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ABSTRACT

The electric microfield distribution in fluids of particles of

arbitrary size, shape, charge and charge distribution is studied.

The Morita-Iglesias formalism is extended to include angular dependent

interactions. The results of the mean spherical approximation are discussed

using an exact relation for the second moment of the microfield

distribution, obtained in this work.In the Onsagerian strong coupling

limit the sum rule for the second moment simplifies,and becomes identical

to the mean spherical approximation result for the second moment.



I-INTRODUCTION

The recent revival of the interest in the study of the electric

microfield distribution in charged plasmas has been motivated by the use

of the broadening of spectral lines in very hot plasmas to measure

can be used to measure the temperatures in fusion processes.

The study of the fluctuating electric microfields was pioneered

by Holtsmark' 2 who studied the weak coupling limit.

A considerable advance was the application of the classical fluids methods

for evaluating the electric microfield distribution in systems of point charges

moving in a neutralizing background, a possibility, that

was first suggested by Morita 3 and formulated in terms of correlation

functions by Iglesias 4 .The Morita-Iglesias formulation (MI in what follows)

is a powerful tool for the study of the electric microfield and has

prompted a number of investigations on the subjects 9

In particular, in the last reference, Lado9 discusses the use of the

Mean Spherical Approximation (MSA) for the evaluation of the

microfield in a one component plasma,as a starting point for employing

the more accurate Hypernetted Chain (HNC) integral equation.

The electric microfield problem is also of interest in

relation with different dense systems other than plasmas. The electric

microfield distribution in solutions in general, and in ionic solutions

in particular, is of interest in various branches in Chemical Physics, such as

spectroscopy,light scattering, liquid state chemical kinetics, dielectrics and

so on.

One of the objetives of this paper is, precisely to study the evaluation

of the electric microfield distribution in systems composed of particles with



any shape, size and charge distribution.

For these systems we consider the distribution of the fluctuating

field felt by a point in an object of finite size and with an

arbritrary multipolar charge distribution.

We express it in terms of the multipolar expansion for the interaction

energy between an imaginary dipole placed at the center of our test particle

and the distribution of the charged particles in the system.

Our result is given in terms of quantities that can be computed by

approximate liquid state theories. However, care must be taken because

of the inconsistencies which are known to occur in these theories.

Because of the difficulties in simulating the electric microfield

distribution in a molecular fluid,it is useful to know exact relations

to estimate the accuracy of the approximations. The second moment of

the microfield distribution can be evaluated for a charged object immersed

in a plasma.This has led to the very succesful APEX theory for plasmas.5

However,the second moment for our general case is much more complicated

as we show in Section III, for a hard charged object of arbitrary

shape in a fluid of charged hard spheres with point ions and dipoles, since

it involves three body correlations.The point is, that in the Onsager

limit 10 13,the three body terms cancel out, leaving a remarkably

simple expression for the second moment of the electric microfield.

In this strong coupling limit the field of every particle is completely

screened out by the surroundings: This limit is equivalent to Onsager's

procedure of immersing the test object into a conducting continuum media,

so that the calculation of the internal energy becomes an exercise in

electrostatics.

We illustrate these points with the application of the



mean spherical approximation to a mixture of ions and dipoles.

The layout of the paper is as follows. In the next section we

formulate the microfield problem and introduce our model.We also give

a generalization of the MI expressions for the molecular case,as an

expansion in terms of electric multipoles.

In Section III we obtain an exact second moment relation for an

arbitrary convex object immersed in a mixture of hard spherical ions and

dipoles. In Section IV we discuss the strong coupling limits

and make contact with Onsager's discussion 1 4.

Section V is devoted to mean spherical approximation calculations on

ionic and dipolar fluids.Finally,in Section VI we make some general

remarks and conclusions.



II-THE ELECTRIC MICROFIELD DISTRIBUTION

a) FORMULATION

Consider a mixture of s species of particles and let Na be the

number of particles of species a. The coordinates of particle i of species

a are

-A
X -(R )

where R is a 3-dimensional vector which gives the position of the center

of particle i and ,

indicates the three Euler angles that determine the orientation of the

particle. The electric field experienced at position R by an object

immersed in the mixture is

E- E (Ro , X )"- . (Rd ,10 )

Oka (2.1)

N N! N S
Here X - (X ..... X ) denotes the configuration of all the

particles of the mixture.



The electric microfield distribution is in the MI formalism

W(e)-< 6(e-E ) >

-(i/87r) dA e A(A ) (2.2)

with

A(A)- < e > (2.3)

In these equations, the angular brackets denote the canonical ensemble
S

average over the configuration of the N + 1 particles ( N - N ) including

the test object. We have also used the integral representation for the Dirac

& function and i -1-l ,is the imaginary unity.

b) THE FOURIER TRANSFORM OF W(c)

If the system is isotropic, A(A), the Fourier transform of the

microfield distribution, can be rewritten 4 ( A - magnitude of A )

4W



A( )- Q(X)/Q(O)

(2.4)

J dA' aln Q(A')/8A'
0

where

fdXdX e (2.5)

is the configuration partition function for a system interacting

and the potential energy is complex

V(A)- V -(i/0) A.E 0  (2.6)

Here V is the potential energy of the real system of N + 1 particles

particles when X - 0 and P - (kT) I the usual Boltzmann factor.

Equations (2.4)- (2.5) can be expressed in the form of the

free-energy integral in a coupling-process type calculation 3 4

S

In A(A)-(l/64 w j p dA' d^d dR i' .E(X ( g 1

(2.7)



The functions

g (0,l).g (R o , ;)
as( 0 8C 0 a S

are pair distribution functions for a system with particles interacting

with the complex potential given by Eq (2.6).Furthermore

go (0,1)- [V2 /(Q(A)](64r 4 ) fdYX ... dX e- (2.8)

Here A -A/A ; - iA and P N( / V

is the number density.

c) MULTIPOLE EXPANSION

To proceed we must define our model more precisely:

Our interaction is always parwise additive.

~AT

The pair potential V (1,2) will have, in general a short

ranged repulsive part and a long ranged electrostatic part:



V (1,2)- v (1,2) + V (1,2) (2.10)

where the electrostatic part can be represented by a multipole expansion

of the form's 16

V (1,2)- E v (R) D (1,2) (2.11)

Here R -IR1 J,R which are the magnitude and direction of the vector

R -R -R . The orientational dependence is contained in the rotational

invariants

%, ,.N A(D , (12)-(D,, (0, n R )

nI-[(2m+l)(2n+l)]' D (^Q DV (Q% D, (R)

(2.12)

where the notation and conventions of ref. (17) for Wigner's generalized

spherical harmonics and 3-J symbols have been used. The radial functions

in Eq (2.11) are

v (R )-(-) [(21+l)!/(2m+l)!(2n+l)!] Q (a )Q (0 )/R (2.13)

where f-m+n,and we have omitted the greek subindices to alleviate the

notation.The electric multipoles are defined by

Q (a dr r D (r )q(*) (2.14)

f DP~J



IL
q(r) is the charge density distribution in the particle of species a.

We observe that the factor between brackets in the integrand of Eq.

(2.7) can be expanded in a similar way:

i A.E (0,1) v (R,) ' (0,1) (2.15)

with

v (R )--[(2n+3)(n+l)/3]' Q (a)/ R (2.16)
-,) C\

The pair distributionfunction has the invariant expansion:

h (0,1) - g (0,1) -1

-Z LM A

+ h j(R ) (o 0 (0f Q R (2.17)

The superscript (r) indicates the functions which involve the real

multipole distributions and (A) those of the imaginary

dipole. Because of the symmetry of the point dipole this last contains only

invariants with m - 1, IA - 0.

Substituting Eqs. (2.14)- (2.16) into Eq (2.7) we find, using the

orthogonality properties of the rotational invariants



in A(A)--4wl; pE [(n+l)/3(2n+3)] Q' () JdR h (R,)/R
2 ' I " (2.18)

which is the generalization of the MI formula for a mixture of charged

particles.

The integral is proportional to the energy of interaction

between the imaginary dipole of the test object and the n-pole of a

particle of type a.

It should be emphasized that, the 'origin' of the test object (i.e.

the reference point for the multipoles Eq.(2.13)) is not necessarily at the

centerof the particle.Our formalism, and in particular Eq (2.18)

applies for the microfield distribution at any point of a given convex test

object

It should be pointed out that the test object can be an extra particle

or a particle belonging to one of the species in the mixture.



Ill-SECOND MOMENT FOR ION-DIPOLE MIXTURES

For the one component plasma of charged point particles in a

neutralizing background, Jancovicilg found that the second moment of

the microfield distribution experienced for a test point particle is

< E >- <E .E >- 4w(p /,)(z/zo)

(3.1)

where p e (e-electron charge) is the background charge density, z and z.

are the electrovalence of the plasma particles and of the test particle.

The method used for the plasmas can be extended to calculate the second

moment of the microfield distribution for a hard convex object of arbitrary

shape ,charge zoe,immersed into a mixture of arbitrarily charged hard spheres.

We assume that species a,of diameter a , has charge z e -QO )

and also a point dipole - (with - Q W).0%

The electrostatic part of the total potential is the sum of a short

ranged part, V' and the electrostatic part V (2.10)

We have

V (xx)- ze (XX)

-. ze ~ 0 ~(3.2)

where 4 (O, ) is the electrostatic potential generated in R. by

particle i of species a.If our mixture consists only of charges and dipoles



(0a) z e/R 0 R. ) / R" (3.3)

E in Eq (2.1) verifies E --V47 (with V- ). Now

< E .E > - < V > (3.4)

Using the relation

4. 0.v . V A v-R)

,e -e [zeV 0 +VV (3.5)

we obtain

<E, >- IL/Q dXd (V4.V 4) e

--- d dX %.,, -Pe V. , V )

f (3.6)

In this equation Q- Q(X-O), where Q(A) is the partition function

defined by Eq.(2.5) and V is the short ranged part of the total potential

energy (in our case hard core interactions).

In the integral in (3.6) the first term is zero for a screening

system, in which the field and potential are zero at the system boundaries.

This can be shown using Green's theorem and Poisson's equation.



V 0-4r ~z e 6 (R) - ~ V 6(R )](3.7)

-0

Therefore

L ( trei

Now, since the media particles are hard, and the cavity particle

is also hard and of arbritrary shape,the short ranged force is

4

1/ R 6[R -a R/39

where a (0 R )fi is the distance of closest approach

of i and 0, which depends on the orientations of R, and O

Using ( 3.3) and (3.9) in ( 3.8) we get

l/(~z Q 2 6[R -a (0,R

~ * (3.10).

where is the electrostatic potential due to particle a. 3.3)

Separating the terms in which c%-0. , we get



<>-<E L> <E' 2 (3.11)
<0'- 0 + 0

The self term is
<E > --kr/z+ fd dR aI

C' % . i% 01-'~

z R +p aC /% (R-% [3 (R ., )Ro' -0,] ) (3.12)

where the sum is over all species a in the system with charge z( e and

dipole moment A.AThe function p[a] is the contact probability density

between the particle a and the test particle O.It is a function of the

angle Ro, which gives the position of a relative to the test object 0.

V* A

n(R o) is the unit vector along the center to center distance when the

particles are in contact.a (R 1o) is the distance of closest approach

for that orientation (see figure 1).

The mutual term is more complex

f da A . .A<E >--kT/z dd., dX1, (12) [ R o) n(R.

z R ¢+p /R [ 3 (R *6 )R - ] }/R (3.13)
OL L C

which is the average of field in the (n (R,,)) direction when particle 1

(of species a ) is in contact with the test particle. This is a

complicated term because it involves, a 3 body correlation function

(particles 0, 1, 2) However, in the Onsager limit, in which the fields

outside of the test particle are completely screened out, this term should be

be zero,and we get

L t
>- <E > (3.14)

where <E%> is given by (3.12).In the case of a spherical test object in

in a ionic mixture,we get

<Eo > -- 4w/(,O z e) zg (q..) (3.15)



IV-THE ONSAGER LIMIT

In his classic paper of 1939, Onsager'4 considered the

problem of calculating an exact lower bound for the interaction energy

V of a neutral system composed of charged hard particles. Onsager solved

the problem by immersing the impenetrable particles in an infinite conducting

fluid, thereby obtaining the 'Onsager state' for which
fo Ae

N - NU (4.1)

where U (the Onsager proper energy of one particle of species a) is the

self energy (relative to the self energy of the original charges) of the

'Onsager atom'. This object is the original hard sphere with the

original charge plus that surface charge induced on the sphere surface by the

conducting boundary condition. Therefore U is the self energy of the
O(;$eL s

(induced) surface charge.

Onsager's approach is valid also for point charges in non-hard core

particles (e.g. the one-component plasma) as long as the particles

distribution features pair-excluded regions (i.e. 'effective' hard core) 10 19

Recent work showed 10 13 20 25 that the'Onsager state 'provides the

exact description of the asymptotic strong coupling limit (e.g. T-0) of the

solutions of both,the mean spherical approximation (MSA) and hypernetted chain



(O~sAN

(HNC) integral equations for arbritrary hard particles. In particular,V

which is the sum of individual terms, one for each particle in the system,

is the exact strong coupling limiting energy as obtained from the solution

of the MSA and HNC equations.The corresponding asymptotic direct correlation

functions are given by the electrostatic interaction between the (induced)

surface charges on the different particles.

Like the general formalism (Sec II) and the particular MSA formalism (Sec

V below), the electrostatics involved in the 'Onsager State' can be

developed for both real and complex charges.In particular,relations like

(b.7) in appendix B follow immediately from the Onsager limit state

due to the simple meaning of the direct correlation function as stated above.

Consider the microfield distribution problem in the Onsager limit.

Denoting by F(A)--kT ln Q(A) the excess configurational free energy of

the system when the imaginary test point dipole is acting on the test object

point where the electric microfield is to be considered, then Eq(2.4) yields

ln A(A)- -0 [F(A)-F(A-0)] (4.2)

In the strong coupling limit, the system approach to Onsager state

in which the test object is immersed in a continuous conducting medium. Then

the free energy difference in Eq (4.2) is

ln A(A)I - - [ [U(A)-U(A-0)] (4.3)
O A 4L-:t



rrn

where (see Fig 2a) U,(M) is the self energy of the 'Onsager atom'

corresponding to the test particle, with the imaginary dipole i./,6 placed at

the considered point, when it is immersed in the conducting medium. Since we

have to average over all the orientations of A,then the energy difference

(4.3) is proportional to the square of the dipole strength A:
L

In A(A)l - A / <U .. > - (4.4)

Here U b.. is the Onsager proper energy (see above) of a hard particle,

having the shape of the test object and with a real unit dipole which is

placed at the test point (see Fig. 2b). < % denotes the average over

the direction of the dipole j4 in a frame fixed to the test particle.

Thus the Onsager state, as well as the strong coupling solutions of the

MSA and HNC equations, predict a Gaussian distribution for the electric

microfield at any point inside the test object.The second

moment depends only on the shape of the particle and the position of the

test point, independent of the charge distribution inside the test object.It is

given by

z
m -<Ez > ---.- 6kT <U . (4.5)

LAt r

The Onsager self energy for a dipole p at the center of a sphere of

radius R is ° / L /R



For example, when the unit dipole (i.e. the test point ) is placed

at the center of a spherical particle of radius r -a/2, we obtain

regardless of the original charge distribution of the system,

<E C > -3/(P r 3 ) -24/(0 a 3 )

o OWr.A&t R

(4.6)

For a multicomponent plasma at a charged point of charge z e

the Wigner-Seitz ion sphere radius is a l'o/,7) , where <z> is the mean

electrovalence . Then the exact second moment Eq (3.1) is recovered:

-4w p <z>/Iz,

(4.7)

Now using e/a as the unit of electric field (r-,6 e /aQwe get

<0 > -3/(r X(0 Offot 0

(4.8)



V THE MEAN SPHERICAL APPROXIMATION

The general formalism of the microfield distribution developed in

Section III is suited to integral equations techniques. The appropiate

Ornstein-Zernike (O.Z.) equation for the fluid in the presence of the test

particle A 26

A A - cA
h ( R -c ; ) c , )

Is 1~- -. 3 A r-

(f=, 511 ' '-.

+pR dQh (R 0 0 1Q i) c (R 0o31 3 00 O out 51 3
'1 

(5.1)

where c (o, - 0,1....s) is the direct correlation function.

In Eq (5.1) we have included the test object as member of a new species with

number density N, / V -p ,. Eventually we will take the limit, N- 1

(or in the thermodynamic limit,p - 0).

The Ornstein-Zernike equation can be closed by several approximate

forms of the direct correlation function.The simplest of such closures is

the mean spherical approximation 27 .The particles are hard particles,

so that

g (X X ) -0 R<a (exact) (5.2)
ae



-b .4--. . . ! .

4 4( XX) -6 -V (XX)a.

(5.3)

where a ) / 2;a is the diameter of species a

and V is the pair potential.

The general solution of Eq.(5.1) with the closures (5.2) (5.3),

for arbritrary multipolar expansions 28 29, shows that, because of the

linearity of the MSA, the R-integrals in Eq (2.18) are proportional to the

imaginary dipole strength.

dR% ho (Rol ) /R 0 % (5.4)

Then, we see that in the MSA the Fourier transform of the microfield

distribution is Gaussian

ln A(A) - -1/6 mA 2

(5.5)

where m -< E 2 >,the second moment of the distribution, depends on the

particular multipolar density expansion and the diameter of the particles

as well as on the multipoles and diameter of the test object.



We can take advantage of the availability of analytical solutions

of the MSA for some particular models in order to obtain explicitly their

second moments

Lado9 has recently considered the microfield problem in the MSA

for a one component plasma of point charged particles in a neutralizing

background . In this work we study a larger class of systems:

a) Mixture of charged hard spheres (primitive model of electrolyte)

b) One component system of dipolar hard spheres and

c) Mixture of charged hard spheres and dipolar hard spheres(non-primitive model

of electrolyte).

For these systems we study in particular the strong coupling

limit of the Onsager states. We will restrict ourselves to the special case

in which the test object is one of the particles of the system and will

consider only the microfield at the sphere center.

a)PRIMITIVE MODEL OF ELECTROLYTES

The system is a mixture of s-1 species of hard spheres of diameter

a with a point charge z e located at the center and number density

p (a - I ..... s-l). The solvent is treated as a structureless continuum with

a dielectric constant C.0

The electric field felt by a test particle of type - with ay-a o

and z -z located at R is,at the center of the sphere



till

\~' (5.6)

The correlation function which involve the test particle (labeUaed 0)

has the form (see Eq (2.17))

f (R ;Q1 )- fOOO (Rot) +f'1(I QR

(5.7)

where f denotes h and c, in the Ornstein Zernike equation (5.1).

Then Eq (2.7) yields (see also Eq (2.18))

00~

0 (5.8
a'0

As shown by Lao for plasmas(see Appendix B),if we solve

the Ornstein Zernike equation (5.1) in the limit P1 -*0

in the t4SA ,then

(5.9)

Here fooa(R )-f0 00 (R01) is the correlation function for the inperturbed
Y 0 0% 0 K 0

(without the imaginary dipole) fluid.

Using Eq (5.9) for h'0 1  and taking into account the

electroneutrality condition we obtain Eq (5.5) with

M4 ~ ~ ~ ~ o 0dr( p S(gK( K(.0



where g (o) is the contact value of the pair distribution function

for the primitive model of an electrolyte in the MSA.

Comparison of this second moment with the exact result given by (3.11)

shows that the MSA has only the self contribution <El> and does not have the

mutual term <EI> .This is to be expected, since the MSA is an

improved Onsager bound,should not have this term,which, anyway

vanishes in the high coupling limit.

If we use the MSA result of the contact pair correlation function

to compute the limiting form of m in the high coupling regime,we find

that it diverges.This is a consequence of the well known inconsistency

of the MSA,in which the correlations of opositely charged ions go to

- rather than to zero.

An alternate way to compute the Onsager limit of the second moment ma

is to include the test particle as a new species,with an imaginary

dipole.Our system consists then of s-1 species plus a new kind of

particle of species - but with an additional imaginary dipole.For

this system the energy parameter

JdR h.. (R)

is known in closed form in the MSA 2 9 34 .The result is proportional

to A / . Taking the limit p - 0, the energy integrals of our

eq. (5.8) converges.

We see, then , that in the strong coupling limit the correct

Onsager limit (4.6) is obtained.However we must use the energy route

to obtain our results, because of the well known inconsistency of the

MSA.

i p ..... ..... ... ......... ... ..........



b) HARD DIPOLE FLUID

Consider now a collection of hard spheres of diameter a

with an embedded point dipole us We compute the microfield distribution

at the center of these particles.The field generated by a particle at

the center *of the test particle 0 is

E /R3 [ [A0 (R 0  . )J(5.11)

The relevant correlations are

0S 0 01 0% , h 4

+ h' 12 ~(R ) (DI12 (QqR)

(5.12)

From (2.7) (and also from (2.18)) we have

Pid)! JdR.h1 (513
ln A(A)--4r 12/1 6%R 0 )/R 0 %

As shown in appendix B ,the radial coefficients hl'O"' R )and h'12>R
05 0~ S. (Rot

in (5.12) are related to the ordinary (unperturbed) radial coefficients

)-LO h'' 0 (R )and h120 I R)b
os i s. 00 h~2((R. )-h'12 (R)b

h11o(kR0 )- .(0/0 IAQ h11 0 (Rol)

h'12' )- -(XAIA2 h"12 (R)

SS R0

(5.14)A



Again, we obtain the Gaussian microfield distribution with the second

moment given by

m - 4 b /(3,8 a 3 )

(5.15)

The dipole-dipole energy parameter is

b --3n J2/15 p a 3  dR h 1 12  (R )/R
PS S SI

J(5.16)

and which can be calculated solving the Wertheim 3 2 equation

(l+b /3)2 - (l-b /6)2  -/3ir # p 2-d
(I-DL/6)"(l+b /12) 4

(5.17)

In the strong coupling limit d2 
- and b -6.

Indeed, the Onsager limits are also verified in this case.

c) ION DIPOLE MIXTURE

Consider now a mixture of s-i different species of charged hard

spheres of diameter a , charge z~e and number density p -N/V

and the solvent which has a diameter a and dipole moment pS

The field at the center of the test particle is the sum of tho

ionic and dipolar contributions, given by (5.6) and (5.11).

On the other hand the relevant correlation functions now are

h ( Q ) (5.7) and h (X ,X ) (5.12).The microfield is
06L ~ 0S 0



in A(A)--41r (e/3 z ), dR hl'( (R
a(= 1 0ACOO

+41r,/27-/" p Id) IdR h112 ")(R,
(5.18)

Now we have to discuss two possibilities: i) the test particle

is a dipole of the mixtureand ii) it is an ion of the mixture.

i) TEST DIPOLE

Following the steps that led to (5.14) (see also appendix B)

S(R ) -(A/a & h.'0  (R, ) cl,.. ,s-1

Rh0 (Rot)

h4 1 12

(5.19)

From (5.18) we obtain again a gaussian (5.5) with ma expressed in terms

of the ion-dipole and dipole-dipole energy parameters of the MSA

of the ion-dipole mixture
3 3 34

mL - 4/p [b,/2,/- + b /3a 3]

(5.20)

here J_

b-- 21r/TF z e dR h'0 1  (R

and b.L is defined by (5.16).These parameters can be computed solving

a system of three nonlinear algebraic equations.

ii) TEST CHARGE

If the test particle is an ion then we again use the method



of defining an extra species A of diameter acharge z e and

imaginary point dipole of strength -iA/a . We now let the density

of this hypothetical component go to zero. Eq. (5.18) yields

in A([)--4/(3b) f A b )/2/' +b ((.)/2a1

(5.21)

The calculation of b and b as functions of A is identical& L.

to the case of the real dipole,and is described elsewhere33 34 .The

important point is that in the MSA, b (A) and bL (A) are linear

functions of A .Therefore, we obtain again the Gaussian distribution (5.5).



VI-CONCLUSIONS

In this paper we discuss the microfield of a ionic solution in a

molecular solvent.We extend the Morita-Iglesias formalism

to include angular dependent interactions.

The mean spherical approximation yields a simple answer for the

microfield in all the cases that were investigated:The primitive model

of ionic solutions, the pure dipolar fluid and the ion-dipole mixture.

For all of these cases the distribution is a Gaussian.The width of

these Gaussians (which is the inverse of the second moment) can be obtained

in two forms:

i) in terms of the contact probability . This form agrees, in the

Onsager limit, with the limiting form of the exact value ,also derived

in this paper.

ii) in terms of the excess energy parameter.

An interesting situation arises here: In the Onsager limit, the MSA

contact probability of the ions diverges. So that although formally the

MSA gives the correct limiting expression of the second moment in terms

of the contact probabilities, the limit itself is incorrect.

The energy route (ii), however, leads to the correct limiting value of the

second moment in the Onsager limit.This is probably a consequence of the

well known inconsistency of the MSA.

Si~milarly to the situation for plasmasO the MSA should serve

as a starting point for a more accurate integral equation treatment.In

this treatment the Onsager gaussian result (4.4),(4.5) is the exact

high coupling limit.



APPENDIX A

ONSAGER ENERGY FOR A DIPOLE IN A SPHERICAL CAVITY

Following Rosenfeld and Blum12 13 we write the Onsager

energy of an arbitrarily charged object immersed in a conducting medium

(a.l)

-- [self energy of the surface charge distribution a(s)]

Here (s) is the potential due to the induced charges at the

surface Z.For a spherical object with a unit dipole at the center (and

pointing in the direction of the z axis) we have

r-i
(a.2)

and

XoT /r(a.3)

where 0 is the angle between the normal to the surface and the z axis.Then

U,. is given by

-UI - / , (a.4)

Finally, from (a.4) and (4.5) we get (4.6).



APPENDIX B

CORRELATION FUNCTIONS IN THE MSA

Consider the Ornstein-Zernike equation (5.1) in the limit p. -0

We use the invariant expansion (2.17) for all the correlation functions.

Then,using the transforms2 8 29

(b.l)

where je(kR) is the spherical Bessel function of order l,and F is a generic

notation for either C or H (transforms of c or h).The Ornstein-Zernike

equation is

S ,-(b.2)

The Ornstein Zernike equation can be transformed to real space:Using

the inverse transform of (b.1)

b0X

(b.3)

where the upper sin kR is for m+n even ,and the lower cos kR is for m+n

odd.

We analize now the case of the microfield at the center of one

of the ions of the mixture, and at the center of a hard dipole,which

could be in a ion-dipole mixture or a pure dipolar fluid.

a)TEST ION IN THE PRIMITIVE MODEL

Using (5.7),together with (b.l) and (b.3) in the Ornstein-Zernike

equation (b.2) yields



001

and

Ci L) - fT
(b.5)

The observation is that the MSA closure relations (5.2) and (5.3)

yield

0 (o1" -

26, C-4(b.6)

(b.7)

Then, defining

,- oq (y C)

(b.8)

for all R, and using the fact that 4e ) -1 4Ie) e q

(b.9)

so that if Wverifiesdefined by (b.9)

should verify (b.5).Therefore, f*°t1R ) as given by (b.8) is the solution

of the problem.We also notice that f°Ot 0s equal to fo00 0(or the

VOA W7 IA,

bulk unperturbed system (A-O) when the test particle belongs to species 1.



b)TEST DIPOLE IN AN ION-DIPOLE MIXTURE

For this case the one dimensional projection of the Ornstein-Zernike

equation yields (7-r,A) *4d

41-a

~(b.ll)

The MSA closure conditions are

(b.13)

OV O-c5 0 C-4 ,, 5 l) '

wi h7(b.14)

wih -)for --r and -A for --A.But we observe

that for -y-r equations (b.lO-14) are the MSA equations for for the

unperturbed system (A-O).This problem is solved elsewhere2 9 a,

When y-A we have

(b.15)

' "1 II li I I I .. . .



The correlation functions have coefficients

h'01(%R )-(X/ A? h'01 (R) - ,-

h110('R )-(A/0 AY h 1 10 (R )

h'12W"R )--(A/0 h"12 (R)

(b.16)

The case of the pure dipolar fluid is obtained from this result by

setting the ionic concentration equal to zero.
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FIGURE CAPTIONS

Figure 1:

Distance of closest approach between a convex test particle and hard

spherical molecules.

Figure 2:

Self energy of Onsager objects immersed in a perfect conductor.
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