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ABSTRACT

The Bootstrap method is a nonparametric statistical technique for estimating the sam-
pling distribution of estimators of unknown parameters. While the asymptotic theory for
bootstrap is well established, this thesis investigates the behavior of the bootstrap for
small sample sizes. For the exponential distribution and for normal linear regression the
bootstrap estimates of the parameters and their variances are compared with the the-
oretical sampling distributions. The small sample properties of bootstrap confidence in-
tervals using the percentile method and the bias-corrected percentile_Pethod are also
investigated.,' .,, .i , . ao -. 7 - "
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not
have been exercised for all cases of interest. While every effort has been made, within
the time available, to ensure that the programs are free of computational and logic er-
rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

so
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I. INTRODUCTION

The Bootstrap method, a statistical technique for estimating the sampling distrib-

utions of estimators of unknown parameters, was introduced by Efron [Ref. 11 in the

mid 1970s. This computer intensive method is nonparametric in nature and relies on re-

peated resampling (bootstrapping) from the observed values of a random sample.

Suppose x, x2, x3, ..., x, are the observed values of a random sample of size n, X,,

X2, X3 ..., A,., from a distribution fx(x;O). Let 0 - h(XA, X2, AX, ..., A.) be an estimator
for the unknown parameter 0 . The sampling distribution of 0 completely describes the

properties of the estimator and its knowledge would be useful for investigative purposes.

However in many situations the analytical derivation of this distribution may be quite

demanding. An alternative approach is to estimate the sampling distribution using

bootstrap methods. A set of N bootstrap samples of size n, x*, ,, x*, ... , xe,. for
j = 1, 2, 3, ..., N is generated by repeated uniform sampling with replacement from the

set { x, , x2 , .r , ..., x. The estimate 0*, = h ( x*, , x*,,, x*% , ... , x*,, ) is computed

for each of the N bootstrap samples. The empirical distribution of the 0% for j = 1, 2.
3. ..., N is taken as the estimate of the sampling distribution of 0.

Efron [Ref. 1] showed, that the bootstrap estimator is consistent and Beran et al.

[Refs. 2, 31 proved that under fairly general regularity conditions the bootstrap distrib-

ution converges to the true sampling distribution as n -- o and N --o do. It has also

been demonstrated that bootstrap methods perform better than some of the other re-

sampling techniques such as Hartigan's subsample method [Ref. 41 and the Tukey-

Quenouille Jackknife [Ref. 11.
Although the asymptotic behavior of the bootstrap has been well established by

theoretical research, there are still some problems dealing with the small sample prop-
erties of the methods, which are open for further investigation. One of these problems

is the question of how the original sample size n and the number of bootstrap repli-

cations N affect the "closeness" of the bootstrap distribution to the exact sampling dis-

tribution. Another one deals with the applicability of bootstrap-based percentiles as a

basis for estimating confidence intervals for parameters. Information about these issues

will be useful to a practitioner in the decision of how to employ his resources.

The aim of this thesis is to address the two problems stated above. The approach
which is taken is to consider probability distributions and their parameters, for which the



exact sampling distributions of the estimators can be derived theoretically. The results

of simulations of the bootstrap method will be compared with the theoretical results in
order to analyze the impact of the sample size n and the number of bootstrap repli-

cations N in the context of relatively small samples.

Chapter 1I provides an overview of some bootstrap methods and their properties.

In Chapter III the bootstrap method is applied to the maximum likelihood estimator

of the scale parameter of the exponential distribution. The estimation of the parameters

in normal linear regression is studied in Chapter IV. In Chapter V the conclusions are

presented.
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11. BOOTSTRAP METHODS - AN OVERVIEW

A. THE BASIC BOOTSTRAP METHOD
The bootstrap method is a resampling technique for estimating the sampling dis-

tribution of an unknown parameter of a probability distribution. Let X = (X, X, X3 ,

...I X, I be a sample of size n from a distribution with probability density function

fA(x;O) and distribution function F£(x:0). Let 6 - h(X) be an estimator for the parame-

ter 0 . The distribution of 0 , g(0; 6) is called the sampling distribution of 0. In many

problems it may be quite difficult to derive the sampling distribution analytically. But

since computer resources are nowadays inexpensive and easily available, methods like

bootstrap [Ref. 11, which will be described below, can be used to estimate the distrib-

ution of 0.

Suppose x = {x, x,, x 3 .  x, } are the observed values of the random sample. A

bootstrap sample x* = {x*. x,, x* , ..., x*, } ('*" indicates bootstrapping) of size 11 is

obtained by randomly drawing with replacement from the original sample x . Another

way of de-cribing this resampling procedure is: The empirical distribution function F,

which is discrete. is constructed by assigning a probability mass 1 n to each of the ori-

ginal samples x, and then drawing n random samples from F. Although it is possible to

imagine, as Bickel and Freedman [Ref. 3] mention, bootstrap samples of an arbitrary

size m. mathematical theory [Ref. 3] indicates that the use of the same size n as in the

original sample is preferable.

Before continuing the description of the bootstrap method it seems appropriate to

summarize sonic properties of any bootstrap sample. Each element in a bootstrap

sample is drawn independently from the original sample. So conditional on the original

sample the probability that the jth element in a bootstrap sample is any one of the ori-

ginal sample values is the same:

P(!*j-xjIx) = I fori. j= 1.2,3,.n. (2.1)

The expectation. conditional on X, of X*, is

ELX*1" Ix) i] forj = 1,2,3, ... , n. (2.2)



where Y is the sample mean Nx,,,n. Then for example the mean of the bootstrap sample
Nx* in has the conditional expectation

[*Ix = X (2.3)

and the unconditional expectation

E[f*] = E[E[I*IX]] = s. (2.4)

The variance of the mean of the bootstrap sample is

n
Ua[XxJ = - Z(x, -~ (2.5)

which for n -+ oo converges to Var[X].

The process of obtaining one bootstrap sample set and computing the estimator for

this sample is called a bootstrap replication. For the bootstrap method N bootstrap

replications are performed. where N varies throughout the literature between 100 and

2000. This means that N bootstrap samples x* for j = 1, 2, 3, ... , N are obtained and

for each sample the estimator O* = h(x*j) is computed. The bootstrap distribution, the

empirical distribution of the O". is then an estimate of the sampling distribution of 0.

The bootstrap estimate for 0 is defined by

-0 (2.6)

and

S*= N-I 1 A)-
0 )2 (2.7)

j=t

is the bootstrap estimate of A, the standard deviation of 0.

Efron [Ref. 1] and Bickel and Freedman [Ref. 3] have shown, that under fairly

general regularity conditions, as n -+ oo the bootstrap estimate and its standard devi-

ation converge to their actual values.
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B. VARIATIONS OF THE BOOTSTRAP METHOD

This section briefly describes some variations of the bootstrap method to demon-

strate the variety of options available to the practitioner. These methods however will

not be the subject of investigations in this thesis.

1. Parametric Variations of Bootstrap

To improve the bootstrap method in tfose cases, where additional information
about the underlying distribution is available, Efron proposed [Ref. 4j the Smoothed

Bootstrap. The major difference from the basic bootstrap is, that the bootstrap samples

are now obtained by sampling from a continuous empirical distribution F. This distrib-

ution F is constructed by interpolating between the steps of the discrete empirical dis-

tribution F using an appropriate smoothing function. Efron points out that the choice

of the function is not arbitrary. In order to gain improvement of the results, compared

to the basic bootstrap, the selection of the function type has to be compatible with the

distribution under investigation. So this variation of the method is no longer

nonparametric in an absolute sense.

If the exact distribution of the X is known except for the values of the parame-

ters. this distribution can be used to perform the smoothing; Efron [Ref. 41 calls this

method the Parametric Bootstrap.

2. The Balanced Bootstrap

Davison, Hinkle% and Schechtman (Ref. 51 introduced the Balanced Bootstrap

to eliminate the linear component of the bias of bootstrap estimators. Their method

obtains the N bootstrap samples by first catenating the vector of n original samples N

times, randomly permutating the resulting vector and then taking N successive vectors

of size n, ensuring that each x, occurs exactly N times in the total N bootstrap samples.

It is easily seen, that when an estimator h(X) for 0 is linear and symmetric in X, then

-Zh(x-L) = h(x). (2.8)

5



C. CONFIDENCE INTERVALS
One of the applications of the sampling distribution is to approximate confidence

intervals for a parameter. The following sections discuss two bootstrap-based methods

for this purpose.

1. The Percentile Method

The percentile method is appealingly straightforward and provides, Efron
[Ref. 41, good results. It is based on the definition of the empirical cumulative distrib-
ution function G* of the estimator,

A0(0* j !<- X)
G*(x) = P(O*.<x} = ,X, (2.9)

The pth percentile then can be approximated by 0*. defined by

ft A A .'

PO* < OP,) <_ p. (2.10)

Efron [Ref. 41 proposes the use of (0*,, 0*,.) as an approximate 100(l - 2a )? confi-

dence interval for 0.

2. The Bias-Corrected Percentile Method
The bias-corrected percentile method covers those cases, where the empirical

bootstrap distribution is not median-unbiased, i. e.,

pto* < 0) #0 .5. (2.11)

The percentile method may produce inaccurate percentile estimates in this case. To

compensate for these inaccuracies, Efron [Ref. 41 introduces the Bias-Corrected

Percentile Method. This method relies, as Schenker [Ref 6J points out, on an assump-
tion, which in general is at best approximately valid. The assumption is, that there exists

a function g such that

g(O) - g(O) N(, T ) (2.12)

and

g(o*) - g(0) N(,, T) (2.13)

6



with It and r being real variables but constant for a specific case. Let

z,= q[G*(O)] (2.14)

and

Z, dl-(1-a) (2.15)

where <D denotes the cumulative distribution function of the standard normal distrib-

ution and 0 is the value of the estimator for the original sample. Then the approximate

1 - 2a confidence interval is given by

(G*-1 [4(2z0 - z,)]. G*- [(1(2: 0 + z,)]) (2.16)

It is easily seen, that for median unbiased sampling distributions, i. e., if'

P{O* <0 = 0.5, (2.17)

- 0 and the bias-corrected percentile method is identical with the percentile method.

Schenker's intention [Ref. 6] is to demonstrate some deficiencies of bootstrap-based

confidence intervals for small sample sizes. Nevertheless, he does provide results which

seem to indicate, that the bias-corrected percentile method is an improvement over the

percentile method.
For the cases, where the underlying assumptions for the bias-corrected

percentile method do not hold, Efron and Tibshirani [Ref. 7] proposed another method

called the BC, method. This thesis is concerned with the first two methods only.

| ! 7



III. THE EXPONENTIAL DISTRIBUTION

In this chapter, the performance of the Bootstrap method is compared to the the-

oretical results in the case where the underlying distribution is the exponential distrib-

ution.

A. THEORETICAL RESULTS

Let X, , A2 , X3, ... , X be i. i. d. random samples from the exponential distribution

Exp [ . with probability density function

{ . -- jor x> O (3.18)
f(x) = {0 otherwise

The Maximum Likelihood Estimator (MLE) for the scale parameter ; is

-- 11 (3.19)

ZNI
1= 1

Using the fact. that the sum of n i.i.d. exponential random variables is distributed as

Gamma [) ,n , the probability density function of the random variable W, defined by

(3.20)

can be shoi n to be

c(nA.)" I1 ,-,o
121 )*e for w>Of,{w) r~)frw0(3.21)

0 otherwise .

This is the exact sampling distribution of the maximum likelihood estimator for 2 .

Figure 1 shows the graph of the sampling distribution for . = I and sample sizes

n = 10, 30 and 50.

Computations of the moments yield

8
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Figure 1. Probability Density Function of the Sampling Distribution: A 1,

sample size n = 10, 30, 50.

ER] n "I ;, (3.22)

which shows that the M LE is asymptotically unbiased, and
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2Var[J = 2 2. (3.23)

(n- 1)2( - 2)

For this distribution exact probabilities can be computed using the following identity,

P{ w) w} 1 - t )(3.24)

where , denotes the Incomplete Gamma function. Table I shows the true values for

some percentiles of the distribution of W for .= I.

Table 1. PERCENTILES OF THE SAMPLING
DISTRIBUTION: .= I, sample size n.

n 5% 10% 90% 95%
10 0.6367 0.7039 1.6074 1.8432

20 0.7174 0.7721 1.3769 1.5089
30 0.7587 0.8065 1.2915 1.3893

40 0.7852 0.8283 1.2446 1.3247
51) 0.8042 0.8439 1.2142 1.2832

60 0.81,7 0.8439 1. 1926 1.2539

B. THE SIMULATIONS

1. Point Estimation

The purpose of this simulation is to investigate the performance of bootstrap

point estimates. Cortes-Colon [Ref. 81 explored this subject for the sample mean of ex-

ponential variates, using the mean squared error as the criterion for his evaluation. This

paper in contrast approaches the problem by looking at the bias and the variance sepa-

rately in order to isolate effects.

The simulations in this section were conducted in SJMTBED [Ref. 91, a simu-

lation software package for the IBM Personal Computer and compatibles, which uses a

multiplicative congruential generator with multiplier 16807 and modulus 21, - I for the

uniform and an acceptance-rejection scheme for the gamma variates. For the exper-

iments in this section, ten super-replications were performed with differing numbers of

trials for each original sample size. The original sample sizes used were n = 0, 20, 30,

10



40 and 50 with respective numbers of replications for one super-replication M = 480,

240, IS0, 120 and 96. With 10 super-replications, this sums up to a total of 4800, 2400,
1800, 1200 and 960 trials for each n and for each of the bootstrap replications. For

validation purposes, similar simulations were performed on the author's personal com-
puter using the APL language and also on the NPS mainframe using independent
FORTRAN 77 programs. The results were similar to those obtained from SIMTBED.

a. Bias of the Beotstrap Estimate

In the first part of the simulation experiment, the quantity of interest is the

bias B, the difference between the bootstrap estimate for the scale parameter /" and its

true value ( = I). The bootstrap estimate )* was obtained according to equation 2.6

and the bias B was computed as B = -1 for each combination of n and N.

Figure 2, created with GRLXFSTAT IRef. 101, shows the average values for B as a

function of the number of bootstrap replications N, for various values of n. Table 2 lists

the lengths of the central 90% confidence intervals for B, which are based on the

super-replications.

The graph of the average values of B shows, that the number of bootstrap

replications N has on the average almost no effect on the "closeness" of the bootstrap
estimate to the actual value. Linear regression performed on the averages versus N re-
sulted in slope parameters of the order of 10-1 and less. The bias is significantly affected
by the sample size n. 'lhe reason for this behavior is the fact that the estimator is biased

and that the bias decreases with increasing sample size. The average bias for each value
of n is significantly larger than the amount expected from equation 3.22, which for this
case would be '(n-l). The observed average bias is approximately twice the expected

value which seems to indicate that the bootstrap method introduces additional bias. The
variability of the bias as measured by the length of a 90% confidence interval is pre-
sented in Table 2. These lengths decrease with increasing sample size n but are not af-
fected by the number of bootstrap replications N.

11
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Figure 2. Average Bias: Average values of bootstrap estimate minus actual value

for the true values A = 1.

12



Table 2. VARIABILITY OF BIAS: Length of the 90%" confidence interval for the
bias B.
(Variances are less than 10-3 )

N n 10 20 30 40 50

20 1.3625 0.8567 0.6764 0.5804 0.5049
50 1.3718 0.S5SI 0.7064 0.5623 0.5100

100 1.3137 0.8275 0.6829 0.5518 0.4991

200 1.3481 0.810I8 0.6694 0.5754 0.4665
300 1.3825 0.8476 0.6588 0.5092 0.5218

400 1,3574 0.8384 0.6839 0.5449 0.4996
500 1.3583 0.85 12 0.6855 0.5742 0.5204

b. Bootstrap Variance Estination
The quantity of interest here is the bias of the bootstrap estimate of the

variance of /*. i. e. &" - a . The bootstrap estimate of the variance, *' , is computed

according to equation 2.7 and a- is the theoretical value from equation 3.23. The average

values of the bias of the bootstrap variance estimate are displayed graphically in Figure

3 while the lengths of its 90% confidence intervals, depicting the variability, are listed in

Table 3.

The graph shows that on the average bootstrap overestimates the variance

of the maximum likelihood estimator of the scale parameter of the exponential distrib-

ution. The average bias after some fluctuation for low values of the bootstrap repli-

cations N seems to stabilize and from then on the number of bootstrap replications does

not have a significant effect. Again the major impact on the bias is given by the sample

size n. The graph clearly shows the decrease in bias with increasing n. The variability

of the bias of the bootstrap variance estimate, represented by the lengths or the 90%

confidence interval of the bias also does not seem to change with the number of boot-

strap replications N. Least squares regression of the lengths on the number of bootstrap

replications yields slope parameters of the order of 10-, which does not indicate a strong

dependence. So a choice of about N = 200 bootstrap replications should be appropriate.

13
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Table 3. BIAS OF BOOTSTRAP VARIANCE ESTIMATE: Length of the 90%
confidence interval of the bias of the bootstrap variance estimate
6*2 - a2 for .= 1.
(Variances are less than 10-1 )

N n 10 20 30 40 50
20 0.6988 0.1535 0.0742 0.0549 0.0383
50 0.6757 0.1568 0.0793 0.0456 0.0334

100 0.6266 0.1491 0.0725 0.0470 0.0310
200 0.7026 0.1452 0.0706 0.0436 0.0324
300 0.6806 0.1455 0.0718 0.0422 0.0328
400 0.67-12 0.1469 0.0730 0.0450 0.0302
500 0.6572 0.1542 0.0710 0.0418 0.0297

The results of this section, briefly summarized, are: The number of boot-
strap replications has no major impact on the "closeness" of the bootstrap estimates to

the theoretical values. This observation is in agreement with the results by Cortes-Colon
[Ref. 8 and by Efron and Tibshirani [Ref. 71.

2. Confidence Intervals

This section investigates bootstrap confidence intervals obtained by the
percentile and bias-corrected percentile methods.

a. Simulation Validation

Validation is an important part of every simulation. Checking the results for

plausibility, comparing them with the theory and with results obtained by other authors
are some of the ways to accomplish validation. The latter way was specially chosen for
this part of the thesis. To ensure that the percentile method and the bias-corrected

percentile method were properly understood and correctly implemented in computer

code, Efron's simulation [Ref. 4, page 841 was repeated. In the experiment random
samples of size n = 15 are drawn from the exponential distribution Exp [ ). = I . The

sample are standardized to ensure that the sample mean Y = 0 and the sample variance

Y,(x, - 3)I/(n - 1) - 1. The bootstrap method is then applied to the standardized sam-
ples with the number of bootstrap replications N - 1000. Selected percentiles are ap-

proximated using the percentile method and the bias-corrected percentile method. Table

15



4 shows the results for 10 trials. The averages of the estimated percentiles over the ten

trials and the corresponding results obtained by Efron [Ref. 4, p. 851 are also presented.

The numbers obtained are quite close to Efron's results. The simulation was pro-

grammed in FORTRAN 77 and conducted on the NPS IBM mainframe. The random

variates, exponential and uniform, were generated using the random number package

LLRANDOMI1 [Ref. Ill. Appendix D shows the listing of the program for the

percentile method and the bias-corrected percentile method.

Table 4. SIMULATION VALIDATION: Nonparametric confidence intervals of
exponential variates Expi , = 11, standardized, i. e. sample mean = 0 and
sample variance = 1; n = 15. N = 1000.

Trial Percentile Method Bias-corrected PM
5% 10% 90% 95% 5% 10% 90% 95%

1 -0.358 -0.39) 0.308 0.457 -0.358 -0.300 0.368 0.457
2 -0.403 -0.322 0.324 0.425 -0.384 -0.293 0.359 0.454
3 -0.377 -0.298 0.305 0.435 -0.373 -0.290 0.328 0.453
4 -0.375 -0.309 0. 331 0.433 -0.373 -0.3 04 0.340 0.440
5 -0.381 -0.300 0.329 0.431 -0.378 -0.292 0.343 0.439
6 -0.408 -0.302 0.345 0.451 -0.391 -0.288 0.355 0.463
7 -0.347 -0.302 0.330 0.478 -0.322 -0.271 0.399 0.505
8 -0.391 -0.304 0.320 0.426 -0.356 -0.289 0.348 0.449
9 -0.384 -0.32o 0.309 0.410 -0.371 -0.298 0.336 0.442
10 -0.425 -0.332 0.332 0.444 -0.401 -0.305 0.362 0.436

Average -0.385 -0.309 0.329 0.435 -0.371 -0.293 0.354 0.460
Efron -0.39 -0.32 0.33 0.43 -0.36 -0.29 0.36 0.47

b. Coverage

The interpretation of a confidence interval, e. g. 90%, for a parameter of

interest is, that in the long run with a relative frequency of 0.9, the computed confidence

intervals cover the actual value of the parameter. Thus the relative frequency of cover-

age can be used to assess the quality and applicability of a method, which produces

confidence intervals. In this section, the coverage is investigated for the percentile

method and the bias-corrected percentile method.

The simulation looks at the central 90% confidence interval. This interval

is set up using the 5th and 95th quantiles of the empirical bootstrap distribution for the

scale parameter . of the exponential distribution for both methods. The simulation was

programmed in FORTRAN 77 and run on the NPS mainframe computer. Random

numbers were generated with LLRANDOMII [Ref. Ill. For each combination of
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sample size n and numaer of bootstrap replications N the simulation consists of 1000

repetitions, for each of which the coverage of the actual value .= I was checked. Table

5 shows the counts for the percentile method and Table 6 for the bias-corrected

percentile method.

Table 5. COVERAGE--PERCENTILE METHOD CONFIDENCE
INTERVAL: Coverage of the true value ) = I by the 90% confidence
interval obtained from the percentile method, out of 1000 repetitions.

N n 10 20 30 40 50

50 826 845 859 883 888

100 804 851 877 888 889

200 794 845 881 853 881

300 81) 856 862 870 884

500 784 S48 840 876 860

Table 6. COVERAGE--BIAS-CORRECTED PERCENTILE METHOD CONFI-
DENCE INTERVAL: Coverage of the true value . = I by the 90" .
confidence interval obtained from the bias-corrected percentile method.
out of IoN1_ repetitions.

N n 10 20 30 40 50

50 831 831 855 875 870

100 815 847 880 8sS 8S8

200 792 85 1 881 859 873

300 821 871 857 871 888

500 793 850 847 883 864)

The coverage in all cases is below the nominal level of 90%. The coverage

appears to be somewhat erratic for the smaller values of sample sizes, n 1 10 and 20,

but it seems to improve with increasing n. Schenker [Ref. 6] observed a similar behavior

in his investigation dealing with the estimation of the variance of a normal distribution.

The number of bootstrap replications N again seems not to have a significant effect.

Significant differences between the percentile method and the bias-corrected percentile

method are also not detectable in this experiment.
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c. Perceutiles

The simulation in the previous section was set up to also provide the aver-

age values of the 5th, 10th, 90th and 95th percentile of the empirical bootstrap distrib-

ution. Table 7 lists these values for N = 500 bootstrap replications; these are averages

of 1000 trials. Both methods, percentile and bias-corrected percentile method on the

average overestimate the percentiles compared to the theoretical values from Table 1.

The amount of overestimation is shown in the table in parentheses. This amount is in
general larger for the percentile method than for the bias-corrected percentile method,

which means that the correction, which the latter method applies, is working in the right

direction. The difference between theoretical values and the bootstrap-based estimates

decreases with increasing original sample size n.

Table 7. AVERAGE PERCENTILES: Average values for percentiles obtained
with the percentile and the bias-corrected percentile method in 1000 trials;

.= i number of bootstrap replications N = 500; numbers in parentheses
are the amount of overestimation, compared to the theoretical values.

Percentile Method Bias-corrected PM
5% 10% 90% 95% 5% 10% 90% 95%

0.755 0.817 1.727 1.979 0.737 0.795 1.652 1.890
((.i!8) (0.113) (0.129) (0.136) (0.100) (0.091) (0.045) (0.047)

20 0.773 0.S25 1.426 1.560 0.757 0.808 1.389 1.517
(0.056) (0.053) (0.049) (0.051) (0.040) (0.036) (0.012) (0.008)
0.799 0.846 1.327 1.424 0.785 0.83! 1.300 1.395

(0.040j (0.039) (0.035) (0.035) (0.026) (0.024) (0.0)8) (0.0)6)
0.81-1 0.857 1.270 1.350 0.802 0.844 1.250 1.328

40 (0.01() (0.013) (0.025) (0.025) (-0.002) (0.000) (0.005) (0.(K)3)
0.833 0.872 1.240 1.308 0.824 0.863 1.225 1.292

50 (0.029) (0.028) (0.026) (0.025) (0.020) (0.019) (0.011) (0.009)

The behavior of percentile estimates was investigated further. The simu-

lation for this purpose was done in SIMTBED [Ref. 91 on the author's personal com-

puter. The 5th and 95th percentiles were selected as representative objects for

investigation. The number of trials is 1200 for n = 10, 600 for n = 20, 480 for n = 30,

300 for n = 40 and 240 for n = 50. Appendix A lists the results for the percentile

method. These results show that both the standard deviation of the percentile estimate

and the width of the central 90% confidence interval decrease with increasing sample
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size n. The number of bootstrap replications N seems not to affect the results. Least

squares regression of the values on the number of bootstrap replications resulted in
values for the slope of 10-

4 and less. And tests for distributional fit in GRAFSTAT

[Ref. 101 did not show significant differences for different numbers of bootstrap repli-

cations.
The simulation was repeated for the 5th and 95th percentiles using the

bias-corrected percentile method. The results are listed in Appendix B. The conclusions
for this method are basically the same as with the percentile method, decreasing standard

deviation and width of the central 900 6 confidence interval with increasing sample size

and no effect of the number of bootstrap replications. The only difference again is that
the bias-corrected percentile method is on the average closer to the theoretical value

than the percentile method.
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IV. NORMAL LINEAR REGRESSION

The results of simulations to study the properties of bootstrap estimators of the

parameters in a simple linear regression model are presented in this chapter.

A. THEORETICAL OVERVIEW
1. The Regression Model

Let {(x,y),(.r2,y2),(x3,y3), ...,(x,,.yv)} be n pairs of observations with x as the in-

dependent variable and y the dependent variable. Under the assumptions of independ-

ence. normal distribution and homoscedasticity for the random variables Y, the model

Fbr a linear relationship between x and 1 is

Yl = flo + f#Ix + ti for i= 1. 2, 3,..., n. (4.25)

The random variables t, have mean 0 and variance 02 and are normally distributed:

! - N(0. a 2) fori = 1, 2,3, ... , n. (4.26)

It is well known that the maximum likelihood estimates for the coefficients flo and fl, are

Zxryl - nj~vy^ fl

fl -- ,,(4.27)
2 -2

/,x i - fx

i=1

and

A A

flo = y - # 1 . (4.28)

Both estimators are unbiased, i. e.

A A.

E[fl0] = 1o and Efl 1  = fi1. (4.29)

The joint sampling distribution for Ii0 and IA is known to be a bivariate normal distrib-

ution. The marginal distributions are normal with means equal to the respective true
values and the variances
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n

Var[3] (4.30)

(x -T2

and

A 2

n (4.31)

Z(X, _-)

The covariance between flo and f is

^A 02-

Cov[I 0,fl 1] - . (4.32)

(x, - 2
1=l

2. Bootstrap Method for Regression Models

The implementation of the bootstrap method for regression models [Ref. 41

differs slightly from the one in the one-sample case. It is described here for the normal

linear regression of one dependent and one independent variable, which is the topic of

this chapter.

To perform the bootstrap, first the least squares estimates fl0 and fl, (equations

4.27 and 4.28) are computed. These estimates are used to compute the residuals e,:

A

ei = y!- (fl0 + flIx) for i - 1, 2, 3, ..., n. (4.33)

A bootstrap sample e of size n, which is of the same size as the original sample, is

obtained by randomly drawing with replacement n times from the e,. Computing

A .1

Y,* = flo + fixi + e*, for i = 1, 2, 3,..., n (4.34)

results in n pairs of 'observations' {(x,y*,),(x 2,y* 2),(x3,y* 3), ... ,(Xy*,)} . These n pairs

of 'observations' are used to compute the bootstrap estimates /1% and # t using the

equations 4.27 and 4.28. The process of randomly drawing and computing the estimates

is repeated for a total of N bootstrap replications. The bootstrap estimates fP%,, and
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IJ*, for j = I, 2, 3, ..., N are used to construct the empirical sampling distribution for

the estimators /, and ki?. All other quantities then can be estimated as described in

Chapter II.

B. THE SIMULATIONS

The choice of the values for x, the independent variable in the regression model in-

fluences the variability of the results. Since this effect was not to be investigated, the

values for x were kept fixed throughout the simulations. The values for the x were evenly

spread from 10, n to 10 in increments of 10in where n indicates the sample size. The

values chosen for the coefficients &4 and fi, and the variance 02 are discussed below. For

each simulation the sample pairs (xd;) where obtained by computing

Y1" = flo + fiI x + ri for i = 1, 2, 3, ... , n, (4.35)

with the t, being normal random variates with mean zero and variance a,. Having set

up the pairs of observations, the simulation then proceeds as described in the previous

section.

1. Estimation of the Regression Coefficients

The first simulation estimated the coefficients fl, and fi, by applying equations

4.27 and 4.28 to each bootstrap sample and averaging over N, the number of bootstrap

replications. It was conducted in SI.M'BED [Ref. 91 on the author's personal computer

and consisted of ten super replications. For n = 10, 20, 30, 40 and 50 the respective

number of trials was 300, 150, 100, 75 and 60 within each super replication. This sums

up to a total number of trials of 3000 for n = 10, 1500 for n = 20, 1000 for n = 30 etc..

A simulation with those ten super replications was conducted for each selected number

of bootstrap replications N. For this simulation the values of the parameters were /
= 1.5, #, = 0.8 and a2 = 0.5. The tables below show the averages of the estimates over

all super replications, Table 8 for fi* and Table 9 for tV,.
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Table 8. BOOTSTRAP ESTIMATE: Y-INTERCEPT: Average values and
standard deviations ( ) of the bootstrap estimate of the y-intercept; actual
value #0 = 1.5.

N n 10 20 30 40 50
50 1.507 1.499 1.487 1.505 1.492

(0.4782) (0.3348) (0.2657) (0.2286) (0.2073)

100 1.507 1.501 1.491 1.500 1.514
(0.4835) (0.3253) (0.2692) (0.2264) (0.2043)

200 1.497 1.485 1.492 1.498 1.506(0.4777) (0.3224) (0.2588) (0.2283) (0.2017)

300 1.489 1.506 1.504 1.493 1.496
(0.4848) (0.3390) (0.2586) (0.2316) (0.1961)

400 1.492 1.519 1.482 1.493 1.509
S (0.4799) (0.3226) (0.2715) (0.2288) (0.2054)

500 1.507 1.499 1.509 1.508 1.504
(0.4838) (0.3251) (0.2605) (0.2292) (0.1999)

Table 9. BOOTSTRAP ESTIMATE: SLOPE: Average values and standard de-
viations ( ) of the bootstrap estimate of the slope parameter; actual valueP1  -- 0.8.

N n 10 20 30 40 50
50 0.7991 0.8006 0.8011 0.7990 0.80.K)6

(0.07755) (0.05575) (0.04460) (0.03988) (0.03353)
100 0.7981 0.7997 0.8011 0.8002 0.7985

(0.07S37) (0.05456) (0.04596) (0.03935) (0.03502)
0.8003 0.8029 0.8015 0.8012 0.7985

200 (0.07665) (0.05315) (0.04503) (0.03845) (0.03538)
300 0.8002 0.7986 0.80(16 0.8011 0.7992

(0.07778) (0.05561) (0.04452) (0.03958) (0.03383)
400 0.8008 0.7969 0.8027 0.8017 0.7986

(0.07835) (0.05486) (0.04690) (0.03950) (0.03563)
500 0.7989 0.8008 0.7987 0.7987 0.7995

(0.07765) (0.05451) (0.04395) (0.03948) (0.03426)

It can be seen that on the average the bootstrap estimates of the regression pa-

rameters are fairly close to the theoretical values. The number of bootstrap replications
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N again seems not to aflict the "closeness" of the bootstrap estimates to the theoretical

values. The computed standard deviations of the estimates (shown in parentheses) also

confirm this conclusion. As a more detailed representation of the variability,

Appendix C shows selected quantiles of the bootstrap estimates of the regression coef-

ficients from the simulation with N = 300. The simulation results compare favorably

with the theory.

For selected numbers of bootstrap replications the simulation was repeated with

different sets of values for the parameters fo, /i and a'. The following tables show the

simulation results.

Table 10. ESTIMATION OF THE REGRESSION COEFFICIENTS: Average
values and standard deviations of the bootstrap estimates of the re-
gression coefficients; N = 300; theoretical values: Io = 0.5, fl 2.0,
er = 0.5.

n 10 20 30 40 50

0.4S93 0.5055 0-.5041 0.4929 0.4957
0____ (0.4848) (0.3390) (0.2586) (0.2316) (0.1961)

2.000 1.999 2.001 2.001 1.999
__*_ (0.0778) (0.0556) (0.0445) (0.0396) (0.0338)

Table 11. ESTIMATION OF THE REGRESSION COEFFICIENTS: Average
values and standard deviations of the bootstrap estimates of the re-
gression coefficients; N = 200; theoretical values: f0 - 1.5, fi = 0.8,
e-2 = 4.0.

n 10 20 30 40 50

1.492 1.457 1.477 1.494 1.516
0___ (1.351) (0.9119) (0.7319) (0.6458) (0.5705)

0.8009 0.8082 0.8042 0.8033 0.7958
(0.2168) (0.1503) (0.1274) (0.1087) (0.1001)

The averages of the bootstrap estimates are again quite close to the actual values. The

changes in the standard deviations clearly reflect the changes in the parameter values

and conform with the theory.
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2. Bootstrap Estimates of the Variances

The same setup, as far as the number of repetitions and actual values for the

parameters are concerned, was used for this simulation. The quantities under investi-

gation now were the differences between the bootstrap estimates and the theoretical

values of the variances and the covariance of the least squares estimators. The bootstrap

estimates for the variances and the covariance were obtained following equation 2.7,

while the theoretical values were computed according to equations 4.30, 4.31 and 4.32.

The average differences for the variances turned out to be negative, i. e. the bootstrap

estimate is on the average lower than the theoretical value. For the covariance which is

negative the average differences were positive which means that the absolute value of the

bootstrap covariance estimate on the average is lower than the theoretical value. The

average absolute values of the differences were less than 0.05 and decreasing with in-

creasing original sample size n. The number of bootstrap replications N had no effect

on the average difference. Standard deviations for the differences were of the order 0. 1,

decreasing with increasing n.

Again for some selected cases the simulation was repeated with different sets of

values for the parameters 10,. fl, and a-. The following Table 12 shows the results of one

of these.

Table 12. BOOTSTRAP VARIANCE ESTIMATE: Average values and standard
deviations of the difference AVar#[ ] between the bootstrap variance es-
timates of' the regression coellicients and the theoretical value; N = 200:
theoretical values: =i0  1.5, f, = 0.8, 7 = 4.0.

10 20 30 40 50
A -0.3605 -0.0921 -0.0310 -0.0271 -0.0124]

AVar*[P*,] (0.7596) (0.2765) (0.1509) (0.0970) (0.0732)

A A

The bootstrap estimates of the variance of fl and the covariance between fl. and

I?, were also quite accurate; the differences from the corresponding theoretical values

were of the order 0.05 with standard deviations of the order 0.1.

3. Confidence Intervals

In this section the bootstrap estimates for percentiles as bounds for confidence

intervals for the estimates of the regression coefficients are investigated. The investi-
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gation focuses on the coverage of the central 90%0 confidence interval using both the

percentile and the bias-corrected percentile method. The simulation was written in
FORTRAN 77 for the IBM mainframe computer. It used the theoretical values

&0 = 1.5, fl, = 0.8 and a2 = 0.5. 500 trials were used for each selected combination

of sample size n and bootstrap replications N. Tables 13 and 14 lists the results for the

percentile method and Tables 15 and 16 for the bias-corrected percentile method. The

coverage for both methods is in most cases below the nominal 90% level although the
differences are fairly small. The increase in coverage with increasing sample size n seems

obvious while the number of bootstrap replications N does not seem to have any influ-
ence. A significant difference between the two methods can not be demonstrated with

the results.

Table 13. COVERAGE - PERCENTILE METHOD CONFIDENCE
INTERVAL: Percentage of coverage of the true value fl0 = 1.5 by the
bootstrap 90%/1 confidence interval obtained from the percentile method,
in 500 trials.

N n 10 20 30 40 50
100 81.0 82.2 88.0 88.4 88.6
200 82.2 85.6 87.2 88.8 87.2
300 83.2 86.2 84.2 83.4 90.0
400 83.0 84.0 90.6 89.8 88.4
50O 82.8 85.4 88.6 87.8 88.0

Table 14. COVERAGE - PERCENTILE METHOD CONFIDENCE
INTERVAL: Percentage of coverage of the true value fl, = 0.8 by the
bootstrap 90%10 confidence interval obtained from the percentile method,
in 500 trials.

N n 10 20 30 40 50
100 80.4 85.0 87.6 89.6 88.2
200 80.4 84.8 88.0 88.4 89.6
300 82.6 83.6 83.0 85.0 89.0
400 80.4 84.2 88.4 88.8 88.0
500 81.4 85.2 89.0 87.4 88.2
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Table 15. COVERAGE--BIAS-CORRECTED PERCENTILE METHOD CONFI-
DENCE INTERVAL: Percentage of coverage of the true value fl = 1.5
by the bootstrap 90% confidence interval obtained from the bias-
corrected percentile method. out of 500 repetitions.

N n 10 20 30 40 50
100 80.6 83.2 87.6 87.8 87.8
200 82.0 86.8 86.4 88.0 86.6
300 83.2 85.6 84.4 83.8 90.4
400 83.6 84.2 89.0 89.6 87.8
500 82.8 84.2 89.6 88.0 88.2

Table 16. COVERAGE--BIAS-CORRECTED PERCENTILE METHOD CONFI-
DENCE INTERVAL: Percentage of coverage of the true value /fl = 0.8
by the bootstrap 900/ confidence interval obtained from the bias-
corrected percentile method, in 500 trials.

N n 10 20 30 40 50
100 79.8 86.0 89.0 88.2 88.4
200 80.2 85.4 88.4 88.6 89.2
300 83.6 84.2 83.8 85.0 88.8
400 79.2 84.4 89.0 88.2 87.8

500 81.4 86.0 88.2 86.2 87.6

4. Linear Regression with Mixtures of Normals

As a further test case for the bootstrap of regression models, another linear re-
gression model was chosen. In this model all the assumptions about the dependent ran-

dom variable Y as in the previous model hold, except the distributional assumption.

Now the underlying distribution is assumed to be a mixture of two normal distributions.
The model equation 4.25 still holds, but now equation 4.26 becomes

5{ V I,o ) for i = 1, 2, 3, ... , n. (4.36)

S" A'( 2.ov) with probability (1-p)

The expectation for t is
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E[t] = pul + (I - )),. (4.37)

In the simulations E[t] is for convenience set equal to zero by adjusting the values of

p, , and ,u2 appropriately. The resulting variance of the mixture of two normal distrib-

utions is

Ores =PC + (1 -) + P(l - - A2)2 (4.38)

The same simulation setup as for the normal linear regression in SIMTBED was

used to conduct simulations for this regression model. The following tables, Table 17 and

Table 18 show the results of two simulation runs.

Table 17. ESTIMATION OF THE REGRESSION COEFFICIENTS: Average
values and standard deviations of the bootstrap estimates of the re-
gression coefficients: N - 100; theoretical values: fl0 = 1.5, fl1 = 0.8,
p = 0.5. p, = 1.5,a2 05,.42 = -1.5, o = 0.5.

n 10 20 30 40 50
A 1.488 1.511 !.498 1.490 1.475

o (1.137) (0.7922) (0.6319) (0.51S0) (0.4981)

A 0.8052 0.8014 0.8003 0.8034 0.8048
f___ (0.1824) (0.1317) (0.1081) (0.0885) (0.0834)

Table 18. ESTIMATION OF THE REGRESSION COEFFICIENTS: Average
values an:! standard deviations of the bootstrap estimates of the re-
gression coefficients: N = 200; theoretical values: & = 1.5, fl, = 0.S,
p -- 0.2 5 ,1t, = -1.5.,2 = 0.5.-P2 = 0.5.oa = 1.0.

n 10 20 30 40 50
A 1.508 1.512 1.512 1.490 1.500
PO (0.8713) (0.5979) (0.4638) (0.4145) (0.3660)

0.7990 0.7968 0.7980 0.8053 0.7971
1*, (0.1397) (0.0973) (0.0798) (0.0712) (0.0620)

The estimates for the parameters are once more close to the actual values.

For /0 - 1.5, /J = 0.8, p = 0.25, u f -1.5, of = 0.5, 12 = 0.5 and o - 1.0

90% bootstrap confidence intervals were computed. The simulation consisted of 500

trials for each combination of the sample size n and the bootstrap replications N. The

following four tables, Table 19 through Table 22 contain the results of the simulation.
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Tables 19 and 20 for the percentile method and Tables 21 and 22 for the bias corrected

percentile method.

Table 19. COVERAGE - PERCENTILE METHOD CONFIDENCE
INTERVAL: Percentage of coverage of the true value flo = 1.5 by the
bootstrap 90% confidence interval obtained from the percentile method,
in 500 trials.

N n 10 20 30 40 50
100 78.4 84.0 88.2 88.4 88.6
200 80.4 85.8 87.6 88.2 86.6
300 83.6 84.8 84.8 85.0 87.8
400 81.4 85.0 88.0 91.0 86.6
500 84.6 84.6 87.6 88.4 88.2

Table 20. COVERAGE - PERCENTILE METHOD CONFIDENCE
INTERVAL: Percentage of coverage of the true value #, = 0.8 by the
bootstrap 90% confidence interval obtained from the percentile method,
in 500 trials.

N n 10 20 30 40 50
100 80.2 86.4 88.4 88.2 87.2
200 81.0 83.6 89.6 87.4 88.4
300 82.6 87.2 84.8 86.6 89.4
400 82.6 87.8 86.6 89.8 87.8
500 81.0 85.4 87.8 87.8 88.2

The results are almost the same as for the standard regression model. The

coverages are with two .!xceptions below the nominal level; they increase with increasing

sample size n and the bootstrap replications N again seem not to affect the coverage.

Also no significant difference is detectable between the coverages of the confidence in-

tervals from the percentile method and the bias-corrected percentile method.
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Table 21. COVERAGE--BIAS-CORRECTED PERCENTILE METHOD CONFI-
DENCE INTERVAL: Percentage of coverage of the true value /f0 = i.5
by the bootstrap 90% confidence interval obtained from the bias-
corrected percentile method, out of 500 trials.

N n 10 20 30 40 50
100 80.0 83.6 88.2 87.6 87.8
200 81.6 84.4 86.6 87.2 86.2
300 83.0 85.0 85.6 85.4 89.0
400 83.4 85.0 87.6 91.0 86.4
500 82.0 84.8 88.0 88.6 87.6

Table 22. COVERAGE--BIAS-CORRECTED PERCENTILE METHOD CONFI-
DENCE INTERVAL: Percentage of coverage ofthe true value fl, = 0.8
by the bootstrap 90% confidence interval obtained from the bias.
.orrected percentile method, in 5() trials.

N n 10 20 30 40 50
100 80.8 84.8 87.6 88.0 87.4
200 81.2 83.S 88.6 87.4 86.6
300 82.2 86.4 84.8 86.0 89.2

400 82.8 87.4 86.4 89.2 87.4
500) 80.2 84.4 88.4 87.8 8S.2
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V. CONCLUSIONS

The subject of this thesis is an investigation of the performance of the bootstrap

method for small sample sizes in the two scenarios of the exponential distribution and

linear regression. In both cases the simulation results show that the bootstrap method

provides reasonable approximations for the estimation of statistical parameters.

The simulations clearly show that the sample size n has the most impact on the ac-

curacy of bootstrap estimates. Once the sample size is fixed, the "goodness" of the

bootstrap estimator is essentially constant independent of the number of bootstrap rep-

lications N, provided that N is above a minimum value which in this investigation turned

out to be about 200.

For the estimation of a parameter 0 , given an estimator 0 = h(X) , the bootstrap

estimate 0" does not seem to have an edge over the conventional estimate 0. In the

linear regression simulations the bootstrap point estimates of the regression coeflicients

are on the average very close to their actual valucs and for the normal linear regression

their distributions approximate the theoretical normal distributions. For the exponential
distribution the simulated bootstrap estimates for the scale parameter showed an average

bias which is significantly larger than the bias predicted by the theory for the maximum

likelihood estimator. So for the point estimation of the parameter the maximum likeli-

hood estimator appears to be the better estimator and the extra effort of going through

the process of the bootstrap method does not bring any improvement.

For the estimation of the variance of an estimator, bootstrap in both investigated

scenarios provides estimates which are very close to the theoretical results. While in the

case of the exponential distribution the bootstrap estimator on the average slightly
overestimates the variance, for the normal linear regression problem the bootstrap esti-

mator is slightly below the theoretical value.

The coserage of bootstrap confidence intervals is below the nominal level for both

the percentile method and the bias-corrected percentile method and not significantly

different between the exponential and the linear regression cases. The latter do not show

significant differences for the different distributions, viz., normal distribution or mixture

of normal distributions. For small sample sizes (n = 10 and 20) the low coverage seems
to indicate that the resulting confidence intervals are of little use. However for n = 40

or 50, the coverage increases and approaches the nominal level.
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An important question in practical applications is, how many bootstrap replications
should be taken. The simulations show that for the estimation of the variance of the

maximum likelihood estimator of the scale parameter of the exponential distribution 2(0

bootstrap replications are sufficient for all sample sizes. For the higher sample sizes (n

40, 50) even less bootstrap replications (N = 50, 100) produce results of similar ac-

curacy. For the estimation of the variance of the estimator for the coefficients in the

linear regression, the simulations show that 100 bootstrap replications provide reason-

able estimates. The simulations for both scenarios show that increasing the number of
bootstrap replications beyond the values indicated does not significantly increase the

quality of the results. For the estimation of confidence intervals the answer is not as

straightforward as for the variance. If the coverage of the actual value of the parameter

by the confidence interval is taken as a measure for the quality of the confidence interval

estimate, the simulation results for both scenarios do not show any significant influence

of the number of bootstrap replications. The investigations of the percentiles for the

exponential distribution also confirm this conclusion. While Efron and Tibshirani

[Ref. 7] and Efron [Ref. 12] state that for confidence intervals a minimum of 1000
bootstrap replications is required, the simulations in the special case of the exponential

distribution indicate that 400 bootstrap replications would be sufficient to obtain rea-

sonable confidence interval estimates.
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APPENDIX A. PERCENTILE ESTIMATION--PERCENTILE METHOD

Table 23. 5TH PERCENTILE: Average values, standard deviations ( ) and
lengths of the 90% confidence interval (()) for bootstrap estimates of the
5th percentile of.*,) = I.

N n 10 20 30 40 50
0.7531 0.7789 0.7955 0.8067 0.8233

200 (0.2712) (0.1959) (0.1516) (0.1332) (0.1193)
((0.8209)) ((0.6157)) ((0.5052)) ((0.4528)) ((0.4211))

0.7581 0.7648 0.7937 0.8093 0.8347
400 (0.2769) (0.1880) (0.1418) (0.1317) (0.1255)

((0.8604)) ((0.6375)) ((0.4861)) ((0.464-14)) ((0.4410))
0.75S2 0.7627 0.7970 0.8299 0.8167

600 (0.2758) (0.17921) (0.1511) (0.1414) (0.1172)
((0.8291)) ((0.5933)) ((.507-1)) (0.4964)) ((0.38 13))

0.7620 0.7597 0.7935 0.8085 0.8361
800 (0.2650) (0.1817) (0.1388) (0.1351) (0.12194

__(0.S3415) ((0.6060)) ((0.4443)) ((0.4574)) ((0.4323)

0.75141 0.7794 0.8013 0.8212 0.8170
1000 (0.2708) (0.1845) (0.1569) (0.1385) (0.1348

((0.8_____)_0.5424)) ) ((0.5032i) ((0.4659)) ((0.4539))
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Table 24. 95TH PERCENTILE: Average values, standard deviations ( ) and
lengths of the 90%'0 confidence interval (()) for bootstrap estimates of the
95th percentile of)*, ). = 1.

N n 10 20 30 40 50

1.979 1.574 1.419 1.325 1.290
200 (0.8067) (0.4163) (0.2754) (0.2173) (0.1895)

((2.424)) ((1.272)) ((0.928)) ((0.745)) ((0.656))

1.996 1.549 1.415 1.337 1.315
400 (0.8235) (0.3944) (0.2626) (0.2224) (0.1886)

((2.501)) ((1.341)) ((0.873)) ((0.748)) ((0.670))

1.999 1.536 1.428 1.369 1.292
600 (0.82c-9) (0.3721) (0.2831) (0.2389) (0.1802)

((2.625)) ((1.264)) ((0.928)) ((0.807)) ((0.644))

1.996 1. 534 1.425 1.343 1.311
800 (0.7879) (0.3775) (0.2681) (0.2284) (0.1956)

((2.568)) ((1.299)) ((0.963)) ((0.747)) ((0.678))

1.955 1.571 1.437 1.368 1.288
1000 (0.7518) (0.3740) (0.2875) (0.2358) (0.2141)

((2.356)' ((1.259)) ((0.963'J) ((0.780)) ((0.764 )
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APPENDIX B. PERCENTILE ESTIMATION--BIAS-CORRECTED

PERCENTILE METHOD

Table 25. 5TH PERCENTILE: Average values, standard deviations ( ) and
lengths of the 90% confidence interval (()) for bootstrap estimates of the
5th percentile of *. , = 1.

N n 10 20 30 40 50
0.7347 0.7551 0.7819 0.7946 0.8155

200 (0.2734) (0.2004) (0.1564) (0.1318) (0.1194)
((0.844;) ((0.635)) ((0.530)) ((0.445)) ((0.432))

0.7404 0.7444 0.7819 0.7979 0.8222
400 (0.2736) (0.1823) (0.1520) (0.1315) (0.1214)

((0.834)) ((0.615)) ((0.494)) ((0.477)) ((0.418))

0.7381 0.7396 0.7S58 0.8215 0.8073
600 (0.2708) (0.1692) (0.1491) (0.1363) (0.1154)

((0.828)) ((0.557)) ((0.510)) ((0.472)) ((0.393))
0.7524 0.7432 0.7755 0.8040 0.8297

800 (0.26-4) (0.1751) (0.1362) (0.1306) (0.1281)
((0.817)) ((0.5S6)) ((0.422)) ((0.419)) ((0.435))
0.7251 0.7680 0.7879 0.8117 0.8050

1000 (0.2586) (0.1851) (0.1581) (0.1395) (0.1299)
((0.802)) ((0.591)) ((0.500)) ((0.461)) ((0.430))
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Table 26. 95TH PERCENTILE: Average values, standard deviations ( ) and
lengths of the 900' confidence interval (()) for bootstrap estimates of the
95th percentile of ;.*, .= 1.

N n 10 20 30 40 50
1.888 1.522 1.386 1.305 1.273

200 (0.7564) (0.3970) (0.2683) (0.2151) (0.1888)
((2.293)) ((1.201)) ((0.934)) ((0.749)) ((0.653))

1.900 1.504 1.387 1.361 1.297
400 (0.7534) (0.3732) (0.2569) (0.2171) (0.1849)

((2.321)) ((i.267)) ((0.868)) ((0.774)) ((0.658))
1.908 1.492 1.401 1.350 1.276

600 (0.7625) (0.3537) (0.2733) (0.2345) (0.1785)
((2.476)) ((1.193) ((0.897)) ((0.818)) ((0.638))

1.911 1.419 1.396 1.322 1.259
800 (0.7304) (0.3595) (0.2574) (0.2265) (0.1942)

((2.350)) ((1.235)) ((0.892)) ((0.739)) ((0.665))
1.873 1.529 1.408 1.345 1.272

1000 (0.6977) (0.3568) (0.2781) (0.2290) (0.2084)
1 ((2.191)) ((1.192)) ((0.915)) ((0.764)) ((0.108))
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APPENDIX C. VARIABILITY OF BOOTSTRAP POINT
ESTIMATES-LINEAR REGRESSION

Table 27. VARIABILITY OF THE BOOTSTRAP ESTIMATE:
Y-INTERCEPT: Quantiles for the bootstrap estimate of the y-
intercept, compared to the normal quantiles (in parentheses); theoretical
value fl, = 1.5,

Quantile n 10 20 30 40 50
0.010 0.3409 0.7080 0.8260 0.9660 1.023

(0.3763) (0.7359) (0.8840) (0.9699) (1.0277)
0.025 0.5456 0.8576 0.9591 1.018 1.062

(0.5532) (0.8562) (0.9810) (1.0534) (1.1021)
0.050 0.7194 0.9476 1.043 1.127 1.135

(0.7055) (0.9597) (1.0645) (1.1252) (1.1660)
0.100 0.8SI2 1.063 1.154 1.218 1.237

(0.8s81) (.0790) (1. 1607) (1.2080) (1.2398)
0.250 1.173 1.266 1.322 1.338 1.368

(1.1742) (1.27S4) (1.3214) (1.3463) (1.3631)

0.500 1.500 1.475 1.485 1.498 1.511
(1.5000) (1.500)O) (1.5000) (1.5000) (1.5000)

0.750 1.823 1.700 1.665 1.649 1.644(1.8258) (1.7216) (1.6786) (1.6537) (1.6269)

0.900 2.112 1.903 1.830 1.794 1.769(2.1190) (1.9210) (1.8393) (1.7920) (1.7602)

0.950 2.275 2.042 1.934 1.907 1.845(2.2945) (2.0403) (1.9355) (1.8748) (1.8349)

2.449 2.1 6 2.035 1.982 1.9160.975 (2.446S) (2.143S) (2.0190) (1.9466) (1.8979)

0.990 2.607 2.289 2.119 2.092 1.946(2.6237) (2.2641) (2.1160) (2.0300) (1.9723)
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Table 28. VARIABILITY OF THE BOOTSTRAP ESTIMATE: SLOPE:
Quantiles for the bootstrap estimate of the slope, compared to the normal
quantiles (in parentheses). theoretical value 10 - 0.8,

Quantile n 10 20 30 40 50
0.010 0.6161 0.6727 0.6919 0.7039 0.7125

(0.6189) (0.6724) (0.6959) (0.7099) (0.7194)
0.025 0.6471 0.6963 0.7085 0.7185 0.7195

(0.6474) (0.6925) (0.7123) (0.7241) (0.7321)
0.050 0.6729 0.7179 0.7237 0.7358 0.7352

(0.6719) (0.7098) (0.7264) (0.7363) (0.7430)
0.100 0.7022 0.7347 0.7427 0.7520 0.7510

(0.7002) (0.7297) (0.7427) (0.7504) (0.7556)
0.250 0.7472 0.7662 0.7702 0.7770 0.7752

(0.7475) (0.7630) (0.7698) (0.7739) (0.7766)
0.500 0.8008 0.8027 0.8021 0.7999 0.8005

(0.800) (0.8000) (0.8000) (0.8000) (0.8000)
0.750 0.8503 0.S388 0.8333 0.8266 0.8220

(0.852.5) (0.8370) (0.8..02) (0.8261) (0.8234)
0.900 0.89SS 0.S713 0.8584 0.8513 0.8436

(0.8998) (0.8703) (0.8573) (0.8496) (0.8444)
0.950 0.929S 0.S919 0.8771 0.8663 0.80N)

(0.9281) (0.8902) (0.87361 (0.8637) (0.8570)
0.975 0.9580 0.9136 0.8954 0.8S14 0.8736

(0.9526) (0.9075) (0.8877) (0.8759) (0.8679)
0.99U 0.9789 0.9362 0.9138 0.8927 0.8807

(0.9811) (0.9276) (0.9041) (0.8901) (0.8806)
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APPENDIX D. FORTRAN PROGRAM FOR BOOTSTRAP

The program listed here, TEST, was written in the development of the simulations

for this thesis. Its primary purpose is the validation of the simulations by repeating

Efron's experiment [Ref. 4, pp. 841 as described in Chapter I11. It is listed here as an

example for how the bootstrap method, the percentile method and the bias-corrected

percentile method were implemented in the various simulations. The program is written

in FORTRAN 77 and designed to run under the IBM VM.'CMS operating system.

The main program contains the generation of the original sample, the generation

of the bootstrap samples and the computation of the estimator for each bootstrap sam-

ple. After sorting the bootstrap estimates the percentiles are computed with the

percentile method and the bias-corrected percentile method.

The subroutine SHELLS is an implementation of the SHELL sort algorithm.

The subroutine NORMAL computes probabilities for the standard normal distrib-

ution based on the following approximation formula [Ref. 13, p. 9321

(D(z) = P(Z< z) =

=1 - 0.5x(I + Az + BZ2 + Cz' + Dza + Ez5 + Fz6 - 6 for z>O

with A 0.0498673470

B - 0.0211410061

C = 0.0032776263

D 0.0000380036

E 0.0000488906

F 0.0000053830.
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The subroutine INVNOR computes the quantiles for the standard normal distrib.

ution using the approximation formula [Ref. 13, p. 9331

TA + BT + CT"
I + D T+ ET' + FT

with

T - n l1- for p > 0.5

and A = 2.515517

B = 0.802853

C = 0.010328

D = 1.432788

E = 0.189269

F = 0.001308.
The subroutines NORMAL and INVNOR are both used for the bias-corrected

percentile method.
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PROGRAM TEST

* Program to verify implementation of methods by repeating Efron's *
* simulation for comparison. *

* Simulate the bootstrap from an Exponential distribution with *
* parameter LAMBDA with standardized original samples. *
* Compute 5th, 10th, 90th and 95th percentiles using the *
* - Percentile Method *
* - Bias-Corrected Percentile Method *

* Variables and parameters: *
* N Original sample size = 15 *
* NN Number of bootstrap replications = 1000 *
* M Number of repetitions =10 *
* ORIG the original sample *
* RAND the Uniform (0,I) random numbers for the bootstrap *
* DRAW the integer random numbers for the bootstrap *
* LHAT the vector of MLEs of the bootstraps *

* Declare variables and I/O devices

INTEGER N, NN, M, IX1, IX2, ISORT, MULl, MUL2, DRAW, LOOK
PARAMETER (N=15, NN=lO00, M=1O)
REAL LAMBDA, AV5, AV10, AV90, AV95, CDFLHA, ZPRIME, Z5, Z10, Z90,

CZ95, AUX5, AUX10, AUX9o, AUX95, BAV5, BAV10, BAV90, BAV95,
CAAA5, AAA1O, AAA90, AAA95
PARAMETER (LAMBDA=I.0)
REAL ORIG(N), RAND(N), LHAT(NN), P5(M), P10(M), P90(M), P95(M),

CBCP5(M), BCPlO(M), BCP90(M), BCP95(M)
DATA IXl/31397/, IX2/75931/, MULl/l/, MUL2/2/, ISORT/O/, AV5/0/,

CAVl0/O/, AV90/0/, AV95/0/, BAV5/0/, BAV0/0/, BAV90/O/, BAV95/O/

CALL EXCMS('FILEDEF 10 DISK OUTEST LISTING A')

* Output header and compute constants

WRITE(10,90) N, NN
90 FORMAT('l'/ 0',10X,'BOOTSTRAP SIMULATION'/'0',10X,

C'Nonparametric confidence intervals for the expectation,'/11X,
C'negative exponential distribution;'/11X,
C'standardized samples of size n = ',14/11X,
C'number of bootstrap replications N = ',16/'O',4X,
C'Trial Percentile Meth. Bias-corr. Percentile
C 'Meth. '/5X,
C 5% 10% 90% 95% 5% 10% 90%
C,' 95%/'0')

CALL INVNOR(O.95,Z5)
CALL INVNOR(O.9,ZlO)
CALL INVNOR(0. l,Z90)
CALL INVNOR(0.05,Z95)

* For M repetitions
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DO 30, K = 1, M

* Create the original sample

CALL LEXPN( IX1,ORIG,N,MUL1, ISORT)

.. Standardize the original sample

A=O
B =0
DO 10, JJ = 1, N

A = A + ORIG(JJ)
B = B + ORIG(JJ)**2

10 CONTINUE
SD = SQRT((B - A*A/N)/(N-1))
DO 11, JJ = 1, N

ORIG(JJ) = (ORIG(JJ) - A/N)/SD
11 CONTINUE

Do NN bootstrap replications

DO 20, I = 1, NN

CALL LRND(IX2,RAND,N,MUL2,ISORT)
LHAT(I) = 0
DO 21, J = 1, N

DRAW INT(N*RAND(J)) + 1
LHAT(I) = LHAT(I) + ORIG(DRAW)/N

21 CONTINUE
20 CONTINUE

* Sort the bootstrap estimates

CALL SHELLS(LHAT,NN)

** Compute percentiles using the percentile method

P5(K) - LHAT(50)
P10(K) = LHAT(100)
P90(K) = LHAT(900)
P95(K) = LHAT(950)

Compute the percentiles using the bias-corrcted percentile method

LOOK = NN/2
111 IF(LHAT(LOOK).GT.O.ANDLHAT(LOOK+I).GT.0) THEN

LOOK = LOOK - 1
GO TO 111

ELSE IF(LHAT(LOOK). LT. O. AND. LHAT(LOOK+1). LT. 0) THEN
LOOK = LOOK + 1
GO TO 111

END IF

CDFLHA - REAL(LOOK)/NN
CALL INVNOR( CDFLHA, ZPRIME)
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AUX5 = 2*ZPRIME - Z5
AUX10O 2*ZPRIME - Z10
AUX90 = 2*ZPRIME - Z90
AUX95 =2*ZPRIIIE - Z95
CALL NORMAL( AUX5 ,AAA5)
CALL NORMAL(AUX1O,AAA1O)
CALL NORMAL(AUX9O ,AAA9O)
CALL NORMAL(AUX95 ,AAA95)
BCP5(K) =LHAT(INT(AAA5*NN))
BCPlO(K) =LHAT(INT(AAA1O*NN))
BCP90(K) =LHAT(INT(AAA9O*NN))
BCP95(K) =LHAT(INT(MAA95*NN))

*Output trial results

WRITE(1O,91) K,P5(K), P10(K), P90(K), P95(K), BCP5(K),
C BCP1O(K), BCP9O(K), BCP95(K)

91 FORMAT( 0',I8,4(2X,F6.3),3X,4(2X,F6.3))
30 CONTINUE

*Compute and output averages

DO 55, K = 1, M
AV5 =AV5 + P5(K/M
AV10 AV10 + P10(K)/N
AV90 AV90 + P90(K)/N
AV95 =AV95 + P95(K)/N
BAV5 =BAV5 + BCP5(K)/M
BAV10 = BAV1O + BCPlO(K)/M
BAV90 = BAV9O + BCP9O(K)/M
BAV95 = BAV95 + BCP95(K)/M

55 CONTINUE
WRITE(1O,92) AV5, AV10OI AV9O, AV95, DAyS, BAV1O, BAV9O, BAV95

92 FORMATcI'0',lX,'Average ,4(2X,F6.3),3X,4(2X,F6.3))
STOP
END

SUBROUTINE SHELLS( UNSORT,NUM)

*Subroutine SHELLS to sort data in ascending order (Shell-sort)*

INTEGER NUM, GAP, COUNT
REAL UNSORT(NUM)

GAP -NUM
10 GAP = INT(GAP/2.O)
20 COUNT a

DO 40, 1 al, NUM - GAP
IF (UNSORT(I).LE.UNSORT(I+GAP)) GO TO 40
A -UNSORTMI
UNSORT(I = UNSORT(I+GAP)
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UNSORT(I+GAP) = A
COUNT = COUNT + 1

40 CONTINUE
IF (COUNT.GT.0) GO TO 20
IF (GAP.GT.1) GO TO 10
RETURN
END

SUBROUTINE NORMAL(INPUTRESULT)

* Subroutine to compute probabilities for the standard normal *
* distribution. *

" Declare variables

LOGICAL NEG
DOUBLE PRECISION AA, BB, CC, DD, EE, FF, Z, X
REAL RESULT, INPUT
DATA AA/0.049867347DO/, BB/0. 0211410061DO/, CC/0.0032776263D0/,

CDD/0. 0000380036DO/, EE/O. 0000488906DO/, FF/0. 000005383DO/

" Prepare input

NEG = .FALSE.
IF(INPUT.LT.O) NEG = .TRUE.
Z = DBLE(INPUT)
IF(NEG.EQV..TRUE.) Z = -Z

* Apply formula

X = 1DO + AA*Z + BB*Z**2DO + CC*Z**3DO + DD*Z**4DO
X = X + EE*Z**5DO + FF*Z**6DO
X = X**(-16DO)
X = 1DO - 0.5D0*X

* Prepare output

RESULT = REAL(X)
IF(NEG.EQV..TRUE.) RESULT = 1 - RESULT
RETURN
END

SUBROUTINE INVNOR(INPUT,RESULT)

* Subroutine to compute quantiles of the standard normal distribution. *
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*Declare variables

DOUBLE PRECISION A, B, C, D, E, F, P, T, YY
REAL INPUT, RESULT
LOGICAL LESS
DATA A/2. 515517D0/, B/0. 802853D0/, C/0. 010328D0/, D/l. 432788D0/,

CE/O. 189269D0/, F/O. &01308D0/

*Prepare input

LESS = .FALSE.
P =DBLE(INPUT)
IF( INPUT. LT. 0.5) LESS =.TRUE.
IF( LESS. EQV. .FALSE.) P = DO -P

*Apply formula

T =DSQRT(DLOG(lD/P**2D0))
YY =A + B*T + C*T**2D0
YY =YY/(lDO + D*T + E*T**2D0 + F*T**3D0)
YY =T - YY

*Prepare result

IF(LESS.EQV..TRUE.) YY =-YY
RESULT = REAL(YY)
RETURN
END
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APPENDIX E. SIMTBED DRIVER FOR BOOTSTRAP

The program listed here is an example for the drivers used in the simulations under
SIMTBED [Ref. 91. SIMTBED is written in FORTRAN and operates under the IBM
Professional FORTRAN, which is a prerequisite for any application. The drivers, i. e.

the user input has to be written in this programming ldnguage.

The main part of the driver is the general call to SI MTBFD with all the parameters
like sample size, number of replications, destination and form of the output etc.. This

part basically follows the instructions in the manual.

The subroutines constitute the part of the driver, which is specific for each problem.
Here the user has to set up the specific simulation by choosing the distribution of the

random variates and by programning how the statistical estimates are to be computed.
The subroutines LIREl and LIRE2 in the driver are written to compute the bootstrap

estimate of the y-intercept respectively the slope in normal linear regression. In all sim-
ulations involving normal linear regression the same basic setup was used.
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* SIMTBED driver for normal linear regression*
* Main program*

*Declare variables

REAL*4 Y(3500),YMIN, YMAX
CHARACTER*120 Ti ,T2
REAL*8 IXi *IX2, 1X3, 1X4 , X5,IX
INTEGER N,M,NE(8),L,D,RG,SEI,SVS,NEST,NCOLRNDX(3),IFILE,IBWPRT,

C MSE, NPRT, IPR, IBIV, IRSTR
REAL VMSE(8,5),VMXi(8,4),VMIX2(8,4),VMX3(8,4),VMX4(8,4),VMX5C8,4)
EXTERNAL LIREl, LIRE2

*Input of SIMTBED parameters

DATA N/3000/
DATA M/ i/
DATA NE/ 10,20,30,40,50,50,50,50/
DATA L/5/
DATA D/ 0/
DATA RG/ 0/
DATA SEI! O/
DATA SVS/ 0/
DATA YMIN/ 0. /
DATA YMAX/ 0. /
DATA IX/ 8877i.DO/
DATA IFILE /0/
DATA NPRT /1/
DATA MSE /0/
DATA VMSE /40*0/
DATA IPR /0/
DATA IBIV /0/
DATA IRSTR /1/
DATA ICOLOR/0/, IBWPRT/l/, NCPRT/i/, NCOLRNDX/1,2,7/

*Set output parameters

DATA Ti/'Y-INTERSECT NORMAL LINEAR REGRESSION
C (100 Bootstrap replications)'/
DATA T2/'SLOPE NORMAL LINEAR REGRESSION

C (100 Bootstrap replications)'/

OPEN(06,FILE='LIRElOO. OUT' ,ERR=999,IOSTAT=-IER)
OPEN( 05 ,FILE=' CON' ,ERR=999 ,IOSTAT=-IER)
OPEN(02,FILE='LIRE1OO. RST' ,ERR=999,IOSTAT=IER,FORM=-'UNFORMATTED',
C ACCESS=' SEQUENTIAL')
OPEN(Ol,FILE='LIREIOO. DAT' ,ERR=999,IOSTAT=-IER,FORM='FORMArrED',

C ACCESS'SEQUENTIAL')

*Generator parameters

NEST-2
NSR i 0
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IXl=IX
1X2=IX
1X3=IX
1X4=IX
Ix5=Ix

*Make the call to SIHTBED

CALL SMTBED(IX1,1X2,IX3,IX4,IX5,Y,N,M,NE,L,D,NSR,RG,SEI ,SVS,
C YMIN,YMAX,NEST,LIRE1,T1,LIRE2,T2,LIRE1,T1 ,LIREl,Tl,LIREl ,Tl,
C IFILE,NPRT,MES ,VMSE, IPR,VMX1 ,VMX2 ,VMX3,VMX4,V1X5,IBIV, IRSTR,
C ICOLOR, IBWPRT,NCPRT,NCOLRNDX)

STOP

999 CONTINUE
WRITE(6,*) 'ERROR OPENING FILE 1, 2 OR 6'
END

SUBROUTINE LIREl( ISEED,N,EVAL)

*Subroutine to evaluate the first estimator, the Y-intercept*

'~Declare variables

INTEGER N, BREP, DRAW, NN
REAL BETAO, BETAl, BO, Bl, BIIATO, BHATi, VAR, XBAR, YBAR,
C NUMl, DENOM, EVAL
REAL*8 ISEED
PARAMETER (VAR=0. 5, BETAO=l. 5, BETAl0. 8, NN=50)
REAL X(NN), Y(NN), EPSI(NN), RAND(NN), NORRAN(NN)

BREP = 100

*Compute the x-values and related results

DO 99, I1 1, N
X(I) =REAL(I)*1O.IREALCN)

99 CONTINUE

XBAR = 0
DO 1, I1 1, N

XBAR =XBAR + X(I)/N
1 CONTINUE

DENOM - 0
DO 2, I1 1, N

DENOM -DENOM + (X(I) - XBAR)**2
2 CONTINUE
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* Create original pairs of observations and compute parameters

CALL LNORPC( ISEED,NORRAN,N)

YBAR = 0
DO 10, I = 1, N

Y(I) - BETAO + BETAl*X(I) + SQRT(VAR)*NORRAN(I)
YBAR = YBAR + Y(I)/N

10 CONTINUE

NUMi = 0
DO 11, I 1, N

NUM1 = NUM1 + (X(I) - XBAR)*(Y(I) - YBAR)
11 CONTINUE

B1 = NUMI/DENOM
BO = YBAR - B1*XBAR

* Compute the epsilons

DO 12, I = 1, N
EPSI(I) = Y(I) - BO - Bl*X(I)

12 CONTINUE

* Do the bootstraps

BOBAR = 0
BIBAR = 0
DO 20, J = 1, BREP

CALL LRNDPC(ISEED,RAND,N)
YBAR = 0
NUM1 = 0
DO 21, K = 1, N

DRAW = INT(N'*RAND(K)) + 1
Y(K) = BO + B1*X(K) + EPSI(DRAW)
YBAR = YBAR + Y(K)/REAL(N)

21 CONTINUE

DO 22, K = 1, N
NUM1 = NUM1 + (Y(K) - YBAR)*(X(K) - XBAR)

22 CONTINUE

BIHAT = NUM1/DENOM
BOBAR = BOBAR + (YEAR - BlHAT*XBAR)/REAL(BREP)

20 CONTINUE

EVAL = BOBAR

RETURN
END
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SUBROUTINE LIRE2(ISEEDN,EVAL)

* Subroutine to evaluate the second estimator, the Slope *

* Declare variables

INTEGER N, BREP, DRAW, NN
REAL BETAO, BETA1, BO, Bl, BHATO, BHAT1, VAR, XBAR, YBAR,
C NUM1, DENOM, EVAL
REAL*8 ISEED
PARAMETER (VAR=O.5, BETAO=I.5, BETAl=0.8, NN=50)
REAL X(NN), Y(NN), EPSI(NN), RAND(NN), NORRAN(NN)

BREP = 100

* Compute the x-values and related results

DO 99, I 1, N
X(I) REAL(I)*10./REAL(N)

99 CONTINUE

XBAR = 0
DO 1, I = 1, N

XBAR = XBAR + X(I)/N
1 CONTINUE

DENOM = 0
DO 2, I = I, N

DENOM = DENOM + (X(I) - XBAR)**2
2 CONTINUE

* Create original pairs of observations and compute parameters

CALL LNORPC( ISEED,NORRAN,N)

YBAR = 0
DO 10, I = 1, N

Y(I) - BETA0 + BETAI*X(I) + SQRT(VAR)*NORRAN(I)
YBAR = YBAR + Y(I)/N

10 CONTINUE

NUM1 = 0
DO 11, I - 1, N

NUM1 = NUMI + (X(I) - XBAR)*(Y(I) - YBAR)
11 CONTINUE

Bl - NU l/DENOM

BO - YBAR - BI*XBAR

* Compute the epsilons

DO 12, I = 1, N
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EPSICI = Y(I) - BO - D1*X(I)
12 CONTINUE

*Do the bootstraps

BOBAR = 0
B1BAR=O0
DO 20, J = 1, BREP

CALL LRNDPC(ISEED,RAND,N)
YEAR = 0
NUM1 0
DO 21, K -1, N

DRAW = INT(N*RAND(K)) + 1
Y(K) = BO + B1*X(K) + EPSI(DRAW)
YEAR = YEAR + Y(K)/REAL(N)

21 CONTINUE

DO 22, K =1, N
NUMi = NUM1 + (Y(K) - YBAR)*(X(K) -XBAR)

22 CONTINUE

BiHAT = NUMl/DENOM
BlBAR = BlBAR + BlHAT/REAL(BREP)

20 CONTINUE

EVAL =BlBAR

RETURN
END
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