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Preface

One limit to the information retrievable from an image is the

"diffraction limit" which translates to limited resolution. Superresolved

imaging is a field devoted to increasing resolution beyond this limit.

Whereas iterative superresolution has been shown to work In general, it

traditionally requires a knowledge of the finite dimensions of the object.

This thesis demonstrates that the same technique can be used without

tnis knowledge. The technique has also been modified to use the more

efficient Hartley transform instead of the Fourier transform.

As indirect contributors to the results shown herein, my thanks go

to the following: my wife Sandra, for being her; Dr. Theodore E. Luke,

for the long leash; Dr. Steven K. Rogers for his advice on phase

retrieval; LtCol James P. Mills for challenging my work; Bruce Hornsby,

Pink Floyd and Rush for inspiration; and John T. Kelly, my father, for

always asking me "Why?".
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ABSTRACT

Resolution in an image can be increased by an iterative technique

(introduced by Gerchberg) which effectively continues the known, partial

spectrum beyond the limits imposed by an optical system. This increased

resolution is called superresolution. Historically, an important con-

straint assumed for this technique was the knowledge of the finite dimen-

sions of the object such that the object energy outside these dimensions

must be zero. It is shown in this thesis that by a change of object

space geometry, the semicircular field of view of an optical system

provides a natural dimensional constraint which can be used instead of

the object dimensions to achieve superresolution. A further modification

of the iterative technique involves using the Fast Hartley Transform

(FHT) instead of the Fast Fourier Transform (FFT). The FHT is Inherently

faster and requires less computer memory than the FFT.
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SUPERRESOLVED IMAGING USING THE HARTLEY

TRANSFORM AND A SPHERICAL OBJECT SPACE

I. INTRODUCTION

According to Gerchberg (1:711) and supported by Fienup (2:161),

seemingly lost spatial information about an object might be

recoverable if constraints are known in both the object and object

spatial frequency domains. The transform generally relating these

domains is the Fourier transform. One constraint in object space

which is commonly used is the finite dimension of the object. 70

However, if this knowledge is gained from received data (le autocor-

relation data), then it may be highly suspect In real scenarios where

detector noise, diffracted light and undesireable objects in the field

of view retard the desired object's autocorrelation properties.

The recovery of lost spatial information is of great importance

to both civilian and military applications of imaging. One loss

mechanism is derived from the relationship between the extent of the

received spatial frequency function (the spectrum) and the maximum

resolution obtainable from a given optical system aperture. As the

aperture size increases, higher resolution is possible due to the

larger spectrum passing through the aperture. However, there are
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many practical restrictions to aperture size. Another method of in-

creasing resolution is to continue the finite or "band-limited"

spectrum of a small aperture further into frequency space to simulate

using a larger aperture. This is possible due to the analytic nature

of an object's spectrum (3:932). Such a continuation can be ac-

complished by the Gerchberg technique given sufficient constraints.

The enhanced spectrum can then be transformed into an image with

higher resolution than the image formed with the initial spectrum.

Other investigations of superresolved imaging can be found in appendix

A.

The purpose of this thesis is to examine an alternative con-

straint In object space and apply this constraint to the iterative su-

perresolution technique. The new constraint naturally appears when a

spherical object space is chosen instead of the traditional infinite

rectangular object space. Also, since this technique is iterative, a

fast Hartley transform will be used instead of the more obvious fast

Fourier transform due to the former's greater speed and smaller

memory requirements. The development will only consider a one-

dimensional object (ie an object function of only one variable).

I. BACKGROUND

Iterative Superresolution.

To paraphrase Gerchberg (1:712), the superresolution algorithm is

2



as follows. The band-limited spectrum is inverse-Fourier transformed

to create an image. The energy which falls outside of the known ob-

ject dimensions in image space is set to zero. This modified image

function is Fourier transformed to generate a new spectrum. The new

spectrum Is replaced by the initial band-limited spectrum only within

that band-limitation. Repeating this routine gradually builds the ini-

tial spectrum out beyond the limitations imposed by the optical sys-

tem which generated it.

The explanation of the above method's ability to continue the

finite spectrum is fairly simple. The actual spectrum of any finite

object continues in frequency space indefinitely. Thus. the band-

limited spectrum can be considered as the actual spectrum plus an

"error" spectrum which is first, equal and opposite the actual

spectrum outside the frequency band passed by the optical system and

second, zero inside this band (making the total spectrum outside the
0M

band zero). The linear properties of the Fourier transform allow

separate treatment of each constituent spectrum. The actual

spectrum obviously inverse-transforms to the original object function.

The error spectrum, being zero for a finite region and generally non-

zero elsewhere, will inverse-transform to an image error function

which has energy outside the object constraints in image space.

Since this is the energy which is zeroed in the algorithm, then by

Parseval's theorem, only the energy of the error spectrum is

decreased. As the error spectrum decreases, the actual spectrum is

revealed.

3
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Use of the Hartley Transform.

As an important note, the above superresolution technique is not

necessarily confined to a Fourier transform space relation. Such a

scenario is commonly found in optics however, and Justifies its initial

establishment. In general, any transform/inverse-transform relation

which maps energy beyond constraints in one space and has a con-

straint in the other space should work. While the Hartley transform

provides one of these relations, it will not be introduced as such. A

Fast Hartley Transform (FHT) will be used In this thesis only in its

capacity to make the superresolution algorithm more efficient in com-

putation time and computer memory requirements. Bracewell (4:12) has

shown that the Hartley transform, h(x), can be determined from the

Fourier transform, f(x), by

h(x) = frei(x) - fimg(x) (1)

Since the ultimate objective is a superresolved image, not necessarily

a continued Fourier spectrum, conversion back to the Fourier domain

is unnecessary. Thus the superresolution algorithm will be performed

from image space to frequency space via the FHT, with the frequency

function called the Hartley spectrum. The algorithm is summarized in

Figure one. The convergence criterion is simply a given number of

iterations.

4



( RESULT(x) 0

OVER UNKNOWN SPECTRUM

RESULT(x) - 1(x)

OVER KNOWN 3PECTRUM

FHT

REVERSE

CORRECT IMAGE

CONVEGEDes

DIRECT

Figure 1. Superresolutlon Flow Diagram.

The constraint in frequency space is now the known, band-limited

Hartley spectrum converted from the Fourier spectrum. The array

"RESULT" contains the discrete values of either the Hartley spectrum

or image functions, depending on the step of the algorithm.
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I1. THEORY

The relation between the two spaces used in the superresolution

algorithm is defined empirically by the propagation of spherical waves

from the object In accordance with the Fresnel-Kirchhoff d!ffraction

formula which assumes that the separation between spaces is much

greater than the wavelength of radiation observed (5:41). If the ob-

ject and optical system aperture dimensions are also much smaller

than this separation, then it is common practice to approximate the

diffraction formula, and thus the space relation, with a Fourier

transform. It is important to emphasize that this relation only ap-

plies to a small maximum object dimension. Even though the rectan-

gular object space historically used extends Indefinitely, the results

of an inverse-Fourier transform which map outside the small region

can not be assumed accurate because such an operation violates the

geometry.

There are two reasons for choosing a spherical object space

over the rectangular object space. First, the propagation geometry

from such a curved space should more closely approximate a Fourier

transform over the entire object space. Second, with a spherical

space, only a hemisphere of light can enter a windowed aperture plane.

This places a natural constraint on the object space which may be

used to reduced error energy.

6



Transform Formulation.

The traditional diffraction formula can be written as
*

D(X) c O(a) exp(ikr) Z(x,a,r)da (2)f r

-/2

* where D(x) is a complex distribution at the system aperture plane, c

Is a complex constant, 0(a) is the object function, k = 27r/A (N is

the wavelength) and Z(xar) is the obliquity function (8:58). The

geometry is shown in Figure 2.

z°

r

optical
system

spherical aperture
object plane
space

Figure 2. Propagation from a Spherical Object Space.
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The limits of Integration are representative of the semicircular

geometry. Of course there may be object energy outside this semi-

circle, but none of the energy which enters the system aperture is

from this outside regime. We make an initial but standard approxima-

tion that if R is very large, then r z R for all amplitude terms.

This also affects the obliquity function such that it becomes only a

function of a. Thus

r/2

D(x) = -- O(a)exp[IkrZ(a)da (3)R

'r/2

We now explore the phase term. The distance rcan be written

as (x.-x))2 +(z) 2 by the pythagorean theorem. In spherical coordinates,

zo = Rcos(a) and x* = Rsin(t) . Thus

r " R'Sin(a) - 2xRsin(a) + x2 + R2 cos 2 (a) (4)

or

r = R 41 + [x2/R2 - 2(x/R)sin(a)l (5) A

We rename the expression in brackets b. In examining the mag-

nitude of b, with the scenario that x<<R, we find two extreme cases

depending on the magnitude of the sine function. If sin(a) = I or -1

then the magnitude of b is given by (x/R)(x/R - 2), whereas if sin(a) =

0 then this magnitude becomes (x/R) 2. In both cases, the magnitude of

8
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b is less than 1. A binomial series expansion can therefore be used

which is formally

(l+b-1/2 = 1 + -b - bb (6)
(2)(4) (2)(4)(6) (6

The sin(a) being identified as P, the expansion is applied to yield

separate terms for r from eqn (5). After some algebra,

X2 X3P
r = R -xP + -(1 /2 + P 2 1+---4-Q (7)

R 2R2  8R3

where Q represents terms with ratios of xQ+1 /RO with n being 2 or

above. Each term is then examined to appraise its impact on the

result of explikrj when substituted. We choose for example a satel-

lite at 100 km viewed from a 10 cm optical system with a wavelength

at 5x10- 7 meters. The maximum values for the variables are applied

for each term.

1. R is a constant and thus comes out of the integral.

2. kxP varies from + to - (21r/x1O-7)(5xlO-2) = 6.28x106.

3. Term 3 varies from 0 to (2r/5xl0- 7)(5xl0 2 )2 /(lxl03). a
difference of r/10 or 5% of a phase angle.

4. Term 4 varies from 0 to (r/6xl0-7)(Sx10- 2 )3 /(lxlO'). a
difference of 7.86x10-9 , which Is negligible.

5. Terms 5 and 6 involve ratios of x3 l4 /Ra smaller than that of
term four. Their affect is therefore also negligible.

If we accept the scenario and assume that the 5% variation of

9



term 3 makes an Insignificant contribution to error, then all but the

first two terms can be dropped. Thus

r = R - xsin(a) (8)

Substituting the approximation for r back into eqn (3) and bring-

Ing the constant term out of the integral to form a new complex con-

stant cl yields

1r2
DWx = ci $O(a)Z(a)expI -ikxsin() Idat(9

- '12

If we let q = sin(a)/A , then dqfdoe = cos(a)/A . The limits thus

change to form the expression (with a new aggregate constant C2)

DWx = C2 JO(arcsin(qA\))Z(arcsin(q ,))cos-'(arcsin(qx))expI-2rixqldq (10)

- 1A

If we define S(arcsin(qhd) = caZ(a)cos 1'(&) , then

D~x W f(0(arc s In(q,\)) S(ar cs In(q,\)) )ex pf 2ri xq I dq U11)

Finally, if the object and modified obliquity functions are transformed

by a "q transform" into functions In "q" space, such that Qq(q)

O(arcsin(qA\)) and Sq(q) =S(arcsln(qA\)) then

1/ A

D (x) f Oq (q) Sq (q)e xp I-2Ti xq I dq (12)

10



which of course is simply the Fourier transform of the q transformed

object function modulated in amplitude by a modified and q transformed

obliquity function. Whereas the rectangular object space provides

Fourier transform properties only In a small object space region, the

spherical object space results In approximate Fourier propagation from

any object location. Also the rectangular space could not accomodate

energy below the plane of the optical system aperture since this

plane corresponds to infinity in that object space. The spherical

space of course continues past this plane.

Field of View versus Obliquity.

It is quite obvious that if the product Oq(q)Sq(q) is recovered,

then a simple division by Sq(q) will yield our goal. However, if the

original obliquity function Z() behaves as a result of vector addition

and/or polarization phenomena, then it will likely have something like a

cos(a) dependence, at least near the optical axis. Since the modified

obliquity function S.(q) is a result of Z(Gcos-l(a), the assumed be-

haviour of Z(a) will cause a cancellation of the cosine functions.

Thus for regions close to the optical axis (for example, a ten degree

FOV (field of view)), the obliquity function is assumed to be unity.

Certainly the optical system is exposed to more than this limited POV.

but since the modulation of the spectrum only affects amplitude, the

form of the obliquity function outside the FOV of interest can be ig-

nored.

11



Analysis of the New Constraint.

Gerchberg showed that when the finite extent of the object

function is known, the superresolution algorithm does indeed work to

continue the spectrum. He then tested the algorithm on the same ob-

ject, but set the finite extent limits greater than the true limits.

Although the spectrum was still continued somewhat, a definite modula-

tion of the continued portion was observed such that the new

spectrum approached zero with higher positive and negative

frequencies. Because the new constraint developed, ie the semicir-

cular space, is likely to be larger than any object function, this

same behaviour is to be expected. Obviously this artifact will have a

greater impact on actual spectra which have significant energy out-

side the band-limits of the optical system (ie high frequency

components).

Incoherent versus Coherent Illumination.

The above development applies to any object function which

propagates as an infinite number of spherical waves. In the case of

coherent illumination, the object function is the complex amplitude of

the radiation leaving the object. The Fourier transform is therefore

the direct superposition of those complex fields as they arrive at

the optical system. In the case of incoherent illumination, the object

function is the intensity of the radiation leaving the object. By the

Van Cittert-Zernike Theorem, the Fourier transform of the normalized

12
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object intensity distribution under incoherent illumination is the com-

plex degree of spatial coherence (6:629). The problem of a band-

limited spectrum is similar in both scenarios. The advantage of In-

coherent illumination is that the object function - the intensity - is

always non-negative. This quality allows a further constraint for the

superresolution algorithm.

IV. SUPERRESOLVED IMAGING SIMULATIONS

The goal of superresolution is to develop a technique to improve

resolution without increasing aperture size. Thus, the test of a su-

perresolution technique shall be to determine if it can yield an image

which has the resolution of a certain aperture, given the band-passed

spectrum of a smaller aperture. Specifically, the band-passed

spectrum from a 4 centimeter aperture shall be used to attempt to

build a spectrum of a 32 centimeter effective aperture. The

wavelength used is 1.6 mm. The incoherent scenario is applied due to

its more abundant natural occurence.

Two one-dimensional test objects are used. The first is a

two-point target with an offset center. The separation of the two

points is chosen so that the points are unresolved in the image

produced by the 4 cm aperture, but are certainly resolved with the

32 cm aperture. The second target is a wide, offset three-bar tar-

get somewhat like an Air Force resolution target. This type of ob-

ject is more representative of typical extended objects. For each

13



object intensity distribution the Fourier transform is applied analyti-

cally, then the Hartley spectrum is generated using eqn (1)

(representing the received complex degree of spatial coherence). The

Hartley spectrum Is then sampled over its center four centimeters at

64 equal spacings. These values are entered into the center of the

initially zeroed 512 element RESULT array as the initial algorithm

spectrum (512 elements are required for the 32 cm aperture). The ad-

ditional constraint of a non-negative intensity is also applied in the

algorithm.

The computer code used is described in Appendix B. The results

are shown in Figures 3 and 4. Each plot in the left column is made

up of the 512 values of the Hartley spectrum in frequency space.

The plots in the right column illustrate the image constructed from

the spectrum on its left. The top set illustrates the diffraction

limited spectrum/image pair if an actual 32 cm aperture optical system

Is used. The center set illustrates the spectrum/image passed given

by the 4 cm aperture. The spectrum of this set also represents the

starting point of the algorithm. The bottom set is the result of the

simulation after 1000 iterations.

The results of using the two-point test object are outstanding.

It is apparent that with the q space limits wider than the object

boundaries, the spectrum is modulated as predicted. The image of the

three-bar test object is also remarkably improved, although not as

dramatically as the two-point object results. Note the actual

14
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Figure 3. Two-point Object Superresolution Results.
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Figure 4. Three-bar Object Superresolutlon Results.
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spectrum has most of its energy within the band-limited regime. Thus

very little error energy is being subtracted upon each iteration.

The explanation for a modulation when the finite constraints are

greater than the actual object function boundaries is hypothesized as

follows. The growth of energy outside the band-limited spectrum can

be considered to be the result of a transform of a finite.

reconstructed image. The image is finite due to the truncation of

energy outside the semicircular limits. Such a finite image must have

a band-unlimited spectrum. Thus as the algorithm progresses. the

energy "spilled" outside the band limitations is essentially due to the

diffraction caused by truncating the image function. The truncation

of error energy in q image space can be regarded as multiplying the

generated image by a rect function the width of the constraint in

that space. If the constraint locations match the actual object

dimensions, then such a rect function would have no effect. If

however, the rect function is larger due to a greater constraint such

as the semicircular constraint, then its affect can not be ignored.

The multiplication by the rect in q space is represented by a con-

volution of the Image by a sine function in frequency space. It is

this convolution which allows energy to be spilled beyond the band-

limited spectrum. Since the algorithm only truncates error energy In

q space, the spectrum resulting from the spilled energy must be the

emerging actual spectrum. In this view then. the sine function, which

is convolved with the band-limited spectrum, is responsible for deter-

mining how much energy is spilled. Note that the convolution is only

17



with the band-limited spectrum. Thus the maximum spillage will occur

close to the band-limited spectrum, as illustrated in the results.

As the rect function representing the constraint in object space

gets smaller, the convolving sinc function in frequency space will

broaden, allowing more energy to spill outside the limits and increas-

ing the growth of the continued spectrum. In the limit as the rect

approaches the object's finite dimensions, the spillage will actually

become the Fourier transform of the object and error functions only

inside the object function domain. Thus as the constraints get closer

to the actual constraints, the algorithm should converge quicker.

Conversely, with the large rect function implied by a semicircular win-

dow. the algorithm should converge slowly since the spillage is more

confined to near the band-limited spectrum. If this argument is true.

it only implies a slowing of the algorithm, not necessarily a different

final result. Theoretically, given enough time. the algorithm should

converge to the same image regardless of how large the constraint

window is (as long as it Is larger than the actual window).

V. CONCLUSIONS

The results indicate that superresolution is possible without a

knowledge of the finite dimensions of the oblect. The requirement for

the technique is a quasi-monochromatic. band-limited spectrum. This

spectrum can be that generally associated with any valid transform

relation between the object space and a frequency space which has

18



applicable constraints. The Hartley transform relation provides a

working algorithm which is inherently faster and less memory intensive

than the Fourier relation.

As a final note, the technique demonstrated is not necessarily

confined to superresolution. Certain methods of phase retrieval are

also modelled after the iterative approach. Since the examined con-

straint is in object space, any technique which benefits from object

dimension constraints will benefit from this newly found constraint.

19



APPENDIX A

A BRIEF HISTORY OF SUPERRESOLUTION

This appendix is an account of the development of the field of

superresolution. To be complete in itself, some of the development

from the main thesis is duplicated.

It must be noted that many of the attempts for superresolution

are concerned with the continuation of a known spectrum, even though

actual data only yields the amplitude of the band-limited spectrum.

The recovery of phase to construct the band-limited spectrum is a

field in itself and will not be addressed in this background.

The Classical Limit of Resolution.

Resolution traditionally refers to the ability to distinguish be-

tween closely spaced points in the object space. Thus a resolution

limit is generally accepted as the minimum angular separation of two

object points, as taken from the optical aperture, which yields an

image which can be interpreted as that of two points. We therefore

say that If the angular separation is less than this limit. the two

points are unresolvable.

It was Sir George Airy (1801-1892) who first applied the Fraun-

20



hofer diffraction formula to a distant point source propagating

through a circular aperture and discovered that the field distribution

in the far field is a Bessel function - the intensity being later

called an Airy pattern (6:419). In 1896, Lord John William Strutt

Rayleigh generalized this interpretation to imaging.

He envisaged each point on the object as a coherent
source whose emitted wave was diffracted by the lens into an
Airy pattern. Each of these in turn was centered on the ideal
image point (on the image plane) of the corresponding point
source. Thus the image plane was covered with a distribution of
somewhat overlapping and interfering Airy patterns (6:563).

With this interpretation, Lord Rayleigh rather arbitrarily as-

signed the limiting resolution of a system as that angle between two

point objects where the peak of one Airy pattern falls on the first

minimum of the other.

In 1956, G. Toraldo Di Francia asserted that "...from the mathe-

matical standpoint, the image of two points, however close to one

another, is different from that of one point (7:497)." Upon this basis,

Toraldo concluded that there is no theoretical limit of resolving

power. Further, he claimed that the only true limit is a practical

one which is related to the refinements of detector technology. From

this point on virtually every reference to superresolution acknow-

ledges this realization and Toraldo's achievement.

Approaches to Eliminate the Practical Limit.

21
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Instead of reviewing the many efforts in superresolution in the

past thirty years one by one, it is more efficient to categorize them

along their general approaches and examine the combined contribution

of each approach. The different categories include: information

theory, analytic deconvolution, iterative error reduction and decon-

volution by matrix methods.

Information Theory. In trying to create a specification for the

practical limit of resolution, Toraldo examined the number of degrees

of freedom which fully describe an object. The value of each of

these degrees is the value of the spatial frequency distribution at

points given by sampling theory. He concludes that since a true ob-

ject spatial description must have an infinite number of degrees of

freedom, and the image is in fact limited in spatial frequency due to

the band-pass nature of the aperture, the complete object can never

be recovered. He thus defines the limit of resolution as that

resolution corresponding to the maximum degrees of freedom possible

for the optical system. In fact, he claimed that there are many dif-

ferent objects which can have the same narrow band of observed spa-

tial frequencies. He does admit however, that any knowledge about

the object known a priori must yield more information. Thus this ob-

ject knowledge is the only means of improving resolution beyond

Toraldo's limit.

The basis of Toraldo's argument Is that the optical system

yields only a portion of the spatial frequency content of the object.

22



In 19683 J. L. Harris applied the mathematics of analytic functions to

imaging (3). He showed that if an object has a definite size, then the

analyticity of the observed spatial frequency function passed by the

system can be continued throughout the frequency domain. Harris'

conclusions were so important to the future of superresolution, that

they are listed here directly from his paper.

(1) For objects of finite angular dimensions, knowledge of
the spatial frequency spectrum within the passband of any imag-
ing system implies knowledge of the spatial frequency spectrum
over the entire frequency domain, and hence implies complete
knowledge of the object.

(2) Two distinctly different objects of finite angular size
cannot have identical images, so that the ambiguous image does
not exist for realizable objects.

(3) Diffraction, therefore, imposes a resolution limit which
is determined by the noise of the system rather than by some
absolute criterion.

(4) Object detail, absent in a diffraction image, may be re-
stored by a variety of techniques, with the ultimate limit in
such restoration imposed by the system noise (3:963).

To complete the information theory approach to super-

resolution, W. Lukosz developed the techniques of exploiting these

"limited" degrees of freedom (8;9). Lukosz discovered that certain in-

formation from the image can be enhanced at the expense of other in-

formation. Although these techniques are fascinating, the above argu-

ments by Harris show that they are based on a false limit and there-

fore may be improved.

Analytic Deconvolution. In accordance with Lord Rayleigh's

23



description of an image, it can be shown that the intensity of an

image point is simply the square of the convolution of the complex

object distribution and the isoplanatic Impulse response of the opti-

cal system (6:110). A technique to bring out the object function from

the convolution integral and place it in terms of the image function

is appropriately known as deconvolution.

In 1966, Casper W. Barnes, and in 1966, B. Roy Prieden

derived an expression for the object distribution by deconvolution

using orthogonal elgenequations for objects of limited angular width

(10;11). Noting that the Isoplanatic impulse response for a circular

aperture is a Bessel function, they applied prior findings that the

convolution integral in this case has a complete orthonormal set of

prolate spheroidal elgenfunctions. Although the object function was

brought out of the integral successfully, the resultant formula

remained a short but involved expression of integrals and series.

Frieden continued the treatment to the inclusion of noise. Although

he showed favorable results for certain types of objects, he acknow-

ledged simply that the limit of this type of reconstruction is noise.

Similar conclusions to this effect were offered by C. K. Rushforth and

R. W. Harris in 1967 (12). In this paper, dedicated to analyzing the

noise of the analytical deconvolution method, it is shown that as the

infinite series inside of the object integral is approximated with a

larger upper limit to reduce truncation error, the noise inherent in

the image becomes dominant, yielding a trade-off between resolution

and noise. The instigator of the next method to be discussed inter-
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preted these results as nothing less than condemning.

Rushforth and Harris conclude that for this type of con-
tinuation (analytic deconvolutioni, the increase in resolution for
a noisy diffraction limited spectrum, is offset by the amplifica-
tion of the error in the reconstructed function to the extent
that achieving resolutions much beyond the diffraction limit with
realistically measured data, seems a very dubious proposition
(1:711).

Superresolution by Iterative Error Reduction. In 1973, R. W.

Gerchberg developed an attractive superresolution technique which

spawned a relatively great deal of future work. An inverse Fourier

transform of the band-limited spectrum of an object should reveal a

diffraction limited Image. Gerchberg shows that this diffraction blurs

the boundaries of the image. If the boundaries of the object are

known, then the error associated with the blurred image outside the

known boundaries can be reduced. The procedure is best explained in

his own words.

The known portion of the spectrum is Fourier transformed
to yield the diffraction limited limagel which is subsequently
modified by setting all of the diffraction limited (imagel outside
the known extent of the true object to zero. Thus modified, the
(imagel is Fourier transformed and the generated spectrum is
corrected so that that portion of the frequency range in which
the true spectrum is known is given the correct values. The
procedure iterates until a correction criterion based on the es-
timated limagel energy outside the known extent of the true ob-
ject or the difference function energy between the estimated
and true spectrum over the range of the known spectrum is
satisfied (1:712).

Gerchberg continues to show that the error reduction per

iteration decreases with continued iterations. He then considers
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noise as a separate "spectrum" which can be handled Independently due

to the linearity of the algorithm and concludes that since noise is

not analytic, the algorithm reduces the noise as well as the error

energy (note: noise is not be considered in this thesis, although the

Gerchberg algorithm is fundemental to the techniques pursued).

In 1983, John G. Walker applied the Gerchberg algorithm to

coherent imaging and demonstrated its efficacy by experiment (13). Al-

though the results yielded an image far better than diffraction

limited, it was not in fact a true object representation. Walker

hypothesized that discrete sampling, imperfect aperture edges, a

finite sampling aperture, temporal instabilities and scattering were

some of the reasons for the less than perfect result. Again, the

only a priori knowledge was the finite extent of the object.

Deconvolution by Matrix Methods. A superposition integral can

be converted into matrix equations exactly if the matrices describing

the image and object are infinite and the impulse response of the

system is known. While such infinite matrices are considered, this

technique approaches analytical deconvolution (as a special case).

Without considering the implications of infinite matrices, the super-

position integral can be reformed into the simple equation I = DO,

where I is the diffraction-limited image vector, 0 is the object vec-

tor and D is a matrix of values of the impulse response at a position

defined by the matrix element positions of I and 0. An interesting

note is that these vectors can represent either intensity (incoherent
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propogation) or complex functions (coherent propogation). Solving for

the object vector yields

0 = D 11 (A-i)

The problem resides in the fact that such an inversion

problem is Ill posed (14:149). Specifically, the calculation of D- 1 can

not by found using traditional means due to truncation errors in the

calculation and the presence of zeroes (or very small values) In the

matrix to be inverted. A popular attempt to solve the problem

without inversion Is by minimizing the reformed equation I - DO = 0

Such attemps were made by Crawford, et al, in 1981. and again by

Stierwalt In 1985 using least squares methods (15,16). Again, although

resolution was in fact enhanced, warnings were given that such a

technique is not to be trusted in general, but that a knowledge of

the object's extent will dramatically improve the results.

Summary and Interpretation of Past Results.

The contributions of the four general approaches to super-

resolution are fairly succinct. In the information theory approach,

the contribution is the thought of trading off resolution of certain

characteristics of the object for increased resolution of others. The

analytical approach fails in the presence of noise. The iterative

technique is successful only with the knowledge of object boundaries

and the absence of radiation outside these boundaries. It also
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presents an attractive insight on how to reduce error in the received

diffracted distribution. The matrix method is very simple but has

drawbacks due to the inversion problem of the diffraction matrix.
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APPENDIX B

EXPLANATION OF COMPUTER CODE

The software language used was Turbo Pascal version 4.0. The

computer used was an IBM compatible NEC multispeed laptop running at - -

9.64 MHz, without a math coprocessor. The source code is given at

the end of the appendix. Comments are supplied here instead of in

the listing to facilitate following the algorithm within the code. The

time required for a 512 element FHT was just over 2 seconds.

Definitions and Terminology

W The wavelength of incident radiation.

width The physical dimension of the array representing
the spectrum passed by the optical system.

numdet The number of samples of the band-passed spectrum
used in the simulation.

virtual Those array elements which correspond to samples
samples of frequency space outside the band-passed

spectrum.

totaldet The total number of array elements.

srlimitlo The element in q space representing the left
boundary (ie -W/2).

srlimithi The element in q space representing the right
boundary (le W/2).

blstart, The most negative and positive band-passed
blfinish spectrum elements, repectively.

srstart, The most negative and positive elements in the
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srfinish array used for superresolution, respectively.

Description of Procedures.

Defnne..the_.system. This procedure is where the characteristics

of the scenario are entered. For all experiments, the width shall be

four cm; the wavelength, 1.5 mm; numdet, 64 elements; and totaldet, 512

elements. From these initial parameters, all results can be inter-

preted. The rather long wavelength is used to provide scenarios

which can exhibit diffraction effects representative of the Rayleigh

limit. Why this is necessary is obvious when one considers the resul-

tant sampling in q space. Obviously we desire enough data points in

the result to reasonably depict the image function. For example, a

sinc function cannot be described reasonably by function values at

only three points. The more points used to describe a function, the

more the sampled function will resemble the actual function. Unfor-

tunately with the FHT we cannot control the spacing of the samples In

object space directly. The spacing between values in q space is

equal to the inverse of the width between values in frequency space

(another consequence of the discrete transform used). Since the size

of q space where an object is allowed is limited to 2/W, it is obvious

that only a certain number of equally spaced values are available to

represent the reconstructed object. Another way of viewing the ef-

fect is that if the image has most of its energy between two samples,

then it will be very difficult to interpret the success of the algo-

rithm. Of course once a spectrum is achieved, a continuous Hartley

transform can be performed to recover the object function at any
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location in q space. This will not be done in this thesis.

Initialize. This procedure defines many of the parameters intro-

duced in the above list of terms.

Display. This procedure simply outputs an axis. a center line,

the limits in object space and any function desired onto a monitor

display in 640 X 200 graphics mode.

FHT. This is the Fast Hartley Transfot.n procedure. It is a

modification of a source code presented by O'Neill (17).

Three-Bar Object and TwoPoint Object. These procedures calcu-

late the spectrum of the three-bar and two-point objects used in the

experiments.

Continue Spectrum. This procedure represents the supCrresolu-

tion algorithm. The Input to this procedure as shown is the band-

limited spectrum calculated earlier.

Source Code

PROGRAM SUPERRESOLUTION;
USES crtgraph3;

CONST maxfullsize = 513; maxhalfsize = 257;
TYPE

type-ldc = arrayl-maxhalfsize..maxhalfsizel of real;
type_2d = array(l..2.1..maxfullsizel of real;
directiontype = (direct,reverse); displaytype = (objectspectrum);

VAR
result,htlyBLspect : type_ldc; perfunc : type_2d;
per mat : array(l..max_full_sizel of Integer;
totaldet,srlimitlo,srllmithi,blstart,blflnish,srstart,srfinish,
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pwr,n2 ,ctjiteration~numdet :integer;
lncX, tzuprt2.width, wavelength :real;
converged,INITIALIZED :boolean;

PROCEDURE DEFINE_THESYSTEM;
BEGIN

width 4; leml
numdet 84; Imust be 2'*pl
wavelength 0.15; (cml
totaldet 512;

END;

PROCEDURE INITIALIZE;
BEGIN

rt2 :=sqrt(2.O);
srilmitlo :=-(trunc(totaidet'width/(numdet'wavelength))+ 1);
srlmithi :=-srlmitlo;
srstart 1-(totaidet div 2); srfinish -srstart+1:
bistart :1-(numdet div 2); bfifnish -prstart;
for ct -256 to 256 do
begin

htlyBLspectlctl:=0.0; resultlct]: =0.0;
end;
incX := width/numdet;

END;

PROCEDURE DISPLAY (mat: type_ 1 d c: typ : di splIay_type);
VAR k:Integer; inc,mx:reai; ch:char,
BEGIN

hires; clearscreen; draw (6 4,100,57 6, 100, 1)-. inc:561 /(totaldet-1I);,mx:=0;
for k := 0 to totaidet-1 do
begin

If k=-srstart then draw(64+round(k'inc), 130,64+round(klinc), 160,1);
if typobject then if ((k+srstart)=srlirilo) or

((k~srstart)=srIImithI) then
draw (64+rounc(k *Inc), 1 12,64 +round(k *Inc), 120,i1);

end;
if typobject then for k :=srstart to srflnish do

matiki:=matlkJ ~matfkj;
for k:=srstart to srfinish do if abs(matlkl)>mx then mx:= abs(matlkl);
if mx>0 then for k :=srstart to srfinish do matfk1:=801matfkj/mx;
If mx>0 then for k:= 0 to totaldet-l do

draw(64+round(kinc), 100,64+round(k inc),100-
round(matlk+srstart]), 1);

END;

PROCEDURE FHT(dlin: typel dc; n:integer;. direction: direction_type):
VAR

dt : type_2d; ang,omega,muit : real;
c,d,i,j,k,s,t,ta~fa,t_index modify, s_start,s end, power. trig_ind,
trig mnc, tem p_in d. _tem p, tp 1, section : Integer;

BEGIN
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IF INITIALIZED=FALSE THEN
BEGIN

INJTIALIZED: =TRUE;
pwr:=round(in(n)/ln(2)); ang:=O.O; omega: 2.Opi/n; n2:= n dlv 2;
for i := 1 to n do
begin

perfunci1l i:=sin(ang); perfuncl2,iI:=cos(ang); ang:=ang+omega;
d:0O; t ndex:=i-1;
for c 7 to pwr do
begin

sa: tjndex div 2; d :=d+d+t-lndex-s-s; t-index:=s;
end;
per -mat~iI:=d+ I;

end;
END;
power: fa:=1; ta:=2;
for i:=1 to n2+1 do dtjfa,per-matllll:=d_inl- 1I];for i:=n2+2 to n do

dtffa,per...matiI:=djnf i-n-Il;
for I := 1 to pwr do
begin

J:=1; section:=1; trig_mnc :=n div (power+power);
while J <= n do
begin

trig-ind:= 1; s_start:sectionpower+ 1; s-end:=(section+ 1 )'=Power;
tpl:s-start+s end+1;
for k :=I to power do
begin

t:=J+power; if (s-startt) or (pwr<3) then modfy:=t else
modify: =tp I -t;

dt(taJl :=dtlfaj I+dtifa~tl perfuncf2,trig~indl+
dtlfa~modifylperfunc( 1,trig_nd I;
tempjind: =trigjind+n2;
dt(ta,tj:=dtlfaj l+dttfa.tI perfuncl2,temp-indl+
dt(fa,modifyl'perfuncf 1 ,temp_1nd I;
trigjind:=trigjnd+trigjinc; j:=J+ 1;

end;
j =J+power; section: =section +2;

end;
power: =power+ power; i...temp: =ta; ta: =fa; fa:=i_temp;

end;
if directiondirect then mult:=.0n else muit:=1.0;
for I I= to 1+n2 do result~i-11:=dtlfa,il/mult;
for i : n2+2 to n do resuitll-n-1j:=dtfa,i/muit;

END;

PROCEDURE TWOPOINTOBJECT; var al,a2 : real,
BEGIN

al:=0.050; a2:=0.2;
for ct := prstart to prflnlsh do
begin

htlyBLspectctl:=cos(2'pilal ct'incX/waveiength)+
cos(2 pia2ctmncX/wavelength)-sin(2 *plai 'ct'incX/wavelength) -
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en;sin(2 spj a2 ctsincx/wavelength);

END;
PROCEDURE THREE...BARO.BJECT, var A,B,C real; amp,phase type_ldc;
BEGIN

A :=0.12; C:=0.16; B:=0.23;
for ct :=pretart to prfinish do
begin

if ct<>O then
begin

amp(ct: =(sin(pi *A ctInc X/vaveiength)/(pi *A*Ct incX/wavelength))'
(1+2w cos(2 pi'ctincX*B/waveiength));

end else ampictl:=3.O;
phaseicti: =cos(2 pi'ctineXOC/wavelength)+

sin(28pictincXC/wavelength);
h tly.BL...spectictl 1:=amp[ ct I phase Ict];

end;
END;

PROCEDURE CONTINUESPECTRUM;
BEGIN

INITIALIZED: =FALSE;
Iteration :=0; converged: =false;
while convergedfaise do
begin

for ct :=prstart to prfinish do resultfeti htlyBL..spect~ct1,
FHT(resul t, totalde t, reverse);
for ct srstart to srlimitlo do result[ et):=0.0;
for ct :sriimithi to srfinish do resulictl:0O.0;
for ct sriimitio to sriiithi do If resultctl<0.O then

resuictl:=0.;
FHT (resuit.totaidet. direct); gotoxy( 1,1 ); writeln (Iteration);
iteration:=iteration+ 1;
If iteration=O0O0 then converged:=true;

end;
END;

BEGIN (MAIN PROGRAM SECTIONI
define_the.system;
Initialize;
1twojpointobject; OR) three-bar-object:
continue-spectrum;

END.
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