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The fracture toughness of certain ceramic composites containing second

phase particles which undergo a stress-induced phase transformation is

known to be higher than that of the brittle ceramic matrix, [1,2]. A

number of recent studies, beginning with the work of McMeeking and Evans[3]

and Budiansky, Hutchinson and Lambropoulos[4], have been aimed at providing

a continuum mechanical model which can predict the observed stress

intensity factor reduction at a crack-tip in such materials; see also

[5-9].

In this paper we examine a much simpler, but related, problem. We

consider the spherically symmetric deformation of a hollow sphere which has

a traction-free inner wall and a prescribed radial displacement 6 at its

outer wall. Here, one expects to observe a reduction in the stress

concentration factor at the cavity in the case when the sphere is composedU
of a transforming ceramic material as when compared to the case when it is

composed of the ceramic matrix. We obtain a closed form analytical solu-

tion to this problem, and use it to illustrate certain features of boundar-

y-value problems for such materials.

The analysis here is carried out within the small-strain theory of

nonlinear elasticity, and utilizes the particular constitutive law proposed

by Budiansky et al[4] for the special case of "supercritical

transformations" ; this constitutive law describes a class of elastic

materials which is homogeneous and isotropic, and which has a linear

response in shear and a tri-linear dilatational response. Certain

L



theoretical issues pertaining to such materials were examined in Part I of

this study, [101.

We show that, for all sufficiently small values of the prescribed

displacement 6, the boundary-value problem has a unique solution and that

it corresponds to a configuration of the body in which the strain field

varies continuously (a "fully untransformed configuration"); this is also

true for all large enough values of 6 (in which case the body is in a

"fully transformed configuration"). On the other hand, for a certain

intermediate range of values of 6 the problem has an inin of soluions

and these describe configurations which involve a phase boundary ("par-

tially transformed configurations"). The strain field is continuous on

either side of the phase boundary but suffers a jump discontinuity across

it; the displacement field is continuous everywhere.

U
In view of this massive failure of uniqueness, we are led to conclude

that the theory, as formulated, is deficient. Presumably, this deficiency

is constitutive, and moreover, is intimately related to the presence of a

phase boundary. Accordingly, in Section 5 we supplement the theory with an

additional constitutive law (a "kinetic law") which pertains (only) to

particles located on the phase boundary. Since quasi-static motions which

involve moving phase boundaries are generally dissipative (even in

nominally elastic materials, see [11]), it is possible to define a notion

of a driving traction on a phase boundary; the kinetic law relates the

driving traction to the velocity of the moving phase boundary.
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While the kinetic law governs the evolution of a phase boundary once it

has been initiated, a separate criterion is needed in order to signal the

first appearance of the phase boundary. The "initiation criterion" used

here is that a phase boundary will emerge when the driving traction on it

reaches a certain critical value. In the present theory, this is equiva-

lent to an initiation criterion based on a critical value of the dilata-

tLon.

-_ It is found that, as the given displacement 6 increases monotonically

during a quasL-statLc motion, the hoop stress at the cavity first

increases, then decreases discontinuously as the phase boundary emerges

from the cavity wall, next increases slowly (or, for certain specialr
kinetic laws, remains constant) as the phase boundary propagates outwards,

and finally commences to increase at the original rate once the body has

been fully transformed. In general, the response is rate-dependent and

dissipative, though for two special kinetic laws it is rate-Lndependent in

one of these special cases the response is dissipation-free, while in the

other it is "plasticity-llke".

U - .=.a nL Nmm mmam lm~~~m lmmmm
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2. Cavity Problem

Consider a hollow sphere of internal radius a and external radius b.

Suppose that the outer surface of the sphere is subjected to a radial dis-

placement 6 while its inner surface remains free of traction. The resulting

deformation of the sphere is assumed to be purely radial with u(r) denoting

the radial component of displacement; u is required to be continuous on

aSrSb, and for some sG(a,b) it is to be twice continuously differentiable

on (a,s)+(s,b). If u' is discontinuous at r-s, we refer to the circle r-s

as an eouilibrium shock or phase boundary. The spherical components of

strain associated with this deformation are

err - u'(r), coo - 6$ - u(r)/r,

eO - eO- "r 0,J

and the corresponding dilatation A(r) is

A(r) - u'(r) + 2 u(r)/r for ru's. (2.2)

Suppose that the sphere is composed of an isotropic elastic material

whose stress-strain relation is

.- 2pe+ (7(A) - 2 p.A/ 3 ),I; (2.3)

p (>0) is the shear modulus of the material and a(A) is a constitutive

function. Various properties of this class of materials were examined in

Part I. Here we simply note that the stress response of this material in

Asimple shear is linear, while a(&) denotes its stress response function in

pure dilatation. From (2.1)-(2.3), the components of stress in the sphere

pi
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U
are

arr - (A(r)) + (41/3){u'(r) -u(r)/r},

a## 000 M O(A(r)) - (2p/3){u'(r) - u(r)/r), for rps. (2.4)

ar- a8O - arO - 0,

Equilibrium requires

drr/dr + 2(arr - app)/r - 0 for ros, } (2.5)

-rr(s-) - arr(s+). (2.6)

Equation (2.5), in view of (2.4), (2.2), leads to

d .(A(r)) - 0 for ros, (2.7)

dr

where E is defined by

E(&) - a(A) +4pa/3 for -<<.. (2.8)

(It can be readily shown from (2.8), (2.3) that E may be interpreted as the

stress response function of the material in uni-axial deformation.) Inte-U
grating (2.7) leads to Z(A(r)) - cl for a<r<s and Z(A(r)) - c2 for s<r<b

where cI and c2 are constants. However, as shown in Part I of this study

(see (3.16) of [10]), displacement and traction continuity across r-s

requires E(A(r)) to be continuous and so, (2.7) in fact leads to

Z(A(r)) - c for ros. (2.9)

The cavitY Droblem consists of finding a displacement field u(r) which

obeys equations (2.2), (2.9), the boundary conditions

I



u(b) - 6, (2.10)

Urr(a) - '(A(a)) + (4p/3)(u'(a) - u(a)/al - 0, (2.11)

and the displacement continuity requirement u(s-)-u(s+).

3. Displacement fields

In this section we will solve the cavity problem for the particular

class of materials characterized by the dilatational response function

{ A for -AMS SA AM,

A&(A) - A + aT(A-AM)/(Am-AM) for AM : A Am, (3.1)

#A + GT for A 2 Am;

, mn, AM and aT are material constants such that

0>0, Am>AM>O, aT<0

- 4 Pam + T < 0 (3.2)

(A-AM) (R+4/3) < - T .

A graph of the function a(A) is shown in Figure 1. Requirement (3.2)2

implies that 4(-AM) : a(Am) < 0. The significance of (3.2)3 will be

discussed shortly. The tri-linear dilatational response function (3.1) was

used by Budiansky et al(4] for characterizing the response of certain

transforming ceramics. The only difference between (3.1), (3.2) and the

choice made in [4] is that we take a(Am) to be negative; this feature is



needed in our analysis in order to allow for the occurrence of permanent

deformations. From (2.8), the uniaxial deformation response function E

associated with (3.1) is

aa for -A :5A :AM,

Z(A) O IA + aT(A-AM)/(m-AM) for AM : A < am, (3.3a)

[LA + aT for A Am,

where a - $ +4p/ 3 . (3.3b)

The third condition in (3.2) ensures that E(AM) > E(Am) so that E'(A) is

negative on (AM,Am). As shown in Part I (see discussion following (3.16)

in (10]), this condition is necessary and sufficient for the material to be

able to sustain equilibrium deformations with discontinuous strains. (In

the terminology of Budiansky et al[4] when this condition holds, the mate-

rial can undergo a "supercritical phase transformation".) The graph of Z(A)

is shown in Figure 2; the number Zo - (EM+Zm)/2. The figure has been drawn

in the case Zm>O, though this is not assumed in the analysis.

Finally, we introduce some additional notation which will simplify

some of the formulae that we will encounter in Sections 4 and 5. This

notation pertains to certain special points on the stress-strain curves

shown in Figures 1 and 2. We emphasize that the constitutive law (2.3),

(3.1) involves only the 5 material constants p, P, Am, AM and aT; the

quantities which follow can all be expressed solely in terms of these basic

quantities:

A
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an - Am + OT, am1 - Om - a(-/)

GM - #AM, aM3 - aM + VT(I'f/a),

Sol - (aM+am)/ 2 " OT(l'#/o)/ 2 , Go3 - aol + aT(l-/)3-

Eml am + T/, EM3 CAM-T/a,

Ao - (&m+AM)/2 + AT/2a, o3 " (Am+AM)/2 - OT/2a.

Observe that the points (Aml,aml), (Aol,aol) and (AM,aM) lie on the first

branch of the stress-strain curve a-a(A) (hence the subscript 1), while the

points (Am,om), (Ao3 ,ao3 ) and (AM3,aM3) lie on the third branch (hence the

subscript 3). Moreover (AM,aM) is a local maximum of this curve (hence the

subscript M) while (Am,am) is a local minimum (hence the subscript m).

Note also that the three straight lines which Join (AMM) to (AM3,M3),

(Aol,aol) to (0 3 ,0 3 ), and (Aml,aml) to (Am,am), each have the same slope

-4A/ 3 . The points (Aolaol) and (Ao3 ,ao3 ) correspond to so-called

Maxwell-states; they have the property that X(Aol)-X(Ao3)-1om(Zm+ZK)/2.

We now return to the cavity problem and first consider the case in

which the displacement field is smooth. Suppose that the dilatation A(r)

is such that -AM : A(r) : AM for aSr:b, so that all particles in the body

are associated with the first branch of the stress-strain curve (i.e. all

particles are "untransformed"). By (2.2), (2.9), (3.3) it then follows

that

u'(r) + 2u(r)/r - c/o for aSr_<b. (3.5)

Integrating (3.5) and enforcing the boundary conditions (2.10), (2.11)

p!
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leads to the following expression for the displacement field:

u(r) - (6b2/q) (xr/a3 + (l-x)/r 2) for a5r_b, (3.6)

where we have set

x - 4p/3a (<l), q - 1 + ((b3/a3)-l)x (>i). (3.7)

On using (3.6) and (2.2), the requirement IA(r)l : AM yields 161 6M ,

where

6M - (qAMa3)/(3ab 2). (3.8)

Next, suppose that the dilatation is such that A(r) Am for a<r<b so

that all particles in the body are associated with the thir branch of the

stress-strain curve (i.e. all particles are "transformed"). By (2.2),

(2.9) and (3.3) it then follows that

u'(r) + 2u(r)/r - (c-aT)/a for a<r5b. (3.9)

The displacement field may now be found by integrating (3.9) and enforcing

the boundary conditions (2.10). (2.11). This yields

u(r) - (6b2/q)(ar/a 3 + (l-K)/r 2 ) - (aT/3aq)(r - b3/r2) for a<r5b,
(3.10)

where x and q were defined in (3.7). On using (3.10) and (2.2), the

requirement A(r) Z Am yields 6 
6m where

6m - (qAma3)/(3xb2) + (oTa 3)/(4pb2 ). (3.11)

Finally, we consider deformation& that involve a phase boundary at r-s.
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Suppose that a(r) A for a<r<s and that IA(r)I[-AM for s<r<b, so that all

particles within the phase boundary are associated with the thir branch of

the stress-strain curve while the particles outside the phase boundary are

associated with the first branch of the stress-strain curve (i.e. the body

is in a "partially transformed configuration" with the particles within the

phase boundary transformed and those outside untransformed). From (2.2),

(2.9) and (3.3) it follows that

S(c-aT)/Q for a<r<s,
u'(r) + 2u(r)/r - (3.12)1c/a for s~r<b.

Integrating (3.12) and enforcing the boundary conditions (2.10), (2.11) and

the displacement continuity condition u(s-)-u(s+) leads to

(6b2/q)(xr/a 3 + (l-x)/r 2 ) - (aTr/3aq)

.((Kb3/a3)(l-s3/b3)(l-a3/r 3 ) + (l-s3/r3)1 for a<r<s,

u(r) - (3.13)

(6b2/q)(Kr/a 3 + (l-K)/r 2) - (KaTr/3aq)

.(l-b 3/r3 )(l-s 3/a3) for s<r<b.

The restrictions on A(r) that were assumed in deriving (3.13) can now be

written by using (3.13), (2.2) as

6M - aT(s 3-a3)/(3ab2) 2 6 > Sm + aT(b
3 -s3)/(3ab2), (3.14)

where 6M and 6m are given by (3.8), (3.11).

While there are other cases to be considered (for example A(r)2 mAM for

s<r<b and IA(r)<AM for a<r<s) the three cases considered above are the

"i
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most important ones. Arguments similar to those used in (12] can be used

to show that the remaining cases cannot occur in any quasi-static motion

which commences from a fully untransformed state, provided the motion con-

forms with the second law of thermodynamics under isothermal conditions.

In order to summarize the nrecedinz results we consider the following sets

E1 , E3 and E31 of the (6,s)-plane:

El - ((6,s)I 161 < 6M, s-a), (3.16)

E3 - ((6,s)I 6 >_ 6m, s-b), (3.17)

E31 - ((6,s)I 6
M - aT(s3-a3 )/(3cb 2) > 6 > 6m + aT(b3-s3 )/(3ab2 ), a<s<b).

(3.18)

r7 These domains are sketched in Figure 3 where 
6T is defined by

6T - - aT(b3 a3 )/(3ab2). (3.19)

While the figure has been drawn for the case 6m>6M, our analysis is not

restricted to this case. It follows from the analysis surrounding

(3.5)-(3.8) that if (6,s) is a point in El , then u(r) as given by (3.6) is

a solution to the cavity problem. Similarly if (6,s) is respectively in E3

or E31, a solution to the cavity problem is given by (3.10) or (3.13). It

is now clear that the cavity problem, as formulated, suffers from a massive

failure of uniqueness. Observe from Figure 3, that if the prescribed value

of the displacement 6 is sufficiently small (-6 M < 6 < 6m-6 T), the problem

has a unique solution (and that it coincides with a "fully untransformed"

configuration). Similarly if 6 is sufficiently large (6 > 611+ 6T), the

problem again has a unique solution (this time corresponding to a "fully

transformed" configuration). On the other hand when the given value of 6
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lies in the intermediate range 6m-6T < 6 < SM+ 8T, the problem has an

infinite number of solutions (since the value of s is essentially arbi-

trary).

4. Hood stress at the cavity

Our primary interest in this paper is to examine the relation between

the hoop stress at the cavity wall ac - ge(a) and the applied

displacement 6. In the case of an untransformed configuration, one

finds from (2.4)2, (3.1) and (3.6) that ac is given by

ac - (3aM/28 M ) 6. (4 1)

Similarly for a fully transformed configuration, (2.4)2, (3.1) and (3.10)

give

ac - (3aM/26M) 6 + 3xaTb3/2qa 3, (4.2)

while for a partially transformed configuration

ac - (3aM/26 M ) 6 + (39aT/2qa3 )(,cb 3 + (l-c)s3), (4.3)

by (2.4)2, (3.1) and (3.13).

The regions El, E3 and E3 1 in the (6,s)-plane are carried by the

respective mappings (4.1), (4.2) and (4.3) onto the following domains F1 ,

F3 and F31 of the (6,ac)-plane:

~~1
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F1  - ((6,ac)I ac - 6p(l-x)b26/a3q, 161 : 6M ), (4.4)

F3 - 1(6,ac)I ac - 6p(1-K)b 26/a3q + (3xOTb3/2qa 3), 6 a 6m), (4.5)

" F31 - ((6,c)l ac - 390'T/ 2 < 3aM6/ 26M < ac - 3xoTb3/2qa 3 , (4.6)

3am/2 % ac 3aM3/ 2 1-

Figure 4 displays these regions; F1 and F3 are parallel straight lines,

while F31 is a parallelogram. The lines s-constant in E31 are mapped onto a

family of parallel lines in F31. Observe that part of F3 coincides with one

of the boundaries of F3 1 , but that this is not so of F1 . The quantities

6M, 6m, 6T are given by (3.8), (3.11) and (3.19), while the numbers am,

ao3, aM3, ol and oM are given by (3.4). While Figure 4 has been drawn for

1- the case 003 > 0, this is not assumed in the analysis.

5*

In order to complete the analysis, we must account for the kinetics

of the transformation. Let 4, A, E, E denote

i - A(s+), A - E(s-), -E - E(A) -(A). (5.1)

Then, the drivin. traction (the driving force per unit area) on the phase

boundary is (see equation (4.13) of Part I)

A

f (A)dA -(A)A)(A-A). (5.2)

On using the constitutive law (3.3), this simplifies to

. ..1*a . -- ,r a m m m ~ ~ a ia
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f- (-T/) E - (EM+Em)/2) (5.3)

in the case of a partially transformed configuration characterized by

(3.13). Here EM and Em are as defined previously in (3.4) and have the

meanings shown in Figure 2. Note that f vanishes when Z - Zo where

o - (EM + Em)/2; (5.4)

Eo is called the Maxwell stress and has the property that the two hatched

+
areas in Figure 2 are equal. Since Em-_Z<EM, the greatest and least

values of the driving traction (5.3) are

fM- -T(MM-Em)/ 2 a (>0), (5.5)

fm " aT(EM'Em)/2* (<0), (5.6)

respectively.

Now consider a quasi-static motion of the body on a time interval

(tO,t 1]. The lack of uniqueness observed previously suggests that the

theory, as formulated, suffers from a constitutive deficiency. A kineticI

law is a supplementary constitutive relation: it applies to particles

located on the phase boundary and relates the driving traction f (and pos-

sibly other local quantities as well) to the velocity ; of the

phase boundary. An example of such a kinetic law is

;(t) - V(f(t)) for tO~tStI , (5.7)

where V is a constitutive function; V is defined and suitably smooth on the
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interval [fm,fM]. In order to be consistent with the second law of

thermodynamics under isothermal conditions, V must obey (see (5.2) of

Part I)

V(f)f 0 for f (5.8)

Returning to the cavity problem, suppose that at every instant t during

the time interval (t0 ,tl] the body takes on a partially transformed

configuration; the displacement field in the sphere is then given by (3.13)

with s and 6 replaced by s(t) and 6(t). In this event, we find from

(3.13), (2.2), (3.3) and (5.1) that

- 3c6b 2#t/qa3 + (#caT/q)(s 3/a3 - 1). (5.9)

Substituting (5.9) into (5.3) expresses the driving traction in terms of 6

and s. Combining the resulting equation with (5.7) yields the following

first order differential equation for s(t):

;(t) - V((-aT/a)[ 3a6(t)b2x/qa 3 + (KaT/q)(s3 (t)/a 3 . 1) - Eji) (5.10)

for t0 t-t. Given the displacement history 6(t) for tOmtitj and the

initial position of the phase boundary s(t0 ), (5.10) can, in principle, be

solved uniquely for s(t). The displacement field during the

quasi-static motion is now given (uniquely) by substituting this s(t) and

6(t) into (3.13). The corresponding history of the hoop stress at the

cavity is likewise given by (4.3). We now consider three specific

examples of kinetic laws.



5.1 Historv-indeoendent resoonse

Let P be the function which is inverse to the kinetic function V;

the kinetic law (5.7) can then be written in the alternate form

f(t) - p(;(t)) for tomtit1. (5.11)

Consider the particular kinetic law characterized by

0()-0 for -4 < s < (5.12)

which is sketched in Figure 5; according to this kinetic law the driving

traction f on the phase boundary must vanish at all instants during a

quasi-static motion.

First consider a motion which, at every instant in [tO,tli, is associ-

ated with a partially transformed configuration. Equations (5.11), (5.12),

(5.3), (5.4) and (5.9) then lead to the following relation between 6(t) and

s(t):

3a6(t)b2x/qa 3 + (aoT/q)(s 3 (t)/a 3 - 1) - Zo  for tot<t1 . (5.13)

Eliminating s between (5.13) and (4.3), and then using (3.4) gives

ac(t) - 3ao 3/2 for to<t 1t. (5.14)

According to (5.14), during the quasi-static motion, the point (6(t),ac(t))

moves along the horizontal line BC in Figure 5. Recall that while the

figure has been drawn for the case ao3 > 0, this need not be.

Suppose next that the prescribed displacement 6(t) is

IL|
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increased monotonically (and continuously) from zero, and that at the

initial instant the body is in a fully untransformed configuration. The

resulting history of the hoop stress is then as shown in Figure 5: as the

point (6(t),oc(t)) moves along OA (the sphere remains untransformed and)

ac icreases. When ((6(t),ac(t)) reaches point A, the particle at the

inner wall r-a is at a "Maxwell state" in the sense that the dilatation

A(a) - A.1 (so that if a phase boundary was initiated at r-a at this

instant, the driving traction on it would vanish). If we assume that a

phase boundary is in fact initiated at this instant at r-a, (6 (t),ac(t))

now moves from A to B. The hoop stress thus decrase discontinuously from

the value 3aoi/2 to 3fo3/2. As 8(t) continues to increase, the motion is

now governed by the kinetic law and so, during this stage, (S(t),ac(t))

moves along BC, ac remains constant, and the phase boundary moves outwards.

Eventually, (6(t),ac(t)) reaches point C (at which time the phase boundary

has arrived at the outer wall r-b) and then commences to move along CO*.

The hoop stress then begins to increase once more.

If 6(t) is decreased monotonically from its value at 0*, (6(t),ac(t))

follows the path O*CBAO. The response is thus reversible, history-

independent and dissipation-free.

5.2 History-dependent. rate-indeendent response

As a second example consider the following choice for the inverse

kinetic function r in (5.11),
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( fM for > 0,

- fm for ; < 0,

which is sketched in Figure 6; here fM and fm are the maximum and minimum

possible values of the driving traction as given by (5.5), (5.6). Accord-

ing to this kinetic relation, in order for the phase boundary to move out-

wards the driving traction f must take on its largest possible value fK,

while if it is to move inwards f must have its smallest possible value fm;

if f takes on any value between fm and fM, the phase boundary must remain

stationary (even though the other field quantities might be varying). Thus

(5.11), (5.15), together with (5.3), (5.5), (5.6), (5.9) and

(3.4) yield

J>0  if ac -3 M3/2  and 6>0,

s 0 if Oc  
3 m/2 and < 0, (5.16)

0 otherwise.

As the following two examples show, the response of the body to various

prescribed displacement histories 6(t) may now be determined using (5.16).

Consider first a monotonically increasing displacement history 6(t)

with 6(t0 )-O. Suppose further that the initial configuration is a fully

untransformed one. The associated variation of the hoop stress is then as

shown in Figure 6: As (6(t),ac(t)) moves along OVP, ac increases.

When (6(t),ac(t)) reaches point P, the dilatation at the particle at the

inner wall r-a is AM (and thus, if a phase boundary is initiated at r-a at

this instant, the driving traction on it would be fM)" If we assume that a
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phase boundary is in fact initiated at r-a at this instant, (6(t),ac(t))

goes from P to Q and the cavity hoop stress decreases discontinuously from

the value 3aM/2 to 3aM3/ 2 . The kinetic law (5.16) governs the next stage of

the motion, and accordingly, (6(t),ac(t)) proceeds along QRS, the hoop

stress remains constant, and the phase boundary propagates outwards. Even-

tually (6(t),ac(t)) reaches the point S (at which time the entire sphere is

completedly transformed) and then commences to move up SO*; ac thus begins

to increase again. If 6(t) is decreased from its value at 0* the path

followed on the (6,ac)-plane is, according to (5.16), O*STUVO.

Suppose next that in the preceding example the displacement 6(t) was

only increased until (6(t),ac(t)) reached point R, and that thereafter it

is monotonically decreased for a short interval of time. According to

(5.16, s(t) must remain constant during this period and therefore

(6(t),ac(t)) moves down along the line RW. (RW is parallel QU; recall the

discussion following (4.6)). If 6(t) is increased again from its value at

W, (6 (t),ac(t)) follows the path WRSO*, so that the phase boundary

continues to remain stationary for a while (WR) but then resumes its out-

ward motion.

The response of the sphere according to the kinetic relation (5.15) is

thus seen to be "plasticity-like". Note that quasi-static motions of the

sphere are dissipative at all instants during which the phase boundary is

in motion (since then f;>0) but non-dissipative when the phase boundary is

stationary. This particular kinetic law is equivalent to the "flow rule"

used by Budiansky et al [4].
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5.3 History-dependent. rate-dependent response

As a final example, consider the kinetic function V(f) shown in Figure

7: V increases monotonically on (UmJfM), V(O)-O, V(f)- as ffM, and 71
V(f)--- as f-f. Suppose that 6(t)-At where A>O is the (constant) loading

rate. During the resulting motion, the point (6(t),oc(t)) moves along the

curve OABMNO* shown sheIa1.1I in Figure 7. The sphere initially

remains untransformed (OZA). When A(a) - Ao1 (point A) we assume that a

phase boundary is initiated at r-a; the driving traction on this phase

boundary at the instant of initiation is zero. As in all cases, the kinetic

law is now operative and governs the evolution of the phase boundary. The

equation of the curve BMN is found by solving the differential equation

(5.10) with 6(t)-At subject to the initial condition s-a. It is clear

that, in general, different loading rates A will give rise to different

curves BMN. When the rate at which V(f)-±- is sufficiently large, one can

show that the curve BMN does not intersect the upper horizontal boundary of

the parallelogram F31. (If V does not increase fast enough, the path will

intersect the upper boundary; this means that the sphere cannot be deformed

beyond this point of intersection, at that same rate of loading.) Eventu-

ally, the phase boundary reaches the outer wall (point N). Note that dur-

ing this motion, the cavity hoop stress ac first increases, then decreases

discontinuously as the phase transformation is initiated, then increases

slowly* (as the phase boundary propagates), and finally (once the entire

body has been transformed) increases at the same rate as during the initial

stage. Unloading follows the path O*CXYZO.

* In view of the admissibility condition (5.8), one can show that no matter
what the kinetic law, the slope of the curve BMN can nowhere exceed the
slope of the straight lines OA and NO*.
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As a second example of a loading history, suppose that the initial con-

figuration of the body is that associated with any point, say M, in F31.

Suppose further, that the displacement 6(t) is held constant thereafter.

Since the driving traction f on the phase boundary does not vanish in gen-

eral, the phase boundary will move according to the kinetic law. The

motion of the body may be determined by first finding s(t) by solving the

differential equation (5.10) with 6(t) - constant, and then substituting

the result into (3.13). The path followed in the (6,ac)-plane is the

vertical line through M. The phase boundary eventually comes to rest when

the driving traction becomes zero which happens when (S(t),ac(t)) reaches

the line BC.
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Figure 1. Stress response curve in pure dilatation.
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Figure 5. Dissipation-free response.
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on the phase boundary to its velocity, is then imposed, leading to a unique response
in all quasi-static motions.

As 6 increases monotonically during a quasi-static motion, the hoop stress at the

cavity first increases, then decreases discontinuously as the phase boundary emerges -71
from the cavity wall, next increases slowly (or, for certain special kinetic laws,

remains constant) as the phase boundary propagates outwards, and finally commences

to increase at the original rate once the body has been fully transformed.


