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Reciprocal Theorem of Residual Stress

and Inelastic Strain

¥ . k% %* %
T.H. Lin , S.R. Lin , X.Q. Wu , and Q.Y. Chen

Introduction:

We consider a body to have an initial stress ﬁeld_f\irj/'. " When the body is loaded beyond

p

the elastic range,}plastic strain e ‘occurs in some part of the body. If the body is then

unloaded, the plastic strain remains and causes a residual stress ﬁeld.tﬁz,‘ Now consider the

A

load applied again. This applied load causes a stress T There is no increase of plastic

strain during this process of unloading and reloading. Now the stress field is the sum of the

initial, the residual and the applied stress /

/
/
'

1
ij

T =T+ TR+l

M

As shown by Lin, 1968, using this analogy between plastic strain and applied force, we can
find ti}z in terms of eif in the body. As the load is increased, tij\ increases. Then from the
incremental stress strain relation of the material, the incremental plastic strains in different
parts of the body are found (Lin, 1968). In this inelastic analysis, the relation between the
plastic strain and the residual stress is needed. ‘Plastic strain is one type of inelastic strain.

Hence the reciprocal relation of inelastic strain and residual stress is very useful in numerical

S
-

inelastic analyses. ¢, . . TLT
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Derivation of the Reciprocal Relation for Inelastic Bodies:

Referring to a set of rectangular coordinates (x;. xa. X1), the equilibrium condition is

given as
..+ F =0
1J 1 (2)
in the interior of the volume V., and
S;=1; Vv
H 1j J (3)

on the boundary I" where 1 is the stress component. F, the body force per unit volume along
x-direction. S, is the traction per unit area along x;-axis and v; is the direction cosine of the
exterior normal of the boundary with x;-axis. The repetition of the subscript denotes summa-
tion from one to three. and the subscript after comma denotes differentiation with respect to

that axis. Multiplying (2) and (3) by a virtual displacement ui' and integrating yields

I Fi Ui. av + J Si ui' dlr = - I tij.j Ui‘ dv + I tij Vj Ui. dar

4)
= “' T Uy dv = J' T ¢ dv

The stress-strain relation of an elastic body may be written as

Tij = Cij Cxl 5)
where ¢, is the elastic constant.

[rjeidv=]cjuene;dv=|1geqdv ©
From (4) and (6)

[Fiu'dv+[Siu dl=|F udl+[S udl -
This 1s Betty's reciprocal theorem for elastic bodies.




.

Now consider the presence of inelastic strain e;; which may be a combination of plas-

tic strain. creep strain and thermal strain. The total strain e;; is composed of the elastic strain

¢, and melastic strain e

clj = Cij - &

1

Ty = Cijn (€ — €)

@)
Substituting this into (2) and (3) yields
Cijkl (eku - ckl.)) + Fi =0 (9)
Si = Cig (€g — 1) Vi
1 ikl \~kl /Y (10)
It is seen that-cjj e{;_j and ¢, i v7; have the same effect on the strain distribution ¢j; as F;

and S; respectively and hence they are denoted respectively as F; and S; (Lin, 1968).

1 I

Now consider an inelastic strain e{j' in region I giving F! and S{. The displacement,

strain and stress in another region II caused by e{j’I are denoted by ui"'l eé” and 1:5“ respec-

tively as shown in Fig. 1.




cun A o

"

[ S W I

. x o
LI TR TEIY ST i ST T P

[N Sars semsre LaVTREEE %

R O waat? Yo metlasiw wrasn ot oin 1] are
€

coner

L T el

e

BRI

ot b e A

P U IR T R T B

.
¥ L R TL ST £ 25 TR I )



Applying Betty’s Reciprocal Theorem (7) to Figs. 1 and 2 gives

J‘vl .I_:il uil,ﬂ dv + J'r' §il Uil’ﬂ dr

___J'VHEJ I”dV""J‘ llldr

Replacing F; by - ¢ oy j and §; by ¢y e v; yields

“1 LI “1 1,11
"‘Ivl Cijkl ekl.j U dv + IJ; Cijk] Cu Vj U, dar

“I1 IIl "1 LII
= Joo Cija el ui AV + [ e e vy ut dl

(11)
Using divergence theorem and noting c;3; = ;g Eq (11) becomes
Js i el el dv = [, gy et ef¥ dv
Tl eg dv = eg dv
va Id kl J‘vu (12)

For the case v! = v!! and e,] = ¢,, the relation (12) still holds.

111 11 is the stress in region I causes by inelastic strain eij'“ in region II and t"l is the

stress in region II caused by inelastic strain el

j in region I. If regions I and II have no over-

lap, the stress réj" and té{" are residual stresses. If there is overlap as shown in Fig. 3. The
residual stress in the overlapped region, denoted hy vl A vl is then

LII

tkL ”II

=t — ¢ €
3| kimn ©mn (13)

LIT _ LI “1
tkL =% ~ kimn €mn

This gives

[ ed dv =], Tl e dv+f, 5 T e AV

—vinWe




S—
= aCaed e v

(14
ILI o711 _ LI L7 1§ O ¢4
Vil Ty e dv = Ivu VAl Wi € dv + Lx ~ vl T € dv
“T 7
- Ciit Sy € dv
J‘ 1 o “ijkl ¥k My
viAy (15)
From (12) to (15)
LII 711 - I 1
jv, Ty, € dv —J'vu Ty € dv
(16)

This gives the reciprocal relation for inelastic strain and residual stress in solids.

Fig. 3. v! and v have an overlap v! N v2




Application to Fatigue Band Calculations:

A face-centered-cubic crystal has four slip planes, on each of which there are three slip
directions giving twelve slip systems. Slip in a slip system depends on the resolved shear
stress and is independent of the normal stress on the sliding plane (Taylor, 1938). Let us con-
sider @ most favorably oriented crystal in a F.C.C. polycrystal. When this polycrystal is
loaded. slip may occur in some region of this crystal. After unloading, this slip remains and
causes a residual stress. Imagine that the polycrystal is reloaded. This resolved shear stress
in this crystal can be expressed as the sum of the initial resolved shear stress 1!, the resoived
shear stress due to the applied loading t* and the residual shear stress R, If this resolved

shear stress reaches the critical shear stress 1°, i.e.

t=t*+ 1t 4R =1

(17

in some region, this region will start or continue to slide.

We consider three thin slices in a most favorably oriented crystal at the free surface of
the polycrystal as shown in Fig.4 (Lin, 1974). An initial tensile strain eéa is assumed to exist
in the slice R. This el causes an initial compressive stress in R, a positive resoived shear
sress T.g in P and a negative tlg in @ (Lin and Lin, 1988). A cyclic loading of tension and
compression on the polycrystal causes alternate sliding in P and Q causing the growth of an
extrusion or an intrusion (Lin, 1977, Lin and Ito, 1969). An extrusion causes a tensile strain
and hence a tensile stress along extrusion direction. This can cause the resolved shear stress
in a second slip system to slide in R. This secondary slip system can slide concurrently with
this primary slip system in P and Q. Let af denote the primary slip system and &n, the
second slip system. The plastic strains caused by slip in these two systems are denoted by
ega and e{’n respectively. The resolved shear stress t(’fa(x) in of-system at point x caused by
a unit efg at X in a differential volume dv is expressed as G(x, aB; Xap)els dv. If efy also

occurs, we can write
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té}ﬂ(x) = J G(x. af: X. aff) e(fﬁ(i)dv + J’ G(x, aff: X. 3 eg’n(i) dv 19

The two integrals are integrated over the regions with plastic strain. Similarly we can write
() = | G(x, 3n; X, af) egp® dv + [ G(x, &n; X, &n) efy(® dv 20)
In numerical calculation. the thin slices P. Q, R are divided into grids. In each gnd. the

c(fﬁ or egpn is generally assumed to be constant or linear. The residual resolved shear stress

due to plastic strains in the nth gnd is written as

tRix) = G(x, of: n, aP) efy v, + G(x, aB; n, &n) ef v, an

where

[ G(x. of: X, af) efp dv
G(x, af; n, af) = i

jv C(fﬁ(?) dv (22)

and egﬁn is the average e(fB in the nth grid. Now we consider the residual stress in the mth

grid corresponding to an assumed plastic strain distribution in the grid. As mentioned before,
this distribution is generally assumed to be constant or linear. Multiplying (21) by egﬁ dv in

this grid and integrate

J.V Tcl}a(X)ega(x)dV = egﬁnvn jv G(x, aff; n, aff) ega(x)dv

+ eg.ln vy f G(x, af}; n, aff) egﬁ(x) dv -

= egﬁu v, G(m, af; n, af) cggu v, + e{nﬂ v G(m, uf; n, &n) e;am Ym

where




J. Gx, o n. af) eggx)dv

G(m. af}; n. af) =
Jv egﬁ(x)dv (24)

Wriung the resid-al resolved shear stress in the mth grid as the left hand side of (23) divided

by efdmv: =} egﬁ(x) dv. we have

Va

r&‘Bm = G(m, of}; n, af) cggn vy + G(m, afy; n, in)e{mvu o5,

Letung the region I be the nth grid and region II, the mth grid, the left hand side of (23)
becomes the left hand side of (12). Hence the reciprocal relation holds. Similarly we can
write

R

Uhe = G(m. 3N n. af) Cga,vn +G(m, n; n, &n) eé:h vy

(26)

G(m. af: n.af) and similar terms are the influence coefficients for residual stresses caused by
inelastic strains in different grids. Eq. (16) gives the reciprocal relation of these influence

coetficients. If the plastic strain is taken to be constant in each grid, Eq. (22) reduces to

Gix, i n. oB) = = [, Gx, af: X, ouf) dv
n 3

and Fig. (24) reduces to

G(m. aff; n. af) = 1 j G(x. af; n, af)dv
v

m v,

If there are M grids with incremental Aeg.' and N-grids with Aegg. The residual

stresses are written as

M N
A‘tggm = Y G(m, aff; n. &n) Aeé’nvn + Y G(m, af; n, aff) Aegun Vo 2
n=| n=1

10




M N
Atk = Zl G (m, &n; n, &n) Aedy v, + ZIG(m, En; n, of) Aely v, .
n= n= <

In finding the incremental plastic strains in different grids, solution of a system of simultane-
ous equations is required. Due to the reciprocal relation, the matrix of these equations

become symmetrical. This helps greatly the numerical solution.
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