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ALPHA, ALPI
CONFIG
CURRENT
DATA TYPE

DEL
DEL*
DEL**
OEW
DITTD

DITTL
EBAR -
ERMS

ETA

ITTD
ITTL
ITWL
LRE

NOMENCLATURE
Angle of attack, deg
Model configuration designation
Anemometer heating current, mamp
Code indicating mature of dats tabulated:

"2" « Model surface pressure and temperature
measurements

"4" - Mean boundary-layer profile measurements
using pitot pressure and total temperature
probes

"6" - Probe flow calibration data

"g" - Quantitative hot-wire anemometer data at
particular point locations within & survey
or within the free stream

Boundary-layer total thickness, in.

Boundary-Tayer dispilacement thickness, in.

Boundary-layer momentum thickness, in.

Tunnel sti11ing chamber dew point temperature, OF

Enthalpy difference at boundary-layer thickness,
DEL, ITTD-ITWL, Btu/ibm

Local enthalpy difference, ITTL-ITWL, Btu/lbm
Anemometer mean voltage, mv
Anemometer output rms voltage, mv

Effective total-temperature probe recovery factor
ETA={TTLU-T) /(TT=-T} or (TTTU-T)/(TT-T)

Enthalpy based on TTD, Btu/l1bm
Enthalpy based on TTL, Btu/lbm
Enthalpy based on TWL, Btu/1bm

Local unit Reynolds number, in.-1



LRED Unit Reynolds number at the boundary-layer
thickness, DEL, in.-l

LRET Local "normal shock" unit Reynolds number
(based on MUTTL), in.-1

LRETA "Normal shock" unfit Reynolds number at
the anemometer location (based on MUTTL), in.-1

«RETD "Normal shock" unit Reynolds number at
boundary-layer thickness, DEL (based on
MUTTD), in.-l

M, MACH Free-stream Mach number
MA Mach number interpolated to the anemometer location
MD Local Mach number at boundary-layer thickness DEL
ME Mach number at boundary-layer edge
ML Local Mach number
MU Dynamic viscosity based on T, 1bf-sec/ft2
MUTD Oynamic viscosity based on TD, 1bf-sec/ft2
MUTL Dynamic viscosfty based on TL, 1bf-sec/ft2
MUTT Dynamic viscosity based on TT, 1bf-sac/ft2
MUTTD Dynamic viscosity based on TTD, 1bf-sec/ft2
MUTTL Dynamic viscosity based on TTL, 1bf-sec/ft2
P Free-stream static pressure, psia
PHI, PHII " Roll angle, deg
POINT Dataz point number
PP Probe pitot pressure, psia
PPD | Pitot pressure at boundary-layer thickness
DEL, psia
PPE Pitot pressure at boundary-layer edge, psia
PT Tunnel stilling chamber pressure, psia



PT2

PW
PWL

RE
RE/FT
RETD

RHO
RHOD
RHOL
RN
RUM

SD PW

TAP
TCXXX

T0

TDRK
THETA

TL

Free-stream total pressure downstream of a -
normal shock wave, psia

Model surface pressure, psia

Model wall static pressure used for boundary-
layer survey calculations, psia

Free-stream dynamic pressure, psia

tree-stream unit Reynolds number, in.-1
Free-stream unit Reynolds number, ft-1

"Normal shock" Reynolds number based on

total temperature probe thermocoupie diameter
and viscosity of MUTT

Free-stream density, 1bm/ft3

Density at boundary-layer thickness DEL, 1bm/ft3
Loca) density, lbm/ft3

Model nose radius, in.

Data set identification number

Curvilinear surface distance measured from
model stagnation point, in.

Model wall pressure standard deviation
Free-stream static temperature, OR or OF
Pressure orifice identification number

Identification number of thermocouples on model
interior surface

Static temperature at boundary-layer thickness
DEL, OR

Temperature of Druck probe transducar, OR
Peripheral angle on the model measured from ray
on model top, positive clockwise when looking
upstream, deg

Local static temperature, OR



TTA

D

-~ TTE
TTL

TTw

TTTU

OR

THL

LD

Ut

UL

XC
XSTA
ZA

ZP

Tunnel sti11ing chamber temperature, OR or OF

Local total temperature interpolated to the
anemometer location, OR

Total temperature at boundary-layer edge thickness,
DEL, ©R

Total temperature at boundary-layer edge, OR

local total temperature, at pitot probe
height OR

Uncorrected (measured)} probe recovery temperature,
interpolated to ZP, OR

Uncorrected (measured) probe recovery temperature,
Model wail temperature used for boundary-layer
survey calculations, OR

Local velocity companent parallel to model surface
at boundary-layer thickness, DEL, ft/sec

Local velecity component paraliel to model surface
at boundary-iayer edge, ft/sec

Local velocity component  paraliel to model surface,
ft/sec

Free-stream velocity, ft/sec

Axfal location measured from virtual apex of cone
model, 1n.

Calculated X location of survey station, in.
Nominal X location of survey station, in.

Anemometer probe height, distance to probe
centerline along normal to model surface, in.

Pitot-pressure probe height, distance to probe
centerline along normal to model surface, in.

Total-temperature probe height, distance to probe
centeriine along normal to model surface, in.



1.0 [INTRODUCTION

The work reported herein was performed by the Arnold Engineering
Development Center (AEDC), Air Force Systems Command (AFSC), under
Program Element 61102F, Control Number 2307, at the regquest of the Air
Force Wright Aeronautical laboratory (AFWAL/FIMG) and the AEDC
Jirectorate of Aerospace Fiight Dynamics Test (AEDC/DOF). The AFWAL
proqram manager was Kenmeth F. Stetson and the AEDC/DOF program manager
was tlton R. Thompson. The results were obtained by the Calspan
Corporation/AEDC Operations, operating contractor for the Aerospace
Flight Dynamics testing effort at the AEDC, AFSC, Arnold Air Force
Base, Tennessee, 37389. The test was performed in the von Karman Gas
Dynamics Facility (VKF) Hypersonic Wind Tunnel (B) on July 16-21, 1986,
under the AEDC Project Number CFO3VB (Calspan Project Number V--B-07).

This test was the sixth in a series of studies designed to
investigate the development of laminar boundary-layer instabilities on
sharp and blunt cones in hypersonic flow (Refs., 1-2). The present
study was devoted to instabilities associated with a sphericalily-
blunted cone model. Boundary-layer and free-stream fiow-field data
were obtained using hot-wire anemometer-, total temperature-, and pitot
pressure- probes. Model surface pressure distributions were also
obtained. The model configuration was a 7-deg (half-angle) cone with a
sphericalily blunted nosetip of 0.70 in. radius.

Testing was performed at Mach number 8 at a free-stream unit
Reynolds number of 2.6 million per foot and zero angle of attack. Hot-
wire anemometer probe caljbrations were obtained over a range of
stilling chamber pressures between 200 and 575 psia with a nominally
constant stilling chamber temperature of 850 deg F.

Inquiries to obtain copies of the test data should be directed to
AEDC/DOF, Arnclid Air Force Base, Tennessee 37389. A microfiche record
has been retained in the VKF at AEDC.

2.0 APPARATUS
2.1 TEST FACILITY

Tunnel B (Fig. 1} i1s a closed circuit hypersonic wind tunnel with
a 50-in.-diam test section. Two axisymmetric contoured nozzles are
available to provide Mach numbers of 6 and 8, and the tunnel may be
operated continuously over a range of pressure levels from 20 to 300
psia at Mach number 6, and 50 to 900 psia at Mach number 8, with air
supplied by the VKF main compressor plant. Stagnation temperatures
sufficient to avoid air liquefaction in the test section (up to 13500R)
are obtained through the use of a natural gas fired combustion heater.
The entire tunnel (throat, nozzle, test section, and diffuser) is
cooled by integral, externai water jackets. The tunnel 1is eguipped
with a model injection system, which allows removal of the model from



the test section while the tunnel remains in operation. A description
of the tunnel may be found in Ref. 3.

2.2 TEST ARTICLE

The model used for this investigation was one of the two Lubard
models {(fabricated by AEDC) which are seven-degree half-angle cones
constructed of 304 stainless steel. These models have a 40 in. virtual
length and a 9.82 in. base diameter and a series of interchangeable
nose sections including a nominally-sharp nose and several spherically
blunted noses of various radii. The blunted nose section of 0.70 in.
radius was used for the present investigation.

The first five test entries used the Lubard pressure/heat-transfer
model which has been used for several other test programs and is now in
very poor cendition. Thus, for this entry, the Lubard force model was
used and instrumented for additional surface pressure measurements.

During the tests performed in 1981, it was discovered that near
the nose region of this configuration the maximum disturbance energy
point in the flow over the body, as detected by the hot-wire sensor, is
located outside the boundary layer. As the surveys move toward the base
of the model, however, this maximum energy point approaches and enters
the boundary layer. To ensure that this phenomenon was bracketed by
the test surveys, an existing frustum extension was attached at the
mode]l base to extend the model length by 10.5 in.

The model was instrumented with 25 pressure orifices. Table 1
lists the location of this instrumentation and indicates that the top
centerline (THETA = 0) of the model was the main ray of pressure
instrumentation. Pressure orifices were also Tocated on the THETA =
90-, 180-, and 270-deg rays at three additional axial stations. A
sketch of the model geometry and instrumentation locations is given in
Fig. 2.

In order to monitor the model shell temperature, four
thermocouples were mounted to the internai model wall. These were
located at THETA = 270 degrees {or -90 deg from the main ray of
pressure orifices). Actual axial locations of these thermocoupies are
given in Table 1. (See also, Fig. 2).

The model was installed as far upstream in the wind tunnel as
practical, to permit surveying the boundary layer as far downstream as
possible. The model instailation is shown in Fig. 3.

2.3 FLOW-FIELD SURVEY MECHANISM

Surveys of the flow field were made using a retractable survey
system (X-Z Survey Mechanism) designed and fabricated by AEDC. This
mechanism makes it possible to change survey probes while the tunnel
remains in operation. The mechanism 1is housed 1in an air lock



immedfately above a port in the top of the Tunnel B test Section.
Access to the test section 1is through a 40-in.-long by 4-in.-wide
opening which can be sealed by a pneumatically operated door when
the mechanism is retracted. Separate drive motors are provided to
(1) insert the mechanism into the test section or retract it into the
housing, (2) position the mechanism at any desired axial station over a
range of 35 in., and (3) survey a flow field of approximately 10-in.
depth. A pneumatically-operated shield was provided to protect the
probes during injection and retraction through the tunnel boundary
layer, during changes in tummel conditions, and at times when the
probes were not in use.

The probes required for flow-field survey measurements are rake-
mounted on the X-Z mechanism at the foot of & strut that is extended or
retracted to accomplish the survey. The direction of the survey with
respect to the vertical is fixed by manually sweeping the strut to the
selected angle between 5 deg (swept upstream) and -15 deg (swept
downstream) and locking the strut in position.

A sketch of the survey probe rake is shown in Fig. 4. The top and
rear surfaces of the rake are designed to mate to the strut of the X-Z
Survey Mechanism. The rake 1is provided with four 0.10-in. I.D. tubes
through which are mounted the hot-wire anemometer-, the pitot
pressure-, and total temperature probes. The fourth tube was used in
the present test for housing a "touch-sensor" probe that caused the
survey mechanism to halt when the probe made contact with the model
surface. The tubes were slotted to accommodate spring clips attached
to the rake which were used to hold the probes in position.

2.4 FLOW-FIELD SURVEY PROBES

The hot-wire anemometer probes (Fig. 5a) were fabricated by the
VKF.  Platinum-10% rhodium wires, drawn by the Wollaston process, of
20- or 50-micro-inch nominal diameter and approximately 140 diameters
length, were attached to sharpened 3-mil nickel wire supports using a
bonding technique developed by Phiico-Ford Corporation (Ref. 4). The
wire supports were inserted im an alumina cylinder of 0.032 in.
diameter and 0.25 in. length, which was, in turn, cemented toc an
alumina cylinder of 0.093 in. diameter and 3.0 in. length that carried
the hot-wire leads through the probe holder of the survey mechandism.

The pitot pressure probe (Fig. 5b) had a cylindrical tip of 0.007-
in. inside diameter. This probe was fabricated by cold-drawing a
stainless steel tube through a set of wire-drawing dies untfl the
desired inside diameter was obtained. The outside surface of the drawn
tube was subsequently electropolished to a diameter of 0.015 in. to
minimize interference with the flow field surveyed.

The unshielded total temperature probe was fabricated from a
length of sheathed thermocouple wire (0.020-in. 0.0.) with two 0,004-
In.-diameter wires. The wires were bared for a length of about 0.015



in. and a thermocoupie junction of approximately 0.005-in. diameter was
made. Details of this probe are shown in Fig. 5c.

2.5 TEST INSTRUMENTATION
2.5.1 Standard Instrumentation

The measuring devices, recording devices, and calibration methods
for a11 parameters measured during this test are listed in Table 2.
Also, Table 2 fidentifies the standard wind tunnel instruments and
measuring techniques used to define test parameters such as the model
attitude, the model surface pressure, probe positions, and probe
measurements. Additionai special instrumentation used in support of
this test effort is discussed in the following subsections.

2.5.2 Model Surface Instrumentation

Eighteen surface pressure taps were located ajong the zero ray of
the model. In addition, two taps were located on the 90-deg ray, three
on the 180-deg ray, and two on the 270-deg ray. These taps, having
approximate diameters of 0.064 in., were connected by tubing either to
one-psid Druck® or 2.5-psid ESP transducers of the Tunnel B8 Standard
Pressure System.

Model shell temperatures were wmonitored by four Chromei®-
Alumei® thermocouples attached to the interior surface of the model.
These thermocouples were mounted at THETA = 270 deg at nominal axial
locations of X = 15-, 24-, 34-, and 45 in. (see Table 1),

2.5.3 Hot-Hire Anemometry

Flow fluctuation measurements were made using hot-wire anemometry
techniques. Constant-current hot-wire anemometer instrumentation with
auxiliary electronic equipment was furnished by AEDC. The anemometer
current control (Philco-Ford Model ADP-13) which supplies the heating
current to the sensor is capable of maintaining the current at any one
of 15 preset levels individually selected using push-button switches.
The anemometer amplifier (Philco-Ford Model ADP-12), which amplifies
the wire-response signal, contains the circuits required to compensate
the signal electronically for thermal lag which is a characteristic of
the finite bheat capacity of the wire. A square-wave generator
(Shapiro/Edwards Model G-50) was used in determining the time constant
of the sensor whenever required. The sensor heating current and mean
voitage were fed to autoranging digital voltmeters for a visual display
of these parameters and to a Bell and Howell model VR3700B magnetic
tape machine and to the tunnel data system for recording. The sensor
response a-c voltage was fed to an oscilloscope for visual display of
the raw signal and to a wave analyzer (Hewlett-Packard Model
85538/8552B) for visual display of the spectra of the fluctuating
signal and was recorded on magnetic tape for subsequent analysis by



AEDC. A detailed description of the hot-wire anemometer
instrumentation is given in Ref. 5.

The a-¢ response signal from the hot-wire anemometer was recorded
using the Bell and Howell Model VR3700B magnetic tape machine in the
FM- WBII mode. This channel, when properly calibrated and adjusted,
has a signal-to-noise ratio of 35 db for a 1.000 voit rms output and a
frequency response of +1 to -3 db over a frequency range of 0 to 500
kHz. A sine wave generator is used to check each channel at severci
discrete frequencies, using an rms-voltmeter which 1is periodically
checked on 1, 10, and 100 volt ranges. The sensor heating current and
mean voitage signals from the hot-wire anemometer were also tape-
recorded using the FM-WBI mode. Magnetic tape recordings were made at
a tape speed of 120 in./sec.

2.5.4 Pitot Probe Pressure Instrumentation

Pitot probe pressures were measured during surveys of the model
boundary layer using a 15-psid Druck transducer calibrated for 10-
psid full scale. The small size of the pitot probe (Section 2.4) was
characterized by time delays for the stabilization of the pressure
level within the probe tubing between orifice and transducer, when the
probe was moved across the boundary layer. In order to reduce this lag
time, the pitot pressure transducer was housed in a water-cooled
package attached to the trailing edge of the strut on which the probe
rake was mounted (Section 2.3). The distance between orifice and
transducer was approximately 18 inches. The resultant lag time was of
the order of one second.

3.0 TEST DESCRIPTION
3.1 TEST CONDITIONS AND PROCEDURES

A summary of the nominal test conditions +s given below.

M__ PT, psia TT, R V¥, ft/sec 0O, psfia T, R P, psia RE/FT x 10-6
8.0 575 1311 3822 2.64 g5 0.06 2.6

A summary of the present testing is presented in Tables 3 and 4
together with that of each of the five previous efforts, two of which
are documented in Refs. 1-2. These tables provide a compiete summary of
the various -types of measurements made with each configuration for the
six tests. The individual tests may be identified by RUN numbers. For
Test 1, RUN < 200; for Test 2, 200 < RUN < 300; Test 3, 300 < RUN <
400; Test 4, 400 < RUN < SDD' Test 5, 500 < RUN < ?00, and for the
present testing, RUN > 700.

In the continuous fiow Tunnel B, the model is mounted on a sting

support mechanism in an 1nsta11at1on tank directly underneath the
tunnel test sectifon. The tank is separated from the tunnel by a pair

10



of fairing doors and a safety door. When closed, the fairing doors,
except for a slot for the pitch sector, cover the opening to the tank
and the safety door seals the tunnel from the tank area. After the
model is prepared for a data run, the personnel access door to the
installation tank is closed, the tank is vented to the tunnel flow, the
safety and fairing doors are opened, the model is injected into the
airstream, and the fairing doors are closed. After the data are
abtained, the model is retracted into the tank and the sequence is
reversed with the tank being vented to atmosphere to allow access to
the model in preparation for the next run. The sequence is repeated
for each configuration change.

Prior tc each operating shift, the Tunnel B circuit was purged to
minimize the amount of particulate matter in the flow. This was
necessary for protection of the extremely sensitive hot-wire probes
from particulate impacts.

Probes mounted to the X-Z mechanism are deployed for measurements
by the following seguence of operations: the air lack is closed,
secured over the mechanism, and evacuated; and the access door to the
tunnel test section is opened. The various drive systems (see Section
2.3) are used to inject the probes into the test section and position
the probes at a designated survey station along the length of the
model, the shield protecting the probes is raised, exposing them to the
flow, and the flow field 1s traverse¢ in the direction normal to the
model surface to the probe height (or heights) selected for
measurements. When the traverse has been concluded, the shield is
closed over the probes and the mechanism is repositioned along the
model. When the surveys are completed or when a probe is to be
replaced, the X-Z Mechanism 1s retracted from the flow and the access
door is closed. The air iock is then opened for probe work.

The survey probe height relative to the model was monitored using
a2 high-magnification closed-circuit television (CCTV) system. The
camera for this system was fitted with a telescopic lens system which
givés a magnification factor of 20 for the monitor image. The probe
and model were back-lighted using the coliimated light beam of the
Junnel B shadowgraph system which produced a high-contrast silhouette
of the model-probe outline. The camera was mounted on a horizontal-
vertical traversing mount to facilitate alignment of the camera with
the probe at various model stations visible through the test section
windows. The video camera wis interfaced with an image
analyzer/digitizer system (IADS) which was used to measure the distance
between the probe and model surface using computer-assisted image
analysis techniques. The software for making these measurements was
designed to locate the lower edge of the probe and the upper edge of
the model surface automatically, thus wminimizing inconsistencies
associated with Tocation of the edges by an operator using a cursor.
The measurement accuracy was further improved by calibrating the system
prior to testing, using the automated edge-location technique to locate
edges separated by a known distance.
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A hardcopy of the video image of the probes and model edge was
provided in near real-time showing, by means of a graphics line, the
location of the edges measured and displaying a printout of the
measured distance and other pertinent documentation (Ref. 2, Fig. 6).
The accuracy of this measurement technique was determined to be better
than 20.0007 in. over a range of 0.003 to 0.2 in. under air-off
conditions. Provisions were made to determine the magnitude of edge
movement caused by probe and model vibrations .nd t2 calculate a
correction factor for the measurements if required. However,
vibrations of the model and probes were negligible when measurements
were made under the present test conditions.

The model was oriented in roll to aveid interference cof the
surface instrumentation with the boundary-layer probes. The flow-field
surveys were obtained only after the model had reached egquilibrium
temperature. Initial probe positioning near the model surface prior to
each survey was accomplished by manual maneuvers of the oprobe
controller while observing the C{TV monitor. The flow-field surveys
were accomplished in the following sequence: (1) the survey mechanism
was positioned at the desired model axial station (XSTA) by the
controller operating in either manual or automatic mode and locked in
axial position; (2) the survey mechanism was driven downward in the
direction normal to the surface by the controller until the "touch-
sensor" probe (Section 2.3) made contact with the surface; (3)
measurements of probe positions relative to thé surface and to each
other were made using the IADS and the information was manually entered
into the data system; {(4) the probes were traversed across .the flow
field in selected increments by the controller in either manual or
automatic mode to acquire the desired data; (5) the axial position of
the survey mechanism was unlocked and the mechanism was repositioned at
the next survey station along the model.

3.2 DATA ACQUISITION

The primary test technigue used in the present investigation of
the initial development of instabilities in a laminar boundary layer
was hot-wire anemometry. In addition, mean-flow boundary-layer profile
data (pitot pressure and total temperature) were acquired in order to
define the flow enviromment in the vicinity of the hot-wire. Surface
pressure distributions on the model were obtained to supplement the
profile data. The various types of data acquired are summarized in
Table 3. Model stations for mean-flow surveys are listed in Table 4.

3.2.1 Hot-Wire Anemometry Data

The hot-wire anemometer data acquired during the present testing
were of two general categories: (1) continuous-traverse surveys of the
boundary layer to map the response of the hot-wire anemometer as a
function of distance normal to the surface and (2} quantitative hot-
wire measurements using the wire operated at each of a series of wire
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heating currents at one or two locations on each profile. The
anemometer probes used are identified in Table 3f.

Data of the first category were acguired with the hot wire
operated using a single heating curremt, in the present case the
maximum (practical) current., The probe was generally translated in a
continuous manner from near the model surface outward to a distance of
approximately three times the boundary layer thickness. These data
were recorded as analog plots of the hot-wire response (rms of the a-c
voltage component) versus probe height normal to the model surface.
The plot was used primarily for the purpose of determining the station
in the boundary-layer profile where the hot-wire output reached a
maximum level.

Quantitative hot-wire data (second category) were acquired at
locations determined from the continuous-traverse surveys (first
category data). The point of maximum rms voltage output of the hot
wire, the "maximum energy point" of the profile, was selected for
quantitative measurements at each model station. The guantitative data
were acquired using each of a sequence of two or more wire heating
currents; one current was nominal-zero to obtain a measurement of the
electronic noise of the anemometer instrumentation. Each wire heating
current, wire mean voltage (d-c component} and the rms value of the
wire voltage fluctuation (a-c component) were measured 40 times using
the Tunnel B data system. At the same time, these hot wire parameters
were being recorded (generally, a five-second record duration) on
magnetic tape with a tape transport speed of 120 in./sec.

3.2.2 Flow-Field Survey Data

Mean-flow boundary-layer profiies extended from a height of 0.02
in. above the model surface to somewhat beyond the edge of the boundary
layer. A profile typically consisted of 25 to 40 data points
(heights). The probe direction of travel was normal to the surface.

3.2.3 Model Surface Data

Surface pressure distributions on the model were obtained to
supplement the boundary-layer profile data. Model shell temperatures
were measured using the internal thermocoupies.

3.2.4 Anemometer and Total Temperature Probe Calibrations

The evaluation of flow fluctuation guantitative measurements made
using hot-wire anemometry techniques requires a knowledge of certain
thermal and physical characteristics of the wire sensor employed. In
the application of the hot wire to wind tunnel tests, two complementary
calibrations are used to evaluate the wire characteristics needed. The
first calibration of each hot-wire probe is performed in the
instrumentation laboratory prior to the testing: the probe is placed
in an oven, and the resistance of the wire is determined as & function
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of applied wire heating current at several oven temperatures -between
room temperature and 6000F. The wire reference resistance at 320F and
the thermal coefficient of resistance, also at 320F, are obtained from
the results; the wire aspect (length-to-diameter) ratio 1s determined,
using the wire resistance per unit length specified by the manufacturer
with each supply of wire. Moreover, it has been established that the
exposure of the probes to the elevated temperatures of the oven
calibration often serves to eliminate probes with inherent weaknesses.

Each hot-wire probe used for flow-field measurements is calibrated
in the wind tunnel free-stream flow to obtain both the heat-loss
coefficient (Nusselt number) and the temperature recovery factor
characteristics of the wire sensor as functions of 1local Reynolds
number. The variations of Reynolds number in the free stream are
obtained by varying the tunnel total pressure (PT) whiie holding the
tunnel total temperature (TT) at a nominally constant level. The
resulting relationships are used to determine the values of the various
wire sensitivity parameters required in the reduction of the
guantitative measurements.

A calibration of the recovery factor of the total-temperature
probe as a function of local Reynolds number was made in the free-
stream flow of the tunnel test section simultaneously with the
calibration of the hot-wire probes. The local total temperature for
the probes in free-stream flow was assumed to be equal to the measured
sti11ing chamber temperature, TT (see Section 3.3.4).

3.3 JATA REDUCTION
3.3.1 Hot-Wire Anemometry (Data Types 6 and 9)

In the present discussion, as it pertains to the reduction of hot-
wire anemometer data, only the basic measurements tabulated in the data
package that accompanies this report will be considered. (Examples of
these tabuiations are shown in the Sample Data.) The data processing
associated with spectral analysis, modal analysis, and determination of
amplification rates of laminar disturbances is beyond the scope of this
report. Extended data reduction of the hot-wire results to achieve
these analyses is planned for the present measurements.

The basic measurements associated with quantitative hot-wire data
are the following parameters: wire heating current, wire mean voltage,
and the rms. value of the wire fluctuating response voltage. The
average vailue of 40 measurements of each of these three parameters was
determined over a perfod of 5 sec for each nominal wire heating current
employed, and the results were tabulated under the designation "DATA
TYPE 9" together with certain associated model, flow field, and tunnel
conditions. (See Sample 1.) :
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Free-stream tunnel conditions that are applicable to anemometer
and total-temperature probe calibrations are tabulated under the
designation "DATA TYPE 6". (See Sample 2.)

3.3.2 Mean Flow-Field Surveys (Data Type 4)

The mean flow-field data reduction included calcuilation of the
local Mach number and other local flow parameters, determination of the
height of each probe relative to the model surface, correction of the
total-temperature probe using an appropriate recovery factor,
definition of the boundary-layer total thickness, and evaluation of the
displacement and momentum thicknesses. Sample tabulated data are shown
in Sample 3, and typical plotted resuits are shown in Fig. 6. The
data reduction procedures are outlined as follows.

The local Mach number in the flow field around the model was
determined using the measured pitot pressure (PP) and the local model
static pressure (PWL) with the Rayleigh pitot farmula.

The height of each probe above the model surface, in the normal
direction, was calculated for each point in a given flow-field survey,
taking 1into consideration the following parameters: the initial
vertical distance determined from the CCTV image, the distance
traversed in the vertical direction from the initial position employing
the survey probe drive, the lateral displacement of the probe from the
vertical plane of symmetry of the model, and the local radius of the
model at the survey station,

The height of the pitot pressure probe above the model surface
(ZP) was used as the reference for all probas because the pitot probe
was located in the vertical plane of symmetry of the model. The
recovery temperature measurements (TTTU) of the total temperatura probe
were used to interpoiate (three-point) a value (TTLU) corresponding to
each height of the pitot probe. Correction of the dinterpolated
recovery temperature, using the probe calibration data, was achieved by
-iteration on the Tlocal Reynolds number beginning with the value
calculated using the recovery temperature (TTLU) to determine an
initial value for the local dynamic viscosity (MUTTL). The iteration
was continued wuntil successive values of the ‘'corrected" total
temperature differed by no more than 0.1 deg R. For those surveys
wherein the pitot probe was positioned below the total-temperature
probe (closer to the model surface), the corrected total temperature at
the corresponding pitot probe heights was determined from a second-
order curve fit using three points, namely: the model surface
temperature (TWL) and the corrected total temperature at the first two
probe heights, where it was available.

The total thickness of the model boundary layer in any given
profile was inferred from the profile of the total-temperature probe
recovery temperature (TTLU). Recovery temperatures measured above the
edge of the boundary Jlayer (in the shock layer) remained constant or
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essentially independent of the probe hefght. There was generally a
very distinct ‘“overshoot® 1in the recovery temperature profile
immediateiy before the onset of the constant portion of the profile.
The height at which this constant portion of the profile began was
defined as the edge of the boundary layer, and the corresponding
distance normal to the model surface was defined as the boundary-layer
total thickness (DEL). Displacement and momentum thicknesses were
determined by integration accounting for the model cone angle and local
radius of curvature. Probe/model interference was noted for some of the
data points near the model surface; these points were cmitted from the
integrations.

Model surface pressure distributions were measured during mean
flow-field surveys, "DATA TYPE 4" (Sampile 3). These measurements were
made each time that probe data were acquired and the 25 to 40 values
for each pressure were averaged. The averaged values and their
respective standard deviations are included in the tabulations of DATA
TYPE 4.

3.3.3 Model Surface Measurements (Data Type 2)

Model surface pressure distributions generally were obtained when
the survey probe mechanism was Jocated so as not to interfere with the
measurements. These data are tabulated under the designation “DATA
TYPE 2". (See Sample 4.) .

The local model surface pressure, PWL, used in the boundary-layer
calculations was determined using a fairing of the measured pressure
distributions (selected runs of DATA TYPE 2). The static pressure was
assumed to be constant across the boundary layer and shock layer and
equal to the local model surface pressure at each survey station. The
fairing of the surface pressure distribution used for each test
condition is shown in Fig. 7.

3.3.4 Total Temperature Probe Calibration (Data Type 6)

The recovery factor ETA used in reducing the total temperature
probe survey data is defined generally as a function of the local
Reynolds number based on probe diameter. In the case of the probe used
in the present test, the factor ETA was essentially independent of
Reynolds number; that is, ETA = constant for the test conditions being
considered.

Free-stream tunnel conditions that are applicable to the total-
temperature probe calibration are tabulated under the designation “DATA
TYPE 6" (Sample 2.)

3.4 MEASUREMENT UNCERTAINTIES

In general, instrumentation calibrations and data uncertainty
estimates were made using methods recognized by the National Bureau of
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Standards (NBS),(Ref. 6). Measurement uncertainty (U) 1s a combination
of bias and precision errors defined as:

U= %(B + tosS)

where B 1s the bias 1imit, S is the sample standard deviation, and tgs
is the 95th percentile point for the two-tailed Student's "t"
d¢istribution, which equals approximately 2 for degrees -of freedom
greater than 30.

Estimates of the measured data uncertainties for this test,
including the basic hot-wire znemometer measurements discussed in this
report, are given in Tables 2a and b. Estimates of uncertainties in
flow fluctuations derived from the hot-wire anemometer measurements and
in other calculated flow survey parameters fall outside the scope of
this report. In general, measurement uncertainties are determined from
in-place calibrations through the data recording system and data
reduction program.

The propagation of the estimated pias and precision errors of the
measured data through the data reduction was determined for free-stream
parameters in accordance with Ref. 6, and is summarized in Table 2b.

4.0 DATA PACKAGE PRESENTATION

Boundary-layer profile data, model surface data, probe calibration
data, and basic hot-wire anemometer data from the test were reduced to
tabular and graphical form for presentation as. a Data Package.
Examples of the basic data tabulations are shown in the Sample Data.

Figure 6 is an example of the plotted mean-flow boundary-layer

survey resuits for the blunt cone configuration at a particular survey
station which are included in the Data Package.
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b. Calculated Parameters

Estimated Measurement®
Parameter Precisirs:'; Index E::’a's l::r;;er:atl :g,
Designation RE/FT
) Percant of Unitof Degreeof | Percentaf Unit of Parcent of Umitof x10% | MACH,
Reading | Measurement Freedom | Raading | Measuremant| Reading | Measuramemt | Nom. | Mominal

P, psi 0.82 )30 0.02 1.65 25 8.0
PT2, apsi 0.57 0.02 1.16
Q, psi 0.57 0.02 1.16
T.°F 0.25 0.24 0.74
v, ftssec 0.04 0.12 0.20
RHo, Ibmsftd 0.59 0.25 143
MU, Ibf-secrft2 0.25 0.24 0.74
M 0.13++ o+ 0.26
RE, per ft 0.36 0.37 1.09

* Reference: Abernethy, R.8. et al and Thompson, J.W. "Handbook Uncertainty in Gas Turbine Measurements.”
AEDC-TR-73.5, February 1973
NOTE: +8ias assumed to be zero.

+ + Determined from test section repeatability and uniformity during tunnel calibration.




TABLE 2. Test Summary

a. Surface pressure and temperature
(Type 2 Data) - -

MODEL CONFIG ~ALPMA,deg PHI,deg RN, in. hC/tl RUN :
7-deg Cone 0 -90 0.0015 1.3 358
0.150 2.5 72,73
0.350 2.5 210,211
0.700 2.5 302,303,305
312,313,314
315,317,322
330,339,340,
w 341,343,349
0 0 0.700 2.6 701,706,715
45 ¢ 721
w a5 2.5 729,738,742
0 -85 2.000 3.5 130,131
0.0015 0.5 408,409,410
l 2.6 411,412
1.0 429
-2 1.0 430
+2 1.0 43
*2 0.6 448,449
0 0.6 450,451
-2 0.6 452,453 .
-4 ) | 1.0 471,472
-2 2.3 A7
. 0 0 0.0015 2.0 524
-110 525,526,529,531,
532,553,554 ,564,
. 5RK,577,578,604,
, ' 605,606,607
. -4 20 0.0015 608,609
-l 0 617,618
+4 0 l 619,620
0 -110 0.0015 3.0 579,580,581,582,
l ‘ ‘ 583,584,591 ,592 ,
595,596
Y 0 0.0015 ] 586,587

NOTES: 1.

2.

Test 1, RUN < 200; ‘Test 2, 200 < RUN <300; Test 3, 300 < RUN <400; Test 4,
400 < RUN < 500; Ref. 5, 500 <RUN<700; and for present testing, RUN >700.

Surface pressure measursments are &1so included on Boundary-Layer
Survey Data (Type 4).

35
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TABLE 3. Continyed

b. Mean-Flow Soundary-Layer Survey Matrix {Iype 4 Qata)

4 - Alpha = -2.0 deg, PHIl = 0 deg, windward survey

b - PHI = -85 deg

¢ - Cald wall data; THL = 525., 640-, 540-deg R. for Runs 207,

208, 242, respectively,

A1l other data obtained at hot wall conditions (TWL z 860 deg R).

e - Extended survey of preceding RUN, all outside boundary layer.

£ - PHI = 45 deg.

Rit, | RE/FT | ALPHA, X STATION {¢MOMINAL)
fn. | a0 deg 6 ajwo|njs|rw; mo|zafs|2]| 8303 2fs|wla]a
0.005 | 0.5 | 0 1 L 1 N A O T 1
| 1.0 0 na| Im 110 109 108 107 2864
1.0 | +2 as0® ase® t |ase®
| N 57
1.3 0 . mim' m; |
2.0 601 602 603
1
3.0 600
.15 z2.5 106 {105 76 103 75 T
104 102 10
o - _..__-..-_||. — i — e
0.25 2.5 255 249 241 290
254 200° 2425
: 207"
0.70 2.5 375 an 373
2.5 12 72 725" 724
0.90 2.5 257®
756
2.00 3.5 1111 123 122
{ 128 i |
NOTES: 1. PHI = -90 deg except where moted.
2. Test I, Run { 200; Test 2, 200 { Run { 300; Test 3, 300 { Run ¢{
4003 Test 4, 400 { Run { 500; Test 5, 500 { Run ( 700 and for
present testing, Run ) 700.
3. Superscripts:



TABLE 3. Continued
€. Hot-Wire Qualitative Survey Matrix (Type 3/Type 4 Data), RUNS

LE

RN, RE/ET | ALPHA, X STATION (NOMINAL)
in. |x1678 deq.
10 |14] 15§17]|19 20|25 |26]27 |28 |30 | 3132 | 33038 {35 36] 37
0.0085 | 1.0 0 51 | 46 42 34 26 21 1615 {12 11| 8
L3 0 373 1372 371 170
0.15 2.5 ¢ 96 | 88 84 79 ] 67 64 60 57 54
0.25 2.5 0 2554 2084 pag_
254 _ 207% a2
0.50 3.5 0 140 141] 142 139 f138 134
0.70 2.5 0 37¢| 377 378
0.90 2.5 0 2579
256
2.00 3.5 0 _ 129
L 132

NOTES: 1. Run numbers (200 from Test I; RUN numbers ( 300 from Test 2: RUN
numbers ( 400 from Test 3.
2. Run numbers ( 200 obtained as Data Type 3; Run numbers ) 200
obtained as Data Type 4.
3, Superscripts:

c - Cold Mall data, TML ~ 525-, 640-, 540-deg R. For RUNS 207,
208, 242, respectively. All others at hot wall conditions
(TLW z 860 deg R).

e - Extended survey of preceding run, all outside boundary layer.
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TABLE 3. Continued

d. PART-T. Hot-Wire Nuanitative Run Matrix {Tyne 9 Datal) far AUPHA = 0 RUNS
refFtls - X S‘I'ATIO_N . W STREAN
mll:fsi:'_}.,\ ol1Ta” s ol ufezfutnlule T 19| 20l 211 23297 241 2] eel 2720 29 20T 32380 3o siT 0aT90] go] 99T 4al 4t 1 42l 4w 2zze
us | o i e ™A T R e e T s : I
to | o l R R TR R AR I IT VI T DT Re] ETRAR EL TTI BN FTY PP ) PR PPy e e A
i : I [ i l i J ] ! 9 o=
owis| 3] e v H : ‘, i i 307) ke S PO 007 0r® 0080 g0 et u
20| o psotastisat sy et et Al st =8l 50" 020 ot iemant ntsi gn . | H 5§ -/r
to| o | s setemd 4 v _i ] ! , : i
e . P ob—=1- . - ! -
ves| 28] o 1 ' L L P P P T T A I P Y P P al (o] |» | wmish
— - ._.!..' i ' n : T 1 H oa 985
vas| esf 0| 7T T ms[eedaen 2 281 20y
! | I 1 I 237, 2 ] Insa| asalzry
: I I SR ;5}4 _| s
! | ! tae etz | t2d pptersiei| e
. ! i less frose TP T
| L WRNF.. I [
I A - ——— -
-1 - ; . : T o ot feg
' - El ok BRES S A R Ly S
e TN 1 e o_foye
H o ' ”*%
20| 25 o l : i r H . 5] ml.-\ss Y| mm‘lw 3 rmﬂfgmm w m
' . : ”t mun ! “‘1
) ! I 1vmi ros 7009 | oo ol o] o v
! 120 1w 1
I ; . i 1?2 :
%' ¢ b i ::' i h A :
—f i} {- i1 f.ﬂl — 4w - - —4uzl
) I to ' 1 \ __ ___' L Y 1L '__
ja|as] o f 1 ! i ; ‘! ! l i 3 J- m" 1 j

MOTES: L. Goll sttrtude: PN[ = .90 dag for RUN ¢ 500; PHI » 110 deq for 500 < RIN¢ < 700; PHI = 4% dag far RUN » 700,
1. Tast 1. RUM < 200; Tagt 2, 200 < UM ¢ 300; Test 3, 300 = MM < 400;

Tost &, 500 < RN « 700; and far presest testing, RUN > 700.

3. Two distinct maxime disturbance tnergy peaks were noted for some runs.

dashed 1ine; “Inmwr Peak® RUN nbmbars Tiated below dashed 1pe,

Test 4, 400 < AUN « 300;

4, SUPERSCRIPTS: 1 - Single sansitivity for RUN mubers to noted.  For gl) other AUNs, data ware obtaingd

en 11 wire sanyitivitiyg,

& = Mo "lamer peak™ obsarved; data obtaingd at approximate helght vhars peak was

previously obsarved,

PO RUNS T

d, PART-TI, Hot-Wire Quantitative Run Matrix (Type 9 Data) for ALPHA
RN ' X 3TATIoN
b fvoNrdead w0 ) 10| e2[ 19104 [i5]re |77 [ 18 19 120]z1 2] 231 2425 281271281 29] 301 3452737 B
2f12o] fodod T bl [ foal el s el ol Lewl led o
_ 2te] 204 259 el a0y 200k 2 roed 2o
o] L0 2.0 L L ml 2] e Qﬂ& 1) .ﬁ e
3o sitierl (o] sl Jeer dl 4
—— - -4 -
2o -4.0 2148 Gﬂ;ﬁnlun G‘ll 1 | l r r
orlezsl-zo| | 1T} i ’“ [ I |
’ — [ I . ]L | ¢
fWOMES 1. RUN mbers 300 frou Test 2: TUM susbers between 400 and 500 from Tese 4;

500 < RUN < I60 from Tast §.
2. Single wive sansitivity for esch ren.

"Quter Peak™ RN numbers Vigted above



TABLE 3. Continued

€. Hot-wire anemometer and total-temperature probe calibration
in free-stream (Type 6 Data) -

L

RUN  PT {range) psia RE {range)xln's. per in. Hot-Wire No.
6 202-355 . 0.75-1.3 6
7 150-352 0.56-1.3 7
37 152-352 0.57-1.3 7
52 352-579 1,3-2.1 8
77 349-577 1.3-2.1 14
80 300-582 1.1-2.1 15
92 300-577 1.1-2.1 17
114 400-804 1.4-2.9 3
126 399- 808 1.4-2.9 4
133 398-806 1.4-2.5 1
137 J99-807 1.4-2.9 16
209 200-580 0.74-2.1 3
226 201-579 D.76-2.1 33
243 199-579 0.74-2.1 40
301 214-581 0.80-2.1 4
304 298-583 1.09-2.1 6
306 - 582 2.1 . 7
e 296-581 1.09-2.1 8
323 583 2.1 B
329 29B8-582 1.09-2.1 n
33 302-583 1.10-2.1 15
333 582 2.1 17
342 360-581 1.32-2.1 16
350 36D-582 1.31-2.1 52
413 226-601 0.85.2.2 33
454 228-602 0.84-2.2 33
523 220=-440 0.84-1.7 54
552 300-440 1.1-1.7 76
702 139 0.54 69
704,705 199-576 0.77-2.2 63
711 200-503 0.77-1.9 a7
M2 275-505 1.1-1.9 &1
713 193-427 0.75-1.8 64
714 226-579 ¢.87-2.2 35
720 231-577 0.89-2.2 38
128 229-553 0.88-2.1 39
737 229-553 0.88-2.1 36
741 . 215-546 0.83-2.1 37

NDTES:

1. Run numbers < 200 from Test 1; Run numbers < 200 from Test 2;
Run numbers < 400 from Test 3; Run numbers < 500 from Test 4;
Run numbers < 700 from Test 5; Run numbers > 700 from present test
2. Hot-wire prabes were numbered independently for each of the six
test programs represented in this table. For example, Hot-Wire
No. 6 for RUN 6 was not the same sensor as that used for RUN 304,

39



TADLE 3. Concluded
f. Hot-wire identification

Hot-Wire No. RUN No. Wire Diameter
6 6 20 p-1n,
? "5-

B 52-71
14 77-79
15 80-91
17 92-100
3 14-121
2 126-128
] 133-135
16 137-142 J
HF-4 207-208
3 209-225 20 p=fn.
33 226-239,250-285
39 242
10 243-249
|
4 301 20 y-in.
) 304
7 306-311
B 316,318-321,323
11 324-329
15 331-332 .
17 333-338
16 342 ,304-349
52 350-357,359-378 &0 ,~tn.
33 414-427,432-447 20 py=1n.
455,460-470,473-476
54 523 20 y=in.
76 851,552 ,555-559 50 y-in.
561-563,566-576
71 585 50 p-in,
74 588-590 50 p-in.
177 597 50 y-in,
73 610-616 50 u=in,
62 702 50 H=-in,
B3 704,705,703,710
67 711
61 712
64 713
35 714,716,-719 20 u-in.
k] 720,722,723
39 728,7131-736
36 - 737,739,740
37 741 ,743-748

NOTES: 1. Run numbers < 200 from Test 1; Run numbers < 300 from Test 2;
Run numbers < 400 from Test 3; Run numbers < 500 from Test 4;
Run numbers < 700 from Test 5; Run numbers > 700 from present test
2. A hot-film probe was used for RUNS 207-208 (HF-4)
3. Hot-Wire probes were numbered independently for each of the
six test programs represented in this table. For example, Hot-
Wire No. 6 for RUN 6 was not the same sensor as that used for RUN

304,
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TABLE 4.

Stations for Mean-Flow Surveys

S,in,
X{STATION) RN,in. £.0015 g.15 0.2% 0.50 B.70 a.9¢ 2.00
B 6.00*
10 10.07 9.08 8.40 6.73
11 ¥1.18
14 14,10 13.11
15 15.10,74.92%] 14,11 11.76
16 11.43 2.73
17 17.12 16.13 13.78
18 18.08
19 15.98
20 20.34 18.15
24 24.01*
25 25.18 24.19 | 23.8) 21.84 19.16 | 11.80
26 21.51
27 27.19 26.20
28 28.20
30 30.22 29.23 | 28.556 25.54
31 26.556
32 32.23
33 33.24 32.25
34 J4.25
35 35.25 34.26 | 33.59 31.91 21.87
35 356.2¢ 31.58
37 37.27 356.28 J 32.59
42 37.60

* Indicates present test datz.

———ﬂx’ '-lﬂ.

40.0C in.
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Model Surface Measurements (Type 2)



