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2O. ABSTRACT (Continued)

from disparate sources of information.
The computatuion is formulated as a labeling problem. Local visual ob-

servations for each image entity are reported as label likelihoods. They are
combined consistently and coherently an hierarchically structured label trees
with a new, computationally simple procedure. The pooled label likelihoods are
fused with the a priori spatial knowledge encoded as Markov Random Fields (MRF'sThe a posteriori distribution of the labelings are thus derived in a Bayesian
formalism. A new inference method, Highest Confidence First (HCF) estimation,
is used to infer a unique labeling from the a posteriori distribution. cUplike
previous inference methods based on the MRF formalism, HCF is computationaIly--
efficient and predictable while meeting the principles of graceful degradation
and least commitment. The results of the inferences process are consistent
with both observable evidence and a priori knowledge.

The effectiveness of the approach is demonstrated with experiments on two
image analysis problems: intensity edge detection and surface reconstruction.
For edge detection, likelihood outputs from a set of local edge operators are
integrated with a priori knoledge represented as an MRF probability distribution.
for surface reconstruction, intensity information is integrated with sparse
depth measurements and a priori knowledge. Coupled MRF's provide a unified
treatment of surface reconstruction -and segmentation, and an extension of HCF
implements a solution method. Experiments using real image and depth data
yield robust results. The framework can also be generalized to higher-level
vision problems, as well as to other domains.
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Abstract

Integrating disparate sources of information has been recognized as one of the

keys to the success of general purpose vision systems. Image clues such as shading,

texture, stereo disparities and image flows provide uncertain, local and incomplete

information about the three-dimensional scene. Spatial a priori knowledge plays the

role of filling in missing information and smoothing out noise. This thesis proposes a

solution to the longstanding open problem of visual integration. It reports a

framework, based on Bayesian probability theory, for computing an intermediate

representation of the scene from disparate sources of information.

The computation is formulated as a labeling problem. Local visual observations

for each image entity are reported as label likelihoods. They are combined

consistently and coherently on hierarchically structured label trees with a new,

computationally simple procedure. The pooled label likelihoods are fused with the a

priori spatial knowledge encoued as Markov Random Fields (MRF's). The a

posteriori distribution of the labelings are thus derived in a Bayesian formalism. A

new inference method, Highest Confidence First (HCF) estimation, is used to infer a

unique labeling from the a posteriori distribution. Unlike previous inference

methods based on the MRF formalism, HCF is computationally efficient and

predictable while meeting the principles of graceful degradation and least

commitment. The results of the inference process are consistent with both observable

evidence and a priori knowledge.

The effectiveness of the approach is demonstrated with experiments on two

image analysis problems: intensity edge detection and surface reconstruction. For

edge detection, likelihood outputs from a set of local edge operators are integrated
with a priori knowledge represented as an MRF probability distribution. For surface

reconstruction, intensity information is integrated with sparse depth measurements

and a priori knowledge. Coupled MRF's provide a unified treatment of surface

reconstruction and segmentation, and an extension of HCF implements a solution

method. Experiments using real image and depth data yield robust results. The

framework can also be generalized to higher-level vision problems, as well as to
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1. Introduction

Current computer vision systems are neither as robust nor as flexible as

biological vision systems. However, there do exist computer programs that solve

particular visual problems in restricted environments [Ballard and Brown 1982].

One common characteristic of these efforts is that they use only a small fraction of

the information conveyed in the input images. Examples include the computation of

intrinsic images [Barrow and Tenenbaum 1978], such as structure from motion,

shape from shading, and shape from texture. Figure 1.1 shows an image of stereo

disparity data found by a typical feature-based stereo system. Such data provide

partial, uncertain, and incomplete information about the scene. Other image features

such as texture, shading, contours, and optical flow can all provide information

valuable for interpretation of an image.

Much of computer vision research in the last decade has had as a goal the

recovery of physical properties (such as depth, (spectral) reflectance, or surface

orientation) from images. Until recently, this research in deriving physical

characteristic X from image characteristic Y was pursued under the assumption that

Figure 1.1. Stereo Disparity Image
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monly variations in X causes variations in Y. For example, all shading variations in an

image would be assumed to arise from variations in surface orientation. (Shadows

and paint would not be accounted for.) This work leans to the idea of "visual

modules" that work separately under their own assumptions. Usually the physical

characteristic is underdetermined by the image cue, so a priori knowledge and

physical constraints are used to render the problem solvable.

This work on reconstruction of intrinsic characteristics from single cues raised

the obvious question: How can multiple image cues work together? Together they

provide a much richer description of the scene than any image cue does alone.

Human observers seem to exploit multiple cues in a coherent manner, but existing

_ vision systems lack the ability to integrate multiple image cues. Furthermore, much

information is lost in the three-dimension to two-dimension imaging process. To

infer a robust representation of the scene structure, it is necessary to incorporate

appropriate a priori knowledge to fill in missing information and to smooth out noise.

The employment of natural constraints in visual computation has been of interest for

some time [Brown 1984], but there still lacks a mechanism to combine such

constraints consistently with disparate input data. One approach was followed by

- Aloimonos [1986], who explored the increased mathematical constraints imposed by

several sets of image characteristics. The work reported here is different in character:

individual modules form their opinions, which are combined by a method based on

Bayesian probability theory. One advantage of this approach is that it can proceed

over a hierarchy of abstractions. It has a parallel-iterative computational basis. The

idea of parallel-cooperative computation of intrinsic parameters has been articulated

[Barrow and Tenenbaum 1978] [Ballard 1984] [Poggio 1985], but, due to the
. complex physical couplings of intrinsic parameters, a satisfactory implementation of

this idea is not yet seen.

This thesis proposes a solution to the longstanding open problem of visual

integration. It reports a framework, based on Bayesian-probability theory, for

computing an iconic (image-like, or raster) representation of the scene from disparate

IJ
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sources of information. The computation is formulated as a labeling problem: for

each image location find the appropriate attribute or label (such as depth, or whether

it is an object boundary) describing the corresponding portion of the scene. The

thesis confronts and solves problems in the representation of knowledge, reasoning

procedures for combining distinct bodies of knowledge, and inference methods for

using available knowledge to infer scene properties. We have successfully applied

the framework to two instances of the labeling problem - boundary detection and

surface reconstruction, The results using range data and irradiance inputs are also

reported here. The thesis deals with the following open problems.

(1) How to integrate multi-modal visual data in a hierarchically structured

hypothesis space. Pearl [1986] has pointed out the utility of employing

hypothesis hierarchies, and has provided probabilistic interpretations of the

father-son relation. However, his belief updating procedure is not suitable for

the labeling problem, in which prior knowledge is about spatial interactions

between image locations.

(2) How to incorporate a priori spatial knowledge with visual observations.
Poggio [1985] has proposed to use coupled Markov Random Fields (MRF) to

integrate disparate visual cues. His proposal is hard to realize because it

requires the knowledge of underlying interactions among various physical

processes. It is not clear whether such knowledge is available and how to

incorporate statistical data.

(3) How to compute the optimal solution given a complex a posteriori

probability distribution of the possible solutions. The existing stochastic

simulation [Geman and Geman 1984] [Marroquin 1985] and iterative

relaxation [Besag 1986] methods have proven inadequate because of their

expensive computations and unpredictable results.

(4) How simultaneously to reconstruct and segment the surfaces in a three-

dimensional scene using sparse depth measurements and intensity

observations. Gamble and Poggio [1987] have demonstrated some good
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* results on this subject. However, statistical knowledge about the relation

between intensity discontinuities and depth discontinuities cannot be

incorporated in their scheme. Moreover, their solutions for surface depth and

discontinuities are computed with an expensive, interlacing procedure.

This thesis provides an answer for each of these four open questions. There are

thus four main contributions.

(1) Consistent and coherent integration of early visual observations on

hierarchically structured label trees. A computationally simple procedure and

its probabilistic justification, based on well-specified assumptions, are

provided [Chou and Brown 1987b] [Chou and Brown 1987a].

(2) Successfully incorporating a priori spatial knowledge encoded as potential

energy functions that determine the distribution of the corresponding MRF.

The a posteriori probability distribution is thus derived by combining the

pooled external observations and the a priori distribution [Chou and

Brown 1987b] [Chou and Brown 1987a].

(3) A robust and efficient estimation method for solving the labeling problem

based on the a posteriori probability distribution. The Highest Confidence

First (HCF) method appears to meet the principles of graceful degradation

and least commitment. It is a sequential deterministic calculation whose

running time is predictable and small [Chou and Raman 1987] [Chou,

Brown, and Raman 1987].

(4) Development of a unified treatment of reconstruction and segmentation of

three-dimensional surfaces with sparse depth observations and intensity

L discontinuity information. HCF is extended to handle both symbolic and

numerical labels simultaneously using coupled MRF's [Chou and

Brown 1988].

1.
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1.1. The Labeling Problem

Many visual computations can be formulated as instances of the image labeling

problem. In those computations, a finite two-dimensional region R, corresponding to

the (retinotopic) projection of the three dimensional scene, is partitioned into a set of

sites. The sites are considered non-overlapping in general. Usually, the sites are

predetermined, independent of the scene, and regularly structured. They are of the

same size and shape, with the identical spatial neighboring adjacency except for those

near the boundary of R. A typical example is the rectangular array of picture elements

(pixels) in an digital image. (There are situations, usually in higher-level

computations, such as semantically labeling regions, in which the image partition is a

posteriori, dependent on some scene properties such as texture and color -- such sites

are irregularly structured.)

There is a set of labels associated with each site. The labels can be numerical,

representing measurements of some underlying continuous-valued variables such as

intensity, or symbolic, representing sone underlying qualitative properties of the

three-dimensional scene such as the types of the surfaces in view. A labeling is an

assignment of labels to the sites: one label, of the corresponding label set, per site. A

premise of the labeling problem is that there exists a correct labeling that truly

reflects the underlying scene properties. The goal is to recover the correct but

unknown labeling.

Intensity image restoration is a well-known instance of the labeling problem.

The idea is to recover the "true" intensity measures of the pixels of a discrete image.

The image measures are usually corrupted by (perhaps known) sampling,

quantization, and random noise processes. The recovery of the true intensities would

enable the inference of the amount of light emitted from the underlying surfaces in

the scene - an important cue for understanding the scene structure. Usually, the

labels are the available gray scales of some imaging device and the sites correspond m
to the image pixels. It might be desirable to use finer or coarser scales in

measurement or spatial resolution, but the underlying problem remains the same.

in |n n I ll I I l I
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q[ Besides the corrupted image measures, inexact a priori knowledge such as "nearby

pixels tend to have similar intensities" can be used as another source of knowledge

that contributes to the solutions of the problem.

The labeling problem can be defined with respect to a general graph for

irregularly structured sites. Each node of a graph corresponds to a site, and usually

has unordered, symbolic labels. The links represent the direct interactions, spatially

or causally, between the sites. For example, in polyhedral line labeling, the sites

correspond to the vertices (junctions) with multi-variate labels. The number of

dimensions of a label is identical to the degree of the vertex. Each dimension

represents the possible interpretations of a line (e.g. concave, convex, shadow)

[L attached to the vertex. There has been much effort in analyzing two types of (exact)

knowledge that constrain the possible solutions to a manageable number

[Huffman 1971] [Clowes 1971] [Waltz 1975] [Kanade 1980]. First, local external

evidence provided by the shape of the junctions (arrow, fork, etc.) initializes the sites

to a relatively few possible labels. Second, another form of a priori knowledge, the

line-coherence rule, which states that no line may change its interpretation between

vertices, further constrains the corresponding label values to be matched at the two

- ends of a line.

Other interesting instances of the labeling problem include low-level line

finding, intermediate-level region growing (e.g. [Feldman and Yakimovsky 1974]),

and high-level object recognition (e.g. [Cooper and Holbach 1987]). One major

difficulty involved in solving labeling problems is the combinatorial complexity of

solution spaces. The central issue is how to search for solutions intelligently without

enumerating all possible solutions. Iterative constraint propagation and relaxation

labeling procedures have been developed and applied to these problems

[Waltz 1975] [Mackworth 1977] [Mackworth and Freuder 1985] [Hinton 1977]

[Freuder 1978] [Cooper 1988] [Swain and Cooper 1988]. These procedures do not

always result in unique labelings but eliminate the ones that conflict with the

constraints. It may require further processing, often equivalent to tree search, to

1-
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identify a labeling that best interprets the pictures. It is interesting, as noticed by

Waltz and many others, that pairwise consistency of vertices usually results in global

consistency. Many labeling problems are concerned with discrete choice of exactly

one label per site. However, continuous (probabilistic) relaxation methods have also

been developed that can assign a degree of confidence to each label for a site [Davis

and Rosenfeld 1981] [Hummel and Zucker 1983]. We will discuss them further in

Chapter 3.

We have seen that labeling is a general image understanding paradigm and that

there is a large diversity of domains and their corresponding knowledge

characteristics. However, all instances of the labeling problem are amenable to the

treatment developed in this thesis. All require representations of knowledge,

reasoning procedures that combine bodies of knowledge, and inference rules that

choose solutions among the possibilities. In general, two sources of knowledge are

available for solving the labeling problem: the external evidence, which relates some

image measurements to the labels, and the a priori knowledge about the interactions

between the labels of adjacent sites. This thesis represents knowledge by statistical

measurements. Bodies of knowledge are combined in a Bayesian formulation, and

solutions are estimated based on the resulting a posteriori distributions using a new,

deterministic procedure. The two sets of applications described in Chapter 5 and

Chapter 6 use a retinotopic representation of images. However, the proposed

framework can be extended to problems using other graph representations as well.

1.2. Early Visual Modules and Image Observations

In this thesis, early visual computation begins with a set of independent modules

each extracting a particular scene property. There are variety of motivations for this

design including practical considerations and biological discoveries. Modularity has

been recognized as one of the most important concepts in problem solving: complex

problems are broken into manageable subproblems. Each subproblem is

independently studied and solved. A module logically corresponds to a piece of

knowledge and machinery for solving a particular subproblem. Together, the
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* modules cooperatively solve the global problem. A basic open question, and the one

addressed here, is how the modules cooperate to produce a single answer.

Interestingly, biological vision systems appear consistent with the modularity

concept. Visual cues such as form, color, and spatial information are processed along

separate pathways in the brain [Cavanagh 19871 [Livingstone 1988]. Removing one

of the cues does not dramatically reduce the visual ability.

S,=.It is important to understand how the visual modules interact from the

computational point of view. More precisely, the following questions concerning

visual integration need to be addressed.

(1) At what stage of the visual computation should the integration take place?

(2) What representations of visual information are suitable for integration?

(3) What is the integration mechanism?

These questions cannot be separately answered, and have become the focus of

much research on robot and human vision systems. Some relevant work is reviewed

in Chapter 2.

This thesis assumes the existence of a set of independent early visual modules.

- The outputs, or opinions, of the modules comprise the external evidence for solving

the labeling problem. Each module represents a particular piece of knowledge that

relates some types of image features to some labels of interest. For example, an

intensity edge module may compute a measure of edge strength for each site

according to the intensity variation of the image area corresponding to the

neighborhood of the site. The edge strength measures are then used to support or

refute the hypotheses (labels) concerning the presence of intensity discontinuities.

The common characteristics of the early modules are:

Local computation: Modules' opinions as to the label of an individual site are

based on local image features. The definition of "local" is in terms of site

connectivity, which can encode either geometric or logical relationships.

IJ
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Probabilistic representation: Each opinion is encoded as a likelihood ratio

representing the degree of confirmation or refutation of a particular label.

A procedure that combines early modules' opinions using a label tree is

presented in Chapter 3. Organizing labels as hierarchically structured trees allows a

particular piece of knowledge to be presented at an appropriate level of abstraction.

In this way, early modules corresponding to expert knowledge about certain subsets

of labels can be built independently of each other. The evidence combination

procedure consistently and coherently pools the early modules' opinions about the

labels, and the pooled opinions can be combined with the other source of imperfect

knowledge in an abstraction hierarchy whose higher levels may correspond to

physically or semantically meaningful objects as described next.

1.3. Prior Knowledge for Inverse Problems

The labeling problem is an inverse problem in that the goal is to recover the

properties of a three-dimensional scene from its two dimensional projections. Since

much information is lost in the 3D to 2D projection process, the problem cannot be

solved, in the sense of well-posedness, without the use of a priori knowledge about

the scene [Poggio, Torre, and Koch 1985]. A problem is well-posed if a unique

solution exists and depends continuously on the initial data [Hadamard 1923].

Incorporating a priori knowledge "restores" the well-posedness by, for example,

imposing restrictions on the possible solutions or constraining the solutions to have

particular statistical properties.

Bodies of a priori knowledge are available at various levels of specificity and

certainty. The success of an intelligent system largely depends on its ability to

retrieve the relevant knowledge in particular circumstances. Therefore, issues

concerning organization and representation of a priori knowledge are of vital interest

to computer vision. As mentioned previously, the labeling problem is the abstraction

of many early visual computations. A commonly accepted characteristic of the early

computations is that they do not use domain dependent knowledge, but only natural

constraints about the world such as surface smoothness, continuity, and rigidity
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[Brown 19841 [Poggio, Torre, and Koch 1985]. Such constraints are valid for most

environments, thus the results can be passed to many higher-level domain specific

tasks. There is an argument that such constraints may be innate in organisms that

have evolved under a basically unvarying set of physical laws and a slowly-varying

environment.

Natural constraints may conveniently be encoded, generally speaking, in the

form of a global goodness measure. A better (more consistent with the constraints)

solution is the one with a higher goodness measurement. This measurement has been

expressed as "regularizing functional" [Poggio, Torre, and Koch 1985]. On the other

hand, constraints such as smoothness and continuity are actually local geometrical

properties; they are about the local interactions between the labels of nearby sites. .

Thus measurements of such properties may contribute to the global goodness

measure. Some previous work on exploiting natural constraints is reviewed in

Chapter 2.

The thesis uses a probabilistic - Markov Random Field - encoding of the a priori

knowledge for the labeling problem. The noncausal Markovian interactions nicely

capture the essence of natural constraints in that the local conditional probabilities

measure the local smoothness or continuity while the global joint probabilities

describe the plausibility of the solutions. In Chapters 5 and 6, bodies of qualitative

knowledge such as line coherence and surface smoothness are successfully integrated

in experimental applications, via the specification of several quantitative parameters.

The success is partially due to the Hammersley-Clifford theorem that relates

measures of local potential energy to global joint probability distributions of MRF's.

The probabilistic encoding also allows a Bayesian approach to the integration

of the a priori knowledge with the external evidence. The resulting a posteriori

distribution, also a Gibbs distribution characterizing an MRF, forms the basis for

estimating the true labeling of the problem.
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1.4. Cooperative Networks and Estimation

The computation of the label estimates can naturally be mapped onto a network

consisting of a set of cooperative computing units. Each unit corresponds to a site,

and makes decisions about the labels in accordance with the external input - the

pooled external opinion concerning the site, and the outputs (current decisions) of its

neighboring units. The hope is that the network will eventually stabilize to a

configuration corresponding to the correct solution. Such networks, reminiscent of

interconnected neurons and sometimes referred to as connectionist architectures, have

brought many new insights to the field of computer science, especially artificial

intelligence [Marr and Poggio 19761 (Feldman 19821 [Feldman and Ballard 1982)

(Ballard 1984] [Feldman 1985] [Ballard 1987b] [Feldman et al. 1988]. In fact, the

choices of units' functions and interactions for connectionist networks are very

flexible [Feldman and Ballard 1982]. The computation of the labeling problem

described here can be considered as a specialization of connectionist nets. The utility .1

of using a large number of simple computing units is not only the exploitation of

massive parallelism but also a conceptually different way of modeling computations

involving large number of variables (as in the case of the labeling problem).

The global behavior of a network depends on, in addition to the units and

connections, the inputs, the initial configuration, and the "firing" pattern. To study it,

it is convenient to define a global functional of the units' states in the way that the

correct solution corresponds to an extremum, say the minimum, of the functional.

Then the problem becomes whether the network will evolve to the configuration

corresponding to the correct solution from the initialization. Unfortunately, for most

interesting problems, "good" global functionals that discern possible solutions by the

functional values are difficult to find. Ideally, one would like the functional to be a

cost measure, depending continuously and smoothly on the variables and reflecting

how far a configuration is from the correct solution. In practice, the absolute and

relative goodness of solutions is difficult to decide a priori. Moreover, even if such a

functional can be found, it is usually very complex, with many local extrema. The

pI
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computing units are thus required to perform complicated multidimensional

optimization computations, such as stochastic simulated annealing, to achieve global

optimality.

For our problem, there are two related questions. First, what is an appropriate

goodness measure for the labelings, based on their a posteriori probabilities? Second,

how do we effectly compute this goodness measure? The thesis answers these two

questions simultaneously with a new method - Highest Confidence First estimation.

Several basic ideas make this estimation distinct from previous approaches:

Optimality and Computation: The optimality of the solutions defines the

computation procedure and vice versa. The algorithm attempts to optimize the

functional globally by using a local goodness measure to guide the computation.

Still, the network behavior is clearly defined, dependent only on input data.

Parallel vs. Sequential: The thesis shows that the units can make better

decisions, at least for the labeling problem, by following a global and dynamic

ordering that decides which unit to fire next. As a consequence, the

computation is intrinsically sequential rather then parallel, as in most

connectionist computations.

Commit or not Commit: The estimation procedure introduces a new dimension,
"uncommitted", to the unit labels. That is, a unit can decide to commit to a

particular label, or not to commit to any one. This additional dimension allows

the units to make better judgements based on local information.

HCF is a general technique that it can be used as a heuristic search strategy for

any large state-space optimization problems. It has been demonstrated to find good

results, both qualitatively and in terms of quantitative energy minimization, in our

image-understanding experiments. It would be interesting to see it applied in other

contexts.
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1.5. Thesis Outline

The thesis is organized so as to be best read in order, with the exception of

Chapter 2. Chapter 2 is a review of previous research on several related topics. Its

goal is to provide the reader with the background and motivation of the thesis

research. However, relevant previous work is also discussed in the technical chapters

whenever necessary. Skipping Chapter 2 should not affect the understanding of the

theme or results of the thesis.

Chapter 3 presents a novel approach to knowledge representation and reasoning

for the labeling problem addressed by the thesis. A hierarchically structured label

tree is used to accrue external evidence concerning the labels for each site. A

probabilistically justifiable procedure combines distinct bodies of evidence,

represented as label likelihood ratios in the tree. The combination is commutative

and associative, and has a simple message-passing implementation. More

importantly, this procedure accumulates external evidence in terms of likelihood

ratios rather then a posteriori probability distributions. This feature enables the

integration of the a priori knowledge, encoded in terms of a joint probability

distribution of all sites, with the pooled external evidence in a Bayesian formalism.

The utility of Markov Random Field modeling is also discussed. The chapter is

concluded with the derivation of the a posteriori distributions of the labelings on

which the solutions are based.

Chapter 4 presents the Highest Confidence First estimation algorithm. Practical

concerns are the primary motivation of this novel inference method. Previous

approaches based on MRF's using stochastic simulation or deterministic iterative

techniques have been observed to be computationally expensive and unpredictable.

Also their results tend to be affected significantly by the large-scale characteristics of

MRF's and the possible error involved in a priori models. This chapter discusses the

reasons why HCF is a better alternative. A priority-heap implementation of HCF is

presented, and its convergence properties are discussed.



Chapters 5 and 6 present two case studies of the labeling problem. The

boundary detection problem, still interesting and unsolved after twenty years of

vision research, is dealt with in Chapter 5, using the formulation presented in Chapter

3 and 4. A novel aspect of this work is the use of an MRF to model an explicit line

process, and the use of outputs from a set of local edge operators for the external

evidence. Experimental results using several estimation methods are compared, and

HCF clearly outperforms the others in both robustness and efficiency.

Chapter 6 deals with the problem of surface reconstruction by integrating

intensity information with sparse depth measurements. Coupled MRF's provide a

unified treatment of reconstruction and segmentation, and an extension of HCF

successfully implements a solution method. Experiments are shown to demonstrate

the effectiveness of the approach. This work uses not only the results of Chapters 3

and 4, but also the boundary detection package described in Chapter 5.

Finally, Chapter 7 summarizes the thesis and sketches some future research

directions.



Chapter 2 Related Research
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2. Related Research

This chapter provides an intellectual background for the thesis research with

selected references. More detailed references are given in technical sections. We

focus on previous research on the three topics dealt with in this thesis. First, we

provide an overview of visual integration. We are particularly interested in the

computations of consistent intrinsic images. The large literature on multi-sensor da.a

fusion applications (e.g. [Brooks, Flynn, and Marill 1988]) is not discussed, although

-- the reader may find its subject matter somewhat related to that of this thesis. Second,

we review previous work on regularization. We review the uses of variational

principles and Bayesian estimation, and compare mechanical surface models and

Markov random field models. Last, we discuss computation algorithms and

L architectures, especially for energy minimization problems.

2.1. Visual Integration

* Visual integration is, generally speaking, the process of building an

intermediate representation of visual information for higher-level tasks, such as

recognition and obstacle avoidance, using results from early visual processing.

Typical intermediate representations are Barrow and Tennenbaum's intrinsic images

- [1978], Marr's 2-1/2D sketch [1982], and Feldman's stable feature frames [1985].

The contents of the intermediate representations are the "intrinsic" scene parameters.

Surface discontinuities, range, orientation, reflectance, texture, and motion velocity

are all spatially indexed properties of the scene. Since some low-level vision modules

provide intrinsic images themselves, the task of integration is to combine outputs

from several low-level modules to produce improved results.

Much vision work for the past decade has been focused on early processing

[Ballard and Brown 1982] [Aloimonos 1986]. An early processing module

computes intrinsic parameters from one characteristic of the input intensity arrays.

Examples are the computation of optical flow, shape from shading, shape from

texture, structure from motion, binocular stereo fusion, and boundary detection.

Since individual problems are essentially ill-posed, "natural" constraints such as
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smoothness are often imposed to ensure unique and well-behaved solutions can be

obtained. Sometimes, intrinsic parameters are interrelated according to physical laws.

Often, however, choices of the constraints are decided by computational

considerations rather than the physical plausibility of the constraints themselves. One

important problem that arises in visual integration, and a problem addressed in this

thesis, is how to ensure consistency among the intrinsic parameters.

Loose Coupling Vs. Tight Coupling:

Barrow and Tennenbaum [1978] stated that the intra- and inter-image

constraints can be satisfied simultaneously by adjusting the parameter values with

local operations in parallel. Ballard [1984] proposed to use a multi-level

connectionist network that computes the intrinsic images simultaneously along with

non-spatially indexed features such as light source directions, in a parallel-iterative

manner. The interactions between individual modules and their outputs were loosely

coupled by the connections.

Similar to this line of thought, Poggio [19851 sketched a computational model

for computing intrinsic images by using coupled MRF's and stochastic estimation

techniques. The early visual modules in his design are loosely coupled, in the sense

that each module operates on a particular cue independent of the others, and the

intra-image consistency is maintained through the coupling of MRF's. Practical

concerns are the motivations for loosely coupled designs. In the absence of certain

visual cues, a visual system should still work using the available cues. This sort of

robustness is a characteristic of loosely-coupled systems.

Based on a different philosophy, Aloimonos [1986] studied the physical and -

mathematical relations between intrinsic parameters and multiple image features such

as shape from shading and motion. The general idea is the use of multiple image cues

to setup intrinsic parameter computations that robustly yield unique answers. As a

consequence, less a priori knowledge needs to be assumed in the computation, and

the resultant intrinsic images are guaranteed to be consistent with multiple image

cues. Similar ideas have appeared in the work on computing surface structure by

, I - i I + I I I_ U
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coupling motion and stereo modules [Waxman and Duncan 1985] and stereo and

shading modules [Grimson 1984]. In this work, the individual modules are tightly-

coupled by being part of a single mathematical formulation. When all the data is

available, the computation is robust. When data is missing, the computation cannot

be done.

The work described in this thesis is in a loosely coupled style. This thesis

decouples the notion of a priori knowledge from observable visual evidence. Early

- modules perform only local operations: relating local visual observations to labels of

sites. No inter-image consistency is assumed. Thus individual modules do not impose

spatial constraints (such as smoothness) in their computations. The outputs of early

modules are combined by a method based on Bayesian probability theory. Spatial a

priori knowledge is incorporated and inter-image consistency is maintained with

respect to a particular labeling problem by using MRF modeling and HCF estimation.

Thus the a priori knowledge is applied as part of global decision making process,

rather than at a local level by low-level modules.

Coordinate Systems

The choice of coordinate systems for representing intrinsic parameters is also an

important issue for visual integration. Since the intermediate representation bridges

early vision and late vision, the choice of the representation depends not only on how

the early processes compute, but also on how the representation is used.

Marr's 2- D sketch [1982] is viewer-centered. He argued that the results of

early processes are combined in some kind of retinocentric frame because they are

delivered in this form and that it is consistent with the capability of a fovea. Feldman

L [1985] took eye-movements into account. His stable feature frame is also viewer-

centered, but is aligned with respect to the observer's head position. Retinotopic

information can be integrated over saccades using the knowledge of gaze. Thus the

descriptions of a scene would appear stable to the observer.

U-i
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There exist some efforts in computer vision that integrate information over

camera movements [Ayache and Faugeras 1986] [Matthies, Szeiski, and

Kanade 1987]. The underlying fusion mechanism used by them is the Kalman

filtering. Ayache et al used a feature-based stereo system mounted on a mobile robot

to compute a sparse map (position and orientation) of features with respect to each

robot's position. The transformation between two frames is estimated by matching

overlapping features. Such information is used to refine the feature estimates in each

map. Matthies et al also used Kalman filtering to integrate new depth measurements

and reduce uncertainty over time, in a pixel-wise retinotopic representation. In their

setup, the camera is controlled to move laterally at fixed speed. Depth measurements

at each pixel at a certain time can thus be predicted and updated in accordance with

the camera motion, the previous estimate, and the new depth measurement.

Recently, Ballard [Ballard 1987a] has advocated that the representation of the

products of early vision is best expressed in a fixation frame of an eye-movement

system. Fixation frames are object-centered but viewer-oriented. He argued that an

active visual system can represent the calculations more correctly in object-centered

coordinates, and thus spatial relations of objects can be encoded as transformations

between frames.

Although we use a retinotopic frame in our case studies, the thesis framework is

by no means limited to this choice. We believe that different tasks may require

different coordinate systems. For example, object-centered representations ease the

task of object recognition, but are awkward for the obstacle avoidance problem, for

which view-centered representations may be more suitable.

2.2. Regularization: Mechanical and Probabilistic Models

Regularization is used as a general term for any method to make an ill-posed

problem well-posed [Poggio, Torre, and Koch 1985] Early vision, as mentioned

previously, is an inverse problem: given the projection process P and the image

observation 0, recover the state of the scene S such that 0 = P S. In general, the

observation 0 does not determine S in a unique and stable way, due to the loss of
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information in the three- to two-dimension projection and noise corruption of the

observation during the imaging process. To solve such problems, it is customary to

impose constraints on the solutions to ensure uniqueness and stability. That is, to

regularize the otherwise ill-posed problems.

One question arises, that is: what constraints are physically plausible and yet

powerful enough to regularize a problem? Imposing strong (domain specific)

constraints would certainly ease the solutions to inverse problems, but the generality

of the solutions would be lost. Much research has exploited natural (generic)

constraints for early vision. There are basically two approaches to regularization that

employ natural constraints. One approach uses variational principles to restrain the

possible solutions. Typically, a norm and a stabilizing functional for the solutions are

chosen so that the most "regular" (stable and consist with input data) solution can be

computed. The stabilizing functionals used so far are mainly the linear combinations

of the first few derivatives of solutions, encoding various degrees of continuity and

smoothness [Horn and Schunk 1981] [Ikeuchi and Horn 1981] [Grimson 1981]

[Hildreth 1984] [Terzopoulos 1986a] [Terzopoulos 1986b] [Blake and

Zisserman 1987]. Using such stabilizers corresponds to fitting splines to the data.

For example, in the context of surface reconstruction, Grimson [1981] and

Terzopoulos [1986a] model smooth surfaces with membranes and thin plates. A

membrane, being characterized by first derivatives, is sensitive to depth variations but

insensitive to changes in surface orientation. On the other hand, a thin plate bends

but cannot crease, because it has a second order energy (function of second

derivatives). Observing this, Terzopoulos proposed to fit membranes at locations of

orientation discontinuities and plates in homogeneous regions. Although depth and

orientation discontinuities are assumed to be known in this work, Terzopoulos

[1986b] pointed out that discontinuities can be detected as locations of abnormally

high strain in the modeled surface. Blake et al [1987] argued that the primary

purpose of surface reconstruction is to detect discontinuities. They proposed "weak"

surface models to incorporate discontinuities in surface energy formulations. Using

weak models, a surface breaks if that reduces the total energy. Discontinuities can
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thus be computed in the process of surface reconstruction. -

The other approach to regularization, the one used in this thesis, is based on

Bayesian estimation and Markov Random Field models. The world S is modeled as a

random field, and the observation 0 is a set of noisy measurements. The a priori

knowledge about the world is expressed in the form of a probability distribution.

Using this distribution together with a probabilistic description of the noise that

corrupts 0, the a posteriori distribution of the world can be derived. The inverse

problem is solved by finding an optimal estimate based on some statistical criterion,

such as maximizing the a posteriori probability (MAP) or minimizing the expected

value of some cost measure (see Chapter 4).

There are two reasons for using Markov Random Field models: 1. Spatial a

priori knowledge can be naturally expressed in terms of local conditional

probabilities or local potential energy measures (see Chapter 3). 2. It is powerful. All

nondegenerate random fields are MRF's with respect to different neighborhood

systems. Natural constraints about smoothness and continuity can usually be

encoded adequately with small neighborhood systems.

Geman and Geman [1984] presented an excellent treatment of MRF models.

The two important contributions of their work are the MAP estimation procedure -'

using simulated annealing optimization and the use of coupled MRF's (one for the

intensity process and one for the implicit discontinuity process) for intensity image

restoration. Marroquin [1985] pointed out that for some problems MAP estimation

may not be desirable, based on Bayesian decision theory. For example, for the

labeling problem, the Maximizer of Posterior Marginals (MPM) is a better estimate

than MAP because it minimizes the expected value of the number of mislabeled sites.

He also described a Monte Carlo procedure for computing MPM.

Interestingly, the mechanical (e.g. membrane and plate) models are not

irrelevant to the MRF models. It can be proven that fitting splines over discrete

lattice sites is equivalent to MAP estimation using MRF models with appropriate

neighborhood systems and potential functions [Szeliski 1987]. But, the probabilistic
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approach is more flexible. One can easily adjust one's priors by modifying the local
potential functions. Furthermore, the probabilistic approach allows the development

of other, perhaps better, estimates such as MPM and HCF.

Other advantages of the probabilistic approach include the well-known

semantics of model parameters and estimates, the easy incorporation of statistical

data, and the ability to integrate disparate sources of information.

2.3. Computation: Energy Minimization and Relaxation

Many problems can be formulated as either optimizing an objective function or

satisfying a set of constraints or both [Feldman and Yakimovsky 1974] [Hummel

and Zucker 1983] [Kirkpatrick, Gelatt, and Vecchi 1983] [Feldman 1985] [Poggio,

CE Torre, and Koch 1985]. Usually, brute-force exhaustive search for solution is

computationally prohibited because of the large number of variables involved in a

problem. Furthermore, some problems are intrinsically difficult. For example, the

well-known polyhedral line labeling is proven to be NP-complete [Kirousis and

Papadimitriou 1985]. To "solve" such problems, one must exploit possible

parallelism in the computation or settle for approximation methods that provide

"good" solutions most of the time.

One class of problems is relatively easy to solve: the minimization of convex

functions. Convex functions are well-behaved in the sense that they have unique

minima when bounded from below. Any procedure that keeps searching for solutions

with lower function values is guaranteed to find the optimal answer. Therefore,

iterative relaxation techniques can be developed (e.g. [Terzopoulos 1983]

[Terzopoulos 1986c]). At any instant, each variable is considered to change its value

depending on whether the change would result in a smaller function value. Such

techniques can be mapped onto parallel network architectures; each computing unit

corresponds to a variable, and the connections depend on the interdependencies

among the variables. The problem of surface interpolation is a typical example. In a

finite element formulation, Terzopoulos [1986a] developed a set of computational

molecules for fitting membrane and thin plate surfaces, all having quadratic energy,
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over an image grid. The computational molecules, representing the connections -

among the (depth) variables, are small in size, and the computations performed are

linear (weighted sum of the variables).

However, most interesting problems are not convex, and computations are not

linear. In fact, any network that can make decisions cannot be linear [Blake and

Zisserman 1987]. For example, if discontinuities are to be computed simultaneously

with surface reconstruction in the above energy formulation, decisions on the

presence or absence of a discontinuity must be made at every candidate location. For

each discontinuity configuration, there is a corresponding optimal surface

configuration. Therefore, there are as many "local" optimal solutions as the number

of possible discontinuity configurations. Blake et al devised an algorithm that uses a

series of functions (decreasing in "convexity") to approximate the original non-

convex energy function. Their method was proven to converge to the global

minimal-energy solution for a restricted class of energy functions. For example, it

requires depth measurements everywhere for surface reconstruction.

Simulated annealing is a general paradigm for solving combinatorial

optimization problems [Kirkpatrick, Gelatt, and Vecchi 1983]. The idea is to allow,

stochastically, energy to increase during the energy minimization process in order to

escape from local minima. It was proven that if the temperature of the annealing

system decreases slowly enough, a globally optimal solution is guaranteed [Geman

and Geman 1984] [Gidas 1985]. Annealing has been applied to image restoration

[Geman and Geman 1984], texture segmentation [Geman and Graffigne 1986]

[Simchony and Chellappa 1988], the computation of optical flow [Murray and

Buxton 1987], and binocular stereo matching [Barnard 1987].

On a related topic, Marroquin [1985] proposed a Monte Carlo stochastic

sampling procedure. The idea is to generate system configurations stochastically in

accordance with the likelihoods of the configurations (see Chapter 4). In this way,

estimates such as MPM can be approximated by collecting sample statistics. For

surface reconstruction, he proposed to use a hybrid network in which discontinuity

process (whose state is updated digitally by a stochastic procedure) acts as a set of
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switches between the nodes (of an analog network) whose voltages represent the

depth process. Hutchinson et al [Hutchinson et al. 1988] used a similar hybrid

network to compute optical flow. The digital subnetwork for the discontinuity process

deterministically updates the line configuration after every run of the analog

subnetwork; the analog subnetwork computes the optimal flow configuration

according to the current line configuration. This interlacing relaxation procedure is

guaranteed to converge. However, the results might not be globally optimal.

Building an analog network for optimizing a quadratic function, as in surface

reconstruction, is relatively easy. The problem of constructing an analog network that

makes decisions is somewhat more difficult [Hopfield and Tank 1985] [Koch,

Marroquin, and Yuille 19861. Hopfield et al [1985] studied the classic traveling

salesman problem. They formulated this discrete decision problem with a continuous

energy function in which valid and short paths are favored. They designed an analog

network of which the stable states are locally optimal with respect to the energy

function. Their idea was to allow the binary variables to vary continuously between

0 and I and to introduce terms in the energy function that forced them in the final

solution to be 0 or 1. Koch el al [1986], following Hopfield's work, described an

analog network for surface reconstruction.

Analog networks, in contrast to stochastic optimization methods, provide

solutions instantaneously. However, as one might expect, there are difficulties using

analog networks to solve complex problems. It is difficult to ensure solutions are

valid (O's and I's) and globally optimal (with respect to the original discrete

problems) [Wilson and Pawley 1988].

The Highest Confidence First estimation described in this thesis can be used to

compute decisions in optimization problems. It is deterministic and intrinsically

serial. It searches for a solution in an augmented space rather than in the solution

space (as in simulated annealing) or the interior of a hypercube (as in using analog

networks). Only local optimality is guaranteed. This local optimality might be

desirable because, from an engineering viewpoint, only simple tasks have cost

functions that truly reflect the goodness of solutions. Usually cost functions involve
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many subjectively chosen weightings of the various contributions. Globally

optimizing such functions may ignore important information conveyed in observable

data. HCF attempts to find solutions most consistent with input data while satisfying

a priori constraints (Chapter 4).



Chapter 3 Probabilistic Information Fusion
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3. Probabilistic Information Fusion and the Labeling Problem

Most research on evidence combination has focused on updating the "belief" in

a given hypothesis about an individual entity when bodies of new evidence become

available [Pearl 1986] [Shafer 1976] [Reynolds et al. 1986]. When dealing with

problems involving large number of entities with local interactions (e.g. the labeling

problem), the approach - maintaining "marginal belief' - requires the effects of

updating local "belief" to be propagated to other sites. It is interesting to compare the

class of algorithms called "probabilistic relaxation", also aiming at the labeling

problem, with the approach proposed in this thesis.

Probabilistic relaxation was inspired partially by the discrete relaxation labeling

and partially by the Bayesian-probability formalism [Rosenfeld, Hummel, and

Zucker 1976] [Davis and Rosenfeld 1981] [Hummel and Zucker 1983] [Shvaytser

and Peleg 1985] [Peleg 1980] [Kohler 1984]. In their formulation, each site has a

set of weights attached to the labels. The weights are nonnegative and sum to unity,

reminiscent of a probability distribution of the labels, and thus the name
"probabilistic" relaxation was adopted. The a priori contextual knowledge, being

inexact, is about how compatible are pairs of labels associated with adjacent sites,

usually represented in terms of conditional probabilities or statistical correlations. A

local updating operator computes how much supporting evidence provided by the

neighbors in accordance with their weights and compatibilities, and adjusts the label

weights accordingly. Ideally, the weights evolve in a local parallel fashion, and

eventually converge to a configuration when a label with high weight emerges and is

considered as the correct label of the site.

There are two drawbacks with the use of probabilistic relaxation for solving the

labeling problem with multiple sources of knowledge. First, the updating rules are -

rather ad hoc and heuristic. It is difficult, if not impossible, to interpret the weights

after a couple of iterations from a Bayesian decision point of view [Kittler and

Foglein 1986] [Haralick 1983]. Experimental evidence also suggests that only the

first few iterations "improve" the initial assignments of the weights. Subsequent

iterations tend to lead the results away from the observations. Consistent
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combination of observable evidence and contextual knowledge is thus impossible

under this formulation. The second drawback is the computations required for

propagating the effects of bodies of new evidence. A body of evidence bearing

directly upon an individual site influences the belief distributions of the rest of sites.

Usually many iterations through the sites are necessary (if possible) before

converging to a state in which the set of marginal beliefs becomes stable. We believe

that an information fusion mechanism should constantly maintain a representation of

knowledge to reflect the total information available, except possibly for transient

periods of time for aggregating evidence locally. This requirement is also desirable,

if not necessary, for implementing vision systems in distributed environments.

Instead of updating marginal beliefs, our approach maintains joint probability

distributions of the sites by decoupling the notion of external evidence and a priori

knowledge. Since bodies of evidence based on local image observations bears

directly upon individual sites, they can be combined locally without having to

interfere with other sites. On the other hand, a priori knowledge is mostly about the

interactions among the sites. It is best described by a joint probability distribution of

all variables. When combined with external evidence using Bayes' rule, the resultant

distribution reflects the a posteriori belief in the global configurations. Inference

methods can thus be applied to find the true labeling based on the a posteriori beliefs.

A global view of the proposed approach is provided in Figure 3.1.

This chapter proposes the representations for the two sources of imperfect

knowledge -- the external evidence and the a priori knowledge, the combination

mechanism that combines these two sources of knowledge, and the criteria for

evaluating the goodness of the estimates of the true labeling based on the available

knowledge. Only finite, unordered labels are concerned here. In Chapter 6, we

describe a method for reconstructing and segmenting depth maps using both symbolic

and numerical labels.

In Section 3. 1, we limit our attention to individual sites. We describe the use of

likelihoods and likelihood ratios as the representation of external evidence, and a

procedure that consistently and coherently aggregates evidence for labels whose
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Figure 3. 1. System Diagram

semantics are hierarchically related. Markov Random Fields and their properties are

introduced in Section 3.2. They are used to quantify the inexact a priori knowledge

about the spatial interactions between sites. In Section 3.3, the two sources of
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knowledge are combined by Bayes' theorem. The resultant a posteriori knowledge is

thus used to estimate the true labeling using Bayesian decision criteria (Chapter 4).

3.1. Hierarchical Integration of Early Visual Observations

Unordered symbolic labels are commonly used for the high level representations

of a scene. Each label corresponds to some event directly or indirectly observable in

the scene. Labeling a site has the semantics of hypothesizing the occurrence of the

corresponding event (what) at the corresponding location (where). Since the

existence and uniqueness of the label assignments are assumed, the corresponding set

of events must be mutually exhaustive and exclusive. Frequently, certain subsets of

the events have semantic interest. Under judicious treatment, they can be organized

as a hierarchically structured tree. Each internal node in the tree represents the

disjunct of its son events. The partial ordering defined by the father-son links reflects

the causal relations between the events.

Figure 3.2 shows one example of how we may organize the knowledge about

various types of image edges. An abrupt change of the image irradiance (edge) may

be caused by the variations of underlying scene structure (geometrical edge) or

surface reflectance (photometric edge), and the changes of surface reflectance may be

due to the variation of surface albedo (e.g. texture edge) or the amount of incident

light (e.g. shadow edge). It is desirable to organize various types of edges into such

trees. For example, it is absolutely vital to have the finest-level descriptions of the

edges for object recognition tasks. However, when obstacle avoidence is the primary

concern, only depth discontinuities are of interest. Furthermore, a visual module such

as an intensity edge detector might not be able to tell geometrical edges from

photometric edges, but might be capable of indicating occurrences of discontinuities

of any sort.

One utility of using hierarchically structured trees, as pointed out by Gordon and

Shortliffe [Gordon and Shortliffe 1985] and later by Pearl [Pearl 1986], is the ability

to represent a particular piece of knowledge at whatever level of abstraction is
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0
R

G P GE PEx A
SF FL (I~ i) DE (i) SE HE TE

Figure 3.2. A Label Tree
E - edge, R - region, PE - photometrical edge, GE - geometrical edge
PR - photometrical region, GR - geometrical region, TE - texture edge
HE - highlight edge, SE - shadow edge, OE - orientation edge, DE - depth edge,
HI - highlight region, SH - shadow region, PL - planar region, SP - spherical region.

appropriate. Also, in practice, it is easy to independently design and maintain

modules that are experts at detecting particular events. Their opinions about the label

events can then be pooled according to the known semantic relations. In addition,

many visual tasks can simultaneously share the knowledge accumulated in a label

tree. Since events on different branches of the tree are mutually exclusive, every

cross-section corresponds to a mutually exclusive and exhaustive set of events.

Instances of the labeling problem can thus be defined with respect to appropriate

cross-sections in a label tree dependent on the particular goals of the tasks.

In this section, we limit our attention to individual sites. We assume that the

interesting labels for each site are organized as a tree. We describe a new method, in

terms of message passing between nodes of a label tree, for combining bodies of

evidence represented as label likelihood ratios. Probabilistic justifications for this

methods are also provided.

Some notation has to be introduced here. Represent an image as a set of sites

indexed by the set S -s 1, s 2 .... , SN) . Without loss of generality, assume all sites
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have the same set of interesting labels orgainized as a hierarchically structured tree H

(e.g. Figure 3.2). Node H denotes the hypothesis that s can be labeled 1. Each

internal node stands for the disjunct hypothesis of its sons. For convenience

purposes, let yj denote the set of sons of H. Let L = 1l1, 12, ... , lQ) be a mutually

exclusive and exhaustive set of labels of H. Let XseL be a random variable

associated with se S. A labeling co of the image with respect to L is a realization of

the set of random variables X = [X,,sE S). Let c,, = wo(X 3) eL represent the label

attached to si according to the labeling o, and D be the set of all labelings -- the

admissible solution space of the labeling problem with respect to S and L.

3.1.1. Weighing of External Evidence

We consider early visual computations as the computations performed by a set

of independent modules. A module encodes a piece of knowledge that relates image

observations to some label events. The input for these modules is noise-corrupted

visual data, such as image irradiance, texture, stereo disparities, etc. When making

an opinion about site s, a module may restrict its consideration of input to some

spatial region dependent on s. Typically, the region will include s and its spatially

adjacent sites. Also, a module might not use all the input available for a given site,

that is, it might use only irradiance when other data are also available. The subset of

input used to make an opinion about s is observation O.

In our treatment, the opinions of the modules are presented in terms of

likelihood ratios. For example, module A is an expert on a label 1. After observing

0, the module reports its opinion on I as a likelihood ratio:
P (OS I/)

P (OSI/-4)

The semantics of likelihood ratios are well-known [Good 19501 [Duda, Hart, and

Nilsson 1976] [Bolles 1976]. Confirmation of 1 based on Os is encoded by X, > 1,

and disconfirmation by X, < 1.

It is possible that a module knows more than one label. In such cases, the

module distributes the support of the evidence to the set of labels and its complement.
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More precisely, if module A is an expert on the subset LA L, it reports one

likelihood ratio for each label in LA. A likelihood ratio is the probability of the

observation given that one label truly applies divided by the probability of the

observation should none of the labels in LA apply. For example, the likelihood ratio

reported for label 1i eGLA is:

- P(O,, I14)
p (OI-( U 1))

IeLA

Note that we define P (0 I 1( j 1)) to be 1 when LA is exhaustive.
IeLA

The values of likelihoods and likelihood ratios can be derived from stochastic

models of relationships between the label events and the observations [Sher 1987a]

[Bolle and Cooper 1984] [Bolle and Cooper 1986], or estimated from statistical data

[Bolles 1977]. Sometimes they are subjectively assigned by human experts based on

their experience [Duda, Hart, and Nilsson 1976]. An example of computing

likelihoods for intensity edges based on Sher's work is given in Chapter 5.

For a purpose that will soon become clear, we impose the following assumption

of conditional independence between spatially distinct observations:

p(OA i))= rP(OA 1(o5) (3.1)
SE S

where the superscript A indicates the observations of the module A. This assumption

has been used implicitly in numerous applications [Besag 1986] [Derin and

Cole 1986] [Marroquin 1985] [Bolle and Cooper 1984] [Bolle and Cooper 1986].

The assumption is not always valid. For example, the noise of an ultra-sound image

may be spatially dependent given the true scene due to the change in conductance.

There are also cases in which 0, may contain information not only from site s but

also from its adjacent sites. In such cases, the spatial independence assumption is

still valid, but (3.1) needs to be moified according to point-spread functions to take

into account the blurring effects. For conceptual and notational convenience, we do

not consider these conditions in this thesis.
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3.1.2. Hierarchical Aggregation of Evidence

We maintain a number for each node of the label tree H, except for the root.

Unlike other approaches, the numbers here do not indicate the states of belief of the

hypotheses but rather the degrees of hypothesis confirmation or disconfirmation

provided by the collected evidence.

Let a, denote the current degree of confirmation/disconfirmation for node H1.

The probabilistic interpretations for the a's will be given in the next section.

Initially, all a's are set to unity indicating "neither confirmed nor disconfirmed"

before observing any evidence. Besides a, each internal node H keeps one value,

wf, for each node Hi e y. Initially, w! is set to the a priori probability of X, = i given

X, = 1. Obviously, the w?'s of each node sum up to unity.

The Bayesian evidence aggregation on the label ree can be best described in

terms of local updating and message passing between the nodes of H. Suppose a

module A reports its opinion as a set of likelihood ratios {4 I leLA) where LA is a

set of mutually exclusive labels contained in H described in the previous section. The

a's are updated according to the following rules:

Local updates:

For each node H, where IeLA, a is updated from its current value to

a, <_._ a, V/ -GLA. (3.2)

The effect of this update has to be propagated throughout the label tree to

maintain the coherence of the a's. Node H sends a message, m + = XA, to its

father and each of its sons.

Downward propagation:

Any node Hk that receives a message m- from its father executes the following

two steps: (1) passing on m + =m- to each of its sons, and (2) replacng ak by

ak +- m- ak. (3.3)

Upward propagation:

Any node Hj that receives a message m- from one of its sons (say H), updates
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wj to

W! +- m W, (3.4a)

and sends a message m+ to its father, where

m = I , (3.4b)

then updates aj and all the wJ's according to

ac --- m + a, (3.4c)

w m - Vk e yj. (3.4d)Ml

Note that the combination and propagation procedures are commutative and

associative (Appendix 3.A). This property enables an asynchronous parallel network

implementation.

3.1.3. Probabilistic Justification

The above method fits in a Bayesian formalism if we maintain two notions of

conditional independence. First, a piece of evidence 0 that bears directly on the

hypothesis X, = I says nothing about the descendants of Ht:

P(O II, i) = P(O I), i descendant of 1, (3.5)

P (0 I--,j) = P (0 I -,1) j descendant of --,.

Second, the observations of different modules are conditionally independent.

P(O I)=fIP(OAI1), and (3.6)
A

p (O 1-,j) = lIP(OA I--,j),
A

where the products on the right-hand side are over a set of modules and 0 is the

union of their observation 0 A 's.
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Equation (3.5) states, as suggested by Pearl [Pearl 1986], that when the

observation OA is a unique property of HI, common to all its descendants, once we

know X, = 1 is true/false, the identity of the descendants Hi or Hj does not make OA

more or less likely. Equation (3.6) states that each piece of evidence observed by the

early modules provides conditionally independent information about a label. In other

words, knowing that X, = 1, the observation of 0 by a module will not make the

observation 0' of another module more or less likely. We believe that the disparate

types of image clues in vision applications satisfy this assumption.

Define consistent states of a's as the states in which for each available opinion,

all of the a's are either updated according to rules (3.2) to (3.4), or none of the a's

have been changed with respect to this opinion. We say that a set of opinions yields a

consistent state if all opinions in this set, and no other opinions, have been used to

update the a's. The following theorem relates the a's to the likelihood probabilities

at consistent states.

Theorem 3.1: Let a' denote the a value associated with H, at the consistent

state t, and P(Ot I1) be the probability of Ot given X. = 1, where 0, denotes the union

of those observations that form the set of opinions that yields the state t. If 01 * 0,

then

a = ctP(OtIl) VHjeH (3.7)

where ct is a constant depending only on t, given the conditional assumptions (3.5)

and (3.6).

The proof of Theorem 3.1 is given in Appendix A at the end of the chapter.

This theorem states that the supports from the pooled evidence for the label events

are properly weighted, following the evidence combination procedure of Section

3.1.2. To see how it could be used, we start with an a priori distribution P 0 of a set

of mutually exclusive and exhaustive labels L. Assume that subsets of L are

hierarchically related and organized as a tree H, and the w's associated with the

internal nodes are initialized by the corressponding a priori conditional probabilities

in accordance with PO. For example, if ic-L and je i, w can be computed by
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P0 (J)
POW The following corollary demonstrates the utility of the theorem.YP0(k)

kei

Corollary 3.2: The posterior probability P,(1) of leL at the consistent state t is

cciP0(l)Pt(l) =-~ po,

IeL

As mentioned previously, it is difficult to maintain marginal belief for each

variable associated with the sites. Corollary 3.2 suggests that it is possible to

combine bodies of evidence according to the a priori probabilities. The resulting

combination can then be merged with the original a priori probabilities.

To summarize: We have developed an evidence combination method for a

hierarchy of hypotheses based on the notions of conditional independence given by

equations (3.5) and (3.6). This scheme, besides having all the desirable

characteristics listed in [Pearl 1986], has the following advantages:

(1) The computations involved are extremely simple. Simpler and fewer

messages must be passed, comparing with Pearl's procedure [1986].

Normalizations are never needed since relative degrees of

confirmation/disconfirmation are maintained instead of probabilities

(Theorem 1).

(2) This scheme decouples the notion of evidence and belief. That is, the

evidence can be collected and combined consistently and coherently without

having to maintain probability distributions. In the next section we show this

characteristic is very helpful when the prior knowledge is represented as an

MRF.

3.2. Spatial Priors and Markov Random Fields

Markov Random Fields have been used for image modeling in many

applications for the past few years [Besag 1974] [Hassner and Slansky 1980] [Cross _ __

and Jain 1983] [Marroquin, Mitter, and Poggio 1985] [Geman and Geman 1984]
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[Derin and Cole 1986] [Murray and Buxton 1987] [Cohen and Cooper 1987]

[Amblard, Cooper, and Cemuschi-Frias 1986] [Szeliski 1987] [Derin et al. 1984]

[Besag 1986] [Geman and Graffigne 1986] [Poggio 1985] [Drumheller and

Poggio 1986]. In this section, we review the properties of MRF's and discuss how to

encode prior knowledge in this formalism. We refer the reader to [Kindermann and

Snell 1980] for an extensive treatment of MRF's.

3.2.1. Noncausal Markovian Dependency

Let E be a set of unordered pairs (si, sj)'s representing the "connections"

between the elements in S. The semantics of the connections will become clear

shortly. E defines a symmetric and non-reflexive neighborhood system F =

(N, I se S), where N, is the neighborhood of s in the sense that

(1) soNs, and

(2) re Ns if and only if (s, r)e E.

X is a Markov Random Field with respect to F and P, where P is a probability

function, if and only if

(postivity) P(X=co) > 0 for all mf0 (3.8)

(Markovianity) P (Xs=Os IXr=Oir, re S, r*s) = P (Xs=Ws IXr=LOr, re Ns) (3.9)

The set of conditional probabilities on the left-hand side of (3.9) is called the local

characteristics that characterizes the random field. It can be shown that the joint

probability distribution P (X=co) of any random field satisfying (3.8) is uniquely

determined by these conditional probabilities [Besag 1974]. An intuitive

interpretation of (3.9) is that the contextual information provided by S-s to s is the

same as the information provided by the neighbors of s. Thus the effects of members -A

of the field upon each other is limited to local interaction as defined by the

neighborhood. Notice that any random field satisfying (3.8) is an MRF if the

neighborhoods are large enough to encompass all the dependencies.
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3.2.2. Encoding Prior Knowledge and Gibbs Distributions

The utility of the MRF concept for image labeling problems is that the prior

knowledge about spatial dependencies among the image entities can be adequately

modeled with neighborhoods that are small enough for practical purposes. Very

often, the image entities are regularly structured and prior distributions on the image

are homogeneous and isotropic. In such cases, the number of parameters needed to

specify the priors is just a fraction of QM, where M is the size of the neighborhoods.

This is a significant saving over QN - the number of possible configurations, . -

especially when M is small.

There are difficulties, as stated in [Geman and Geman 1984], associated with

using the MRF formulation by itself:

(1) The joint distribution of the X, is not apparent;

(2) It is extremely difficult to spot local characteristics, i.e., to determine when a

given set of functions are conditional probabilities for some distribution on

(1) is not a serious problem for some special classes of MRF models such as

Markov Mesh (MM) processes [Abend, Harley, and Kanal 1965][Kanal 1980], since

their joint distributions can be represented in a recursive formulation due to the

casual dependency assumed. For (2), parametric probability distributions such as

Gaussian and binomial, have been been used in the literature [Cross and Jain 1983]

[Cohen and Cooper 1987]. Using such distributions further simplifies the encoding

of the local characteristics and has shown some impressive results on modeling and

generating texture patterns. However, whether these kinds of simplifications preserve

the power of MRF's for modeling spatial knowledge remains questionable.

Fortunately, these difficulties vanished when the following property of MRF's

was realized.

Hammersley-Clifford Theorem: A random field X is an MRF with respect to a

neighborhood system r if and only if there exists a function V such that
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p (0)) = V 0 Q (3.10)Z

where T and Z are constants and

U (0)= VC~o) (3.11)
CeC

C denotes the set of totally connected subgraphs (cliques) with respect to r. Z is a

normalizing constant and is called the partitionfunction.

The probability distribution defined by (3.10) and (3.11) is called a Gibbs

distribution with respect to r. The class of Gibbs distributions has been extensively

applied to model physical systems, such as ferromagnets, ideal gases, and binary

alloys. When such systems are in a state of thermal equilibrium, the fluctuations of

their configurations follow a Gibbs distribution. In statistical mechanics

terminology, U is the energy function of a system. The V, functions represent the

potentials contributed to the total energy from the local interactions of the elements

of clique c. T, the temperature of the system, controls the "flatness" of the

distribution of the configurations.

Gibbs distributions, and therefore MRF's, possess a property that appears to be

desirable for modeling - when constrained by a fixed expected value of some

sufficient statistic of the random field, the maximn entropy distribution among the

class of distributions compatible with the constraint is a Gibbs distribution.

The MRF-Gibbs equivalence not only relates the local conditional probabilities

to the global joint probabilities, but also provides us a conceptually simpler way of

specifying MRF's - specifying potentials. The importance of the joint probabilities

will become evident in the next section. Based on (3.9) and the Hammersley-Clifford

theorem, the local characteristics can be computed from the potential function

through the following relation:
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T V(CO)

P (Xs=s IX,=ao,r*s) = e-T ; vC(d) (.2

Me e cS

where C, is the set of cliques that contain s, and co' is any configuration of the field

that agrees with co everywhere except possibly s.

There has been some work that applies statistical estimation methods to estimate

parameters used for specifying MRF's. The standard approach is the maximum

likelihood estimation: Choose the parameter values that maximize the likelihood of

some realizations. Brute force search for the maximum is computationally

intractable, and stochastic methods have been shown to work well for this problem

[Geman and Graffigne 1986] [Hinton and Sejnowski 1983]. There are more

efficient methods based on a "pseudolikelihood" measure proposed by Besag

[Besag 1975]. The pseudolikelihood function is the product of the conditional

likelihoods (local characteristics) over all sites. The computations involved in

maximizing pseudolikelihoods are shown to be much simpler than in maximizing the

real likelihood functions. Cross and Jain [1983] applies a coding scheme

[Besag 1974] to estimate the parameters in their binomial distribution models. The

idea is to partition the sites into "codes" so that no two in the same code are

neighbors. An estimate of the paramters is chosen to maximize the psudolikelihood

of a code, and the average of different coding estimates is taken to be the final

estimate. Elliott and Derin [Elliott and Derin 19841 uses a least-square-fit method to

estimate potential functions in the Gibbs distributions of their texture models. These

methods are good when many uncorrupted realizations are available, such as in the

case of natural texture modeling. When such data are difficult to acquire, choosing

the clique potentials on an ad hoc basis has been reported to produce promising

results [Geman and Geman 1984] [Marroquin, Mitter, and Poggio 1985]. Our

experiments (Chapters 5 and 6) have also shown good results. These results are not

surprising since the notion of clique potentials provides a simple mapping from

"qualitative" spatial knowledge to numeric values of the parameters specifying the
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MR.F's.

3.3. A Posteriori Markov Random Fields

In this section, we move our attention to the relationships of segments of the

image S. Recall that in Section 3.1, each site is associated with a set of a's,

maintaining the opinions of the early visual modules. The updating of a's requires

the knowledge of prior probabilities of individual labels conditioned on their parents'

identities -- the initial values of w's. In the last section, we review Markov Random

Fields and their properties. We mention that MRF's and thus the class of Gibbs

distributions are suitable to represent our prior knowledge about local interactions

between images sites. The problems remained are (1) computing the conditional

probabilities required for the evidence aggregation procedure from the a priori Gibbs

distribution, and (2) combining the a's with the a priori Gibbs distribution.

For (1), since the exact evaluation of MRF statistical moments is

computationally intractable, we propose to use a stochastic Monte Carlo procedure to

generate sample configurations of the prior MRF at equilibrium. Local statistics of

label events can thus be collected to estimate the required prior conditional

probabilities. More details of stochastic sampling and estimation are described in

Chapter 4.

For (2), let P., denote the set of a's associated with seS, and 03,(l) be the a

value for label I in P. Define a global consistent state to be a state of the D's at

which each P, is in a consistent state.

Assume that the prior knowledge about the image is represented as an MRF X

over S, Xse L - a mutually exclusive and exhaustive label set in H, with respect to a

neighborhood system N. The Gibbs measure that characterizes the prior MRF is:

P0 (o)e- T (3.13)

Zw

where
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U0 (O)= VC(CO),
ce C

and ZO is a normalizing constant. Given (3.1), Theorem 3.1, and Bayes' rule, the a

posteriori Gibbs measure of a configuration a) at a global consistent state t can be

computed as:

PT() e T (3.14)
Zt

where the a posteriori energy is

Ut (w) = Vc (0) - T Yn(os((o,)) (.5
U~ Ct) C:C (3.15)cEC SES

It is easy to see that the a posteriori Gibbs measure characterizes a MRF over S

with respect the neighborhood system N with the local characteristics:

F, :vc(co)+1 ((co))

Pt(X =w, IXr=(or,r*s)
I I v,(m)+n(W(W)) (3.16)

le T Cs

Note that, based on (3.15) and (3.16), only simple local operations are involved

in updating the energy measure and local characteristics as new opinions from the

early visual modules become available. Therefore, inference methods depending

only upon these measures, such as stochastic MAP and MPM estimations, can easily

be implemented in the proposed framework. We investigate various decision criteria

in the next chapter.
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A. Appendix

In this appendix, we show that the evidence aggregation procedure described in

Section 3.1 is commutative and associative (Lemma A.1). We then use it to prove

Theorem 3.1. Corollary 3.2 immediately follows.

Lemma A.I: The updating and propagation rules described in Section 3.1.2 are

commutative and associative.

Proof:

We first show the following: (1) The impact of two incoming messages (or

likelihood ratios in the case of local updating) from the same source, say m1 and

iM2 , on the a and w's associated with a node is the same as the impact of a

single message m- = m1 m-. (2) The two outgoing messages, m' and m2

corresponding to m- and m- respectively, have the product of m' m' i+

same as the outgoing message corresponding to m-. Therefore, the influence of

m- and m- can be properly propagated by sending the two messages m+ and m'

in any order, or a single message m'.

(1) and (2) are trivially true for the local updating and downward propagation

rules, because only multiplications are involved in these rules. To see they are

also true for the upward propagation rule, let us suppose node H, receiving two

messages mI and m2 in this order, from a son Hi. For convenience purposes, we

use superscripts 0, 1, and 2 to represent the values of a and w's prior to the

arrival of mj, after the arrival of ml but before the arrival of m2. and after the

arrival of m- respectively. Also, we drop the subscripts and superscripts I in a's

and w's.

According to Equations (3.4a) - (3.4d), we have

+ + 1 0

l = M+aO
j~i.j TI

and

-Al
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mT w_

wl - + if j.= i,

0

= -L otherwise.
+

Upon receiving in2 ,

M- M W w+ w w

jij*Qr l

and

W4M IW if j= i,
j jjjeet

M+ M I W

Thrfoe (2)herwlsotre.

repcieyI t is easy to chee uht() sstsi. asiml dervto asteaveaoeta

jgi, yj

the order of handling the two messages is irlevant to the final values of a and

w' s. Also,

12 m 1  Wj WWim=m w O+ m  w O  w

That is, m-" and m- can be simultaneously processed by H1, and the net effect ...-

can be summarized in one outgoing message. 0
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This lemma suggests that the evidence propagation procedure can be

implemented as an asynchronous tree-structured network. Early modules can

simultaneously provide their opinions to individual nodes. Each node may process

the incoming messages one at a time, or it can merge several messages together to

minimize the number of messages to pass on. Now, we show that this procedure

correctly combines the opinions based on the Bayesian formalism.

Theorem 3.1: Let a' denote the a value associated with H at the consistent

state t, and P(O11l) be the probability of 0, given X, = 1, where 01 denotes the union

of those observations that form the set of opinions that yields the state t. If 0, * 0,

then

(XI = cP(011l) V HrH (A.1)

where ct is a constant depending only on t, given the conditional assumptions (3.5)

and (3.6).

Proof:

Assume that at state t, there have been exactly m opinions processed. According

to Lemma A.1, we can assume that they are processed one by one, generating

consistent states tL ,t2,... , t. =t. For the clearity of the proof, assume each

opinion bears directly on a single node. It is easy to generalize the proof to the

cases when the opinions consist of more than one likelihood ratios as described

in 3.1.1.

Before we go on further, the semantics of w's need to be explained. Suppose Hi

is a son of H1, we shall show that at consistent state tk, w! is the probability of i

conditioned on 1 after observing Ot. That is

ktW = Pj(i I Ok). (A.2)

First let us prove that both (A.1) and (A.2) are correct at t . Assume the opinion

bears directly on H1. Let X1 = P (01 l) represent this opinion. The nodes
P(O 1 1--,l)A

other than H, and the root H can be classified into three groups: the descendants

of H1, the ancestors of H1, and everyone else. Let us call the last group the
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"cousins" of H. Recall that the a's are initialized to unity and the w's are

initialized to the a priori conditional probabilities, e.g. PI(i).

1
Let c1 = I . According to the local update rule,P (O I--

al =X =c, P(0 1 i/).

Let Hi be a descendant of H. According to (3.5) and the downward propagation

rules, we have

a Xj=C1 P(0 1 11)=c 1 P(0 Ii).

The a 1 's of the cousins remain 1. If Hi is a cousin of H,, i has to be in -11.

According to (3.5),

P(0 1 1i)=P(O 1 I-)=.
Cl

Therefore, al = c I P (0 1 I i). Now let us look at the ancestors of H1. Let Hj be

the father of H1. According to (3.4),

a =X1 0%4 + I ., a c I (P(O I 11) P j ( l ) + P ( O 1 11 ) P j ( --, l ) ) = C I P(O I 1 j).
i~el;iyj

Using Bayes rule and (3.4d),

1wi = c, P(O 1 11)P j ( l ) = Pj(l10 1),
c, P( 1 1j)

IwI, = P (O 1 11 0l P i (i ) =pj(il0l ) forH ieyj,i*l.

P(0' I1)

Notice that P (01 I -j) = P (01 I-i) according to (3.5) and the fact that

-ij c -i, also that the message to Hj's father has the value cI P(0 1 Ij). The

above derivation recursively applys to all ancestors of H1.

Now let us assume equations (A.1) and (A.2) are true at state tk with respect to

P(Ok+ I1)-. Let Ok represent the union of the observations up
toan k+ We w d tok+ s rh)
to tk. We would like to show they are also true at tk+l with respect to
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Ck+1 = Ck
CkI p (Qk+1 I-_j)

Given (3.6),

_Ck P(OII1) p(OkII1)
k+ -Xk+1 kat. ,( 0 k+I 1-J) Ck+1 P (Ok+ 11I)

Similar derivations apply to the descendants and the cousins of H1. For the

father,

a '= (X'k+1 kW! + 1, kWI) Ck P(Ok 'j)

P (k ID.! (P (0 k+1I 11) Pj(l I Ok) + p (k+1 I I) Pj(-l I Ok)) =Ck.1 P (Ok+1 I D

k+1Wi = p( 0 k+I 11) Pj(I I k) =Pj(1I Ok+1)
P (Qk+1 1 'O0 k

ForFj5e yj*l,

P (0k+ 1 -11) Pj 0 1Ok) = Pj(i IOk+1)
k+~= p( 0 k+1 1 , Ok)

Finally, the outgoing message:

M+ p(O k+1 I.1,Ok) _P( 0 k1 ]
p(Qk+1 I-,!) -p( 0 k+1 I.,j)

due to (3.5).UN
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4. Highest Confidence First Estimation

At various levels of a visual hierarchy, estimations (inferences) must be made

based on the available knowledge to extract more condensed, symbolic information

and to reduce the amount of data passed between levels of visual tasks. In this

chapter, we describe how to make label inferences, using Bayesian decision rationale,

based on imperfect knowledge represented as a posteriori Gibbs distributions

described in the previous chapter.

The goodness of a labeling o, following the Bayesian formalism, is evaluated in

terms of its expected loss,

Loss (0)= l oss (a,0)P () (4.1)

A A

where loss (co,cw) is a penalty associated with the estimate co while the "truth" is co,

and P (wo) is the (a posteriori) probability of co.

One question concerning the applicability of (4.1) is which loss function should

be used for a given task. Except for few simple cases, the answer to this question

usually relies on subjective judgements. One popular choice is assigning the same

penalty to incorrect estimates: loss (co,w) equals to a constant (positive) value

whenever oco, and 0 otherwise. Using this loss function, the configuration

minimizing (4.1) maximizes the a posteriori probability P(CoIO), and therefore

minimizes the a posteriori energy (3.15) in the MRF formalism. This Maximum A

Posteriori (MAP) criterion has been widely applied to the labeling problem [Feldman

and Yakimovsky 1974] [Geman and Geman 1984] [Derin and Cole 1986] [Murray

and Buxton 1987] [Cohen and Cooper 1987]. Marroquin et al [1985], also Besag

[1986], suggest that the number of mislabeled image entities of an estimation is a

better loss measure for the labeling problem. They derive the Maximizer of the a

Posteriori Marginals (MPM) estimation - choosing the configuration

-o) =0,""", coN) such that

co = max Ps(l IO) VseS, -4IeL
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where P,(110) denotes the a posteriori marginal probability of I on s. In their

experiments the MPM estimator is shown to be superior to the MAP criterion when

the signal to noise ratio is low. The idea of maximizing a posteriori marginal

probabilities is not new, however. It has been extensively applied in probabilistic

relaxation as described at the beginning of Chapter 3.

There are three problems with the MAP and MPM estimations for the labeling

problem. The first problem is related to the cost of calculation of the estimates.

Notice that the rationale of minimizing the loss function in (4.1) does not take the

cost of computation into account, despite the fact that computational cost is usually a

primary consideration in image understanding applications because of their immense

configuration spaces. A sub-optimal estimator with an effective computation

procedure would be much more useful than an optimal estimator that no one could

ever compute. It is believed that the exact evaluation of MRF statistical moments,

and therefore (4.1), is generally impossible since no analytic solutions exist [Hassner

and Slansky 1980] [Geman and Geman 1984]. MAP and MPM can not be exactly

determined for the same reason, except for some simple energy functions.

The second problem has to with the large-scale characteristics induced by using

MRF's to model local dependencies among the neighboring sites. Besag [1986]

pointed out that even relatively simple MRF's, such as binary Ising model, exhibit

positive correlations over arbitrarily large distances when adjacent sites have high

probability to be the same label. Thus there is a strong tendency to form infinitely

large patches of a single label. This phenomenon has also been observed repeatedly

in our experiments with Monte Carlo simulations of MRF's.

The third problem concerns the match between the image of interest and the

prior model. It is possible for the true labeling of an instance of the problem to be A

very unlikely according to the a priori distribution. Therefore, the a posteriori

probability of the true labeling and the corresponding marginal probabilities are

relatively low in such cases, even though at some image sites there may be external

evidence that strongly supports or refutes certain labels.
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It seems desirable to devise an inference method that is computationally

inexpensive, is unaffected by the large-scale characteristics of the MRF's, and

incorporates spatial priors judiciously.

In this chapter we describe a new inference method -- the Highest Confidence

First estimation, based on the a posteriori Gibbs distribution described in the

previous chapter. This method aims directly at the above problems of MAP and

MPM estimates. It is deterministic with local computations and global scheduling,

and is shown to be efficient and robust by two sets of applications discussed in

Chapter 5 and Chapter 6.

4.1. Background and Motivation

There exist several methods for the approximate evaluations of the MAP and

MPM estimations in the MRF formalism. One class of methods, known as stochastic

relaxation [Geman and Geman 1984], concern the stochastic behavior of the MRF's.

They rely on stochastic sampling procedures to approximate MAP and MPM. Those

methods asymptotically guarantee arbitrary accuracy of the results, but it is difficult,

or impossible, to predict their behavior in a predetermined finite time interval. The

second class of methods use strictly deterministic computations. Their concerns are

mostly computational: How to (trivially) find a good starting point in the

configuration space so that a simple energy descent procedure would lead to a

reasonable approximation. We review these two classes of methods in the rest of the

section.

4.1.1. Stochastic Relaxation Methods

One method that has been successfully used to analyze the behavior of complex

systems is generating sample configurations of a given system through stochastic

simulations. Briefly, the Monte Carlo method of estimating the ensemble average of

a variable Y (a)),

<Y>= Y (o& (o),
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is averaging its values over a set of samples ( col, -.. ,coR ) drawn from Q. If the

sampling of co's follows the distribution P, then <Y > can be approximated by

<Y> = "I ( )
Jr=1

We are interested in sampling procedures that generate configurations according

to Gibbs distributions in the form of (3.10). With such procedures, the sample

frequencies of the realizations of X, can be used as approximations for the marginal

probabilities, i.e., MPM can be estimated; the configurations with higher probabilities - -

are more likely to be sampled, and therefore MAP estimation becomes possible.

Several procedures exist for this purpose. The basic idea of these procedures is to

construct a regular Markov chain whose states correspond to the configurations of the

system with the limiting distribution being the desired Gibbs distribution. That is,

construct PC - the transition matrix of the chain - in such a way that the following

condition holds.

XPc = X, (4.2)

where 7c is the desired Gibbs measure. At equilibrium, the system's configurations

are distributed according to 7c since 7c is the unique invariant measure of the

constructed Markov chain [Kemeny and Snell 1960].

Consider each state transition of the Markov chain involving only the change of

the state of a single site in the system. To fulfill the requirement of the chain being

regular, the procedure must continue to "visit" every site. Let s (t) be the site being

visited at time t. The change of XS(t) would result in a change of the system energy

by the amount specified by the configurations of those cliques that contain s (t)

according to (4.2). Stochastic sampling procedures reminiscent of "relaxation" can be

designed in the sense that the state transition of the site being visited is stochastically

decided by the states of the neighboring entities and itself. We will describe two of

the stochastic relaxation procedures, namely the Metropolis algorithm [Metropolis et

al. 1953] and the Gibbs sampler [Geman and Geman 1984], for their

representativeness. Other variations basically follow the same principle and serve



55

special purposes [Hassner and Slansky 19801 [Cross and Jain 1983] [Hinton and

Sejnowski 1983].

4.1.1.1. The Metropolis Algorithm and the Gibbs Sampler

Let X(t) denotes the state of the system at time step t. The state transition from

step t to t+l of the Markov chain generated by the Metropolis sampling algorithm

consists of two basic steps:

(1) Randomly select a new configuration ' ( randomly visit a site s and choose

a new state Ws), and compute the energy change AE = U(o')- U(X(t)),

where U is the energy function of the system as in (3.15).

(2) If AE<0 , set X(t+l)=o'. Otherwise, set X(t+l) to c' or X(t) with

probabilities 7E((o) = eAET and 1 - e -AET respectively.
7E(X (t))

Allowing transitions with energy increases, a common characteristic of all

stochastic relaxation procedures, prevents the sampling process from getting stuck at

states of local energy minimum - an undesirable property of every deterministic hill-

climbing procedure. In contrast to the explicit use of the energy difference in the

Metropolis algorithm, the Gibbs sampler uses the local characteristics to construct a

Markov chain. A state transition of the Gibbs sampler also consists two steps:

(1) Visit a site s.

(2) Randomly select the new state w'. for Xs(t+l) following the distribution

7t(X,(t+l)=CO, IXr(t),r*s). Having the form in (3.12), this distribution is

generally easy to compute because only local operations are involved.

For binary systems, the Gibbs sampler is equivalent to the widely used "Heat
1

Bath" algorithm - changing the state with probability 1- . Like other relaxation

methods, the above procedures suggest the use of a parallel implementation since
"updating" the X,'s requires propagating information only among neighboring

computing units. Extra caution must be paid to the updating patterns of synchronous

machines. For the Metropolis and Heat Bath algorithms, using any prescribed
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updating order may result in the Markov chain not converging to the desired Gibbs

distribution 7c [Marroquin 1985]. Our experiments (Chapter 5) use the Gibbs sampler

exclusively because it guarantees the coincidence of x with the invariant measure of

the chain as long as neighboring entities are not updated simultaneously.

4.1.1.2. The Monte Carlo and Simulated Annealing Methods

The stochastic relaxation scheme can be used to approximate the a posteriori

marginal probabilities for the MPM estimation by simulating the equilibrium

behavior of the a posteriori MRF. Since the Markov chain constructed by either the

Metropolis algorithm or the Gibbs sampler leads to the desired limiting distribution

regardless of its initial state, the law of large numbers suggests the marginal

probability P,(l10) be approximated by the sample frequency of X, =I at

equilibrium, that is,

1"nPs ~Fl B(X O=-- (st)-l (4.3)
n-k t=k

where B(0) = 1, and 0 elsewhere. k is the number of steps for the chain to reach

equilibrium, and n is the total number of steps of the simulation. Practically,

experimentation is needed to determine how large n and k should be to achieve a

desirable approximation accuracy given an arbitrary MRF. Cross and Jain [1983]

have observed that in less than 10 iterations (full sweeps over the image entities),

their texture modeling system becomes "stable" when sampled by a variation of the

Metropolis algorithm. In general, in the order of hundreds of iterations are needed

for the MPM estimation.

The system temperature - T in (3.10) - also plays an important role in MRF

simulations. With low temperatures, the Gibbs distribution strongly favors the low

energy configurations, but the time required for the system to reach equilibrium may

be long. The system may reach equilibrium faster at higher temperatures, but the

configurations are more evenly sampled; i.e., it may require more samples to make

accurate MPM estimations. The idea of simulated annealing [Kirkpatrick, Gelatt,

and Vecchi 1983], obviously inspired by physical annealing, is to reach the
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minimum energy states of a system by starting the system at a high temperature and

gradually reducing it. In doing so the system tends to respond to large energy

differences at the beginning, and is likely to find a good minimum energy state

independent of its starting state. As the temperature decreases, the system tends to

respond to small energy differences, and ideally settles at the lowest energy states

ever encountered. The decreasing sequence of temperatures, called the annealing

schedule, decides the effectiveness of this process. If the time spent at each

temperature is not enough, the system may not converge to the global minimum

states. On the other hand, it is often computationally prohibitive to use a slowly

decreasing schedule. Geman and Geman [84] have derived an upper bound for the

annealing schedules so that the schedules slower than this bound are guaranteed to

converge to the global minimum energy states. However, this bound is very difficult

to decide in practice since it relates to the range of energy values of the system.

Simulated annealing and Monte Carlo estimation have been applied in many

computer vision tasks that involve optimization over exponential spaces, including

image restoration [Geman and Geman 1984] [Besag 1986], stereo fusion

[Barnard 19871, and depth and motion flow reconstruction [Hutchinson et al. 19881

[Gamble and Poggio 1987] [Koch, Marroquin, and Yuille 1986]. One major

concern of using the stochastic relaxation scheme is its efficiency: at what cost can

this scheme deliver satisfactory results? As mentioned previously, it is difficult to

decide a tight bound on the computations required a priori. Usually one has to

commit a computational cost that is intolerable for many applications to achieve

reliable approximations. Together with the large-scale characteristics of MRF's and

the possible modeling errors involved, it seems that the stochastic approach to

approximate MAP or MPM is not suitable for vision problems with immense state

spaces and imperfect knowledge sources.

4.1.2. Deterministic Relaxation Methods

For vision systems that require predictable results in reasonable time periods,

using suboptimal estimation criteria (with respect to (4.1)) and/or heuristics in
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searching for solutions seems to be a reasonable alternative to the stochastic

relaxation scheme. In [Derin and Cole 1986], MAP estimations are performed on

narrow strips of the image. The strips are limited to at most four rows wide so that

MAP can be exact computed for each strip by a dynamic programming algorithm at

feasible cost. For each estimation, only the estimate of the first row of a strip is kept.

It serves as the boundary condition for the next strip consisting of the rest of the rows

and a new one. Though limiting the extent of the (column-wise) interactions, the

texture segmentation results appear to be impressive. Here we examine deterministic

iterative relaxation methods for estimating the true labelings. The results of these

methods are local minima of the a posteriori energy function (3.15), therefore they

can be considered as approximation methods for MAP.

4.1.2.1. Iterative Energy Minimization

A simple version of deterministic iterative relaxation methods for energy

minimization is the Metropolis algorithm without randomness: Start with any initial

configuration. At each iteration through the sites, the state of each site is either

changed to the state that yields maximal decrease of the energy, or is left unchanged

if no energy reduction is possible. The process stops when no more changes can be

made. This algorithm is guaranteed to find a local minimum of the energy function

since each iteration strictly decreases the energy value and there are only a finite

number of different values of the energy function. In terms of conditional

probabilities, based on (3.15) and (3.16), the energy difference between two states of

a site is proportional to the ratio of the conditional probabilities. That is

u(W - u(CO) - Px=,Io _)
P (XS,=O 10, XS

where co and co' differ only at site s. Assume at time t+l, site s is visited. The new

X,(t +1) maximizes the a posteriori local characteristic of s, that is

X,(t+l) = maxP (X=l 10, Xs-s(t)).

Since every step of the energy reduction attempts to maximize a local conditional

I " I I - - I I
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probability, Besag [1986] named this method the Iterative Conditional Modes (ICM)

estimation. Note that the right hand side has the form of Equation (3.16). The

computations involved are local -- suitable to be executed simultaneously at every

site, providing the neighboring sites are not updated at the same time.

Unavoidably, the local minimum obtained by the above algorithm may be far

from optimal. Two enhancements are apparently helpful:

(1) Start with a better initialization of the MRF. One possibility is to use the

maximum likelihood estimates (MLE) -- X3(O)=ws if max P(0, I )-P (Os I cos)leL

[Besag 1986]. Such initializations do not rely on the spatial priors. The idea

assumes that MLE's are mostly correct in large-scale characteristics, by

require local adjustments to be consistent with the priors. Since the energy

minimization procedure is monotonic, the undesirable large-scale

characteristics of the a posteriori MRF are thus ignored. Hopefully the

energy value of the true labeling is the local minimum of the valley where the

value of the initial configuration lies.

(2) Escape from shallow valleys. By changing the states of more than one site at

once, the new configuration may lead to a better local minimum. In a

procedure described in [Cohen and Cooper 1987], the sites with small

preferences of the current states over the others are assigned new states when

a local minimum is reached. The relaxation restarts with the new

configuration as the initialization. At each convergence, the magnitude of the

local minimum is estimated, The procedure halting when no significant

change of the magnitudes is observed. The hope is that the deepest valley

will be found in this process.

Using (1) is not adequate to achieve robust estimations. The error rate of local

MLE's can be low only when the likelihood function correctly models the relation

between the label hypotheses and the observations, and, more importantly, there must

be significant differences among the likelihoods of the hypotheses. Frequently these

conditions cannot be met, resulting initial configurations far away from the true
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labeling in the energy space. Moreover, since the energy space is usually very rough

-- full of local minima, significantly different estimates may result under different

visiting orders to the sites, even with the same initial estimate. It is impossible to

decide the best ordering a priori, and thus a predetermined (or random) order must be

programmed, resulting unpredictable results. Cohen and Cooper's procedure with

reasonable initializations has shown good results. It uses extra computations in

exchange for better performance, and is compatible with the proposed method as a

postprocessing step.

4.2. Estimation with Highest Confidence First

It has become apparent that an estimation method should possess the following

properties:

Efficiency: The cost of computation meets the demands of the visual tasks. It is

desirable for a procedure to maximally improve the estimates progressively so that it

can provide the "best" current estimate upon requests.

Predictability: The final estimate depends only on the inputs and the chosen a priori

distribution. Thus the user is free from the considerations concerned by the existing

methods such as the choices of initial estimate, annealing schedule, and visiting

order.

Robustness: The estimates degrade gracefully with the increase of noise and the

modeling error. Also, they are unaffected by the large-scale characteristics of the

chosen MRF's.

The Highest Confidence First (HCF) method introduced in this section satisfies

the above requirements. It blends the initialization into the estimation process.

Instead of stepping through the configuration space, this method constructs a

configuration with a local minimal energy measure by following a path, suggested by

the observations, in a augmented space. Observable evidence and spatial prior

knowledge are combined in the process of the construction, resulting in robust - -

estimates and better efficiency. The details of this method are described next.
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4.2.1. Augmented Search Space

To see how this algorithm works, some terminology needs to be introduced.

Recall that L = [I, "'" ,IQ) is a set of mutually exclusive and exhaustive labels with

respect to which the labeling problem is defined, and 12 denotes the corresponding

configuration space. The a posteriori knowledge about the labelings is represented

by a Gibbs distribution; the a posteriori probability of a labeling co, according to

(3.14), is

--L VC(C) - T I I(PS(O 09
P (01)= e TeC ses (4.4)

Let L =Lu{Io) denote the augmented label set, where 10 is the null label

corresponding to the "uncommitted" state in the construction. Let TI =

(o= (COI, O)(NO)sI osL,Vse S) denote the augmented configuration space. The

basic idea of this algorithm is to construct a sequence of configurations od°,co , •

of TI with the starting configuration ° = (l0, "'" ,10), and a terminal configuration --

the final estimate Wle Q, where the energy measure Uo(O) is a local minimum with

respect to Q.

IL We say a site s has committed to a label 1 e L at step t of the construction if

0 = 1, and it is uncommitted if co' = 10. We impose a rule that states once a site has

committed to a label, it can not nullify its commitment, but it is allowed to change its

commitment to other labels of L. The rationale behind this rule will soon become

clear.

Define the augmented a posteriori local energy of I L with respect to se S and

a configuration oe F as

E,(l)= , c w - T ln 0,1), (4.5)
C: SEC

where 'tae TI is the configuration that agrees with () everywhere except Co, = 1, and Vc

is 0 if (O, = 10 for any r in c, otherwise it is equal to Vc - the potential function. This

measure quantifies the goodness of a label with respect to the current configuration of
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the neighbors. It is related to the conditional probabilities (local characteristic) with

respect to an MRF that has the same potential functions as the prior MRF, but

consists of only the committed sites. Notice that only committed neighbors

contribute to this measure, thus uncommitted sites do not actively influence others'

commitments based on this measure. However, an uncommitted site always takes

into account of the states of the active neighbors when making a commitment.

4.2.2. Local Stability Measures

To ensure the quality of the resulting estimate - co, we impose the following

rule that decides the "updating" order: At each step of the construction, only the least
"stable" site is allowed to change/make its commitment. We define the stability of s

with respect to the current configuration o as follows.

Gs(wo)= rain AEs(k,wcs) if wc-sL (4.6a)keL,k~eo

G5 (o)- min AE(k,j) if cos = 1o, (4.6b)
keL,ksj

where j in (4.6b) satisfies: jeL s.t. Es(j) = min Es(k), and AEs(j,k) = Es(j) - Es(k)
kEL

with respect to Co).

The stability defined above is a combined measure of the observable evidence

and the a priori knowledge about the preferences of the current state over the other

alternatives. A negative value of G, that is always true for uncommitted sites (4.6b),

indicates a more stable - less energy - configuration will result from an alternative

commitment. The magnitude of the measure corresponds to how much energy would

be lost/gained by changing the current state: the larger the negative value of G, the

more confidence we have in changing its state. Since a site has no effect on its

neighbors unless it has committed, the sites with large likelihood ratios of one label

over the others - strong external evidence in favor of a label - will be visited early in

the construction sequence. Observe that when no neighbor is active, the augmented

local energy measure reduces to the local likelihood of the label. Therefore,

commitments under such circumstances are equivalent to the local maximum

I
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likelihood estimates. The sites with little idea from the observations will take the

neighbors' configuration into account when making their commitments. As

mentioned previously, such commitments are equivalent to the conditional modes.

An early commitment will be altered if the neighbors' later commitments are strongly

against it, thus an error estimate based on local evidence can be corrected when more

contextual information becomes available.

A short summary of HCF: Every step of this construction makes a maximal

progress in reducing the energy measure (4.4) based on the current knowledge about

the field - the G's. The initial configuration is a constant, and the visiting order is

implicitly decided by the external observations and the priors. This method is

unaffected by the large-scale characteristics of the chosen MRF's, and the results

degrades gracefully in accordance with the noise and modeling error, due to the

highest confidence first construction of the estimates (Section 4.3). In Chapter 5,

several estimation methods based on the MRF modeling are applied in the domain of

boundary detection. Experimental results are strongly in favor of HCF for both

efficiency and correctness.

4.2.3. Serial Implementation

The Highest Confidence First estimation method can be implemented serially

with a heap (priority queue) maintaining the visiting order of the construction

according to the values of G's in such a way that the top of the heap is the site with

the smallest G value. Updating the top's decision will cause the changes of its

neighbors' G-values, and therefore the structure of the heap. The following is the

pseudo code for the Highest Confidence First algorithm:
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(o 0r ," ,/0); ..
top = CreateHeap(co);
while (GO < 0)

S = top;
ChangeState(co.);
UpdateG(G, );
AdjustHeap(s);
foreach (r Ns)(

UpdateG(Gr);
AdjusLHeap(r);

}

return(O);

ChangeState(co) changes the current state co, of s to the state 1 such that

AEs(1,o))= min AE,(k, (q,) if %, eL, or Es(1)=minEs(k) if cos=l 0 .Upon thiskeI,k*(o$ keL

change taking place, the stability of s changes to positive. Update_G is called for

every site that is affected by this change, namely the neighbors of s according to

(5.1), to update their stability measures with respect to the new configuration.

AdjustHeap(r) maintains the heap property by moving r up or down according to its

updated G-value.

4.2.4. Convergence Properties

Several desirable properties of this procedure can easily be verified:

(1) Termination: This procedure always returns in finite time. To see this

property, let us consider the two types of Change-State - making and

changing a commitment - separately. The procedure can make at most N

commitments, one for each site, since nullifying commitments is impossible.

Let D = (SD,S-SD) be a partition of S such that SD is the set of sites that have

made commitments. Let QD

{(weTII~oeL VSESD, A co,=1o VseS-SD) . Since, by (4.5) and (4.6a),

changing the commitment of s$ SD strictly decreases the function

UD CID -* R,
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C SeSD

the procedure can make only a finite number of changes with respect to a

fixed partition D. There are only a finite number of partitions, therefore the

total number of commitment changes is finite.

(2) Feasibility: The returned configuration is in 0 - the space of feasible

solutions. For if otherwise, there exists an s such that pos = 10. From (4.6b),

Gs < 0. This violates the heap invariant property since it requires GW, > 0 to

exit the while loop.

(3) Optimality: The returned configuration has the locally minimal energy

measure with respect to Q. That is, changing the commitment of any single

site can not decrease the a posteriori energy measure U0 . As above, this

property can easily be derived from (4.6a) and the heap properties.

This implementation takes O(N) comparisons to create the heap and O(log(N))

to maintain the heap invariance for every visit to a site, provided the neighborhood

size is small relative to N -- the number of sites. The overheads of heap maintenance

are well repaid since the procedure makes progress for every visit, in contrast to the

iterative relaxation procedure that may make only few changes per iteration (N

visits). Our edge detection experiments (Chapter 5) show that on the average, less

than one percent of the sites are visited more than once using the proposed algorithm

while the deterministic relaxation procedure takes around 10 iterations to reach a

local minimum. This advantage becomes more evident as the number of sites gets

larger.

4.3. Discussion and Possible Extensions

The HCF estimation method meets two important design principles for visual

procedures suggested by Marr [Marr 1982], namely, the principle of graceful

degradation and the principle of least commitment. A common effect of lowering

signal to noise ratio is the decrease of the feature saliency. For instance, a sharp edge

in a badly degraded image may appear rather weak. As suggested previously, the
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search is guided by salient features; the utilization of contextual information

increases as the degree of saliency decreases. Therefore, the results degrade

gracefully with the increase of the noise level. Also, spatial priors are used when

external evidence is weak, thus model noise and large-scale characteristics are less

likely to affect the estimates at the sites with apparent answers. There are two more

advantages of delaying the commitments of the sites with weak observations: (1) To

minimize the possibility of undoing previous commitments: it is likely for those sites

to make incorrect commitments without enough contextual information, therefore

they should commit late. Principle of least commitment thus follows. (2) To reduce

the chance of misinforming other sites. A site can do better without the incorrect

information of a neighbor.

The concept of highest confidence first can be used as a heuristic search strategy

for large state-space optimization or a rule for the nodes of a cooperative network to

reach mutual agreements. It can be extended in many directions to achieve, perhaps,

better results. Let us look more closely at the construction process of the HCF

estimate. At each stage, SD consists of a set of isolated clusters. A cluster is a set of

spatially connected (with respect to F) sites. We say two clusters are isolated from

each other if none of the sites of a cluster is a neighbor of any site of the other cluster.

Each cluster corresponds to an MRF with free boundaries in our formalism. When a

site makes a commitment, a cluster is created or expanded, or clusters are merged.

When a site changes a commitment, the energy of the corresponding MRF is reduced.

Eventually, all the clusters are merged and the final estimate corresponds to a local

minimum configuration of the corresponding MRF.

The notion of growing clusters suggests a natural partition of the image. At any

instant, the sites belonging to the same cluster are tightly related, but they are

independent of the members of other clusters. The addition of a new member to a

cluster may change the commitments of the old members, but the changes are

expected to be small due to the way the clusters are constructed. Therefore, it makes A

sense to compute the MAP estimates exactly for small clusters early in the

construction to reduce the possibility of early mistakes without been affected by the

Min
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large-scale characteristics of the fields. We believe that by doing so the results would

be better than the results using the horizontal strip partition as in [Derin and

Cole 1986].

The process of growing clusters is similar to annealing in the sense that it

responds to large energy differences earlier than small ones. Nondeterminism can be

introduced to those sites that stay "unstable" - the sites on or exterior to the border of

the clusters - late in the process, since more contextual information is required for

them to reach a globally satisfactory agreement. Cohen and Cooper's postprocessing

procedure [1987] described in Section 4.1.2 can similarly be incorporated.

The Highest Confidence First estimation can be implemented with a set of

cooperative computing units. Consider a winner-take-all network where each unit

corresponds to a site of the image [Feldman and Ballard 1981]. Only the units with

the smallest stability measures can "fire" at one instant; each unit maintains the

knowledge about the neighboring units so that its stability measure can be updated

immediately should any neighbor change its state. The parallelism gained, however,

is limited due to the sequential firing order.

The strict sequentiality of HCF can be relaxed. One possibility is the use of a

global stability threshold. The (negative) threshold values increases in time and is

broadcasted to all sites. Any site with a stability less than the threshold is allowed to

change its state. The computation stops when the threshold reaches zero. It is not yet

clear how this modification would affect the resulting estimates, and how to choose

an appropriate schedule to increase the threshold.

It is interesting to note that Koch et al [Koch, Marroquin, and Yuille 1986] and

Besag [Besag 1986] have independently observed that better estimates can be

resulted by using a sequence of weaker fields on previous cycles. In the case of

surface reconstruction, Koch et al strongly penalize the formation of lines at the

beginning, and slowly decrease the penalty as the computation proceeds. Thus lines

are formed only at very steep disparity gradients early in the process, and surface can

break at smaller depth disparity gradients by paying a smaller price later. Similarly,
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Besag decreases the contribution from the prior field for the task of image restoration

after each iteration of ICM. Their ideas are related to HCF in the sense they all try to

avoid committing too early based on the unreliable initial estimate. However, the

explicit uses of the uncommitted state and the stability measures by HCF have the

advantages of efficient computation (least commitment), robust results (least

commitment and graceful degradation), and easy implementation (no need to choose

a proper schedule).
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5. Probabilistic Boundary Detection

We have chosen to tackle the well studied problem of intensity edge detection

using MRF's as the underlying formalism. The labeling problem in this context is to

assign to each site a label from the set (EDGE, NON-EDGE), based on discrete

intensity measures on the pixels of a square lattice-structured image.

Since the primary purpose of edge detection is to locate sharp changes

(discontinuities) of certain parameters such as surface depth and orientation in the

scene, the semantics of the labels are defined in terms of the events of the scene

rather than the events of the image (Chapter 3). The intensity at a single pixel says

nothing about how an edge site should be labeled, but the variations among pixel

intensities provide a strong clue to the true answer. To account for corruptions due to

random noise, sampling, and quantization error in the imaging process, usually the

intensity measures of many pixels are required to extract the information about the

label of a site. Such information, although important, by no means captures

completely all we know about the scene discontinuities.

Most work in the past on edge detection has concentrated on locating large

intensity gradients. The usual approach is to analyze the intensity function defined by

a predetermined window (set of spatially adjacent pixels) surrounding the site of _

interest. Then, probably incorporating with knowledge such as smoothness of the

window intensity function, the noise process, and the point-spread function of the

imaging device, a number is calculated reflecting the edgeness of a possible edge

location [Roberts 1965] [Hueckel 1971] [Prewitt 1970] [Kirsch 1971] [Nevatia and

Babu 1980] [Haralick 1984] [Canny 1983] [Nalwa 1984] [Sher 1987b]. This

number is then used to decide how the site should be labeled based on local

thresholding, non-maximum suppression, and linking processes.

While the class of local edge detection techniques has produced reasonable

results in many applications, it falls short of the goal of edge detection for the

following reasons. First of all, it is difficult to choose a proper size for windows a

priori. Using windows too small may lead to poor detection due to noise in the
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image, and using windows too large may fail to localize the edges accurately due too

the possible interactions from nearby edges. In practice, it usually requires using

windows of several sizes to overcome such problems. Secondly, it is difficult to

incorporate knowledge about spatial interactions among the edges. In most cases, the

scene consists of well-defined objects. The edge contours corresponding to the

boundaries of the objects tend to be smooth and connected. Most local edge

detecting schemes ignore such knowledge. Sophisticated thresholding and linking

techniques exist, but they are rather ad hoc and not adequate [Nevatia and

Babu 1980] [Canny 1983]. A classic example is the detection of the boundaries of a

block standing in front of a slow varying background. Any local scheme will fail to

detect part of segments due to lack of contrast, however such boundaries are obvious

to a human observer. Lastly, the intensity measures only provide a piece of partial

evidence of edges. Oftenly, other image cues such as depth, orientation, and texture

are available. It is important that such cues can coherently be integrated with the

intensity data and the a priori spatial knowledge.

An alternative to local edge detection is to detect discontinuities through the

process of reconstructing global intensity functions. A priori knowledge is encoded

via global energy functions (see Chapter 2 and 3). Edges are identified at the

locations where the connections between pixels should be broken in order to reduce

the energy measure related to the intensity configuration. Such schemes have

demonstrated superior results in both robustness and localization [Blake and

Zisserman 1987]. However, the computation usually involves optimization of non-

convex functions with large state spaces. Since the reconstructed intensity data are,

at least for now, of little use for higher-level tasks, the cost/benefit ratio of the

method seems too high for our needs.

Our approach to edge detection, based on the probabilistic framework proposed

in Chapter 3 and 4, has the advantages of the above local and global schemes but

none of the associated disadvantages. It uses the outputs of a set of local operators

that relate the intensity observations to edge labels, and ignores the intensity values

afterwards Thus the global optimization is performed over a space much smaller
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than the ones for full reconstruction. On the other hand, the results are robust against

local noise and consistent with spatial priors due to the use of a global energy

measure. In addition, our approach is probabilistic; it is easy to incorporate other

image clues. Finally, our approach seems consistent with the human visual system:

They both use a set local operators in the early stage, and are able to detect weak but

connected contours..

5.1. Local Edge Models

The edge sites are considered to be situated on the boundary between two pixels

(see Fig. 5.2). We adopt a step-edge with white Gaussian noise model to compute the

local likelihoods of a site s being EDGE or NON-EDGE -- P (Os I cts=EDGE) and

P (OI cos=NON-EDGE). As mentioned previously, local edge detection must use

windows that are large enough to tolerate local noise yet small enough not to involve

multiple edges. We choose to use a 1x4 or 4xl window of brightness observations

surrounding s to be the observation of the site s - O.. This window of intensity values

is assumed to be a realization of one of the possible events depicted in Figure 5.1,

corrupted by independent Gaussian noise. Figure 5. l.a shows the event E I of an edge

occurring at the center of the window. 5.l.b indicates that the window corresponds to

a uniform region (E 2 ), and 5.1.c depicts the events (E3 and E 4 ) that the window

consists of two regions, however the boundary between the two regions is one pixel

off (right or left) the center of the window. Events of 5. L.b and 5. l.c constitutes the

NON -EDGE event of interest.

There is no doubt that the above edge model can greatly be improved in many

directions. The obvious ones include the modeling of different types of edges such as

roof, line, and peaks, the use of more information by employing circular windows,

and the modeling of image blurrs. Since one primary goal of this work is to study the

robustness of MRF modeling and HCF estimation in the presence of errors in sensory

modeling, we feel that the above edge model serves our intention well, and further

improvements can only result better estimates. The computation of the likelihoods

given a window of intensity observations and the above edge model is described next.
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(a)

(b)

4k 1

(c)

Figure 5.1. Step Edge Model
Image events in a 4x 1 window.
(a) Edge occuring at center of window,
(b) Homogenous region: no edge occurs,
(c) No edge at center, offset edge occurs.
(Arrow indicates center of window)

It is based on the work of Sher [Sher 1987b]. The reader is referred to [Sher 1987a]

for a complete treatment of probabilistic local edge detection.

5.1.1. Computing Edge Likelihoods

The computation of the likelihood of E2 is relatively straight forward. Let W

denote the vector of window observations (w). w2, w3, w4 ), where the index

indicates the spatial order of the pixels in the window. Since the noise is considered
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to be independent Gaussian additive, with zero mean and variance o,

255 1 255 -- (W-rTXW-rTo)I. P (r)e20P(WIE 2 ) = P(r)P(WIr T)= 2x)2 ~2r~ 2O
ir=O =

where To is vector consists of all I's, and P (r) is the prior probability of a pixel

having intensity r. In our experiments, we assume that all intensity levels are equally

likely, therefore P (r) = 1/256 Vr. More complex distributions may easily be

incorporated. One possibility is to use a normalized intensity histogram of the input

image as the prior distribution.

For the cases of edge occurrence, let r 1 and r 2 be the assumed intensities of the

two regions on the left and right of the edge respectively. The window of assumed

intensities can be represented as the vector T = rIT, + r 2T 2 , where T1 and T 2 are

the template vectors for the left and right regions. For example, for the region on the

left of three-pixel wide (E3), T 1 = (1,1,1,0), and the corresponding T 2 = (0,0,0,).

The likelihood of such cases (an edge present at a particular location in the window)

can be computed by

_-- (W-r IT I -r2T2)(W-r IT I -r 2 T 2 )
P(rI,r2)P(W IT)= (2 2 P(r ,r2)e

rr2rr2

Again we assume r, and r 2 are independently and uniformly distributed in the

experiments. The EDGE event E 1 corresponds to the case with the pair of templates

(1,1,0,0) and (0,0,1,1). The likelihood of NON-EDGE is

P (0 INON-EDGE) = P (0 I E2vE 3vE 4 )

=P (O E2 ) P (E2 INON-EDGE) + P (0 1 E3 ) P (E3 INON-EDGE)

+ P (O 1 E 4 ) P (E4 INON -EDGE).

We set P(E2 INON-EDGE)=0.8 and P(E 3 INON -EDGE) =

P (E4 INON-EDGE) = 0.1 in our experiments.

The calculation of edge likelihoods is efficiently carried out with a set of local

convolutions followed by a table-lookup operation [Sher 1987b].
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Based on the fact that scaling P(O I1) for every leL by a constant factor for

fixed s in Equation (4.4) does not change the a posteriori distribution, we can use the

log likelihood ratios -- log P (Os I oo,=EDGE) - log P (O 1 t-,=NON-EDGE) -- as the

only input data, thus simplifying the computation of the stability measures (5.2).

Thresholding the log likelihood ratios by the logarithm of prior (local) odds --

P (NON-EDGE) __ of a site results in the thresholded log likelihood ratio (TLR)
P (EDGE)

configuration. This configuration can be considered as an MAP estimate obtained

without using contextual information, because

P (EDGE 10) P (EDGE) P (O lEDGE)
P(NON-EDGE 10) P(NON-EDGE) P(O INON-EDGE)'

therefore,

P (EDGE JO) > P (NON -EDGE 1O) €

log P (0 lEDGE) - log P (NON-EDGE) > 0.
P (0 INON-EDGE) P (EDGE)

In our experiments, we use TLR's as the initial estimates whenever possible.

5.2. Markov Random Field of Line Process

The MRF model used is similar to the "Line Process" MRF used both by Geman

et al [1984] and Marroquin et al [1985]. Each edge site is modeled as a random

variable of the field. The field is binary, with 2(N 2-N) entities where the image is a

NxN rectangular pixel array. Notice one major difference between our setup and theILa
existing MRF segmentation work: the line process of the latter is implicit. There are

no external observations directly associated with it, and the formation of the lines

depends on the configurations of a coupled MR of the intensity process. In our

setup, the intensity values are used only to calculate the local likelihoods for the edge

sites, and the likelihoods constitute the input of the stand-alone line process.

5.3. Construction of Potential Functions to Encode Prior Knowledge

The spatial relationships between edge sites we wish to encourage have the

following effects:
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(1) To encourage the growth of continuous line segments,

(2) To discourage abrupt breaks in line segments,

(3) To discourage close parallel lines (competitions) and

(4) To discourage sharp turns in line segments.

A second order neighborhood turns out to be sufficient to encode all the

relationships we want. In this neighborhood system, each MRF element is adjacent

to eight others (see Fig.s 5.2 and 5.3).

The second order neighborhood has cliques of sizes 1 through 4 (see Fig. 5.4).

The potential values we assign to various configurations of these cliques are shown in

Fig. 5.5. These values form the specification of the potential functions. Therefore

: Line (MRF) Element 0 0 0 1 0

o :Pixel (Image)
0 0 0 0

0 0 0 0

0 0 0 0

Figure 5.2. Pixels and Edges
Relationship between MRF (edge) sites and pixels.

0000

010 1

Figure 5.3. Edge Neighoborhood
The second order neighborhood system.
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0 0 o o

0o 0 01 0jo

(a) (b) (c)

0 0 .=01 0
00Io  - - j0i - --

- ol o  __ ol

(d) (e) (f) (g)

Figure 5.4. Edge Cliques
Cliques in neighborhood system, of size greater than 1.

potential functions can be seen to be specified by about 10 parameters, which are

currently assigned in an ad hoc manner. The rules of thumb that are used to assign

values to these parameters are:
Determine Structure Enforcers For each clique, attempt to determine what kind

of structural relation it is uniquely capable of enforcing.

Encode Prior Structural Knowledge By assigning "high" potential values to

undesirable configurations of the cliques and "low" values to desirable ones, we

attempt to ensure that the final estimate will contain as few of the undesirable ones as

possible.

Encode Statistical Prior Knowledge We use the clique consisting of the

singleton node to bring the first order statistics (e.g. the density of EDGEs) of the

MRF into line with what we already know. The potential of the clique when the MRF

entity is an EDGE is set to our estimate of the log of the (local) odds of an entity

being an EDGE over a NON-EDGE, and is set to 0 when it is a NON-EDGE.

A point to be noted is that some of these parameter values are interdependent.

For example, increasing the energy for "break" (Fig. 5.5b) and "continuation" (Fig.

5.5c) configurations simultaneously would be of little use, as the increases would
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0 0 0 0 l

0
0 0 0 0 1

V=3.0 V= 11.0 V=(-0.6) V=32.0

(a) (b) (c) (d)

o I o JH o o JH o o i

o 0 0 0 0 io 0 0

V=11.0 V=(- 0.6) V=1.0 V= 0.25

(e) (f) (g) (h)

II ° II oI IK I EY
1 :MRF site (OFF)

V=0.6 V=15.0 V 30.0 :MRF site (ON)

Pixel
(i) (j) (k)

Figure 5.5. Potential Assignments
(Configurations not shown have 0 potential values)

tend to cancel each other out.

The sensitivity of the results obtained to changes in the parameters specifying

the potential functions depends upon the parameter in question. Our experience is

that changing the potential function associated with the 1-clique had the greatest

effect on the final result, followed by the 2-clique and 4-clique potential functions, in
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that order. This could be because the singleton clique controls first order statistics and

the larger cliques higher order statistics, which are known to be less important in

distinguishing images [Julesz 1981].

5.4. A General Purpose MRF Simulator

Our experiments use an interactive general-purpose MRF simulator package

with extensive graphics and menu-driven control (Fig. 5.6). This package takes the

description of the MRF and the likelihood ratios as input and simulates the state

transitions of the sites comprising the the MRF. The user can specify the estimation

algorithm to be used and also the initialization of the MRF - each site can be initially

set to either a NON-EDGE or to its TLR estimate. Except for HCF, the user can also

choose to use either a scan-line or a random visiting order. The input MRF is

constrained to be a homogeneous one - uniform spatial connectivity and clique

potential functions, so as to make the time and space needed to run simulations

reasonable.

o"aa- - 1.Q l4 PIIW 1ti- 1PfI

Wi1l % ..1 1.6 'a l : - -

...........

...... ...... ......
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...... ......... ... .. ... ..
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........... I@ l : l ...... 1 .. .. .. . I-- '--

.. . . .. , . . .. . ... . ...... ., . .

........... .....
. .. . . . .. L .cow l "..

........... 5 I ct.. . .6 . ... . M. i. t
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Figure 5.6. Interactive MRF Simulator_
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The user provides the description of the MRF to the simulator in a file. This file

contains a specification of the sites comprising each clique, as well as the potential

function associated with it. The user specifies all cliques that a site could belong to in

the most general case, including all instances of a particular clique type that contain

the site. (i.e., even if all the cliques containing a site are instances of the same clique

type, the user specifies each instance separately). The sites forming a clique are

specified by their coordinates relative to the site of interest, which is defined to be at

relative coordinates (0, 0). Boundary conditions, as in the case of sites near the border

of the MRF, are taken care of by the simulator. The potential function is specified as

a function that takes as input a configuration vector (a vector of states of sites of the

MRF) and returns a potential value. The potential function is associated with the

clique description, and the ordering of the site states in the configuration vector

passed it is the same as the order the sites are specified in the description of the clique

itself.

The simulator performs certain preprocessing actions on the description of the

MRF provided by the user, to promote run-time efficiency. The first is to store each

potential function as a table indexed into by a configuration vector. This is done so as

to avoid run-time calling of the user's potential function code , which can be quite

complex, replacing it instead with a simple table lookup. The other is "clique

containment", which is based on the observation that if one clique completely

contains the other, then a configuration vector of the sites in the larger clique contains

implicitly the configuration vector for the smaller clique. This suggests that by

judiciously "adding" together the potential functions for the clique in the

preprocessing stage, we can avoid run-time evaluation of the potential function for

the smaller clique. This simplifies the state transition energy evaluation by reducing

the number of terms to be summed up. If floating-point arithmetic is costly, this can

save coisiderable computational effort. The preprocessing needs to be done just

once, and can be performed off-line.

The run time operations in a simulation involve reading in the input log

likelihood ratios, initializing the MRF configuration according to the user's
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specification (all "uncommitted" for HCF), and calculating local characteristics, local

energy functions, or the stability measures used by the Gibbs sampler, ICM, and

HCF. For Monte Carlo MPM estimations, the simulator collects the statistics about

edge occurrence and performs the estimation based on those values after the number

of iterations specified by the user.

5.5. Experimental Results

The simulator described above has been used for a series of experiments aimed

at comparing the performances of various estimation algorithms with respect to the

goodness of final estimates and rate of convergence. We focus upon algorithms based

on MRF modeling, including the proposed Highest Confidence First (HCF) (Chapter

4), Iterative Conditional Modes estimation (ICM) [Besag 1986], stochastic MAP

(simulated annealing with Gibbs Sampler [Geman and Geman 1984]), and stochastic

MPM (Monte Carlo approximation to the MPM estimate [Marroquin, Mitter, and

Poggio 1985]). The edge results obtained by applying 3x3 Kirsch operators with

non-maximum suppression are also presented for the sake of completeness of

comparisons. The annealing schedule for the stochastic MAP follows the one

suggested in [Geman and Geman 1984], i.e. Tk = C where Tk is the
log(l+k)

temperature for the kh iteration, with c = 4.0. The stochastic MAP was run for 1000

iterations and the stochastic MPM for 500 (300 to reach equilibrium, 200 to collect

statistics).

5.5.1. Comparison of Estimates

Here we show the results of three sets of experiments (Fig.s 5.7 through 5.9).

The figures for each set contain the original image, the result from the Kirsch

operators, the TLR configuration and the results obtained by using stochastic MAP,

stochastic MPM, ICM (scan-line visiting order), ICM (random visiting order) and

HCF algorithms. Except in the case of the HCF algorithm, where the MRF is

initialized to all null (uncommitted) states, the MRF is initialized to the TLR

configuration. The MRF specification is the same throughout.



82

Since the final estimates of the stochastic MAP, MPM, and the ICM with

random visiting order technically depend on the "seeds" for a pseudo random number

generator in addition to the input images, we have observed large variations among

the results in repeated runs using the same setup. Theoretically, this should not be

true for the stochastic methods because their results asymptotically converge to the

true MAP and MPM values. In practice, the results are highly dependent on the

configurations of the early iterations. Once a large-scale region or line segment is

formed, it is seldom altered in a limited period of time. We have subjectively chosen

to show the most typical results in our figures. There are better and worse ones as

one might expect.

Fig. 5.7a shows a synthetic 50 pixel square "checkerboard" pattern. Each of

patches is 10 pixels across, with an intensity chosen randomly from between 0 and

255. The image has been degraded by independently adding to each pixel Gaussian

noise with a mean of 0 and a standard deviation of 16. The results of HCF and

stochastic MPM (Figs. 5.7g and 5.7d) are the same, and have completed most of the

desired edges. The ICMs (Figs. 5.7d and 5.7e) have incomplete edges and the

stochastic MAP has some undesired edges and incomplete desired edges (Fig. 5.7c).

The Kirsch operator result is not shown as the edges in this image are always located

exactly in between pixels, while the Kirsch operator assumes edges to be at pixel

locations, and so a comparison would be unfair to the Kirsch operators.

Fig. 5.8a shows a 50 pixel square natural image of a wooden block with the

letter "P" on it. The MAP estimate has several undesirable lines (Fig. 5.8d). The

MPM estimate performs poorly on the right edge of the block and the inner ring of

the "P". The ICM scheme (serial scan) (Fig. 5.80 performs better than the random

scan version (Fig. 5.8g), but is less than satisfactory on the leg of the "P" and the right

edge of the block. The HCF estimate (Fig. 5.8h) does not suffer from the above

flaws, producing clean, connected edges.

Fig. 5.9a shows a 100x124 natural image of 4 plastic blocks with the letters "U",

"R", "C" and "S" on them. Again, the HCF algorithm produces superior results (Fig.

5.9g). It has the clearest letter outlines and Also is alone in detecting the entire bottom
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edge of the "R" block. The MAP estimate partially detects the bottom edge of the

"R" block, but generates redundant lines (Fig. 5.9c). The MPM estimate has clear

letter outlines but does poorly on the outlines of the left blocks (Fig. 5.9d). The ICM

scheme (scan-line) does well on the letter outlines but poorly on the block outlines

while the random scan version does poorly on both (Figs. 5.9e and 5.9f).

To test the robustness of the algorithms, we conduct further experiments using a

likelihood generator with a less complete edge model. Since offset edges (Fig. 5.1c)

are not considered here, multiple responses become significant as can be seen from

the TLR configuration shown in Fig. 5.10a. This change adversely affects the

estimates produced by all the algorithms except the HCF, as can be seen from

comparing corresponding pictures in Fig. 5.9 and Fig. 5.10.

5.5.2. Rates of Convergence

We restrict ourselves to comparisons between deterministic schemes, as

stochastic schemes do not have any convergence criterion per se - the point of

convergence is dependent upon our judgement as to when equilibrium has been

reached, and as to when we have gathered enough statistics to estimate the joint (or

marginal) probabilities accurately (typically several hundred iterations are needed).

The deterministic algorithms (HCF and 1CM (scan-line)) have been timed on images

of various sizes using a Sun 3/260 with floating point acceleration. The results are

shown in Table 5.1.

a
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Figure 5.7. Boundary Detection Experiment Set (I)

(a) Synthetic 50x50 "checherboard" image corrupted by independent unbiased

Gaussian noise with std. 16. (b) ThR configuration. (c) Stochastic MAP estimate.

(d) Stochastic MPM estimate. (e) 1CM (scan-line visiting order) estimate. (f)1CM

(random visiting order) estimate. (g) HCF result.
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Figure 5.9. Boundary IDetection E:xperiment Set (I11)_

(a) Natural I00x124 image of four plastic blocks. (b) Thinned and thresholded

ouptut of Kirsch operators. (c) TLR configuration. (d) Stochastic MAP estimate. (e)
Stochastic MPM estimate. (f) ICM (scan-line visiting order) estimate. (g)ICM

(random visiting order) estimate. (h) HCF result(

.... -Figure 59 Boundary DetectionmExperiment Set . ...
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Figure 5.10. Boundary Detection Experiment Set (IV)

Experiments with incomplete edge model - original image in Fig. 5.9.a. (a) TLR

configuration. (b) Stochastic MAP estimate. (c) Stochastic MPM estimate. (d) ICM

(scan-line visiting order) estimate. (e)ICM (random visiting order) estimate. (f) HCF

result.
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Run Time (sec)

100

600

80

60

40

0 10,000 20,000 30,000

Number of Entities in MRF

HCF: Z1 Individual .Average

DIR: o Individual *Average

Table 5. 1. Timing Test Results

The HCF and 1CM algorithms are each run on two images of the same size, for four

image sizes. IndiviAual and average run-times are shown.
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5.6. Analysis of Experimental Results

Goodness of Estimates

(1) The HCF algorithm repeatedly outperforms all other algorithms, giving

superior results both with synthetic and real image data. The common

characteristics of the results we have obtained from using this algorithm are

that they all fit well in our model of the world, which consists of smoothly

continuous boundaries, and that they are consistent with the observations.

(2) The HCF algorithm also appears to be robust, in that it produces an estimate

consistent with the observations even when the MRF model used is

inadequate, as in the experiment using the less sophisticated edge detector.

Since our MRF model does not take into account multiple responses, the

MAP criterion may not lead to the "best" results. In this case, the local

minimum found by the HCF algorithm is clearly better than the results

produced by other methods as it is based on the strength of external evidence.

(3) The ICM algorithm performs inconsistently and its results depend to a large

extent upon the initialization of the MRF and the visiting order. It is also not

clear which, if any, of the visiting orders studied is better than the other. The

scan-line visiting order performs better in some of our experiments, but it is

due to the horizontal and vertical characteristics of the boundaries. HCF does

not rely on any predefined order, thus is not biased for any boundary shape.

(4) The stochastic MAP algorithm with simulated annealing gets stuck in

undesirable local minima, suggesting that our annealing schedule might have

lowered the temperature too fast. However, an appropriate annealing

schedule seems hard to obtain a priori. We have conducted further

experiments with simulated annealing with varying annealing constant c for

1000 iterations each (Figure 5.11). It appears that starting with temperature

too high will destroy the TLR initial estimate, resulting in estimates

inconsistent with the input data. The Monte Carlo MPM estimates are more

reliable than simulated annealing results in most cases. However, we
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occasionally observed large-scale mistakes.

(5) In addition to the qualitative comparisons, we have evaluated the results in

terms of energy measures (Table 5.2). Recall that, as discussed in Chapter 4,

the energy measures may not reflect the correctness of the estimates in the

presence of significant modeling errors. The comparisons based on these

measures serve the purposes of verifying the validity of our potential

assignments, and, more importantly, identifying the effectiveness of HCF as

an energy minimization strategy for similar applications. It is worth

mentioning that in our many trials, HCF consistently found better local

minima in all but one case when the Monte Carlo MPM beat HCF by 0. 1%.

Convergence Times

(1) The HCF algorithm makes a perhaps surprisingly small number of visits

before converging. Clearly, due to the initialization, it must visit every site at

least once. What is surprising is that it visits each site on the average less

than 1.01 times before converging. What this implies is that the first decision

made by a site is nearly always the best one. Also, the HCF algorithm takes

Fig. TLR MAP MPM ICM(s) ICM(r) HCF
5.7 -3952 -4282 -4392 -4364 -4334 -4392
5.8 -572 -680 -723 -693 -715 -740
5.9 4785 -349 -503 -503 -513 -629
5.10 59719 -5303 -5296 -4954 -3728 -9587

Table 5.2. Energy Values

Quantitative comparisons between results of simulated annealing (MAP), Monte

Carlo (MPM), ICM (scan-line order), ICM (random order), and HCF. Column Fig.

lists the figure numbers of the input images. Some of the values (of MAP, MPM.

ICM's) are the averages of the results from several runs. (The smaller the energy the

better the estimate.)
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almost the same time on different images of the same size.

(2) The convergence times of the ICM algorithms are unpredictable - they vary

with visiting order, MRF initialization and even upon the particular image

given as input.

(3) The time taken by the HCF algorithm includes the time taken to set up the

heap initially. This may, in some circumstances, be a little unfair. For

instance, if one has to process data online from various information sources

(Chapter 3) [Poggio 1985], the heap setting up cost can be treated as a

preprocessing cost rather than a run-time one. In theory, the time taken by

the HCF algorithm should be given by c IN+c 2 Vlog 2N, where c I and c 2 are

positive constants, N the number of sites to be labeled and V the number of

visits. V here is at least N and we conjecture that on the average it is cN for

some small (1<c<2) constant c. Since the latter term should dominate, one

would expect to see a nonlinear curve in a plot of run time vs. number of

sites. However, the curve is very nearly a straight line. which indicates either --

that the constant c 2 is very small, or that the changed stability values do not

propagate very far up the heap on the average. The former does not appear to

be true, as our experiences suggest that the initial heap construction takes far

less time than the rest of the algorithm.

5.7. Discussion

In this chapter, we have applied the Markov Random Field formalism to the

boundary detection problem, and compared the results of several estimation methods

based on the MRF formalism. The experiments strongly support the claims that the

probabilistic approach to the labeling problem is appropriate, and that HCF performs

better in both robustness and efficiency than previous methods. There is much left to

do, however, to build a boundary detection system based on this approach that is

capable of dealing data from various domains in unfamiliar environments.

The 1x4 and 4x1 edge likelihood operators are certainly not adequate.

Designing different size and shape operators in accordance with different feature

. . ...... .. . ... ....... . .... i .. M o n d
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types, resolutions, and noise levels will certainly improve the resulting likelihood

estimates. Sher [Sher 1987a] has discovered that by judiciously combining different

operators aimed at different domains, one can obtain results better than the ones by

using any single operator based on wrong domain assumptions, and nearly as good as

the optimal one. We have not yet incorporated this result in our system, but we are

confident that work along this direction will increase the robustness of the system.

Another interesting topic of obvious utility is to estimate or "learn" the line

MRF parameters from (noise corrupted) realizations of the intensities. The current

choices of the neighborhood and the potential functions are by no means optimal, and

they should be adjusted according to the domain characteristics. It would probably

be practical to start with the current setup, which has demonstrated good results, and

devise a method to improve the potential assignments given new realizations.

Ultimately, the assumptions of homogeneity and isotropy may not be valid,

especially when the lattice-structured MRF model is extended to general graphs for

higher-level applications.

The success of HCF in energy minimization is interesting. It seems quite

possible that similar successes could be achieved by applying the HCF heuristic to

other domains involving combinatorial optimization.
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a bc

d ef

Figure 5.11. Annealing Results

Experiments with simulated annealing (MAP) procedure with different annealing

constants (schedules). (a) c = 4.0 (b) c = 3.5 (c) c = 3.0 (d) c = 2.5 (e) c = 2.0 (f) c =

1.5.
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6. Segment/Reconstruct Depth Maps by Incorporating Intensity Edge

Information with Sparse Deoth Measures

It has been proposed that visual integration occurs naturally during the

reconstruction of the visible surfaces [Marr 1982], and is best performed at the

locations of discontinuities [Gamble and Poggio 19871. For example, one problem

may be to reconstruct a depth map and to detect its discontinuities simultaneously

from a (sparse) set of corrupted depth observations, possibly with the aid of other

sources of information. This chapter reports the work in incorporating intensity

discontinuity observations to reconstruct and segment such a depth map.

The reconstruction of three-dimensional scene parameters (intrinsic images)

from visual information is often accomplished using a smoothness assumption to

regularize the computation. Smoothing is not wanted across object boundaries, and

reliable reconstruction can not be achieved without the detection of the

discontinuities [Stuth, Ballard, and Brown 19831. On the other hand, discontinuities

are best described as boundaries between surface patches defined by the

corresponding scene parameters, thus can not be detected directly from sparse, noisy

data. The cooperation of reconstruction and discontinuity detection has been of

interest for some time: The challenge is to develop a unified treatment for

reconstruction and segmentation. The mechanism we use is coupled MRF's, in

which MRF's, one for the depth process and one for the discontinuity process, work

in parallel and interact.

In fusing depth and intensity information, Gamble and Poggio [1987] use the

intensity edges detected with the Canny operator [Canny 1983] to constrain the

locations of the depth discontinuities while reconstructing a depth map. Their rule is

that no depth discontinuity is allowed without a corresponding intensity

discontinuity. The results of combining the two information modalities are

encouraging and better than either modality operating alone, but the uncompromising

relation between depth and intensity discontinuities means that depth discontinuities

within regions of little intensity variation will be lost even if the depth information is

good. The problem is thus how to assign a general a priori relation between depth
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and intensity information.

Another purpose of this work is to study whether the concept of Highest

Confidnence First can be applied to complex problems with both numerical and

symbolic labels. To use the HCF algorithm to fuse depth and intensity based on

coupled MRF's, three issues arise: how to specify the energy functional for the

continuous depth label, how to specify the "confidence" or "stability" of a site for the

HCF algorithm, and how to modulate the depth and discontinuity estimations.

In the remainder of this chapter, we give technical details of the formulation of

the fusion problem and present some experimental results and directions of future

work.

6.1. Coupled Markov Random Fields

Represent a pixel image S = {s 1,s 2 , ... SN) as a set of lattice-structured sites,

and the discontinuity image, D, as the set of sites placed midway between each

vertical and horizontal pair of pixel sites. Let F=!fs,seS} be the set of random

variables indexed by S, with fseR representing the depth value at location s, and

L={ld,dED} be the set of random variables indexed by D, with lde 0,1)

representing the absence or presence of a depth discontinuity at site d. F and L

correspond to the depth process and the line (depth discontinuity) process

respectively of the coupled Markov Random Fields introduced by Geman and Geman

[Geman and Geman 1984] and used in [Marroquin, Mitter, and Poggio 1985],

[Gamble and Poggio 1987], and this thesis. A configuration of (F,L) corresponds to

an admissible solution to our problem.

6.1.1. Observation Models

Early Depth Measurements: The depth measurements are considered sparse and

independently measured. Denote by S the set of sites in S at which depth

measurements are available and G=(gse S the measurement process. We assume

I
I

• " qA
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P(G=g I F=f) = U Ps(gtf) (6.1)
SE S

where g. denotes the measurement at pixel site s, and g represents these

measurements. Often the noise can be adequately modeled by unbiased Gaussian

distributions. That is

1 2oI= (6.2)
zS

Discontinuity Observations Based on Intensity: Instead of treating intensity edges as

constraints on the locations of depth discontinuities, we consider them as partial

evidence supporting or refuting the hypotheses about depth discontinuities. The

motivation is simple. The intensity images are the results of many confounding

factors - lighting, surface geometry, surface reflectance, and camera characteristics.

Intensity discontinuities may reflect sudden changes of depth values, but depth

discontinuities do not necessarily imply large intensity variations. Figure 6.1 shows

D EDGE EDGE "O

DEPTHDEPTH
EDGE

Figure 6.1. Relation between Intensity and Depth Edges
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the conceptual hierarchy that consists of the interesting events involved here. At the

first level, only EDGE or NON-EDGE is of concern. Node. EDGE represents the

event that the site of interest corresponds to some sort of discontinuity in the world;

NON-EDGE represents the event that the site is within a homogeneous region. At

the next level, whether a particular intensity discontinuity is due to depth

discontinuity becomes interesting. Intensity observations provide information about

the events in the first level, but say nothing about the events in the second level,

which are important to the depth segmentation problem. Our approach is to

incorporate prior experience and knowledge, represented in terms of conditional

probabilities, to infer the amount of support, represented as likelihood ratios, to the

events of depth discontinuities provided by the intensity observations. To be more

precise, we are interested in computing the likelihood ratio of a site being a

DEPTH-EDGE given the numbers (1o, axl, and a2 constantly proportional to the

likelihoods P (O INON-EDGE), P (O 1DEPTH-EDGE), and

P (0 1EDGE-NON-DEPTH) (Chapter 3), and the conditional probability

p = P (NON-EDGE INON-DEPTH-EDGE), where NON-DEPTH-EDGE stands

for the joint event NON-EDGE v EDGE-NON-DEPTH. We have

P(O IDEPTH-EDGE)_ 1l

P (0 NON-DEPTH-EDGE) p cxo + (l-p) a2

In the rest of the paper, Xd denotes the likelihood ratio of site d given the intensity

observation Od, where de D.

kd(ld) = P (Od 1 d)(64P (Od I l"d)PdId =(Od '-'ld) "(6.4)

Again, we consider the spatially distinct intensity observations are conditionally

independent:

P(O I1) = 'IPd(Od lid), (6.5)
deD

where 0 denotes the collection of intensity observations.



Conditional Independence between Intensity and Depth Observations: We assume

that the depth and intensity observations are only related through the geometry of the

surfaces in view. They are conditionally independent in the following sense:

P (g,O Ifp) = P (g Ifl) P(O If,). (6.6a)

We further assume that the knowledge of depth discontinuities contributes no

information to make one prefer the observation of g over others once the true depth

values are known:

P (g f,) )=P(g lf), (6.6b)

and that the knowledge of surface depth does not make 0 more or less likely once the

depth discontinuities are known:

P (0f,) = P (0 II). (6.6c)

The scene depth, in many circumstances, affects the observed intensity values. The

assumption (6.6c) is reasonable, however, since it is the indirect observations of

intensity discontinuities but not the magnitude of the intensity that are actually used

in this work. Thus in this work we discard intensities after computing likelihoods of

discontinuities. An interesting research problem would be to use the intensity

information (perhaps through the irradiance-orientation constraint [Horn 1975]) --

more directly.

Summarizing (6.1) - (6.6), we assume

P (g,O If, 1) = flJPs(gs Ifs) rj Pd(Od lid). (6.7))
seS deD

6.2. Markov Random Fields and Energy Measures

Within each F and L, spatially adjacent variables tend to have similar values.

That is, surfaces and boundaries tend to be continuous and smooth. MRF's

corresponding to F and L can be separately defined to model these properties.

Chapter 5 has demonstrated some promising edge detection results using an MRF for

the line process alone. The depth and line processes, however, are not independent of

.. .. .... . . .m -- Im l lil i l mlls lil l l~ i lli i q
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each other. The presence of a line at an edge site breaks the connection between the

two variables at the adjacent pixel sites; a small change in the values of two adjacent

depth variables suggests the absence of a discontinuity in between. This

interdependence is the basis for the concept of coupled MRF's - an unified treatment

of reconstruction and segmentation. Figure 6.2 shows a neighborhood system r of

the MRF consisting of the depth and line processes. In addition to the depth and line

processes, the concept of coupled MRF's can also be applied to model many other

interdependent processes corresponding to various intrinsic parameters

[Poggio 1985].

(F,L) is an MRF with respect to a neighborhood system r if and only if,

according to Hammersley-Clifford theorem, the joint probability distribution of the

variables is a Gibbs distribution. That is,

1)e (6.8a)z
where the energy functional

Neighborhood of line sites

0

Neighborhood of pixel sites

0

0

Figure 6.2. Neighborhood System for Coupled MRF's

iilljJ~ll~liil • i ""emitimi! NUB-B
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U(ft)- V(f 1). (6.8b)
eC

where C is the set of cliques defined by r. Continuous surfaces can be modeled by

setting the potential energy V for the cliques consisting of two adjacent depth sites,

say i and j, and the line site in between them, say ij, proportional to (1-1ij)(fi-j) 2

[Marroquin, Mitter, and Poggio 1985] [Gamble and Poggio 1987]. Using this

potential function, minimizing the energy measure has the effect of fitting membrane

patches to the lattice. Higher-order spline surfaces can similarly be encoded with

larger neighborhood systems to account for higher-order derivatives. Since only

depth discontinuties are concerned here, we use the neighborhood system depicted in

Fig. 6.2 and the above potential function throughout our experiments. Other types of

cliques that have non-zero potential functionals used in our experiments consist only

of line sites. They are same as the ones described in Chapter 5.

6.3. A Posteriori Energy

Bayes' rule combines the a priori knowledge and the early visual observations

to derive the a posteriori belief.

P (f'IIg )=P (fI)P(g,O If, I)
PP (fI)P(g,O If, 1)
f,I

Note, from (6.1) and (6.5), that scaling all of the likelihoods for a fixed site by a

constant does not change the posterior distribution of (F,L). From (6.7) and (6.8),

and assuming (6.2), the posterior distribution is a Gibbs distribution, with the a -

posteriori energy functional

(fgs)2

U(f, IIg, O)= Vc(f 1) + T( 2 2ol2d(ld) (6.9)
ctC seS 2a, deD

6.4. HCF: Coping with Continuous Variables

Let denote the uncommitted state, and R=Ru( }, L={,0,1} denote the

augmented state spaces for the depth and line processes respectively. Based on (6.9),

define the augmented local energy measures with respect to an augmented
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configuration (fI) as:

Escf)= Y c 2s(f,1)+T 2 for seS, (6.1Oa)
C: sec 2as

E(f)= V'c(f',) for sES-S, (6.10b)
C: SEC

and

Ed(l) = 1 V'c(ff ') - T logXd(l) for deD, (6.1Oc)
c: dEc

where (f,I') agree with (f,l) everywhere except f's =f and 'd = 1, with (f,/)e (R,L).

VPc = 0 if there is an uncommitted site in c, otherwise it is equal to Vc. Thus the

cliques containing uncommitted sites have no effect on the augmented energy

measures. Since the only cliques involved in (6.10a) and (6.10b) are those consisting

of two neighboring pixel sites and a line site in between, the terms Y V'c(f,l) can
C:sEC

be written as Y 13(1- 1 ) (fr-fs)2 , where N is z,',e pixel neighborhood of s. The
St e as

augmented local energy measures for pixel sites thus are quadratic; the shape of each

quadratic depends on the constant parameter 03, the number of active neighbors, and

the variances of the noise in the early measurements. The temperature T is set to 1

throughout our experiments, therefore 13 decides the degree of smoothness relative to

the magnitude of noise.

6.5. Stability Measures

The confidence of a site in a configuration (fl) is evaluated in terms of the

following stability measures:

Gs(f,l) =AEs(fmin,fmi+ ) if fs= ,
(6.1 1a)

= AEs(fmin,fs) otherwise,

where Es(Jnmin) = minEs(f), and
fe R
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Gd(l) = max A.Ed(lmin,l) if 1d= ,

LEL.IWmin

(6.11 b)
= AEd(min,d) otherwise,

where Ed(ni) = MinEd(I). The term AE,(k,j) is defined as Er(k) - E,(j) with

IeL

respect to (f, I). It represents the change in local energy measure of r, thus the global

energy (e.g. (6.9)), if r should switch its state from j to k. The stability of a site is

nonnegative only when it is in its minimal energy state (i.e. lmnj orfmnj) with respect

to its current local energy measure. A large negative stability value signals high

confidence in making a state change to the minimal energy state. The constant a

determines the stability of uncommitted pixel sites: it gives the price paid in energy

for remaining uncommitted. (x has the semantics of offset along R from state of

minimal energy. Using it, the stability measure for uncommitted states has the

semantics "how much energy could be lost by committing." Large a encourages

quicker commitment.

6.6. Convergence Properties

The HCF network behaves as follows. Every site starts in the uncommitted state.

At any instant, only the sites with the highest confidence in changing their states, i.e.,

the least stable ones with respect to the current configuration, are allowed to change

their states. The identities of the sites, pixel or discontinuity, are ignored in the

process of comparing the stability measures. Thus the reconstruction and

segmentation processes proceed simultaneously. Eventually, the network settles at a

configuration when no further reduction of the global energy measure can be made at

each site; i.e., when all local stability measures are nonnegative.

The convergence property can be easily verified (Chapter 4). It is possible,

however, that the final configuration contains uncommitted depth sites, due to the

sparseness of the depth data. In the initial stage of the computation, Es(f) g0 if

se S-S. This local energy measure, and thus the stability measure, will remain zero

until one of the pixel neighbors becomes committed and the line process indicates

there is no discontinuity in between. If a region of pixel sites, consisting only of
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members of S-S, was surrounded with discontinuities before any of them has nonzero

stability measure, all of them will stay uncommitted. In the extreme case, if there is

no depth measurement at all, this network will not produce an estimate of the depth

map. This is an advantageous feature since in such degenerate cases, there are

infinite number of configurations that have the minimal energy measure. It is

important for the low-level process to indicate the lack of information to higher-level

processes so that attention can be directed to acquire more information. This feature

can be turned off, if desired, by assigning a priori estimates (e.g. expected range of

the scene) to those sites.

An enhanced version of the graphical simulator (Chapter 5) was built for

experiments on coupled depth and intensity fields with HCF optimization. We

implemented the HCF network on a serial machine using a binary heap to decide the

visiting order of the sites. At any instant, the top element of the heap is the site with

the smallest stability measure. A state change made by a site in general changes the

stability measures of the sites in its neighborhood. The number of comparisons in

maintaining the heap property for each change is limited by the height of the heap --

9og2(3N) where N is the number of pixels. Ideally, the computation terminates

when the top element has nonnegative stability since no more energy reduction would

be possible afterwards. In practice, a small (negative) threshold is used to force

termination without noticeable degradation of depth value (see below). Some

threshold would have been necessary in any case because of limited precision in the

calculations.

6.7. Experiments and Results

6.7.1. Synthetic Scenes

The enhanced HCF algorithm, which reconstructs depth and finds depth

discontinuities from a pair of depth and intensity images, is demonstrated on two

synthetic scenes. Each scene consists of a range image and an irradiance image.

Noise of a particular description is added independently to each image. The range

image is sampled either at full resolution or randomly at reduced resolution (this



105

section reports experiments with 100%, 80%, and 50% of the original full-resolution

data points kept in the sparse data.) We assume that 95% of NON-DEPTH-EDGE

events are NON-EDGE.

The first sequence shows experiments with images created by utilities in the

PADL-2 solid modeling system [Brown 1982] Figures 6.3a and b show original

full-resolution intensity and depth images, and Figs. 6.3c and d show the images with

added noise. The intensity image has a range of pixel values in [0,2551, and is

perturbed by zero-mean, signal-independent Gaussian-distributed noise G(0, ;) with

a=-16. Perturbed values less than 0 are set to 0, greater than 255 are set to 255. The

range image has an unusual noise pattern. Part of the motivation is to test the effects

of spatially nonuniform noise (the noise model affects the stability calculations of

elements). Another motivation is to reflect a range imaging system whose values are

more accurate near its optic axis, perhaps as an effect of reduced resolution

(averaging) in the periphery. The noise distribution for the synthetic range image is

radially symmetric around the center of the image, with standard deviation of the

additive, signal-independent, zero-mean Gaussian noise at a point increasing

exponentially as the distance of the point from the center of the image. The

exponential is scaled so the maximum noise has a=20 (in the comers of the image.)

Figures 6.4a and b show the reconstructed depth and the depth discontinuities

found with a high setting of the parameter 03, which increases sensitivity to small

depth discontinuities. Here orientation changes in the cube and noise in the sphere

boundary have given rise to a spurious segmentation. In Figs. 6.4c and d, a smaller j3

avoids the problems.

Figures 6.5 and 6.6 illustrate the effect of sparse depth data on the final depth

reconstruction and segmentation, and also show the beneficial effects of

incorporating intensity information. In these four experiments a and P3 are held

constant. Figs. 6.5a and b show the reconstruction and segmentation using just 80%

of the depth information. It is interesting that the results are no worse; however Figs.

6.5c and d show the improvement gained by allowing the MRF access to the

irradiance image as well. Fig. 6.6 is precisely analogous to Fig. 6.5, only the depth
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density is down to 50%. -

Figures 6.7a and b show the "depth" and "irradiance" parts of an artificial scene

of the sort used by Sher [Sher 1987a]. Such scenes have the advantage of having

well-specified right and wrong locations for edges. In this case both depth and

intensity images have spatially-independent, zero-mean, signal-independent, additive

Gaussian noise, and the perturbed image values are clipped to the range [0, 255]. For

the depth image, o=-16, and for the intensity image a=-20. Fig. 6.7c shows the depth

edges recovered using only the depth image (Fig. 6.7a), and Fig. 6.7d shows the

depth edges recovered using depth (full resolution) and intensity. As expected, 6.7c

only shows and edge structure related to the brightness differences of squares in Fig.

6.7a. Fig. 6.7d has clearly incorporated information from the intensity image Fig.

6.7b. The ideal desired is of course that all lines of the checkerboard are in evidence.

It can be seen that the lines are missed when the evidence in both images is weak.

Figure 6.8 shows the effects of sparse depth in the domain of Fig. 6.7. Fig. 6.8a

gives a glimpse into the inner state of the MRF algorithm. It shows the initial

thresholded likelihoods (line elements) used by the intensity discontinuity detector,

overlaid on the points where sparse (50%) depth information is available. Figs. 6.8b

and c show the reconstructed depth and depth discontinuities, respectively. The areas

of bad performance correlate with areas of weak or missing information.

-14
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a. b.

C.

Figure 6.3. Synthetic Intensity and Range Data

a) Original intensity image. b) Original depth image. c) Intensity image with G(0,20)

additive noise, clipped to range [0,255]. d) Depth image with spatially-varying

Gaussian noise, maximum standard deviation of 20 (see text).
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b.

.. .. .................

.. d . ..... .....

Figure 6.4. Results with Synthetic Data (I)

a) Reconstructed depth with at=10 and [30.1 b) Depth edges with oa and [3 as in a).

c) Reconstructed depth with cz=10 and [3=0.O01. d) Depth edges with at and [3 as in

c).

...... ... ... ..
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a. b.
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c. d,

Figure 6,5. Results with Synthetic Data (I)

a) Reconstructed depth with c,=50 and [3=.001, with 80% depth data randomly

sampled and no intensity input. b) Depth edges with conditions of a). c)

Reconstructed depth with a and j3 and 80% depth sampling as in a), but using
intensity input in MRF. d) Depth edges with conditions of c).

..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .. .i n I..i...mmm im m mmmmmii i m i
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Figure 6.6. Results with Synthetic Data (IM

a), b), c), d) as in Fig. 6.5 except that depth sampling density is 50%.
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c. d.

Figure 6.7. Experiments with Checker-Boards

a) Artificial "depth" image, with spatially independent G(0,16) additive noise, clipped

to (0,255). b) Artificial "intensity" image, with G(0,20) noise as in a).a c) Depth

edges found with ax=50, P=0.001, no intensity input used in MRF. d) Depth edges

found under conditions of c) but using intensity input.
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Figure 6.8. Experiments with Checker-Boards

a) Locations of 50% depth sampling overlaid with the initial thresholded likelihoods

from intensity-discontinuity detection. at and 03 as in Fig. 6.7. b) Depth

reconstruction, c) Depth discontinuities.
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6.7.2. Natural Scenes

Depth segmentation and reconstruction using HCF was performed with stereo

disparity data of scenes consisting of table-top objects. The Cooper stereo algorithm

[Cooper 19871 yields sparse disparity data associated with intensity contours in the

input images. It has been demonstrated to be robust and to work with natural scenes

and with structured light. Briefly, it uses a global goodness measure to decide the

stereo correspondences between zero-crossing contours of Difference of Gaussian

(DOG) using a dynamic programming procedure.

The first scene (Figure 6.9.a) shows a beach ball and a rectangular box sitting in

front of a cylindrical object, with a flat background. Vertical (with respect to the

epipolar line) light strips were projected onto the scene to create artificial texture

needed by the stereo system (Figure 6.9.b). The disparity observations are scaled and

rounded to 256 levels, and are assumed to have independent unbiased Gaussian noise

with standard deviation of 12. Three pairs of stereo images were taken under different

setups of the light projector to increase the density of disparity observations (Figure

6.9.c). Observations at the same pixel location are combined using a conditional

independence assumption:

P(dl,d2 Id)= P(d, Id) P(d 2 Id)

where d 1 and d 2 are two disparity observations obtained from two different setups of

the structured light. Figure 6.9.d shows the resulted disparity observations in

perspective (0 represents no observation). About 35% of the pixel locations have at

least one observation. Figure 6.9.e shows a map of those locations (in black) overlaid

with the TLR estimate of the intensity discontinuities (Chapter 5).

A perspective view of the reconstructed disparity map along with the

discontinuities detected, with cc = 30, 5 = 0.003, and

P (NON -EDGE INON-DEPTH-EDGE) = 0.95, are shown in Figures 6.9.f and g.

The surfaces corresponding to the sphere, cylinder, and the background planes are

smoothly reconstructed, and significant disparity discontinuities are detected. There

are two types of mistakes, however, due to the characteristics of the observed
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information. First, steep disparity and intensity gradients together near the sphere

boundary result in spurious segmentation. Using a smaller prior probability

P (NON-EDGE INON-DEPTH-EDGE), as shown in Figures 6.9. h and i, avoids

the problem by reducing the assumed coupling between intensity and disparity

discontinuities. Intensity discontinuities are thus preferably explained as changes in

color rather than depth. (This fact is due to Equation (6.3). If the intensity module

supports the edge label, i.e. a 2 > a0 , the likelihood ratio of DEPTH-EDGE

decreases as p becomes smaller.) Second, there are regions that have no (e.g. the

table top) or few (e.g. the top of the box) disparity observations. The result is the

leaking effect: The disparity values of the neighboring regions leak through the holes

of weak intensity gradients, resulting in under-segmentation and erroneous disparity

estimates. A possible fix is to identify those regions prior to the reconstruction,

possibly by building convex hulls of the "adjacent" pixels with disparity measures,

and limit the reconstruction process outside of those regions.

The same beach ball is used in the second table-top scene (Fig. 6.10.a), partially

occluded by a foam box. The foam box has very rough outlines. Fig. 6.10.b shows

the overlay of the disparity data and the TLR intensity edge estimates. Only 16% of

the pixels have disparty observations, As expected, the results are less satisfactory

due to the lack of information and the ill-defined boundaries (Fig. 6.10.d - e).
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Figure 6.9. Experiments with Stereo Disparity Data (I)

a) 200 by 200 intensity image. b) Scene with projected structured light. c) Three

disparity images. d) Perspective view of the combined disparity image. e) Locations

of the disparity measurements overlaid with the TLR estimate of the intensity

discontinuities.
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f g

h

Figure 6.9. (continue)

f) Reconstructed disparity map with p = 0.95. g) Disparity discontinuities. h)

Reconstructed disparity map with p = 0.9. i) Disparity discontinuities.
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Figure 6.10. Experiments with Stereo Disparity Data (I)

a) 200 by 200 intensity image. b) Locations of the disparity measurements overlaid

with the TLR estimate of the intensity discontinuities. c) Input disparity image. d)

Reconstructed disparity map. e) Disparity discontinuities.

Ak
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6.8. Discussion

The Role of Intensity Discontinuities: Successful integration of multi-modal data

requires knowledge about the characteristics of scene and the vision modules

processing the data. Such knowledge affects the decisions that have to be made when

different modalities provide conflicting information about particular events. Fig. 6.3

shows an example: The strong intensity gradients across the cube edges suggest depth

discontinuities at the face intersections but the relatively small depth differences at

these locations refute such suggestions. Also, the self-shadowed face merges with

the background in the intensity image while the depth information indicates clear

separation of the two regions. If reliable depth observations are available, e.g., a

noise free depth map, it is bad practice to use the intensity observations for clues to

depth discontinuities. On the other hand, when the depth observations are sparse and

unreliable, the correlation of intensity information with depth information should be

recognized and used. The probabilistic integration provided by HCF optimization is

one coherent framework for such integration tasks. The HCF scheme, as a

deterministic method, finds a local probability maximum. In so doing, its behavior is

consistent with the natural evidence weighing described above. In particular, if the

depth observations are less reliable than the intensity observations (i.e. they have

larger variation from their expected true values), the line sites tend to have larger

(negative) stability measures than the depth sites at the early stage of the

computation. This means the line sites commit (since they are based on intensity

information) earlier than the depth sites, resulting in a final configuration that is more

consistent with the intensity discontinuities. At the locations where depth

observations are missing (e.g. Figs 6.5, 6.6, 6.8), the intensity discontinuity

information helps to localize the depth discontinuities before the depth information

can be spatially propagated. Similarly, when the depth observations are more reliable

(denser, less noisy), the depth sites commit earlier. The early depth commitments

influence the stability measures, and thus the later commitments, of the line sites.

The resulting configuration tends to be more consistent with the depth data.
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The Computational Advantages of HCF: The performance characteristics of HCF in

minimizing the energy of coupled MRFs is consistent with its performance on simple

MRFs, incorporating only the line process, reported earlier (Chapter 5). That is, the

enhanced HCF algorithm behaves efficiently and predictably. The introduction of the

continuous-valued depth process requires more visits to the depth sites than occurred

in the optimization using only the binary line process. The line-process only MRF

stabilized after fewer than 1.01 visits per site (on the average). Experiments with the

checker board images (Figs 6.7), show that it takes on average fewer than 3 visits per

site to achieve reasonable estimates in the coupled intensity-depth MRFs. The

situation is complicated by the fact that the sizes of the regions affect the speed of

convergence: Larger regions require on average more visits per site for results to

propagate through them.

Since the energy functional is quadratic given a line configuration, in principle

any deterministic minimization method would find the same minimal configuration of

the depth process. However, there are some advantages to HCF over iterative

relaxation schemes with predetermined visiting orders. HCF always visits the site that

can reduce the energy measure the most. Thus early visits are far more important than

the later ones with HCF. The rate of stabilizing is always maximized, and the most

reliable decisions, which reduce energy most, are made first, and at some point the

computation may be terminated with confidence of negligible future improvement.

Fixed-order schemes cannot guarantee this property.

Modeling and Aligning Observations: Two technical difficulties require further

investigation. First, modeling early depth measurements with (6.1) and (6.2) is not

completely satisfactory for the following reasons:

(1) The range of depth values is usually a proper subset of R, depending on the

scope of the depth sensor.

(2) The measurement error usually is biased and related to the surface depth and

sensory characteristics.
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(3) Gross error or "mistakes" [Krotkov 1987] due to, say, mismatching two

features (zerocrossing contours) by a stereo system must be considered.

We believe that the decoupling of sensory models and a priori knowledge in our

MRF formalism and the HCF estimation method provides us enough flexibility to

incorporate such complex measurement models.

The second difficulty has to do with the localization (registration) of the

measurements. For example, in the experiments with stereo disparity data, the depth

measurements are located at zero-crossing contours of the DOG operators, thus at

pixel locations. When a zero-crossing contour corresponds to surface locations near

an occluding boundary, which projects to a contour of intensity discontinuities, the

precise localization of the zero-crossings becomes vital to the success of the

integration. We have observed that sometimes a depth measurement is reported at a

pixel location just outside of the region (defined by the intensity discontinuities at the

line sites) to which it should belong. Such error usually leads to disastrous

reconstruction and segmentation. The problem becomes more complex when

incorporating data from sensors of different spatial resolution and projection

geometry, or using DOG-type filters of various scales. We believe that the success of

visual integration at the locations of discontinuities relies on an adequate solution to

this problem.
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7. Summary and Discussion

7.1. Summary

This dissertation presents a framework, based on Bayesian-probability theory,

for solving the labeling problem. The central issues addressed by the thesis are the

representation of knowledge, reasoning procedures for combining distinct bodies of

knowledge, and inference methods for using available knowledge to infer scene

properties.

Chapter 3 presents a novel approach to knowledge representation and reasoning.

The central idea is the decoupling of external evidence and a priori knowledge. A

hierarchically structured label tree is used to accrue external evidence concerning the

labels for each site. A probabilistically justifiable procedure consistently and

coherently combines distinct bodies of evidence, represented as label likelihood

ratios in the tree. The combination is commutative and associative, and has a simple

message-passing implementation. More importantly, this procedure accumulates

external evidence in terms of likelihood ratios rather then probability distributions.

This feature enables the integration of the a priori knowledge, encoded in terms of a

joint probability distribution of all sites, with the pooled external evidence in a

Bayesian formalism.

The utility of Markov Random Field Models is also discussed in Chapter 3. The

image sites are modeled as random variables with noncausal Markovian interactions.

A priori knowledge can be conveniently encoded in terms of a set of local potential

functions that, according to Hammersley-Clifford theorem, decides the a priori

probability distribution of the random field. The a posteriori distribution derived by

combining the external evidence and the a priori knowledge forms the basis for

solving the labeling problem.

Chapter 4 presents a new estimation method -- the Highest Confidence First

estimation algorithm. HCF is deterministic and intrinsically serial. Its results depend

only on the a posteriori distribution. There is no need to choose a updating order or

to set any parameter values (temperature, thresholds, etc.). By comparison, previous
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approaches are inferior in both efficiency and robustness. Particularly, stochastic

methods are computationally expensive, and their results tend to be affected by¢ the

undesirable large-scale characteristics associated with MRF models. Previous

deterministic methods require good initializations, are sensitive to noise, and their

results are partially decided by predetermined updating orders. We have argued that

HCF meets the principles of graceful degradation and least commitment. As a

consequence, its computational cost is small and the resulting estimates are less

sensitive to noise. A priority-heap implementation of HCF is presented, and its

convergence properties were discussed. Possible extensions are also sketched.

Chapter 5 uses the results of Chapters 3 and 4 to address the boundary detection

problem. A novel aspect of this work is the use of an MRF to model an explicit line

process, and the use of outputs from a set of local edge operators for the external

evidence. The edge operators are based on Sher's work [1987]. They generate

likelihood ratios about the presence of edges based on a particular step-edge model.

Qualitative knowledge such as line coherence is encoded by using an MRF with a

second order neighborhood system, and is combined with the edge likelihood ratios.

The resulting a posteriori probability distribution is used by several estimation

methods. The results using synthetic as well as natural input images are compared

both qualitatively and in quantitative energy measurements. The comparisons show

that HCF outperforms other methods in both robustness and efficiency, and gives

better qualitative and quantitative results.

Chapter 6 presents a unified treatment of reconstruction and segmentation of

three-dimensional surfaces with sparse depth observations and intensity data. In this

work, intensity discontinuity information is incorporated in the process of detecting

depth discontinuities. Coupled MRF's are used, one for depth and one for

discontinuities, to model the two interacting processes. An extension of HCF

successfully implements a solution method for the reconstruction and segmentation

problem. Experiments are conducted with both artificially generated data and real

disparity data from a feature-based stereo system of table-top scenes. The results are

encouraging. They demonstrate the effectness of the approach, illustrate some of its
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idiosyncratic characteristics, and suggest areas for improvement.

7.2. Discussion

An issue worth mentioning is the relationship between the HCF algorithm and

the more traditional and possibly more familiar approaches to combinatorial

optimization. It is also important to clarify the relationship between the process of

creating a model and the process of finding a (maximum-likelihood) estimate of the

relevant parameters. At the outset we note that the class of functions we are dealing

with, though very powerful, is rather restricted. They consist of two terms, one of

which is determined by the values of the individual observed variables, and the other

is determined by the interaction of the variables.

First, the basic computation performed in the labeling context is one of

statistical estimation. The method developed in this research is neither the traditional

MAP estimation (which is very difficult to compute) nor the traditional MLE

estimation, but rather a new type of estimation that treats individual variables

differently in accordance with the relative significance of the variable observations

(Chapter 4). The underlying intuition of HCF is simple: in deciding the identities of

the variables, the use of contextual information becomes more important as the

external observations become less informative. Traditional estimations treat all of

the variables equally, thus their results are more likely to be affected by noise and the

inaccuracy of prior models.

Second, the statistical estimation computation has the same form as that of

traditional function optimization techniques (Equation (3.15)). In the function

optimization case the function is given a priori and the parameter (in Equation (3.15),

T) that controls the proportion of the error terms is chosen by a variety of techniques

that are aimed at ensuring finding the correct optimum. In the statistical estimation

case the traditional approach has been to use ad hoc weights that are dependent on

the problem domain. These weights constitute a model of the domain, in the sense

that they reflect empirically observed characteristics. Thus in statistical estimation,

the behavior of the algorithm is influenced by the character of the domain.
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The empirical choice of weights in this work corresponds to picking a model for

the domain and instantiating it as a priori knowledge (see Sections 5.1 - 5.3 for an

example). The attempt is to quantify a set of vague criteria about the goodness of

label interpretations for the domain by the use of a (small) set of parameters. Similar

approaches have been used in many other places. There have been some efforts on

automatic parameter estimation, however their successes have been limited to the

domains of texture modeling.

One fact stands out: Prior models, however constructed, usually only reflect

intuitions and vague concepts. Estimation procedures must take possible sources of

inaccuracy in the models into account. HCF estimation is designed with this principle

in mind.

Why is the HCF computation effective in energy minimization? Take the

boundary detection problem as an example (Chapter 5). Let X, = I denote the

presence of an edge at site s and X, = 0 otherwise. The admissible solution space of

the problem consists of the comers of the hypercube to, I IN, where N is number of

sites. Man), comers (solutions) are locally optimal in energy measure -- no adjacent

corners (of distant 1 away) have lower energy values. The computation of existing

iterative relaxation methods consists of a sequence of steps through adjacent comers.

The resulting path depends on a (predetermined) updating order and the energy

values associated with the comers. It is easy for such computations to get stuck at

minor local optima. To ensure that the global optimum can be reached, immensely

more computations are required, as in the case of using stochastic simulated

annealing techniques.

Although global optimality is not guaranteed, HCF effectively avoids minor

local optima by a "greedy search" in an augmented space. The augmented space

consists of 3 N elements, including the 2N hypercube corners in the admissible

solution space. The elements in the augmented space form n + I layers. Layer i

consists of the elements with exactly i dimensions of values 0 or I ("committed").

The elements are conceptually connected in the sense that the computation starts at

the 0-th layer (all "uncommitted"), and terminates at some element in the n-th layer --

S
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the admissible solution space. The connections between layers are uni-directional;

the computation goes through the layers one by one, from lower-numbered ones to

higher-numbered ones. There are also some intra-layer connections that allow the

computation to fine tune its directions. The computation is reminiscent of traditional

greedy search or steepest descent techniques in that every step is a move to the "best"

adjacent element with respect to an augmented energy measure defined over the

augmented space. The greedy search in the augmented space has the flavor of "flying

over" minor local optima in the "best" directions observed in the air. It is also

interesting to note that the use of the augmented space does not impose any

significant amount of overhead. In fact, our preliminary implementation of HCF has

consistently demonstrated fast and predicatable results.

7.3. Future Directions

We plan to continue to explore the properties of the HCF algorithm and MRF

modeling. The following issues deserve further investigation, and can be

individually studied.

(I) Systematically learning MRF parameters. The current ad hoc assignments of

MRF's potential functions are adequate for demonstrative experiments.

However, it would be desirable to devise a systematic method to estimate

(learn) those parameters. For processes such as intensity and texture for

which uncorrupted realizations are available (perhaps from stochastic

sampling), the maximum-pseudolikelihood types of estimation (Chapter 3) or

unsupervised learning schemes could be helpful. So far, it is not yet clear

how to estimate MRF parameters from a set of corrupted images.

(2) Robust likelihood generators. The thesis assumes that likelihood ratios of

interesting labels can be computed from image features based on either

probabilistic models or statistical data. We have discussed how the edge

likelihood operators used in our experiments could be improved (Chapter 5).

It is interesting to investigate how to compute likelihoods for symbolic labels

other than edges. We are currently studying the computation of likelihoods
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for surface types including planar, cylindrical, and spherical from intensity or

range observations.

(3) Flexible evidence accumulation and labeling. One question that needs to be

addressed is how to deal with non-exclusive labels. For example, it might be

desirable to label a site corresponding to an occluding boundary location to

be both depth and orientation edges. The current treatment, requiring one

label per site, is not completely satisfactory. One obvious solution that can

use the current approach is to enhance the label set to include a depth-and-

orientation-edge label and require the labels to be disjoint. However, this

solution requires many more labels to be considered at the same time. We

are investigating how to extend the thesis work to deal with such problems.

(4) Parallel HCF implementation. The HCF algorithm relies on a priority queue

of all MRF elements in order of stability. A heaping algorithm is an efficient

implementation in a serial model of computation, but we are exploring

parallel alternatives both for reasons of speed and because the problem is

intrinsically interesting.

(5) Distributed asynchronous data sources. The HCF algorithm so far has only

been tested under the condition that it is presented with all the data

simultaneously, and thus can correctly find the globally highest-confidence

element. Under different circumstances, the data may arrive partially or

asynchronously. The question then is how is HCF performance is affected by

data arrival that may result in spatial or temporal discontinuities in the MRF

element field. A testbed has been constructed on a BBN Butterfly parallel

processor by Robert Potter and Drew Asson at the University of Rochester

that will allow us to investigate this question.

(6) Spatially nonuniform MRFs and serial data accumulation. We are interested

in fields with a peripheral and foveal organization, with a central high

resolution area surrounded by a (perhaps progressively) low-resolution one. If

we term such an organization a retina, over time, "eyemovements" can
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reposition the retinal organization within a larger, uniformly high-resolution

MRF representing a stable world, or its projection. The interaction of the

elements over time is of interest. If an element is seen first in the periphery

and is then foveated, it proceeds through a "coarse to fine" context that may

allow it to reach a correct labeling more reliably. There are several technical

questions about the implementation of this idea.

(7) Computational advantages. With HCF one can set a threshold on stability

measures that will terminate the computation with high confidence that only

insignificant changes of, say, the depth configuration would occur if the

computation would continue. This property is bought at the cost of

maintaining the priority order HCF needs, and raises the obvious question: "Is

the gain worth the cost?". We are studying this tradeoff between the

overhead paid in deciding the dynamic visiting order of HCF and its

computational gain of fewer visits to the sites.

Lastly, we are interested in seeing the thesis work be applied to other domains.

Large-scale optimization problems for which HCF could be applied are becoming

common in many areas, from signal and speech processing through robotics (e.g.

[Barhen, Toomarian, and Protopopescu 1987]). We believe that problems involving

large numbers of variables, reasoning with multiple imperfect knowledge sources,

statistical estimation, and energy minimization computations can all benefit from the

approach presented in this thesis.
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