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ABSTRACT

This thesis recommends the locations for placement of five sonobuoys which are to
be used in the 12-16 December 1988 acoustic tomography experiment in Monterey Bay.
The experiment will test a low-cost tomographic system for studying internal waves and
surface waves. The five sites were determined to be the most optimal locations for
acoustic signal acquisition, based on predicted eigenray simulation and oceanic envi-

ronment assessment. The Multiple Profile Ray-Tracing Program (MPP) simulated the
probable ray paths from the specified source location to receiver positions throughout
Monterey Bay, predicted eigenrays for the various sites, and determined the arrival time,
transmission loss, and ray path for each eigenray.
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. INTRODUCTION

This thesis is the end-product of a front-end eigenray simulation analysis and
oceanic environment assessment for an acoustic tomography project designed to meas-
ure internal waves and surface waves in Monterey Bay. The project is a two year effort
to develop and test a low-cost tomographic system for studying both internal and sur-
face waves, with the results possibly contributing to the study and knowledge of under-
water acoustics. The goal of this thesis is to determine the optimum placement of five

receiver hydrophones for a mid-December 1988 field test of the newly developed
tomographic system. The receiver locations will be selected on the basis of eigenray and
travel time predictions from an existing ray tracing program, as well as an educated ap-
praisal of the eftects of the environment on the tomography experiment.

A computer program that has been used by Scripps Institute and the Woods Hole

Oceanographic Institution was the determinator for the eigenray information. The
Multiple Profile Ray-Tracing Program (MPP) routines calculate the eigenray arrivals
with associated travel times, and determine the ray path for a specified source and re-
ceiver locztion, using two-dimensional ray tracing logic based on inputted range-
dependent sound speed profiles and bathymetry.

The information contained in this thesis includes:

1. background information on ray theory, acoustic tomography, the Monterey Bay
tomography project and the scope of tie thesis;

2. environmental data for the experimental region regarding bathymetry, currents,
sediment, temperal ire, salinity, tides, surface waves and internal waves;

3. a description of the MPP routines that are used in the eigenray and ray path de-
ternunation;

4. a statement of the MPP input values used and an explanation of the output data;
and

5. conclusions and recommendations for receiver placements for the December ex-
periment.

In recomnending receiver hydrophone positions and supplying important information

on probable eigenray characteristics and expected environmental conditions, this thesis
meets its intended objectives.



If. BACKGROUND

This thesis is a report on one aspect of a tomography experiment that is scheduled

to be performed during December 1988, in the vicinity of Monterey Bay. Prior to de-
scribing the computer simulation and front-end analysis that was done as a requirement
of the thesis for the upcoming field trial, an overview of ray theory, ocean acoustic

tomography, the December experiment, and the thesis objectives will be provided.

A. RAY THEORY
The propagation of sound in fluids, such as the ocean, can be described mathemat-

icallv by the linearized, lossless wave equation [Ref. 11

2 2
V C- Ct2

where p is the acoustic pressure, c is the sound speed and t is time. One theoretical
approach to solving the wave equation is called ray theory. Urick [Ref. 21 states, "The

essence of ray theory is (1) the postulate of wavefronts, along which the phase or time

function of the solution is constant, and (2) the existence of rays that describe where in

space the sound emanating from the source is being sent." By using ray theory, one can

trace the path of a ray as it propagates through the ocean. Figure 1 on page 3 illustrates

the path of a ray in a ray diagram. This method, however, is not valid for very low fre-

quencies, where the wavelength is on the order of the water depth or the source-to-

receiver range [Ref. 31.

If the ocean is modeled as horizontally stratified, sound speed c(z) is only a function

of depth. For a grazing angle 0, at initial depth z,, one can find 0 at depth z by using

Snell's Law:

cos 0 cos Oic(z) c(Zd

where a is the Snell's Law constant of the ray. To calculate travel times of rays, inte-

grate the sound slowness ciz) along the ray path as follows:

dr ds {3}
c(:)

• • l ! 2
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Figure 1. Ray diagrat for typical Atlantic Ocean sound channel. iRef. 31

Ti= ds 4

Where T, is the travel time associated with the ray path S, and s is the arc length.

Of importance to ocean acoustic tomography is an eigenray. Eigenrays are those

rays which propagate from the source and intercept the receiver location. Ray theory

can be used to determine eigenray travel times. A simplified eigenray path between a

source and receiver is shown in Figure 2 on page 4, where S, is the ray path, ds is a

differential distance along that path, r is the range and z is the depth.

The total travel time for an eigenray in a three-dimensional ocean, r, , is given by

f c(x,,z) 
(5)

SI

where

c(x,',z) = Co(XY,Z) + ,c(xj,z), {6}

c. is known as the initial (background) sound speed, while 6c is the perturbation (incre-

mental change). The total travel time can now be stated as

3
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Figure 2. Ray path in a stratified ocean medium.

CO + COC +J {7}
S, S CO

By using the binomial expansion, where I -x for x<,

.. d-sl coc f ds c t8)

S Ss

This can be simplified to

Tj= 'lo + 6rl (9)

where the eigenray's measured travel time is equal to the initial guess for the travel time
and some difference between the guess and measured times. This measured difference

can be stated as

f ds 6c(xy,z) (101
co (x,1z)

where 6c(xjv,z) is inferred using linear inverse theory. However, for the inversions to
be valid, it must be known which ray arrival r, corresponds to which ray path S, . This

4



is sometimes not an easy task. Numerical ray tracing programs provide the ray paths
and ray arrival pattern.

B. OCEAN ACOUSTIC TOMOGRAPHY

The technique of ocean acoustic tomography was first formulated by Walter Munk
and Carl Wunsch [Refs. 4,51 in 1977 as a way to observe mesoscale fluctuations in the
ocean basins by measuring perturbations in the travel time of acoustic transmissions
(pulses) between widely separated sources and receivers. Using acoustic inverse tech-

niques to invert the travel time fluctuations, interior variability in the sound speed
structure and current fields can be inferred. This method is similar to the medical x-ray
procedure called CAT-scan (for computer-assisted tomography).

The amount of information obtained using tomography is the product of the num-
ber of sources, receivers and ray multipaths that can be resolved for each source-receiver
pair. Very few sources and receivers are needed to provide a wealth of information.
Another virtue with this technique is that the observations are integrating, resulting in

long space and time observations [Ref. 51.
Mesoscale oceanic features, such as eddies, currents and fronts, contain most of the

ocean circulation's kinetic energy, but they have been difficult to measure. Since the
ocean is transparent to sound, acoustic transmissions can be used as a probe to measure
the mesoscale variations which disturb the mean oceanic sound speed field. Density
(one-way) tomography provides information on the sound speed field, while reciprocal
(near-simultaneous two-way) tomography may be used for measuring the ocean basin

heat content, vorticity and upwelling. [Refs. 5,6]
The transmitted signals are continuous or multi-period bursts of constant amplitude,

phase modulated waveforms [Ref. 7]. The values for the source level and center fre-
quency of the signal are equipment and locale specific. The success of an acoustic

tomography experiment depends on (Ref 61:

1. a stable eigenray arrival pattern to allow for long periods of unambiguous tracking
of ray arrivals;

2. eigenray arrivals that are identifiable, i.e., correspond to a ray trace;

3. large enough arrival time separation between eigenrays to resolve individual rays;
and

4. signals that are strong enough to be received above the background noise.

There have been a few major experiments conducted to test out Munk and
Wunsch's theory. In 1981 a tomography experiment was conducted southwest of

5



Bermuda [Ref, 8] in a 300 km square using four acoustic sources and five receivers. The

measured results were within experimental error of predicted arrival patterns, thus indi-

cating that tomography can be used to map the ocean with mesoscale resolution. A

1983 reciprocal experiment [Ref. 6] used higher frequency transmitting transceivers to

test reciprocal transmission tomography. Even though one of the instruments failed to

function correctly, the experiment still allowed for the determination of the average

current profile along one transceiver-transceiver path. The MIZEX '84 expedition [Ref.

9] addressed issues of stability, resolvability, identifiability, attenuation due to scattering,

and coherence of ray and'or mode arrivals in the Marginal Ice Zone. Fast fluctuations

in acoustic ray arrival times were observed which were ascribed to surface waves. Slow

fluctuations were ascribed to internal waves, but without corroborative oceanographic

measurements. The overall conclusion was that shallow-water tomography is more dif-

ficult than deep-water tomography but not impossible to achieve.

C. MONTEREY BAY TOMOGRAPHY PROJECT

Dr. James 11. Miller [Ref 7) is in the process of developing and testing a low-cost

tomographic system to analyze surface waves and internal waves. Tomography can be

used to determine the time and space characteristics of the frequency-direction spectrum

of the waves. The time scale is short since a surface wave period is normally under 30

seconds. Internal waves will alter the sound speed profile in their vicinity, which will

then disturb rays traveling through the wave field. However, the time scale of internal

waves is on the order of 20 or more minutes. Since the time scales differ between surface

and internal waves, both can be studied with the same signal. [Refs. 7,101
The project's first tomography field experiment is scheduled to be conducted during

the week of 12 December 1988, using one acoustic source moored on the top of a

seamount in the Pacific Ocean west of Point Sur at a depth of approximately 830 meters.

This position is at latitude 360 22' N and longitude 1220 19' W. The bottom-mounted

receivers will be scattered throughout Monterey Bay at approximately the 100 meter

depth. Possible locations for these receivers are shown in Figure 3 on page 7 and are

detailed in CHAPTER V.

Eleven omnidirectional US Navy ANSSQ-57A sonobuoys have been modified for

the experiment. The modifications for these receivers include new long-life batteries.

new hydrophones, and the removal of the scuttling device mechanism. The sonobuoys

will transmit to a shore-based van that has equipment to record both the sonobuoy

acoustic signals and internal ocean temperature data from ancillary ocean equipment.

6
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Figure 3. Monterey Bay tomography source and receiver locations.

Since the December experiment's acoustic observations must be corroborated by other

measurements, the additional information needed will be obtained from:

I. a frequency directional spectra buoy, which is maintained by the National Data
Buoy Center (NDBC) in Bay St. Louis, Mississippi, and

2. NDBC modified ARGOS RCWASID drifting buoys that measure the internal
ocean temperature.

Woods Hole Oceanographic Institution will design and manufacture a mooring

system For the sonobuoys, and refurbish the tomographic source. The source will con-

tinuously transmit a pseudo-random phase-encoded signal of 1.9375 s duration, with a

centcr frequency of 224 1Iz and a source level of 183 dB.

7



D. THESIS OBJECTIVES
The purpose of this thesis is to determine the optimal placement of the receiver

hydrophones for the December tomography experiment, and to indicate probable

eigenray characteristics for each location. The receiver locations will be selected on the

basis of the eigenray and associated travel time results from an existing wave propa-

gation simulation program, as well as an assessment of the Monterey Bay ocean envi-

ronment. The goal is to select locations in the bay in which a manageable number of

resolvable eigenrays have been identified for each position. A manageable number
would be less than eight distinct ray arrivals.

Monterey Bay is a very challenging area to conduct a tomography study since there

are rapid changes in bathymetric data as one approaches the submarine canyons, and

the receivers will be in shallow water where surface and bottom bounces of the rays will

be a major factor. The bay experiences variations in temperature and salinity, both
vertically with depth and laterally between nearshore areas and the area over the can-

yons. Factors that add to the sound speed variable conditions include river runoff, sur-

face heating, convergence and divergence of internal currents within the canyons, surface

current flow and pollutant outflow. There is a wide sediment diversification in the ex-
perimental region, from mud, line sand and coarse sand to granite and sedimentary rock.

Three different oceanic periods in the area change the current flow within the bay. There

are many oceanic environmental parameters which will influence the outcome of the

tomography experiment.

An existing simulation program for determining multipath ray tracing in a medium

with range-dependent sound speed profile, variable bottom depth and bottom reflectivity

has been used as a tool to acoustically analyze the Monterey Bay situation. The pro-
gram determines the eigenrays for a specified source and receiver location, as well as the

travel time and transmission loss for each ray. A majority of this thesis will be dedicated

to a description of the simulation program, the input data used and the results obtained.

8



Ill. OCEANIC ENVIRONMENT

The December tomography experiment encompasses an area that extends from an
unnamed seamount on the continental slope--approximately 19.5 nm (36 kin) west of

Point Sur--north to Santa Cruz and including Monterey Bay. This is a region of great

divergence in bathymetry and sedimentation. There are three seasonal oceanographic

periods associated with the California Current system that affect the water movement in
the area and the plankton population. Daily and seasonal fluctuations occur in the

temperature and salinity of Monterey Bay in both lateral and vertical directions. All of
these variations may have an impact on the generation and movement of surface and

internal waves.

The purpose of the December tomography experiment is to study both surface and

internal waves. Since oceanic variations not only affect these waves but also influence

the sound speed profile(s) and acoustic ray paths of the tomography experiment, this

chapter will detail the main oceanic environmental parameters of this region.

A. LOCATION AND DESCRIPTION

1. Monterey Bay
Monterey Bay is a semi-enclosed elliptical embayment along the Central Coast

of California between latitudes 36°36.05'N and 36°58.70'N. Moss Landing is located

at the easternmost point of the bay at longitude 121°47.30'W. Since the bay is open to
the Pacific Ocean along its western side, in this thesis the western boundary will be an

artificial line between Point Pifios to the south (1210 56.20'W) and Point Santa Cruz

along the north shore (12200160'W). Based on these positions, the bay is 22.65 nm (42

kin) long and 9.50 nm '17.6 kin) wide from Moss Landing due west to the open bay

boundary. The surface area of the bay is approximately 534 kin2 , of which 81% is above

the continental shelf while the rest overlies the submarine canyons [Ref. 111.
Fresh water enters the bay via the San Lorenzo River, Soquel Creek, Aptos

Creek, Pajaro River and Salinas River. These streams have a combined mean annual

discharge of 1.85x10 m3/day with the Salinas River having the greatest contribution at

55% [Ref. 121. Precipitation and river runoff are normally greatest during the winter

rainy season. During the dry months of May through October, a sand bar blocks the

Salinas River, forcing its water to flow north and discharge through Elkhorn Slough

[Ref. 11].

9



2. Seamount

The seamount on which the acoustic source will be mounted rises to the 2700

ft (824 m) depth along a line at longitude 122'19'W and between latitudes 36°18'N and

36°24"N. The southernmost point of this unnamed seamount is approximately 19.2 nm

(35.6 km) due west of Point Sur. The continental shelf along the central California coast

is generally very narrow; as a result, this seamount rests on the continental slope.

B. BATHYMETRY

1. Continental Shelf and Slope

The continental shelf is fairly narrow south of Monterey Bay, ranging in width

from less than 1 mile at Cypress Point on the Monterey Peninsula to about 8 miles at

Point Sur and then decreasing in width to less than 1 mile at Partington Point. North

of the bay the shelf is wider, ranging from about a 5 nm (9.3 km) to 20 nm (37 km) width

south of San Francisco. The shelf in Monterey Bay is cut by submarine canyons and

the shelf bottom slopes toward the edge of the canyons. The northern bay shelf is ap-

proximately 238 kin in area and is at a maximum depth of 90 m at the canyon rim, as

compared to the shelf in the south bay that is 195 km2 and deepens to 180 m [Refs.

11,131. The maximum slope near Seaside is 2%, while offshore of the Salinas River it

is 1-1.5% [Ref. 141.

Between the continental shelf and the deep ocean floor lies the continental slope

with its steeper gradient. According to Shepard [Ref. 151, the slope in the greater

Monterey Bay region is not consistent. Just south of Monterey Bay the outer part of

the slope is set toward the northeast for 20 or more miles. Further south, the slope

spreads over a wide area. North of the bay, the continental slope is narrower, has an

average grade of 10%, and is marked by a number of submarine canyons.

2. Submarine Canyons

The most prominent feature of Monterey Bay is the Monterey Submarine Can-

yon (MSC), depicted in Figure 4 on page I1, which bi- :cts the fairly symmetrical bay

at Moss Landing. With a volume of 450 km3 , MSC has the distinction of being the

largest submarine canyon to cut the California continental slope (Ref. 161. Shepard,

Emery and Dill [Refs. 15,171 have described the Monterey Submarine Canyon system in

considerable detail, so the canyon system specification given in this thesis is based on

their work.

Monterey Canyon has an axis length of about 51 nm (94.5 km) and ranges in

depth from about 60 ft (18 in) to 9600 ft (2925 m) where the true canyon ends and the

10
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Monterey Fan-valley begins. The two largest tributaries entering MSC are the Soquel

Submarine Canvon from the north and the Carmel Submarine Canyon from the south.

After the Carme Cany on juncture, only small tributaries enter both sides of MSC.

The Soquel Canyon joins the Monterey Canyon at the 3000 ft (915 m) depth

after dropping at a rate of 7.40/1 along its 7 mile length, giving the appearance of a

hanging valley. The axis of MSC winds and meanders beyond the Soquel Canyon

juncture, especially off of the Monterey Peninsula where the floor is granite. At the

beginning of this granite ridge, at the 5000 ft. (1525 nm) mark, the axis gradient increases

to over 100%" or 100 rn/m. The Monterey Canyon is V-shaped from its head to past the

granite rock, until at an axial depth of 6300 ft (1920 m) the canyon floor becomes more

, jr _/1



irregular and broader. This is the point where a northern trough-like valley enters the

MSC.

The trough-shaped valley section of the canyon runs southwest for about 20

miles. The walls increase in height along the canyon with the northwest wall reaching

up to 1200 ft (370 m). The southeast wall is the continental slope and has a number of

valleys entering it with heads as deep as 5000 ft (1520 m).

The Carmel Submarine Canyon connects with the Monterey Canyon at a depth
of 6600 ft (2010 m). Carmel Canyon is about 16 nm (29.7 km) long with an average axial
slope of 73 m km. At its 30 ft (9 m) head in Carmel Bay, which may be considered a

drowned river valley, are several tributaries cut into granite walls along the shore with
no intervening shelf. The head has some portions with gradients as large as 30°%0, but

the base is smooth, probably due to recent erosion. After large storms, there are con-

siderable changes in the nature and thickness of the fill in the head of the canyon.

The V-shaped submarine canyon of Carmel first runs west, then winds north-

west and parallels the coast. It appears to run along a fault in soft rock that lies between

two hard rock masses. The inner portion of the canyon has an axial slope of 10% with

a drop of 1800 ft (550 in) and a floor width about 250 ft (75 m). It ends as a hanging

valley at the Montercv Canyon with no fan-valley.

Beyond the tomography experiment area at approximately 122'40'W, the high

northwest wall of the MSC drops down to a low ridge where the southeast wall leaves
the continental slope and a levee forms on top of the wall, The channel then takes a

large 13 nm (24 km) meander before returning to its general course only 2 miles down-

stream from the point where the meander began. A little farther down the channel, the

trough-like portion of MSC opens up into a modified fan-valley with convex-upward
levees bordering an eroded valley. This fan-valley is approximately' 172.5 nm (320 km)

long and 151 nm (280 km) wide with an axial gradient of 4.8 m'km, its apex at a depth

of 10,000 ft (3050 m) and base at 15,100 ft (4600 m) [Ref. 181. The fan-valley eventually

opens up into the deep ocean basin.

C. GEOLOGY AND SEDIMENTS
The coastline depression of Monterey Bay was probably carved out by wave attack

on the relatively soft sedimentary rocks in the center of the Salinas River Valley trough

[Ref. 19]. The promontories at Soquel Point and Point Pirios are rocks that were better
able to resist the erosional action.

12



The rivers that empty into Monterey Bay deposit igneous, sedimentary and

metamorphic rocks of the central and southern Coast Ranges. The igneous rocks are

Mesozoic granite, while the metamorphic rocks are of the Sur Series. Monterey, Pancho

Rico, Paso Robles and Aromas Formations contribute to the Tertiary sedimentary

rocks. [Ref. 19]

The sediment within Monterey Bay is composed of gravel, various sizes of sand, silt

and clay. The following excerpt from a report by Engineering-Science, Inc., for the

Monterey Peninsula Water Pollution Control Agency [Ref. 14] provides a succinct de-

scription of the Monterey Bay sediment.

The bottom sediments vary in size and composition according to depth contour,
as shown in Figure 5 on page 14. The nearshore bottom and beach consist of
coarse and medium sand. The bottom gradates to fine sand down to a depth of 36
m. The sides and bottom of the submarine canyon nearshore are characterized by
silt and clay which gradate into gravel and coarse sediments in the deeper parts.
The lower portion of the south bay is semiprotected from wave action by the
protruding headlands at Point Pinos. This topographical feature, which refracts and
dinishes wave energy, produces a pronounced sorting of coarse and medium sand
particles in the south bay below the Salinas River.

Monterey Canyon with its Soquel and Carmel tributaries is the predominant feature

of the tomography experimental region. MSC's axial path appears to meander and wind

in relationship to hard and soft rock zones. The tributaries enter the main canyon as

hanging valleys with trellis drainage pattern [Ref. 151. There are many large-scale slumps

along the walls of the Monterey Submarine Canyon, indicating a history of undercutting

and erosion [Ref. 141.

At the head of MSC. directly off Elkhorn Slough, there is only unconsolidated

sediment. The inner canyon cuts into unconsolidated sediment for about 8 miles, and

along the walls and floor of the canyon for this stretch is silt and clay. Based on infor-

mation from Shepard and Dill, the first rock to appear is Upper Pliocene mudrock at

an axial depth of 2100 ft (640 m). The north wall of MSC beyond this point is Pliocene

sedimentary rock which also comprises the west wall of Soquel Canyon. A box core

sample taken in Soquel Canyon yielded surface mud above rounded pebbles with shells

and fragment of siltstone. [Ref. 171

The first granite to appear in Monterey Canyon is an extension of the Monterey

Peninsula formation, and is found only along the south wall where MSC axis makes a

large bend to the south. The opposite wall is still sedimentary rock. Beyond the Carmel

Canyon junction, the MSC north wall sedimentary rocks include limestone, sandstone,

13
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mudstone and Lower Miocene foraminifora and coccoliths (organic calcareous ooze).

The south wall is just mud. [Ref. 17]

Based on the Offshore Surficial Geologic Map (Figure 6 on page 16), the Monterey

Canyon beyond Monterey Bay is sandy mud (sand < mud) until it becomes mud (silt

and clay) after the granite outcroppings. The map does not provide information on the

seamount where the source will be placed, but the area northeast and east of the mount

is mud. For most of the proposed receiver locations, the rays from the acoustic source

will initially bounce off of mud, and then a sandymud bottom, before reaching the

canyon(s).

Carmel Submarine Canyon appears to be a seaward extension of the land canyon,

with no continental shelf between the canyon heads and the beach. The main head be-

gins directly off the mouth of San Jose creek. As expected, the head fills rapidly with

sediment from the creek and is then cleaned out. This fill appears to undergo continuous

change in nature and thickness, but changes are especially noticeable after a large storm.

[Refs. 17.21]

The Carmel Canyon is narrow, V-shaped and cut in granite. The steep rock walls

are mostly granite with a smooth base. The floor is sandy or rocky. Near the juncture

to the Monterey Canyon, Carmel Canyon's east wall is composed of weathered granite,

while the west wall has Mid-Miocene sedimentary rock. [Refs. 17,211

D. CURRENTS

1. California Current System

Flowing along vestern North America in a south to southeasterly direction is

the eastern boundary current called the California Current. This current brings

Subarctic water to California, which is low in both temperature and salinity but high ir.

nutrients. The California Current is wide, shallow and slow, extending maybe 375-540

nm (700-1000 km) off the coast, down to a depth less than 1650 ft (500 m), and flows

at a speed that is less than 25 cm,'sec. [Refs. 11,141

A subsurface current, the California Countercurrent, moves warm and highly

saline Equatorial Pacific water north along the coast from Baja California to Cape

Mendocino (41*N latitude). The core of this current is at about the 650 ft (200 m)

depth, extending 25-55 nm (50-100 km) offshore, with a velocity of less than 22 cm.'sec

north of 30°N latitude. In the fall or early winter, the California Countercurrent sur-

faces and becomes the Davidson Current. This surfacing of the current, which occurs

somewhere between British Columbia and Point Conception, now provides for another
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surface current to move along the coast inward of the California Current. The Davidson

Current, flowing between 16 and 47 cm'sec, is found as far as 43 nm (SO kin) offshore.

[Refs. 11,141

Associated with the California Current system are three oceanic seasons, desig-
nated the Davidson period, the upwelling period and the oceanic period. These periods

appear to be directly affected by wind speed and direction.

The Davidson period generally occurs between November and February, when
a semi-permanent Pacific high pressure cell weakens, moves southward, and is replaced

by an intermittent low pressure cell. The winds are very light in the fall, and from the

west or southwest in the winter. The Davidson Current surfaces and is pushed toward

the coast, due to the wind direction and Coriolis force. This water converges along the

western North America coast and then sinks, resulting in nutrient-poor water along the

coast. [Ref. 11]
From about February to July, the winds are strong and blow out of the north

or northwest. The surface water along the shore is carried away from the coast by the

Coriolis force, based on the wind direction. Upwelling occurs as subsurface water rises

to replace the vacated surface water. The water level is generally a little higher away
from the shore, where the surface water has been pushed, rather than close to shore,

where the subsurface water has risen. The upwelled water is cooler but high in salinity

and nutrients. Upwelling occurs at a rate of 0.7-2.7 m/day and is found as far as 27 inn

(50 kin) offshore. [Refs. 11,14]

At the end of the upwelling period, the regular current pattern collapses into

irregular eddies in connection with the wind abatement. Smethie [Ref. 11] indicated that

during this oceanic period "... the sea surface slopes downward, isotherms slope upward

toward the coast, and the geostrophic current flows southward." With the irregular

eddies, the currents are usually weak and variable.

2. Monterey Bay Current Flow

The surface water in Monterey Bay appears to originate from three water types

[Ref. 12]:

I. recently upwelled water;

2. freshwater from the rivers and streams; and

3. warmer, low-nutrient water which has been warmed at the surface.

The bay currents appear to be regulated by the oceanic seasons. Figure 7 on page 18

illustrates the seasonal surface current flow within Monterey Bay.
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Engineering-Science, Inc., in their report to the Monterey Peninsula Water

Pollution Control Agency [Ref. 14], indicated that during the upwelling period, the bay

flow is dominated by the southward flowing offshore current. They cited Broenkow and

Smethie's [Ref. 12] conclusion that the offshore waters enter mostly from the southwest

up the Monterey Canyon, separate, and then flow over the northern and southern con-

tinental shelves in the bay. Clockwise and counterclockwise gyres over the shelves re-

suit, with speeds anywhere from 2.5 to 26 cm'sec, but the predominent flow is north and

northeast. Even though in the oceanic period the currents become irregular and the

wind is light, the bay current pattern continues the pattern established in the upwelling

period, except that irregular eddies form over the north shelf. The nearshore ocean

currents shift from southerly to northerly, and pass through Monterey Bay as a large,

open eddy. However, the bay currents circulate irregularly and slowly.

Broenkow and Smethie [Ref. 121 studied and reported on the Monterey Bay

surface circulation and water replenishment during a 27 month period in the mid 1970's.

As stated earlier, offshore water predominantly enters up the the canyon into the bay,

but sometimes flows directly from the west. The replacement time for the north and

south bay waters is between 2 and 14 days, during which time their characteristics can

be modified by air temperature at the surface, photosynthesis, sewage outflow and

freshwater river discharge. The water parcels had longer paths near the shoreline, and

therefore, had longer replenishment times than the water over the canyon. During the

period of October 1972 through March 1973, the largest volume of bay freshwater re-

plenishment occurred in February with an estimate of 86x10m 3. October had the

smallest volume at 2xl06 m3. During most of the year the freshwater lens is above the 10

m depth mark, except for January and February when about / of the freshwater falls

to a depth between 10 and 30 m.

E. TEMPERATURE AND SALINITY VARIATIONS
The temperature and salinity within Monterey Bay appear to coincide with seasonal

oceanic periods associated with the California Current system, amount of river runoff

and with variations in the wind. Figure 8 on page 20 shows the mean variation of

temperature and salinity at the mouth of Monterey Bay, and at a point 21.5 nm (40 km)

south of the bay, during the years 1950-1962. On any given day the temperature

throughout the bay is not uniform, varying from I to 3°C for a particular layer, while

the salinity is laterally consistent [Refs. 12,141. The surface waters in the north and
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south bight areas are generally warmer in the spring and sumer than the m id-bay wa-

ters. Also, the maximum temperatures often occur after days of southerly winds. The

lowest salinity readings generally occur with the highest temperatures for the year, or

during the period of maxirium freshwater runoff. The late upcelling period yields the

highest salinity levels.

Each seasonal oceanic period greatly affects the temperature and salinity of the

Monterey Bay water, In the late fall and early winter, the sinking of nearshore waters

during the Davidson period results in a fairly deep layer where the temperature is uri-

form, with little variance in surface water temperature over the entire bay. The 80 C

isotherm deepens and all the isotherms slope deeper towards the coast. Seasonal rainfall,

together with large river runoff, combine to dilute the surface water to measurable

depths, which brings the salinity in this diluted layer down to around 33. 40,6 and vari -

able. Late in the winter the southerly winds die out, and strong northeasterly winds

arise. This is the onset of the upwelling period. (Ref. 141

During early upwelling the cool subsurface water replaces the vacated surface water,

bringing the surface temperature down to its lowest yearly value of around 10-I1 0*C.

The south arid north bights are warmer than the middle of the bay, which lead to a
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variation of surface temperature by greater than 3°C. The isotherms rise, so the 8°C

isotherm is usually above the 100 m mark during this period. Even with intermittent

upwelling in the summer, the water temperature remains cool; however, the maximum

salinity level occurs near the end of upwelling in the July timeframe. During the entire

upwelling period, the salinity is high because the rising subsurface water has a high

salinity value. [Ref. 141

The oceanic period generally takes place from July to November. The surface tem-

peratures ascend to their warmest yearly values of 13-16°C, but the temperature varies

horizontally throughout the bay by 2-3°C. The 8°C isotherm drops, and all of the

isotherms slope upward toward the coast. There is usually a sharp thermocline within

the first 165 ft (50 m). Since the upwelling has ceased during this period, the salinity

level first declines and then levels off, due to the ingress of offshore water that is lower

in salinity. [Ref 14].

F. TIDES

The tidal pattern along the west coast of the United States is classified as a mixed
semidiurnal tide. As shown b': the tidal curve of Figure 9 on page 22, two high tides and

two low tides occur each day; however, the high tides are of different heights with respect

to each other. The same is true for the two daily low tides. In Monterey Bay, the tidal

range between the lower low tide and the higher high tide is on the order of 2 m [Ref.

21], with the tides arriving in the order of lower low tide, lower high tide, higher low tide

and higher high tide in a 24-hour day cycle.

G. SURFACE WAVES

The waves that arrive in Monterey Bay hit all points of the shoreline, due to re-
fraction and defraction of the waves as they wrap around the bay. The bay experiences
two general types of waves. Winter waves occur usually from November to March and
have a short period of 8-10 seconds. These swells come out of the northwest and are the

product of local storms or may originate from as far away as the Gulf of Alaska. Winter
waves severely erode beaches because the short wave action keeps the beach face satu-

rated with water and the swash cannot permeate the sand. Instead, this type of wave

returns as a backwash, carrying much of the beach sand with it and depositing the sand

on a sand bar at a typical depth of 30 ft (9 m).

Summer waves have a longer period of 14-16 seconds, arrive at Monterey Bay from

the southwest, originate in the Antarctic region, and have flattened out due to the long

travel time. These waves move the sand bar deposit back to the shore, so the beach
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widens. The longer wave action allows the beach face to dry out a little between waves,
so the swash permeates the sand and there is no backwash to carry the beach away.

Monthly and annual reports on the surface wave and current conditions along the
California coast are distributed through the Coastal Data Information Program (CDIP),

a cooperative program by tle U.S. Army Corps of Engineers and the California De-
partment of Boating and Waterways [Refs. 22,23. The data for these reports are gath-
ered by four types of ocean measuring equipment:

I. four gage slope array for nearshore direction and energy measurement;

2. surface following buoy for deepwater wave energy measurement;

3. single point gage for nearshore wave energy measurement; and

4. single point gage for deep ocean wave energy measurement.

A station of particular interest in connection with the upcoming tomography ex-

periment is Station 8, North Monterey Bay buoy, at latitude 36°56.9'N, longitude

122°25.1'W and depth of 320 m. Figure 10 on page 23 and Figure II on page 24 are
two pages taken out of the December 1987 report [Ref. 221. The data page for a period
of time from 9 December to 19 )ecember 1987, exactly one year prior to the December

1988 tomography experiment, provides numerical information on significant wave

height, total amount of wave energy and the percent of energy per band period. Note
the high wave energy level on 16 December 1987, with the greatest energy occurring in

the period between 8-14 seconds. The wave energy spectra of Figure 11 on page 24
visually illustrates this surge. In all likelihood, a storm passed through the area on this

date, kicking up the waves.
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N ORTH MONTEREY DAY BUOY
DEC 1987

PERCENT ENERGY IN BAND
(TOTAL ENERGY INCLUDES RANCE 2048-4 SECSI

PST SIG HT TOT EN BAND PERIOD LIMITS (SECS)
DAY/TIME (Cm. ) (CM SO) 22+ 22-10 18-16 16-14 14-12 12-10 10-8 9-6 6-4

9 1501 324 4 6577 5 0 3 0 5 9 1 23 8 25 3 It 4 19 4 7.7 4 I
9 2100 357 4 7993 0 0 2 0 3 1.5 25. 1 38 3 14 9 10 7 6 3 3 1

10 0300 3238 7 7170 8 0 1 0 1 1.9 11 6 30 2 25 0 20 1 7 9 3 5
10 0906 309 3 5979 7 0 4 0 4 1 4 19 0 30 9 22 2 13 8 8 4 4 0
10 1523 363 2 8246 5 9 2 5 4 3 0 14 9 27 7 20 6 9 9 7 4 2 4
10 2101 490.2 15016.1 2.1 16.3 13.2 20.1 15 5 13 2 6 8 7 3 6 0

11 0300 461 5 13308 6 0 a 7.0 19 2 11.9 12 8 11 3 17 1 13 9 6 5
11 0900 461 7 13322 3 0 4 4 3 14 3 14.5 16 7 21.3 16 8 8 2 4 1
11 1503 470 4 13829 8 1 1 2 3 83 11.9 20 6 24.8 15 7 9 8 6 0
11 2102 455.9 12990 1 0 3 1.7 9.3 16 4 20 0 20 4 189 9,9 4.5

12 0302 449.5 12626 9 0,2 0 3 2.1 10 5 36 9 22 5 15 1 7 9 5 0
12 0902 414 0 10714 6 0 3 0.3 1.7 3.8 19 0 34 2 19 1 16 0 7 1
12 2058 471.4 13891.1 0 2 0.2 0 4 7.2 22 2 20 2 22 6 19.8 7.6

13 0302 391.7 9590.0 0 1 0 1 0 2 6.0 21.0 23.4 21 1 19.1 9.5
13 OQC2 370 2 8567 1 0 2 0 2 0 3 3 3 10 5 28.4 21 5 24 2 11 8
13 2102 207.5 2690 9 0 2 03 0 3 1.0 11 1 26.1 16 4 17.0 28 A

14 0302 187 4 2194 2 0 1 0.1 0.3 I 2 12 7 18.2 36.5 16 2 15.2
14 0901 133.5 1113 2 0 1 1.0 1.2 4.5 22.3 13 9 23 5 19 9 14.2
14 2059 140 8 1239.3 0 2 1 6 23.3 11.4 12.8 28 6 12.9 6 0 3.7

15 0251 136 4 1162.4 0 2 0 6 18 4 26 4 13.9 7 A 6 5 4 0 23 3
15 0857 220 1 3027.9 0.3 0.2 3.0 9.5 7.4 3 9 1 5 37 6 37 I

16 0255 722 4 33523.8 0.3 0.3 0 4 2.5 23 3 41 5 17 4 9 7 4 9
16 0955 597 2 22293.1 0 2 0.2 0 9 5 4 26.7 29 0 18 9 13 3 7 0
16 1501 520 0 16997 0 2. I 1 1 0 7 I 9 5 9 3m U 27 3 13 , 9 a
16 2057 347.8 7559.9 0 1 0.1 0.5 1.6 11 4 31 2 30 6 15 9 9,0

17 0257 309 3 5981.0 0 1 0.1 0 3 2.0 9 0 34 4 40 0 10. 1 5 5
17 0957 294 3 5414.7 0 1 0 I 0 3 1.8 13 6 32 q 35 3 12 1 4 1
17 1459 285 4 5091.9 0 6 0 5 0 5 1 & 20 1 36 4 20 9 13 6 6 4
17 2059 265 3 4400 3 0 2 02 0.2 1.4 15.8 34 0 23 1 16 9 8 9

IS 0259 252 5 3984 2 0 I 0 2 0 3 1 1 6 7 38 3 28 9 16 4 9 5
19 1459 207 0 2677,9 0 2 0 7 0.3 0.7 2 6 26 7 30 8 26.5 11.9
18 2059 228 9 3270.9 0.7 2.9 0.7 0 9 1 9 15A 44.7 21 6 11.9

19 0259 269 4 4537 2 0.2 10.5 4.5 0 4 1.7 9 9 34.3 26 2 13 9

Figure 10. North Monterey Bay buoy, December 1987, wave energy data. [Ref.

221
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Based on a chart from the CDIP Annual Report [Ref. 23], the October through

December 1987 period had the highest average wave height. There was a 580 seasonal

probability that the significant wave height would exceed 2 m, 32% for 3 m and 13% for

significant wave heights greater than 4 m. These conditions for December 1987 may not

be representative of the ocean situation that will occur during the tomography exper-

iment. The important point is that the CDIP report for December 1988 will be an ex-

cellent source of surface wave information, in corroboration with other experimental

measurements, when the tomography data is analyzed for determining the surface wave

spectrum.

H. INTERNAL WAVES AND CANYON CURRENTS

As defined by Clay and Medwin [Ref. 31, internal waves "... are volume gravity

waves having their maximum vertical displacement amplitude at a plane where the den-

sity is changing most rapidly with depth or between two water masses of different den-

sities." A number of studies [Refs. 12,21,24,25], have presented evidence that the

Monterey Submarine Canyon commonly has internal waves of a semidiurnal nature.

The results of a conductivity -temperature-depth (CTD) time series for five stations in the

Monterey Canyon have indicated that these internal tides had heights of 50 m to 120 m

[Ref. 241.

Along the bottom of the Monterey Canyon the currents are strong and fluctuating,

with speeds up to 50 c-n:s [Ref. 121. These flows are generally in an upcanyon direction,

but in truth they appear to have almost no connection with the canyon axis. Cross

valley flows are a predominant feature along MSC [Ref. 21], but there has not been a

determination as to the cause of this phenomenon. Tides and wind direction appear to

have no relationship to the cross currents [Ref. 21].

Current-meter data (Table I on page 26) from MSC provide information on the

internal tide up- and downcanyon reversal cycles. Estimated upcanyon advance rates for

an internal wave in the Monterey Canyon is 25 cm,' sec between 7.5 km and 8.5 km away

from the canyon head (depth of 400-375 m), and 38 cm,'sec from 7.5 km to 2 km up the

canyon (375-150 m depth) [Ref 25].

Based on small amplitude wave theory, a long wave will increase in height as it

moves into shallow water, but its period will remain constant. As an internal wave ad-

vances up the canyon towards the head, where it is narrow and shallow, the wave energy

may become focused and the wave height increase, taking on the appearance of an

internal tidal bore. This bore "... is characterized by a rapid increase in temperature at
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a fixed position, in which the advancing water forms an abrupt front." An internal bore

at the MSC head has been indicated by thermistor data showing a 3.8*C hr temperature

change. [Ref. 24]

Table 1. UP- AND DOWN-CANYON REVERSAL CYCLE DATA FOR
MONTEREY CANYON. [Ref. 211

METER POSITION AVER- DIREC AVERAGE SPEED (cm'sec)

HEIGHT AGE TION
DEPTH ABOVE CYCLE OF NET UP DOWN CROSS

(m) FLOOR LENGTH FLOW
(m) (hrs)

155 3 7.2 down 9.2 10.3 4.0

155 30 4.4 up 8.5 6.7 3.7
357 3 8.8 down 13.8 11.4 5.2
3S4 3 8.0 up 12.1 13.1 5.6

1061 3 6.5 up 19.7 16.6 15.3
1061 30 6.5 up 20.3 26.0 9.8
1445 3 8.7 up 1 3.2 11.1 5.8
1445 30 10.0 up 13.6 10.0 4.2

Broenkow and Smethie [Ref. 12] conducted a 24 hr time series study at two stations

near the head of the Monterey Submarine Canyon. They observed internal tidal oscil-
lations with the same period as the surface tides, but approximately 180 ° out of phase.

The wave height was 80 m at a depth of 130 m, while at 250 m deep the height of the
wave was about 120 m.

The oscillating internal tide produces a volume convergence during ebb tide and di-
vergence at flood tide. During volume convergence, the denser canyon water rises above

the rim and settles on the shelf. When the internal tide reverses and goes downcanyon,

the dense canyon water on the shelf starts flowing back into the canyon; however, as a

result of mixing, surface heating and inertia, the edge of this dense water remains behind

on the shelf. Figure 12 on page 27 illustrates volume convergence and divergence for

13 and 14 September 1979. A 20 m thick lens of 12'C water flowed out of the canyon

as the internal tide rose, and remained on the north shelf when the rest of the dense

water fell back into MSC at tidal reversal. This lens was estimated to affect an area of

26 kn'. Data indicate that the volume convergence is about 240x106 m3'8 hr, which
would put the speed of water crossing the rim of MSC at about 13 cm's. [Ref. 241
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Internal waves along Carmel Submarine Canyon appear to follow the axis, unlike

the situation in Monterey Canyon. The currents at 3 and 30 mi above the floor showed

very similar characteristics. Current-mecter data (Table 2 on page 27) is given for Carmel

Canyon's up- and downcanyon reversal cycles for internal tides. Interestingly, almost

all of the northern cross canyon flows occurred at ebb tide. [Ref. 211

30 2 6 0

30) 30
303

90 100

120 -120

150, to 15 1 o ,b

Figure 12. Temperature distribution (*C) at (a) high, and (b) low internal tide,

Monterey Canyon axis, 13-14 September 1979. [Ref. 24]

Table 2. UP- AND DOWN-CANYON REVERSAL CYCLE DATA FOR
C'ARMEL CANYON. [Ref. 211 ____________

NI E'T1ER POS IT IN \ AE- DRC AVERAGE SPEED (cm'lsec)

HIEIGHIT AGE DIRL-
LENGTH1 AOE C LE F NET UP DOWN CROSS

(i) FLOOR L NG EIILOW
(111) (hirs)

156 3 3.6 down 5.0 7.6 4.o

205 3 4.1 down 12.4 14.5 4.3

348 3 5.1 down 15.8 19.5 7.9

1070 3 10.2 down 9.6 15.0 4.4 _
14415 3 11.7 down 11.3 10.3 5.2
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IV. THE MULTIPLE PROFILE RAY-TRACING PROGRAM (MPP)

A. DESCRIPTION

The analysis tool that was the basis for the selection of receiver locations in

Monterey Bay for the December 1988 tomography experiment is called the Multiple
Profile Ray-Tracing Program (MPP. Originally written as five separate programs by

Ocean Data, Inc., for the Office of Naval Research [Ref. 261, the MPP program has

evolved to its present form through extensive modification by John Spiesberger of the
Woods Hole Oceanographic Institution. This program computes transmission loss and

arrival structure for the eigenrays that it determines will arrive at a fixed receiver, from

a source at a fixed depth. The ocean is modeled with a range-dependent sound speed

profile (SSP), variable bottom depth and bottom reflectivity. Transmission loss is cal-

culated under a variety of options, including

I. asymptotic treatment of caustics with rms or fully coherent addition of the two
paths in the interference region of the airy functions;

2. surface-image interference at the source; and

3. source and. or receiver vertical directivity patterns.

Output that is generated, based on a successful finding of eigenrays, is

. all input data;

2. ray trajectories at arrivals:

3. sequential signature groups;

4. precise angle, time and intensity at a limited number of range points using quad-
ratic interpolation;

5. transmission loss versus range;

6. plot of eigenray path from source to receiver; and

7. stick plot of transmission loss versus arrival time for the eigenrays.

B. PROGRAM FLOW

Figure 13 on page 29 is a block diagram of the program flow, with input files shown

on the left side of each routine and output files on the right side of the routine block.

The command file runart is called upon to execute the routines writefiles2art, mppl,

mpp2cout (1st pass), g post63 and mpp2cout (2nd pass), after an input data file has
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Figure 13. NIPP block diigrami iiitli Input and output f'lies.
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been created by the user. The routine nrayfil2 is used to generate the ray tracing and

stick plot graphs from binary data in files TAPE16.DAT and TAPE20.DAT.

Writefiles2art is a small routine that separates and reformats the user-generated in-

put data into six different files. These six files are accessed by the other programs that

runart executes. Zofth is another short routine that plots initial angle versus the depth

at which its ray path arrives at the receiver location (range). Most of these rays do not

arrive at the receiver, i.e., they are beyond the the vertical miss allowance. For the

simulation, a ray has to come within a vertical distance of 15 m from the receiver, either

above or below. Since the receiver was placed 1 m above the floor, the simulated vertical

miss is 15 m above and I m below the receiver. Post63 is the eigenray post-processor

routine. It determines the eigenrays' arrival angle at the receiver, creates file

TAPE16.DAT which is used by nravfil2 to generate the ray trace graph, and produces

a printout enumerating the eigenrays in three sorted lists, based on increasing travel

time, decreasing initial angle and increasing transmission loss. The function and logical

flow of the four main programs, used to determine and plot the eigenrays at a given re-

ceiver location, will be described in more detail.

1. MPPI

Mppl is the second routine called by the command file runart. Its purpose is

to determine the sectors within the region between two range-stipulated input SSPs.

These sector determinations are required for calculating ray paths in mpp2cout. M

also uses the input bottom data to assemble the bottom profile and tabulate the bottom

loss as a function of grazing angle in each of the range domains. If a loss function is

specified as "modified Rayleigh", the program tabulates it on a variable mesh to yield

accurate values by linear interpolation.

Sectors can be either triangular or rectangular. Rectangular sectors ease the

computational crunching of the ray path determination logic, and speeds up the com-

puter time. Sector determination begins with a comparison of the sound speed at the

very bottom of the first SSP (sspl) versus the very bottom of the second SSP (ssp2). If

sspl equals ssp2 at the bottom, then a horizontal line is attached between the two

points, and the next higher profile values for sspl and ssp2 are compared. If the two

values are not identical, then a triangular sector will be specified. Once one sector has

been determined to be a triangle, the entire upper region will be triangularized, even

though all shallower points of the two SSPs may match. the only way to have all rec-

tangular sectors is to have completely identical SSPs.

30



2. MPP2COUT (lst pass)

Mpp2cout (1st pass) is the first half of the eigenray processing programs. The

main program is very small, but it calls seven subroutines that in turn call other sub-

routines. The first subroutine, ctll, inputs data and takes care of initialization. The
program then loops through the rest of the subroutines, until it equals the number of

passes that the user's input file stipulated as a maximum number of passes. The first

subroutine in the loop, re locates the sound speed triangular section that encom-

passes the receiver.

The next subroutine, ctl2. is the longest and accomplishes the most. After in-
itialization, it determines the initial velocity sector for the ray and the direction that the

ray will go. As the ray travels toward the receiver, ctl2 computes the ray intersections

with sector boundaries (top, bottom and sides), stores parameters and checks for bottom
reflections. Next, it calculates the spreading factors and performs a check for caustics.

If there is a caustic, it locates the caustic for both curved and straight rays. Continuing,

this subroutine updates the intensity derivatives for bottom reflection, surface reflection,

sector crossings and region crossings, and the transmission loss is then updated. After

arrival information is stored, then the ray is checked to see if it should be cut. The fol-

lowing are reasons to cut a ray:

1. ray has reached maximum range (ray range > target range);

2. ray angle too steep (ray has reflected at an angle > ±85');

3. max bottom reflections exceeded (as stipulated by the user); and

4. max turning events exceeded (the total number of bottom reflections, bottom hor-
izontals, surface reflections and surface horizontals have exceeded the maximum
number of turning points as stipulated by the user).

The rays that were not cut are now sorted in increasing angle order by the sub-
routine sort6l. The se( ond biggest subroutine, iterat. then determines the relationship

of the uncut rays with the receiver at the target range. It also extrapolates new rays and

checks the angle loss tolerance for these new extrapolated rays. All of the uncut rays

have one of the following ray: target relationships:

1. good bracketted source depth (I DENT= 2), where a pair of rays vertically surround
the receiver;

2. good diffraction field (IDENT= 3), where a pair of rays do not bracket the source
but they appear to be within the receiver's focus or convergence region;

3. badly bracketted source depth (IDENT= 4), where a pair of rays fail the criteria for
the above relationships;

31



4. bad diffraction field (IDENT= 5), where the ray pair appear to be within the re-

ceiver's focus, but they are outside of the time tolerance;

5. good bracketted source, two eigenrays (IDENT= 6);

6. badly bracketted source, two eigenrays (IDENT= 7); and

7. bad signature pair of rays (IDENT= 8), which is the most common ray/target re-
lationship, resulting from the ray pair being too close to each other.

Mpp2cout concludes by calling subroutines clean, which removes the deletable angles

from file TAPE61, and dump63, which prints out the ray status for all uncut rays. The

program then increments the pass number counter and starts all over again.

3. MPP2COUT (2nd pass)

The second pass of mpp2cout is the eigenray plotting run and is logically very

sinilar to the first pass of mpp2cout. It is executed after post63. This run begins with

the "good bracketted source" and "good difliaction field" rays that were first identified

in mpp2cout (1st pass) and post-processed in post63. A trace for each of these rays is

produced. The following information is provided in the trace at every surface reflection,
bottom reflection, refraction and caustic along each ray's path:

1. range (kin).

2. depth (na),

3. angle (deg),

4. time (sec),

5. loss (dB),

6. number of caustics,

7. arrival number,

8. number of surface horizontals (refractions),

9. number of surface reflections,

10. number of bottom horizontals (refractions),

11. number of bottom reflections, and

12. total number of turning points.

Another main difference between the two passes is that this second pass gener-

ates the file TAPE20.DAT. used by nravfil2 to graph the ray plots and stick plots. For

each coordinate on the ray trace, not just the turning points, TAPE20.DAT stores the

range (kin), depth (kin), angle (radians) and sound speed (kin'sec). In the beginning of

this pass, angle values are read in from file TAPEI7.DAT. Otherwise, mpp2cout (2nd
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pass) goes through the same logical flow as mpp2cout (1st pass), and is the final eigenray

processing program executed by the command file runart.

4. NRAYFIL2

The routine nravfil2 is called by the user after the command file runart has ex-
ecuted all of the eigenray-determining programs and eigenrays have been identified.
Since nravfil2 is used to generate the ray tracing and stick plot graphs, there is no reason
to execute this routine if there are not any eigenrays. This routine should be run im-

mediately after the programs executed by runart determine one or more successful
eigenray(s), or else rename TAPE16.DAT and TAPE20.DAT files so that they can be

accessed later by nravfil2.

There are six options that can be accessed in this program: 1. make, 2. inspect,

3. rayplot, 4. stick, 5. add, and 6. delete. "Make" has to be the first option specified
since it generates two files of ray data that is used by the other options. It requires as

input the files TAPE16.DAT and TAPE20.DAT that were generated for the last exe-
cuted MPP run. The output file name has to be all capitalized and end in .RAY. If, for
example. the user specifies the ray file name as RCVR2.RAY, this "make" option creates
a file with that name and another file with the name RCVR2.LEN. Both are needed for

the other options.

"Inspect" allows the user to inspect the rays and to store all of the ray coordi-
nates in the file R_,,YCOOR.DAT. These ray coordinates are used to graph the ray
trace, and include the values of range, depth, angle and sound speed for every specified
point on the ray trace graph. "Add" allows a new ray to be added to an existing ray file,

while "delete" removes an unwanted ray from the ray file.

The last two options plot graphs. "Rayplot" will plot the ray trace of one or
more rays, based on the inputted ray file name. For the first ray file stipulated, a list
of all the initial ray angles are displayed on the screen, after the user has specified the

graph dimensions and titles. The user indicates the ray angle that is to be plotted, and

has the option of plotting more rays on the same graph or stopping. Another ray file
can be accessed, and those angles can be added to the graph with the first ray file angles.
The graph data is placed in the NRAYPLOT file, which is then plotted. The ray traces
in Appendix B were produced with this option. "Stickplot" graphs the transmission loss
for all the rays that are contained in the user-specified ray file. The only input options

are graph dimensions, graph title and ray file name.
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V. MPP INPUT/OUTPUT

The focus of this thesis is to recommend the locations for six receiver hydrophones
that will be used in the December 1988 tomography experiment, and to provide eigenray
and travel time information related to each site. The recommendations will be based on

the results from two-dimensional, range and bathymetry dependent, ray tracing com-
puter simulations for various locations in and around the bay, as well as a preliminary

assessment of the oceanographic and geo-acoustic environment of the region. This
chapter will identify the possible receiver locations that were addressed, the input pa-

rameters used in the MPP computer program, and the results from the simulations.

A. SIMULATED RECEIVER LOCATIONS

Seventeen locations for possible receiver hydrophone placement were tested using
the MPP program. These points are on the continental shelf surrounding the Monterey
Canyon. from southwest of Santa Cruz to Pacific Grove, excluding the Monterey-
Seaside nearshore area where a direct ray from the Point Sur seamount (source location)
could not reach. All of these sites are shallower than 300 ft (100 m), and the

hydrophones in the simulation were placed I m above the sea floor.
All of these locations were selected for specific reasons. Figure 14 on page 35 de-

lineates the position of these receiver locations in the area of Monterey Bay, while
Table 3 on page 36 provides the specific position. Any eigenrays arriving at receiver
numbers 6 and 7 will have traveled through Carmel Canyon and the trough of Monterey
Canyon. Sites 4, 8 and 15 are in the general area of the Monterey Canyon head, where
internal waves are at their highest amplitudes. Receiver 5 is located on the edge of the
south wall of Monterey Canyon, and was selected for comparison between rays going
through the narrow part of MSC and those that do not. Any eigenrays that receiver 14

would pick up have traveled right down the Monterey Canyon in the granite wall for-
mation. Locations 3, 9, 10, 12 and 13 surround the Soquel Canyon. Finally, receiver
positions 1, 2, 16 and 17 are out of Monterey Bay and would have eigenrays that trav-
eled through the trough of Monterey Canyon, where the floor is wider.
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Table 3. SIMULATION RECEIVER POSITIONS, RANGE AND DEPTH.

RCV LOCATION LONGI- LATITUDE RANGE DEPTH
NO TUDE LATITUD (kmi) (m)

1 SW of Santa Cruz 122 009.60'W 36053.10"N 59.35 97.76

2 SSV of Santa Cruz 122 005.00'W 36051.20'N 57.99 90.44

Head of Soquel 121 057.35'W 36051.75'N 63.87 90.44
Canyon
W of Moss Larding,

4 Monterey Canyon 121 052.20'W 36048.65"N 63.49 90.44
north wall

W of Salinas River
5 mouth, Monterey 121 054.101V 36045.00'N 56.51 90.44

Canyon south wall

6 NW of Point Pifios 121 058.3,5ANW 36039.25"N 44.43 90.44

7 WSW of Point 121 059.25'W 36037.60'N 42.02 50.21
Pifos

8 W of Pajaro River 121051.00W 36050.00'N 67.49 54.00
mouth

9 ENE of Soquel 121 054.90'W 36057.00'N 67.15 48.38
Canyon head

10 N of Soquel Canyon 121 057.40"W 36 052.75'N 68.39 44.72
10 head 115.0V 3027"

North wall, west of
11 Soquel Canyon 122°01.55"V 36048.80'N 56.04 90.44

juncture

12 North wall. Soquel 121 059.65"V 36050.25"N 59.72 90.44Canyon

13 East side, Soquel 121°57.90"W 36"48.65"N 58.53 90.4413__ Canyon juncture 121057.90'W 3485N.3 94

North wall of

14 Monterey Canyon, 121 055.00'W 36"48.25'N 60.36 90.44prior to Soquel
Canyon juncture

15 Near head of 121150,20V 36*47.90'N 64.36 90.44Monterey Canyon

16 SW of Santa Cruz, 122 003.50\V 36054.50'N 66.20 45.00
nearshore

W of Santa Cruz, 1220 08.17"W 36"56.50'N 67.47 48.93
nearshore
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B. INPUT

For each receiver location of interest, an input file was created that provided the

MPP routines with the following information:

1. range and depth of source;

2. range and depth of receiver;

3. minimum and maximum angle range for the eigenray search;

4. number of initial rays;

5. number of turning points and bottom reflections;

6. sound speed profile (SSP) data;

7. bathymetry data from source location to beyond the receiver location; and

8. bottom reflectivity values, i.e., loss for a given angle.

MPP sets limits on some of the input variables. For instance, the maximum number

of initial rays is 80, the maximum number of points in the SSP is 100, the maximum

number of bottom loss domains is five and the maximum number of bathymetry points

is 62. The source and receiver were placed 1 m above the floor; otherwise, negative ini-

tial rays would have been deleted immediately. All of the individual input files contained

exactly the same information on the source position, SSP, initial rays, turning points and

bottom reflection data. The source and receiver were always placed 1 m above the sea

floor.

A 15 December 1987 sound speed profile (Figure 15 on page 39), generated by a

computer system called ICAPS [Ref. 27], was used for both SSP curves in each individual

file. The ICAPS-generatcd sound speed profiles for an approximate source position

(36°21"N, 122°18'W) and a general receiver position in the bay (36°50'N, 121°51'W)

were identical down to a depth of 360 m, which was the cutoff for the receiver area SSP.

The MPP computer routines triangularize all sectors between two inputted sound speed

profiles if the SSPs do not begin at the same maximum depth, which complicates the ray

tracing calculations and requires much longer processing time. Since it was advanta-

geous to have rectangular sectors for the SSP region, the deeper ICAPS SSP (source

location) was specified for both the source location and for a spot about 2 km beyond

the receiver location. This did put the profile through the sea and shelf floor in all areas.

The exact values used for the sound speed profile in the MPP compute'r simulation are

specified in Table 4 on page 40.
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Each receiver location's input file contained the following parameters with associ-
ated values:

1. s6urce depth = 831.1 m and source range = 0.0 kin;

2. minimum and maximum angles allowed in eigenray search = -15.0 to .10.0, -10.0
to -5.0, -5.0 to 0.0, 0.0 to 5.0, 5.0 to 10.0 and 10.0 to 15.0 degrees (six separate
computer runs);

3. number of rays shot out from source on first pass of search = 31;

4. maximum number of passes allowed for ray search = 100;

5. total number of turning points or reflections allowed = 350;

6. maximum number of bottom reflections = 100;

7. number of loss domains = 1; and

8. bottom loss at angles of 0 and 90 degrees = 0.0 dB.

This data facilitated a "best case" simulation in which there was no bottom loss when

rays bounced off the sea floor and canyon walls (total reflectivity), while allowing for a

large number of surface and bottom reflections.
The range value for each receiver was determined by a computer program that used

the longitude and latitude of both source and receiver positions to determine the range

and bearing from source to receiver. This program included a correction for earth cur-
vature. Table 3 on page 36 gives the range and depth for all 17 locations.

Bathymetry values along a straight line from source to receiver were manually ex-

tracted from a NOAA ocean bottom contours chart [Ref. 28]. The selected depths were

generally contour rings of some multiple of 100 fathoms. Every once in a while a sig-

nificant reading (based on the author's subjectivity) that wasn't a contour ring was in-

cluded in the bathyrnetry data to provide a more relevant and accurate bottom profile.

The maximum number of bathymetric points that could be entered per input file was 62,

but none of the files contained more than 50 points. The distance of each bathymetic

point from the source location was calculated by using linear interpolation between

source and receiver positions. All points beyond the receiver were considered to be at

the same depth as the receiver location for this simulation. The program appeared to
prefer this little idiosyncracy, but the eigenray results were not affected. The

bathymetric data for all 17 receiver hydrophone sites are provided in Appendix A.
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Figure 15. Typical December sound speed profile for Monterey Bay.
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Table 4. DECEMBER SOUND SPEED PROFILE VALUES FOR MONTEREY
BAY REGION.

SOUND SPEED SOUND SPEEDDEPTH (i) (m s) DEPTH (i) (m's)

0. 1509.46 321. 1487.08

16. 1509.40 327. 1486.41

43. 1509.85 357. 1485.00

58. 1500.48 390. 1485.18

65. 1497.58 438. 1484.04

68. 1496.0 451. 1483.47

82. 1494.82 475. 1483.49

95. 1492.64 600. 14S2.32

116. 1490.60 800. 14s1.89

12S. 1489.78 1000. 1482.54

150. 14S9.91 1200. 1483.73

169. 1489.18 1500. 1486.26

230. 1489.26 2000. 1491.44

273. 1487.77 2500. 1498.67

287. 1488.01 3000. 1506.65

291. 1487.32 3290. 1511.51

303. 14S7.5 3

C. OUTPUT.

More that 100 computer runs were performed to determine possible eigenrays with

associated travel time and transmission loss for the December tomography experiment.

In a majority" of these runs, no eigenrays were identified. This Monterey Bay exper-

imental region is a particularly tough area to conduct a tomography experiment due to

the wide fluctuations in the sea floor. The MPP program would drop a ray if it ever

exceeded a +85* angle anywhere along its path. Most of the time when a ray hit one

of the steep canyon walls, the ray would bounce off at greater than 85°. A few of the

rays exceeded the maximum number of turning points or reflections that was stipulated

in the input file, and thus were dropped along the way of the ray search.

The MPP program identified rays that either bracketted the receiver or were within

the diffraction field. Tlhe bracketting rays were shown to arrive at the receiver, and will
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be considered eigenrays. The diffraction field rays passed through the receiver's focus

or convergence zone, but did not necessarily arrive at the receiver. For this simulation,

the maximum vertical distance that a ray could miss the receiver was stipulated at +15

m. Of the 5S rays that the program identified, 17 diffraction field rays were outside of
the vertical miss tolerance. These 17 rays are not considered eigenrays and have been

eliminated from post-program analysis. Twenty-six of the remaining 41 rays arrived at

location 17.

Nine locations had no rays arriving at the receiver. These were sites 3, 6, 9, 10, 11,

12, 14, 15 and 16. Five of these positions are in the area of Soquel Canyon, one was

near the head of Monterey Canyon, another (receiver 14) was at a position selected for
its difficult ray path due to the winding canyon, the seventh was off of Point Pifios in a

shallow area, and the last was in the shallow nearshore area of Santa Cruz. The results

for the other eight receiver spots will be outlined and a table of all eigenrays with initial

angle, arrival angle, travel time and transmission loss will follow the output discussion.

An interesting result o.ccurred for receiver location 16 when the source was posi-

tioned down the slope in front of the seamount at the 913.0 m depth (which changed the

range to 64.0 km), instead of on the top of the seamount where the source was placed

for all of the other simulations. Four eigenrays in the 0* to -5* range now arrived at

receiver 16 when before all rays were lost. On top of the seamount these initial rays

bounced off of the seamount immediately and were driven upward, eventuall- to be lost

by exceeding the 85' angle. However, on the side of the seamount they continued a

downward trace until they refracted up (did not hit the bottom). Table 5 on page 42

provides data on these four eigenrays. For the simulation, the source was placed on the

top of the mount because the author felt that in the actual experiment, it would be easier

to moor the source on the top rather than at some particular point on the slope of the

seamount. This is just one indication that the eigenray arrivals are very sensitive to both

source and receiver placement.
Because a 16 Hz bandwidth pseudo-random phase-encoded signal of 1.9375 s dura-

tion is planned to be used in the December experiment, a separation of ray arrivals by

1 16 Hz = 62.5 ms is necessary for resolving those arrivals [Ref 291. Also, the entire

bundle of eigenrays must arrive at the receiver with a total separation time of under

1.9375 s. The description of the output is based on this requirement.
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Table 5. EIGENRAY INFORMATION FOR SITE 16 BASED ON CHANGE OF
SOURCE PLACEMENT.

TRAVEL TIME INITIAL ANGLE ARRIVAL TRANSMISSIONANGLELOS(B
(sec) (degrees) (degrees LOSS (dB

47.0753 -2.8463 -32.0741 93.6
47.4651 -2.9378 -54.3062 94.1

47.4652 -4.6413 -54.3904 94.2
47.4872 -2.9774 55.7486 94.1

1. Receiver Location 1.

Receiver I was placed southwest of Santa Cruz on the continental slope not far

from the canyon edge. Eigenrays would have to travel along a path that brings them

over the deepest but widest part of Monterey Canyon in this experimental area. Two

eigenrays at initial angles of 2.0837' and -3.9048 ° were identified (Table 6 on page 49).

These two rays have a fairly clean ray path. Aflter leaving the seamount with one pos-

sible bounce, the rays travel along the sound channel axis track until they hit the north

wall of the Monterey Canyon trough at around 31 and 39 km downrange. They then

bounce up and have a turning point refraction before again bouncing off of the now

gentler slope at around the 52.0 km mark. Either three or four bottom reflections occur

before each ray arrives at the receiver. These rays experience very few bottom bounces

that could absorb some of the sound or change the direction of the rays.

The separation time between the 2.0837 and -3.9048 ray is not good at 43 ms.

This spacing is below the experiment's separation minimum for identifying the individual

rays. The transmission loss values for both rays are in the upper 90 dB. The ray trace

and the transmission loss profile graphs for these rays can be found in Appendix B.

2. Receiver Location 2.

East-southeast of receiver 1 is the site for receiver 2. The simulated hydrophone

is placed on a gentle slope a little north of the main Monterey Canyon wall. Rays ar-

riving at this receiver would travel across a wide and deep portion of the canyon, similar

to the receiver 1 rays. The north wall rises until at about 39 km downrange of the

source, there is a drop of the sea floor for about 6 km before rising steeply again up to

the continental shelf.
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One eigenray was identified by the simulation with a 96 dB transmission loss.

The -14.8056 angle ray initially bounces off of the seamount and refracts before striking
the north wall close to 28 km away from the seamount. It then reflects off the surface

and bounces in the dropped floor of the north wall before surface reflecting and bounc-
ing its way on the shelf, prior to arriving at the receiver. It bounces off of the conti-
nental shelf six times. Information on this ray is found in Table 6 on page 49, and the

graphs for the ray trace and transmission loss are located in Appendix B.

3. Receiver Location 4.
Receiver 4 is due west of Moss Landing, situated on the Monterey Canyon

north wall edge. Rays arriving at this location will pass over Carmel Canyon and the
continental shelf before crossing Monterey Canyon. This position is above the narrower

and shallower portion of Monterey Canyon, so it may be a good location for an internal

waves studN.
Three eigenrays were identified, having transmission losses between 83.5 dB and

95.6 dB, and with good arrival separation between the first two rays (Table 6 on page

49). A graphical depiction of the ray paths can be found in Appendix B, a~ong with the

transmission loss graph. The arrival time separation between the last two rays (-5.9567

and -5.9841) of 0.8 ms is too short for the conditions of the experiment. The ray with

the initial angle of -9.5632 ° arrives first and is followed in 134 ms by ray -5.9567.

The three eigenrays have the same general ray path. Ray -9.5632 has one

refractive turning point, while the other two rays display one cycle of refraction (two

turning points). All of the rays have a multitude of surface and bottom bounces as they"

proceed along the shelf, and they bounce twice in Monterey Canyon with one refraction

between the bounces. Ray -9.5632 has three surface reflections at the end of its path,

and the other two rays have two surface bounces. All of the rays have paths that could

be used in both the internal wave and surface wave studies.
4. Receiver Location 5.

Situated on the south edge of the Monterey Canyon, due west of the Salinas

River mouth, is the location for receiver 5. It was selected to give the tomography ex-

periment a means by which to possibly recognize the effects that traveling through the
Monterey Canyon head would have on an eigenray, such as internal waves or internal

bores. The unfortunate aspect of this location is that the rays have to travel over 16 km

of shallow shelf, which manifests itself in possibly a hundred or more surface and bottom

reflections. The ray trace graph in Appendix B illustrates this oscillation. Transmission
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loss plot follows the ray trace. Table 6 on page 49 contains tabularized data on the two

eigenrays.

Ray 6.4800 refracts once on either side of reflecting off the bottom, then hits

high on the side of the Carmel Canyon east wall, before oscillating its way along the

continental shelf. The shelf is sandy, so there will be some absorption and not the total

reflectivity that was simulated. Simulated transmission loss for the ray is 97.7 dB, but

parameters for bottom loss were not included in the computer input because of the great

variation in the sediment and geology along any one path. It should be expected that

the real world case would have a larger dB loss.

5. Receiver Location 7.

The shallow nearshore region just off of Asilomar Beach in Pacific Grove is the

location for receiver 7. This is the closest position to the source-moored seamount in

this simulation. The rays pass perpendicularly over the Carmel Canyon axis and the

wider Monterey Canyon trough, but a straight path from source to receiver stays clear

of the narrower portion of the winding canyon. Since the receiver site is situated on the

shelf at approximately km from the edge of the Carmel Canyon, most of the rays os-

cillate between the surface and shelf bottom before completing the trek to the receiver.

Four eigenrays were identified by the simulation process. Specific values for

these rays are given in Table 6 on page 49. Ray trace and transmission loss graphs are

found in Appendix B. Rays 1.5429 and 1.7497 appear to travel together because their

paths are almost identical and there is only a 0.1 ms timespan between them. These two

rays refract prior to bouncing off the trough wall just before the 31 km range. They then

reflect off" the surface and hit the Carmel Canyon wall twice before oscillating on the

continental shelf.

The first eigenray to arrive at 28.6596 s is the 3.61130 initial angle ray. It first

refracts before reflecting off the sea floor, hitting the wall above the Carmel Canyon, and

oscillating along the shelf It was a slightly weaker signal at 92 dB loss than the 2-ray

pair. Arriving 57.7 ms later but a full 1.2 second before the ray pair is initial ray

1.7916". This ray refracts once before bouncing off of the trough wall, reflecting off the

surface, reflecting off Carmel Canyon west wall, and then refracting and bottom reflect-

ing along the shelf. Of all the eigenrays identified in this simulation, ray 1.7916 was the

strongest with only a 79 dB loss.
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6. Receiver Location 8.

Receiver 8 is positioned due west of the mouth of the Pajaro River. Rays trav-

eling from the source location to this receiver would follow nearly the same horizontal

path as do the eigenrays to receiver 4, except that site 8 is situated a little further behind

location 4 on the continental shelf. Eigenrays have to pass over Carmel Canyon, not far

from the Monterey Canyon junction, and over the continental shelf before crossing

Monterey Canyon just a little downslope from its head.

The MPP program determined that three eigenrays would be picked up by re-

ceiver 8; however, two of these rays are almost identical. These two rays (initial angle

of 6.4969 ° ) will be treated as though they were just one ray for the rest of the discussion.

A comparison of the eigenrays may be found in Table 6 on page 49 while graphs of the

ray trace and transmission loss are located in Appendix B. Ray 6.4825 makes two

refracted-bottom reflected (RBR) cycles, with bounces at 22.0 nm and 40.5 nm, prior to

oscillating on the continental shelf between the surface and shelf floor. This oscillating

portion of the ray path covers 15.5 nm in about 14.2 s. At Monterey Canyon it bounces

off the wall twice, vith one refraction within the canyon, before making 13

surfacebottom reflection cycles just prior to arriving at the hydrophone. The other ray

(6.4969) follows an almost identical path to ray 6.4825, with its first two bounces at the

same location, one refraction within Monterey Canyon, and the same number of surface

and bottom reflections at the end of its path.

Even though the paths of these two eigenrays are very similar, there is a good

arrival time separation of 124.0 ms between them. Transmission losses range between

105.7 dB for the slower ray and 106.0 dB for the faster ray. These rays bounce in an area

of Monterey Canyon that should exhibit internal wave effects, plus they have a consid-

erable number of surface reflections. This location is very promising.

7. Receiver Location 13.

The juncture of the Soquel Canyon east wall and the Monterey Canyon north

wall is the location of receiver 13. The straight-line path from source to receiver is over

the section of the Monterey Canyon that has many winding and meandering turns, and

includes the point where Carmel Canyon joins Monterey Canyon. It is not a good

prospect for finding any eignerays, but fortunately one lone ray, which happened to stay

in the deep sound channel for a long distance after its initial seamount bounce, was

identified by the MPP simulation.
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The first time that this ray bounces off any canyon walls is at the 54.79 km
mark, not far from the edge of the continental shelf. After hitting the wall, the ray sur-
face refracts and shelf bounces seven times before it is picked up by receiver 13. It
should be a fairly strong signal at only an 84 dB transmission loss which is received in
39.6526 s at an angle of -33.20. The eigenray data is given in Table 6 on page 49 while
the ray trace and dB loss graphs are in Appendix B.

8. Receiver Location 17.
This last receiver position is located slightly south of due west of Santa Cruz in

the open nearshore shelf area. It was one of the first sites to be simulated, but the re-

sulting large number of identified eigenrays oscillating along the continental shelf made
a change in receiver depth a necessity. The rest of the locations were selected based on

their proximity to the canyon edge. The rays which arrive at location 17 travel about
the same course as they would if going to receiver 1, except that they have a longer trek

along the shelf.

The ray tracing simulation and eigenray identification at this receiver location

can be best described as a complete mess. Twenty-six eigenrays were identified by the

MPP program and almost all of them have a tremendous number of surface reflections
and continental shelf bounces before arriving at the receiver. Needless to say, this would

be an extremely complicated experimental site and probably not a good one for a first-

time tomography experiment in these waters.

The ray trace graph in Appendix B for location 17 only contains a few repre-

sentative rays, since graphing all of the rays would annihilate any. possible distinguishing
individual lines. All of the stick plots (dB losses) are on the transmission loss graph

following the ray trace graph. Travel time, transmission loss and arrival angle for each

ray are listed in Table 7 on page 50.

The entire package of rays can be categorized in just a few groups. Eight rays
follow an almost identical path of two refractions before bouncing off of the steep slope

above the Monterey Canyon, from a downward approach at a depth of 780 m and a

range of around 44.6 km from the source. They continue bouncing up the slope and

onto the shelf with one or two refractions and the rest surface reflections. These rays
start at angles -1.6163, -2.0828, -3.0111, -3.0509, -3.1028, -3.1411, -3.1431 and -3.2418.

Rays of -3.6277 and -5.3708 are very imilar to the first eight with the exceptions that
they bounce off the slope at just a slightly longer range and a few meters more shallow,

and the -5.3708 ray hits at an upward angle. An 11 th ray at -4.5475 refracts three times
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before hitting the slope at about the same spot of the first group of eight, following the

path of the above 10 rays up the slope with the exception that this ray has three more

refractions.

Another set of seven rays (1.6711, 1.7248, 2.1406, -6.3534, -6.3988, -6.4516 and

-6.4559) are very similar to the first group of eight, with two refractions before bouncing

up the slope. The three main differences are that this second set reflect off the wall at

a spot with a slightly shorter range and lower depth (41.3 km and 950 m), the rays are

heading upward just before their first wall bounce, and that they have many more os-

cillations on the shelf than does the first group. With the abundance of reflections, it is

understandable why this group as a whole has the slowest arrival times to the receiver.

Ray -3.9658 has two refractions before striking the sloping wall at a depth of

860 m and a range of 42.9 km. It then bounces up the slope with three refractions and

14 surface reflections. The last three individual and one group of four rays are different

from the preceding 19 rays.

The rays -8.6415, -8.7093, -8.7180 and 4.0027 are grouped together due to their

parallel paths and they arrive as a group in a span of 0.6 ms. These rays make one

refractive turn before colliding with a lower north canyon wall point at a depth of 1410

m and a range of 32.85 km from the source on the seamount. They next hit the upper

slope at the 53.8 km mark and 300 m depth after one refraction. One more refractive

turn remains for this group prior to 17 surface and bottom oscillations along the shelf.

The last three rays are individuals. The fastest eigenray originates at an angle

of -l.lll0', reaches receiver 17 in 45.4324 s, but has the largest transmission loss at

110.6 dB. This ray has two refractive turns before striking the slope at 45.67 km down-

range and 734 m deep. It refracts and then bounces off the shelf area (178 m deep) at

a distance of 56.64 km from the source. It makes three more refracted-bottom reflected

(RBR) cycles and one surface reflection before arriving at its destination. Ray 0.3232

arrives 18.4 ms later and has a somewhat similar path. It has three refractions prior to

colliding with the wall 44.48 km away at a depth of 788 m. The second bounce occurs

at the 59.4 km mark on the shelf in 124 m of water. Seven RBR cycles and one surface

reflection complete this ray's path. It takes another 114.8 ms of time before the third

fastest ray (-3.0111) arrives on the scene.

The very last ray to be described should be easily identified in an experimental

situation. Arriving at the 46.3275 s time mark, ray -12.5001 follows the next faster ray

by 233.6 ms and is followed by another ray 669.8 is later. This is the best separation
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for the entire 26-ray package. Another interesting fact is that this ray strikes the

Monterey Canyon on its south wall and refracts once in the canyon before one more
refraction and a bounce at 50.48 km range and 460 m depth. It then oscillates along the

shallow shelf with one more refraction but a multitude of surface and bottom reflections.

Looking at the results in Table 7 on page 50, one can begin to understand why
this location would be a bit of a problem in a tomography experiment. The dB loss

ranges from 89.5 dB for ray -8.7093 to 110.6 dB for the first arriving ray (-1.1110). There

is not enough arrival time separation for most of these rays, based on 16 Hz bandwidth,

except for the following:

1. 114.8 ms between ray 0.3232, arriving at 45.4508 s, and ray -3.0111;

2. 289.5 ms between ray -2.0828, arriving at 45.7567 s, and ray 2.1406;

3. 233.6 ms between ray -3.6277, arriving at 46.0939 s, and ray -12.5001;

4. 669.8 ms between ray -12.5001, arriving at 46.3275 s, and ray -6.4559;

5. 425.3 ms between ray -6.4516, arriving at 47.0019 s, and ray 1.6711; and

6. 191.7 ms between ray -6.3988, arriving at 47.4270 s, and ray -6.3534.

Six adequate arrival time separations with 26 arriving rays does not put this receiver lo-

cation on the top of the list for best spots. The condition that eliminates this location

as a recommended receiver site is that the arrival separation between the first and last

eigenray is 2.1863 s. The acoustic signal from the source is of 1.9375 s duration, which
is the maximum separation time that will be experimentally allowed for all of the rays

arriving at one location.

48



Table 6. EIGENRAY INFORMATION FOR SITES 1, 2, 4, 5, 7, 8 AND 13.

TR.AVEL RAY SEPA- INITIAL ARRIVAL TRANS-
RCVR TIME RATION ANGLE ANGLE MISSION

(sec) (sec) (degrees) (degrees) LOSS (dB)
40.0920 40.0920 2.0837 20.1333 98.1

40.1353 0.0433 -3.9048 23.5287 95.9

2 39.3994 39.3994 -14.8056 -17.1602 95.9

45.7964 45.7964 -9.5632 -51.3754 95.6

4 45.9304 0.1340 -5.9567 -28.2386 84.8
45.9312 0.0008 -5.9841 40.3657 83.5

5 43.4764 43.4764 6.4800 56.6509 97.7

28.6596 28.6596 3.6113 41.5440 92.1

28.7173 0.0577 1.7916 6.2005 79.0
7

29.2176 0.5003 1.7497 55.4856 89.6

29.2177 0.0001 1.5429 55.1058 90.5
49.7370 49.7370 6.4825 -34.7151 106.0

8 49.8610 0.1240 6.4969 -39.4762 105.7
49.8610 0.0000 6.4969 -39.5973 105.7

13 39.6526 39.6526 -13.6680 -33.1896 83.7
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Table 7. EIGENRAY INFORMATION FOR SITE 17.

TRAVEL RAY SEPA- INITIAL ARRIVAL TRANS-TIME (sec) RATION ANGLE ANGLE MISSION
(sec) (degrees) (degrees) LOSS (dB)

45.4324 45.4324 -1.1110 5.4710 110.6
45.4508 0.0184 0.3232 -4.6675 100.9

45.5656 0.1148 -3.0111 -19.9961 104.4

45.5825 0.0169 -4.5475 -19.6807 97.7

45.6019 0.0194 -3.9658 -20.3254 91.1

45.6364 0.0345 -3.2418 -23.1483 93.2

45.6641 0.0277 -8.6415 -23.5988 90.5

45.6641 0.0000 -8.7093 -23.5525 89.5

45.6645 0.0004 4.0027 24.7201 91.1

45.6647 0.0002 -8.7180 24.7281 90.3

45.6656 0.0009 -3.1411 -24.1419 99.6
45.6656 0.0000 -1.6163 -24.1725 99.4

45.6656 0.0000 -3.1431 -24.5613 99.8

45.693S 0.0282 -3.1028 -25.6257 100.8

45.6960 0.0022 -5.3708 -25.7395 100.6

45.7237 0.0277 -3.0509 27.8458 98.4

45.7567 0.0330 -2.0828 -28.2343 93.8

46.0462 0.2895 2.1406 39.3321 96.5

46.0939 0.0477 -3.6277 -39.6695 97.0

46.3275 0.2336 -12.5001 -44.7474 93.8

46.9973 0.6698 -6.4559 -60.2335 99.5

47.0004 0.0031 1.7248 -60.4129 99.8

47.0019 0.0015 -6.4516 61.2411 99.6

47.4270 0.4251 -6.3988 69.1542 100.2

47.4272 0.0002 1.6711 69.1952 100.4

47.6187 0.1915 -6.3534 72.1043 101.5
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VI. CONCLUSIONS

The purpose of this thesis is to determine the optimal placement of the receiver

hydrophones for the December 1988 experiment, to indicate probable eigenray charac-

teristics at the recommended sites, to provide oceanic environmental information that

would most likely affect the experiment, and to suggest or warn of possible pitfalls be-

tween the simulation results versus the real world situation. Before concluding the thesis

with a recommendation of receiver locations, it is best to restate the conditions of the

tomography experiment, and to indicate some simplifications of the simulation that will

influence the comparison between predicted eigenrays and the experimental results.

A. TOMOGRAPHY EXPERIMENT REQUIREMENTS

The week of 12-16 December 1988 is the scheduled date for the Monterey Bay

tomography experiment. An acoustic source, capable of continuously transmitting a

pseudo-random phase-encoded signal of 1.9375 s duration, 224 Hz center frequency and

source level of 183 dB re 1 uPa, is to be moored 1 m above the top of a seamount that

is due west of Point Sur. The source location will be in the general area of latitude

36°22'N and longitude 122°19'W at a depth of approximately 840 m. Up to II

AN'SSQ-57A sonobuoys (modified) will be stationed I m above the continental shelf

at various locations around Monterey Bay. The boat crew will attempt to place the re-

ceivers at approximately the 100 m depth. These sonobuoys will transmit the received

acoustic signals to a shore-based van. A frequency spectra buoy and ARGOS

RC,'WASID drifting buoys will be providing measurements during the experiment.

The purpose of this experiment is to test a low-cost tomographic system that can

be used to analyze surface waves and internal waves. Locations will be selected, partially

on the basis of simulated eigenray determination, that appear to receive eigenrays which

are distinguishable and subject to surface andor internal wave interference. Nearshore

locations with congested commercial fishing traffic will not be considered good

sonobuoy sites.

B. SIMULATION VS REAL WORLD

It is sometimes difficult to simulate the real world, especially when the conditions

of the real world at a particular point in time are not known in advance. The environ-

mental conditions for the December experiment can be forecasted, based on previous
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years' trends, but the prediction may not be accurate. The sound speed profile used in

the simulation was taken from 15 December 1987 data. The entire month of December

1987 was stormy. A difference in the weather and:or current patterns from last year's

situation would definitely affect the sound speed profile. This in turn would have a

considerable effect on the eigenray characteristics. For this reason, the simulation will

have to be rerun after the December experiment with sound speed data taken during the

experiment.

The simulation input is greatly simplified from the real world situation. MPP is a

two-dimensional program which does not consider sideways reflection off of the canyon

walls. The facets of the canyon wall may throw a ray away from its intended receiver
location, and thus the ray would miss its destination. The bathymetry profile has been
reduced to just a limite&.number of points, due to the program's input constraints. The
canyon axis was depicted as being wider and shallower than it truly is. Bottom loss for
each reflection was stipulated at 0 dB. which is complete reflectivity, because the bottom
loss coefficients cannot be specified per range. The sediment, which the eigenrays pass
over and bounce on, varies considerably. Ray bounces on mud or clay would result in
a higher bottom loss than reflections off of rock. An unsuccessful attempt was made to
obtain shallow water bottom loss data in order to show the relationship between the
grazing angle and bottom loss for various sediment types within the experimental region.

How accurate is the simulation? It is hard to tell. The program logic is based on
Snell's Law and appears to be very thorough in determining eigenrays and developing
the ray traces. The problem lies with the input constraints. MPP simulation can be a
predictor of trends, such as Soquel Canyon being a difficult place to receive eigenrays.
The fact that the number of initial rays from the source is limited in the simulation to
80, rather than the almost unlimited number of ays that would travel from a source,
keeps some true eigenrays from being identified. In its defense, MPP is considered the
state-of-the-art with respect to available eigenray simulation tools for deep water
tomography. It was not designed for shallow water tomography when there are exces-
sive reflections along the eigenray's path. The predictions from this simulation will give
the members of the tomography experiment some basis to focus in on the results, rather
than just shooting in the dark.
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C. RECEIVER LOCATION RECOMMENDATIONS

Figure 16 on page 5-4 graphically indicates the locations that are being recommended for

receiver sonobuoy placement during the December tomography experiment. These sites

were selected from the 17 positions simulated. They are:

1. Station 2, south-southwest of Santa Cruz, latitude 36°51.20'N, longitude
122°05.00'W;

2. Station 4, west of Moss Landing on the north rim of Monterey Canyon, latitude
36°48.65'N, longitude 121°52.20"W;

3. Station 5, west of Salinas River mouth on the south rim of Monterey Canyon,
latitude 36°45.00'N, longitude 121°54.10"W;

4. Station 8, west of Pajaro River mouth on the continental shelf; latitude
36°50.00"N, longitude 121°51.00'W; and

5. Station 13, juncture of Soquel Canyon east rim and Monterey Canyon north rim,
latitude 36'48.65'N, longitude 121 057.90W.

Station 2 has one ray arrival with two bounces in the canyon, before having a small

number of surface and bottom reflections on the shelf The bottom loss value should

be small. Probably the best location for the experiment is receiver location 4. The

eigenrays refract in the canyon, bounce along the continental shelf when the canyon

meanders away, and the-n refract in the narrower portion of Monterey Canyon where

internal waves would be more noticeable. Two eigenrays will be identifiable with strong

signals. This appears to be an excellent location for the study of both surface and

internal waves. Location 5 has one eigcnray that oscillates on the continental shelf.

This location was selected in order to contrast results where eigenrays are affected by the

internal waves in the narrower and shallower portion of Monterey Canyon. Station 8

would give corroboration to the results from received signals at position 4, since the rays

travel very nearly over the same path. Two weak eigenrays with good separation should

be acquired. Station 13 looks very promising since it has only one bottom reflection in

Monterey Canyon, thei,.by reducing the possibility of the ray being lost to a sideways

reflection off the wall.

Most of the simulated locations were eliminated as recommended sites since the

simulation failed to predict any eigenrays for them. Location 17 had the largest number

of eigenrays, but the arrival time separations were not good and the separation between

first and last eigenrays were outside of the constraints of the experiment. Also, there

would be just too many eigenrays to handle. Site I was closer to the canyon, but the

separation between the two eigenrays was below the experimental criteria. With extra
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buoys for the experiment, this position could be selected for a spare buoy. Receiver 7,
off of the Monterey Peninsula, received four eigenrays. Two of these would definitely
be identifiable, while the third is just below the minimum required arrival separation but

may be heard since it is a very strong signal, the strongest of all the eigenrays identified
in the simulation. This is a good alternate location, even though it was not a recom-

mended position due to its lack of travel time along the Monterey Canyon and basically

short eigenray total travel time.

Rather than stating that the receivers have to be placed exactly as recommended, it
is fitting to describe the pros and cons of sonobuoy placement in more general locations.
Any place on the shelf, away from the canyon rim, will indubitably result in eigenray
paths with tremendous surface and bottom reflection. For the surface wave study, it

would be nice to have these reflections; however, a very large number of bottom bounces
will lead to a large transmission loss. The signal make not be picked out of the ambient

noise. High ambient noise locations will be found in areas of the bay where there is

heav cormnercial fishing. Moss Landing is a prime example. For purposes of the

study, the Moss Landing area would be an ideal receiver location for eigenrays to inter-
cept internal tidal bores and denser shelf water resulting from volume divergence. Un-
fortunately, the heavy commercial boat traffic would interfere in the managing of the

experiment, as well as contributing to the high ambient noise level.

The simulation had a particularly difficult time with finding eigenrays when the re-
ceiver was placed around Soquel Canyon. The only eigenray identified, out of six lo-
cations around Soquel Canyon. has a few reflections near the receiver only, with a

refracted path through most of the canyon. The straight-line path from source to a

Soquel Canyon receiver has to pass over the portion of Monterey Canyon that bends
around quite a bit, resulting in a large variance in the sea floor depth. It may be difficult

to receive any signals in this general area when the source is on the seamount, as simu-

lated.

Receiver sites outside of Monterey Bay, southwest of Santa Cruz, should pick up
more eigenrays, but there might be too many eigenrays to distinguish. Also, the internal

wave study would probably not benefit by placing the receivers in this area since the

waves would not be as noticeable in the wider Monterey Canyon trough. The most

productive locations fo:" placement of the sonobuoys may be along the north wall of
Monterey Canyon, between Soquel Canyon and the head near Moss Landing, and along

the east wall of Carmel Canyon, just before the juncture with Monterey Canyon.
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APPENDIX A. BATHYMETRY DATA FOR RECEIVER LOCATIONS

Table 8. BATHYMETRY DATA FOR RECEIVER LOCATIONS 1, 2 AND 3.

RECEIVER LOCATION RECEIVER LOCATION RECEIVER LOCATION
12 3

Range (kin) Depth (m) Range (kin) I Depth (in) Range (ki) Depth (ii)
0.6 832.10 0.0 832.10 0.0 832.10
3.26 826.62 1.09 914.40 0.76 914.40
4.07 914.40 3.75 914.40 4.07 1097.28
7.06 1463.04 6.16 1280.16 5.75 1280.16

17.37 1463.04 6.74 1463.04 6.64 1463.04
18.57 1645.92 9.96 1463.04 7.32 1463.04
21.53 2560.32 12.71 1280.16 12.14 1280.16
21.89 2560.32 14.67 1280.16 15.54 1280.16
23.07 2377.44 17.17 1463.04 18.80 1463.04
24.61 2194.56 19.56 1828.80 20.39 1828.80
25.65 2011.68 21.01 2194.56 22.36 1828.80
27.25 1828.80 21.51 2377.44 23.80 2011.68
27.69 1645.92 23.85 2377.44 27.65 2011.68
30.07 1463.04 25.75 1828.80 29.46 2194.56
35.29 1280.16 26.51 1645.92 30.54 2011.68
37.51 1097.28 29.74 1463.04 32.71 1828.80
40.31 914.40 33.32 1280.16 35.02 2011.68
44.11 731.52 36.07 1097.28 39.31 1828.80
46.68 548.64 37.30 1047.90 39.96 1645.92
51.84 365.76 38.03 1097.28 41.53 1463.04
55.55 182.88 39.60 958.29 42.47 1645.92
59.35 98.76 40.47 1097.28 43.10 1828.80
70.50 98.76 41.01 1280.16 43.43 1828.80

45.41 1280.16 44.10 1463.04
45.99 1325.88 45.65 1097.28
46.45 1280.16 46.95 731.52
47.42 1097.28 48.52 731.52
48.53 731.52 49.52 1097.28
50.34 365.76 50.29 1097.28
51.72 182.88 50.96 914.40
54.87 106.07 51.78 806.50
57.99 91.44 53.00 914.40
70.50 91.44 53.40 1005.84

54.35 914.40
55.30 731.52
57.06 548.64
61.26 365.76
62.89 182.88
63.87 91.44
70.50 91.44
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Table 9. BATHIYMETRY DATA FOR RECEIVER LOCATIONS 4, 5 AND 6.

RECEIVER LOCATION RECEIVER LOCATION RECEIVER LOCATION
4 5 6

Range (kin) Depth (m) Range (ki) Depth (m) Range (kin) Depth (m)

0.0 832.10 0.0 832.10 0.0 832.10
0.54 914.40 0.60 914.40 0.60 914.40
3.30 1097.28 2.89 1097.28 2.35 1097.28
5.19 1280.16 4.76 1280.16 4.33 1280.16
6.38 1351.48 6.60 1351.48 6.76 1351.48
10.33 1280.16 10.01 1280.16 9.52 1280.16
14.25 1252.73 15.83 1280.16 11.85 1126.54
16.05 1280.16 16.73 1463.04 16.34 1280.16
17.04 1463.04 19.16 1463.04 17.14 1463.04
23.54 1463.04 20.57 1280.16 17.68 1556.31
24.67 1645.92 23.06 1280.16 18.40 1463.04
25.61 1828.80 25.98 1828.80 19.54 1280.16
26.24 1828.80 26.74 1828.80 24.41 1280.16
27.78 1463.04 29.28 1280.16 25.80 1645.92
28.73 1280.16 29.91 1097.28 26.65 1645.92
32.33 1280.16 31.83 1097.28 28.50 1463.04
33.73 1097.28 32.48 914.40 29.66 1280.16
35.22 1097.28 34.28 914.40 30.17 1280.16
35.71 1280.16 34.75 1097.28 31.39 914.40
36.79 1280.16 36.67 1097.28 33.77 914.40
38.24 731.52 38.65 365.76 34.31 1097.28
39.68 548.64 39.62 182.88 34.58 1097.28
40.26 365.76 44.79 107.90 35.45 731.52
43.56 182.88 54.78 91.44 37.23 548.64
46.89 118.87 70.50 91.44 38.06 182.88
52.70 104.24 41.40 91.44
56.33 182.88 70.50 91.44
57.46 365.76
58.33 548.64
58.80 548.64
61.63 365.76
62.63 182.88
63.49 91.44
70.50 91.44
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Table 10. BATIHYMETRY DATA FOR RECEIVER LOCATIONS 7, 8 AND 9.

RECEIVER LOCATION RECEIVER LOCATION RECEIVER LOCATION7 8 9

Range (kni) Depth (m) Range (ki) Depth (ni) Range (kin-) Depth (ni)

0.0 824.79 6.0 825. 0.0 -824.79
1.21 1097.28 0.37 915. 1.61 1097.28
14.24 1097.28 1.73 1097. 2.26 1280.16
18.97 1280.16 6.35 1251. 17.30 1280.16
21.55 1097.28 7.75 1280. 20.04 1645.92
24.72 1097.28 8.18 1280. 21.22 1645.92
26.38 1280 16 13.56 1127. 22.62 1463.04
27.67 1645.92 17.65 1280. 24.28 1463.04
29.34 1463.04 18.46 1463. 26.00 1828.80
31.11 914.40 18.90 1556. 27.29 1828.80
32.72 731.52 20.26 1463. 28.63 1463.04
33.26 731.52 21.27 1280. 30.08 1463.04
34.01 914.40 24.68 1280. 30.73 1645.92
34.39 914.40 25.55 1463. 32.39 1645.92
35.79 548.64 26.44 1646. 36.21 1463.04
37.13 365.76 27.32 1829. 37.07 1280.16
37.99 182.88 27.91 1829. 37.82 1280.16
39.12 91.44 28.57 1646. 39.22 1645.92
39.98 73.15 29.05 1562. 40.45 1645.92
40.84 73.15 29.39 1463. 41.79 1097.28
41.91 54.86 30.35 1280. 43.62 1097.28
42.02 51.21 31.31 1097. 45.18 1645.92
45.0 51.21 32.19 1097. 45.80 1645.92

33.82 1097. 47.11 1097.28
35.00 915. 48.17 1097.28
35.82 940. 49.15 1280.16
36.18 1097. 50.07 1280.16
36.60 1280. 52.29 731.52
37.91 1280. 55.01 731.52
38.57 1097. 57.96 182.88
38.95 915. 59.41 91.44
39.28 732. 64.57 73.15
41.06 366. 66.72 54.86
42.17 229. 67.15 49.38
44.56 183. 70.15 49.38
48.07 119.
53.61 104.
56.41 99.
56.98 183.
57.90 366.
59.08 549.
59.67 549.
62.40 366.
63.06 183.
63.63 91.
64.48 75.
67.33 73.
67.49 55.
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Table I1. BATHYNIETRY DATA FOR RECEIVER LOCATIONS 10, It AND
12.

RECEIVER LOCATION RECEIVER LOCATION RECEIVER LOCATION
10 II 12

Range (kin) Depth (in) Range (km) T Depth (m) Range (km)TDepth (n)

0.0 824.79 0.0 832.10 0.0 832.10
1.84 1097.28 0.81 914.40 0.81 914.40
2.43 1280.16 2.81 914.40 2.81 914.40

18.20 1280.16 5.95 1280.16 5.85 1280.16
21.01 1463.04 6.60 1463.04 6.60 1463.04
22.43 1828.80 7.17 1463.04 7.17 1463.04
24.05 1645.92 12.31 1280.16 12.31 1280.16
24.88 1645.92 15.01 1280.16 15.26 1280.16
26.25 2011.68 17.96 1463.04 18.22 1463.04
26.61 2011.68 20.83 2011.68 20.89 2011.68
27.47 1828.80 22.50 2011.68 23.22 2011.68
29.84 1828.80 23.31 2194.56 24.36 2194.56
30.67 2011.68 23.94 2194.56 35.18 2194.56
32.43 2011.68 24.48 2377.44 36.05 2011.68
33.59 1828.80 26.07 2377.44 39.84 2011.68
41.64 1828.80 31.37 2194.56 41.00 1828.80
42.84 1645.92 33.08 2194.56 41.86 1775.76
44.73 1645.92 33.75 2011.68 42.35 1828.80
45.34 1828.80 34.75 1828.80 42.97 1828.80
45.72 1828.80 39.22 1828.80 44.11 1463.04
46.47 1463.04 39.76 2011.68 46.14 137.28
48.15 1097.28 40.57 2011.68 46.44 914.40
49.42 731.52 41.16 1828.80 47.22 731.52
51.11 731.52 42.84 1828.80 49.31 731.52
52.23 1097.28 44.63 1463.04 50.77 1097.28
52.95 1097.28 45.26 1463.04 51.74 1097.28
53.83 914.40 46.30 1097.28 52.86 914.40
56.26 914.40 47.92 731.52 53.91 731.52
57.64 548.64 49.22 731.52 54.85 548.64
60.56 548.64 50.36 548.64 56.02 365.76
61.50 365.76 53.37 548.64 57.19 182.88
62.16 182.88 54.81 365.76 59.72 91.44
66.63 91.44 55.28 182.88 70.50 91.44
67.18 73.15 56.04 91.44
67.84 54.86 70.50 91.44
68.39 45.72
71.39 45.72
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Table 12. BATIIYMETRY DATA FOR RECEIVER LOCATIONS 13, 14 AND
15.

RECEIVER I.OCATION RECEIVER LOCATION RECEIVER LOCATION13 14[ 15

Range (kin) Depth (in) Range (kin) ]Dcpth (in) Rangc (kin) Depth (m)

0.0 832.10 0.0 832.10 0.0 832.10
0.87 914.40 0.59 914.40 0.54 914.40
3.90 1097.28 3.25 1097.28 2.29 1097.28
5.69 1280.16 5.30 1280.16 4.43 1280.16
6.68 1463.04 6.36 1351.48 6.48 1351.48
7.32 1463.04 10.60 1280.16 9.90 1280.16

11.60 1280.16 13.93 1252.73 11.82 1126.54
16.15 1280.16 16.05 1280.16 15.79 1280.16
19.10 1463.04 17.67 1463.04 16.87 1463.04
19.87 1645.92 18.80 1645.92 18.90 1463.04
20.32 1828.80 19.83 1645.92 19.87 1280.16
20.77 1828.80 21.15 1463.04 23.49 1280.16
21.89 1645.92 21.91 1431.95 25.27 1645.92
23.03 1645.92 23.04 1463.04 27.75 1645.92
23.71 1828.80 24.99 1828.80 28.98 1463.04
24.39 2011.68 26.14 1828.80 29.80 1280.16
24.66 2011.68 27.26 1463.04 30.18 1097.28
25.36 1828.80 28.23 1404.52 31.75 914.40
26.66 1645.92 29.48 1463.04 32.88 731.52
27.31 1645.92 32.05 1463.04 33.20 691.29
28.51 1828.80 34.26 1280.16 33.65 731.52
29.13 2011.68 34.94 1097.28 34.61 1097.28
30.08 2011.68 35.88 1097.28 34.96 1097.28
30.35 1828.80 36.29 1463.04 36.77 914.40
32.25 1645.92 37.00 1463.04 38.51 365.76
38.80 1645.92 37.64 1280.16 39.20 182.88
39.13 1728.22 39.30 1097.28 42.06 102.41
39.62 1645.92 40.13 731.52 53.51 91.44
39.89 1463.04 42.05 548.64 61.87 91.44
40.92 1280.16 42.73 429.77 62.99 182.88
42.14 1280.16 43.45 548.64 63.82 182.88
43.63 1828.80 44.71 731.52 64.36 91.44
43.84 1907.44 47.73 731.52 70.50 91.44
44.03 1828.80 48.52 548.64
44.87 1280.16 49.87 365.76
46.34 914.40 52.03 182.88
46.79 914.40 53.98 182.88
48.23 1097.28 55.53 365.76
49.05 1280.16 56.66 548.64
49.32 1280.16 58.47 548.64
51.43 731.52 59.55 182.88
53.19 731.52 60.36 91.44
53.47 914.40 70.50 91.44
54.47 548.64
56.63 182.88
58.53 91.44
70.50 91.44
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Table 13. BATHYNIETRY DATA FOR RECEIVER LOCATIONS 16 AND 17.

RECEIVER LOCATION 16 RECEIVER LOCATION 17
Range (k[i Depth (in) Range (km) Depth (in)

0.0 825. 0.0 824.79
8.4 1463. 6.60 1097.28
9.0 1463. 8.00 1280.16

14.1 1280. 8.59 1463.04
16.6 1280. 11.65 1463.04
24.2 2378. 14.63 1280.16
25.8 2378. 16.37 1280.16
41.2 958. 19.05 1463.04
42.4 1280. 20.13 1645.92
47.8 1280. 20.93 1828.80
53.5 139. 21.58 2011.68
66.2 46. 22.22 2194.56
70.0 46. 22.87 2377.44

24.90 2377.44
25.76 2194.56
27.80 2011.68
28.82 1828.80
29.68 1645.92
31.40 1463.04
36.39 1280.16
39.24 1097.28
41.71 914.40
45.73 731.52
48.68 548.64
52.39 365.76
56.41 182.88
61.14 91.44
64.14 73.15
66.99 54.86
67.47 49.93
70.47 49.93
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APPENDIX B. RAY TRACES AND STICK PLOTS
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