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1. INTRODUCTION

Random coefficient models and ordinary linear models with non-Gaussian

marginal distributions have been developed for a variety of interesting

situations in time series analysis to offer viable alternatives to the

standard Gaussian assumptions (see Lewis. 1985, for a survey). Gastwirth and

Wolff (1965) in an unpublished manuscript developed a stationary linear first

order autoregressive process (i.e., one which satisfies the equation

Xn=PXn-1 + a n' n~l; -1(p(l) with a Laplace marginal distribution for the Xn s

(called LAR(l)). Independently Gaver and Lewis (1980) developed a linear

AR(l) process satisfying the same process but with a Gamma marginal

distribution, called GAR(1). Subsequently both of these processes have been

shown to be special cases of more general discrete random coefficient

autoregressive models (Dewald and Lewis, 1985 and Lawrance and Lewis. 1981 and

1985). Other time series models using continuous random coefficients with a

specified marginal distribution are, for Gamma distributions, due to Lewis

(1981). Hugus (1982). and Lewis, McKenzie and Hugus (1989). and, with Beta

distributions, due to McKenzie (1985). A first-order autoregressive process

with the symmetric thick tailed hyperbolic secant distribution has been

discussed by Rao and Johnson (1988). Nicholls and Quinn (1982) discuss

general random coefficient autoregressive processes without reference to a

particular marginal distribution.

The Laplace LAR(l) model, and its generalizations to higher order

corrp1ati'on structures, was put forward by Dewald and Lewis. (1985) as a model

where two- sided symmetrical random variables had larger kurtosis and longer

tails than could be expected from Gaussian time series. A particular example

is that of I~ositiun errors in a largc navIlatiui system (Hsu. 1979) which were
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found to have Laplace distributions. Again the N-S or E-W components of wind

velocity data are often symmetric and long-tailed, especially in the tropics.

For a summary of these applications and a summary of methods of generating

non-normal time series, see Lewis (1985) and Dewald and Lewis (1985).

Another application of the Laplace models arises when positive-valued

Gamma time series are differenced to remove trends. The resulting marginal

random variables are two-sided and result in the e-Laplace family of

distributions which we consider in this paper.

In Section 2. we introduce this e-Laplace family of distributions. These

infinitely divisible, additive, symmetric distributions have extremely thick

tails for small values of the parameter e and approach a normal distribution

as e increases. A square-root-Beta-Laplace transform is introduced which

allows us to transform one member of the e-Laplace family into another in a

simple manner.

Section 3 introduces e-Laplace processes with first order autoregressive

structure. These are Markov processes with the geometric autocorrelation

function which is typical of the Gaussian. first order autoregressive (AR(1))

process. The basic structure is a random coefficient autoregression, and we

generalize the structure of this model in Section 4 to encompass moving

average (A) and mixed first-order autoregressive, qth-order moving average

(ARMA) processes. Again, both the structure of the process and their

autocorrelation functions mirror those of the Gaussian ARMA processes. We

also briefly compare these processes with others which may be obtaine d by

differencing the random coefficient Gamma processes of Lewis, McKen'zie and

Hugus (1989). Finally, we show that a most important application of e-Laplace

processes lies in the modelling of differenced, possibly non-stat',onary Gamma
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processes.

In Sections 4 and 5. we consider the very important and particular case

e = 1. i.e. the Laplace distribution. The first order autoregression, the

1-BELAR(1) process, is discussed in some detail and parameter estimates and

their properties are discussed and assessed both theoretically and using

simulation.

2. THE e-LAPLACE FAMILY OF DISTRIBUrIONS

2.1 e-Laplace Random Variables

The probability density function of a Laplace distributed random

variable. L, has two parameters --- a location parameter. - < A < + . and a

scale parameter, X > 0 --- so that

1

fL(XU.X) = 1 exp{-Ix-pl/X} , -0 < x < + . (2.1)

We assume without loss of generality that p = 0 and X = 1 throughout the

remainder of this discussion.

The characteristic function of the standard Laplace random variable

(p = 0 and X = 1) is

2-1 wor

+ -o ( < + . (2.2),

d

It is well-known that the standard Laplace distribution belongs to the class

of infinitely divisible distributions. Thus 1y
Distribution/

Availability C

Avail-an C
Dist Special
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(= (+ )R. > 0. - ( c < + -. (2.3)

is the characteristic function of a random variable. In fact it Is the

difference of two independent, identically distributed, i.i.d. Gamma(e.1)

random variables, where e is the shape parameter and I is the value of the

scale parameter, k, of the Gamma'variable. If X has a characteristic function

given by (2.3), then X is said to be an e-Laplace random variable.

Since (2.3) is real-valued in w. X is a symmetric random variable. It is

also easily verified that

( if n is odd.

E(Xn) = (2.4)
~k+l1)k(e~k if n = 2k. k=l.2,....

where (b)k = b(b+l) .. (b+k-l) for b > 0.

Thus, in particular, var(X) = 2e. From (2.4) we have

E(X4) - [Z(X}]4= 3 + 3/t, (2.5)

[Var(X)]
2

and the kurtosis approaches 3. as E-4w. which corresponds to the kurtosis of a

normal distribution.

We note too that we are dealing with an additive family of infinitely

divisible distributions, in the sense that the shape parameter is additive.

In particular, if X and Y are independent t1-Laplace and e2-Laplace

respectively, then X+Y is (Rl+, 2 )-Laplace. This is easily verified using the

characteristic function (2.3). Equally important is the obvious fact that X-Y

is (e1+02 )-Laplace. Thus differencing keeps one in the same family of
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distributions.

2.2 The 8-Laplace Density

Since X is the difference of two i.i.d. Gamma(e.1) random variables, we

can obtain the following density for X;

fx(x'e) =Lf 1 g ) exp(-(2g+x))dg, (2.6)
L(x) r2(e) g gx)

where

L(x) = Max(O,-x) (2.7)

Now if e is a positive integer, (2.6) and (2.7) can be evaluated

analytically. If R = 1. we obtain the density of the standard Laplace

distribution. For e = 2. 3 and 4 the densities are also well-known

derivations given, for example, as textbook problems in Feller (1971). Figure

2.1 displays the densities for e = 1,2,3 and 4. Note how the graphs approach

2the shape of a normal density with a = 2e as e increases.

When e is not an integer, (2.6) must be evaluated numerically. Figure

(2.2) displays examples of e-Laplace densities for non-integral e. Note that

for R 1. the density is not absolutely continuous at zero. In fact for

R < 0.5. the density is infinite at zero. For e > .5 we have

xO,e) = r(2e-l)/(/-2 (e)22e-1} < . (2.8)

For details on integrating (2.6) and (2.7) numerically, see Dewald (1985).
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Figure 2.1 Probblity density functions of the e-Laplace random variables

when t=1,2,3 and 4.
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I-LAPLACE DENSITIES FOR NON-INTEGRAL 2
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Figure 2.2 Probability density functions of the P-Laplace random variables
when e=0.25. e=0.50, e--0.75, e=1.50.
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2.3 The Square Root Beta-Laplace Transformation.

Much of the sequel uses the square-root-Beta-Laplace transformation. By

this technique, an tl-Laplace random variable can be transformed into an

£2-Laplace random variable, where e2 el,

Theorem: Let X ~-Laplace and B - Beta (ea,) where e > 0. 0 ( a < l.a and

a = I - a. It is assumed that X and B are independent.

If Y = BI/2X. then Y - (ea)-Laplace.

Proof: By conditioning on B. we obtain the following expression for the

characteristic function of Y:

4y(ca) = Efexp(-iB1 /2Xw)}

= EB[E(exp(-ib 12x) }

= EB[ (l+b2 ) -]. (2.9)

Using the binomial expansion in (2.9) we have

(Oy)(j)2=k ; ( (2.10)Lk= " ()k 2.k

Interchanging the expectation and summation in a convergent power series gives

S(e)k 2 k
I--- (_ ) E(Bk). (2.11)

From Johnson and Kotz (1970) we have, for integral k,



E(Bk ) = (ea)k/(P)k (2.12)

Substituting back into (2.11) completes the proof thus

C? e a = ( I + 2 ) a  ( 2 .1 3 )

4(w) = k 1 0 -k! (-w ) (1w).213k--O

3. THE P-BETA-LPLACE FIRST-ORDER AUTOREGRESSIVE PROCESS, e-BELAR(1)

The P-Laplace random variable is not only infinitely divisible but also

self-decomposable (Loeve, 1963). Thus a linear, constant coefficient

autoregression can be defined, as was done in Gaver and Lewis (1980) for the

first-order autoregressive process, GAR(1), in Camma-distributed random

variables. Moreover the innovation random variables are differences of

independent Gamma AR1 innovation random variables (Gaver and Lewis, 1980) and

can therefore be generated by methods of Lawrance (1982) and McKenzie (1987).

Unfortunately this linear e-Laplace process has the same "zero-defect" as

the Gamma GAR(l) process, which arises from the fact that the innovation

random variable takes on the value 0 with positive probability, and this

probability can be large if e is small and the lag-one corrrelation. p(l). is

large.

For this reason we exploit, in this section, the square-root Beta-Laplace

transform to define a different 2-parameter first-order autoregressive process

in P-Laplace variables. The first parameter, e. determines the non-Gaussian

symmetric marginal distribution. The second parameter, a, given the value of

t. determines uniquely the lag-one serial correlation. Since the random
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coefficient model is shown to be first-order Markovian. a determines the

entire autocorrelation function up to the sign. The process does not have the

same "zero-defect" as the linear model.

We define the stationary process (Xn(e)} by means of an additive, random

coefficient equation:

Xn(e) = An 1/2 (ea,e) Xn-.l(e) + Bn1/2( (.ea) Ln(e), (3.1)

where {An(ea.ea)} is an i.i.d. sequence of Beta(ea,ea) r.v.'s; {Bn (e.ea)} is

an i.i.d. sequence of Beta(ea.ea) random variables, independent of

(An(eae)). and (Ln(e)) is an i.i.d. sequence, independent of both

coefficient sequences, of e-Laplace r.v.'s. Coefficient and innovation

sequences are all assumed to be independent of (Xk(e)} for all k n-1. The

process {Xn(e)} so defined will be called the e-Beta-Laplace AR(l) process.

e-BELAR(l).

If it is assumed that Xnl(R) has an e-Laplace distribution, then by the

theorem in Section 2.3 and the additivity of the e-Laplace family, so does

Xn(e). The fact that the process is Markovian follows by construction. It is

also explicitly autoregressive. To start the process in the stationary

distribution, set X0 (E) = Lo(e). Note also that the parameter space for the

process is the set {(e.a)Ie>O,

O a 1).

For the Beta random variables A and B to be defined properly, each ofn n

their parameters must be positive. However, when a = 0 or a = 1. (3.1) is no

longer appropriate. Therefore it is understood that if a = 0 then {An) is

identically zero and (B n) is identically one. Thus a = 0 implies
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X n(e) = Ln(e) and {Xn(0)} is an i.i.d. sequence of e-Laplace variables. For

convenience, we denote the innovation process in (3.1) by (C n. i.e.

n n /2(e a)Ln(e). (3.2)

Examples of sample path behavior 'for selected £ and a are given in Figure 3.1.

Note that although the correlation coefficient is approximately 0.8 for all

sets of P and a, there are considerable differences in the sample path

behaviors as R changes. In particular when e is small there are runs of

values that are very nearly zero in magnitude, so that the process looks very

sporadic. Wind velocity data, especially in the tropics, tends to be of this

form. Using (3.1) we obtain

p(l) = Corr(Xn(e).X n l(e))= EAn/11 2 (a.Pa)) (3.3)

ac(ea+l/2)r(e+l) (3.4)=r(e+1/2) F(ea+l)"

Note that as a-* 1, then p(l)-# 1. Similarly as a-* 0. p(l)- O. We can show

that (3.4) yields the full range of positive correlations in a one-to-one

function of a for any given value of e. Further. it is easily established.

using (3.1), that

p(r) = Corr(Xn (),X nr(P)) = p(l)IrI .  r = Ok 1....(3.5)

Note also that except at e = 0. p(l) A a. Since we shall frequently

refer to expressions of the form of (3.4), we define the notation

11



I-BETA-LAPLACE AR(1): SAMPLE PATHS
e.71 ?I.l (I)- 80111 a~. 54.I- 75p( I ).l042 "' l*.qgJ.- l$A.1l22)-

0 n

L I L
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Figure 3.1 Sample path behaviour for t-Beta-Laplace processes for fixed lag-

one serial correlation of 0.8, and different values of t.
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-1/2
-r(ea) = E{[Beta(ea,&z)]l}. (3.6)

We noted above that the process is explicitly autoregressive. It is

autoregressive as well in the sense of expectations (Lawrance and Lewis, 1987)

in that E(Xn(e) Xn l(e) = x) is a linear function of x. Further, replacing

A 1/2(.) by -A 1/2(.) in (3.1) yields the full range of negative correlations.

Explicit expressions are very difficult to obtain for joint distributions

of consecutive observations in the e-BELAR(i) process for general e. Later.

we consider in more detail the very important and more tractable case of the

Laplace distribution. i.e. e = 1. Here, however, we briefly note some

aspects of one of the important properties of such joint distributions, viz.

time reversibility. A process, (Xn). is time-reversible if the joint

distributions of (XnXn+1 .... Xn+r) and (Xn+r Xn+r_ 1 ....X) are identical for

all r and n. This is an important property in practice in the identification

problem. However, it is a property of the joint distributions and these are

not known. Nevertheless, we can demonstrate partial time reversibility with

respect to both directional moments and runs probabilities.

It is straightforward to verify from (3.1) that E(X2 Xnk)= X2 =

n n k EnXnk)

0 for all n and k. Thus, (Xn(e)} given by (3.1) is time-reversible with

respect to these directional moments. Further, the characteristic function of

Xn - Xn_ 1 is given by

E{exp[-iw(Xn-Xnl)]) = (1 + W2 )-ea EA{[I+(IAI/2 )2 2]-ea (3.7)

and this is clearly real valued. Thus, Xn - Xn_1 is symmetric about zero and

13



so P(Xn > Xn_) = P(Xn ( Xnl), i.e. {Xn(e)) is time reversible with respect

to runs probabilities.

4. THE e-BETA-LAPLACE ARKA PROCESSES

4.1 Introduction

In this section, we introduce time series models that have e-Laplace

marginal distributions and the correlation structure of the linear, Gaussian,

ARMA processes, although the order of the autoregression is limited to p=l.

As before, our constructions are based on the square-root Beta-Laplace

transform and the additivity of the e-Laplace family. We begin by considering

pure moving average processes.

4.2 The first order moving average process, O-BELMA(1).

Let (Ln (0)) be an i.i.d. sequence of 0-Laplace random variables, where

0 = e/(l+13) and 0 < 1 < 1. Let 3 = 1-3. Also let (Cn(13.0)) be an i.i.d.

sequence of Beta(619.67P) variates independent of (Ln()}. Then the process

{Xn(e)) generated by

Xn(e) = Ln(0) + cn/ 2 (e.13e)Lnl(e) (4.1)

has a marginal e-Laplace distribution and an MA(l) structure with

0 Corr(X nX n_I )  0.5, as shown below.

The marginal distribution of (Xn ()) follows directly from the square

root Beta-Laplace transform and the additivity of the e-Laplace family.

Further, the construction of (4.1) defines (Xn(e)) as a random coefficient

14



moving average of order one. Thus. Xn(e) and Xn_k( e) are, by construction.

independent for Jkl 2. In addition, we may easily verify from (4.1) that

pX() = Corr(X n.Xn 1) = v(83)/(1+), (4.2)

where i is defined by (3.6). Writing out (4.2) explicitly yields

PX( I ) =+- r(PB+l/2)r(e+1) (4.3)

Thus, as P-* 0 we have Px(1)O, and as P3- 1 we have Px(1)+ 0.5. We may show

that Px(1) is a one-to-one function of P extending over the full positive

range of correlation for a moving average process of order one. MA(1), namely
. . -1/2

[0.0.5]. In addition, replacing C1/ 2 by -1/2 yields the full negative range
n n

C-0.5.0]. Thus, the entire range of possible values of PX(1) for an MA(l) is

available for this model. This is important in practice, relating as it does

to the applicability of the model. The NLMA(1) model of Dewald (1985), which

is a MA(1) model with Laplace marginals has, in contrast, p(l) bounded by i

0.4026.

It is straightforward to show that this model, like the autoregressive

model e-BELAR(1), is time reversible with respect to runs probabilities.

4.3 Higher order moving average processes, the e-BELMA(q) process.

The process defined by (4.1) may be extended to order q as follows. Let

{Ln(O)) be. as before. an i.i.d. sequence of O-Laplace random variables, where

q
now 0 = e/(1+ P) and 0 < P, < 1. for i = 1.2,....q. Also let

{Cn, i(O .OV i), i = 1,2,....q) be independent sequences of i.i.d.

15



Beta(1i3,61i ) random variables independent of (Ln(0)}. Then. the process

(Xn(e)) generated by

q 1/2-
Xn() = L(0)+IC i (OPi.OGi)Ln-i(0) (4.4)

i=l

has a marginal e-Laplace distribution and MA(q) structure. These properties

follow in the usual way. As regards the autocorrelation function (px(k)), it

is clear that px(k) = 0 for Ikl>q. and we can show that

q-k q
Px(k) = Y(Opk ) + 2 Y(OP i) (Opi+k))/Il+ 2 Pid .  k=l.2.....q.(4.5)

i=1 i=1

It is interesting to note that although (px(k)} is similar in form to the

autocorrelation function of a Gaussian linear MA(q) process, the correlations

are not identical.

This q-th order moving average process, too, is time-reversible with

respect to runs probabilities.

4.4. The first order mixed autoregressive moving average process,

e-BELARMA(l.1).

The first order mixed model is obtained by defining the process

(Xn(e)) by means of two first order difference equations, one corresponding to

the autoregressive (AR) component and the other to the moving average (MA)

component. These are respectively:

1/2 1/2
Y n() = A 2n (Oa,6a) Yn-1 (O) + B n (a..Oa) Ln(O) (4.6)

16



and

Xn(e) =L(e) + C1/2 (63.eF) Ynl(e). (4.7)

where 0 = e/(l+P); 0 < a. 0 < 1; and (Ln(0)}. {An(Oa.Ga)}. (B n(Oa.a)} and

{C n(O.67P)} are independent sequences of i.i.d. random vartates with the usual

distributions signified by this notation. As before, we may show that (X(e)}

is marginally R-Laplace and has the autocorrelation function of an ARMA(1.1)

process. In particular,

P(k) = r(0)[(0 )+ (013h(9a)1 Ly(9a))k
-I

p+ () (1+13) k k = 1.2 ..... (4.8)

Note that this process {Xn(9)} has a structure which is determined in a simple

way by the two parameters a and 13. If 13 = 0, we have the e-BELAR (1) process,

and if a = 0 the process reduces to the e-BELMA(l) process. Further, if a = 1

= 0 then {Xn(e)) is a sequence of i.i.d. e-Laplace variates.

4.5 Other e-Laplace ARMA processes

We can extend the models described in the previous sections to an ARMA

(1,q) form. This is achieved by replacing (4.7) by an expression similar to

(4.4) but involving Ln . L ..... L q+l and Y n-q However, nothing new

emerges here and so we consider instead some other e-Laplace processes

generated as the differences between Gamma processes.

(t) Independent Gamma processes.

Suppose that (Xn) and (Yn) are independent Gamma processes with

Gamma(t,l) marginal distributions and identical ARMA structures. Consider the

17



process (Z n) given by Zn = Xn - Yn . As noted in Section 2. the marginal

distribution of (Z n) is e-Laplace and the process shares the same

autocorrelation function as {Xn} and fYn}. On the other hand, (Zn) is not

structurally the same as these two processes. Thus, this approach allows us

to construct e-Laplace processes with ARMA autocorrelation functions but not

the simple linear additive. random coefficient ARMA structure of the e-BELARMA

processes.

(ii) Serial differences in the BGARMA processes.

A feature of the BCARMA processes of Lewis. McKenzie and Hugus (1989)

which is relevant here is that the first order AR and MA processes, BGAR(l)

and BGMA(l), have the same form of bivariate distribution for two consecutive

observations. If the BGAR(l) or BGMA(1) process is (Xn ) and is marginally

Gamma(e,l), the joint characteristic function of Xn and Xn- 1 is

#Xn Xn 1 (u.v) = (l+iu)
-ep (1+iv) -ep (l+iu+iv)- @ .

where p = corr (X nXn-1) in both processes, and p = I-p. Now, the process of

first differences, AXn = X n-Xn_ 1 has its marginal distribution given by the

characteristic function

AX(u) = #X nX1 (u.-u) = (l+u2 Y-e .

Thus. (AXn} is marginally (ep)-Laplace. Furthermore. if (X) BGMA(l)

originally, then (AXn} is an (ep)-Laplace with MA(2) correlation structure.

In fact. PAX(l) = -(l-2p)/2(l-p) and pAX(2) = -pl2(l-p). If (X n BGAR(I)
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originally, then {AXn) is an (ep)-Laplace process with ARMA(l,l) correlation

1 pk-1
structure. In this case, pAx(k) 1- (l-p)p , k 1. Again, these first

differences processes do not have the simple ARMA structure of the processes

presented earlier, although they may share their marginal distributions and

autocorrelation functions.

4.6. The e-Laplace ARIMA processes

In the practical application of the Gaussian ARMA processes it has been

found extremely useful to extend the basic models to processes {X n} which are

non-stationary but whose first (or higher order) differences are an ARMA

process. Such processes are called integrated ARMA processes and we refer to

such an {X) as an ARIMA process. This is a trivial extension mathematically,

but it would be difficult to overestimate the extra range of applicability It

bestows in practice to time series models. The approach is discussed in

detail by Box and Jenkins (1976) and has been found enormously useful.

Defining integrated processes presents no problems for Gaussian processes

which retain their marginal distributions under simple linear transformations,

even of dependent data. However, if a non-stationary time series is thought

to be marginally Gamma it is by no means clear Just how its differences might

be distributed. We have detailed a number of occasions here in which

differenced Gammas have the e-Laplace distribution and we would argue that it

is not unreasonable to assume that they will often be so in practice, at least

approximately. Thus, in attempting to model a non-stationary Gamma process

whose differences seem stationary, we would consider modelling the differenced

process as an e-Laplace ARMA process. We would thus argue that such e-Laplace

ARIMA processes are potentially of great practical importance.
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5. THE FIRST-ORDER BETA-lAPLACE AUTOREGRESSIVE PROCESSES. 1-BELAR(1)

5.1 Construction and Correlation Structure

In this section we will study in detail the first-order e-Beta Laplace

process with e = 1 (i.e., 1-BELAR(l)). This process is far more tractable

than the general case, and is an interesting alternative to the autoregressive

NLAR(l) process introduced by Dewald and Lewis (1985). Thus we set e = 1 in

(3.1) to obtain

X = A1/ 2 (a.1-a)Xn- + a (5.1)
n n n- 1 * (51

where {n} is i.i.d. sequence with en (l-a)-Laplace. Also {X n has a

marginal distribution that Is standard Laplace.

The only parameter in the model is a. which describes the dependency

structure of the process, as given by (3.4) and (3.5). when e = 1, as

r aI(a+l/2) -r
p(r) = Ir(3/2)r(a+l)j ' (5.2)

for r = 0. ± 1. 1 2....•

Now there are infinitely many other first-order AR(l) processes with

identical autocorrelation functions and standard Laplace marginals. in

particular the NLAR(1) processes by Dewald and Lewis (1985). Dewald (1985)

developed fourth-order analyses of the NLAR(l) model based on the linearized

residual.
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Rn  Xn - PX(1)Xn_1 (5.3)

to differentiate between different parametric cases of the model. The use of

higher-order residual analysis in random coefficient processes was established

by Lawrance and Lewis (1987). We use (5.3) again in Section 6.

5.2. The Conditional Density of Xn , given Xn_1 = y.

To find the conditional density of XnIX n = y. we begin by deriving the

density of A 1/2(a.l-a) by differentiating P(An ( a ) with respect to a:
n

2a-1

f (a;2 a 0 < a < 1. (5.4)
A 1/2 =(a)F(l-a) (i-a )

To evaluate P{Xn < x I Xn 1 = y} we condition on A /2(ai-a) thus:

PP 

1  

x I 

X = 
1/2 

ny}

P n ( n_1  y Y } =  n x n-I + e n<xIx n-l I

E A 1/2 (Fe (x-ay)}

n
- 2  F n(x-ay) f 1 2 (a;a)da. (5.5)

Ll(x) n An

where Fe(x-ay) is the cunmulative distribution function of the (1-a)-Laplace

random variable, en' and Li(x). for i = 1,2. are the limits of integration on

a, which may be functions of x.

Since F (x-ay) changes definition for negative and positive values of
n

(x-ay) and since 0 < a < 1, differentiating (5.5) with respect to x gives two

branches for the conditional density as
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a=1

f f (x-ay;1-a)f 1/2 (a;ca)da x/y 1 or
a-O 6n A x/y 9 0

n

a=x/y
fXnIX (xly) =-O fe (x-ay;1-a) f 1/ 2 (a;a)da + (5.6)

nnla=0' A Ann

a=1
f f6 (x-ay;l-a)f 1/2 (a;a)da. O<x/y<l.

a=x/y n A

Now f (.;l-a) can be evaluated from (2.6) and f A1/2 (.;l-a) from (5.4). The

n

equation (5.6) is computed numerically, as given in Dewald (1995).

Note that (5.6), as a function of x. is not absolutely continuous. In

fact if a g 1/2 and x = y. the conditional density is not defined.

We use (5.6) in obtaining the maximum likelihood estimates of serial

correlations through the parameter a. This is discussed in Section 6.

6. ESTIMATION OF SERIAL CORRELATION IN I-BELAR(l)

6.1 Least-Squares Estimation of p(l)

Although the I-BELAR(l) process is not a linear process (except when

a = 0) the linearized residual is formed as in (5.3). The process (Rn). as

shown by Lawrance and Lewis (1987). is uncorrelated but not independent. Also

it can be seen that conditional on Xn- 1 that Rn has zero mean and variance

2(-(p(l)) 2). Therefore a conditional least-squares estimator (Nicholls and

Quinn, 1982) of p(l). pLS can be derived by minimizing the sum of squares of
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R with respect to p(1). This produces the usual product moment estimatorn

n n 2
PLS= I X=2Xi1 / Xi-l (6.1)i=2 i=2

Now Dewald (1985) showed that the 1-BELAR(1) process is a Random

Coefficient Autoregressive (RCA(1)) process in the sense of Nicholls and Quinn

(1982). Therefore from Theorem 3.1 of Nicholls and Quinn. pLs-.p(l), and

is asymptotically unbiased and normally distributed, with asymptotic variance

given by

nVar(pLs) = 1 + 5a - 6[p(1)] 2. (6.2)

Simulations of PLS were conducted for selected values of p(l) in the

1-BELAR(l) process using the Simulation Testbed (SIMTBED) of Lewis et al.

(1984). Detailed tabulations of the distribution of pLS are given in Dewald

(1985) for various values of a and different sample sizes.

Dewald (1985) also showed via simulation that certain robust estimators

based on symmetric loss functions of R , other than the sum of squares, aren

biased and apparently asymptotically biased. These robust estimators include

the Huber(c), rank, and least absolute deviation (LAD) estimators of p(l).

Note that these results for robust estimators are different in the 1-BELAR(l)

process than in the linear AR(l) processes for which these estimators are

reported to be consistent and asymptotically unbiased, e.g. Denby and Martin

(1979) and Bloomfield and Steiger (1983).

The least-squares estimator, PLS. is used in the next subsection as a

starting value in an iterative procedure to find the maximum likelihood
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estimator. PMLE' of p(1).

6.2 Maximum Likelihood Estimation

The maximum likelihood estimate of p(1) can be obtained from the

conditional density in (5.6). The formula for the joint density of Xn

Xn- 1 ..... X 1 is

f(x.Xn1 .. .x1) = fX iXn(xn Ix n 1)fx ix (xnl 1xn 2 )... fx (x 1 ),(6.3)
n n-l n-1' n-2 1

where fX1 (x) is a standard Laplace density.
1A

Dewald (1985) used (6.3) to obtain estimates for a and then computed PMLE

from the one-to-one function of a in (5.2). The least-squares estimate served

as a good starting point for the numerical evaluations to find pMLE

Techniques for the numerical integration and search for this estimation

procedure are given in Dewald (1985).

The simulation results in Dewald (1985) indicate that pMLE has a smaller

standard deviation and bias than does pLS at all values of p(1). Some

particular results are:

(1) For a sample size of n = 175, and a = 0.5. so that p(l) = 0.6366,

the correlation between the two estimates is estimated to be 0.393.

The estimated standard deviation of PLS is 0.0728 and that of pMLE

is 0.0289.

(2) For a sample size of n = 125, and a = .11, so that

p(l) = .1922, the correlation between the two estimates is estimated

to be 0.843. The estimated standard deviation of pLS is 0.099 and

that of p., is 0.069.

(3) For a sample size of n = 250. and a = 0.844, so that

24



p(i) = -0.900, the correlation between the two estimates is

estimated to be 0.101. The estimated standard deviation of pLS is

0.030 and that of PMLE is 0.006.

The number of replications in this simulation was only 20, so the results

are imprecise. However. it is clear that the maximum likelihood estimator of

p(l) is better than the least sqxiares estimator, but the computation of the

maximum likelihood estimator is not simple.

Dewald (1985) also gives results on Joint estimates of p(l), E(Xn) and

Var(Xn) in the 1-BELAR(l) process.

Also one should note that while the least-squares estimator of a and p(l)

is available for the general e-BELAR(l) process, maximum likelihood estimation

of a and p(l) is intractable unless e = 1.

ACKNOWLEDGMENTS

The work of P. A. W. Lewis and Ed McKenzie was supported by the Office of

Naval Reseaarch under Grant RRO14-05-01.

25



BIBLIOGRAPHY

Bloomfield, P. and Steiger. W. L. (1983). Least Absolute Deviations Theory,
Applications. and Algorithms, Birkhaeuser, Boston.

Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis, Forecasting.
and Control, 2nd ed., Holden Day, San Francisco.

Brown, B. G., Katz, R. W. and Murphy, A. H. (1984), "Time Series Models to
Simulate and Forecast Wind Speed and Wind Powwer," Journal of Climate and
ADlied Meterology, 23, 1184-1195.

Denby. L. and Martin. R. D. (1979). "Robust Estimation of the First-Order
Autoregressive Parameter," Journal of the American Statistical Assoc.,
Vol. 74, pp. 140-146.

Dewald, L. S. (1985). "Time Series Models with a Specified Symmetric
Non-Normal Marginal Distribution," Ph.D. Thesis, Naval Postgraduate
School, Monterey, CA.

Dewald. L. S. and Lewis. P. A. W. (1985). "A New Laplace Second-Order
Autoregressive Time Series Model - NLAR(2), "IEEE Trans. On Information
Theory, Vol. IT-31. pp. 645-652.

Feller. W. (1971). An Introduction to Probability Theory and its Applications,
2nd ed., Vol. 2, Wiley, New York.

Castwirth, J. L., and Wolff, S. S. (1965). "A Characterization of the Laplace
Distribution," John Hopkins University, Department of Statistics
Report 28.

Gaver. D. P. and Lewis. P. A. W. (1980), "First-Order Autoregressive Gamma
Sequences and Point Processes." Advances in Applied Probability, Vol. 3,
pp. 727-745.

Hsu, D. A. (1979). Long-tailed Distributions for Position Errors in
Navigation. Journal of the Royal Statistical Society. g. 28 (1), 62-71.

Hugus. D. K. (1982). "Extensions of Some Models for Positive-Valued Time
Series," Ph.D. Thesis. Naval Postgraduate School, Monterey. CA.

Johnson, N. K. and Kotz. S. (1970), Continuous Univariate Distributions,
Vol. 2. Wiley. New York.

Lawrance, A. J. (1982). "The Innovation Distribution of a Gamma Distributed
Autoregressive Process," Scand. J. Statist., 9. 234-236.

Lawrance. A. J. aid Lewis, P. A. W. (1981), "A New Autoregressive Time Series
Model in Exponential Variables (NEAR(l))," Advances in Applied
Probability. Vol. 13, pp. 826-845.

26



Lawrance. A. J. and Lewis. P. A. W. (1985). "Modelling and Residual Analysis
of Nonlinear Autoregressive Time Series in Exponential Variables."
Journal of the Royal Statistical Society, Vol. B47, pp. 165-202.

Lawrance, A. J. and Lewis. P. A. W. (1987). "Higher-Order Residual Analysis
for Nonlinear Time Series with Autoregressive Correlation Structure,"
International Statistical Review. 55, 1. 21-35.

Lewis, P. A. W. (1981). "Simple Multivariate Time Series for
Simulation of Complex Systems." In Proc. Winter Simulation Conference,
Ed. T. T. Oren, C. M. Delfosse, and C. M. Shub. pp. 389-390, New York:
IEEE Press.

Lewis. P. A. W. (1985). "Some Simple Models for Continuous Variate Time
Series," Water Resources Bulletin. 21(4). 635-644.

Lewis, P. A. W., McKenzie. E., and Hugus, D. K. (1989). "Gamma Processes."
Naval Postgraduate School Technical Report NPS-55-86-002. Communications
in Statistics: Stochastic Models, 3.1. to appear.

Lewis. P. A. W.. Orav, E. J. Drueg. H. W., Linnebar, D. G., and Uribe. L.
(585). "An Implementation of Graphical Analysis in Statistical
Simulations," International Statistical Review, 53, Vol. 1. pp. 69-90.

Loeve. M. (1963). Probability Theory. 3rd ed.. Van Nostrand, New York.

McKenzie. E. (1985), "An Autoregressive Process for Beta Random Variables,"
Management Science, 31. 8, 988-997.

McKenzie, E. (1987). "Innovation distributions for gamma and negative binomial

autoregressions," Scandinavian Journal of Statistics, 14, 1. 645-650.

Nicholls, D. F. and Quinn. B. G. (1982), Random Coefficient Autoregressive
Models: An Introduction. Springer Verlag.

Rao, D. S. and Johnson, D. H. (1985). A First Order AR Model for Non-Gaussian
Time Series. To appear.

27



DISTRIBUTION LIST

No. of Copies
Professor Peter Purdue, (Code 55Pd) 1
Naval Postgraduate School
Monterey, CA 93943-5000

Professor P.A.W. Lewis, (Code 55Lw) 10
Naval Postgraduate School
Monterey, CA 93943-5000

Arthur P. Hunter, Jr.
Professor and Chairman
Department of Industrial Engineering and
Management Sciences
Northwestern University
Evanston, IL 60201-9990

Koh Peng Kong
OA Branch, DSO
Ministry of Defense
Blk 29 Middlesex Road
Singapore 1024

Commanding Officer
ATTN: Mr. Murray Rowe
Navy Personnel Research and Development Center
San Diego, CA 92152

Commanding Officer 3
ATTN: Barry Siegel
Navy Personnel Research and Development Center
San Diego, CA 92152

Mr. R. Morton 4
%DSAI
350 Fortune Terrance
Rockville, MD 20854-2995

Library (Code 0142) 2
Naval Postgraduate School
Monterey, CA 93943-5000



No. of Copies

Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22314

Office of Research Administration (Code 012) 1

Naval Postgraduate School

Monterey, CA 93943-500

Center for Naval Analyses 1

4401 Ford Avenue
Alexandria, VA 22302-0268

Library (Code 55) 1

Naval Postgraduate School

Monterey, CA 93943-5000

Operations Research Center, Rm E40-164 1

Massachusetts Institute of Technology

Attn: R. C. Larson and J.F. Shapiro

Cambridge, MA 02139

Institute for Defense Analysis 1

1800 North Beauregard
Alexandria, VA 22311


