length;c++) {
if (b_ptr ==0) {
bptr=1;
ptr=0;
}
else {
bptr=0;
ptr=1;
}
for(r =0;r<tlength; r++) {
dist = abs(utterance(c}{0] - template[r}[0]) +
abs(utterancefc][1] - template[r][1]) .

#(r==0)}
back_pathiptr][r] = back_path[b_ptr][r] +
(am * dist) ;
;>_plptrllrl = b_plb_ptrl{r] + 1:
else {
d1 = back_path[b_ptr][r-1] + dist ;
d2 = back_path[ptr]{r-1] + (bb * dist) ;
d3 = back_path[b_ptr](r] + (aa * dist) ;
if (d2 <= d3 &8 d2 < d1){
back_path{ptr](r] = d2 ;
;J_plptrllrl = b_p{ptr{r-1] + 1;
else if (d3 <= d2 && d3 < d1) {
back_path(ptr](r] = d3;
;>_p[ptr1(rl =b_p(b_ptr}{r] + 1;
eise {
back_path{ptr](r] = d1;
b_piptr]{r] = b_plb_ptr]{r-1] + 1,
}
}
, }
*ave_dist = back_path(ptr](t_length-1] / b_p[ptr][t_length-1] |
}
read_trn_file ()
FILE *tf, *fnet ;
int pirc,
int temp, k, number ;

tf = fopen (training_tile, “r") ;
fscant (Hf, “%d", &num_words) ;
for (i = 0;i < num_words ; i+ +)

Appendix B: Computer Programs codebkb

getin

}

fscant (tf, “%a", word_number[i]) ;
fclose (tf) ;

fnet = fopen (first_net_file, 1) ;
fecant {fnet, %d %d %d", &f_ysize, &1 xsize, &f_number_inpute) ;
for(r=0;r<fysize;r++) {
for{c=0;c<ftxsize;c++){
for (i = 01 < f_number_inputs ; i+ +) {
f}'cln' (net,” %f", &_map|r){c)li)) ;

}
fcioes (fnet) ;

ysize = (xsize = 10) ;
number_inputs = 75,

fnet = fopen ("'pathoid.dat”, "r") ;
fscant (inet, “%d", &num_words) ;
for(r=0;r<ysize;r++) {
for(c =0;c < xsize;c++) {
for (i = 0 ; i < number_inputs ; i+ +) {
fecant (fnet,” %le”, &map|ri[cl(i]) ;
}

}
fciose {iner) .

for(r=0;r<ysize;r++) {
for{c =0;c < xsize;c++) {

number = 0,

for (i = 0, i < number_inputs ; i++) {
it (map[n[c][i] > 5.0e-4)

number+ + |

temp = (inf) (map|r][c]{i] * 225.0) :
k = temp % {_xsize ;
map2(r][c](i]{1] = (temp - k) / {_xsize ;
map2(rl{c]((0] = k:

mask(r][c] = number ;

}

word_counter = 0 ;

if (word_counter == num_words)
word_counter = 0,

read_word (word_counter) ;

word_counter+ + |

read_word (pointer)

{

int paointer ;

int flag,r. c. i j k,
double in{16], d1, d2, d3,d4,dS ;
float element ;

)
Appendix B: Computer Programs codebkb
u in loc2{2000](2], loc3{2000]{2] ;
FLE “fand ;
int sound, point, x[S], y(5] ;
int max_pts ;
double max ;
for (I = 0 ;i < number_inputs ; i+ +)
input{] = 0.0;
fend = fopen (word_number[pointer], “r") ;
sound =0
i=0;
flag =0
while (flag t= 1) {
fscant (tsnd, “%f", &element) ;
if (feof(fend) !=0)
flag = 1,
else it (i > 99)
flag =1,
else {
infi] = (double) element ;
i+t+;

}
it (i == 15) && (flag == 0)) {
t_mindist (f_map, in, &loc2{sound][0]) :
i=0;
sound++ ;

}

}

fclose (fsnd) ;

for (i=0:i<sound,i++){
loc3{i}(0] = loc2(i}{0) :
loc3{il{1] = loc2(i}(1} :
}

max_pts = sound ;

.. Trajectory Reduction ...

fori=0;i<j;i++){
location]i)[0]) = loc2[i}(0]
location[i}){1} = loc2(i}{1) ;
}

length{0] = |,

for(i=j.i<200;i++)
location{ij[1] = (location][i][0] = 0) ;

}
f_mindist (f_map, inp, close)
double inp{16] ;
int close(2] ;
tloat f_map{20][20](16] :
{
im rci;
double dist ;
double minimum = 9.99e31 ;

for (r = 0;r < f_ysize ; r++) {
for(c =0;c < xsize;c++){
dist = 0.0;
for (i = 0 ;i < f_number_inputs ; i+ +)
dist += pow (inp(i] - I_map(ri{c]{i]. 2.0) .

B-176

Appendix B: Computer Programs codebkb

if (dist < minimum) {
minimum = dist ;
close[0] = ¢ ;
close[l) =r;
}

B-177

------ mc ARREELONERBEAENARARNAR SN ARG RERARR

Routine to generate and test an untrained second Kohonen net.

An untrained net is generate by taking stored trajectoriee from
path.dat and storing them as weights in respective nodes. That
is, the first row are assigned the zeros through to the last

row assigned the nines.

A test sat of digits is specified, and tested using TAXI distance.
All trajectories are 100 scalars filled with trailing O's.

AERENEREANSENEEAANBALRNRANARESANOAARKACARARSNEORNARSDASERAD OSRGOS

G. BARMORE1 Sep 88

*
include math
include stdio
include stat
int number_discretes ;
int word_counter ;
int num_words ;
char word_number[100][15] ;
int {_ysize, t_xsize, {_number_inputs ;
fioat t_map(20](20j(16]}
float map{20][20)(225] ; /* output nodes */
double input[225] ; /* input nodes */
double node_dist ;
int closest{2) , /* closest node */
int xsize, ysize ; /* Size of array */
int number_inputs ;
char training_file(30], temp_file[30], first_net_file{30] ;
char net_file{30] ;
int mask[20](20] .
int map2(20}{20][(100}[2] .
float aa =075;
float bb =0.75;
in length[200] ;
int locationf2000] {2} ;
mindist (close)
int *close ;
{
int ir¢c,
double dist .
double minimum = 9.99e31 ;

for{(r=0;r<ysize;r++)
for(c =0;c < xsize ;c++) {
dist = 00 ;
for (i = 0, i < number_inputs ; i+ +) {
dist + = abs(map2[r])[c)[i){0)-location[i){0]) +
abs(map2[r)ic][i}[1)-location{i)[1]) ;

B-178

Appendix B: Computer Programs

}

if (dist < minimum) {
minimum = dist ;
*cloes = ¢ ;
}

}

}
node_dist = minimum ;

i [

printt ("\nCODEBK: Usee path.dat as codebook..\n") ;
) map_speech () ;

r{n-p.spooch 0
int rneijk;
char name_trj{30], temp{30] ;
int loc ;
FILE *fnet, *flog, *fmask ;

printf (‘“\nEnter name of pre-processor Koh net-file {less .net]:) ;
scant (“%s", temp) ;
sprintt (first_net_file, "%s.net", temp) ;

printt (“Enter name of heeder file containing words (less .hdr):) |
scant (“%s", temp_file) ;
sprintt (training_file, *%s.hdr", temp_file) ;

read_trn_file () ;

flog = fopen (“temp.log”."w") ;

tprintt (flog, “CODEBK: %8\n", name_trj) ;

fprintt (flog, “-> %s -> path.dat ->\n", tirst_net_file) ;
fprintt (flog, "'Size is %d by %d nodes\n", xsize, ysize) .

printf (‘“\nExpect %d caiculations.\n", num_words) ;
tprintt (fiog, “Expect %d calculations\n™, num_words) ;
for (r = 0;r < num_words ; r++) {

getin) .

mindist (&loc) ;

printt (“Word %3d is: %3d\n", 1, loc) ;

tprintf (flog, “Word %3d is: %3d\n", r, loc) ;

printt (\nCalculations trshed.\n") ;
fclose (flog) ;
}

read_trn_file (
{
FILE *f, *fnet ;
int hirec,
int temp, k, number ;

tf = topen (training_file, “r") ;

Appendix 8: Computer Programs

getin {

}

fecanf (tf, "%d", &num_words) ;
for (i = 0 ;i < num_words ; i+ +)

fecanf (tf, “%s", word_number{i]) ;
fcloss () ;

fnet = fopen (first_net_file, "r") ;
tacant (fnet,"%d %d %d”, &1_ysize, &f_xsize, &f_number_inputs) ;
for(r=0;r<fysize,r++){
for(c=0;c<fxsize;c++){
for (i = 0;i < f_number_inputs ; i+ +) {
f}scmf (fnet,” %", &_map(r}lc)(i]) ;

}
felose (fnet) ;

ysize = (xsize = 10) ;
number_inputs = 100 ;

fnet = fopen ('path.dat”, “r'") ;
tscant {fnet, “%d", &num_words) ;
for(r=0;r < ysize; r++) {
for {c = 0;c < xsize; c++) {
for (i = 0 ;i < number_inputs ; i+ +) {
tscant (tnet,” %le", &map(r][c](i]) ;
}

}
fclose (fnet) :

tor(r=0:r<ysize, r++) {
for(c =0;c < xsize;c++) {
number = 0;
for (i = 0 ;i < number_inputs ; i+ +) {
it (mapir](c](i] > 5.0e-4)
number+ + ;

temp = (int) (map(r][c](i] * 226.0 - 1.0) ;

k = temp % t_xsize ;
map2[r}[c](i}[1] = (temp - k) / f_xsize ;
map2[r}{c]{[0] = k;

mask[r]ic] = number ;

}

word_counter = 0 ;

if (word_counter == num_words)
word_counter = 0 ;

read_word (word_counter) ;

word_counter+ + ,

read_word (pointer)

{

int painter ;

int flag,r.c. i j k;
double in{16], d1, d2, d3,d4,d5;

B-180

Appendix B: Computer Programs

}

float olement ;

in loc2{2000)[2), loc3[2000)[2] ;
FILE *fond ;

int sound, point, x[5}. y(5] ;

int max_pts ;

double max ;

for (i = 0 ;i < number_inputs ; i+ +)
input{i] = 0.0;
fsnd = fopen (word_number{pointer}], “r") ;

sound =0,
i=0;
flag=0;
while (flag != 1) {
fscanf (fand, “%f", &element) ;
it (feof(fand) !=0)
flag=1,;
else if (i > 99)
flag = 1,
eise {

in[i] = (double) element ;
i+t+;

}
#((i == 15) && (flag == 0)) {
1_mindist (f_map, in, &loc2{sound][0]) ;
i=0;
sound++ ;

}
}
felose {fsnd) .

for(i=0;i<sound;i++) {
loc3(i][0] = loc2{il{0} ;
loe3(ij[1] = loc2{i](1] ;
}

max_pts = sound ;

... Trajectory Reduction ...

for(i=0 i<jii++){
location(i}{0] = loc2(i}[0] ;
location{i}{1] = loc2(il{1] :
}

length{0] = ;

for(i=j;i<200;it+)
location(i]){1] = (location[i][0] = 0) .

f_mindist (f_map, inp, ciose)

double inp[16] ;

int close[2] ;

float f_map{20}(20](16] ;
int r.ci;

double dist ;

double minimum = 9.99e31 ;

for(r=0;r <t ysize;r++){
for(c =0;c<fxsize;c++){
dist = 00;

B-181

Appendix B: Computer Programs codebi2

for (i = 0 ;i < f_number_inputs ; i+ +)

dist += pow (inpfi] - _mep{r][c](i], 2.0) ;
it (dist < minimum) {

minimum = dist ;

cloee{0] =c;

close[1} =r;

}

B-182

Appendix B: Computer Programs

$ link codebi2b,options_file/opt

I. L] 121221181322] m.c AN NEANSatettitetRAREStstoRRNtRe
Routine to generate and teet an untrained second Kohonen net.
An untrained net is generate by taking stored trajectories trom
pathoid.dat and storing them as weights in respective nodes. That
is, the first row are assigned the zeros through to the last
row assigned the ninee.
A test set of digits is specified, and tested using TAX! distance.
All trajectories are 75 scalars filled with trailing O's.
FERERECRCREANNNNNL AN AR R ENAERNAAAARERAREARAAANARERAAEARAGEREND
G. BARMORE1 Sep 88
*/
include math
include stdio
include stat
int number_discretes ;
int word_counter ;
int num_words ;
char word_number{100](15] ;
int t_ysize, f_xsize, _number_inputs ;
float t_map[20j(20][16] ;
float map{20}[20}[225] ; /* output nodes */
double input[225) ; /* input nodes */
double node_dist ;
int closest[2] ; /* closest node */
int xsize, ysize ; /* Size of array */
int number_inputs ;
char training_file[30], temp_tile[30], first_net_file[30) .
char net_file{30] ;
int mask([20](20] ;
im map2{20]{20](100}(2] :
float aa = 0.75;
float bb =0.75;
im length{200] ;
int location[2000]{2] ;
mindist (close)
im *close ;
{
int i,r,c;
double dist ;
double minimum = 9.99e31 ;

for(r=0;r<ysize;r++){
for(c=0;c<xsize;c++){
dist = 0.0 ;
for (i = 0 ;i < number_inputs ; i+ +) {
dist+ =abs(map2[r][c}[i} [0)-location{i] [0]) +
abs(map2{r}[c](i][1]-locationi][1}) :

m

Appendix B: Computer Programs codebi2b

}
+ if (diet < minimum) {
minimum = dist ;
*close = ¢ ;
}
; }
node_dist = minimum ;

it c,

printt (‘\nCODEBK2b: Uses pathoid.dat & TAXI ..\n") ;
) map_speech () ;

r{n-p_cpooch 0
int rc i jk;
char name_trj[30], temp{30] ;
int loc ;
FILE *net, *flog, *fmask ;

printf (‘“\nEnter name of pre-processor Koh net-file [less .net). ") ;
scant (“%s", temp) ;
sprintf (first_net_file, “%s.net", temp) ;

printt (“Enter name of header file containing words (less .hdr):) ;
scanf (“%e", temp_file) ;
sprintf (training_file, “%s.hdr”, temp_file) ;

read_trn_file () ;

flog = fopen (“temp.log”,"w") ;

tprintt (flog, “"CODEBKD: %s\n", name_trj) ;

tprintt (flog, -> %e -> path.dat ->\n", first_net_file) ;
tprirgt (flog, "Size is %d by %d nodes\n", xsize, ysize) ;

printf ("\nExpect %d calculations.\n", num_words) ;
fprintt (flog, “Expect %d calculations.\n", num_words) ;
for (r = 0;r < num_words ; r++) {

getin () ;

mindist (&loc) ;

printf (“Word %3d is: %3d\n", r, loc) ;

fprintf (flog, “Word %3d is: %3d\n”, r, loc) ;

}
printf ("\nCalculations finished.\n"} ;
fclose (flog) ;
}

read_tm_file
FILE *ff, *inet;

im hirne;
in temp, k, number ;

tf = fapen (training_file, "r") ;

B-184

Appendix B: Computer Programe codebi2b

getin ()

}

facant (i, “%d”, &num_words) ;
for (1 =0 ;i < num_words ; i++)

fscant (tf, “%s", word_number(i]) ;
fciose (1f) ;

fnet = fopen (first_net_file, “r') ;
facant (fnet,"%d %d %d", &1_ysize, &1_xsize, &f_number_inputs) ;
for(r=0;r<fysize;r++){
for (c =0;c <fxsize;ct++)(
tor (i = Qi < t_number_inputs ; i+ +) {
fecant (fnet,” %f", &_map[r)[c][i]) ;
}

}
fclose (fnet) ;

ysize = (xsize = 10) ;
number_inpute = 75 ;

fnet = fopen ("pathold.dat”, "'r') ;
fscant (fnet, “%d", &num_words) ;
for(r=0;r<ysize;r++){
for(¢c =0;c < xsize;c++){
for (i = 0, i < number_inputs ; i+ +) {
fscant (fnet,” %le", &map(rifc][i)) ;
}

}
fciose (fnet) ;

for(r=0;r<ysize;r++) {
for (¢ = 0; c < xsize ; c++) {

number =0 ;

for (i = 0 ;i < number_inputs ; i+ +) {
it (maplr]{c]{i] > 5.00-4)

number+ + ;

temp = (int) (map(r]{c]{i] * 225.0) ;
k = temp % f_xsize ;
map2{r](c]i][1] = (temp - k) / {_xsize ;
r}mp2(rl(c}[i](01 =k;

mask|r][c] = number ;

}

word_counter = 0 ;

if (word_counter == num_words)
word_counter = 0 ;

read_word (word_counter) ;

word_counter + + ;

read_word (pointer)

{

int pointer ;

int flag, r. c,i. j, k;
double in(16], d1, d2, d3, d4, d5 ;

B-185

m

}

Appendix B: Computer Programs

float slement ;

int 10c2{2000] (2], loc3[2000}(2] :

FILE *fand ;

int sound, point, {5}, y[S] :

in max_pts ;

double max ;

for (i = 0 ;i < number_inputs ; i+ +)
inputfi} = 0.0;

fsnd = fopen (word_number{pointer], “r) ;

sound = 0 ;

i=0,;

flag =0;

while (flag != 1) {
tscant (fsnd, “%f", &element) ;
it (feof(fsnd) ! =0)

flag=1;
eise if (i > 99)
flag = 1;

else {
infi) = (double) element ;
it+;

}
if (| == 15) && (flag == 0)) {

f_mindist (f_map, in, &loc2[sound}{0]) ;

i=0;
sound++ ;

}

}

fclose (tsnd) ;

for (i =0.i<sound:i++){
loc3(i}[0] = loc2(i}[0] ;
loc3(ij(1] = loc2(il(1]} ;
}

max_pts = sound ;
... Trajectory Reduction ...

for(i=0:i<j:i++){
location(i][0] = loc2[i]{0] ;
location(i}{1] = loc2(il{1} ;

length{0] = j ;
for(i=j:i<200;i++)
location(ij[1] = (location(i]{0] = 0) .

f_mindist (f_map, inp, close)

double inp(16] ;

int close(2] ;

fioat f_map[20}[20){16) ;
int rei;

double dist ;

double minimum = 9.99e31

for r =0;r <1 ysize;r++) {
for{c =0 ;c <1 _xsize;c++) {
dist = 0.0;

B-186

codebk2b

Appendix B: Computer Programe

for (i = 0;i < f_number_inputs ; i+ +)

dist += pow (inpli] - L_mapir]ic]ii). 2.0) :

if (dist < minimum) {
minimum = dist ;
close[0] = ¢;
close[l] =r;
}

codebizb

Appendix B: Computer Programs

----- m ¢ RERAEREBNARAREAREEE AR A RS ERDARATN

This routine creates an untrained second Kohonen with stored
trajectories from a *.dat file and test them on a specified set
of digits using DTW distance.

Trajectories are 100 x-y pairs filied with trailing -1's. The

user

may choose the length used in DTW distance.

EEARRAARARNERARAANEANEARANACRAREENRARENEAANANSAARRENRECSARIROE

*

include math
include stdio
include stat

int
int
int
char

int
fioat

float
double
double

int
int
int

char
char

int
int
float
float
int
int

mindist (close)
int

{

int
double
double

G. BARMORERS Sep 88

number_discretes ;
word_counter ;
num_words ;
word_number{100]{15] .

f_ysize, f_xsize, f_number_inputs ;
{_map[20)[20)[16] ;

map{20][20]{225] ; /* output nodes */
input[225] ; /* input nodes */
node_dist ;

closest[2] ; /* closest node */
xsize, ysize ; /* Size ot array */
number_inputs ;

training_file(30], temp_file{30], first_net_file(30] ;
net_file{30] ;

mask({20]{20] ;
map2(20]{20]{100][2] :
aa =075,

bb =075
length[200] ;
location{2000}[2) ;

*close ;
rne;

dist ;
minimum = 9.99e31 ;

for(r=0;r<ysize;r++) {

for(c =0;c < xsize;c++) {

dtw (&map2{r]{c]{0](Q]. location, mask(r](c],
length(0], &dist)

if (dist < minimum) {
minimum = dist ;
*cloge = ¢ ;

}

B-188

Appendix B: Computer Programe coder

}
node_dist = minimum ;

printf (‘“\nCODER: Create codebook using x-y pairs/dtw..\n") ;
) map_speech () ;

map_speech ()
{
int rcijk;
char name_tri{30], temp[30] ; -
int loc
FILE *fnet, *flog, *fmask ;

printt (\nEmer name of pre-processor Koh net-file {iess .net}. ™) |
scanf (“%s", temp) ;
sprintt {first_net_file, “%s.net”, temp) .

printf (“Enter name of header file containing words (less .hdr):) .
scant (“%s", temp_file) ; —-
sprintf (training_file, “%s.hdr", temp_file) ;

printt (“Enter .dat file for net generation (less .dat). ™) .
scanf (“%s", temp_file) ;
sprintt (net_file, “%s.dat™, temp_file) ;

printf (“Enter [number_inputs] desired (<=100). ") ; -
scant ("%d", &number_inputs) ;

read_tm_file { ;

flog = fopen (“temp.log”."w") ;

fprintt (flog, “CODER:\n") ;

fprintf (flog, “%s -> %8 -> %s\n", training_file,
firet_net_file, net_file) ,

fprintt {flog, “Size is %d by %d nodes\n", xsize, ysize) .

printf ("\nExpect %d calculations.\n", num_words) ;
fprintt (flog, "Expect %d calculations.\n", num_words) ;
for r = 0;r < num_words ; r++) {

getin () ;

mindist (&loc) ;

printf ("Word %3d is: %3d\n", r, loc) ;

tprintt (flog, “Word %3d is: %3d\n", r, loc) ;

}
printt ("\nCalculations finished.\n") ;
fclose (fiog) .
}

diw (template, utterance, t_length, u_length, ave_dist)
int template[200} (2], utterance[200][2] ;
int t_length, u_length ;
double ‘ave_dist ;

flost back_path[2][200] ;

Appendix B: Computer Programs

int b_pj2}[200) ;
int rne;

int ptr, b_ptr ;

flost di, d2, d3, dist ;

dist = 0.0;
b_ptr=1;
b_p[0)[0] = 1;
for{r=1;r<t_length;r++)
b_p[0}{r) = b_p[0)[r-1] + 1;
for(r=0;r<t_length; r++) {
back_path{0}(r] = (dist += bb * (
aba(utterance(0][0] - template[r)[0]) +
abse(utterance[0)[1) - template[r)[1])))

for{c=1;:c<u_length;c++){

(b_ptr ==0) {
bptr=1;
ptr=0;
}

eise {
bptr=0;
ptr=1,;

forr=0:r<t_jongth ;r++) {
dist = abs(utterance|[c}[0] - template(r)[0)]) +
abs(utterance(c][1] - template[ri[1]) :
if (r == 0){
back_path(ptr|[r] = back_path{b_ptr]{r] +
(aa * dist) ;
;)_P[Pfrlfrl = 0_p{b_ptrj[r] + 1;

olse {
d1 = back_path[b_ptr][r-1] + diet ;
d2 = back_path{ptr){r-1] + (bb * dist) ;
d3 = back_path[b_ptr](r] + (aa * dist) ;
if (d2 <= d3 &8 d2 < d1){
back_path(ptr]{r] = a2 ;
;!_plptrl[fl = b_plptr]fr-1) + 1;

else if (d3 <= d2 && d3 < d1) {
back_path{ptri{r] = d3 ;
;’_P(P"H') =b_pib_ptr}[r) + 1,
else {

back_path[ptr](r] = d1;
;Lp[p"l[r] = b_plb_pr][r-1] + 1 ;

}

}
*ave_dist = back_path{ptr]{t_length-1] / b_p[ptr}[t_length-1] ;
}

read_tm_file
FILE *tf, *tnet ;

int pi,nc;
inm temp, k, number ;

Appendix B: Computer Programs coder

tt = fopen (training_file, “r") ;
facanf (i, “%d”, &num_words) ;
for (1 =0; 1 < num_words ; i+ +)
fecand (tf, “%a", word_number{i]) ;
fcloes (1) ;

fnet = fopen (first_net_file, “r") |
tecand {fnet,"%d %d %d", &f ysize, &f xsize, &f_number_inputs) .
for(r=0;r<tysize;r++) {
for(c =0;c <t xsize;c++){
for (i = 0 ;i < f_number_inputs ; i+ +) {
tecand (fnet," %f", & _map(r][c]il) :
}

}
fclose {tnet) ;
ysize = (xsize = 10) ;

fnet = fopen (net_file, "r") ;
fscanf (fnet, “%d”, &num_words) ;
for(r=0;r<ysize;r++) {
for(c=0;c<xsize;c++){
for i=0,;i<100;i++){
fscant (fnet,” %d %d", &map2(r][c](il{0].
\ amap2(ri{c](i}(1)) :

}
fciocee (fnet) ;
for{r=0;r<ysize;r++) {

for(c =0;c < xsize;c++) {
number =0 ;

#t (map2{r}{c]{i][0] > -1)

number+ + ;

mask{r}{c} = number ;

}
word_counter = 0 ;
}
getin ()
{
if (word_counter == num_words)
word_counter =0 ;
read_word (word_counter) ;
word_counter+ + ;
}
read_word (pointer)
im pointer ;
{
int flag.r.c i j k;

double in[16], d1, d2, d3, d4, d5 ;
float element ;

Appendix B: Computer Programs

int 10c2(2000} 2], loc3{2000]{2] ;
FILE *fand ;

int sound, point, x[5}, y(5] ;
int max_pts ;
double max ;
fsnd = fopen (word_number{pointer], “r") ;
sound =0 ;
i=0;
flag =0;
while (flag != 1) {
fscanf (fsnd, “%f", &element) ;
it (fect(fend) 1=0)
flag =1,
olge if (i > 99)
fag=1;
else {
in[i] = (double) element ;
i+t+;

}
it (0 == 15) && (flag == 0)) {

t_mindist ({_map, in, &loc2{sound}{0]) ;

i=0;
sound++ ;

}

}
fclose (fsnd) ;
for(i=0;i<sound;i++){
loc3(i}{0] = loc2(i]([0] ;
'}003[i1[1l = loc2[i)(1] ;

max_pts = sound ;
... Trajectory Reduction ...

for(i=0;i<j;i++){
location{i][0] = loc2[i](0] :
location(i][1] = loc2[i}[1] ;

}
length[0] = j;
for(i=j;i<200;i++)
location[i]{1) = (location[i){0] = -1) ;
}

f_mindist (f_map, inp, close)
double inp[16] ;
int close{2] ;
float f_map[20}[20}{16] .

int e i,
double dist ;
double minimum = 9.99e31 ;

for(r=0.r <t ysize;r++) {
for(c =0;¢c < xsize ;c++) {
dist = 00;
for (i = 0. i < {_number_inputs ; i+ +)

dist += pow (inp(i] - f_map(rl{c}{i}, 2.0) ;

if (dist < minimum) {
minimum = dist ;

B-192

coder

Appendix B: Computer Programe coderb

/‘
............... w.c SESACANERGARNALEB AR NEANNRERNERESACRD
This routine creates an untrained second Kohonen net from a *.dat
file of stored trajectories and tests it with a specified set of
digits using TAX! distance.
Trajectories are 100 x-y pairs filled with trailing -1's. The
user may input the length used in TAXI distance.
RSN ENEEEREEN RNV RS AR AR LB CAENENVANAS RS AAAR SR CAENRASATRANEORNED
G. BARMORE2S Sep 88
*f
include math
include stdio
include stat
in number_discretes ;
int word_counter ;
int num_words ;
char word_number{100]{15] ;
int t ysize, f_xsize, f_number_inputs ;
float 1_map([20}[20][16] :
float map{20}[20)(225] ; /* output nodes */
double input[225] ; /* input nodes */
double node_dist ;
im closest(2] ; /* closest node */
int xsize, ysize ; /* Size of array */
int number_inputs ;
char training_file{30], temp_file[30), first_net_file{30} ;
char net_file{30] ;
int mask{20][20] ;
int map2{20}{20){100){2] :
float aa =075;
float bb =075;
int length(200] ;
int location{2000]{2] ;
mindist (close)
int *close ;
{
int irc;
double dist ;
double minimum = 9.99e31 ;

for(r=0,r<ysize;r++){
for(c =0;c¢c < xsize,c++) {
dist = 00 ;
for (i = 0; i < number_inputs | i+ +) {
dist + =abs(map2(r](¢](i]{0]-location(i] [0}) +
;ba(map2[rl[~=l[il[H-'oc&tion[il[ﬂ) ;

dist /= length{0] ;
if (dist < minimum) {

B-194

m

Appendix B: Computer Programa coderb

minimum = dist ;
*close = C ; -
}
}
}
node_dist = minimum ;
}

main (
int c,

printf ("\nCODERD: Create codebook using x-y pairs/taxi..\n") ;
; map_spesch () ;

r{nap_spooch 0
int r.c i jk,
char name_trj{30}, temp[30] ;
int loc ;
FILE *fnet, *flog, *fmask ;

printf (“\nEnter name of pre-processor Koh net-file [less .net}: "} |
scanf (“%s", temp) ;
sprintf (first_net_tile, “%s.net", temp) ;

prirtt (“Enter name of header file containing words (less .hdr):) ; :
scanf (“%s", temp_file) ; .
sprintt (training_file, “%s.hdr", temp_file) ;)

printt (“Enter .dat file for net generation (less .dat): ") ;
scanf (“%s", temp_file) ;
sprintt (net_file, "%s.dat”, temp_file) ;

printf (“Enter [number_inputs <= 100]: ") &
scant (“%d", &number_inputs) ;

read_trn_file () ; -

flog = fopen (“temp.log","w") |

tprintt (flog, “CODER:\N"} ;

fprintt (flog, %8s -> %8 -> %s\n", training_file,
first_net_file, net_file) .

forintf (flog, “Size is %d by %d nodes\n", xsize, ysize) ;

printf ("\nExpect %d calculations.\n", num_words) ;
tprintt (flog, “Expect %d calculations.\n", num_words) ;
for (r = 0; r < num_words ; r++) {

getin (;

mindist (&loc) ;

printt (“Word %3d is: %3d\n", r, loc) ;

fprintt (flog, “Word %3d is: %3d\n”, r, loc) ;

)
printt {“\nCalculations finished.\n") ;
fcloes (fiog) .
}

read_trn_file (
{

Appendix B: Computer Programe

getin

}

FLE *f, *tnet ;
int birne;
int temp, k, number ;

tf = fopen (training_file, “r") ;
fscanf (tf, “%d”, &num_words) ;
for (i =0;i < num_words ; i++)
fecant (tf, “%s", word_number{i]) ;
fciose (tf) ;

fnet = fopen (first_net_file, “r’") ;
facant (fnet,"%d %d %d", &f_ysize, &f_xsize, & _number_inputs) ;
for(r=0;r<t_ysize;r++){
for(c=0;c <t xsize:c++) {
for (i = 0;i < f_number_inputs ; i++) {
fscant (fnet," %f", &f_map(rl{cili]) ;
}

}
fclose (fnet) ;

ysize = (xsize = 10) ;
number_inputs = 100 ;

fnet = fopen (net_file, “r") ;
fscanf (fnet, “%d", &num_words) ;
tor{r=0;r<ysize;r++) {
for{c =0;c<xsize;c++){
for(i=0;i<100;i++) {

fscanf (fnet,” %d %d", &map2(r](c]{i][0].

&map2[r){c](il{1]) ;

}
fclose (fnet) ;

for(r=0;r<ysize;r++) {
for(c=0;c < xsize;c++) {
number = 0 ;
for (i = 0 ;i < number_inputs ; i+ +) {
it (map2{r)[c][i}{0] > -1)

number+ + ;
mask(r)[c] = number :

}

word_counter =0 ;

if (word_counter == num_words)
word_counter = 0 ;

read_word (word_counter) ;

word_counter+ + ,

read word (pointer)

int pointer ;

B-196

Appendix B: Computer Programs coderb
{

int Heg,r.c.i,j k;
double in{18}], d1, d2, d3, d4, d5 ;
flost olement ;
int loc2(2000](2], 10c3{2000)(2] ;
FILE *fand ;
int sound, point, x{S], y[5] ;
int max_pts ;
double max ;
fsnd = fopen (word_number{pointer], “r")
sound =0;
i=0;
flag=10.
while (flag 1= 1) {

tacant (fsnd, "%f", &element) :)

it fleci(fand) 1=0)

flag = 1;
else if (i > 99)
flag = 1;
eise {

infi} = (double) element ;
it+;

}
it ((i == 15) && (flag == 0)) {
f_mindist {{ map, in, &loc2{sound][0]) ;
i=0;
sound+ + ;

}
}
fciose (fsnd) ;

for (i =0;i < sound;i++) {
loc3[i}[0] = loc2{i][0] ;
loc3fil(1] = loc2(il{1] ;
}

max_pts = sound ;

... Trajectory Reduction ...

for(i=0;i<j;i++)¢
location(i}[0] = loc2[i)[0] ;
location(i){1] = loc2{i][1] ;
}

length(0] =j;

for(i=j;i<200;i++)
location{i){1] = (location[i){0] = -1) ;

}
f_mindist (f_map, inp, close)
doubie inp[16] ;
int close(2] .
float f_map{20][20](16]
{
int rei,
double digt ;
double minimum = 9.99e31 ;

for{r=0.r<f ysize;r++) {
for(c =0.¢c <t xsize ;c++) (

m o

Appendix B: Computer Programs coderb

dist = 0.0 ;
for | =0 ;i < f_number_inputs ; i+ +)

dist += pow (inp_, - {_map[ri(ci(i], 2.0 :
it (dist < minimum) {

minimum = dist ;

close[0] = ¢ ;

close{1] =r;

}

Appendiz C. Software User’s Manual

Introduction

The purpose of this user’s manual is twofold. First, it will demonstrate how to use the “C”
programs developed by Capt Barmore for his thesis, Speech Recognition Using Neural Nels and
Dynamic Time Warping. Secondly, it provides adequate information for someone with a raw copy
of the backup tape containing source, executable, and sound files to modify and recompile that

information on his own system.

Since this manual is written as an appendix to the subject thesis, it does not have a table of
contents or index. Thus, it is suggested that the reader skim the manual before beginning to read

in depth. The section headings should provide adequate information about the manual’s layout.

Please note that no attempt is made to describe all of the programs generated for this thesis
or even all of the options within the programs described below. When an option or program is not
described, its function can usually be determined by the input parameter prompt or the comments
in the source code, respectively. Also, the author does not guarantee the performance or use of any
program provided and is not liable for any damage pursuant to the use of any of these programs.
Finally this code was developed under Air Force funding and is therefore the property of the United

States Air Force.

The Backup Tape

The backup tape is simply that—a copy of all of the files used in the subject thesis that were
stored on the VAX 11/780 (with node-name [T&0A}. The author is not an expert on backups and
magnetic tape format; thus, the only information available is that the data was transferred using
the “backup”™ utility under the VMS operating system. The directories were “purged”. but no

attempt was made to remove data or program files that were cither superceded or just not useful.

C-1

-]

nl

la

®

The sections immediately following this paragraph provide a general description of the con-
tents of each of the directories. Sample runs of the most significant programs are provided in
later sections. The names of the following subsections actually correspond to the names of the
directories—or rather, that part of the path name corresponding to the subdirectories beneath

[KABRISKY.GBARMORE].

Dev. This directory contains the source (*.c), object (*.0), executable (*.exe), and *.com files
generated during program development. Not all of the *.0 and *.exe files were saved. However, they
can be regenerated by compiling the appropriate source file (*.c) with a “cc filename” command,
or by relinking the object files using the respective *.com files in a “Gfilename” command. Notice
that the *.com files contain the link command for the appropriate program. Also, if the user is not

on a VMS system, he may have to modify the two commands just described.

When rccompiling on a VMS system, the following two commands should be executed prior

to the “c¢” command:

DEFINE LNK&LIBRARY SYS$LIBRARY:VAXCCURSE.OLB
DEFINE LNK&LIBRARY_1 SYS$LIBRARY:VAXCRTL.OLB

The “include” commands in each source file should also be examined for correct format. VMS
does not (in most cases) use the UNIX “<*h>" format. Additionally, some programs use GKS
graphics. The source files for these programs contain the line “# include <gksdefs.h>". For these

programs to run effectively, the workstation used should have at least the capability of a Micro-VAX

I

Lin. Most of the work performed in this thesis used sound files sampled and digitized using
a logarithmic sampling scheme to increase dynamic range. However, tests were tun to see if there
was any difference when normal, linear sampling was used. This directory contains the files used

for those tests.

C-2

Net. A number of small sound files that approximate “pure” phonemes are found in this

directory. These were used to see where a particular sound was placed in the first Kohonen net.

Snd2. This directory contains an assortment of *.trn files (generated by the AUTOFFT
routine with a *.snd file as input) used in the early development and testing of the DTW routines.
Notice that the Kohonen nets in this directory are named in the “speech®.net” series. This series
was an early version of the first Kohonen net and is not used in any of the results reported in this

thesis.

Snd3. The files in this directory are used to perform AUTODTW runs. Notice that the first

Kohonen net files in this directory ate the named in the final series, “speak*.net”.

Sndw. Most of the sound files used in this thesis were sampled with a resolution of eight
bits per sample on an ATARI microcomputer. The files in this directory were sampled using a 16

bit A/D converter. Only limited tests were performed on these files.

Sounds. The files in this directory are the sound (* snd) files from which the *.trn files were
generated that trained both the first and second level Kohonen nets as well as testing the first
Kohonen nets. These files include a large number of isolated words identified by “*word*.snd”
where “word” is replaced by one choice from the following set: {one, two, three, ..., nine, silence}.

The content of the files should be obvious.

Also included in this directory are several continuous speech utterances. These include the
first net training utterances, usually identified as “*dig*.snd”, and connected utterances used in
AUTODTW tests (either “b*.snd” or “g*.snd”). The “*dig*.snd” files contain the sequence of digits
zero through nine spoken in order, usually with short pauses between the digits. The background

noise (silence) is a quiet computer hum.

The “b*.snd” and “g*.snd” files contain selected sequences of digits that were chosen to

C-3

'

correspond to the utterances used by Capt Dawson in his thesis (13) the preceding year. The

wEN

contents of each file can be determined simply by examining how the is replaced in the file
name. For example, if the file is “b282828.snd”, it contains the sequence of words 2-8-2-8-2-8.

The “b*.snd” series were spoken clearly and distinctly. The “g*.snd” series were spoken in a fast,

slurred fashion.

Sounds2. This directory contains the sound files from which the *.trn files were generated
to test the second Kohonen nets. it also contains the “m*.snd” series of connected utterances.
These connecled utterances were spoken by a different speaker than all of the other utterances.
The “m*.snd” series were spoken by a female with a relatively deep voice, while all of the other
utterances are in a mid-range male voice. See the preceding section entitle “Sounds” for the naming

conventions.

Sre. This directory was an early attempt to separate the soutce files (*.c) for shorter, limited

backups. The plan was abandoned early, and all of these files are duplicated in the directory [DEV].

Test. These files were used in the first tests of the AUTODTW program.

Programs

Each of the programs described below are found in the directory [[DEV]. The preceding
subsection, “Dev”, should be referenced for comments on how to recompile the programs. It is
recommended that most of these programs be run in the batch mode. With few exceptions. any
of these programs will run from 1.5 to 12 hours given typical input parameters and a Micro-VAX

workstation.

Each program description states the purpose of the program, the required inputs, and the
form of the output. A sample interactive session is included where it is appropriate, and when

necessary, additional comments are made.

C-4

Autofft. The program AUTOFFT converts a sound file (*.sndj into a file (*.trn) containing
a sequence of 15 component vectors. The * snd file is binary, has eight bytes of header information,
and contains an unspecified number of sound samples (one sample per byte). In the sound file, the
binary integers from —128 to —1 are mapped into the range +128 to +255. Basically, AUTOFFT

performs the preprocessing functions on the sound waveform.

To simplify the user’s effort in preprocessing a large number of files, AUTOFFT reads the file
“sounds.hdr” to obtain the names of the * snd files to preprocess. An example of “sounds.hdr” is:

I780A>type sounds.hdr

2

1zero

8ix2

I780A>

Notice that the “2” corresponds to the number of files to be processed. and that each filename
does not include the three letter file-type. Files “lzero.snd” and “six2.snd” tmust be present in the
current directory or an error will result when AUTOFFT is executed. The following is a sample
run:

I780A>run autofft

FFT3: Time/Frequency Conversion for Kohonen Net ...
Enter (0) logarithmic, or (1) Kohonen reduction: 0

l1zero.trn opened ... 84 vectors.
8ix2.trn opened ... 63 vectors.
I780A>

The type of reduction (from 128 to 15 components) described in the thesis is (0) logarithmic.
The (1) Kohonen style reduction approximates the methods described in Kohonen's articles. but

does not work very well since no corresponding filter is used.

Neural7. Once atraining file (*.trn) is preprocessed using AUTOFFT. it can be used to train

the first level Kohonen ncural net with the program NEURAL7. The net created with NEURAL7Y

is a two dimensional net limited to no more than 20 nodes in either direction (400 nodes total).

The program is “hardwired” for 15 inputs (a 15 component input vector) and a conscience factor of Qﬁ

C-5

B = 1.5. The conscience factor is easily changed since it is a global variable set at the beginning of
the “neural7.c” file. Simply change the value and recompile. Alternatively, one can easily modify

the program to make 3 an input variable (by changing the subroutine “userinp” in “neural7.c”).

A sample run shows the input parameters and the status information:

1780A>run neural?
BEURAL7 (Net training with conscience only!)
Enter size ‘m n’ (for an m x n) of array = ? [int int] 15 1§
Enter name of training file [.trn assumed]: 1dig3
Training file is: 1ldig3.trn
Enter name of net file to create {.net appeanded]: speakl
Net file to be created: speaki.net
Number of iterations = ? [int) 90000
Number of iterations between status messages = ? [int] 45000
For gain enter 0) LINEAR, 1) SIGMOIDAL, 2) PIECEWISE LINEAR : 2
First segment starting gain = ? [float] .1
Second segment starting gain = ? [float] .01
Second segment starting iteration = 7 {float]l 20000
Do you want 0) sequential or 1) randomized training? 0
Starting size of neighborhoods ’'yn xn’ = ? [int int] 7 7
Final size of neighborhoods ’yn xn’ = ? [int int] 11
Initial seed for random # generator (O SELECTS TIME) = ? [int] 33
Ready to begin? (y/n) y
NEURAL3: gain=0.006428, yrange=1, xrange=1, iteration #45000 (of 90000)
37 ave nodes eliminated
NEURAL3: gain=0.000000, yrange=1, xrange=1, iteration #90000 (of 90000)
36 ave nodes eliminated

Net file: speakl.net saved!
I780A>

Most of the questions are self explanatory, but the request for a gain curve is not. The gain
curve can be either linear, sigmoidal, or , iecewise linear (hardwired for two segments). The linear
gain curve is simply a linear (continuously decreasing) change in gain. A sigmoidal curve starts
high and ends low, but such a gain curve (as implemented here) does not seem to properly train a

net. The piecewise linear curve works well, with both gain segments ending in zero gain.

The application of 15 component training vectors to the inputs of the net can be either
sequential or random. In the former, the first vector in the file is applied first, and the rest in order.

If the number of training iterations required is greater than the number of vectors in the file, the

C-6

sequence of vectors is simply repeated. Random training picks a vector from the training file at

random for each application of an input.

The size of the training neighborhood is changed in a linear fashion. The neighborhood is
specified by a value, r (actually two such values), such that the size of the neighborhood in the
respective direction is 2r + 1 nodes. Thus a starting neighborhood of “7 7" is actually a “15 x 15"

array of nodes.

The seed for the random number generator should be selected by the user. The code for
obtaining the seed by examining the time still has a bug in it; also, specifying a seed allows

reproduction of the resulting net.

Finally, note the program title is not correct in the status message (an oversight), and the
“results” of conscience are reported. The average number of nodes eliminated is the average number
of nodes, per training iteration in the reporting period, not eligible to “light up” (as the center

" node in the neighborhood).

Neural2. This program displays a first Kohonen net graphically. Each node is tepresented
by 15 vertical bars in a small spectrum-like graph. The 15 bars correspond to the 15 positive and
negative weights. The spectra are shown in an array corresponding to the size of the actual net.

GKS graphics routines are used. The following is a sample run:

1780A>run neural2

NEURAL2 (Sound net Training with GRAPHICS only!)

Do you want to train a net? (y/a) n

Do you want to draw spectra of a net? (y/n) y

Enter name of net-file to test: speakl.net

Was this generated by (0) FFT2 or (1) FFT3 ? 1
. graphics displayed now ...

17804>

Notice that you can also train a net (without conscience); however, it is much slower since
graphics are provided as status messages. The current version of preprocessing, incorporated into

AUTOFFT, corresponds to FFT3. After the graphics display is complete, the program is exited

C-1

graphics displays in these programs!

by the user entering any string followed by a carriage return. This is the standard way to leave all

Neuralf. This program permits the user to graph trajectories through the first Kohonen

I780A>run neural4

NEURAL4 (Sound TRAJECTORIES omly!) .

Do you want (0) sound file created or (1) not? 1
Do you want (0) NO graphics or (1) TRAJECTORIES: 1
Enter name of net-file to use [less .net]: speakl

Enter name [next] of speech file to map [less .trm]:

. full trajectory graphed here ...
1

. reduced trajectory graphed here ...
1

Enter name [next] of speech file to map [less .trn]:

. full trajectory graphed here ...

1

. reduced trajectory graphed here ...
“C
1780A>

net. Again GKS graphics routines are used. The following is a sample run:

zero3d

zero6

Notice that a *.snd file can be regenerated from the trajectory (if you know what file was

entering a string (here it’s “I") and a carriage return.

used to train the net and if the training utterance’s *.snd and *.trn files are located in the current
directory). However, creating a sound file is slow and incorporates distortion from various sources.
If no graphics are desired, an ASCII file (*.trj) is created (it’s actually created in either case) which

contains the various steps in the trajectory reduction process. Each graphics display is left by

Autodtw. This program uses dynamic time warping to test a set of standard utterances.

I780A>type t2.hdr
11

lzero3.trn
lone3.trn
ltwo3d.trn

Trajectories are created for a set of templates, which in turn are compared with the trajectories

created for the set of standard utterances. The templates are listed in a file such as "t2.hdr":

lthree3d.trn
fourb.trm
1five3d.trn
six8.tm
lseven3d.trn
leight3.trn
lnine3.trn
silenceld.trn
1780A>

A file called “standard.hdr” which contains the names of the files listing the standard utter-

ances must be in the current directory. For example:

I780A>type standard.hdr

4»,

iso.hdr

Speaker _Dependent_Isolated_Words
con.hdr
Speaker_Dependent_Connected_Words
indiso.hdr

Speaker_ INDEPENDENT_ Isolated_Words
indcon.hdr

Speaker INDEPENDENT Connected_Words
1780A>

The strings following each file name in standard hdr are printed out during an AUTODTW
run prior to the tests on that file's set of utterances. Scoring is performed automatically in
AUTODTW, and cumulative scores are reported for each file’s set of utterances. An example

of a set of utterances is:

I780A>type iso.hdr
5

kzeroi.trn 1

0

konei.trn 1

1

ktwol.trn 1

2

kthreei.trn 1

3

1digd.trn 10
0123456789
I1780A>

Notice that the first number in the file is the number of utterances to test. Then comes the

file names of each utterance followed by the number of digits in the respective utterance and what

those digit(s) are.

With all of the above files in the current directory, along with a trained net, AUTODTW can

be run:

I780A>run autodtw
AUTODTW: Tests standard set of utterances ...
Enter name of template file [less .hdr]: t2
Enter name of log file [add .logl: temp.log
Enter horizontal weight: .75
Enter vertical weight: .75
Enter name of net to use [less .net]: speaki
lzero3.trn is 75 vectors long -
lone3.trn is 65 vectors long
1twod.trn is 52 vectors long
lthree3d.trn is 68 vectors long
four5.trn is 69 vectors long
1five3d.trn is 52 vectors long
8ix8.trn is 65 vectors long
lsevend.trn is 70 vectors long
leight3.trn is 37 vectors long
Inine3.trn is 82 vectors long
silence3.trn is 16 vectors long

Speaker_Dependent_Isolated_Words
kzeroli.trn is: 0

Should be: 0
correct = 1.000 cum_correct = 1.000
koeni.trn is: 1

Should be: 1
correct = 1.000 cum_correct = 1.000

ldig3.tra is: 0123 ..4567..89
Should be: 0123456789
correct = 1.000 cum_correct = 1.000

Speaker_Dependent_Connected_Words

results continue ...
I1780A>

C-10

The weights requested are the stretch factors used in the DTW routine. In addition to

printing the results on the terminal’s screen (about five seconds per digit), the results are written

“« n

to the log file, “temp.log”. The “..” seen in the output represents silence. Note that substitutions
and deletions count as one error while insertions only count as half an error (this is hardwired in
the scoring DTW routine’s stretch factors). Also be aware that there are unusual cases where the

scoring will make a mistake on isolated speech. Check all tesults by examining the log file.

Outdatf. To save time in training the second level Kohonen nets, a set of trajectories is
precalculated and stored (for later use in TWOBAS4) by OUTDAT4. The list of utterances, from

which the trajectories are made, is kept in a header file. For example:

I780A>type twokoh2.hdr
100

zero0.trn

one0d.trn

two0.trn

three0.trn

four0.trn

five9.txn
$ix9.tm
sevend.trn
eight9.trn
nine9.trn
I780A>

In the example shown, 100 trajectories are created, 10 of each of the 10 digits. The actual

run might be:

1780A>run outdat4

OUTDAT4: Prepare training data [x,y], second kohonen ...

Enter name of header file containing words (less .hdr): twokoh2
Enter name of pre-processor Kohonen net file [less .net]: speakl
Enter name of data file to create [less .dat]: gpath

1780A>

The trajectories are stored in the ASCII file, “qpath.dat”.

C-11

Twobas{. This program trains the second Kohonen net and requires input parameters very
similar to NEURAL7. The biggest differences are the precalculated trajectories (isolated digits)

and user selectable conscience factor (3). A sample run is:

I780A>run twobas4
TWOBAS4: Train 2nd Koh with 2-D trajectories ..
Enter conscience factor (> 1.0): [float] 1.5
Enter size ’'m n’ (for an m x n) of array = ? [int int] 10 10
Do you want 0) sequential training,
1) randomized training? 0
Enter name of training file [less .dat]l: qpath
Enter name of net file to create (less .net]: path2t
Number of iterations = ? [int] 150000
Number of iterations betveen status mesrages = ? [int] 10000
For gain enter 0) LINEAR, 1) SIGMOIDAL, 2) PIECEWISE LINEAR : 2
First segment starting gain = ? [float] .1
Second segment starting gain = ? [float] .01
Second segment starting iteration = ? [float] 30000
Starting size of neighborhoods ’yn xn’ = ? [int int] 4 4
Final size of neighborhoods ’‘yn xn’ = ? [int int] 1 1
Initial seed for random # generator = ? (int] 33
Ready to begin? (y/n) ¥y

TWOBAS4: gain=0.066669, yrange=3, xrange=3, iteration#10000 (of 150000)
TWOBAS4: gain=0.000000, yrange=1, xrange=i, iteration#150000 (of 150000)

Net file: path2i.net saved!
1780A>

Twomask5. Since a lot of the “trailing” weights at the end of any node’s weight vector
are —1's, a *.msk file is created by TWOMASK5 (where **" corresponds to the “*" in the net
file “*.net” created by TWOBAS4). The *.musk is an ASCH file used in the TWOPIC series of
programs to identify the effective length of the trajectories represented by each node’s weight vector.
Running the program is simple:

I780A>run twomaskS5
TWOMASK4 (Creates net mask for 2-D trajectories

) ... Enter name of output Koh net_file {less .net]: pathit
status information ...
1780A>
Obviously, correcting prompt messages had a low priority in the thesis work. ﬁ
C-12

Twopic{c. This program shows graphically which nodes light up (using Euclidean distance)
when a set of isolated digits are applied to a second Kohonen net. This program uses GKS graphics

routines. For example:

I780A>run twopicéc

TWOPIC4c (Plot Words for 2-D Reduced Queued Traj)

Enter name of pre-processor Koh net-file [less .net]: speakl
Enter name of header file containing words (less .hdr): twokoh2
Enter name of output Koh net_file [less .net]: pathil

... graph net ...

1

I7804>

Notice that the header file containing the utterances has the same format as that used in

OUTDAT4. Again, a string and carriage return exit the graphics display.

Twopic8b. This program finds the appropriate digit, with which to label each node in a
second Kohonen net, by locking through a list of trajectories and finding the closest one (by a
mini-DTW) to each node’s weight vector. Again, the file listing the utterances is in the same

format used by OUTDAT4. A sample run is:

I780A>run twcpicB8b

TWOPIC8b (Closest word for each node: 100 wts/2-D)...

Enter name of pre-processor Koh net-file [less .net]: speakio
Enter name of header file containing words (less .hdr): test3
Enter name of output Koh net_file [less .net]: path22

Expect 100 calculations

Reading word: 0 1234567 89 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80 81 82 83 B4 85 86 87 88 89 90 91 92 93 94
95 96 97 98 99

Node O : word # 22, dist

i
w0

.465583e-01 (dtwo2.trm)

Node 99 : word # 87, dist
Calculations finished.
I780A>

i
o

.423736e-00 (deight7.trn)

m

¢
The output is written to “temp.log” in addition to being displayed on the terminal’s screen.
® Notice how the program “labels” a node—by giving the user the closest trajectory. In this example,
node 99 is identified as an eight. The output of this program should be saved for use in TWOPIC6b.
Twopic6d This program takes the node labels determined by TWOPIC8b and tests a set
® of unknown utterances (using mini~DTW as the distance algorithm). Unfortunately, each time
TWOPICSDb is run and the labels are changed, the file “lookup6.c” must be modified and recom-
piled and then TWOPIC6b relinked. This process could be modified with code changes to both
e TWOPIC8b and TWOPIC6Eb. But for now, this is the portion of “lookup6.c” that must be changed
to reflect the results of TWOPICS8b:
I780A>type lookupS.c
€ int 1look_upl[100] = {9,9,9,3,7,7,7,6,6,6,
9,9,3,3,3,3,6,6,6,6
9,9,3,2,3,0,6,6,6,6,
1,1,1,3,3,0,3,6,6,6,
1'1'1’3.010'03414’4'
PY 3,1,9,3,0,0,0,0,4,4,
5,3,3,3,3,3,7,0,4,0,
5l5l2'3I2l7l7l7'8'21
§,6,2,2,3,3,7,4,8,8,
5,5,9,3,0,3,4,3,8,8} ;
I780A>
o
In this lookup table, each row of integers corresponds to the digits labelling a row of nodes.
The first node is the first integer, the last node is the 100'* integer. Note that the program is
¢ hardwired for a 10 by 10 Kohonen neural net. The update process is:
I780A>edit lookup6.c
I1780A>cc lookup6
¢ 1780A>0twopic6b
I780A>
In this case twopicfb.com consists of:
€ I780A>type twopic6b.com
C-14
€

A » . al

A

‘|

s

$ del twopicBb.exe
$ link twopic8b,nwinbb,lookup8,options_file/opt
I780A>

Now, the user is ready to run TWOPIC6b to actually test the speech recognition capability

of a second Kohonen net. For example:

I780A>run twopic6b

TVOPIC6B (DTW Words for 2-D Reduced Queued Traj)

Enter name of pre-processor Koh net-file [less .net]: speakil
Enter name of header file containing words (less .hdr): test3
Enter name of output Koh net_file [less .net]l: path21

Expect 100 calculations.

0 : [0,4] dist = 1.350917e+00 zero

99 : [8,68] dist = 0.938755e-01 nine

Calculations finished.
I780A>

Notice that each word from “test3.hdr” is identified by a sequential number (here 0 through
99) according to its order in “test3.hdr”. The node that lit up is in braces, and the dirit the
utterance was found to be is spelled out in the far right column. Scoring this output requires

knowing what word is in what position in “test3.hdr”. To simplify the scoring procedure, the

author (almost) always used 10 examples of each of the 10 digits in order.

Twopic8c. This is a later version of TWOPIC8b where the mini-DTW distance algorithm

is changed to a TAXI distance.

Twopic6e. This is a later version of TWOPIC6b where the mini-DTW distance algorithin is
changed to a TAXI distance. In this case, “lookup7.¢” (instead of “lookup6.c”) should be updated

with the results from TWQOPICS8c.

Coder. This program creates (and tests) an “untrained” second Kohonen net from a file of

precalculated trajectories (created by OUTDAT4). The trajectories are transferred directly to the

C-15

nodes’ weight vectors without any training. Tests are run on the untrained net for a set of test

utterances. The distance algorithm is a mini-DTW. The following is a sample run:

I780A>run coder

CODER: Create codebook using x-y pairs/dtw ...

Enter name of pre-processor Koh net-file [less .net]: speakl
Enter name of header file containing words (less .hdr): testl
Enter .dat file for net generation (less .dat): qpath

Enter fnumber_inputs] desired (<=100): 7§

Expect 100 calculations.

Word O is: O
Word 1 is: O

Word 99 is: 9

Calculations finished.

I780A>

The far right column corresponds to the calculated content of the word being tested. It
assumes that “qpath.dat” was generated from 100 words, 10 of each digit in sequence. For simplicity
in scoring, the author placed a similar sequence of digits (using other examples) in “testl.hdr”.

Notice that the number of inputs is variable in this program.

Coderb. This program is the same as CODER, except that the mimi-DTW distance algo-

rithm is changed to a TAXI algorithm.

Summary

The above paragraphs describe both the contents of the backup tape and the most significant
programs found on that tape. Further questions can be answered by contacting the author or

perusing the source code found in the directory [DEV] or Appendix B of this thesis.

C-16

Bibliography

1. Wallich, Paul. “Putting Speech Recognizers to Work,” IEEE Spectram, 24: 55-57 (April 1987).

10.

11.
12.

I3.

14.

16.

17.

18.

. Doddington, George R. and Thomas B. Schalk. “Speech Recognition: Turning Theory to

Practice,” IEEE Spectrum, 18: 26-32 (September 1981).

. Levinson, Stephen E. and Mark Y. Liberman. “Speech Recognition by Computer,” Scientific

American, 244: 64-76 (April 1981).

. Routh, Capt Richard L., USA. A Spoken English Recognition Ezpert System. MS the-

sis, AFIT/GCS/EE/83S-1. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, September 1983.

. Rothfeder, Jeffrey. “A Few Words About Voice Technology,” PC Magazine, 5: 191-205 (30

September 1986).

. Kohonen, Teuvo. “The ‘Neural’ Phonetic Typewtiter”, Computer, 21: 11-22 (March 1988).
. Lippmann, Richard P. “An Introduction to Computing with Neural Nets,” /EEE ASSP Mag-

azine, §: 4-22 (April 1987).

. Kohonen, Teuvo and others. “Phonotopic Maps—Insightful Representation of Phonological

Features for Speech Recognition,” Proceedings of the Seventh International Conrference on
Patiern Recognition. 182-185. Los Angeles: IEEE Computer Society, 1984.

. Kohonen, Teuvo. “Dynamically Expanding Context, with Applications to the Correction of

Symbol Strings in the Recognition of Continuous Speech,” 1986 International Conference on
Pattern Recognition. 1148-1151. Los Angeles: IEEE Computer Society Press, 1986.

Ludeman, Lonnie C. Fundamentals of Digital Signal Processing. New York: Harper & Row,
Publishers, 1986.

O’Neill, Mark A. “Faster Than Fast Fourier,” Byte, 13: 293-300 (April 1988).

Ney, Hermann. “The Use of a One-Stage Dynamic Programming Algorithm for Connected
Word Recognition,” JEEE Transactions on Acoustics, Speech, and Signal Processing, 32: 263-
271 (April 1984).

Dawson, Capt Robert G. Spire Based Speaker-Independent Continuous Speeck Recognition
Using Mized Feature Sets. MS thesis, AFIT/GE/ENG/87D-14. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1987.

Rabiner, Lawrence R. “Considerations in Dynamic Time Warping Algorithms for Discrete
Word Recognition,” IEEE Transactions on Acoustics, Speech, and Signal Processing, 26: 575-
582 (December 1978).

. Juang, Biing-Hwang and Lawrence R. Rabiner. “Mixture Autoregressive Hidden Markov Mod-

els for Speech Signals,” IEEE Transactions on Acoustics, Speech, and Signal Processing. 33:
1404-1413 (December 1985).

Hussain, Capt Ajmal, PAF. Limited Continuous Speech Recognition by Phoneme Analysis. MS
thesis, AFIT/GE/EE/83D-31. School of Engineering, Air Force Institute of Technology (AU).
Wright~Patterson AFB OH, December 1983. (A138 021)

Dixon, 1Lt Kathy R. /mplementation of a Real-Time, Interactive, Continuous Speech Recogni-
tion System. MS thesis, AFIT/GE/ENG/84D-26. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, December 1984.

Montgomery, 2Lt Gerard J. [solated Word Recognition Using Fu:z:y Set Theory. MS the-
sis, AFIT/GE/EE/82D-74. School of Engineering, Air Force Institute of Technology (AU).
Wright-Patterson AFB OH, December 1982. (A124 851)

BIB-1

P

19. Kohonen, Teuvo. “Learning Vector Quantization and the K-Means Algorithm,” 1988 Interna-
tional Conference on Neural Networks, Tutorial # 10, Self-Organizing Feature Maps, Appendiz
4: 1-2. San Diego: IEEE Computer Society Press, 1988.

20. Kim, Capt Peter Y. F-16 Speaker-Independent Speech Recognition System Using Cockpit Com-
mands (70 Words). MS thesis, AFIT/GE/ENG/88D-18. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, December 1988.

BIB-2

ita

——

—nceiv«l a Bachelor of Science degree in

Physics from Purdue University in May 1978. He spent two years as an engineer for McDonnell-
Douglas Astronautics before entering Washington University School of Law. In 1981 he left law
school to enter the USAF. He received his commission through OTS in February 1982, and then
attended Louisiana Tech University in an AFIT/CI program. He received a Bachelor of Science in
Electrical Engineering from Louisiana Tech in May 1983. His follow-on assignment was at Space
Division (AFSC) in the Navstar/Global Positioning System Joint Program Office where he became
chief of the Satellite Systems Division. He entered the School of Engineering, Air Force Institute

of Technology, in June 1987.

—

VITA-1

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

ADANR5 28

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

|

e TSy —yr—
18. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

TN T WY T I T T TN Y VYT Y TN Ty I Y o T T Ty TN ey
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;

distribution unlimited.

'4. PERFORMING ORGANIZATION REPORT NUMBER(S)
AFIT/GEO/ENG/88D-1

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
School of Engineering

6b. OFFICE SYMBOL
(If applicable)

AFTT/ENG

7a. NAME OF MONITORING ORGANIZATION

6¢. ADORESS (City, State, and ZIP Code)
Air Force Institute of Technology

Wright-Patterson AFB OH 45433-6583

7b. ADORESS (City, State, and 2IP Code)

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT eoemt%@n NUMBER

8c. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO ACCESSION NO.
11. TITLE (Include Security Classification)
Speech Recognition Using Neural Nets and Dynamic Time Warping UNCLASSIFIED

12. PERSONAL AUTHOR(S)
Gary D. Barmore, Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

MS Thesis FROM TO 1988 December 297
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Speech, Speech Recognition, Neural Nets, Dynamic Time Warping, Kohonen
23 N4 Neural Nets
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman: Dr. Matthew Kabrisky, PhD, Professor of Electrical Engineering

A speech recognition system is described that uses neural nets and dynamic time warping to recognize speaker indepen-
dent, isolated and connected speech. The system uses a Kohonen neural net to characterize an utterance as a trajectory
through a two dimensional space. The trajectories are input 10 a word recognition algorithm---either one pass dynamic time
warping (DTW) or a modified second Kohonen neural net---10 determine the content of the utterance. For a small vocabulary
consisting of the digits zero through nine, DTW correctly identifies up to 99% of isolated speech and 93% of connected
speech. On the same vocabulary, the modified second Kohonen neural net correctly identifies up 10 9%6% of isolated speech.

The second Kohonen net processing was not designed to efficiently identify connected speech.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O uncLassipeb/uNLMITED B same As RPT. [otic users | UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
Dr. Matthew Kabrisky, GS-15 (513) 255-5276 AEITENG
OD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

