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1. Introduction

The fracture toughness of certain ceramic composites containing second
phase particles which undergo a stress-induced phase transformation is
known to be higher than that of the brittle ceramic matrix, [1,2]. A
number of recent studies, beginning with the work of McMeeking and Evans[3]
and Budiansky, Hutchinson and Lambropoulos([4}, have been aimed at providing
a continuum mechanical model which can predict the observed gtress
intengsity factor reduction at a crack-tip in such materials; see also

[5-9].

In this paper we examine a much simpler, but related, problem. We
consider the spherically symmetric deformation of a hollow sphere which has
a traction-free inner wall and a prescribed radial displacement § at its
outer wall. Here, one expects to observe a reduction in the gtress
concentration factor at the cavity in the case when the sphere is composed
of a transforming ceramic material as when compared to the case when it is
composed of the ceramic matrix. We obtain a closed form analytical solu-
tion to this problem, and use it to illustrate certain features of boundar-

y-value problems for such materials.

The analysis here is carried out within the small-strain theory of
nonlinear elasticity, and utilizes the particular constitutive law proposed
by Budiansky et al[4] for the special case of "supercritical
transformations” ; this constitutive law describes a class of elastic
materials which is homogeneous and isotropic, and which has a linear

response in shear and a tri-linear dilatational response. Certain
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theoretical issues pertaining to such materials were examined in Part I of

this study, [10].

We show that, for all sufficiently small values of the prescribed
displacement §, the boundary-value problem has a unique solution and that
it corresponds to a configuration of the body in which the strain field

varies continuously (a "fully untransformed configuration"); this is also

true for all large enough values of § (in which case the body is in a
"fully transformed configuration"). On the other hand, for a certain
intermediate range of values of § the problem has an jnfinity of solutions
and these describe configurations which involve a phase boundary ("par-
tially transformed configurations"). The strain field is continuous on
either side of the phase boundary but suffers a jump discontinuity across

it; the displacement field is continuous everywhere.

In view of this massive failure of uniqueness, we are led to conclude
that the theory, as formulated, is deficient. Presumably, this deficiency
is constitutive, and moreover, is intimately related to the presence of a
phase boundary. Accordingly, in Section 5 we supplement the theory with an
additional constitutive law (a "kinetic law") which pertains (only) to
particles located on the phase boundary. Since quasi-static motions which

involve moving phase boundaries are generally dissipative (even in

nominally elastic materials, see [1l]), it is possible to define a notion
of a driving traction on a phase boundary; the kinetic law relates the

driving traction to the velocity of the moving phase boundary. !*
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While the kinetic law governs the evolution of a phase boundary once it
has been initiated, a separate criterion is needed in order to signal the
first appearance of the phase boundary. The "initiation criterion” used
here is that a phase boundary will emerge when the driving traction on it
reaches a certain critical value. In the present theory, this is equiva-
lent to an initiation criterion based on a critical value of the dilata-

tion.

It is found that, as the given displacement § increases monotonically
during a quasi-static motion, the hcoop stress at the cavity first
increases, then decreases discontinuously as the phase boundary emerges
from the cavity wall, next increases slowly (or, for certain special
kinetic laws, remains constant) as the phase boundary propagates outwards,
and finally commences to increase at the original rate once the body has
been fully transformed. In general, the response is rate-dependent and
dissipative, though for two special kinetic laws it is rate-independent: in
one of these special cases the response is dissipation-free, wﬁile in the

other it is "plasticity-like".
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2. Cavity Problem

Consider a hollow sphere of intermal radius a and external radius b.
Suppose that the outer surface of the sphere is subjected to a radial dis-
placement § while its inner surface remains free of traction. The resulting
deformation of the sphere is assumed to be purely radial with u(r) denoting
the radial component of displacement; Q is required to be continuous on
ag<r<b, and for some se€(a,b) it is to be twice continuously differentiable
on (a,s)+(s,b). If u' is discontinuous at r=s, we refer to the circle r=s
as an gequilibrium shock or phase boundary. The spherical components of

strain associated with this deformation are

err = W (X)), €gp = g4 = u(r)/r, }
for r»s,

(2.1)
€rg = €a¢ - €r¢ - 0,
and the corresponding dilatation A(r) is
AC(r) = u’'(r) + 2 u(r)/x for rms. (2.2)

Suppose that the sphere is composed of an isotropic elastic material

whose stress-strain relation is
2= g+ (3A) - 2wa/3)L; (2.3)

A
# (>0) is the shear modulus of the material and o(A) is a constitutive
function. Various properties of this class of materials were examined in
Part I. Here we simply note that the stress response of this material in

simple shear is linear, while G(A) denotes its gtress response function in
pure dilatation. From (2.1)-(2.3), the components of stress in the sphere
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are
orr = F(A(R)) + (4p/3)(u'(r) - u(x)/r},
l. T4g =~ g = G(A(r)) - (2u/3){u’'(x) - u(r)/r), for rms.
Trg ™ 0‘0¢ - ar¢ - 0,
- Equilibrium requires
doyr/dr + 2(apy - 0pp)/r = 0 for rms, }
f- arr(s-) - arr(s+).

Equation (2.5), in view of (2.4), (2.2), leads to

ii d Z(A(r)) = 0 for rms,
dr

where I is defined by

] S(8) = 5(8) +4pd/3 for -w<A<m,

(It can be readily shown from (2.8), (2.3) that T may be interpreted as the

(2.4)

(2.5)
(2.6)

2.7)

(2.8)

stress response function of the material in uni-axial deformation.) Inte-

grating (2.7) leads to Z(A(r)) = c¢1 for a<r<s and EZ(A(r)) = cy for s<r<b

where c; and c) are constants. However, as shown in Part I of this study

(see (3.16) of [10]), displacement and traction continuity across r=s

requires Z(A(r)) to be continuous and so, (2.7) in fact leads to

Z(A(r)) = ¢ for res,

(2.9)

The cqvity problem consists of finding a displacement field u(r) which

obeys equations (2.2), (2.9), the boundary conditions

ooy

IR




u(b) = §, (2.10)

orr(8) = G(A(a)) + (4p/3)(u’'(a) - u(a)/a) = 0, (2.11)

and the displacement continuity requirement u(s-)=u(s+).

3. Displacement fields
In this section we will solve the cavity problem for the particular

class of materials characterized by the dilatational response function

Ba for -Ay < A < Ay,
5(a) ~ { B& + op(a-ay)/(ap-8y)  for Ay < A < B, (3.1)

BA + op for A 2 Ap;
B, , Oy and oy are material constants such that
M T

>0, Apaw>0, a-r<6,
-BAy S Bbp + o7 <O (3.2)
(8 -By) (B+4p/3) < -o7.

A graph of the function %(8) is shown in Figure 1. Requirement (3.2),
implies that o(-dy) < o(Ay) < 0. The significance of (3.2)3 will be
discussed shortly. The tri-linear dilatational response function (3.1) was
used by Budiansky et al{4] for characterizing the response of certain
transforming ceramics. The only difference between (3.1), (3.2) and the

choice made in [4] is that we take G(Am) to be negative; this feature is




needed in our analysis in order to allow for the occurrence of permanent

deformations. From (2.8), the uniaxial deformation response function Z

associated with (3.1) is

al for 'AM S A _<_ AM!
2(a) = { ab + op(a-by)/(Ag-by) for &y < A < &g, (3.3a)

ad + ap for A 2 Ag,
where a=f8 +4u/3. (3.3b)

The third condition in (3.2) ensures that Z(4y) > Z(Ap) so that Z'(4) is
negative on (Ay,Ap). As shown in Part I (see discussion following (3.16)
in [10]), this condition is necessary and sufficient for the material to be
able to sustain equilibrium deformations with discontinuous strains. (In
the terminology of Budiansky et al(4] when this condition holds, the mate-
rial can undergo a "supercritical phase transformation".) The graph of Z(a)
is shown in Figure 2; the number Z, = (Zy+Zy)/2. The figure has been drawn

in the case >0, though this is not assumed in the analysis.

Finallv, we introduce some additional notation which will simplify
some of the formulae that we will encounter in Sections 4 and 5. This
notation pertains to certain special points on the stress-strain curves
shown in Figures 1 and 2. We emphasize that the constitutive law (2.3),
(3.1) involves only the 5 material constants u, B, Ay, A&y and or; the
quantities which follow can all be expressed solely in terms of these basic

quantities:

A_L_.L LIy S L

_
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op = BAg + o, ogl = g - op(l-8/a), )

oy = Bby, oq3 = oy + op(1l-B/a),

do1 = (Otop)/2 - o7(1-B/a)/2, 0643 = 041 + op(l-B/a), | ;
I = aby + oT, Iy = aty, o
8p) = Oy t+ o7/a, 83 = 8y - or/e,

Bg1 = (Bg+Ay)/2 + ap/2a, Bo3 = (Bg+ty)/2 - op/2a. |

Observe that the points (4p1,041). (8g1.,901) and (Ay,oy) lie on the first
branch of the stress-strain curve a-G(A) (hence the subscript 1), while the
points (4y,0p), (843,053) and (8M3.0M3) lie on the third branch (hence the
subscript 3). Moreover (4y,oy) is a local maximum of this curve (hence the
subscript M) while (4,,05) is a local minimum (hence the subscript m).

Note also that the three straight lines which join (8y,oM) to (AM3,0M3).
(Aolvaol) to (4,3,0,53), and (Aml,aml) to (Ap,0np)., each have the same slope
-4p/3. The points (4,1,0451) and (84,3,0,3) correspond to so-called

Maxwell-states; they have the property that Z(4,1)~Z(853)=Z,=™(Zy+Zy) /2.

We now return to the cavity problem and first consider the case in
which the displacement field is smooth. Suppose that the dilatation A(r)
is such that -Ay < A(r) £ Ay for a<r<b, so that all particles in the body
are associated with the firgt branch of the stress-strain curve (i.e. all

particles are "untransformed"). By (2.2), (2.9), (3.3) it then follows

that
u’'(r) + 2u(r)/r = c/a for agr<b. (3.5)

Integrating (3.5) and enforcing the boundary conditions (2.10), (2.11)
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leads to the following expression for the displacement field:

u(r) - (6b2/q) (rr/a3 + (1-x)/r2) for a<r<b, (3.6)
where we have set

k= 4u/la (<1), q =1+ ((b3/a®)-1)x (>1). (3.7)

On using (3.6) and (2.2), the requirement |A(r)| < 4y yields |6| < 8y,

where
Sy = (qAya3d)/(3xb?). (3.8)
Next, suppose that the dilatation is such that A(r) > Ay for a<r<h so
that all particles in the body are associated with the thixd branch of the

stress-strain curve (i.e. all particles are "transformed"). By (2.2),

(2.9) and (3.3) it then follows that
u’(r) + 2u(r)/r = (c-or)/a for agr<b. (3.9)

The displacement field may now be found by integrating (3.9) and enforcing

the boundary conditions (2.10), (2.11). This yields

u(r) = (5b2/q)(nr/&3 + (1-x)/x2) - (o1/3aq) (T - b3/r2) for a<r<b,

(3.10)
where « and q were defined in (3.7). On using (3.10) and (2.2), the
requirement A(r) > Ay yields § > §; where

- 3y/(3xb2 3y /(bub? 3.11
Sm = (qapa’)/(3xb®) + (ora’)/(4pb®). (3.11)

Finally, we consider deformations that involve a phase boundary at r=s.
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Suppose that A(r)24, for a<r<s and that |A(r)|gAy for s<r<b, so that all
particles within the phase boundary are associated with the third branch of
the stress-strain curve while the particles outside the phase boundary are
associated with the first branch of the stress-strain curve (i.e. the body
is in a "partially transformed configuration" with the particles within the
phase boundary transformed and those outside untransformed). From (2.2),
(2.9) and (3.3) it follows that

(c-o7)/a for a<r<s,

u'(r) + 2u(r)/r = (3.12)
c/a for s<r<b.

Integrating (3.12) and enforcing the boundary conditions (2.10), (2.11) and

the displacement continuity condition u(s-)=u(s+) leads to

[ (6b2/q) (kx/a3 + (1-x)/r2) - (oqr/3aq)
.((nb3/a3)(1-s3/b3)(1-a3/r3) + (1-53/r3)) for a<r<s,
alr) = ¢ (3.13)

(6b2/q) (kr/a3 + (1-x)/r2) - (ropr/3aq)

l (1-b3/r3)(1-83/a3) for s<r<b.

The restrictions on A(r) that were assumed in deriving (3.13) can now be

written by using (3.13), (2.2) as
Sy - or(s3-a3)/(3ab?) > 8§ > 6y + op(b3-s3)/(3ab?), (3.14)

where §y and é, are given by (3.8), (3.11).

While there are other cases to be considered (for example A(r)2>4, for

s<r<b and IA(r)IgAM for a<r<s) the three cases considered above are the




--12--

most important ones. Arguments similar to those used in [12] can be used
to show that the remaining cases cannot occur in any quasi-static motion
which commences from a fully untransformed state, provided the motion con-

forms with the second law of thermodynamics under isothermal conditions.

In order to gummarjze the preceding results we consider the following sets
E;, E3 and E3; of the (§,s)-plane:

Ey = ((5,8)] 8| < sy, s=a), (3.16)
Ey = {(6,8)] 6 2 8y, s=b), (3.17)
Eq; = ((5,8)| 6y - op(s3-a3)/(3ab2) > 6 2 6 + op(b3-s3)/(3ab?), a<s<b).
(3.18)

These domains are sketched in Figure 3 where &7 is defined by
§7 = - ap(b3-a3)/(3ab?). (3.19)

While the figure has been drawn for the case § >8y, our analysis is not
restricted to this case. It follows from the analysis surrounding
(3.5)-(3.8) that if (§,s) is a point in E;, then u(r) as given by (3.6) is
a solution to the cavity problem. Similarly if (§,s) is respectively in Ej3
or E3;, a solution to the cavity problem is given by (3.10) or (3.13). It
is now clear that the cavity problem, as formulated, suffers from a massive
failure of uniqueness. Observe from Figure 3, that if the prescribed value
of the displacement § is sufficiently small (-8y < 6 < 6y-6T7), the problem
has a unique solution (and that it coincides with a "fully untransformed"
configuration). Similarly if § is sufficiently large (6§ > Sy+ér1), the
problem again has a unique solution (this time corresponding to a "fully

transformed" configuration). On the other hand when the given value of §
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lies in the intermediate range §5-67 < § < Sy+87, the problem has an

infinite number of solutions (since the value of s is essentially arbi-

trary).
4. Hoop stress at the cavity

Our primary interest in this paper is to examine the relation between
the hoop stress at_the cavity wall o, = ”00(3) and the applied

displacement §. In the case of an untransformed configuration, one

finds from (2.4)5, (3.1) and (3.6) that o, is given by
oc = (3oy/25y) 6. (4 1)

Similarly for a fully transformed configuration, (2.4)j, (3.1) and (3.10)

give
oe = (3oy/26y) § + 3xopb3/2qad, (4.2)
while for a partially transformed configuration
oc = (Boy/26y) § + (3xap/2qa3) (kb3 + (1-x)s3), (4.3)
by (2.4)9, (3.1) and (3.13).
The regions E;, E3 and E3; in the (§,s)-plane are carried by the

respective mappings (4.1), (4.2) and (4.3) onto the following domains Fq,

F3 and Fq1 of the (§,0.)-plane:
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Fi = ((6,0¢)| oo = 6p(1-k)b26/a3q, || < 6y I, (4.4)
Fy = ((§,00)| oc = 6u(1-x)b25/a3q + (3ropb3/2qa3), 6§ 2 &), (4.5)
Fyp = ((8,00)| oc - 3kop/2 < 3ay8/26y < o, - 3xopb3/2qa3, (4.6)

3op/2 < 0o < 3oy3/2 ).
Figure 4 displays these regions; F; and F3 are parallel straight line;,
while F31 is a parallelogram. The lines s=constant in Ejj are mapped onto a
family of parallel lines in F3;. Observe that part of F3 coincides with one
of the boundaries of F3j, but that this is not so of F;. The quantities
6y, &, 6T are given by (3.8), (3.11) and (3.19), while the numbers oy,
703, 9M3, Fo] and oy are given by (3.4). While Figure 4 has been drawn for

the case 0,3 > 0, this is not assumed in the analysis.

5. Kinetics

In order to complete the analysis, we must account for the kinetics

4 - + -
of the transformation. Let A, A, Z, Z denote

+ - + - + -
A = A(s+), A = A(s-), I =3 =3Z(8) ~Z(B). (5.1)

Then, the driving traction (the driving force per unit area) on the phase
boundary is (see equation (4.13) of Part I)
-’-
A
+ -
f = J T(a)da - Z(A)(A-b). (5.2)
a

On using the constitutive law (3.3), this simplifies to
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-\—
f = (-op/a) ( - (ZtZy)/2) (5.3)

in the case of a partially transformed configuration characterized by
(3.13). Here Zy and X, are as defined previously in (3.4) and have the

meanings shown in Figure 2. Note that f vanishes when £ = I, where

T, = (S + Tp)/2: (5.4)

Zy, is called the Maxwell stregs and has the property that the two hatched
+
areas in Figure 2 are equal. Since Z;<I<Ty, the greatest and least

values of the driving traction (5.3) are

fy = -o1(Zy-Ip)/2a (>0), (5.5)
fp = o7(Ey-Zp)/2a (<0), (5.6)
respectively.

Now consider a quasi-static motion of the body on a time interval
[tg.t1]. The lack of uniqueness observed previously suggests that the
theory, as formulated, suffers from a constitutive deficiency. A kinetic
law is a supplementary constitutive relation: it applies to particles
located on the phase boundary and relates the driving traction £ (and pos-
sibly other local quantities as well) to the velocity $ of the

phase boundary. An example of such a kinetic law is
s(t) = V(£(t)) for togtse), (5.7)

where V is a constitutive function; V is defined and suitably smooth on the
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interval (fy,,fy]. In order to be consistent with the second law of
thermodynamics under isothermal conditions, V must obey (see (5.2) of

Part 1)

V(£)f 20 for f<f<fy. (5.8)

Returning to the cavity problem, suppose that at every instant t during
the time interval [tg,tj] the body takes on a partially transformed
configuration; the displacement field in the sphere is then given by (3.13)
with s and § replaced by s(t) and §(t). In this event, we find from

(3.13), (2.2), (3.3) and (5.1) that
t 2, jaad 3,43
Z = 3aéb“x/qa’ + (kop/q)(s’/a’ - 1). (5.9)

Substituting (5.9) into (5.3) expresses the driving traction in terms of §
and s. Combining the resulting equation with (5.7) yields the following

first order differential equation for s(t):
S(t) = V<3-ar/a)[ 3a6(t)b2x/qad + (xop/q)(s3(t)/ad - 1) - Zol) (5.10)

for tost<t). Given the displacement history §(t) for tp<t<t; and the
initial position of the phase boundary s(tg), (5.10) can, in principle, be
solved uniquely for s(t). The displacement field during the

quasi-static motion is now given (uniquely) by substituting this s(t) and
$(t) into (3.13). The corresponding history of the hoop stress at the
cavity is likewise given by (4.3). We now consider three specific

examples of kinetic laws.
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5.1 Hiscory-independent response
Let ¢ be the function which i3 inverse to the kinetic function V;

the kinetic law (5.7) can then be written in the alternate form
£(t) = @(s(t)) for tostst;. (5.11)
Consider the particular kinetic law characterized by
p(8) =0 for -w<S<w (5.12)

which is sketched in Figure 5; according to this kinetic law the driving
traction £ on the phase boundary must vanish at all instants during a

quasi-static motion.

First consider a motion which, at every instant in [tg,t;], is associ-
ated with a partially transformed configuration. Equations (5.11), (5.12),
(5.3), (5.4) and (5.9) then lead to the following relation between §(t) and

s(t):
3as(t)b2x/qad + (xop/q)(s3(t)/ad - 1) = 5, for tygtst;. (5.13)
Eliminating s between (5.13) and (4.3), and then using (3.4) gives
o.(t) = 30,53/2 for tostst;. (5.14)

According to (5.14), during the quasi-static motion, the point (§(t),o.(t))
moves along the horizontal line BC in Figure 5. Recall that while the

figure has been drawn for the case o,3 > 0, this need not be.

Suppose next that the prescribed displacement §(t) is

B
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increased monotonically (and continuously) from zero, and that at the
initial instant the body is in a fully untransformed configuration. The
resulting history of the hoop stress is then as shown in Figure 5: as the
point (§(t),o0.(t)) moves along OA (the sphere remains untransformed and)
0. increases. When ((§(t),o.(t)) reaches point A, the particle at the
inner wall r=a is at a "Maxwell state"” in the sense that the dilatation
A(a) = Ay1 (so that if a phase boundary was initiated at re-a at this
instant, the driving traction on it would vanish). If we assume that a
phase boundary is in fact initiated at this instant at r=a, (6(t),0.(t))
now moves from A to B. The hoop stress thus decreases discontinuously from
the value 30,1/2 to 304,3/2. As §(t) continues to increase, the motion is

now governed by the kinetic law and so, during this stage, (6(t),0.(t))

moves along BC, o, remains congtant, and the phase boundary moves outwards.

Eventually, (§(t),o.(t)) reaches point C (at which time the phase boundary
has arrived at the outer wall r=b) and then commences to move along COy.

The hoop stress then begins to increase once more.

If 6(t) is decreased monotonically from its value at Oy, (6(t),o0.(t))
follows the path 04CBAO. The response is thus reversible, history-

independent and dissipation-free.

5.2 History-dependent, rate-independent response

As a second example consider the following choice for the inverse

kinetic function ¢ in (5.11),
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fy for s >0,
v(8) = . (5.15)
fy for s <0,

which is sketched in Figure 6; here fy and f; are the maximum and minimum
possible values of the driving traction as given by (5.5), (5.6). Accord-
ing to this kinetic relation, in order for the phase boundary to move out-
wards the driving traction f must take on its largest possible value fy,
while if it is to move inwards f must have its smallest possible value fg;
if f takes on any value between f; and fy, the phase boundary must remain
stationary (even though the other field quantities might be varying). Thus
(5.11), (5.15), together with (5.3), (5.5), (5.6), (5.9) and

(3.4) yield

>0 if o, = 30y3/2 and § >0,
$ {<0 if og =302 and § <O, (5.16)

= 0 otherwise.

As the following two examples show, the response of the body to various

prescribed displacement histories §(t) may now be determined using (5.16).

Consider first a monotonically increasing displacement history §(t)
with §(tp)=0. Suppose further that the initial configuration is a fully
untransformed one. The associated variation of the hoop stress is then as
shown in Figure 6: As (§(t),o.(t)) moves along OVP, o, increases.

When (§(t),o.(t)) reaches point P, the dilatation at the particle at the
inner wall r=-a is 4y (and thus, if a phase boundary is initiated at re~a at

this instant, the driving traction on it would be fy). If we assume that a

.

I

.
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phase boundary is in fact initiated at r=a at this instant, (§(t),o (t))
goes from P to Q and the cavity hoop stress decreases discontinuously from
the value 3o0y/2 to 3oy3/2. The kinetic law (5.16) governs the next stage of
the motion, and accordingly, (§(t),o.(t)) proceeds along QRS, the hoop
stress remains constant, and the phase boundary propagates outwards. Even-
tually (8(t),oo(t)) reaches the point S (at which time the entire sphere is
completedly transformed) and then commences to move up SOy; o, thus begins
to increase again. If 6(t) is decreased from its value at Oy the path

followed on the (§,0.)-plane is, according to (5.16), 0,STUVO.

Suppose next that in the preceding example the displacement §(t) was
only increased until (§(t),o.(t)) reached point R, and that thereafter it
is monotonically decreased for a short interval of time. According to
{(5.16,, s(t) must remain constant during this period and therefore
(6(t),o0.(t)) moves down along the line RW. (RW is parallel QU; recall the
discussion following (4.6)). If 6(t) is increased again from its value at
W, (6(t),o0.(t)) follows the path WRSO4, so that the phase boundary
continues to remain stationary for a while (WR) but then resumes its out-

ward motion.

The response of the sphere according to the kinetic relation (5.15) is
thus seen to be "plasticity-like". Note that quasi-static motions of the
sphere are dissipative at all instants during which the phase boundary is
in motion (since then £$>0) but non-dissipative when the phase boundary is
stationary. This particular kinetic law is equivalent to the "flow rule”

used by Budiansky et al [4].
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5.3 History-dependent, rate-dependent response

As a final example, consider the kinetic function V(f) shown in Figure
7: V increases monotonically on (fm,fn), V(0)=0, V(f)+= as f-+fy, and
V(f)+-» as f+f,. Suppose that §(t)=it where A>0 is the (constant) loading
rate. During the resulting motion, the point (§(t),o.(t)) moves along the
curve OABMNO, shown gchematically in Figure 7. The sphere initially
remains untraﬁsformed (0ZA). When A(a) = A,y (point A) we assume that a
phase boundary is initiated at r=a; the driving traction on this phase
boundary at the instant of initiation i{s zero. As in all cases, the kinetic
law is now operative and governs the evolution of the phase boundary. The
equation of the curve BMN is found by solving the differential equation
(5.10) with §(c)=At subject to the initial condition s=a. It is clear
that, in general, different loading rates )\ will give rise to different
curves BMN. When the rate at which V(f)-+iw is sufficiently large, one can
show that the curve BMN does not intersect the upper horizontal boundary of
the parallelogram F3;. (If V does not increase fast enough, the path will
intersect the upper boundary; this means that the sphere cannot be deformed
beyond this point of intersection, at that same rate of loading.) Eventu-
ally, the phase boundary reaches the outer wall (point N). Note that dur-
ing this motion, the cavity hoop stress oo first increases, then decreases
discontinuously as the phase transformation is initiated, then increases
slowly* (as the phase boundary propagates), and finally (once the entire
body has been transformed) increases at the same rate as during the initial

stage. Unloading follows the path 0,CXYZO.

* In view of the admissibility condition (5.8), one can show that no matter
what the kinetic law, the slope of the curve BMN can nowhere exceed the
slope of the straight lines OA and NO,.
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As a second example of a loading history, suppose that the initial con-
figuration of the body is that associated with any point, say M, in Fi31.
Suppose further, that the displacement §(t) is held constant thereafter.
Since the driving traction f on the phase boundary does not vanish in gen-
eral, the phase boundary will move according to the kinetic law. The
motion of the body may be determined by first finding s(t) by solving the
differential equation (5.10) with §(t) = constant, and then substituting
the result into (3.13). The path followed in the (6,0.)-plane is the
- vertical line through M. The phase boundary eventually comes to rest when
the driving traction becomes zero which happens when (§(t),o0.(t)) reaches

the line BC.
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Figure 1.

Stress response curve in pure dilatation.




Stress response curve in uni-axial deformation.

Figure 2.




- 3

Bu*3;

/. )
s

!
I
|
|
{

1

8M

Parameter sets E1 E3 Ey; in (6,5)-plane

0o
Figure 3.

I
"



rar

30, /2

30;,/2 / i:
‘:;a/,///// . ///// W

Figure 4. Regions Fl’ F3, F31 of the (8, oc)-plane.




Figure 5.

Dissipation-free response.
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Figure 6. Maximally dissipative response.




Figure 7. Response according to kinetic relation shown in inset.
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