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Reciprocal Theorem of Residual Stress

and Inelastic Strain

T.H. Lin , S.R. Lin , X.Q. Wu , and Q.Y. Chen

Introduction:

We consider a body to have an initial stress field Et When the body is loaded beyond

the elastic range,hplastic strain eij occurs in some part of the body. If the body is then

unloaded, the plastic strain remains and causes a residual stress field "q , Now consider the

load applied again. This applied load causes a stress There is no increase of plastic

strain during this process of unloading and reloading. ,Now the stress field is the sum of the

initial, the residual and the applied stress

S1(1)

As shown by Lin, 1968, using this analogy between plastic strain and applied force, we can
find t in terms of e.? in the body. As the load is increased, TA increases. Then from the

incremental stress strain relation of the material, the incremental plastic strains in different

parts of the body are found (Lin, 1968). In this inelastic analysis, the relation between the

plastic strain and the residual stress is needed. Plastic strain is one type of inelastic strain.

Hence the reciprocal relation of inelastic strain and residual stress is very useful in numerical

inelastic analyses. t' / -- I .. -"
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Derivation of the Reciprocal Relation for Inelastic Bodies:

Referring to a set of rectangular coordinates (x1 , x-,, x), the equilibrium condition is

given as

T ij +- F i = 0(2 ~ +F 1 =O(2)

in the interior of the volume V, and

Si = tij vj (3)

on the boundary F where -rt is the stress component. F, the body force per unit volume along

Y,-direction. S, is the traction per unit area along xi-axis and vj is the direction cosine of the

exterior normal of the boundary with xj-axis. The repetition of the subscript denotes summa-

tion from one to three, and the subscript after comma denotes differentiation with respect to

that axis. Multiplying (2) and (3) by a virtual displacement ui* and integrating yields

f Fi ui* dv + f Si ui* dr f ij,j ui* dv + f ;ij vj ui* dr 4)

=ftij uij dv f Trje.*dv

The stress-strain relation of an elastic body may be written as

Tij = cijkl e i (5)

where c.1  is the elastic constant.

rfij ei* dv = cIkd eu ei dv= f "z ek dv

(6) --

From (4) and (6) 0
t-J

f Fj uj dv + Si u di - J F u dr + S i dT iTTrTf ff j* uj dr(7) ..-

This is Betty's reciprocal theorem for elastic bodies.

U,'
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Now consider the presence of inelastic strain e"j which may be a combination of plas-

tic strain, creep strain and thermal strain. The total strain eij is composed of the elastic strain

e,1 and inelastic strain ej

eij = eij - eij,

tij = cijk (eki - eu) (8)

Substituting this into (2) and (3) yields

cijkl (eklj - ek.J) + F = 0 (9)

Si = cipal (ek - eu) V1 (10)

It is seen that-cijkl ekl.j and c1  eia "j have the same effect on the strain distribution cij as F

and Si respectively and hence they are denoted respectively as Fi and S. (Ln, 1968).

"pI

Now consider an inelastic strain ei. in region I giving F 1 and 11. The displacement,

strain and stress in another region II caused by e-1 are denoted by u.II ' I e-1'1 and tA'" respec-

tively as shown in Fig. 1.
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Applying Betty's Reciprocal Theorem (7) to Figs. 1 and 2 gives

J F1 u,"1 dv + So j uil,,' dE

-. v j" u-I' dv + fi .i" u"' df

Replacing F by - cijkl eklj and S- by cijk ek vj yields

-fc e"I U1,11 dv + f ci ej v1 ui
I'11 dr

-S Cijkl e j 111 dF

=Uj 1
111 dv + Cik cije I V• 1  1)

Using divergence theorem and noting cijkl = cijlk Eq (11) becomes

cjk "I e1 ," dv c1k e '11 " dv
Sf cij1 e j dv = dv Ce(

L, k1 fV11 I k1(12)

For the case v' = vT' and e2 e"', the relation (12) still holds.

1t-T
I

3 is the stress in region I causes by inelastic strain e71I in region IH and t~' is the

stress in region II caused by inelastic strain e1j in region I. If regions I and II have no over-

lap, the stress tI1I and Tki" are residual stresses. If there is overlap as shown in Fig. 3. The

residual stress in the overlapped region, denoted hy vI n vII, is then

IC II I T II 'III
= t O - ck m em n (13)

-fd ,~l!I- ckjm e=

This gives

e ";' dv r" e ~ h"I dv + vTo ek, dv
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-$f v11 cij kl  ei " dv (1

,." t d. = - VI VIIV..I" ek]' dv + .,J" ek]' dv

- I v , cijkl ekl] el'l dv

From (12) to (15)

f,2 tlrIj ek I dv = 1 1J, ek] dv(16)

This gives the reciprocal relation for inelastic strain and residual stress in solids.

Fig. 3. vI and vII have an overlap v1 n V2

6



Application to Fatigue Band Calculations:

A face-centered-cubic crystal has four slip planes, on each of which there are three slip

directions giving twelve slip systems. Slip in a slip system depends on the resolved shear

stress and is independent of the normal stress on the sliding plane (Taylor, 1938). Let us con-

sider a most favorably oriented crystal in a F.C.C. polycrystal, When this polycrystal is

loaded, slip may occur in some region of this crystal. After unloading, this slip remains and

causes a residual stress. Imagine that the polycrystal is reloaded. This resolved shear stress

in this crystal can be expressed as the sum of the initial resolved shear stress T , the resolved

shear stress due to the applied loading TA and the residual shear stress TR. If this resolved

shear stress reaches the critical shear stress T-, i.e.

.T = TU + TA + T R ='CC( 7

(17)

in some region, this region will start or continue to slide.

We consider three thin slices in a most favorably oriented crystal at the free surface of

the polycrystal as shown in Fig.4 (Lin, 1974). An initial tensile strain el is assumed to exist

in the slice R. This ea causes an initial compressive stress in R, a positive resolved shear

stress T in P and a negative I~ in Q (Lin and Lin, 1988). A cyclic loading of tension and

compression on the polycrystal causes alternate sliding in P and Q causing the growth of an

extrusion or an intrusion (Lin, 1977, Lin and Ito, 1969). An extrusion causes a tensile strain

and hence a tensile stress along extrusion direction. This can cause the resolved shear stress

in a second slip system to slide in R. This secondary slip system can slide concurrently with

this primary slip system in P and Q. Let ct3 denote the primary slip system and 4TI, the

second slip system. The plastic strains caused by slip in these two systems are denoted by

ea and e-P respectively. The resolved shear stress ta(x) in a3-system at point x caused by

a unit eP at x in a differential volume dv is expressed as G(x, c43; ,ap3)eP dv. If ep also

occurs, we can write
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t(X ) f G(x. c43:. V. c43) e& (x)dv + f G(x. c43; Y. '-rj) e-P (-x) dv (19)

The two integrals are integrated over the regions with plastic strain. Similarly we can write

t~x =jG(x, ;Ti; J , c4) e P n dv + f G(x, rTI; J . &nx e( dv (0(20)

In numerical calculation, the thin slices P, Q, R are divided into grids. In each grid, the

eP or e -P is generally assumed to be constant or linear. The residual resolved shear stress

due to plastic strains in the nth grid is written as

T R (X) = G(x, c43, n, c43) e Pv,, + G(x, c43; n, 4T1) e-P v,,21aa a ;71(21)

where

f G(x, a3; -, ac4) e P dv

G(x, ac4; n, ct'3) = kv eP -% dv (22)

and eP . is the average P in the nth grid. Now we consider the residual stress in the mth

grid corresponding to an assumed plastic strain distribution in the grid. As mentioned before.

this distribution is generally assumed to be constant or linear. Multiplying (21) by ep dv in

this grid and integrate

J. :r& (x)e P (x)dv = egv0 J G(x, ol3 n, c4) evP(x)dv

+ v, f G(x, c4P; n, c4) e P(x) dv
V., (23)

=e vn G(m, o; n, ccj3) egP v + e&. vm G(m, Lx3; n, 471) e "

where
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G(m. a3; n. = ' - fG(x, 4Ot; n. c43) e.5(x)dv

." eap (x )d v (24 )

Writing the resid-al resolved shear stress in the mth grid as the left hand side of (23) divided

by eP 'v7 j e,5(x) dv. we have
V,

TO. = G(m, c43; n. cz43) e P ° v, + G(m, ctx3; n, " rl)e ' v,,a5 I- 4TI(25)

Letting the region I be the nth grid and region II, the mth grid, the left hand side of (23)

becomes the left hand side of (12). Hence the reciprocal relation holds. Similarly we can

write

zo G =G(m. T,; n, o4) e v. + G(m. -,71; n, ,ri) e , v(;T1. o " I: n, n(26)

G(m. c43. n,c3) and similar terms are the influence coefficients for residual stresses caused by

inelastic strains in different grids. Eq. (16) gives the reciprocal relation of these influence

coefficients. If the plastic strain is taken to be constant in each grid, Eq. (22) reduces to

((x, a; n, cf3) = f ' G(x, cai; Y, c3) dv
V n

and Fig. (24) reduces to

G(m. 43 n. ao3) = f " G(x, cap; n, c43)dv
vm V,

If there are M grids with incremental Ae& and N-grids with Ae.0. The residual

stresses are written as

M N
Ax~ ,, = 5". G(m, c; n. ,rI) AeJ vn + 1 G(m, c4p; n, c43) Aet (2

n=I I=1 (27)
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MI N

AT, = G (in, Tj; n, 4TI) Ae,, vn + Z G(m, Tl; n, o43) Ae v
n=1 n=1 (28)

In finding the incremental plastic strains in different grids, solution of a system of simultane-

ous equations is required. Due to the reciprocal relation, the matrix of these equations

become symmetrical. This helps greatly the numerical solution.
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