
N_

N Systems
r Optimization

Laboratory

An Exact Ceiling Point Algorithm
for General Integer Linear Programming

by
Robert M. Saltzman

and Frederick S. Hillier

TECHNICAL REPORT SOL 88-20

November 1988

DTIC

SELECTEJA N "

Department of Operations Research
Stanford University
Stanford, CA 94305 IDMMUMOTON ffTTDMWT A

Apwo"d impublic rnim

I at]imUBle

i0
SYSTEMS OPTIMIZATION LABORATORY

DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305-4022

An Exact Ceiling Point Algorithm
for General Integer Linear Programming

by

Robert M. Saltzman
and Frederick S. Hillier

TECHNICAL REPORT SOL 88-20

November 1988

DTIC
SELECTED

JAN 31"D8

H

Research and reproduction of this report were partially supported by the Office of Naval Research
Contract N00014-85-K-0343.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those
of the author(s) and do NOT necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.
This document has been approved for public release and sale; its distribution is unlimited.

89 1 03"137

J i
f

Abstract

An Exact Ceiling Point Algorithm

for General Integer Linear Programming

Robert M. Saltzman and Frederick S. Hillier

Stanford University, 1988

This report describes an exact algorithm for the pure, general integer linear program-

ming problem (ILP). Common applications of this model occur in capital budgeting

(project selection), resource allocation and fixed-charge (plant location) problems. The

central theme of our algorithm is to enumerate a subset of all solutions called "feasible

1-ceiling points. A feasible 1-ceiling point may be thought of as an integer solution lying

on or near the boundary of the feasible region for the LP-relaxation associated with (ILP).

Precise definitions of 1-ceiling points and the role they play in an integer linear program

are presented in a recent report by the authors. One key theorem therein demonstrates

that all optimal solutions for an (ILP) whose feasible region is non-empty and bounded

are feasible 1-ceiling points. Consequently, such a problem may be solved by enumerating

just its feasible 1-ceiling points. Our approach is to implicitly enumerate 1-ceiling points

with respect to one constraint at a time while simultaneously considering feasibility. Com-

putational results from applying this incumbent-improving Exact Ceiling Point Algorithm

to 48 test problems taken from the literature indicate that this enumeration scheme may

hold potential as a practical approach for solving problems with certain types of structure. '

Subject Classification for OR/MS Index: Programming - Integer Algorithms;

Branch-and-bound

Key Words: integer linear programming; general integer variables; exact algorithm;

ceiling points; implicit enumeration; linear programming relaxation

An Exact Ceiling Point Algorithm for General Integer Linear Programming

1. Introduction

This report describes an exact algorithm for solving the pure, general integer linear

programming problem in m constraints and n variables xj, j =1, ...,n, whose form is

Maximize cTX = z

subject to Ax < b (ILP)

x > 0, x integer,

where A E RmM n, b E R' and c E R". All the data {A,b,c} are assumed to be rational

numbers, but they are unrestricted in sign. The problem is "pure" in that all of the

variables are required to take on nonnegative integer values. It is "general" in the sense

that the variables may take on any nonnegative integer values permitted by Ax < b, as

opposed to being restricted to 0 or 1 (the binary case). An important additional assumption

is that no implicit or explicit equality constraints are used to define the feasible region

FR ={ x > 01 Ax < b} for (LPR), the linear programming relaxation associated with

(ILP). Common applications of this model occur in capital budgeting (project selection),

resource allocation and fixed-charge (plant location) problems. A further discussion of

application areas for (ILP) may be found in [11] or [26].

Another report by the authors [24] describes a procedure for approximately solving

(ILP) called the Heuristic Ceiling Point Algorithm. Like all heuristic algorithms, it offers

no guarantee of finding an optimal solution. In fact, while the Heuristic Ceiling Point

Algorithm usually finds solutions of very hiqh quality, the algorithm is not even guaran-

teed to find a feasible solution. Furthermore, even with an optimal integer solution at

hand, the Heuristic Ceiling Point Algorithm can only rarely verify (prove) that such a

solution is indeed optimal. For these reasons, an exact algorithm was developed based on

a more systematic search for feasible "1-ceiling points." To understand why this might be

a reasonable approach, we briefly review some of the key concepts of [23]. E

An integer solution x is a 1-ceiling point with respect to the ith constraint, denoted

x = 1-CP(i), if (1) x satisfies this constraint, i.e., aTx < bi (where ai is the ifh row of

the constraint matrix A), and (2) modifying some component of x by +1 or -1 yields a '0dOs

/ .'or

-I -0

____________________H____________________________ i

1. Introduction 2

solution which violates this constraint, i.e., aTx + Iaj I > bi for at least one j. Thus, x =

1-CP(i) means x narrowly satisfies the i' h constraint: taking a unit step from x toward

the i h constraining hyperplane in a direction parallel to some coordinate axis results in

an infeasible point. Similarly, an integer solution x is defined to be a 1-ceiling point with

respect to the feasible region FR, denoted z = 1-CP(FR), if (1) x satisfies all constraints

and (2) modifying some component of x by +1 or -1 leads to a solution which violates

one or more constraints, i.e., 3i : aTx + laij I > bi for at least one j. It is demonstrated

in [23] that all optimal solutions for an (ILP) whose feasible region is non-empty and

bounded are feasible 1-CP(i)'s, i.e., 1-CP(FR)'s. Consequently, one way to solve (ILP)

is to enumerate its feasible 1-ceiling points. Our heuristic approach is based upon the idea

that a feasible 1-ceiling point found relatively near i is apt to have a high (possibly even

optimal) objective function value. On 48 test problems taken from the literature, searching

for such 1-ceiling points usually did provide a very good solution with a moderate amount

of computational effort.

The Exact Ceiling Point Algorithm begins by executing the Heuristic Ceiling Point

Algorithm (which includes solving the linear programming relaxation), so Section 2 ex-

amines the assumptions needed for these steps. The goal at this stage is to be able to

construct a small but sufficient search region. Section 3 discusses how this search region

is divided up to permit the search to focus on finding 1-ceiling points with respect to one

specific constraint. This leads to the calculation of unconditional variable bounds which

correspond geometrically to a search hyperrectangle. The overall process of searching for

1-ceiling points within this search hyperrectangle is outlined at the beginning of Section 4

and then each of three subsections provide more detail on a particular aspect of the search.

The first subsection describes the calculation of conditional variable bounds which are at

least as strong as the unconditional variable bounds; the second subsection describes an

efficient aspect of the enumeration procedure called "double backtracking" which allows

subregions of the search rectangle to be skipped altogether; the third subsection describes

what occurs when a new incumbent solution is found. An overview of the entire Exact

Ceiling Point Algorithm is given is Section 5. Section 6 describes a preliminary search

procedure on a constraint called an "intersection cut," where this procedure is designed

2. Assumptions 3

to speed up our algorithm by searching the region closest to i first. The choice of a

search constraint in the Exact Ceiling Point Algorithm is discussed in Section 7, while

a few other computational issues are examined in Section 8. Section 9 reports on our

computational experience. Section 10 offers some conclusions about our approach and is

followed by two appendices. The first appendix gives the variable bounds and options used

in the GAMS/ZOOM runs reported in Section 9, while the second lists the Fortran code

implementation of the Exact Ceiling Point Algorithm.

2. Assumptions

The Exact Ceiling Point Algorithm begins by finding an optimal solution t for the LP-

relaxation (LPR), the set A of constraints binding at i, and the set of extreme directions

emanating from i which form the cone FR. The Exact Algorithm also uses an initial

feasible integer solution, XH, provided by the Heuristic Algorithm. The assumptions made

here are very similar to those specified in [161.

Assumption 1: The set of feasible solutions for (LPR) is non-empty and bounded.

Assumption 2: The optimal solution found for (LPR) is not all-integer.

Assumption 3: The unique optimal solution for (LPR) is i.

Assumption 4: A feasible solution XH for (ILP), with objective value z, is known.

The first assumption implies that f exists. The second implies that (ILP) is not

solved simply by solving (LPR), so that we have a need for an exact algorithm. The

third assumption is the most serious; however, when , is not unique, there are ways to

perturb the data of (ILP) without altering its optimal solution(s) so that this condition

does hold. Another alternative is to continue to append cutting planes to the problem

until a unique i is found (see [16, pp. 670-6731). The last assumption is not really needed

for the Exact Ceiling Point Algorithm to run, but vastly improves its performance since

it provides another relatively strong constraint, cTx > z, on the solutions that need to

2. Assumptions 4

be considered. If no feasible integer solution for (ILP) has been identified prior to the

start of the Exact Algorithm, then the algorithm starts with z = -oo. Alternatively, the

value of some feasible non-integer solution could be used as a lower bound on the optimal

objective value of (ILP). Then, if it is found that there do not exist any feasible integer

solutions whose objective value exceeds or equals this bound, so the bound is not a valid

one, the Exact Algorithm would have to be restarted with a smaller lower bound, and the

previous lower bound would then become an upper bound (16, p. 673].

With one more definition, we will be able to define a volume which must be searched

to find an optimal solution for (ILP). For k = 1,...,n, let pk be defined as the point

of intersection between the kth extreme direction dk emanating from i and the objective

constraint hyperplane cTx = z. These intersection points {pk, k = 1, ... , n} exist as long as

i exists and the objective constraint hyperplane is not parallel to any edge or face of the

cone FR (Assumptions 1 and 3). The point pk has the form i + AXkdk, where Ak is such

that

cT(. + Akdk) = z

Solving for A k yields

Ak (Z-cT,)/cT dk.

Therefore,

pk = j + (z cTI)d /cTdk, for k =1,...,.

For notational convenience in what follows, define p0 _= t. Now we can restate Hillier's

key theorem [16, Theorem 1] for this point in the analysis.

Theorem 1. Under Assumptions 1, 2, and 3, all optimal solutions for (ILP) are contained

in the n-simplex S whose (n + 1) extreme points are {p 0,p1 , ...,p"}.

An example in R' of an n-simplex S is shown in Figure 1, where the extreme directions

emanating from i are {d', d, d-}. Theorem 1 indicates that once z has been specified,

our attention may be confined to S without fear of missing any optimal solutions for

(ILP). Consequently, any non-binding constraint which does not intersect S may be

disregarded henceforth. In the Exact Algorithm, any constraint which is not violated by

2. Assumptions 5

d1

2 2
d ,

Figure 1. An n-simplex S in s with vertices { ,p1 ,p 2 ,p3 } and the corresponding search

hyperrectangle SH R(S).

at least one pk is redundant and dropped from the further consideration. On the other

hand, the n-simplex may be larger than necessary due to the presence of (non-redundant)

non-binding constraints which chop off parts of the n-simplex. Notice that if we seek

only solutions which are strictly better than XH and all the ci are integer, the objective

constraint hyperplane to use in the determination of {p k k = 1, ..., n} is cTX = z + 1. It

seems worthwhile to recompute this set of intersection points every time a new (higher-

valued) incumbent solution is found since this reduces the size of the n-simplex. Finally,

we may calculate a set of lower and upper bounds [Sj, 3j] for xi by finding the minimum

and maximum, respectively, over the j'h component of all vertices of the n-simplex and

rounding appropriately. The lower bound Sj is not permitted to be less than 0:

5, max{[min{p }1,O}, for j = n,

3 Unconditional Variable Bounds 6

and

3 - [axfpk}J, forj = n.

These bounds define what we shall refer to as SHR(S), the search hyperrectangle for the

n-simplex S, as illustrated in Figure 1. If, for any component j, we find that the upper

bound 9i is strictly less than the the lower bound _J, then SHR(S) = 0. In this case, the

problem is solved because there are no feasible integer solutions better than the incumbent.

Otherwise, we begin to search for 1-CP(FR)'s.

3. Unconditional Variable Bounds

The preceding section indicated that to solve (ILP) it is sufficient to enumerate the

feasible 1-ceiling points contained in the region defined by SHR(S). To improve effi-

ciency, we split up the n-simplex and further confine our search to subhyperrectangles of

SHR(S). Like the Heuristic Ceiling Point Algorithm, the Exact Algorithm seeks 1-ceiling

points with respect to one search constraint at a time. Therefore, a search hyperrectangle

SHR(i) for constraint (i) contained within SHR(S) is constructed which is large enough

to contain all feasible 1-CP(i)'s with objective value greater than z. This subhyperrect-

angle is constructed once a promising search constraint has been identified, which is the

topic of Section 7.

From Definition 3.4, a necessary and sufficient condition for an integer solution x to

be a 1-ceiling point with respect to constraint (i) is

z = 1-CP(i) . 0< bi -aTx < maxlaij -1 (1)

where all coefficients aij are assumed to be integer. (If not all coefficients are integer,

subtract a small positive quantity e instead of I from the right hand side of (1). This will

be the case when we search the intersection cut described in Section 6.) In other words,

for x to be a 1-ceiling point with respect to constraint (i), it must satisfy the constraint

< b, (i)

3 Unconditional Variable Bounds 7

but not be too far away from the i th constraint hyperplane, i.e., satisfy

aTx > b-t(i')

where ti -= maxj Iai, I - 1 may be thought of as the distance constraint (i) is translated in

order to impose the ceiling point condition. Thus, only those integer solutions satisfying

both constraints (i) and (i') are 1-CP(i)'s. These two constraints are central to the

construction of the appropriate search region. An example in R2 is given in Figure 2.

2

qx

(2) 2

T)

C(')z

Figure 2. All feasible 1-CP(1)'s with objective value as large as z lie in the part of S

between (1) and (1').

Now let Ei be the set of extreme rays emanating from i which lie on the ith constraint

hyperplane. Also let qk be the point of intersection between the ks" extreme ray of FR

and the translated constraint hyperplane (i'), for all k Ei. In Figure 2, the point q2 is

shown as the intersection of constraint hyperplane (1') and extreme ray 2, where extreme

ray 2 coincides with constraint hyperplane (2). When exactly n constraints are binding at

3 Unconditional Variable Bounds 8

., each translated constraint hyperplane (i') intersects just one extreme ray because the

other (n - 1) extrer.,c rays lie on constraint hyperplane (i) which is parallel to (i'). In the

case where 2 is overdetermined, more than one extreme ray will intersect the translated

constraint hyperplane (i'). The point q* has the form i + ykdk, where 7 k is such that

(+ _kk) bi-t.

Solving for 9y yields
7 k = -ti/aTdk.

Therefore,

qk = i - (ti/aTd k)dk, Vk V Ei.

The search hyperrectangle for this constraint, SHR(i), is defined by the ranges

{[li, u2],j = 1, ... , n}, where the bounds for each xi are formed by taking the minimum and

maximum, respectively, over the jth component of all of the intersection points required

to define the hyperrectangle's vertices and rounding appropriately. Furthermore, these

bounds should be no wider than those defining SHR(S) because searching beyond the

boundary of SHR(S) is unproductive:

1i -min rmin{r in{ f k)minn{q }), j) (21)
kEEl kfEi

and

ui max{ [max{max{pJk}, max{q}}J, ' } (2u)

If, for any component j, we find u3 < 1j, then SHR(i) = 0, implying that there are

no integer solutions at all in this search hyperrectangle, and a new search constraint is

identified. Assuming this is not the case, we proceed to enumerate the integer solutions

contained within the search hyperrectangle, as described in the next section.

4 Enumerating Solutions Within a Search Hyperrectangle 9

4. Enumerating Solutions Within a Search Hyperrectangle

Once the search hyperrectangle SHR(i) has been defined for search constraint (i),

finding 1-CP(i)'s better than the incumbent amounts to examining SHR(i) for solutions

which are feasible with respect to all the relevant constraints, including (i'). Because

this search hyperrectangle is contained within the n-simplex, i.e., SHR(i) _ SHR(S),

any feasible integer solution found will become the new incumbent solution. The overall

enumeration process, shown as a flow diagram in Figure 3, contains three features which

differentiate it from a simple exhaustive enumeration scheme: the use of conditional vari-

able bounds, a potential for "double backtracking," and a tightening of bounds when a

new incumbent is found. These are described in each of the next three subsections.

4.1. Conditional Variable Bounds

Suppose the variables are rearranged so that x, is fixed first, x 2 is fixed second, and so

forth. Given a "partial solution" (XI, x 2 , ... , Xj-) whose components are fixed in value, a

"completion" of the partial solution refers to an assignment of values to the remaining free

components. Fixing the value of the first variable xi to an integer value between 11 and ul

may reduce the range of values for some or all of the free variables (X2 , ... , X,). Similarly,

fixing the first (j - 1) variables may tighten the bounds on the remaining variables. In

other words, it is possible to calculate conditional bounds on the free variables given the

value of the fixed variables.

As in the Heuristic Ceiling Point Algorithm, we assume that all constraints are in

<form, having multiplied any >_ constraints through by -1 if necessary. The following

procedure develops conditional bounds [LjIxj-l, Ujxj-1] for the variable xj, given that

variables xi, ..., xi-I are fixed in value and xj, ..., x,,, are free. (In Figure 3 these conditional

bounds are abbreviated as [Lj, Uj].) First, some useful notation is introduced. Let

j-1

ij :- bi - E aijxk
k=1

4 Enumerating Solutions Within a Search Ilyperrect angle 10

C nti

1zain

Next value of xj
xl - xl , AXJ

Forward step

Calculate/Updiate
conditional bounds
(Uj, UII on Xj (1)

Fiur 3. Flowl Big a ofteact loihk nmrto cee

(2) Se Secion 42.

(3) Se Secion 43.

4 Enumerating Solutions Within a Search Hyperrectangle 11

be the gap or slack remaining in constraint (i) after having fixed z1 ,..., xj-1. Also, let
n

ij+= min{aitk,aikuk (3)

be the minimum amount of the gap gij that may be used up by fixing variables xj+ 1 , ... , Xn

within their unconditional bounds. Feasibility of a complete solution x with respect to the
ith constraint requires

j-1 n

Sa i k+ ajxj + E aikx bi
k=1 k= J+

j-I n
:=1N aiixi : 5 bi - E aikXk - E aik~k

k=1 k=j+l

aiixi :5 gi - E aik k

kfj+l

=, aijx S gii - wj+1 (4)

If ai, is positive, then (4) yields an upper conditional bound for xi when just constraint

(i) is considered:

X3 <_ (gi, - w,,,+i)/a i . (5)

On the other hand, if ai3 is negative, (4) yields a lower conditional bound for xi when just

constraint (i) is considered:

X3 >- (gi - wi,+1)/a,,. (6)

Note that the numerator may be negative, so that the lower conditional bound is not

necessarily negative. If aij is positive for all (i), (4) yields only upper conditional bounds.

Finally, if aij = 0, constraint (i) cannot be used to determine a conditional bound on xj.

Letting Lixz1 and Uijlxp-1 denote the lower and upper conditional bounds, respectively,

on xj when constraint (i) is considered alone after fixing variables (x, ... , z j-0), we have

f (gij - wij+1)/aij, if aij < 0;

kj, if ai, _0,

and { ua if ai, 0;
Uix.ir-i = (gi - wi,+i)/ai, if ai > 0,

4 Enumerating Solutions Within a Search Hyperrectangle 12

where 1j and uj are the unconditional lower and upper bounds on xj defined earlier. To

maintain feasibility with respect to all constraints, the conditional lower and upper bounds

[Ljlzj-, UjlzpjiJ on zj must be the tightest among all those conditional bounds which

consider only one constraint at a time. Therefore, the desired conditional lower and upper

bounds are

Ljlxi-I rm.xfLjli-l~jl (7)

and

UilxS-= Lm'n{UIjxj.-.}J. (8)
f t

When we find Ljlzxj- > UjIxj-,, there are no feasible completions of the partial solution

(x1 , ..., zi - 1). In this case, we backtrack to the next value of xj - 1. The bounds (7) and (8)

are vey similar to those defined in a lemma by P. Krolak which are central to his Bounded

Variable Algorithm [18].

At first glance, it may appear that calculating Lijlxj-l and Uijlxj-l each time xj-

changes is computationally prohibitive, but actually it is not. This is because Lijxj-i

and Ujlj- l both change in a predictable way as zj- 1 changes. In fact, each is a linear

function with a slope that can be calculated once at the outset of the Exact Ceiling Point

Algorithm, as we now demonstrate. To see the effect of changing xi-1, let vi- 1 be its

current value and vj_1 the value to which it is then changed, so v=_- = vj-l + 6j-i,

where 6j_l r {-1, +11. (Our rule is to set bj-l = -1 if cj-l _> 0, or set bi-, = +1 if

cj-j < 0, implying that we start at the more attractive end of the interval defined by the

unconditional bounds.) Let Ljzj 1 and UjIzxj denote the luwer and upper conditional

bounds, respectively, on zi when considering constraint (i) alone after fixing variables

(zl,...,zj-v,z -1) to (vI,...,v _j.2,,v>_l). Similarly, let gijlxj- denote the quantity gj

given the partial solution (vi, ..., v3i-, vj-) and gqjfzr_ 1 the quantity gii given the partial

solution (vi,...,vj_ 2 ,v_). Assuming that a,, > 0, we are interested in how UIlx,._

differs fmm •

4 Enumerating Solutions Within a Search Hyperrectangle 13

Uix- - UilT- = [(gijlx-'. 1 - wi,j,,) - (gjlx.... - w~+)/i

=(g,,1x-_ - il-,Ii

= [-aij-lvj'- - (-ajj -l)]/aj

= ai,j-.(vj.l -

where fij - aij-1/aij. Since both fA, and bj-l are independent of the value of xi..,

Uijlx,- 1 is a linear function of Zj-l with slope ±fij. When ai, < 0, a similar derivation

reveals that LjIxj_ is also a linear function of xj-1 with slope -fij . Therefore, after

calculating Uij Jxj-i and Lij lxj- for the initial value of xj-1 within its conditional bounds,

one of the two conditional bounds always changes in an additive fashion while the other

remains equal to the value of its unconditional bound:

f Ljli-i - b-lfij , if a3 < 0;
l3l1 j, if aij _0,

and

{ij - uj, if a,1 0;
-- Uijxj- 1 - 6b-lfij , if aij > 0.

4.2. Double Backtracking

In addition to being easy to update, the quantities Lijlxj- 1 and Uijxp 1l impart an

important property to the conditional bounds Ljtxpi and Uj xj- 1 . As the maximum over

a set of linear functions, LjIxj_. is a (piecewise linear) convex function of xjl by a well-

known theorem (see [3, Theorem 4.13] for example). Similarly, Ujxpil is the minimum

over a set of linear functions and therefore is a (piecewise linear) concave function of xi_1.

This is illustrated in Figure 4 for the case in which ai, _> 0, for all (i,j), so that the

conditional lower bound Lilzi-I is equal to the unconditional bound 1,.

As xj1 j ranges between its conditional bounds Lj-. IXj_2 and Uj- 1)X-2, the condi-

tional bounds on xj, LIxj.i and Ujlx ,i, may crossonce, twice or not at all. If we observe

that Lj Ix j- exceeds U, Ixj- for a particular value of xj,, we can certainly backtrack to

4 Enumerating Solutions Within a Search Hyperrectangle 14

Conditional
Upper and

Lower Bounds

U I J

u 3 Ix j_

Figure 4. Upper and lower conditional bounds on zj when all aij > 0.

the next value of xi-1, because there are no feasible completions of the partial solu-

tion (Xi,... ,zj- 1). But there is also a possibility that Ljlxj-l will exceed UjIzj_ for all

remaining values of zj-l, due to the convexity and concavity properties of the conditional

bounds. In this caw, we can "double backtrack," i.e., backtrack to the next value of Xj- 2.

The conditions for when it is possible to double backtrack, thereby significantly reducing

the amount of enumeration, are given in the next theorem.

Theorem 2. Suppose the backtracking condition Lixj.l > Ujlj-l holds for a particu-

lar value of j-l, implying that there are no feasible completions of the partial solution

(Xi,... ,Z-). A sufficient condition to double backtrack, i.e., skip over all the remaining

integer values of zi-I within its conditional bounds, is that

faizpji) an some (9)

for some iL E argmaxi{Lij~zj-i } and some iu E arg mini{JUij jzj-1}

4 Enumerating Solutions Within a Search Hyperrectangle 15

Proof:
L 1 _xi > Ljlxj- 1 - fibjj-1, where iL E argmax{L1j1j-xj}

> Uix,-i - fiLjb6 -l, by the backtracking condition

> Uixi-I - f8 ji-~1, where iu E argmin{Ujlxj-,1 }

The first and last inequalities hold by the convexity and concavity of LjIx _. and Uijlx -,

respectively, while the third inequality follows if the double backtracking condition stated

by the theorem holds. Repeating the argument for subsequent values of x .- 1 , we find that

the lower conditional bound on xj exceeds the corresponding upper conditional bound not

only for x.- 1 but for all remaining values of x' within the conditional bounds of j-.

Thus, we can double backtrack. I

Condition (9) is stronger than necessary because there may be some other constraint

(i') which is not a member of the argmaxi{Lijj_1 } but which is a member of the

argmaxi{Li j lx _,} so that Ljlx'._, > Ljx - fiJ 6 J- However, constraint indices

iL and iu are readily available, having been identified in the calculation of Ljlxj-i and

Ulxj_,, respectively. Note that it only makes sense to check the double backtracking con-

dition after we have found that we can perform an ordinary backtracking step. We must

check the condition of Theorem 2 because of the possibility that the conditional bounds

may cross twice as xj- 1 moves between its conditional bounds. If we double backtracked

after the first observation of the lower conditional bound exceeding the upper conditional

bound, we could miss some partial solutions with feasible completions. Double backtrack-

ing seems to be most helpful on problems in which the unconditional bounds are fairly

wide for one or more variables, such as the fixed-charge problems discussed in Section 9.

4.3. When a New Incumbent is Found

The third feature of our Exact Algorithm which distinguishes it from ordinary enu-

meration is manifest when a feasible solution is completed. Because all constraints are

taken into account in the calculation of the conditional variable bounds, including an

5. Overview of the Exact Ceiling Point Algorithm 16

objective function constraint, any completed solution is not only feasible but also has

a strictly superior objective function value to that of the current incumbent. As such,

it becomes the new incumbent solution. At this stage, the intersection points between

the extreme rays emanating from i and the new objective function constraint hyperplane

(which define the n-simplex) move closer to t. Thus, the n-simplex shrinks and a tighter

set of integer component bounds defining the SHR(S) may result. If so, the unconditional

variable bounds developed for the current search constraint (i) will also tighten, that is,

move closer together. Consequently, the minimal completion values wij defined in (3) will

change, possibly leading to tighter conditional variable bounds. Thus, as we backtrack

from the completed solution to new partial solutions, new conditional variable bounds are

computed which reflect the improved objective value of the incumbent. The magnitude of

the change in the objective function value determines the extent to which these modified

conditional bounds speed up the enumeration process.

5. Overview of the Exact Ceiling Point Algorithm

Having seen how to enumerate 1-ceiling points with respect to a specific constraint,

we are now in a position to see where this process fits into the overall Exact Ceiling Point

Algorithm described in Figure 5. The iterative part (Step 3) of the Exact Algorithm

essentially "branches" on one of the functional constraints (i) and seeks to "fathom" a

subregion SHR(i) of the SHR(S) by enumerating implicitly or explicitly all 1-CP(i)'s

within SHR(i). Suppose that the best feasible integer solution known after having searched

this region is zi whose objective function value is z - cTxi. If the new n-simplex S' is

formed by the objective function hyperplane cTz = z + 1 and the constraints binding at

i, then S' excludes the best known solution xi. It is possible, then, that S' contains no

integer solutions at all. A sufficient condition for this is if there is some j such that the

new upper bound 3j is strictly less than the new lower bound J. In this case, the problem

has been solved. If not, we replace the previous search constraint (i) by a constraint (i")

5. Overview of the Exact Ceiling Point Algorithm 17

parallel to (i) whose right hand side is bi,, -bi-maxj aij1, resulting in a modified problem

(ILP') which remains to be searched. The modified relaxation, (LPR), is then solved for

its optimal solution and value (V', V). Note that V < i and that ' is an upper bound for

the optimal objective function value for (ILP). Therefore, if V < z, the problem is solved

with xi as an optimal solution for (ILP). If the problem is not solved, a new iteration

begins by selecting another search constraint and enumerating its 1-ceiling points. Thus,

the algorithm proceeds in a "search and cut" fashion until the problem is solved. (Step 2

will be described in the next section.)

Step

0. a. Solve (LPR) -)

b. Apply Heuristic Ceiling Point Algorithm =0 (xH, I=_ cTx H).

1. Construct n-simplex S and associated search hyperrectangle SHR(S).

2. a. Construct Intersection Cut (I) and search hyperrectangle SHR(I).

b. Enumerate feasible 1-CP(I)'s within SHR(I). =} (X z I cTxl).

c. Reduce T to maxk{c T rk}, where rk _ intersection of kth extreme ray and (1).

d. Stop if z = 7; otherwise,

3. REPEAT

a. Select a search constraint (i) and construct SHR(i).

b. Systematically enumerate feasible 1-CP(i)'s => (x, z = cTX,).

c. Replace aTx < b, with aTx < b, - maxj laiji.

d. Resolve (LPR) to obtain (V', ' = cv

UNTIL OPTIMAL (FR = 0 or z > ').

Figure 5. Outline of the Exact Ceiling Point Algorithm.

Theorem 3. Suppose the set of feasible solutions for (ILP) is non-empty and bounded

(Assumption 1), ± is unique (Assumption 3) and z > -oo. Then the iterative procedure

(Step 3) of the Exact Ceiling Point Algorithm given in Figure 5 is guaranteed to find an

optimal solution for (ILP) in a finite number of steps.

5. Overview of the Exact Ceiling Point Algorithm 18

Proof: By Theorem 2 of [231 and Theorem 1 above, the total region T which needs to be

examined in order to solve the problem is the portion of the n-simplex S which contains

all of its 1-CP(FR)'s:

T _= U{x > 01 bi - maxla,yI < aTx < i, cTX > z

Since T consists of subsets of S, T itself is bounded. There are only a finite number of

constraints, each of which is searched at most once for its 1-ceiling points. What remains

to be shown is that the scheme of Section 4 for enumerating 1-CP(i)'s with respect to a

specific constraint (i) is finite.

For a given constraint (i), a search hyperrectangle SHR(i) is defined and then exam-

ined for 1-CP(i)'s. Being a subset of T, this search hyperrectangle S;HR(i) is bounded,

implying that all of the corresponding unconditional variable bounds { (1 j,u j], = 1,..., n'

are bounded. The conditional variable bounds {[Lj~xj_,,UjIxy_,],j = 1,... ,n} are also

bounded since, by definition, Lj xi_. > 14 and Uj xj 1I < uj for all j. Thus, while the total

number o" integer solutions contained within SHR(i) may be large, it is finite. Finally,

the scheme which enumerates integer solutions within SHR(i) examines at most once each

complete solution or partial solution leading to one or more complete solutions. Partial

solutions are fathomed if they are shown to be unable to lead to a feasible completion that

is better than the incumbent. Any completed solution is fathomed by virtue of becoming

the new incumbent. Thus, the scheme of Section 4 is finite. I

The choice of a search constraint (i) is the subject of Section 7. However, before

searching any of the constraints binding at i for their 1-ceiiing points, a preliminary

search is made for the 1-ceiling points with respect to a specially-constructed constraint

called an intersection cut, which is described in the next section.

6. Searching the Intersection Cut 19

6. Searching the Intersection Cut

The intersection cuts employed in the Exact Ceiling Point Algorithm were developed

by Balas [4] as a class of cutting planes for solving integer programming problems. They

possess the usual feature of chopping off the optimal (LPR) solution without cutting off any

feasible integer solutions for (ILP). Furthermore, they make use of the same structural

information from the (LPR) as do the Ceiling Point Algorithms described here. Our

interest in these cuts stems not from their ability to solve (ILP)'s as part of an iterative

cutting plane procedure, but from their ability to define a region near i which is likely to

contain a near-optimal or even optimal feasible integer solution. Thus, an intersection cut

is introduced into (ILP) after the Heuristic Ceiling Point Algorithm has been executed.

A suitable region associated with this intersection cut is searched for its 1-ceiling points

as a heuristic step that uses the framework of the exact enumeration scheme described in

Section 4.

The spherical intersection cut introduced in [4] is derived from a convex set denoted

HS(UHC[i]), the hypersphere circumscribing UHC[i], and is illustrated in Figure 6. A

companion article [5] describes another intersection cut derived from a larger region called

the dual to the unit hypercube, denoted DUHC[t]. One cut or the other is employed in the

Exact Ceiling Point Algorithm, depending upon the size of the problem. The intersection

cut, denoted by (I), plays a role similar to that of the functional search constraints de-

scribed previously. We first define a search hyperrectangle for the intersection cut, denoted

SHR(I), and proceed to enumerate its feasible 1-ceiling points. The only difference from

the case of ordinary search constraints is that our SHR(I) is not so large as to contain all

of the 1-ceiling points with respect to (I), but only the ones most likely to be feasible.

The search region SHR(I) depends upon a set of points {r k , k = 1, 2,. . .) located

along the extreme rays of the feasible region. Each rA represents the intersection of the

kth extreme ray and the HS(UHC[2)). The intersection cut is then constructed so as

to pass through this set of points. These points also provide an upper bound i on the

optimal objective function value for (ILP): i = maxk{cTrk). The point r* has the form

6. Searching the Intersection Cut 20

X 2

r 2 7 d H S (U H C [73)

Intersection~cut 11)

r

FR

Figure 6. An Intersection Cut derived from HS(UHC[i]).

2 + kdk, where A& is defined such that i + Akdk lies on the surface of HS(UHC[J).

Precise expressions for the Xk are given in [4] and [5]. Each of these non-integer points rk

is rounded to an integer solution 1 k (a vertex of UHC[rk]) which is feasible with respect

to the intersection cut.

The search hyperrectangle SHR(I) is then determined as a set of lower and upper

bounds {[j,'j],j - 1,...,n} by finding the minimum and maximum, respectively, over

the j'k component of all the fk's. As with the bounds defining SHR(i), the bounds

defining SHR(I) should be no wider than those defining SHR(S) since searching beyond

the boundary of SHR(S) cannot improve upon the incumbent. More precisely,

and

_ max max= { (,3 1}, for = n...,,,

'. Choice of Search Constraint 21

If, for any component j, we find 7, < Li, then SHR(I) = 0, i.e., there are no integer

solutions at all in this search hyperrectangle. In this case, the exact algorithm proceeds to

search for 1-ceiling points with respect to an original functional constraint. Assuming this is

not the case, we enumerate the integer solutions contained within the search hyperrectangle

SHR(I) in the same manner as described in Section 4 for an ordinary search constraint

(i).

A nice feature about the intersection cut is that the volume of SHR(I) reflects the

shape of the feasible region near i. When the cone 7T with vertex i is narrow, the search

hyperrectangle SHR(I) is apt to contain a relatively small number of integer solutions

(feasible or not) and so not much time will be wasted searching an unpromising region.

On the other hand, when the cone F- is fairly wide, SHR(I) is apt to contain a relatively

large number of integer solutions and the subsequent search will be thorough in a part of

the feasible region with a good chance of containing an optimal solution.

7. Choice of Search Constraint

We now describe our rule for how a search constraint is selected in the Exact Al-

gorithm. As background, note that once constraint (i) has been chosen and the "band"

or volume of the feasible region between (i) and (i') has been exhaustively searched for

1-CP(i)'s, constraint (i) may be replaced by

aTx < b- maxlai (i")$ - i

for purposes of continuing the search elsewhere in the feasible region. Therefore, when

this stage in the algorithm is reached, (LPR) should be resolved with bi replaced by hi,, =

bi - maxi laij, leading to a reduction in the optimal objective function value of (LPR).

Let (LPR)i denote this new but related (LPR) whose optimal solution value is i. Recall

that , is the optimal objective function value of (LPR) and serves as an upper bound on

the optimal objective function value of (ILP). To estimate the extent to which , and i

aiffer without actually solving (LPR)i, let ri be the shadow price of binding constraint

7. Choice of Search Constraint 22

(i) for (LPR), where this shadow price measures the rate at which the objective function

Zz changes as bi is changed by a small amount. If Abi S bi - bi,, = maxi lalI, then

i -;Fi > iAbi. The inequality is necessary because constraint (i") may not be binding at

the optimal solution to (LPR)i. However, we approximate i by z' =i - 7riAbi.

Now let A S {il aT = bi} be the set of constraints binding at i and let A' - {i E

A I <l z}, where z is the objective function value of the incumbent. Thus, A' includes any

given binding constraint only if fathoming that constraint would indicate that the problem

has been solved because z is at least as large as the objective function value of any solution

in the remaining (ILP). Our rule for choosing a search constraint is to select the binding

constraint (h) such that

h E arg min{,'}.
iEA

The motivation for this rule is that fathoming constraint (h), i.e., exhaustively searching

SHR(h) for 1-CP(h)'s, gives the largest guaranteed reduction in i. If, in addition, h E A',
then fathoming constraint (h) may entail more searching than is absolutely necessary to

solve the problem as a result of the ceiling point constraint (h") associated with (h) cutting

too deeply into the feasible region. To prevent any unnecessary searching, the right hand

side b,' for ceiling point constraint (h") is modified (assuming that all cj are integer) so

that i = z+ 1:

bh,, = b-. - (z + 1))/7r1.

In this case, we will be seeking d-CP(h)'s, where d > 1. On any subsequent iterations,

constraint (h") would not be considered for selection as the search constraint.

Although similar, this rule for choosing a search constraint and tha, proposed for

the Heuristic Ceiling Point Algorithm in [24, Section 3.1) may select different search con-

straints. The rule presented earlier places more emphasis on how the objective function

value changes over just the feasible portion of the constraint. Here, the emphasis is on

the effect of fathoming a particular constraint and its associated search hyperrectangle

SHR(i); the selected constraint is that which guarantees the largest decrease in i, and

hence, the largest decrease in the value of the upper bound on the optimal objective func-

tion value of the remaining (ILP). This emphasis increases the likelihood that oly a

8. Other Computational Issues 23

small number of constraints must be searched for their 1-ceiling points before the problem

is solved. It is also clear that the better the quality of the solution that the Exact Ceiling

Point Algorithm starts with, the fewer iterations it is likely to require to solve the problem.

8. Other Computational Issues

During the computational testing of the Exact Ceiling Point Algorithm it was often

noticed that the same number of integer solutions were contained within the search hy-

perrectangles SHR(i) and SHR(S), i.e., 1 ,(1 + uj - 1j) = 1j(1 + 3, - ij), probably

indicating that the two hyperrectangles coincided. This seemed to imply that either the

current solution was very close to being optimal, leading to a relatively small SHR(S), or

that the distance between the constraint hyperplanes (i) and (i') was fairly wide, thereby

generating a relatively large SHR(i), or a combination of both. Under these circumstances

it seemed wise to simply search the hyperrectangle associated with the n-simplex, SHR(S),

for any feasible integer solution and not search only for feasible 1-CP(i)'s. Any such so-

lution found at this stage would mostly likely be a feasible 1-ceiling point with respect

to either (i) or some other constraint binding at i. Furthermore, the algorithm can be

terminated once all solutions within the n-simplex have been enumerated.

9. Computational Experience

This section presents our computational experience with the Exact Ceiling Point Al-

gorithm, using the relevant parts of [8] as a guide to reporting our results. Having already

described our algorithmic approach, we begin in the next subsection by describing its

computer-based implementation. Subsection 9.2 discusses the experimental design, in-

cluding the objective of the experiment, the origin of all of the test problems used and

the choice of performance indicators. Computational results with the Exact Ceiling Point

9. Computational Experience 24

Algorithm are reported in subsection 9.3.

9.1. Computer Implementation

Computational testing of the algorithms was performed on a Digital Equipment Cor-

poration VaxStation II with ten megabytes of main memory, under the MicroVMS oper-

ating system, version 4.5. All of the code was written in Fortran and compiled with the

VAX Fortran Compiler, version 4.5, using the default settings that include an optimizer.

Real variables were declared as double precision variables. Groups of test problems were

submitted as a batch job in order to maintain consistent timing results.

A clock-reading routine due to [20] returning CPU time in centiseconds was employed

to establish execution times of various parts of the code. Thus, execution times reported

for the Ceiling Point Algorithms are accurate to at most 0.01 CPU seconds. However,

it is felt that this relatively small uncertainty in the timing can be safely ignored in the

following analysis. All execution times are given in CPU seconds. Those execution times

that apply specifically to the Exact Ceiling Point Algorithm include the time required to

read in the data but not to write out any information; those reported for other algorithms

may or may not include input/output time.

9.2. Experimental Design

The main objective of our computational testing was to assess whether or not the

methods for enumerating 1-ceiling points described in this report constitute a practical

approach for exactly solving general integer linear programming problems. To assess the

effectiveness of the Exact Ceiling Point Algorithm, we shall compare its performance to

those of other algorithms on a common set of test problems. it should be emphasized that

these computational results provide only a general indication of an algorithm's performance

rather than conclusive evidence because not only are we examining performance based on a

9. Computational Experience 25

relatively limited amount of computational experience, but also the algorithms have been

coded by different authors, run on computers of different generations and sizes, and so

forth.

The 48 test problems taken from the literature have been grouped into two categories:
"realistic" (because these problems were drawn from real applications) and "randomly

generated" (because the parameters of these problems were randomly generated). Charac-

teristics of the sets of realistic and random test problems are shown in Tables I(a) and I(b),

respectively. The first two columns of each table give the size of the constraint matrix (rows

by columns) and the name by which we shall refer to each problem. Density is simply the

percentage of coefficients of the constraint matrix which are nonzero. A negative entry in

the column of optimal objective function values indicates that the problem originally was

in the form of a minimization rather than a maximization. The last two columns provide

two measures of the distance between the optimal objective function values for (ILP) and

(LPR). The first measure is the normalized duality gap,

=~i, x (T - c T X) / llC12 ,

where IIcI12 is the Euclidean norm of c. This quantity measures the Euclidean distance

between the optimal objective function hyperplanes for (ILP) and (LPR), i.e., between

cTx = i and cTx = z*. It is a reasonably good guide for indicating the difficulty of the

problem: the larger the normalized duality gap, generally the more difficult it is to find

an optimal integer solution and prove its optimality. The second measure is the duality

gap in percentage terms, 100 x (cT - cTx*)/cTt, which provides some perspective on

the importance of actually finding an optimal integer solution for a particular problem

once a good feasible solution has been discovered. An integer solution found to be within

some small percentage of the optimal LP-relaxation objective function value may be "close

enough" for all practical purposes.

All 24 of the realistic problems appeared in the study by Trauth and Woolsey 1271.

These consist of ten fixed-charge problems, {FC-1, FC-2,..., FC-10}, five of the IBM test

problems, {IBM-1, IBM-2,..., IBM-5}, and nine allocation problems, {AL-55, AL-60,...,

AL-100}. The set of allocation problems are all the same 0-1 knapsack problem except

9. Computational Experience 26

Table I(a). Realistic Test Problem Characteristics.

Optimal Value for Duality Gap
m x n Problem Density LPR : i ILP: z* Norm. a) Pct. (b)

4 x 5 FC-1 70 8.79 7 1.032 20.5
4 x 5 FC-2 70 9.61 8 0.931 16.7
4 x 5 FC-3 70 11.81 10 1.046 15.3
4 x 5 FC-4 70 9.22 8 0.704 13.0
6 x 5 FC-5 53 88.61 76 7.279 14.2
6 x 5 FC-6 53 118.13 106 7.003 10.2
4 x 5 FC-7 70 88.61 76 7.279 14.2
4 x 5 FC-8 70 118.13 106 7.003 10.2
6 x 6 FC-9 50 12.00 9 1.732 25.0

10 x 12 FC-10 50 18.71 17 0.698 9.1
7 x 7 IBM-1 57 -7.50 -8 0.189 6.7
7 x 7 IBM-2 57 -5.75 -7 0.472 20.7
3 x 4 IBM-3 100 -179.78 -187 0.271 4.0

15 x 15 IBM-4 53 -9.25 -10 0.194 7.5
15 x 15 IBM-5 53 -12.88 -15 0.549 16.3
11 x 10 AL-55 18 50.30 50 0.008 0.6
11 x 10 AL-60 18 54.50 52 0.063 4.6
11 x 10 AL-65 18 58.67 57 0.042 2.9
11 x 10 AL-70 18 62.83 62 0.021 1.3
11 x 10 AL-75 18 67.00 67 0.000 0.0
11 x 10 AL-80 18 70.60 68 0.065 3.7
11 x 10 AL-85 18 74.20 70 0.105 5.7
11 x 10 AL-90 18 77.80 75 0.070 3.6
11 x 10 AL-100 18 85.00 85 0.000 0.0

(a) Gives the normalized duality gap: D(2, x*) = (cT - cTX*)/I11 2.
(b) Gives the duality gap in % terms: 100 X (CTt - cTZ*)/cTj.

9. Computationa Experience 27

Table I(b). Randomly Generated Test Problem Characteristics.

Optimal Value for Duality Gap
m x n Problem Density LPR: i ILP: z* Norm. (") Pct. (6)

15 x 15 I-I 100 2956.1 2893 0.384 2.1
15 x 15 1-2 100 2650.8 2570 0.573 3.0
15 x 15 1-5 100 6356.0 6171 1.117 2.9
15 x 15 1-6 100 2289.1 2234 0.333 2.4
15 x 15 11-I 100 1896.3 1875 0.091 1.1
15 x 15 11-2 100 1758.8 1725 0.178 1.9
15 x 15 11-3 100 2029.9 1983 0.189 2.3
15 x 15 11-4 100 2478.0 2429 0.220 2.0
15 x 15 11-5 100 1574.8 1558 0.079 1.1
15 x 15 11-6 100 1575.5 1556 0.083 1.2
15 x 15 11-7 100 2088.0 2056 0.147 1.5
15 x 15 11-8 100 1592.8 1548 0.199 2.8
15 x 15 11-9 100 1756.8 1743 0.063 0.8
15 x 15 11-10 100 1764.7 1734 0.137 1.8
30 x 15 11-11 100 1522.5 1491 0.129 2.1
30 x 15 11-12 100 1449.9 1424 0.138 1.8
15 x 30 11-13 100 1811.6 1785 0.092 1.5
15 x 30 11-14 100 2337.4 2309 0.089 1.2

6 x 21 II-M 100 643.0 594 0.181 7.6
15 x 15 111-2 53 110.7 99 0.055 10.6
15 x 15 111-3 48 144.5 130 0.061 10.0
15 x 15 111-4 50 124.3 92 0.157 27.6
15 x 15 111-5 45 119.5 97 0.097 18.8
15 x 15 111-8 49 123.3 113 0.054 8.4

(a) Gives the normalized duality gap: D(i, x*) =- (i - z*)/IIc11 2.

(b) Gives the duality gap in % terms: 100 x (i - z*)/i.

9. Computational Experience 28

that the right hand side increases from 55 to 100. It should be noted that the LP-relaxations

associated with two of the allocation problems, AL-75 and AL-100, possess an all-integer

optimal solution. Thus, AL-75 and AL-100 are solved immediately by the Heuristic Ceiling

Point Algorithm but are included in this study in order to compare our results more

completely with those reported elsewhere. The fixed-charge and IBM problems were first

presented in [13] and, though small, are "hard" to solve in the sense that the optimal

solutions for (ILP) and (LPR) are relatively far apart, as indicated by large values of

the normalized duality gap. Characteristic of the fixed-charge problems is that simple

rounding of i almost never yields a feasible integer solution.

With one exception, all 24 of the problems with randomly generated coefficients have

been taken from Hillier's study [16] and are fully specified in [171. These problems are

labeled as {I-1, 1-2, 1-5, 1-6}, {II-1, 11-2,..., 11-141 and {III-2,..., 111-5, I1I-8}. Their integer

coefficients were generated from a uniform distribution over the intervals shown in the

Table II. The one additional problem (labeled "II-M") is similar to a Type II problem

except that the bi's are smaller. Originally proposed as a 0-1 problem in [21], II-M was

solved as a general integer problem in [19], as it is here.

Table II. Coefficient Ranges for Randomly Generated Test Problems.

Problem Type
I II III

cj [-20, 79] [0, 99] [0, 99]
ai_ [-40, 59] [0, 99] [0, 1]

bi [500,999] [1000,1999] 1
xj general general binary

With large values of the right hand sides (bi's) and with constraint matrices which are

essentially 100 percent dense, the Type I and Type II problems are not easy to solve. The

Type I problems are especially tough because approximately 40 percent of their constraint

coefficients are negative, while the other 60 percent are positive. The Type III problems,

on the other hand, are not particularly challenging. As shown in Table I(b), the normalized

9. Computational Experience 29

duality gap for a typical Type I problem is roughly two to three times as large as that for

an average Type II problem which, in turn, is about twice that for a Type III problem.

For algorithms which solve the (LPR) associated with (ILP), an alternative to simply

reporting CPU time is to examine the ratio of total CPU time to CPU time required to

solve the LP-relaxation. This ratio gives an idea of how much work is required by the

entire algorithm in relation to a relatively efficient and dependable algorithm (the simplex

method) used in the first phase of the algorithm to solve (LPR). It also provides a crude

basis of comparison for LP-based algorithms which perhaps have been coded in different

languages and/or tested on different types of computers. With this measure, various al-

gorithms' execution times are normalized by the amount of time to solve (LPR). It must

be emphasized, however, that the LP solvers embedded within the respective integer pro-

gramming algorithms may have been designed and implemented quite differently, causing

such comparisons to be rather rough.

In evaluating exact algorithms for (ILP), the most important performance indicator

would seem to be the total CPU time since all algorithms being compared presumably

find an optimal solution. It may also be meaningful to express the total CPU time as a

fraction of the time required to solve the associated (LPR). In contrast to some other areas

of mathematical programming, such as nonlinear programming, the numerical accuracy of

an optimal solution found by the Exact Ceiling Point Algorithm is not really a subject of

much concern since it works only with integer solutions.

9.3. Results with the Exact Ceiling Point Algorithm

Tables 6-II(a) and (b) indicate the relative performance of the various phases of the

Exact Ceiling Point Algorithm on the realistic and randomly generated test problems,

respectively. The columns labeled "LPR," "Heur.", "I-Cut," and "Exact" give the fraction

of the total CPU time spent in the various components of the algorithm: solving the linear

programming relaxation associated with (ILP), running Phases 2 and 3 of the Heuristic

Ceiling Point Algorithm, searching the region defined by the Intersection Cut (see Section

9. Computational Experience 30

Table 6-III(a). Execution Times of the Exact Ceiling Point Algorithm

on Realistic Problems.

% of Total CPU time Total
Problem LPR Heur. I-Cut Exact CPU time Ratio(a)

FC-1 50.0 25.0 10.7 14.3 0.28 2.0
FC-2 69.6 26.1 4.3 0.0 0.23 1.4
FC-3 56.5 13.0 13.0 17.4 0.23 1.8
FC-4 76.5 17.6 5.9 0.0 0.17 1.3
FC-5 22.1 23.5 2.9 51.5 0.68 4.5
FC-6 25.4 23.7 3.4 47.5 0.59 3.9
FC-7 21.7 25.0 3.3 50.0 0.60 4.6
FC-8 27.3 25.4 1.8 45.5 0.55 3.7
FC-9 51.5 15.1 6.1 27.3 0.33 1.9

FC-10 25.0 51.7 14,7 8.6 1.16 4.0
IBM-1 53.8 28.2 18.0 0.0 0.39 1.9
IBM-2 55.0 40.0 5.0 0.0 0.40 1.8
IBM-3 60.0 28.0 8.0 4.0 0.25 1.7
IBM-4 24.2 75.8 0.0 0.0 2.69 4.1
IBM-5 1.3 4.1 6.4 88.2 47.10 77.2
AL-55 27.5 72.5 0.0 0.0 1.09 3.6
AL-60 51.8 28.6 8.9 10.7 0.56 1.9
AL-65 41.1 46.6 5.5 6.8 0.73 2.4
AL-70 43.3 56.7 0.0 0.0 0.67 2.3
AL-75 100.0 0.0 0.0 0.0 0.28 1.0
AL-80 39.7 45.2 8.2 6.9 0.73 2.5
AL-85 39.5 44.7 7.9 7.9 0.76 2.5
AL-90 38.9 47.2 6.9 6.9 0.72 2.6

AL-100 100.0 0.0 0.0 0.0 0.29 1.0

(a) Ratio = (Total CPU time)/(CPU time solving LPR)

9. Computational Experience 31

Table 6-111(b). Execution Times of the Exact Ceiling Point Algorithm

on Randomly Generated Problems.

% of Total CPU time Total
Problem LPR Heur. I-Cut Exact CPU time Ratio

I-1 0.1 0.3 0.2 99.4 348.49 645.4
1-2 1.1 7.2 1.6 90.1 40.37 85.9
1-5 <0.1 <0.4 <0.1 >99.2 >900 >2000
1-6 <0.1 <0.2 <0.1 >99.6 >900 >1837

II-I 20.7 46.5 12.7 20.2 2.13 4.8
11-2 21.6 27.9 10.6 39.9 2.08 4.6
11-3 7.4 10.6 3.1 78.9 6.79 13.6
11-4 10.3 17.5 5.0 67.2 3.99 9.7
I-5 28.5 53.5 11.1 6.9 1.44 3.5
11-6 1.5 6.7 0.6 91.2 28.49 66.3
11-7 1.8 2.6 1.2 94.4 23.35 54.3
11-8 0.4 0.5 2.2 96.9 116.26 252.7
11-9 22.5 49.3 9.6 18.7 2.09 4.5

11-10 9.0 30.5 6.4 54.0 4.98 11.1
II-11 11.4 42.3 8.8 37.6 6.17 8.8
11-12 0.3 0.6 0.3 98.8 231.50 308.7
11-13 <0.1 <0.3 <0.2 >99.4 >900 >1154
11-14 2.7 23.4 4.4 21.2 30.48 37.2
II-M 2.2 5.0 8.0 84.8 13.13 45.3
111-2 35.8 37.2 18.3 8.8 1.37 2.8
111-3 29.6 49.3 13.2 7.9 1.52 3.4
111-4 20.5 60.5 12.4 6.5 1.85 4.9
111-5 40.0 31.0 15.0 14.0 1.00 2.5
111-8 38.3 34.0 18.1 9.6 0.94 2.6

Ratio = (Total CPU time)/(CPU time solving LPR)

9. Computational Experience 32

6), and executing the iterative portion of the Exact Ceiling Point Algorithm (see Section

5). The next to last column gives the total CPU time in seconds, while the last column

gives the ratio of the total execution time to the amount of time solving (LPR).

Based on both total CPU time and the ratio of total CPU time to time spent solving

(LPR), the Exact Ceiling Point Algorithm appears to be an efficient method for solving all

of the realistic test problems except IBM-5. Aside from this one problem, the only problems

where more than half the total CPU time was spent outside of the Heuristic Algorithm

were {FC-5,..., FC-8}. These four problems are poorly scaled versions of {FC-1,..., FC-4}

in the sense that the right hand sides of some of their constraints have been multiplied by

a factor of ten, greatly enlarging the feasible region. Furthermore, the normalized duality

gap for each of these problems is particularly large. In solving each of these four problems,

all four functional constraints binding at t had to be searched for 1-ceiling points. Thus,

more time was spent in the iterative portion of the exact algorithm on these problems

than in the other problems. As can be seen in Table 6-IV(a), the Intersection Cut search

proved ineffective on all problems except FC-10, another indication of the difficulty of the

fixed-charge test problems.

Table 6-III(b) indicates that the performance of the Exact Ceiling Point Algorithm

on the randomly generated problems varied noticeably with the type of problem. This

is partly due to the fact that the same is true of the Heuristic Ceiling Point Algorithm,

which provides the Exact Algorithm with an initial feasible integer solution. The better the

objective function value of this initial solution, the smaller the size of the region examined

by the Exact Ceiling Point Algorithm, and hence, the quicker it solves the problem.

On all of the Type III problems, the Heuristic Algorithm identified an optimal solution

and the Ex..t Algorithm was able to prove optimality rather quickly. Of the fifteen Type

II problems, the Heuristic Algorithm located an optimal sGlution in six cases. On the

remaining nine Type II problems, the Intersection Cut search was effective in locating a

better solution four times, one of which was optimal. While only moderately successful,

the Intersection Cut search is cheap enough computationally to make it worthwhile. The

iterative portion of the Exact Ceiling Point Algorithm was fairly successful in solving the

majority of Type II problems -easonably quickly. However, it was quite slow in finishing

9. Computational Experience 33

Table 6-IV(a). Raw Data for the Exact Ceiling Point Algorithm's Performance

on Realistic Problems.

LPR+Heur. I-Cut Exact Total
Problem CPU z CPU z CPU z* CPU

FC-1 0.21 7 0.03 7 0.04 7 0.28
FC-2 0.22 8 0.01 8 0.00 8 0.23
FC-3 0.16 10 0.03 10 0.04 10 0.23
FC-4 0.16 8 0.01 8 0.00 8 0.17
FC-5 0.31 75 0.02 75 0.35 76 0.68
FC-6 0.29 105 0.02 105 0.28 106 0.59
FC-7 0.28 75 0.02 75 0.30 76 0.60
FC-8 0.29 105 0.01 105 0.25 106 0.55
FC-9 0.22 9 0.02 9 0.09 9 0.33

FC-10 0.89 15 0.17 17 0.10 17 1.16
IBM-1 0.32 -9 0.07 -8 0.00 -8 0.39
IBM-2 0.38 -7 0.02 -7 0.00 -7 0.40
IBM-3 0.22 -187 0.02 -187 0.01 -187 0.25
IBM-4 2.69 -10 0.00 -10 0.00 -10 2.69
IBM-5 2.56 -15 3.00 -15 41.54 -15 47.10
AL-55 1.09 50 0.00 50 0.00 50 1.09
AL-60 0.45 52 0.05 52 0.06 52 0.56
AL-65 0.64 57 0.04 57 0.05 57 0.73
AL-70 0.67 62 0.00 62 0.00 62 0.67
AL-75 0.28 67 0.00 67 0.00 67 0.28
AL-80 0.62 68 0.06 68 0.05 68 0.73
AL-85 0.64 70 0.06 70 0.06 70 0.76
AL-90 0.62 75 0.05 75 0.05 75 0.72
AL-100 0.29 85 0.00 85 0.00 85 0.29

9. Computational Experience 34

Table 6-IV(b). Raw Data for the Exact Ceiling Point Algorithm's Performance

on Randomly Generated Problems.

LPR+Heur. I-Cut Exact Total
Prob CPU z CPU z CPU z* CPU

I-1 1.64 2807 0.55 2893 346.30 2893 348.49
1-2 3.37 2507 0.64 2565 36.36 2570 40.37
I-5 4.04 6007 0.39 6007 >896 >6007 >900
1-6 2.22 2231 0.43 2231 >898 >2231 >900

Il- 1.43 1835 0.27 1864 0.43 1875 2.13
11-2 1.03 1725 0.22 1725 0.83 1725 2.08
11-3 1.22 1983 0.21 1983 5.36 1983 6.79
11-4 1.11 2426 0.20 2426 2.68 2429 3.99
H-5 1.18 1558 0.16 1558 0.10 1558 1.44
IH-6 2.33 1556 0.17 1556 25.99 1556 28.49
11-7 1.03 2052 0.28 2052 22.04 2056 23.35
11-8 1.03 1533 2.51 1548 112.72 1548 116.26
11-9 1.50 1735 0.20 1735 0.39 1743 2.09

11-10 1.97 1732 0.32 1732 2.69 1734 4.98
I-il 3.31 1488 0.54 1488 2.32 1491 6.17

11-12 2.18 1406 0.58 1421 228.74 1424 231.50
11-13 3.40 1785 1.49 1785 >896 >1785 >900
11-14 7.94 2309 1.33 2309 21.21 2309 30.48
II-M 0.95 564 1.05 568 11.13 594 13.13
111-2 1.00 99 0.25 99 0.12 99 1.37
111-3 1.20 130 0.20 130 0.12 130 1.52
111-4 1.50 92 0.23 92 0.12 92 1.85
I11-5 0.71 97 0.15 97 0.14 97 1.00
111-8 0.68 113 0.17 113 0.09 113 0.94

9. Computational Experience 35

off both 11-8 and 11-12 and failed to prove optimality on the 30-variable problem 11-13

within a 900 second execution time limit.

It should be noted that for each of the randomly generated problems, a run-time

option was activated which reordered the variables based on the relative magnitudes of

their associated cost components. Specifically, the variable with the largest cj was relabeled

as x, (the first variable to be fixed), the variable with the second largest cost coefficient

relabeled as X2 (the second variable to be fixed), and so forth. For some of the randomly

generated problems, this simple scheme was very effective in reducing the execution time

of the enumeration scheme. The execution time of 11-12, for example, was reduced to one

third of that required when the variables were not reordered.

The last set of tables give the performance of the Exact Ceiling Point Algorithm

(XCPA) on the test problems along with the performances of a few other exact algorithms,

one of which is contained within a widely available package called the Generalized Algebraic

Modeling System (GAMS, Version 2.04) developed by Brooke, Kendrick and Meeraus [6].

When faced with a mixed integer linear programming problem, GAMS calls upon the

Zero/One Optimization Methods (ZOOM/XMP, Version 2.0) developed by Roy Marsten.

In brief, ZOOM converts every (bounded) general integer variable into a sum of binary

variables and applies the Pivot & Complement heuristic device of Balas and Martin [7]

to find an initial solution. It then proceeds with an LP-based branch-and-bound scheme.

Fairly tight upper bounds on the variables were specified in order to keep the number of

binary variables relatively small. These are given in Appendix A, along with values of the

GAMS/ZOOM run-time options that we specified.

A blank entry in a table indicates that no time was reported for that algorithm on

that problem. Only the Exact Ceiling Point Algorithm and CAMS/ZOOM were executed

on the same computer (a VaxStation II), so it is difficult to directly compare all of the

stated execution times. However, in one study [9] of various computers' performances

in solving a dense system of linear equations using a standard double precision Fortran

package (LINPACK), the IBM-370/168 appeared to be at least five times as fast as the

IBM-370/158, and at least seven times as fast as the VAX 11/780. Though the IBM-

360/67 and the VaxStation II are not included in this study, a knowledgeable computer

9. Computational Experience 36

Table 6-V(a). Comparison of Performances by Exact Algorithms on Realistic Problems.

XCPA GAMS/ZOOM [101 (2] [141

VaxStation II VaxStation II IBM 360/67 370/168 7090

Problem Time Ratio Time Ratio Time Ratio Time Time

FC-1 0.28 2.0 4.30 14.8 0.32 10.7 0.19 1.83

FC-2 0.23 1.4 3.13 11.6 0.27 9.0 0.19 1.35

FC-3 0.23 1.8 3.41 11.4 0.33 11.0 0.13 1.88

FC-4 0.17 1.3 2.24 7.7 0.28 9.3 0.13 1.48

FC-5 0.68 4.5 8.62 27.8 41.77 464.4 0.18 9.01

FC-6 0.59 3.9 12.68 39.6 22.07 220.7 0.18 7.57

FC-7 0.60 4.6 8.22 24.9 41.77 1392.3 0.09 7.83

FC-8 0.55 3.7 12.05 38.9 21.81 727.0 0.09 6.42

FC-9 0,33 1.9 1.92 5.6 0.43 7.2 0.40 3.23

FC-10 1.16 4.0 13.67 14.9 1.61 9.15

IBM-1 0.39 1.9 3.02 6.9 0.53 6.6 1.87

IBM-2 0.40 1.8 6.46 15.4 0.55 6.9 3.02

IBM-3 0.25 1.7 3.19 11.8 0.21 10.5 2.87

IBM-4 2.69 4.1 33.97 22.8 11.67

IBM-5 47.10 77.2 >900 >671 9.28 15.5 66.48

AL-55 1.09 3.6 1.04 2.7 0.18 2.42
AL-60 0.56 1.9 1.04 2.7 0.19 5.08

AL-65 0.73 2.4 1.26 3.0 0.14 3.90

AL-70 0.67 2.3 1.27 3.2 0.18 2.60

AL-75 0.28 1.0 0.34 1.0 0.15 1.87

AL-80 0.73 2.5 1.02 2.8 0.15 3.87

AL-85 0.76 2.5 1.33 3.2 0.17 7.88

AL-90 0.72 2.6 1.22 3.9 0.16 4.52

AL-100 0.29 1.0 0.31 1.0 0.17 1.87

Ratio = (Total CPU time)/(CPU time solving LPR)

9. Computational Experience 37

Table 6-V(b). Comparison of Exact Algorithms on Randomly Generated Problems.

XCPA GAMS/ ZOOM [161 [21

VaxStation 11 VaxStation 11 IBM-360/67 370/168

Problem Time Ratio Time Ratio Time Ratio Time

1-1 348.49 645.4 429.96 462.3 17.32 19.0 3.18

1-2 40.37 85.9 407.84 261.4 2.94 3.2 1.10

1-5 >900 >2000 >900 >612 19.49 20.5

1-6 1 >900 >1837 >900 >967 9.34 7.5 1

11-1 2.13 4.8 83.48 132.5 2.68 3.9 0.92

11-2 2.08 4.6 64.92 95.5 2.33 2.9 0.98

11-3 6.79 13.6 79.34 90.2 2.21 3.8 1.20

11-4 3.99 9.7 83.32 119.0 2.28 3.2 1.02

11-5 1.44 3.5 59.30 76.0 1.48 2.4 1 0.81

11-6 28.49 66.3 78.39 137.5 3.30 5.4 1.16

11-7 23.35 54.3 74.97 88.2 3.22 5.4 1.90

11-8 116.26 252.7 93.45 118.3 4.22 6.2 1.93

11-9 2.09 4.5 47.83 83.9 1.85 2.9 0.68

11-10 1 4.98 11.1 97.58 112.2 2.53 3.1 1 0.85

11-11 6.17 8.8 6.48 2.0

11-12 231.50 308.7 7.17 2.1

11-13 >900 >1154 162.25 144.9

11-14 30.48 37.2 7.38 6.7

II-M 13.13 45.3

111-2 1.37 2.8 4.40 6.7 1.32 2.4 0.40

111-3 1.52 3.4 2.65 4.1 1.61 2.5 0.55

111-4 1.85 4.9 3.89 7.8 1.60 2.7 0.52

111-5 1.00 2.5 6.50 11.4 1.58 2.8 0.39

111-8 1 0.94 1 2.6 1 .92 1 9.6 1 1.41 1 2.3 1 0.45 1
Ratio = (Total CPU time)/(CPU time solving LPR)

9. Computational Experience 38

scientist informed us that the IBM-370/158 is at least as fast as the IBM-360/67, and that

the VAX 11/780 is directly comparable to the VaxStation 11125].

For the realistic test problems, Table 6-V(a) compares the Exact Ceiling Point Al-

gorithm, the GAMS/ZOOM package, Faaland and Hillier's Accelerated Bound-and-Scan

Algorithm [101 run on an IBM-360/67, Austin and Ghandforoush's Surrogate Cutting

Plane Algorithm [21 (an extension of their Reduced Advanced Start Algorithm [1]) run

on an IBM-370/168 and Haldi and Isaacson's cutting plane code LIP-i [141 run on an

IBM-7090. (Reasonably good times on a subset of these problems are also reported by

[121, but since they do not report anything for the more difficult problems, their limited

results were not included here.) Based on the execution times and relative speeds of the

computers, the Exact Ceiling Point Algorithm appears to be highly competitive with each

of the other algorithms on all of the realistic problems except IBM-5. Run on the fastest

computer of any shown here, the Surrogate Cutting Plane Algorithm's execution times are

the smallest and most stable. It is interesting that the Surrogate Cutting Plane Algorithm

did not find the poorly-scaled {FC-5,..., FC-8} problems any more difficult to solve than

{FC-1,..., FC-4}. All of the other algorithms found the set of problems {FC-5,..., FC-8,

FC-10, IBM-4, IBM-5} relatively difficult to solve.

For the randomly generated test problems, Table 6-V(b) compares the Exact Ceil-

ing Point Algorithm, GAMS/ZOOM, Hillier's Bound-and-Scan Algorithm [16] run on an

IBM-360/67 and the Surrogate Cutting Plane Algorithm. The total time figures for the

Bound-and-Scan Algorithm were compiled by adding the times for the heuristic algorithm

described in [15] to those times given in [16] since the best solution yielded by the former

was used as an initial solution for the latter algorithm [16, p. 668]. The execution times

reported for the algorithms of [16] and [2] are very stable. However, since the IBM-360/67

is probably several times slower than the IBM-370/168, Hillier's algorithm may be faster

than the algorithm of Austin and Ghandforoush. Overall, both of these algorithms are

more consistent than the Exact Ceiling Point Algorithm (and GAMS/ZOOM) on problems

of Type I and II. While the Exact Ceiling Point Algorithm is competitive with these two

algorithms on about half of the Type II problems, GAMS/ZOOM is not really competitive

at all, despite the fact that it was only required to find a solution within 2 percent of op-

9. Computational Experience 39

timality for Type II problems. On Type III problems, the Exact Ceiling Point Algorithm,

the Bound-and-Scan Algorithm and the Surrogate Cutting Plane Algorithm all appear to

be of roughly comparable efficiency. Even on the 0-1 problems (classes AL and Type III)

for which it was designed, GAMS/ZOOM did not perform as well as the Exact Ceiling

Point Algorithm, which was not designed for 0-1 problems.

Tables 6-V(a) and (b) are summarized by problem class in Table 6-V(c).

Table 6-V(c). Summary of Performances by Exact Algorithms.

XCPA GAMS/ZOOM [10] [21 [14]

VaxStation II VaxStation II IBM 360/67 370/168 7090
Class Time Ratio Time Ratio Time Ratio Time Time

FC 0.48 2.9 7.02 9.7 12.91 285.2 0.32 4.98
IBM 10.17 17.3 >189 >145 2.64 9.9 17.18

AL 0.65 2.2 1.17 3.1 0.17 4.29

XCPA GAMS/ZOOM [16] [2]

VaxStation It VaxStation It IBM 360/67 370/168
Class Time Ratio Time Ratio Time Ratio Time

I >546 >1142 >659 >575 12.27 12.6 2.14
1I* 19.16 42.5 76.26 105.3 2.61 3.9 1.15

III 1.34 3.2 4.67 7.9 1.50 2.5 0.46

* Averages over {II-1,...,II-10}.

10. Summary

In this report, we have presented an exact algorithm for solving (ILP): given enough

computer time, it could in theory solve to optimality any (ILP) for which t exists and

is unique. The Exact Ceiling Point Algorithm is based upon theorems implying that to

solve (ILP) it is sufficient to enumerate only the feasible 1-ceiling points lying within the

n-simplex S. This is done by systematically searching for feasible 1-ceiling points with

10. Summary 40

respect to one constraint at a time. While enumerating such solutions, three features

described in Section 4 help to accelerate the fathoming process, including the construction

of conditional variable bounds and an ability to double backtrack. Because the iterative

part of the Exact Ceiling Point Algorithm benefits greatly by having as good an initial

solution as possible, a heuristic device is employed prior to the execution of the iterative

procedure. This device is to search for 1-ceiling points with respect to an intersection cut

located close to i, thereby examining the most promising part of the feasible region first.

Our computational experience leads us to believe that the Exact Ceiling Point Al-

gorithm is a good approach for tackling some problems, but not the best approach for

tackling others. Specifically, the Exact Ceiling Point Algorithm performed very well on

the set of small realistic problems, but did not perform as well as several other algorithms

on some of the more difficult randomly generated problems. On the set of realistic prob-

lems, particularly the fixed-charge problems, the double backtracking feature (see Section

4.2) of the exact enumeration scheme seems to be very helpful in quickly fathoming large

numbers of solutions. The variables also appear to be arranged in an order that is advanta-

geous to this scheme. However, on the randomly generated problems, the ability to double

backtrack appears to be of little help because there is no pattern of ratios aij- 1/aij from

one column to the next. Also, when the Heuristic Ceiling Point Algorithm did not find

a very good solution, as was the case for most of the Type I problems, it often led to an

inefficient performance by the Exact Ceiling Point Algorithm. Further research is needed

to better determine what types of problems are best and least suited to our ceiling point

approach.

References

[1] Austin, L., and Ghandforoush, P., "An Advanced Dual Algorithm with Constraint

Relaxation for All-Integer Programming," Naval Research Logistics Quarterly, 30,

133-143 (1983).

References 41

[2] Austin, L., and Ghandforoush, P., "A Surrogate Cutting Plane Algorithm for All-Integer

Programming," Computers & Operations Research, 12, 241-250 (1985).

[3] Avriel, M., Nonlinear Programming: Analysis and Methods, Prentice-Hall, Englewood

Cliffs, New Jersey, 1976.

[4] Balas, E., "Intersection Cuts - A New Type of Cutting Planes for Integer Program-

ming," Operations Research, 19, 19-39 (1971).

[51 Balas, E., Bowman, V., Glover F., and Sommer, D., "An Intersection Cut From the

Dual of the Unit Hypercube," Operations Research, 19, 40-44 (1971).

[6] Brooke, A., D. Kendrick and A. Meeraus, GAMS: A User's Guide, The Scientific Press,

Redwood City, Calif., 1988.

[7] Balas, E. and C. Martin, "Pivot and Complement: A Heuristic for 0-1 Programming,"

Management Science, 26, 86-96 (1980).

[8] Crowder, H., R. Dembo and J. Mulvey, "Reporting Computational Experiments in

Mathematical Programming," Mathematical Programming, 15, 316-329 (1978).

[9] Dongarra, J., "Performance of Various Computers Using Standard Linear Equations

Software in a Fortran Environment," ACM SIGNUM Newsletter, 19, 23-26 (1984).

[10] Faaland, B., and Hillier, F., "The Accelerated Bound-and-Scan Algorithm for Integer

Programming," Operations Research, 23, 406-425 (1975).

[11 Garfinkel, R. and G. Nemhauser, Integer Programming, John Wiley, New York, 1972.

[12] Gorry, G., and Shapiro, J., "An Adaptive Group Theoretic Algorithm for Integer

Programming Problems," Management Science, 17 , 285-306 (1971).

[13] Haldi, J., "25 Integer Programming Test Problems," Working Paper No. 43, Graduate

School of Business, Stanford Univesity, Stanford, Calif., December 1964.

[14] Haldi, J., and Issacson, L., "A Computer Code for Integer Solutions to Linear Pro-

grams," Operations Research, 13, 946-959 (1965).

[15] Hillier, F., "Efficient Heuristic Procedures for Integer Linear Programming with an

Interior," Operations Research, 17, 600-637 (1969).

References 42

[16] Hillier, F., "A Bound-and-Scan Algorithm for Pure Integer Linear Programming with

General Variables," Operations Research, 17, 638-679 (1969).

[17] Hillier, F., "A Bound-and-Scan Algorithm for Pure Integer Linear Programming with

General Variables," Technical Report No. 11, Dept. of Operations Research, Stanford

University, Stanford, Calif., May 1969.

[18] Krolak, P., "Computational Results of an Integer Programming Algorithm," Opera-

tions Research, 17, 743-749 (1969).

[19] Land, A. and A. Doig, "An Automatic Method of Solving Discrete Programming

Problems," Econometrica, 28, 497-520 (1960).

[20] Lustig, I., "Comparisons of Composite Simplex Algorithms," Technical Report SOL

87-8, Dept. of Operations Research, Stanford University, Stanford, Calif., June 1987.

[21] Markowitz, H., and A. Marne, "On the Solution of Discrete Programming Problems,"

Econometrica, 25, 84-110 (1957).

[221 Saltzman, R., "Ceiling Point Algorithms for General Integer Linear Programming,"

unpublished Ph.D. dissertation, Dept. of Operations Research, Stanford University,

Stanford, Calif., December 1988.

[23] Saltzman, R., and F. Hillier, "The Role of Ceiling Points in General Integer Linear

Programming," Technical Report SOL 88-11, Dept. of Operations Research, Stanford

University, Stanford, Calif., August 1988.

[24] Saltzman, R., and F. Hillier, "A Heuristic Ceiling Point Algorithm for General Integer

Linear Programming," Technical Report SOL 88-19, Dept. of Operations Research,

Stanford University, Stanford, Calif., November 1988.

[25] Saunders, M., private communication, November 3, 1988.

[26] Taha, H., Integer Programming: Theory, Applications and Computations, Academic

Press, New York, 1975.

[27] Trauth, C., and R. Woolsey, "Integer Linear Programming: A Study in Computational

Efficiency," Management Science, 15, 481-493 (1969).

Appendix A: Bounds and Options Used in GAMS/ZOOM Runs 43

In order for CAMS/ZOOM to convert each general integer variable into a sum

of binary variables, a reasonably tight upper bound was specified for each general

integer variable, as shown in Table VI. The number n' of binary variables in the

transformed problem is given in the last column.

Table V1. Upper Bounds Specified in the CAMS/ZOOM Runs.

Problem/Class Upper Bounds ____

FC-1,...,FC-4 xj :51,j=1,2; xi 510, j =3,...,5 14
FC-5,...,FC-8 xz3 1, j =1,2; xi 5100, = 3,...,5 23

FC-9 xj :51, j 1,..3; x, 10, j =4,..., 6 15
FC-10 x, -1,j=1,..6; xj 15, j =7,...,12 30

IBM-i, IBM-2 xj 7, j = 1.,7 21
IBM-3 xj 3 1, j =1,.4 20

IBM-4, IBM-5 x 3, ji = 1.,15 30
AL X, 1, j=, ... ' 10 10

TypeslI& II* Xi 31, j,.=.15 75
1-5 X, <50, j =1,.15 90

Type IIIl :!: i, j =,.15 15
*except I-5

CAMS/ZOOM Options specified in every Program file "PROBLEM.GMS"
OPTCA = 0.0
OPTCR = 0.001 (0.020 for all Type II problems)

CAMS/ZOOM Options listed in Specs file "GAMSZOOM.SPC"
BRANCH = YES
DIVE = YES
EXPAND = 3
HEURISTIC = YES
INCUMBENT = -1000 (±1000 for IBM problems)
MAX SAVE = 5
PRINT CONTINUOUS = 0
PRINT HEURISTIC = 0
PRINT BRANCH =0
PRINT TOUR = 0
QUIT = NO
SELECT = 2

All other options assumed their default values. A preliminary run was made for
each test problem with PRINT HEURISTIC = 1 in order to find ZH =CTH

Appendix B: Listing of Fortran Code Implementation 44

Listing of Fortran Code Implementation of
the Exact Ceiling Point Algorithm

for General Integer Linear Programming

C PLIST.FOR: mm(nn) =maximum value of M(N) Put into all routines
IMPLICIT REAL*8 (A-H,O-Z)
parameter (mm=37, nn-=31, tol=2.10734D-08, bigm=1.D5,

- maxit=75, one=1.DO, zero=O.DO)

C COMLPl.FOR: Global vars. created/used in LP routines
dimension A(mm,nn) ,B(mm) ,C(nn) ,INDCT (mm),

- ABAR (mm, nn+mm+mm+l) ,ABAL(nn,nn),
- ibasis (mm),nonbas (nn+m) , indbas (nn+mmImmn) , initbv (mm),
- NPIV(2) ,XBAR(nn4mm+mm),XO(nn),signac(mm,nn),
- dirs(nn,nn) ,CTXPT(nn,mn) ,BFCXO (mm) DPRICES (mm)

common/dlpi/A, B,C, INDCT, INDOBJ,M,N,
- ABAK,ABAL,ibasis,nonbas,indbas,NPIV,XBAR,XO,ZO,IR,IS,
- signac, nx, dirs, ctxpt,BFCXO,PRICES

logical*2 indbas, signac, ctxpt,BFCXO

C COMHRUN.FOR: Global vars. used in HRUN routines
dimension FIS3 (mn, l+nn) ,RATES (nn) ,SDIR(nn) ,CTVAL(mm)
common/chrun/ffeas,FIS3,pct~l,RATES, SDIR,ncp,CTVAL
logical*2 ffeas,ncp

C COMRtJNl.FOR: Global vars. primarily used in RUN
real*8 RTIMES(-:30),RPCTS(-1:30),RVALS(-l:30),

- AIMIN (mm) ,AIMAX (mm)
integer IXSTAR(nn) ,CORDER(nn) ,VARORD(nri)
common/crunl/IXSTAR, ZSTAR,AIMIN,AIMAX, ZUP, ALL,

- RTIMES, RPCTS, RVALS, CORDER, VARORD

C COMXRUN2.FOR: Global vars. used in XRUN and RUNCUT
Dimension LAMDA(nn), ALPHA(nn,nn), P(nn,nn), SUB(nn)
Dimension LOBD(nn) ,UPBD(nn),LONS(nn) ,UPNS(nn) ,CUT(nn+l)
common/cxrun2/LAMDA, ALPHA, P, SUB, LOBD, UPBD, LONS,UPNS,CUT
integer LOBD,UPBD,LONS,UPNS, SUB
real*8 LAMDA

C COMXRUN3.FOR: Global vars. used in XRUN
integer irange (nn) ,icase

real*8 CMPMIN(mm,nn+l),RA(mmn,nn) ,AXINC(mm,nn),
- LL(nmm+l,nn),UU(mm+l,nn) ,sizlim,callim,xcalls(nn)

commnon/cxrun3/irange,icase,LL,UU,CMPMIN,RA,AXINC,
- sizlim,callim,xcalls

C COMXRUN4.FOR: More XRUN global vars., especially XCP-related routines
integer LJ,first(nn) ,final(nn) ,inc(nn) ,a-ewz(nn),

- loc(nn) ,upc(nn) ,ISN(nn)
real*8 gap (mm, nn+l)
common/cxrun4/gap,LJ, first, final, inc,ncwz, loc,upc,

- ISN,minarg,maxarg

C COMPRT.FOR: Print Switches
common/cprint /hprint, xprint
integer*2 hprint (25) ,xprint (25)

C COMIO.FOR: I/0 files
coawnon/cinout/infile, iorun, iohrun, iocut, ioxrun, iolp
character*64 infile,iorun,iohrun, iocut, ioxrun, iolp

45

c By Robert M. Saltzman
c
c Applies the Exact Ceiling Point Algorithm to each problem
c listed in the file ILPDATA.DAT.
c
c Parenthetical comments with Section numbers refer to parts of:
c Saltzman, R., "Ceiling Point Algorithms for General Integer
c Linear Programming," unpublished Ph.D. dissertation, Dept. of
c Operations Research, Stanford University, Stanford, Calif.,
c December 1988.
C--

C
include '$DISK2: [SALTZ.ILP1]plist.for'
include '$DISK2: [SALTZ.ILP1]comio.for'
include '$DISK2: [SALTZ.ILP1]comprt.for'
include '$DISK2: [SALTZ.ILP1]comxrun3.for'
open(2,file-'$DISK2: (SALTZ.ILPl]ilpdata.dat', status-'old')
open(5,file-'$DISK2: (SALTZ.ILPI]outhrun.dat', status-'unknown')
open(6,file-'$DISK2: [SALTZ.ILP1]outrun.dat', status-'unknown')
open(22,file-'$DISK2: [SALTZ.ILP1]switches.dat',status-'old')

c
C §pad in print switches and run-time options

read(22,*) (hprint(j),j-l,25)
read(22,*) (xprint(j),j-1,25)
read(22,*) sizlim,callim
write(*,*) 'sizlim,callim ',sizlim,callim
write(6,*)'Exact Ceiling Point Algorithm Summary'
write(6,*)' I
write(6,*) 'Problem LP Z0 Set+Heur Z ',

-' IntCut Z Exact Z Total Ratio'
write(6,*)' -. --.------ -,

c

c Headlines for Heuristic Summary report, if desired
if (hprint(19) .eq. 1) then

write(5,*)'Heuristic Ceiling Point Algorithm Summary'
write(5,*) '
write(5,*)'Problem LP ZO Set+Ph.1 Z ',

' Phase2 Z Phase3 Z Total Ratio'
write(5,*)' -. ,---------

I---- - ----- ------ ----

endif
c
c Loop through all problems specified in ILPDATA.DAT

do 8100 ip - 1, 40
c Get the name of the input data file, e.g., HALDI5.DAT

read(2,8105) infile
if (infile(l:3) .eq. 'end') goto 8150
if (infile(l:3) .eq. 'END') goto 8150
write (*,*) '***** Starting problem * ',infile

c
call RUN

c
write Finished problem ,infile

8100 continue
8105 format (All)
8150 continue

stop
end

subroutine RUN

c Runs Heuristic and Exact Ceiling Point Algorithms for 1 problem.
c (Overview of entire algorithm given in Section 5.5.)
c Note: Code for Heuristic Ceiling Point Algorithm subroutines
c (LPSOLVE, SETUP, HRUNI is listed in Saltzman and Hillier [24].
C---

include '$DISK2: [SALTZ.ILP1]plist.forl
include '$DISK2: [SALTZ.ILP1J comio .forl
include 'SDISK2: (SALTZ.ILP1]comlpl.f or'
include '$DISK2: ESALTZ.ILP1]comprt.forl
include 'SDISK2: (SALTZ.ILP1]comrunl .forI
include '$DISK2: ESALTZ.ILPl]comxrun4.forI
integer i-.z(5)

c
open(4,file-'$DISK2: [ZALTZ.ILP1Joutlp.dat', status-'unknown')
open(8,file-'$DISK2: ESALTZ.ILPI]outruncut.dat',status-'unknown')
open(9,file-'$DISK2: ESALTZ.ILPl]outxrun.dat', status-'unknown')

c
c Initialize clock reading routines and suimmary values

call XTIMER(0,0,0)
do 8001 i - -1, 30

rtin'es(i) - zero
rpcts(i) - zero
rvals(i) - zero

8001 continue
C

c Solve LP-relaxation of (ILP)
call XTIMER(1,0,zero)
call LPSOLVE
call XTIMER(-l,0,RTIMES (-1))
if (xprint(8) .eq.0)
- write(*,*)I***> LPSOLV:',RTIMES(-l),' Z0'I,Zo

c Check for all-integer LP solution
do 8004 j - 1, n

if (DABS(XO(j)-IRNDWN(XO(j))) .gt. tol) goto 8008
8004 continue

write(6,*)' ---> LP solution is all-integer (X*-X0)'
do 8006 j - 1, n

ixstar(j) -IRNDWN(XO(j))
8006 continue

goto 8090
c
c Initialize (ALL, X*, ZUPI
8008 call XTIMER(1,0,zero)

ALL = one
c ALL - 1 -> only search for solns. strictly better than incumbent

ZUP - DBLE(IRNDWN(ZO))
do 8010 j - 1, n

IXSTAR(j) - -1
8010 continue
C

47

c Calculate global vars. ISIGNAC, ABAL, DIRS, CTXPT, BFCXO)
call SETUP
call XTIMER(-1,O,rtimes(0))
if (xprint(8).eq.0) write(*,*) '** SETUP: l,rtimes(0)

C
c Set default values for Z* in case HRUN fails or is bypassed

if (indobj .eq. 1) ZSTAR - zero
if (indobj -eq. -1) ZSTAR - -2.*DABS(ZO)
if (xprint(21) .eq. 1) goto 8025
if (xprint(22) .eq. 1) goto 8035

c
C...
c Run Heuristic Ceiling Point Algorithm

call XTIMER(1,0,zero)
c

call HRUN
c

if (ixstar(l) .1t. 0)
-write(*,*)'***> HRUN failed. Initial Z* -',ZSTAR
call XTIMER(-1,0,rtimes(l))

izz(l) - IRNDWN(ZSTAR)
if (xprint(8) .eq.0)

w rite(*,*)'***> HRUN: 1,rtime3(l),1 Z*=',izz(l)
C

c Write out suimmary information for the Heuristic Algorithm
if (hprint(19) .eq. 1) then

rtimes(l) - rtimes(ll)+rtimes(12)+rtimes(13)-rtimes(0)
write(5,8015) infile,rtimes(-l),ZO,rtimes~ll),rtime3(12),

- rvals(12),rtimes(13),rvals(13),rtimes(14),rpcts(15)
8015 format (lX,All,F5.2,F7.l,F7.2, 6X,F8 .2,F6.0,F7.2,F6.0,2F7.2)

write(5,8020) infile,rpcts(10),rpcts(ll),rpcts(12),rpcts(13)
8020 format(lX,All,F5.2, 6X,F8.2,6X,F8.2,5X,F8.2)

endif
C

if (DBLE(izz(l)) .ge. ZUP) then
write(6,*)' ---> Heuristic alg. found optimal solution'
izz(2) - izz(l)
izz(3) - izz(l)
goto 8090

endif
c
C..

c Search the Intersection Cut prior to full enumeration
8025 IF (XPRINT(18) .EQ. 1) GOTO 8090

call XTIMER(1,0,zero)
call RUNCUT
call XTIMER(-l, 0,rtimes (2))

C
izz(2) - IRNDWN(ZSTAR)
if (xprint(B) .eq.0)

w rite(*,*)'***> RUNCUT:,rtimes(2),' Z*=I,izz(2)
if (DBLE(izz(2)) .ge. ZUP) then

write(6,*) I --- > I-Cut search found optimal solution'
izz(3) - izz(2)
goto 8090

endif
48

C

IF (XPRINT(l9) .EQ. 1) GOTO 8090
C

C.................................

c Eliminate redundant constraints
call XTIMER(l,O,zero)
call REDCTS

C

c Run Exact Ceiling Point Algorithm
8035 call XRUN

call XTfl4ER(-1, 0, rtimes (3))
izz(3) -IRNDWN(ZSTAR)
if (xprint(8) .eq.0)
- write(*,*)'***> XRUN: ',rtimes(3),' Z*-I,izz(3)

C

c Write out an optimal solution & execution times
8090 call REPRTl(izz)
C

return
end

C--

C

subroutine REPRTi (iz)
c
c Called by RUN to report a few important pieces of information
c -------- --
c

include '$DISK2: LSALTZ.ILP1]plist.for'
include '$DISK2: (SALTZ.ILPl]comio.for'
include '$DISK2: (SAL'rZ.ILPllcoznprt.for'
include '$DISK2: ESALTZ.ILP1]comlpl.for'
include '$DISK2: [SALTZ.ILPl]comrunl.forI

c
integer ixx Cnn) ,ixxx (nn) ,iz (5)

C ixx & ixxx are reordered versions of IXSTAR
c iz is a vector of objective function values

c Put X* in original variable order before writing out
do 8091 j - 1, n

ixx(varord(j)) =IXSTAk(j)

8091 continue
do 8092 j - 1, n

ixxx(corder(j)) -ixx(j)

8092 continue
C

write (9,*) I

write (9,*) infile
write (9,*) 1 V~ ',iz(3)
do 8093 j - 1, n

cwrite(9,*) I X*(',j,') =',ixxx(j)
8093 continue
c

C.....................

c Write out summary information for the Exact Algorithm
do 8095 1 - -1, 3

rtirnes(4) - rtirnes(4 + rtimes(i)
8095 continue

if (xprint(8) .eq.0)
w rite(*,*)'***> TOTAL TIME: 1,rtime3(4

C

c Combine times of SETUP & HRUN
rtimes(l) - rtime3(O) + rtime3(l)

C

c Get each part's percentage of TOTAL time & TOTAL/LP ratio
do 8096 1 - -1, 3

rpct3(i) - l00.DO*rtimea(i)/rtimes(4
8096 continue

tot2lp - rtimes(4)/rtimea(-l)
C

write(6,8097) infile,rtiues(-l),ZO,rtimes(l),
-iz(l),rtimes(2),iz(2),rtimes(3),iz(3),rtimes(4),tot2lp

8097 format (lX,All,F5.2,F7.l,P8.2, 15, F8.2,I5,F8.2,I5,2F8.2)
C

write(6,8098) infile,rpct3(-l),rpct3(l),rpcts(2),rpcts(3)
8098 format (lX,All,F5.2,7X,F8.2,5X,F8.2,5X,F8.2)
C

return

end

50

C

subroutine RUNCUT

c Called by RUN to search intersection cut ("I-Cut")
C--

include '$DISK2:[SALTZ.ILPlJplist.for'
include '$DISK2:[SALTZ.ILP1]comprt.for'
include 1$DISX2:[SALTZ.ILP1]comlpl.for'
include '$DISK2:[SALTZ.ILP1]comrunl.forI

C

c Perform preparatory routines

call PRECUT
c

if (zstar .ge. zup) goto 4020
ihp - m-
if (xprint(1) .eq.1) write(8,*) 'I-CUT',(A(ihp,j),j=l,n)

c
c Find RA once (since there's no variable reordering here)

call ARATIO
c

c Enumerate feasible 1-CP's with respect to I-Cut
call XCP(ihp)

c
c AIMAX(i)= largest coefficient in absolute value of
c constraint (i) over the support of C.

do 4015 i - 1, m
rmax = -bigm

do 4010 j = 1, n
if (C(j) .eq. zero) goto 4010
if (DABS(a(i,j)) .gt. rmax) rmax - DABS(A(i,j))

4010 continue
AIMAX(i) = rmax - one

4015 continue
c
c Adjust AIMAX for I-cut since its coefficients are non-integer

AIMAX(m-1) = AIMAX(m-) + one

c

4020 continue
return
end

c --

c
subroutine PRECUT

c
c Called by RUNCUT to prepare for intersection cut search

c --
include '$DISK2:[SALTZ.ILPl]plist.for'
include '$DISK2:[SALTZ.ILPl]comprt.for'
include '$DISK2:[SALTZ.ILPI1comlpl.for'
include '$DISK2:[SALTZ.ILPI1comrunl.for'

include '$DISK2:[SALTZ.ILPlcornxrun2.for'
C

C all = 1 => search only for strictly better solutions
all - one

zlevel - zstar+all
if (xprint(2).eq.l)write(8,*)

'PRECUT: zlevel=',zlevel,' zup=',zup

51

L

c Find (2(k)s) - Set of intersection points
call OBJCUT (zievel)

C

if (n .ge. 15) goto 4025
if (xprint(20) .eq. 1) goto 4025

c

c Either get spherical intersection cut points (alpha)
call CUTPT
goto 4030

c
c or, get dual-UHC intersection cut points (alpha*)
4025 call CUTPT2
c
4030 continue
c
c Create SUB - Simple Upper Bounds

call BOUNDS
if (ISRSIM(m) .eq. 1) goto 4035
if (xprint(2).eq.1) write(8,*) 'Shr(ns)=0 -> V~ - ,zstar
zup = -bigm

goto 4090
c
4035 continue
c
c Find ALPHA(k) with largest objective function value
c It becomes a new (smaller) upper bound on V*

vmax = -bigm
do 4040 k =1, n

value =VDOT(n,C,ALPHA(1,k))
if (value .gt. vmax) vmax - value

4040 continue
ZUP = DBLE(IRNDWN(vmax))
if (zstar .1t. vmax) goto 4045
if (xprint(2).eq.l) write (8,*) 'Z* >- zup => Z*=I,zstar

c goto 4090
c
4045 continue
c Determine the I-cut coefficients

call CUTHP
C

c Append I-Cut & Obj.fn. to bottom of A matrix and B vectors
do 4050 j -1, n

A(m+l,j) - CUT(j)
A(m+2,j) = -C(j)

4050 continue
B(m+l) - CUT(n+l)
B(m+2) - zero

c.....................
M=-M + 2

c.....................
4090 continue

return
end

52

C------------- ------------------

C

subroutine OBJCUT (objval)
C

c Called by PRECUT & INCMOD to find the set of PMk)'s, where
c PWk - point where the kth extreme ray intersects objective
c function hyperplane: cx - objval. (See Section 5.2)
c--

include 'SDISK2: ESALTZ.ILPl]plist.for'
include '$DISK2: ESALTZ.ILP1]comprt.for'
include '$DISK2: [SALTZ.ILP1]conlpl.for'
include '$DISK2: [SALTZ.ILP1]comxrun2.for'

c

real*8 objval,theta
if (xprint(3) .eq.l)

- write (8,*) 'OBJCUT:objval - 1,objval,' ZO -',ZO
zgap - ZO - objval

c
c For each extreme direction k, find intersection point P(k)

do 4120 k =1, nx
theta =bigm

dot =-VDOT(n,C,DIRS(l,k))

c dot -0 -> ext. dir. is // objective function hyperplane
if (DABS(dot) .1t. tol) goto 4100
theta - zgap/dot

c

4100 do 4110 j = 1, n
P(j,k) -X0(j) + theta*DIRS(j,k)

4110 continue
if (xprint (3) .eq.1)

- write (8,*) 'OBJCUT: Pk=',(P(j,k),j=1,n)
4120 continue

return
end

c--
c

subroutine CUTPT
c
c Called once by PRECUT to find the set of ALPHAWk)'s, where
c ALPHAWk = point where kth extreme ray intersects I-cut hyperplane
c See paper by E. Balas [Ba7l] on Spherical Intersection Cuts.
c--

include '$DISK2: [SALTZ.ILPl1plist.for'
include '$DISK2: (SALTZ.ILP1]comprt.for'
include '$DISK2: [SALTZ.ILPl1comlpl.for'
include '$DISK2: fSALTZ.ILP1]comxrun2.fo.:'

c
dimension f(nn) ,fe2(nn) ,emf(nn)
do 4200 j - 1, n

f(j) = XO(j) - DINT(X0(J))
fe2(j) - f(j) - 0.5D0
emf(j) - one - f(j)

4200 continue
fef - VDOT(n,f,emf)

c

53

do 4220 k - 1, nx
ak2 - VDOT(n,ABAL(1,k),ABAL(l,k))
hk - VDOT(n,fe2,ABAL(l,k))
iarnda(k) - DSQRT((hk*hk)+(fef*ak2))
lamda(k) - (hk + lamda(k))/ak2
do 4210 j - 1, n

alpha(j,k) - XO(j) - lamda(k)*abal(j,k)
4210 continue

if (xprint(4).eq.l)write(8,*)PAlpha',(alpha(j,k),j1,n)
4220 continue

if (xprint(4).eq.1) write(8,*) 'Lamda',(lamda(j),j-1,n)
return
end

C---

C

subroutine CUTHP
C

c Called once by PRECUT to compute I-cut coefficients ("CUT")
c--

include '$DISK2: [SALTZ.ILP1]plist.for'
include '$DISK2: [SALTZ.ILP1]contprt.for'
include 'SDISK2: (SALTZ.ILP1]cornlpl.for'
include '$DISK2: (SALTZ.ILPI]comxrun2.forI

c
do 4300 k - 1, n

cut(k) - zero
if (.not. indbas(k)) cut(k) - -one/lamda(k)

4300 continue
cut(n+l) - -one

c
do 4320 j - 1, n

nb -nonbas(j)

if (nb .le. n) goto 4320
i -nb - n
if (i .gt. m) goto 4320
do 4310 k - 1, n

cut(k) - cut(k) + (Ai,k)/lamda(j))
4310 continue

cut(n+1) - cut(n+l) + (B(i)/laiuda(j))

4320 continue
C

c Make sure that CUT chops off XO (if not, mult. by -1)
vlhs = VDOT(n,CUT,XQ)
if (vibs .gt. CUT(n+l)) goto 4340

do 4330 j - 1, n+1
cut (j) - -cut (J)

4330 continue
4340 if (xprint(5).eq.1) write (8,*) 'ICUT',(CUT(j),J-1,n+l)

return
end

54

subroutine CUTSHR

c Called by ISHR to calculate SHR(I-Cut), the set of unconditional
c bounds for all variables. They are based on the alpha(k,j) 'a,
" rounded according to the sign of CUT(j).
C...

include '$DISK2: (SALTZ.ILP1]plist.for'
include '$DISK2: (SALTZ.ILP1]comprt.forl
include '$DISK2: (SALTZ.ILP1]coznlpl.for'
include '$DISK2: (SALTZ.ILP1]comxrun2.forI

c
c Work through each component j

do 4430 j =1, n
lobd(j) -IRNDWN(bigm)
upbd(j) =0

c

c Consider all the ALPHAMkfs

do 4425 kc = 1, n

if (CUT(j)) 4405,4410,4415
c if cut(k) < 0, round alpha(j,k) up
4405 ibd - IRNDUP(alpha(j,k))

go to 4420
c if cut(k) is 0, round alpha(j,k) to nearest mnt
4410 ibd = IDNINT(alpha(j,k))

go to 4420
c if cut(k) > 0, round alpha(j,k) down
4415 ibd = IRNDWN(alpha(j,k))
c
4420 if (ibd .1t. lobd(j)) lobd(j) = ibd

if (ibd .gt. upbd(j)) upbd(j) = ibd
4425 continue
c
c Take intersection of n-simplex and uncdl. bds.

if (lons(j) .gt. lobd(j)) lobd(j) - lons(j)
if (upns(j) .1t. upbd(j)) lobd(j) = upns(j)

4430 continue
c

4450 continue
return
end

c--
c

subroutine ARATIO

c Called by PRECUT and REORDR to calculate the ratio of adjacent
c elements of A(i,), row by row (- f(i,j) in Section 5.4). Also
c sets up global variables INC and AXINC.

c--c--
include '$DISK2: [SALTZ.ILPl]cpt.for
include 'SDISK2: [SALTZ.ILP1]compt.for'
include '$DISK2: (SALTZ.ILP11comlpln.forI
include '$DISK2: SALTZ.ILP1comxrun2.for'
include '$DISK2: (SALTZ.ILPl]comxrun3.for'

55

c

c Determine INC(j)= direction in which to enumerate X(j) values

do 4510 j = 1, n
c Assume c(j) >- 0 -> X(J) starts at upper bound (INC(j) -1)

inc(j) = -1
if (c(j) .1t. zero) inc(j) = 1
do 4505 i - 1, m

AXINC(i,j) - A(i,j)*DBLE(inc(j))
4505 continue
4510 continue
c
c Now calculate RA, the matrix of ratios

do 4520 i - 1, m
do 4515 j 2, n

RA(i,j) = zero
if (A(i,j) .ne. zero) RA(i,j) - A(i,j-l)/A(i,j)

4515 continue
if (xprint(7) .eq. 1) then

write (8,*) 'ARATIO: RA-', (RA(i,j),j-l,n)
write (8,*) 'ARATIO: AXINC-', (AXINC(i,j),j=l,n)

endif
4520 continue

if (xprint(7) .eq. 1)
- write (8,*) 'ARATIO: Inc-',(inc(j),j-l,n)

return
end

C--

c

subroutine CUTPT2
c
c Called by PRECUT; calc. {alpha*) = int. pts. of rays & I-cut
" See paper by Balas, et al. (BBGS71] on using DUAL-UHC[XO].
C --

include '$DISK2: [SALTZ.ILP1]plist.for'
include '$DISK2: (SALTZ.ILP1]comprt.for'
include '$DISK2: [SALTZ.ILP1]comlpl.for'
include '$DISK2: [SALTZ.ILP1]comxrun2.for'

c
Integer indr(nn)
Real*8 f(nn),fe2(nn),sigma(nn),L(nn) ,LIrO,vec(nn),theta(nn)
Logical nplus(nn)
dn2 = DBLE(n)/2.DO
do 4600 j = i, n

f(j) = XO(j) - DINT(XO(j))
fe2(j) = f(j) - 0.5D0

indr(j)= 0
4600 continue
c
c Loop through all of the extreme directions

do 4690 k = 1, nx
NL - 0
do 4610 j 1 1, n

L(J) - bigm
nplus(j) - .false.

56

if (zero .1t. (fe2(j)*ABAL~j,k))) then

nplus(j) = true.

NL - NL +1
L(j) - fe2(j)/ABAL(j,k)

endif

4610 continue
C

LIrO - zero
if (NL .eq. 0) goto 4640

call RSORT1 (n, L, indr)

c
do 4630 i - 1, NL

do 4625 j - 1, n

vec(j) - fe2(j) - ABAL(j,k)*L(ildr(i))

4625 continue
vecnrm - VINORM(n,vec)
if (vecnrm .gt. dn2) goto 4640

LIrO - L(indr(i))

4630 continue
C

4640 do 4650 j - 1, n
theta(j) - f(j) - ABAL(j,k)*LIrO

4650 continue

c
nnl = 0

do 4660 j - 1, n

sigma(j) = -l.DO

if ((theta(j).gt.0.5D0).or.
(theta (j) .eq.0 .5D0) .and.(ABAL U i).t zero)))then

sigma(j) = one

nnl = nnl + 1
endif

4660 continue
c

tempi = VDOT(n,f,sigma)
temp2 = VDOT(n,ABAL(l,k),sigwa)

LAMDA(k)= (templ-dble(lfl))/temp2

do 4670 j = 1, n

ALPHA(J,k) -XO(j) - LAMDA(k)*ABAL~j,k)

4670 continue
if (xprint(4) .eq. 1) then

write(4,*) I -------- > Ray k- k

write(4,*) 'ABAL ',(ABAL(j,k),j-=1,n)

write(4,*) 'nplus ', (nplus(j),j-l,l)

write(4,*) IL ', (L(j),j1,)

write(4,*) lindr ',(indr(j),j'1,n)

write(4,*) 'LIrO ',LIRO

write(4,*) 'sigma ',(sigma(j),j-1,n)

write(4,*) 'theta ', (theta(j),J1I,n)

write(4,*) 'nnl ',nnl

write(4,*) 'LANDA ',LAI4DA(k)

write(4,*) 'ALPHA ',(ALPHA(j,k),i1l,n)

endif

4690 continue
return
end

57

C-

c

subroutine REDCTS

c
c Called by RUN prior to XRUN.
c Eliminates redundant cts. not intersecting n-simplex S.
c THIS ROUTINE MODIFIES PROBLEM DATA.
C--

include *$DISK2: [SALTZ.ILP1]PLIST.FOR'
include '$DISK2: [SALTZ.ILP1]COMPRT.FOR'
include '$DISK2: [SALTZ.ILP1]comlpl.forl
include '$DISK2: [SALTZ.ILP1]comrunl.for'
include '$DISK2: [SALTZ.ILP1]comxrun2.for'
include '$DISK2: [SALTZ.ILP1]comxrun3.for'
include '$DISK2: [SALTZ.ILP1]comxrun4.for'
logical*2 active (mm)

if (hprint(17).eq.1) write (8,*) 'REDCTS: eliminating cts'
c
c nactiv - counts the number of active (non-redundant) cts.

nactiv = 0

c
c Check each constraint for redundancy

do 6970 i = 1, m-2
active(i) - .false.
if (BFCXO(i)) then

c Constraint binding at XO: always active
active(i) = .true.
nactiv - nactiv + 1

if (hprint(17).eq.1) write (8,*) ' ct.',i,' active'
goto 6970

endi f
c
c Nonbinding ct: Does it cause a P(k) to be infeasible?

do 6960 k - 1, nx

aipk - zero
do 6957 j - 1, n

aipk - aipk + A(i,j)*P(j,k)
6957 continue
c
c Test feasibility of P(k) wrt this constraint

if (aipk .gt. B(i)) then
cP(k) violates (i), so (i) is active

active(i) = .true.
nactiv = nactiv + 1

if (hprint(17).eq.1) write (8,*) ' ct.',i,' active'
goto 6970

endif
C
6960 continue
c
6970 continue
c
c Make sure last 2 contraints (I-Cut & OBJ) are active

active(m-1) - .true.

active(m) - .true.
nactiv = nactiv + 2

c If all original cts. binding at XO, then none redundant
if (nactiv-2 .eq. m) goto 6990

58

C

c Delete/overwrite redundant cts. from XRUN global vars.
ia - 0
do 6980 i - 1, m

if (.not. active(i)) goto 6980

ia - ia + 1
B(ia) - BMi
INDCT(ia) = INDCTMi

BFCXO(ia) - BFCXO Ci)
AIMIN(ia) - AIMIN(i)

AIMAX(ia) = AIMAXWi
PRICES(ia)- PRICES (i)
do 6975 j = 1, n

A(ia,j) - A(i,j)
c AXINC(ia,j) - AXINC(i,j)
C RA(ia,j) - RA(i,j)
C CMPMIN(ia,j) =CMPMIN(i,j)
6975 continue

do 6977 k = 1, nx
CTXPT(k,ia) -CTXPT(k,i)

6977 continue
c CMPMIN(ia,N+l) = CMPMIN(i,N+l)

6980 continue
C.......................

6990 M = nac tiv
C.......................

return
end

C--

C

subroutine REORDR

C

c Called once per search hp by XCP to reorder the variables.
c Variables fixed at a value (by SHR(hp) bounds) go first.

" THIS ROUTINE MODIFIES PROBLEM DATA. (See Section 6.5)
c -- -

include '$DISK2: [SALTZ.ILPl1plist.for'
include '$DISK2: [SALTZ.ILP1)comprt.forl
include '$DISK2: ESALTZ.ILPllcornlpl.for'
include '$DISK2: [SALTZ.ILP1lcomrunl.forI
include '$DISK2: [SALTZ.ILP11comxrun2.forI
include '$DISK2: [SALTZ.ILPlllcomxrun3.forI
include '$DISK2: [SALTZ.ILP11comxrun4.for'

C
logical*2 fxdvar (nn)
real*8 tC(nn) ,tXO(nn) ,tP(nn,nn) ,tDIRS ~nn,nn)
reai*8 tABAL(nn,nn) ,tALPHA(nn,nn)
real*8 tA(mm,nn) ,tLL(mm+l,nn) ,tUU(mm+l,nn) ,tCTXPT(nn,mm)
integer tSUB(nn) ,tLONS Cnn) ,tUPNS(nn) ,tLOBD(nn) ,tUPBD(nn)
integer tXSTAR(nn) ,tINC(nn)

c tVAR - temporary copy of variable VAR
if (hprint(18).eq.1) write (8,*) IREORDR: reordering vars.'

c
c varord: all fixed vars. first, followed by remaining vars.

nfixed = 0
c

59

c Check all the variables for being fixed
do 6910 j = 1, n

fxdvar(j) - .false.
if (lons(j) .eq. upns(j)) then

fxdvar(j) - .true.
nfixed - nfixed + 1
varord(nfixed) -j
if Chprint(l8).eq.l)write(8,*)' Var',j,'fixed',lons(j)

endif

6910 continue
c
c If nfixed = 0, then variables need not be reordered

if (nfixed .eq. 0) goto 6945
c
c otherwise, put free variables after fixed variables

jfree = 0
do 6915 j = 1, n

if (.not. fxdvar(j)) then
jfree = jfree + 1
varord(nfixed+jfree) =j

endif

6915 continue
if (hprint(18) .eq.l) write(8,*) ' varord ', (varord(L),L-l,n)

c
c Reorder global variables into temporary global vars.

do 6930 j = 1, n

jv = varord(j)
tC(j) = C(jv)
tXO(j) = XOOjV)
tSUB(j) = SUB(jv)
tLONS(j) = LONS(jv)
tLOBD(j) = LOBD(jv)
tUPNS(j) = UPNS(jv)
tUPBD(j) = UPBD(jv)
tXSTAR(j)= IXSTAR(jv)
tINC(J) - INC(jv)

do 6920 k = 1, nx
tP(j,k) - P(jv,k)
tALPHA(j,k) - ALPHA(jv,k)
tDIRS(j,k) - DIRS(jv,k)
tABAL(j,k) - ABAL(jv,k)

6920 continue
c

do 6925 i =1, m
tA(i,j) =A(i,jv)

tLL(i,j)- LL(i, iv)
tUU (i, j) = UU (i, iv)
tCTXPT(j, i)-CTXPT(jv, i)

6925 continue
tLL(m+l, j)=LL(m+l, iv)
tUU(m+1, j)=UU(m+l, jv)

6930 continue

60

C

C Reorder global variables from temporary global vars.
do 6940 j = ,n

C(J) -tC(j)

XO(j) =tXO(j)

SUBOj) =tSUB(J)

LONS(j) =tLONS(J)

LOBD(j) = tLOBD(j)
UPNS(j) = tUPNS(j)
UPBD(j) = tUPBD(j)
IXSTAR(J)= tXSTAR(j)
INCOj) -tINC(j)

C

do 6932 k - 1, nx
P(J,k) - tP(J,k)
ALPHA(J,k) - tALPHA(j,k)
DIRS(j,k) - tDIRS(j,k)
ABAL(j,k) - tABAL(j,k)

6932 continue
C

do 6936 i = 1, m
A (i, j) = tA (i, j)
LL(i,j)- tLL(i,j)
UU(i~j)= tUlJ(i~j)
CTXPT(j, i) =tCTXPT(J, i)

6936 continue
LL(m+l,j) - tLL(m+1,j)
UU(m+l,j) = tUU(m+l'j)

C

6940 continue
C
c Recalculate other global variables 1CMPMIN, INC, RA, AXINC)

call MINCMP
call ARATIO

c
6945 continue

return
end

61

C------------------------------------

C

subroutine XRUN
c

c Called by RUN to organize Exact Ceiling Point Algorithm (XCPA),
c given initial solution & value {X*,Z*). (See Section 5.5, Step 3)
C

c--
include '$DISK2: [SALTZ.ILP1]plist.for'
include '$DISK2: (SALTZ.ILP1]coxnprt.for'
include '$DISK2: [SALTZ.ILP1]comlpl.forl
include '$DISK2: (SALTZ.ILPl1comrunl.for'
include '$DISK2: [SALTZ.ILPl1comxrun3.forI
logical*2 hplist Cm)
if (xprint(12).eq.l) write(9,,*) 'XRUN: Z* - ',ZSTAR

C

icase 1
c Initialize hplist - list of constraint hp's already searched

do 6001 i = 1, m
hplist(i) - .false.

6001 continue
c
c Loop thru constraints, enumerating 1-Ceiling Points

do 6080 i - 1, m
c
c Select a search hyperplane (ihp)

ihp - IXPICK(hplist)
if (xprint(12).eq.1) write(9,*) IXRUN:search ct =',ihp
hplist(ihp) = .true.
if (ihp .eq. 0) goto 6090

c
c Enumerate feasible 1-CP(ihp)'s better than incumbent

call XCP(ihp)
c

if (xprint(12) .eq.1)write(9,*) 'xcalls', (xcalls(L),L-1l,n)
if (zstar .ge. zup) goto 6090
if (icase .eq. 2) goto 6090

c
c Reoptimize (LPr)' - tightened LP-relaxation of ILP

call XREOPT(ihp)
c
6080 continue
c
6090 continue

return
end

c--
c

subroutine XCP (hp)
C

c Called by RUN & RUNCUT to find ceiling points wrt constraint (hp).
c (See Section 5.4)
C--

include '$DISK2: (SALTZ.ILP11plist.for'
include '$DISK2: [SALTZ.ILP1]coznprt.forl
include '$DISK2: (SALTZ.ILP1]comlpl.for'
include '$DISK2: (SALTZ.ILPl1comrunl.for'

62

include '$DISK2: [SALTZ.ILP1]comxrun2.for

include '$DISK2: [SALTZ.ILPl]comxrun3.for'
include '$DISK2: [SALTZ.ILP1]comxrun4.for'
integer hp
if (xprint(13) .eq.1)
write(9,*) 'XCP: Z* -',ZSTAR,' hp -',hp

c
B(m) - -(zstar + all)
do 6100 i - 1, m

GAP(i,1) - B(i)
6100 continue

if (xprint(13).eq.l)write (9,*) 'gap(,l)-',(gap(i,l),i-l,m)
C

iempty = ISHR(hp)

if (1 .eq. iempty) goto 6105
if (xprint(8) .eq.0)write (*,*) 'XCP: NO INT. SOLNS. in SHR'
if (xprint(13).eq.l)write (9,*) 'XCP: NO INT. SOLNS. in SHR'
goto 6190

c

c Put the fixed vars. first, if not searching I-Cut
6105 if (hp .ne. m-1) call REORDR
c

c Initialize key arrays
do 6110 j = 1, n

upc(j) = upbd(j)

loc(j) = lobd(j)
c upc(j),loc(j) - upper & lower conditional bounds on X(j)

first(j) = 0

final(j) = 0

c first(j),final(j) - interval over which X(j) will range
ISN(j) = 0

c ISN = current integer solution being spelled out
newz(j) = 0

c newz(j) = 1 => New Z* found with previous partial solution
xcalls(j)= zero

c xcalls(j)= counter for number of calls to XCB(j)
6110 continue
c

lj I
if (ICHKBD(lj) .eq. 0) goto 6190

call LOOPBD(1j)

c

c Main Enumeration Loop (See Section 5.3)

C

6120 ISN(lj) = ISN(lj) + INC(lj)
c

c Take a forward step & calc. conditional variable bounds
ij = lj + 1
call XCB(lj)
if (ICHKBD(Ij) .eq. 0) goto 6140

c

if (lj .1t. n) then

c Set the loop bounds and take a forward step
call LOOPBD(lj)
goto 6120

endif

63

C

c Feasible Completion
6130 continue

iempty - ILASTV(hp,lj)
if (iempty .eq. 0) goto 6190

C

c Backtrack to lower level
6140 lj - lj - 1

if (IBOTLP(lj) .eq. 1) goto 6120
if (lj Alt. 2) goto 6190
goto 6140

c
c End of Main Loop............
6190 continue
c

return
end

c--
c

subroutine XCB(j)
c
c Called by XCP to compute bounds for X(j) conditioned on the values
c of IX(1), X(2),. ., X(j-lfl. Al-3o called by IBOTLP after a new
c incumbent has been found. X(j) corresponds to ISN(j)
c (See Section 5.4.1)
c--

include 'SDISK2: [SALTZ.ILP1]plist.for'
include 'SDISK2: (SALTZ.ILPljcomprt.for'
include '$DISK2: (SALTZ.ILPI1comlpl.forl
include '$DISK2: [SALTZ.ILPl]comxrun3.forI
include '$DISK2: [SALTZ.ILP1lcomxrun4.forI
integer j

c
if (xprint(14) .eq. 1) write (9,*) 'XCB: j =',j
xcalls(j) = xcalls(j) + one

c if (j .eq. 1) goto 6220
if (ISN(j-1) .eq. first(j-l)) goto 6205
if (newz(j) .eq. 1) goto 6205

c
c Use additive form after first value of ISN(j-1)

do 6203 i = 1, m
gap(i,j) - gap(i,j) - axinc(i,j-1)
if (a(i,j)) 6201, 6203, 6202

6201 LL (i, j) - LL (i, j) +- RA (i, j)
goto 6203

6202 UU(i,j) = UU(i,j) + RA(i,j)
6203 continue

goto 6230
c
c On first value of ISN(j-1), use multiplicative form

6205 do 6210 i - 1, m
gap(i,j) - gap(i,j-1) - A(i,j=1)*ISN(J-1)

6210 continue
c

64

c Compute conditional bounds wrt each constraint i
6220 do 6225 i = 1, m

if (A(i,j)) 6221, 6225, 6222
6221 LL(ijj) - (gap(i,j) - CMPMIN(i,j+lfl/A(i,j)

goto 6225
6222 UU(i,j) - (gap(i,j) - CMPMIN(i,j+l))/A(i,j)
6225 continue

if (xprint(14) .eq. 1) then
write(9,*)'xcb:LLj',(LL(i,j),i=l,m+l)
write(9,*) xcb:U~lj', (UU(i,j),i=1,m+1)

endif
c

c Pick the tightest condi. bound (row M+1 -- uncdl. bds)
6230 maxarg - m+l

minarg -m+1

do 6250 i = 1, m
if (A(i~j)) 6235, 6250, 6245

6235 if (LL(i,j) .gt. LL(maxarg,j)) maxarg - i
goto 6250

6245 if (UU(i,j) .1t. UU(minarg,j)) minarg = i
6250 continue

upc(j) - IRNDWN(UJ(rinarg,j))
loc(j) -IRNDUP(LL(maxarg,j))
return
end

c--
c

Integer Function ICHKBD(j)
c
c Called by XCP to check if ISN(j) is at its final bound.
c Returns 1 if loc(j) <- upc(j) => take forward step
c 0 .. > t => take backward step
C---

include '$DISK2: [SALTZ.ILPllplist.for'
include '$DISK2: [SALTZ.ILP1)cornprt.forI
include '$DISK2: [SALTZ.ILPl]comxrun3.forI
include '$DISK2: [SALTZ.ILPljcomxrun4.for'
integer j

C

c if (xprint(14) .eq. 1)
c -write (9,*) 'ICHKBD j=1'j,' loc',loc(j),' upc',upc(j)
C

ICHKBD -1
if (loc(j) .gt. upc(j)) then

c
c Can backtrack to next value of ISN(j-l)

ICHKBD - 0
if (RA(minarg,j) .gt. RA(maxarg,j)) goto 6390

c Can double backtrack to next value of ISN(j-2)
lj = j - 1

endif
c
6390 continue

return
end

65

C------------------------------------

C

subroutine LOOPBD (j)
C

c Called by XCP to set first and final values for level j.
C---

include '$DISK2: [SALTZ.ILP1]plist.forl
include '$DISK2: [SALTZ.ILPl1lcomxrun4.for'
integer j

C

c If INC(j) = -1, start enumerating from upper bound
c INC(j) is set in ARATIC

if (INC(j) .eq. -1) then
first(j) = upc(j)
final(j) = loc(j)

C

c Otherwise, start enumerating from lower bound
else

first(j) = loc(j)
f inal (j) = upc (j)

endif
ISN(j) = first(j) - INC(j)
return
end

C--

C

Integer Function ILASTV(hp,j)
c
c Called by XCP when a feasible completion has been reached.
c Returns 0 if SHR(ns) or SHR(hp) is empty.
c--

include '$DISK2: [SALTZ.ILPl]plist.for'
include '$DISK2: fSALTZ.ILPl)comprt.for'
include '$DISK2: (SALTZ.ILPl]comlpi..forI
include '$DISK2: ESALTZ.ILP1]comxrun4.forI
integer hp,j
if (xprint(16).eq.l) write(9,*) 'LASTV:hp=',hp,' j=',j

c
c Assign last component based on sign of C(n)

ISN(n) =upc(n)
if (C(n) .1t. zero) ISN(ri) = loc(n)

do 6500 i = l,m
gap(i,n+1) = gap(i,n) - A(i,n)*DBLE(ISN(n))

6500 continue
c
c Calculate objective function value of new incumbent

z = zero

do 6505 ij =1, n
z = z + C(ij)*DBLE(ISN(ij))

6505 continue
if (xprint(16) .eq. 1) then

write(9,*) 'ILASTV: z=',z,l IS=',(ISN(ij),ijl,n)
write(9,*) 'ILASTV: gap=', (gap(i,n+1),i1l,m)

endif
c
c Call new incumbent routines

ILASTV = INCMOD(hp,z)
return
end

66

C -

C

Integer Function IBOTLP(j)
C

c Called by XCP. Return 0 if ISN(j) has reached its loop limit

C...

include '$DISK2: (SALTZ.ILPl~plist.for'
include '$DISK2: [SALTZ.ILPllcomxrun4.forI
integer j

C

IBOTLP = 1
if (ISN(j) .eq. FINAL(j)) then

IBOTLP = 0
goto 6605

else
if (newz(j) .eq. 0) goto 6605
if (j .eq. 1) goto 6605

c 01w, New Z* just found and j .ne. 1, so get new conditional
c bounds (See Section 5.4.3).

call XCB(j)
newz(j) = 0

endif
C

6605 continue
return
end

C..

C

Integer Function INCMOD(hp,val)

c
c Called by ILASTV whenever a new incumbent is found (fairly rare).

c Returns 0 if new (possibly smaller) SHR is empty; 1, otherwise.
c--

include '$DISK2: [SALTZ.ILPI~plist.for'
include '$DISK2: (SALTZ.ILPl]comprt.for'
include '$DISK2: tSALTZ.ILPl1comlpl.for'
include '$DISK2: (SALTZ.ILP1)comrunl.forI
include '$DISK2: (SALTZ.ILPl]comxrun4.for'
integer hp,iret4
real*8 val
if (xprint(16).eq.1)write(9,*) 'INCMOD:hp',hp,' val ',val

iret4 1

delz =val - ZSTAR

if (delz .1t. tol) goto 6790
C

c We have an improved feasible solution
ZSTAR = val
do 6700 j = 1, n

ixstar(j)= ISN(j)
newz(j) = 1
gap(m,j) = gap(m,j) - delz

6700 continue
gap(m,n+l) = gap(m,n+l) - delz
if (xprint(8) .eq.0) write(*,*) I New V~ =',ZSTAR
if (xprint(16).eq.1) then

write(9,*) 'New. V~ - ,zstar

write(9,*) 'New X* = ',(ixstar(j),j=1,n)

endif

C

BWm = -(zstar + all)
call OBJCUT(zstar + all)
iret4 =ISHR(hp)

C
6790 INCMOD iret4

return
end

C---

C

integer function IXPICK(list)
C

c Called by XRUN to select search constraint hyperplane.
c Do not cut any deeper than CX = Z* hyperplane. (See Section 5.7)
c---

c~include :plist .for
c~include comprt .for
c$include comlpl .for
c$include :comrunl .for

include '$DISK2: (SALTZ.ILPl]plist.for'
include '$DISK2: [SALTZ.ILPljcomprt.for'
include '$DISK2: (SALTZ.ILP1]comlpl.for'
include '$DISK2: (SALTZ.ILPl]comrunl.for'
logical*2 list (mm)

c
c list(i) = .true. => hp (i) has already been a search ct.

if (xprint(17) .eq.1) write (9,*) 'IXPICK: zup= ',zup
c

IXPICK = 0
zbarmn =bigm

c
c Find ct. (IXPICK) yielding largest decrease in zbar'

do 6810 i = 1, m
if (.not. BFCXO(i)) goto 6810
if (iist(i)) goto 6810

C Opt. price on ct. i comes from final tableau.
C (works fine if ALL cts. are .GE. or ALL are .LE.)

delb = one + AIMAX~i)
delz0 DABS(PRICES(i))*delb
zbar -zO - delz0

c
if (zbar Ilt. zbarmn) then

c Have found a new lowest upper bound zbar'
IXPICK = i
zbarmn = zbar

endif

6810 continue
C

if (xprint(17) .eq. 1)
-write (9,*) 'IXPICK: prices-', (prices(i),i-Ai,m)
if (IXPICK .eq. 0) GOTO 6840

C
c Assume old case: decrease zbar as much as possible

zup - DINT(zbarmn)

c Check for new case: only decrease upper bound to Z*
if (zup .gt. zstar) goto 6820
zup - zstar
AIMAXCIXPICK) = (ZO - zstar)/DABS(prices(IXPICK))

68

C

c Replace I-cut with ceiling point constraint <--> IXPICK
6820 B(m-l) - B(IXPICK) - AIMAX(IXPICK)

do 6830 j = 1, n
A(rn-l,j) -- A(IXPICK,j)

6830 continue
AIMAX(m-l) = Afl4AX(IXPICK)

c
6840 if (xprint(17) .eq. 1)

- write (9,*) IIXPICK ct: ',IXPICK,' => zup-',zup,' Z*=',zstar
return
end

c --

c
subroutine XREOPT (hp)

C

c Called by XRUN to reoptiinize (LPr)l after searching SHR(hp).
c (See Section 5.7)
C---

include 'SDISK2: [SALTZ.ILPl]plist.for'
include '$DISK2: ESALTZ.ILPl~cornprt.for'
include '$DISK2: [SALTZ.ILPl)comlpl.for'
include '$DISK2z [SALTZ.ILPl1comrunl.forI
integer hp
if (xpririt(8).eq.0) write(*,*), XREOPT: hp=',hp

c
c Translate constraint hyperplane (hp) by t

M M- 2
t =AIMAX(hp) + one
B(hp) - B(hp) - t

c

c Find solution to (LPr) ' as defined in Section 5.7
c XBAR' -XBAR - t*BINVERSE(,hp)
c ZBAR' = ZBAR - t*PI(hp)
c

do 6850 i = 1, mn
XBAR(ibasis(i)) = XBAR(ibasis(i))-t*ABAR(i,INITBV(hp))

6850 continue

do 6855 j = 1, n
XO(j) = XBAR(j)

6855 continue
ZO = ZO - t*PRICES(hp)

c
c Do some PRECUT-type operations on the data

call OBJCUT (ZSTAR+one)
C Reappend ceiling point condition & objective fn. constraints

do 6860 j = 1, n
A(m+l, j) = zero
A(m+2, j) = -C(j)

6860 continue
B(m+l) = zero
B(m+2) = zero

M = M + 2
ZUP = DINT (ZO)
if (xprint(8).eq.0) write(*,*)' XREOPT: Z0-',ZO

C
return
end

69

C-------------------- ---------------

C

function ISHR(hp)
c

c Called by XCP to calc. unconditional bounds - Search HyperRectangle
c Returns 0 if SHR is clearly empty, 1 if SHR is not necc. empty.
C--

include '$DISK2: (SALTZ.ILPl]plist.for'
include '$DISK2: (SALTZ.ILPl]comprt.for'
include '$DISK2: (SALTZ.ILP1]comlpl.for'
include 'SDISK2: (SALTZ.ILPl]comrunl.forI
integer hp,iretl
if (xprint(9) .eq. 1) write(8,*) 'ISHR: hp -',hp

C

if (hp .ne. rn-i) goto 5005
c
c CUTSHR:special SHR routine for Search I-Cut

call CUTSHR
c

iretl = ISREND(hp)
goto 5010

c
C Search ct. is a functional ct. or objective fn. hp
5005 iretl = ISHRSC(hp)
5010 ISHR = iretl

return
end

c---
c

integer function ISHRSC(hp)
c
c Called by ISHR to calc. uncondl.bds. for functional search ct. (hp).
c Returns 0 if SHR is clearly empty, 1 if SHR is not necc. empty.
c (See Section 5.3)
c---

include '$DISK2: [SALTZ.ILPl)plist.for'
include '$DISK2: [SALTZ.ILPl)comprt.for'
include '$DISK2: [SALTZ.ILPl)comlpl.for'
include '$DISK2: fSALTZ.ILPl1comrunl.forI
include m$DISK2: jSALTZ.ILP11comxrun2.forI
include '$DISK2: ESALTZ.ILP1]comxrun3.for'
include '$DISK2: fSALTZ.ILPl]comxrun4.forI
integer hp,iret2
real*8 pts(nn,3*nn),arow(nn),rmin,rnax
if (xprint (9) .eq. 1)
S write (8,*) 'ISHRSC: hp,icase =',hp,icase

c
c First, get the bounds for SHR(n-simplex)

iret2 = ISRSIM(m)
ti = aimax(hp)

c
c Store coefficients of the search ct. hyperplane

do 5050 j =1, n
arow(j) =A(hp,j)

5050 continue
c

70

nrow - 0

c Get points where kth extreme dir. meets ceiling point ct.(i')

do 5060 k =1, nx
if (CTXPT(k,hp)) goto 5060
nrow - nrow + 1

t = bigrn
tdot = VDOT(n,arow,dirs(l,k))
if (tdot .gt. .001) t =ti/tdot

do 5055 j = 1, n
pts(j,nrow) = XO(j) -t*dirs(j,k)

5055 continue
5060 continue
c
c Add the alpha~k)s and P(k)'s to the list of points

do 5063 k -1, n
if (.not. CTXPT(k,hp)) goto 5063

do 5062 j = 1, n
pts(j,nrow-l) = alpha(j,k)
pts(j,nrow+2) = P(j,k)

5062 continue
nrow = nrow + 2

5063 continue
C

c For each component j, find the min & max over all pts(,k)
do 5080 j = 1, n

rmin = pts(j,I)
rmax = pts(j,1)
do 5070 k = 2, nrow

if (pts(j,k) .1t. rxnin) rmin = pta(j,k)

if (pts(j,k) .gt. rmax) rruax -pts(j,k)
5070 continue
c

c Round these reals to integer bounds
lobd(j) = IRNDUP(rmin)
upbd(j) = IRNDWN(rmax)

c
c Take intersection of n-simplex and uncdl. bds.

lobd(j) = MAXO(lobd(j), lons(j))
upbd(j) = MINO~upbd(j), upn3(j))

5080 continue
c
c Check for icase = 2 => {shr(nsfl = {shr(hp)l

if (icase .eq. 2) goto 5088
do 5082 j = 1, n

if ((upns(j).eq.upbd(j)).and.(lons(jfl).eq.lobd(j)) goto 5082

icase - 3
if (xprint(8) .eq. 0) then

write(8,*) ' Case C: Ishr(hp)l < Ishr(ns) l
write(*,*) '**Case C: Ishr(hp)l < Ishr(ns) l

endif
goto 5088

5082 continue
c

71

icase =2
c In case 2, remove ceiling point constraint (i')

B(m-1) = zero
do 5084 j = 1, n

A(m-l,j) =zero

5084 continue
AIMAX(m-l) =zero

c
5088 iret2 = ISREND(hp)

do 5090 j = 1, n
irange(j) = irange(j)*iret2

5090 continue
c

ISHRSC = iret2
return
end

c---
c

integer function ISREND(hp)
c
" Called by ISHR to complete calc. uncondl.bds.
c Returns 1 => SHR non-empty; -0 => SHR empty
c---

include 'SDISK2: [SALTZ.ILPllplist.for'
include '$DISK2: [SALTZ.ILPl1comprt.for'
include 'SDISK2: [SALTZ.ILPl]comlpl.for'
include '$DISK2: ESALTZ.ILPl~comxrun2.forI
include '$DISK2: fSALTZ.ILPl1comxrun3.forI
integer hp

c
c Find range(j) :=[U(j)-L(j)J+l; size :=product of Ranges

size = one
do 5100 j = 1, n

c Prevent uncondl. bds. from exceeding [0, SUB]
lobd(j) = MAXO(lobd(j), 0)
upbd(j) = MINO(upbd(j),SUB(j))
irange(j) = l+(upbd(j)-lobd(j))
size = size*DBLE(irange(j))

5100 continue
if (xprint(8) .eq. 0)

-write(*,*) ' ISREND: size =' ,size,' sizlim =1,sizlim
c

if (xprint(l0) .eq. 1) then
write (8, *) ---------------

write (8,*) 1 Search hp 1,hp
write (8,*) 1 Pts in hp ',size
do 5103 j = 1, n

write (8,*) j,lobd(j)rupbd(j)
5103 continue

write (8, *) ---------------

endif
c
c Exit if the search hyperrectangle is empty

ISREND - 0
if (size .le. zero) goto 5140

c

72

c If it is non-empty, (re)initialize key variables
ISREND =1
if (hp .1t. m) then

c Compute CMPMIN(i,j)
call MINCMP

C

c Initialize Conditional variable bounds wrt each ct.

do 5120 i = 1, m+l
do 5115 j =1, n

LL(i,j) =DBLE(LOBD(j))

UU(ij) =DBLE(UPBD(j))

5115 continue
5120 continue

if (size .1t. sizlim) goto 5140
STOP ' Search Rectangle size exceeds sizlim *'

endif
5140 continue

return
end

c---
c

integer function ISRSIM(hp)
c
c Called by ISHRSC and CUTSHR to calculate unconditional bounds.
c Returns 1 => SHR non-empty; 0 => SHR empty.
c---

include '$DISK2: (SALTZ.ILP1]plist.for'
include '$DISK2: [SALTZ.ILPllcomprt.for'
include 'SDISK2: (SALTZ.ILPllcomlpl.for'
include '$DISK2: [SALTZ.ILP11comxrun2.forI
include '$DISK2: (SALTZ.ILPl1comxrun3.forI
integer hp,iret3
real*8 shr(2*nn,nn),shrmin,shrmax
if (xprint(10) .eq. 1) write (8,*) IISRSIM: hp=',hp

c
c Append P(j,k) to shr, the matrix of points used to form SHR

nrow = 0
do 5160 k 1, nx

c if hp =m, all adj. ext. pts. are used to form SHR(ns)
if (hp .eq. m) goto 5148
if (.not. ctxpt(k,hp)) goto 5160

5148 nrow = nrow + 1
do 5150 j = 1, n

shr(nrow,j) = P(jkl
5150 continue
c
c Append ALPHA(k) to shr if it's closer to XO than 2(k)

if (DABS(XO(1) - ALPHA(l,k)) .1t.
-DABS(XO(1) - P(1,k))) then

nrow = nrow + 1
do 5155 j = 1, n

shr(nrow,j) = ALPHA(j,k)
5155 continue

endif
516n continue
c

73

c Now get bounds from SHR
do 5170 j - 1, n

shrmin = shr(1,j)
shrmax - shr(1,j)
do 5165 i = 2, nrow

if (shr(i,j) .1t. shrmin) shrmin = shr(i,j)
if (shr(i,j) .gt. shrmax) shrmax = shr(i,j)

5165 continue
c

lobd(j) = IRNDUP(shrmin)
upbd(j) = IRNDWN(shrmax)

5170 continue
C

iret3 = ISREND(hp)
do 5175 j = 1, n

irange(j) = irange(j)*iret3
5175 continue
C

ISRSIM = iret3
if (hp .eq. m) then

do 5180 j =1, n
lons(j) =lobd(j)

upns(j) =upbd(j)

5180 continue
k endif

c
return
end

c---
c

subroutine MINCMP
c
c Called by ISREND & REORDR to cale. CMPMIN = Matrix of min. completions
c CMPMIN(i,j)= SUM from k=j4-1 to n of Min(A(i,k)*UPBD(k),A(i,k)*LOBD(k)l
c (= "w(i,j)" in Section 5.4)
c---

include '$DISK2: [SALTZ.ILP1]plist.for',
include 'SDISK2: [SALTZ.ILP1]comprt.for.
include '$DISK2: (SALTZ.ILPI~comlpl.for'
include '$DISK2: [SALTZ.ILP1)comxrun2.for'
include '$DISK2: [SALTZ.ILP1)comxrun3.for'

c
do 5220 i = 1, m

c
c (Initialize CMPMIN for the multirun case)

CMPMIN(i,n+1) = zero
c
c More efficient to start from last column & work toward first

do 5215 j = n, 1, -1
if (A(i,j)) 5205, 5205, 5210

c if A(i,j) < or = 0:
5205 CMPMIN(i,j) = CMPMINfi,j+1) + A(i,j)*DBLE(upbd(j))

goto 5215
c if A(i,j) > 0:
5210 CMPMIN(i,j) - CMPMIN(i,j+1) + A(i,j)*DBLE(lobd(j))
5215 continue

if (xprint(10) .eq.1)write(8,*)' CMPMIN', (cmpmin(i,j),j=1,n+1)
5220 continue

return
end

74

SWITCHES.DAT

000000000000000000 1 0 1 00 0
0000000100000000000000000

10.D16 1.D10
1234567890123456789012345

ist row is hprint: 2nd row is xprint:
1. getabc (data echo) 1. Runcut
2. z2phase 2. Precut
3. zsolve 3. Objcut, Redcts
4. zsetrs, zpivot4 4. Cutpt,Cutpt2
5. setup 5. Cuthp
6. balas 6. Cutshr
7. hrun 7. Aratio
8. hsdir 8. 1->MINIMAL SCREEN PRINTING
9. findfs 9. Ishr

10. fis2hp 10. Ishrsc, Isrend,Mincmp
11. iffeas 11. Bounds
12. phase3 12. Xrun
13. stayfs 13. Xcp
14. twovar, getfes 14. Xcb
15. hround, hrndpt 15. Ichkbd
16. VarOrder: 1)lo-hi; 2)hi-lo 16. Ilaatv, Incmod
17. REDCTS: list active cts. 17. Ixpick
18. REORDR: fixed vars. first 18. 1 => STOP AFTER HRUN
19. HRUN: time/print Phases 19. 1 => STOP AFTER ICUT
20. HRUN: I => nhps = No.BFCXO 20. 1 => only use cutpt2
21. HRUN: 1 => avoid NCP check 21. Skip HRUN, start RUNCUT w/ Z*=0
22. 22.
23. 23.
24. 24.
25. 25.

3rd row: sizlim (for SHR size), callim (for XCALLS)--NOT USED

Note: for RANDOMLY GENERATED PROBLEMS: set hprint(16) - 2
for REALISTIC " .= 0

ILPDATA.DAT (sample file)

FC10.DAT
END

75

Input Format

m n
all aln bl {1,-1} (1 => 5 constraint; -1 =>)

aml amn bm {1,-i)
ClCn {,-i} (I => maximize; -1 => min.)

Exml: ("FC-10" from Trauth and Woolsey, 1969)

FC10-DAT

10 12
9 7 16 8 24 5 3 7 8 4 6 5 110 1

12 6 6 2 20 8 4 6 3 1 5 8 95 1
15 5 12 4 4 5 5 5 6 2 1 5 80 1
18 4 4 18 28 1 6 4 2 9 7 1 100 1

-12 0 0 0 0 0 1 0 0 0 0 0 0 1
0 -15 0 0 0 0 0 1 0 0 0 0 0 1
0 0 -12 0 0 0 0 0 1 0 0 0 0 1
0 0 0 -10 0 0 0 0 0 1 0 0 0 1
0 0 0 0 -11 0 0 0 0 0 1 0 0 1
0 0 0 0 0 -11 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1 1 1 1

76

UNCLASSIFIED
WcumTV CLASSCAIO pctOF ovTIM PA1 M =. ~&WM. ______________

REPOR DOCMENT&1M PAGE__________
T. UUEPMT MUMOE aLwy AC S'L .EPEY AALSE wsUUS

Technical Report SOL 88-20

4. TrITLK (md &"no. &. TYPE OF XSEP50 & Pab50 COVERED

An Exact Ceiling Point Alqorithm Technical Report
for General Integer Linear~ Progranmming IL16100111 R EPR uGo

7. Ag WORe) I. CTRACT OA ORANT HtWW1W*)i

Robert M. Saltzman and Frederick S. Hillier N00014-85-K-0343

9. PeftPoRIm ORGA*61A SOS USMS 0AOR 15. Mae"%I NT~siE PRJcT. VAR

Department of Operations Research - SOL 1lllMA
Stanford University
Stanford,_CA__94305-4022 ______________

It. CON Trm"LIM6 OFFICE RAISE MO ACCUES US. MEP03 SATE

Office of Naval Research - Dept. of the Navy November 1988
800 N. Quincy Street I&. 14umesmf OF P~
Arlington, VA 22217 76 Paoes

UNCAScut S.E '

W 11. ADumUTION STATEMENT (of1IM a'a -m

This documnent has been approved for public release and sale;
its distribution is unlimited.

17. DISTNIUUTIO0 STATEMENTr woo~ .mik 06"Md Mkw Heel "15 ~ 6M Ro ame

is. KEY won"U CMS wO ti Mwne e* Vt weeeOm &W D"eg" orAbla
integer linear programmiing; general integer variables; exact algorithm;
ceiling points; implicit enumeration; linear proglramming, relaxation

-.L AIISTRACT (Cielbe 40 .e'We @Wese~u M 40608 Ap If eul k u6146OW

(Please see other side)

00 1 10""PS 1073 tono or Iv "Vg is =0667

SECUm?? CLANUVlCATIO OF 7;18 P"9 (W 0 5m

iMuCUmv CLAPIWCAOT OF TI1 PAOUSU De ft

Abstract

An Exact Ceiling Point Algorithm

for General Integer Linear Programming

Robert M. Saltzman and Frederick S. Hillier

Stanford University, 1988

This report describes an exact algorithm for the pure, general integer linear program-

ming problem (ILP). Common applications of this model occur in capital budgeting

(project selection), resource allocation and fixed-charge (plant location) problems. The

central theme of our algorithm is to enumerate a subset of all solutions called "feasible

1-ceiling points." A feasible 1-ceiling point may be thought of as an integer solution lying

on or near the boundary of the feasible region for the LP-relaxation associated with (ILP).

Precise definitions of 1-ceiling points and the role they play in an integer linear program

are presented in a recent report by the authors. One key theorem therein demonstrates

that all optimal solutions for an (ILP) whose feasible region is non-empty and bounded

are feasible 1-ceiling points. Consequently, such a problem may be solved by enumerating

just its feasible 1-ceiling points. Our approach is to implicitly enumerate 1-ceiling points

with respect to one constraint at a time while simultaneously considering feasibility. Com-

putational results from applying this incumbent-improving Exact Ceiling Point Algorithm

to 48 test problems taken from the literature indicate that this enumeration scheme may

hold potential as a practical approach for solving problems with certain types of structure.

*Wu*Ie*mS~lsO u A~'~ a~~

