g FILE COPY

- NAVAL POSTGRADUATE SCHOOL

Monterey, California

L

AD~A202 032

THESIS

A PROTOTYPE FAULT DIAGNOSIS SYSTEM FOR NASA
SPACE STATION POWER MANAGEMENT AND CONTROL

by

Gina L. Hester

September 1988
Thesis Advisor: Robert B. McGhee

Approved for public release; distribution is unlimited.

e

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE

1a Report Security Classification Unclassified 1b Restrictive Markings
2a_ Security Classification Authority 3 Distribution Availability of Report
2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
4_Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)
° |6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School (If Applicable) 39 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)
. |Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding/Sponsoring Organization | 8b Office Symbol 9 Procurement Instrument Identification Number
{If Applicable)
8c Address (city, state, and ZIP code) 10 Source of Funding Numbers
Program Element Number | Project No | Task No | Woek Unit Accession No
11 Title (Include Security Classification) A Prototype Fault Diagnosis System for NASA Space Station Power
Management and Control.
12 Personal Author(s) Gina L. Hester
13a Type of Repon 13b Time Covered 14 Date of Report (year, month.day) 15 Page Count
Master's Thesis From To September 1988 145
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government.

17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)
Field | Group Subgroup Expert System, Computer Graphics, Communications, Space Station.

19 Abstract (continue on reverse if necessary and identify by block number

The Power Management and Distribution System (PMAD) Prototype utilizes a computer graphics interface

. | with a computer expert system running transparent to the user and a computer communications interface that links
the two together, all enabling the diagnosis of PMAD system faults. The prototype design is based on the concept
that an astronaut on a space station will instruct an expert system through a graphics interface to run a system or
component check on the PMAD system. The graphics interface determines which type of evaluations was
requested and sends that information through the communications interface to the expert system. The expert
system receives the information and, based on the type of evaluation requested, executes the appropriate rules in
the knowledge base and sends the resulting status back to the graphics interface and the astronaut. The PMAD
System Prototype serves as a proposed training tool for NASA to use in the training of new personnel who will
be designing and developing the NASA Space Station expert systems.

20 Distibution/Availability of Abstract 21 Abstract Security Classification
. unclassified/unlimited lume as repon DDTIC users Unclassified
*]22a Name of Responsible Individual 22b fI"Lclephone (Include Area code) 22¢ Office Symbol
R. B. McGhee (408) 646-2095 52Mz
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited

A Prototype Fault Diagnosis System for NASA Space Station Power
Management and Control

Gina L. Hester
Lieutenant, United States Navy
B.S., United States Naval Academy, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY
(SPACE SYSTEMS OPERATIONS)
from the

NAVAL POSTGRADUATE SCHOOL
September 1988

Author: _%M. M _
L. Hester
Approved by: @-&R){L (%

Robert B. McGh esis Advisor
~= ﬂ«éjo

— Lois M runner Second Reader

Michael J. Zye?a, #hird Reader

Lbgboolocn

Rudolf Panholzer, (hairman,
Space Systems Academic Group

Gordon E. Schacher,
Dean of Science and Engineering

ii

ABSTRACT

The Power Management and Distribution System (PMAD) Prototype utilizes a
computer graphics interface with a computer expert system running transparent to
the user and a computer communications interface that links the two together, all
enabling the diagnosis of PMAD system faults. The prototype design is based on
the concept that an astronaut on a space station will instruct an expert system
through a graphics interface to run a system or component check on the PMAD
system. The graphics interface determines which type of evaluations was requested
and sends that information through the communications interface to the expert
system. The expert system receives the information and, based on the type of
evaluation requested, executes the appropriate rules in the knowledge base and
sends the resulting status back to the graphics interface and the astronaut. The
PMAD System Prototype serves as a proposed training tool for NASA to use in the
training of new personnel who will be designing and developing the NASA Space

Station expert systems. :

P\LCc S5 F(-;;

]
.

_,__T_ __ ___“__’_

T ————
1S

>
}

"‘13 (rasg S}L

-
|
.

)

o e —

i

TABLE OF CONTENTS

I. INTRODUCTIONottt ctee et e tieeteeeienereetaaanansasnaasnsns 1
A. DESCRIPTION. .. .ouiiiiiiiiiiiii ettt et e e e 1
B. PURPOSE. ...ttt et e e ea e e ans 2
C. THESIS OUTLINE. ...ttt e e e 2
II. NASA PROJECT BACKGROUNDcociiiiiiiiiiiiiiiiiiiiiii e 3
A. AUTOMATION AND SPACE STATION.......coiiiiiiiiiiiiiiiin e, 3
B. THE SADP....ooiii ettt et 3
C. THE THERMAL CONTROL SYSTEM DEMONSTRATION.................... 4
D. THE POWER CONTROL SYSTEM DEMONSTRATIONc.............. 4
III. THE PMAD SYSTEM PROTOTYPE OVERVIEW........ccciiiiiiiiiiiiniiinieaninns 6
A. THE SYMBOLICS 367S LISPMACHINE.........ccccoovtiiiiiiiiinninnainnnnnnn. 6

B. THE SILICON GRAPHICS, INC., IRIS-3120 GRAPHICS
WORKSTATION ..ottt ettt eee sttt et e et e ea e ees 7
C. THE COMMUNICATIONS SOFTWARE INTERFACEc.c.......... 7
D. SUMMARY ..o e e st eeeteaneane s e, 7
IV. SYMBOLICS LISP MACHINE SOFTWARE.........cccccoitiiiinminnninreennnns 8
A. THELAYERS ... et e e a e 8
1. Genera Version 7.l........coiiiiiiiiiiiiiiiiiniiiiiicenreeneeeaees 8
2. CommonLISP.....ccoiiiiiiiiiiiiiiiiiii e 8
3. The KEE Expert System Shell 3.1ot 8

iv

4. The NASA Model Toolkit (MTK)......cccooviiiiiiiiiiiiiiiie, 9
a. The PMAD System Knowlege Base.........cccoeverevvvnrvenncnnnn.. 9
‘ b. The PMAD System Library......cccocccoiiiiiiiiieiiirnnicinineennnnnn. 11
c. ThePMAD SystemModel.......cccooiiiiiiiiiiiiiiiiiiiiiiiin.., 12
. B. THEINTEGRATION OF THELAYERS...........ccociiiiiiiiiiiiiiiiiinenne. 12
V. THE IRIS GRAPHICS WORKSTATIONocitiiiiiiiiiiiiiiiiieiiieeeieeaeans 17
A, THELAYERS.o 17
1. UNIX ATT Version 5.3 ..o et 17
2. The CProgramming Languagecccoceveiiiiiiiiiiiininiaianeninnnn. 17
3. The MEX Window Manager........cccoeviiiiiiiiiniiiiiiiinie e, 17
4. The Silicon Graphics GL Package.........ccccccoounrninrnnnniiniinnannnnnn, 20
B. THE INTEGRATION OF THELAYERS.......c.ccciiiiiiiiiiiiiiiiniininannne, 20
VI. THE COMMUNICATIONS INTERFACE.........cccccceiiiiriiiiniininnnnennnnenennen, 22
A, THEIRIS ... et e e e e, 22
B. THESYMBOLICSccoiiiiiiiiiiiiiiiiiiiiii it e e e e e 23
VII. THE INTEGRATED PMAD SYSTEM PROTOTYPE........ccccervvervireninnnnn, 25
A. THE MAN-MACHINE INTERFACE..........cccccccivimmmimimnniiniinaannn. 25
B. FAULTDIAGNOSIS ...t e 27
C. THEPMAD SYSTEM ANALYSIS ... 29
D. THEPMAD SYSTEM MANUAL........cooiiiiiiiiiiiiiiiniiie e eeeee e 30
v

VIII. CONCLUSIONS AND RECOMMENDATIONSc.cioviviiiiiiiiiiiiiniiiinenes 31

A. CONCLUSIONS. ...ttt 31

B. RECOMMENDATIONSottt e e e iaaes 31

1. PMAD System Prototype Expansion..............cciiiiiiiienninnnnnnnn 31

a. Onthe SymbolicS......ccovviiniiiiiiiiiiiiiiiiii 31

b, OntheIRIS.....oiiiiiii 32

2. NASA Utilization of PMAD System Prototype..........cccocveeiiinenennnn. 32

3. Practical Application to the United States Navy.....cccoceerviiecnninne, 33
APPENDIX A THE POWER MANAGEMENT AND DISTRIBUTION (PMAD)

SYSTEM PROTOTYPE MANUALcccoitiiiiiiiiiiiiiiie e 34

APPENDIX B PMAD SYSTEM SOURCE LISTINGccccciiiiiiinininiiinenenenn. 58

LISTOFREFERENCES. ...ttt ettt re et sa e anees 131

BIBLIOGRAPHYciiitiiiiiiiiiiiiiiiiiiiii et c e e e 132

INITIAL DISTRIBUTION LIST ...ttt 133

Figure 1.
Figure 2.
Figure 3.

Figure 4a.
Figure 4b.
Figure 4c.
Figure 4d.
Figure 5a.
Figure 5b.

Figure 6.
Figure 7.
Figure 8.

Figure 9a.
Figure 9b.
Figure 9c.
Figure 10.

LIST OF FIGURES

The PMAD System Knowledge Baseccoeviiiiiiiiiiiiiiininn. 11
The PMAD System Library.......cccccoooiiiiiiiiirniiininiiiieneiinnnn 13
The PMAD System Model......coooviiiiiiiiiiiiiiiiiiiiiiiiininiiieenns 14
CHARGE Parameter Slot for BATTERY.1 Unit............cociiviiiinnnnn, 15
TREND.STATE Slot for BATTERY.1.CHARGE Unit..................... 15
POWERLOAD Parameter for BATTERY.1.VR.N Unit...........c.c....... 16
VALUE.STATE for BATTERY.1.VR.N.POWERLOAD Unit 16
The PMAD System Graphics Interface Main Menu ..., 18
The PMAD System Graphics Interface Component Menu................... 18
The PMAD System Main and Subordinate Menus.........ccccecoeeircannen. 19
The PMAD System Graphics Interface Screen.............cooociviiiiiiiiin, 21
The Integrated PMAD SyStemccocviiiiiiiiiiiiiiiiiiiiiiiniiiniennen.. 26
BATTERY.1 Unit Factsccvviviiiiiiiiiiiiiiiiiiii it e 28
BATTERY.1 Unit Tell and Ask Rulecooiviiiiiiiiinnin. 28
BATTERY.1 Unit Backward Chaining Rule...................cooooeinail. 29
FAULT.MODE Slot for BATTERY.1 Unit.........ccooiiiiiiiiiiinnnnnn. 29
vii

ACKNOWLEDGMENTS

I would like to thank NASA Ames Research Center in Sunnyvale, California
for the support and cooperation of its personnel during the course of this research.
Mr. Henry Lum, Chief of the Information Sciences Division, and Mrs. Carla Wong
and Mr. William Erickson of the Systems Automony Demonstration Project office
provided me with documents, computer resources and their time, all of which were
invaluable to me in the development of this prototype. I am thankful to Mr.
William McKellar (the NASA Ames staff assistant) and Mr. Robert Jay (the Naval
Postgraduate School (NPS) deputy comptroller) for setting up my travel funding
account at the Naval Postgraduate School for trips between NPS and NASA Ames.

I would also like to thank the entire NPS computer Science staff for their time
and patience in helping me upload and debug alpha-tested software, learn how to
utilize the resources in the Al and Graphics and Video labs and troubleshoot PC
modem problems over the phone. I would especially like to thank Lois Brunner,
Professor Robert McGhee and Professor Michael Zyda for their wonderful support
and for sharing their knowledge, wisdom and friendship with me.

I would like to thank Hania La Born for contributing her invaluable time,
extraordinary talent and everlasting patience in supporting me during this
endeavor. I would like to thank my parents for their calm support over the last two
years in comforting phone calls and pleasant visits. I am thankful for LT Beth
Allinder. She buoyed me during difficult times and provided me with the type of
honest and caring friendship like that of a sister. Finally, I would truly like to
thank LT Kevin Scott for his strength and support in helping me cope with and get
through unexpected surgery, his undying faith in me and my abilities and for his

loving friendship that I will cherish for a lifetime.

viii

Without all of the efforts of these individuals and organizations, none of this

would have been possible. Thank you.

ix

I. INTRODUCTION

A. DESCRIPTION

Space... the final frontier. Mankind has always had a desire to explore space.
This desire has been accompanied by a dream for a permanent structure in space on which
people can live while observing and collecting data on Earth's solar system. This dream
has already been realized by the Soviet Union with its currently operational manned MIR
Space Station. The United States is attempting to realize this same dream by striving to
develop, design and employ a manned space station by the late 1990's.

The space station will need a smooth mechanism for the collection, processing and
storage of data and dissemination of information. It will also need a method for monitoring
the major systems on the space station, isolating predicted and actual faults, diagnosing the
problem and providing a possible solution. Such a system would probably involve an
amalgam of three technologies: computer expert systems, computer graphics, and
computer networks.

Most major systems on the space station will utilize an expert system. This expert
system will contain specific knowledge about the major system to include an indepth
model, rules for the diagnosis of system or component failures and the capability to provide
possible solutions to diagnosed problems. There will be a simple graphics interface that
will be the main interface to the expert system for the astronauts. This will be necessary to
enable the United States to save resources on astronaut training on the expert systems.
This interface will require some form of networking to allow the graphics interface and the
expert system to communicate. It will provide autonomy on the space station, insuring a

safe environment that will allow the crew to perform to their maximum potential.

B. PURPOSE.

This thesis presents a high-level fault diagnosis prototype for the NASA Space Station
Power Management and Distribution (PMAD) system. This prototype serves as a
proposed training tool for NASA in the training of new personnel on space station expert

systems.

C. THESIS OUTLINE.

The following outline of this thesis lays a clear path for the discussion of the PMAD
system prototype. Chapter II provides a background on the NASA project and Chapter 111
provides an overview of the PMAD system prototype. Chapters IV through VI describe
the software involved in the expert system, the graphics and communications interfaces,
respectively. Chapter VII presents the integrated PMAD system prototype utilizing a
consolidation of the concepts presented in Chapters IV through VI. It also provides an
analysis of the PMAD system prototype and briefly discusses the PMAD System Manual.
Chapter VIII closes the thesis with results and ideas for the expansion of the PMAD system
prototype. It also discusses proposed NASA utilization of the prototype as well as its

practical usage by the United States Navy.

II. NASA PROJECT BACKGROUND

A. AUTOMATION AND SPACE STATION

On July 18, 1984, the United States Congress passed Public Law 98-371 that stated
that NASA would identify "specific Space Station systems which advance automation and
robotics technologies, not in use in existing spacecraft, and that the development of such
systems shall be estimated to cost no less than 10 per centum of the total Space Station
costs."” [Ref. 1:pp. 80-81] In response to this legislation, NASA established an Advanced
Technology Advisory Committee (ATAC) with the express purpose of reporting on the
potential uses and impacts that automation and robotics could have in the Space Station
program [Ref. 1:p. 81].

The Office of Aeronautics and Space Technology granted approval for the Systems
Autonomy Demonstration Program (SADP) in November 1985. The SADP was created to
address NASA's need to develop, integrate and demonstrate various technologies for
incorporation into the Space Station. The organization that was given the lead on the SADP
was the Ames Research Center Information Sciences Office. Four milestone
demonstrations are envisioned to occur from 1988 through 1996. Each demonstration
includes more difficult tasks in order to integrate more complex autonomous capabilities

into a technologically advancing society. [Ref. 1:p. 81]

B. THE SADP
The SADP was set up as a joint venture between the Ames Research Center (ARC)
and the Johnson Space Center (JSC), research and operation centers, respectively. ARC

functions involve the following:

« "Program-wide planning, scheduling, budgeting, and evaluation
+ In-house conduct of a significant portion of the core technology effort
« Coordination of the core technology efforts conducted at sites other that ARC

» Overall management of the development of the automation technologies into software
and hardware suitable for integration into the demonstration framework

« Provision of the technical support essential for facilitating the transfer of
technologies to future Space Station activities." [Ref. 1:p. ¢1]

The role of JSC includes:

"Supply of the application domain expertise necessary to guide the development of
software and hardware tools in order to support the demonstration

» Adaptation of the core technology products to the specific demands of the
demonstration environment

e Actual conduct of the milestone demonstrations

» Promotion of the transfer of the developed and demonstrated technologies into Space
Station applications." [Ref. 1:pp. 81-82]

C. THE THERMAL CONTROL SYSTEM DEMONSTRATION

A major objective of the 1988 demonstration is the automated monitoring, operation,
and control of a complete mission operations subsystem [Ref. 1:p. 82]. The Space
Station Testbed Facility at JSC was identified as a demonstration site for the Space Station
Thermal Management System. A main goal of the Testbed is to develop, test and evaluate
these new technologies for the Space Station via ground-base simulations [Ref. 1:p. 82].
As part of these simulations, "a knowledge-based support system has been developed to
provide fault recognition, diagnosis and isolation, monitoring and design and configuration

aids for the thermal testbed." [Ref. 1:p. 82]

D. THE POWER CONTROL SYSTEM DEMONSTRATION
The 1990 demonstration will focus on the automated control of multiple subsystems.
It will show the coordinated control of multiple subsystems. It will also demonstrate

operator aids for unanticipated failures, planning and reasoning about nonstandard

procedures. NASA has already begun its preparation for this demonstration by beginning
the design of the Power Control System (PCS). The PCS Testbed Facility is located at the
Lewis Research Center while autonomous technologies for PCS are being developed by
ARC. This M.S. thesis presents a high-level prototype for the PCS, the Power
Management and Distribution (PMAD) system prototype. An overview of the PMAD
system prototype design and associated hardware and software will be discussed in

Chapter III. [Ref. 1:p. 83]

III. THE PMAD SYSTEM PROTOTYPE OVERVIEW

The PMAD system prototype involves the use of a LISt Processing (LISP) machine
(which runs expert system software), a color graphics workstation and associated
software. Paragraphs IIL.A through III.C discuss the roles played by these machines and

their software in comprising the PMAD System.

A. THE SYMBOLICS 3675 LISP MACHINE

The Symbolics 3675 LISP machine is manufactured by Symbolics, Inc. The PMAD
system utilizes the Symbolics because it has the largest memory and disk capacity of the
3600 series Symbolics machines, enabling it to accommodate the software necessary to run
the PMAD system.

The Symbolics runs the Genera 7.1 operating system and utilizes the LISP artificial
intelligence language. The expert system software available on this machine is the
Knowledge Engineering Environment (KEE) Expert System Shell. KEE is a window
(screen partition) and mouse oriented program that provides the functionality needed for
development of the PMAD system knowledge base. The mouse is a pointing device with
three buttons that can perform certain operations and that can be moved around on a flat
surface.

The NASA Model Toolkit (MTK) is additional support software for the PMAD system
which sets up a template for the development of a knowledge base for any type of system
that can be broken down into components. MTK enables the placement of general icons
(picture representations) for these components into a window called the Library. The icons
in this Library window are used to create specific instances of the components which,

when pieced together with connections and connection links, comprise a picture or

diagram of the system in another window called the Model. All of the Symbolics software
enables the setting up of an environment where fault diagnosis can be performed. The

performance of this fault diagnosis will be discussed in Chapter VII.

B. THE SILICON GRAPHICS, INC,, IRIS-3120 GRAPHICS
WORKSTATION

The IRIS is a high performance color graphics workstation with mouse interface
manufactured by Silicon Graphics, Inc. The IRIS runs the ATT system 5.3 version of the
UNIX operating system. The IRIS comes with the Multiple EXposure (MEX) window
manager which provides a pop-up menu facility. The operating system and MEX both
utilize the C structured programming language. The IRIS's main feature is a set of
graphics and utility routines that provide high-level and low-level graphics support. All of

this software assists in providing the PMAD system with a simple color graphics interface.

C. THE COMMUNICATIONS SOFTWARE INTERFACE

Both of the aforementioned machines utilize the Transmission Control
Protocol/Internet Protocol (TCP/IP) standard to communicate with each other. The
Symbolics uses LISP functions written on top of TCP/IP to enable ease of use by the user.
The IRIS uses TCP/IP and an intercomputer communications package that can be
customized to communicate with other IRIS, Symbolics or Texas Instruments Explorer

machines.

D. SUMMARY

The associated software for the Symbolics and the IRIS have been discussed in a
general fashion in this chapter. In Chapters IV and V the software for these machines is
discussed in detail along with a brief discussion on how the different software layers

interrelate to support the PMAD system.

IV. SYMBOLICS LISP MACHINE SOFTWARE

A. THE LAYERS
There are four major software layers that the PMAD system utilizes on the Symbolics.
Each one plays a significant role in the support of the PMAD system. The following
paragraphs give a brief description of each layer.
1. Genera Version 7.1
The operating system on the Symbolics is Genera 7.1. It provides a total
operating environment for LISP processing. This includes manipulating the screen using
the mouse. The mouse is a pointing device with three buttons that can perform certain
operations and that can be moved around on a flat surface. Also, included in the
Genera 7.1 environment are the control of the keyboard and the creation and selection of
windows. [Ref. 2:pp. 6-9]
2. Common LISP
Common LISP is the result of an attempt to consolidate variations of LISP into a
collection of capabilities that could be considered a language. LISP functions are quite
similar to a glorified hand calculator; i.e., arguments and an operation to be performed are
typed in and LISP does the operation and prints out an answer. It is this evaluative
behavior that makes Common LISP a popular language in the Artificial Intelligence field.
[Ref. 3:p. xii]
3. The KEE Expert System Shell 3.1
KEE is a development system for building expert systems. An expert system has
a knowledge base that is composed of information blocks called units. These units contain

slots which represent information about these units and how that information relates to

other units. Slots have values that can contain descriptive information (facts) or procedural
information (rules). [Ref. 4:pp. 4-8]

KEE enables the user to not only organize facts and rules in the expert system's
knowledge base, but also allows their manipulation through the use of an inference engine.
[Ref. 5:p. 16]. An inference engine prioritizes facts and rules, executes them and based
on the rules' results, adds new facts to the knowledge base. Thus, KEE enables the easy
use and expansion of an expert system.

4. The NASA Model Toolkit (MTK)

The Model Toolkit (MTK) is a package developed to be closely integrated with a
number of KEE version 3.1 utilities (that provide basic support for a number of MTK
functions) in order to provide expert system developers support for designing and
implementing expert systems that utilize model-based reasoning. Such reasoning is
necessary since many expert system problems in simulation, monitoring, and fault
diagnosis concern physical systems. It is this model-based reasoning that MTK uses to
organize the PMAD system knowledge base. [Ref. 6:p. 2]

a. The PMAD System Knowlege Base

MTK provides the basic organization for representing the physical and
conceptual components that comprise a physical system (structures), the ways that these
components interact with each other (connections) and the crucial measurements
(parameters) that define how these components can change over time. [Ref. 6:p. 2]

(1) Structures. MTK represents objects to be modelled in a system by units
called structures of which there are two types, component and functional (only component
structures will be discussed) [Ref. 6:p. 5]. Component structures rcbresem distinct
physical objects. Some examples of such objects in the PMAD system are joints,

switches and batteries.

(2) Connections. Within MTK there are units called connections which
represent how one structure may effect another. Such influences can be the transfer of
energy such as heat, electricity or force [Ref. 6:p. 6]. The PMAD system connections are
called electrical.connections.

(3) Parameters. Significant measurable values in the PMAD system are
represented in MTK by parameters. Two types of parameters are used, simple and
complex. Simple parameters are used to handle a single qualitative value. Complex
parameters are used to handle parameters that need to represent both quantitative and
qualitative values. Also, parameters can be associated with both structures and
connections. The PMAD system utilizes complex parameters. They are charge.level,
power.level and voltage.level. These examples, as well as those in paragraphs
IV.A.4.a(1) and IV.A.4.a(2) above, can be seen in the PMAD system knowledge base

representation in Figure 1. [Ref. 6:p. 7]

10

FAULT.RULES == = w== DEAD_BATTERY.RULE

PWRSYS.CONNECTIONS ———ELECTRICAL.CONNECTIONS
PWRSYS.FAULT.MODES
PWRSYS.GLOBALS CHARGE.LEVEL

PWRSYS.PARAMETERS <POWER.LEVEL
VOLTAGE.LEVEL

BATTERY
EPSBOARD
INVERTER

ALPHASOINT
JOINT <
BETAJOINT
MAINDISTBOARD
BASICPDCA
POCA wa
EPSPDCA
PVEQUIP
PWRSYS.STRUCTURES SEBOARD

ICSWITCH
seswncn<"s cswire
BOARDSWITCH

VOLTREG

PWRSYS.COMPONENT.STRUCTURES

PWRSYS.FUNCTIONAL.STRUCTURES

Figure 1. The PMAD System Knowledge Base

Within these parameter units are slots. The slots of the most importance are
called value, value.state and trend.state. The value slot contains the numerical or
range value of the parameter. The value.state slot contains the information on the
parameter labelled either negative, zero or positive. The trend.state slot has
information on the parameter of either steady, increasing or decreasing. Examples of
these slots are discussed later in this chapter. [Ref. 6:pp. 7-8]

b. The PMAD System Library

The library has knowledge bases and an icon window associated with it.

Collectively, the library builds domain-specific representations on top of MTK's generic

structures [Ref. 6:p. 1]. The icons in the library window can be modified to exactly

11

resemble physical component structures and their associated connections. The PMAD
system library can be seen in Figure 2.
¢. The PMAD System Model
The model is quite similar to the library, in that it uses definitions made in the
library knowledge base, except it contains specific instances of components and defines
how these components interact. The PMAD system model can be seen in Figure 3.

[Ref. 6:p. 1]

B. THE INTEGRATION OF THE LAYERS

Now that all of the major software layers for the Symbolics that relate to the PMAD
system have been explained, the integrated software environment will be discussed. The
battery component will be the source of the examples.

The battery component structure (or class) in the PMAD system knowledge base in
Figure 1 is represented in the PMAD system library by a battery class icon in Figure 2 that
has three connections, vr.nm (voltage regulator node), n (negative) and p (positive). The
battery component is also represented in the PMAD system model in Figure 3 by another
icon that is an instance of the battery class icon in the library in Figure 2. This model icon
is shown to be linked or connected to the voltage regulator through the battery's vr.n
connection. The battery's n and p connections are unlinked. This instance of the battery is

known to the model knowledge base as battery.1.

12

Areaqry wsAs AVIND 4L T 2andig

3
Ilg
3] @

4] |§]

u.1

Im002<8mmm]

uOOqu.—.‘u>z_

—~oo=o:<oa._.w_oz_<—ﬁ

—uaoz.wz_o?run_ [3aoNdindand]

1

13

PPON WASAS AVINA UL °€ 24ndiy

V
|] i

—Bﬂ.l— J3gonvoadsaa] Jaaonadvoaisianivin] J3convavann] {aconsniorviaal aaoNaindand]

[Gavoass] [O¥u08s3]

SASHWAT3QOINV Y 19Poln

14

Battery.1 also has parameters that are associated with itself and its connections.
There is a unit called battery.l.charge which contains information about the charge on
battery.1. The battery.l.charge unit mainly keeps track of the trend.state of the
charge on battery.l. The battery.l.vr.n connection unit has a parameter unit
associated with it called battery.l.vr.n.powerload. This parameter unit's main
function is to keep track of the value.state of the powerload on the vr.n connection on
battery.1.

Figures 4a and 4b show partial output of the battery.l structure and the
battery.l.charge parameter units and their important slots. Figures 4c and 4d show
partial output of the battery.l.vr.n connection and the battery.l.vr.n.powerload

parameter units and their important slots.

The BATTERY. 1 Unit in MODELPWRSYS Knowled

o]
g Own slot: CHARGE from BATTERY.1
* Inheritance: OVERRIOE.VALUES
ValueClass: CHARGE LEVEL in PWRSYS
Cardinality. Max:)
Cardinality. Min: |
Values: BATTERY. 1.CHARQGE

Figure 4a. CHARGE Parameter Slot for BATTERY.1 Unit

The BATIERY . 1.CHARGE Unit in MODELPWHSYS Knowledge

9 Own slot: TRENOSTATE from BATVERY.1.CHARGE

Inheritance: OVERRIDE .VALUES

Avunits: (HANOLE PARAMETER STATES AV in MOODEL -TOOLKIT ALL
NIL)

Values: STEADY

Figure 4b. TREND.STATE Siot for BATTERY.1.CHARGE Unit

15

The BATIERY. 1.VA.N Unit in MOULLPWRSYS Knowiedge Base
O Own siot: POWERLDAD from BATTERY.1.VR.N

! Inheritance: OVERRIDE.VALUES

t ValueClass: POWERLEVEL in PWRSYS

j| Cardinality Max: |

Cardinality Min: |

8 Propagaterlag: T

Values: BATTERY.1.VAN POWERLOAD

Figure 4c. POWERLOAD Parameter for BATTERY.1.VR.N Unit

The BATTLRY. 1. VRN PUWERLOAD Unit in MODELPWHSYS Knowledge Base
9 Owrn siot: VALUE STATE from BATTERY.1.VR.N.POWERLOAD

Inheritance: OVERRIDE .VALUES

Avunits: (HANDLE PARAMETER.STATES.AV in MODEL -TOOLKIT ALL NIL)

Comment: “Negauve, zero, or positve, eg.”

Values. NEGATIVE

Figure 4d. VALUE.STATE for BATTERY.1L.VR.N.POWERLOAD Unit

16

V. THE IRIS GRAPHICS WORKSTATION

This chapter discusses the various software layers of the IRIS and how they

interrelate.

A. THE LAYERS
There are four major software layers that the PMAD system utilizes on the IRIS. Each
one provides a building block on which the PMAD system can be firmly supported. The
following paragraphs give a brief descriptive of each layer.
1. UNIX ATT Version 5.3
The PMAD system relies on the UNIX operating system. UNIX allows the user
to set up a custom environment that allows more ease of use of the applications on the
IRIS. It also is the foundation for many programs since the operating system has many
useful tools that can be utilized with the C programming language, the primary language of
all UNIX operating system-based machines. [Ref. 7:p. ix]
2. The C Programming Language
C is a programming language that has economy of expression, modern flow of
control and data structures and a diverse set of operators. C is not considered a high-level
language and is not limited to any particular area of application. It is this generality that
makes C more effective and convenient for many tasks than supposedly more powerful
languages. [Ref. 7:p. ix]
3. The MEX Window Manager
MEX allows for the creation of several independent displays or windows on the

screen of an IRIS workstation [Ref. 8:p. 78]. One of the most useful features of MEX is

17

its pop-up menu facility which enables a clean interface with the three button mouse on the
IRIS.

Utilizing MEX and the mouse, the user can click on white space and select
options off the main menu depicted in Figure 5a or click on a component or connection (in
blue) and select options off the component menu shown in Figure Sb. The main menu and
its subordinate menus are displayed in Figure 6. Since the main menu contains all the

options that are available at lower level menus, it will drive the following discussion.

POWER NETWORK CONTROL

STATUS PREDICTION

FAULT ISOLATION

POWER FLOW MANAGEMENT

Figure 5a. The PMAD System Graphics Interface Main Menu

Component Menu

HELP

STATUS PREDICTION

FAULT ISOLATION

Figure 5b. The PMAD System Graphics Interface Component Menu

18

SNUdJ\ djeulpiogng pue uB|y uISAS VD 4L 9 2andiy

S3143Live
GNVY SOIVLIOAOLOHd 3SN

A1370S SOIVLIOAOLOHd 3Sn

S31H311v8 3IOUVHISIO

P e ——————————————————

S3H311vE 3ADHVHI

d13H
N R
ANIWIDVNVIW MO1Td HIMOd

< INFWIOVNVWN MOTd mw\son_x-

< INIWIOVNVYI 1INVd
< 1HOddNS IONVNILNIVA

d13H d_

AINIWIOVNYIN HLTV3IH

NOLLYIOSI _1Invd
NOILD313a 11nVid

d13H

e

ANIWIOVNVIN _LInvd

< IN3IWIOVNVW H1V3H |

TJOHINOOD MHOMLIN HIMOd

| noiL0I03Hd SNiViS
d13H

1HOddNS IONVNIINIVA

J<_INJWIODVNVWN _MO14 HIMOJ
NOILV10SI 11nv3

, NOI12103Hd SNiVLS
< TOHINOD YHOMILIN HIMOJ

19

_

MEX allows the user to access the main menu help panel of the PMAD system,
lower level menus and their help panels. It also provides access to the animation panel that

depicts the flow of power through the system. The main menu enables the user to conduct

system evaluations to determine whether or not predicted or actual faults exits. Similarly,
the component menu enables the evaluation of predicted or actual single component
failures.
4. The Silicon Graphics GL Package

The PMAD system utilizes the graphics and utility routines provided on the IRIS
to support high- and low- level graphics. These routines support the use of C, FORTRAN
and Pascal language routines. The IRIS graphics package supports, but is not limited to,
the following routines: drawing, coordinate transformation, pattern and font, input and

output, object creation and editing, curve and surface and shading. [Ref. 8:p. 2]

B. THE INTEGRATION OF THE LAYERS

All four of the discussed layers work together to provide the simplicity in the PMAD
system graphics interface. The UNIX operating system, C programing language, MEX
and the graphics package enable the depiction of the PMAD system in Figure 7. The user

is able to have a color graphics interface and a pop-up menu facility in the same screen.

20

VI. THE COMMUNICATIONS INTERFACE

The PMAD system communications interface utilizes the Inter-computer
Communication Package (which is comprised of LISP and C code) developed by students
at the Naval Postgraduate School [Ref. 9]. This package utilizes the TCP/IP standard and
the UNIX client/server socket stream capability. The high-level routines for this package
have been tested on different machines to include the Symbolics and the IRIS. An IRIS
can be either a server waiting for a client to call and establish a connection or the client.
The Symbolics LISP machine must always be the client. This is because "the IRIS
simulates the environment and the Symbolics simulates intelligence. The environment must
exist before intelligence can be applied to it." This package enables the passing of integers,
single floating point numbers, single characters and character strings from the IRIS to the
Symbolics and vice versa. [Ref. 10:p. 1]

The following is a brief discussion of the IRIS and the Symbolics portions of this
interface. The directory which contains all of the necessary code for the Inter-computer
Communications Package can be viewed on the IRIS (IRIS2) at the Naval Postgraduate

School Graphics and Video Laboratory. Additional details are available in [Ref. 9].

A. THE IRIS

In the utilization of TCP/IP and C, two ports are necessary to establish communication
with each machine. These ports are connected to sockets in TCP/IP (which can be
conceptually thought of as electrical sockets in a wall). Once the two channel link has been
established, each channel is used in an asynchronous mode; i.e., enabling reading and
writing of information as desired by both ends of the link. There are three different ways

to establish the link with another machine. The simplest is using the function

22

machinepath to create a link between two machines. Since this is the only method used
by the PMAD system it is the only one that will be discussed. [Ref. 10:p. 1]

In utilizing the machinepath function certain rules must be followed. Once the call to
machinepath has been made, other dynamic allocation (such as makeobject calls to the
graphics library) cannot be made and only one machinepath call can be made in a
program. There are two independent processes, receive and send, that communicate
with the PMAD system C appiication program using the machinepath. Each receive
process sleeps after receiving a message for its socket until its buffer is emptied by the
application program and each send process sleeps after sending a message to its socket
until the application program requests that it send another message. This method reduces
processing overhead. Once finished with communications, the links created by
machinepath can be broken with the function deletemachinepath. This function
deletes the links from memory, kills the receive and send processes and shuts down and

closes the TCP/IP socket connections. [Ref. 10:pp. 1-2])

B. THE SYMBOLICS

Within the LISP artificial intelligence language exists the Flavor System. This system
is a "mechanism for defining and creating active objects, that is objects which ‘remember’
their state and 'know' how to perform certain operations.” A flavor is a class of such
objects, while conversely, each object of this type is an instance of that flavor. Two
primary characteristics of a flavor are the set of state variables that an instance of a flavor
has (instance variables) and the set of operations that may be performed on all instances of
that flavor. The operations that may be performed on these flavor instances are
implemented by functions called methods. These methods provide behavior for instances

of a flavor. {Ref. 11:pp. 97-99]

23

The important flavor in the Inter-computer Communication Package implemented on
the Symbolics is called conversation-with-iris. There is a method called put-iris
which converts an argument of any type to a string and sends it to the IRIS host. The

method get-iris returns the proper type, depending on what was sent. [Ref. 9:p. 4]

24

VII. THE INTEGRATED PMAD SYSTEM PROTOTYPE

The expert system, graphics and communications interfaces come together smoothly to
create the integrated PMAD system prototype. A conceptual picture of how these three

portions of the PMAD system function together can be seen in Figure 8.

A. THE MAN-MACHINE INTERFACE

The man-machine interface is based on the concept that an astronaut on a space station
will utilize a graphics interface with an expert system running in the background and a
communications interface linking the two together. The astronaut will instruct the expert
system through the graphics interface to run a system or component check on the PMAD
system. The graphics interface determines which type of evaluation was requested and
send that information through the communications interface to the expert system. The
expert system receives the information and, based on the type of evaluation requested,
executes the appropriate rules in the knowledge base and sends the resulting status back to
the graphics interface and the astronaut. Based on the status of the component(s), the
graphics interface either flashes the component(s) red if failed or yellow if predicted to fail
for a system check [Ref. 12:p. 71]. For a single component check, the graphics interface

flashes a component green if the component is functioning properly.

25

wasAS AVINd Paresdaug ayy ‘g 1ndiy

HIGWNN LNINOJNOD NV SNLVLS ININOJIWOD ON3S 2 HLVd

HIGWNN LNINOJWOD ONY H3IBWNN IdAL ON3S L HLvd

Z Hivd
(T13HS W3LSAS LH3dX3 3N) (39V443 LNI SNOLLYIINNINNOD) (3DV4HILNI HISN SOHIVHD)
IN3NO HIAUIS
3NIHOVN dSIT L9t SONOEWAS ' Hivd NOILVISNHOM SOIHVHO 0ZIE Siyl

26

B. FAULT DIAGNOSIS

The expert system for the PMAD system receives information from the graphics
interface as stated in paragraph VII.A above. The expert system utilizes this information to
perform fault diagnosis by accessing facts that have been inserted into the knowledge base
(simulating sensors that gather information for the PMAD system) and by executing fault
diagnosis rules written in the KEE expert system shell Tell and Ask language. Tell and
Ask is a high level English-like language that enables the composition of if-then rules and
the use of the forward and backward chaining (part of the KEE inference engine). A
forward chaining algorithm searches through the knowledge base to find facts to satisfy the
if-portion of a rule. If it can satisfy all the conditions of the if-portion, the then-portion is
deduced to be true and is added as a fact to the knowledge base. A backward chaining
algorithm starts with the then-portion of a rule, also called the goal, and searches back
through the knowledge base to find the facts needed to prove the then-portion true. That
means finding all the facts to satisfy the if-portion or finding the then-portion as a fact
already in the knowledge base. The results are then sent back to the graphics interface via
the communications interface. The battery structure will be utilized to illustrate this fault
diagnosis concept.

The graphics interface, when queried by a user, will request a component check on
battery.1 (known to the graphics as #5). This component number and the type of check
(status prediction for predicted failure (0) or fault detection for actual failure (1)) are sent
via the communications interface to the expert system. In this case it will be a one (1) for
an actual failure. '

Figure 9a shows the facts for battery.1 and its connections that were inserted into the
PMAD system knowledge base prior to establishing communications with the IRIS.

Figure 9b shows the external form of the Tell and Ask fault rule for battery.1. Figure 9¢

27

shows the Tell and Ask backward chaining rule for battery.l. This backward chaining
rule, when executed, will use the asserted facts and the fault rule to determine if battery.1
has failed. (Note that the backward chaining rule is written in a form that allows for a
complete system check or a single component check, whichever is requested.) If the then-
portion of the backward chaining rule is found to be true, then a slot in battery.1 called
fault.mode has its value changed to failed. This slot of battery.1 is shown in
Figure 10. This information is then sent back to the graphics interface in the form of a
component number (5) and a message containing the appropriate color to flash the
component and a status for the component ("R-The fault.mode of battery.1 is failed,"

the 'R’ in the message representing the color red).

(defun Init-valuest ()
(assert ‘(the vaiue.state of battery.1.vr.n.powerioad is negative()
(assert ‘(the trend.state of battery.1.charge is steady))

Figure 9a. BATTERY.1 Unit Facts

Own siot: EXTERNAL.FORM from DEAD_BATTERY.RULE
inhgrtance: OVERRIDE.VALUES
Avunts: RULEPARSE n RULESYSTEM3, RULE-COMPILER-AV in ACTIVEVALUES

Cardinality Max: 1

Comment: “The text d the rule in the form the user ertered. The rule is parsed by the RULEPARSE active vaiue.
Parsed premises are placed n the PREMISE siot and conclusons are piaced in the CONCLUSION

Vawes: (IF (?PART IS IN CLASS BATTERY)
(THE VALUES STATE OF (THE POWERLOAD OF (THE VRN OF 7PART)) IS NEGATIVE)
(THE TREND.STATE OF (THE CHARGE OF 7PART) IS STEADY)
THEN

OEDUCE
(THE FAULT.MODE OF 7PART 1S FALED))

Figure 9b. BATTERY.1 Unit Tell and Ask Rule

28

(defun stert_diagnosis (user:"comp® rules world)

(setq comp (aref *pwrsys_array® user::*comp®))

{(query ‘(a fault.mode of (if (null comp) ‘?2comp comp is ?what) rules worid)
)

Figure 9c. BATTERY.1 Unit Backward Chaining Rule

put) The BATIERY 1 Uit in MODE L PWRSYS Knowledqe Base
O Own siox FAULT.MODE from BATTERY.1
Inheritance: OVERRIDE.VALUES
Comment: "Failure mode for this structure*
Values: FAILED

o]

Figure 10. FAULT.MODE Slot for BATTERY.1 Unit

C. THE PMAD SYSTEM ANALYSIS

The PMAD system, being composed of an expert system, graphics interface and
communicatins interface, makes it very complex. Both the Symbolics and the IRIS rely on
mouse interfaces when dealing with the PMAD system. The use of so many different
interfaces causes the PMAD system to be a system with a delicate balance. If any one of
these interfaces fails, that delicate balance will be disrupted and the PMAD system
protofype will not function.

The fault diagnosis rules for the component connections determine a failure or
predicted failure by utilizing probability routines called faultroutine and statusroutine
(both routines are listed in Appendix B) instead of actual Tell and Ask fault rules.

Having the IRIS with its MEX window manager pop-up menu facility, helps to make
the PMAD system environment easier to navigate and more organized. The help menus at
each level of the pop-up menus have a toggle feature that alternates between specific help
for that menu and information on the use of the mouse. This on-line help enables a new

user to more easily use the PMAD system. Therefore, although the PMAD system is

29

complex and needs total coordination between its several parts, its setup will enable it users
(astronaut trainees for the Space Station) to be more efficient at their main tasks by reducing

collateral duties pertaining to systems monitoring.

D. THE PMAD SYSTEM MANUAL
This manual, attached as Appendix A, contains information on how to utilize the
PMAD system. It also contains suggested ways to expand the existing system that will

make it more useful and efficient.

30

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The PMAD system prototype proved to be viable. Although not totally completed and
error-free, the PMAD system validated the concept of using graphics as a main interface
while leaving the expert system transparent to the user. Although KEE was utilized in the
design of this prototype, one other expert system shell, ART, was briefly considered.
Although a useful tool and faster in processing than KEE, ART did not provide the
necessary ease of use associated with KEE that is paramount in getting individuals quickly
up to speed on an expert system shell. Not only was the PMAD svstem a successful
prototype, it also enabled the expansion of knowledge in artificial intelligence, expert

systems and their software support tools.

B. RECOMMENDATIONS
1. PMAD System Prototype Expansion

In order to stay on the cutting edge of technology, one must be willing to expand
or improve. The following paragraphs contain ideas for possible expansion of the PMAD
system.

a. On the Symbolics

Currently, there is only one fault rule written for the PMAD system and that

is for the battery component. Fault rules need to be written for the other components and
their connections. Also, as was stated in Chapter VII, the fault rules for the connections of
the components in the PMAD system knowledge base can be written in the KEE Tell and

Ask Language, instead of using probability functions. Finally, the PMAD system library

31

and model icons can be modified to more closely resemble the components that they are
representing.
b. On the IRIS
Given more detailed information on the PMAD system, the current high level
diagram can be extended or PAN/ZOOM capabilities for individual components can be
developed. Extended screens can be implemented utilizing an icon in the middle of each
side of the screen or, as an option, off of the PMAD system main menu. PAN/ZOOM
options could be added to the existing pop-up component menu. Finally, a training
program could be a choice off the main or component menu that would allow users to
practice diagnosing component and system faults based on provided scenarios. This
program would be displayed in the lower left quadrant of the PMAD system graphics
interface display.
2. NASA Utilization of PMAD System Prototype
The NASA SADP had the concept of developing an expert system with color
graphics as a more clearly understandable side display. This prototype delivers a different
perspective on the foreseen interface by having the color graphics as the controller with the
expert system running transparently to the user. This prototype could enable the
accelerated training of new personnel on artificial intelligence projects by giving them a
prototype to learn on that is simple and in step with the current goals of NASA. Itis a
prototype idea that can be expanded, modified and completedly changed. This flexibility is
the true beauty of the PMAD system prototype. It will provide the ability to stimulate ideas
for its improverient and, as a result, sharpen the minds of those who will design the actual

Power Control System.

32

3. Practical Application to the United States Navy

Today's Navy currently relies heavily on satellites for navigation. As a result,
there are many naval personnel that stand long hours of watch at ground statins, monitoring
the health and welfare of these satellites. If the idea of the PMAD system prototype was
modified to accomodate satellites (such as monitoring, change of station and fault
diagnosis) then many of the individuals already performing this task manually, as a full
time job, could be utilized in a more efficient capacity. It will be costly to incorporate such
a system into the existing framework but, it is foreseen that such systems as the PMAD

system prototype will reduce the wear and tear on a most precious resource, people.

33

APPENDIX A

THE POWER MANAGEMENT AND DISTRIBUTION (PMAD)
SYSTEM PROTOTYPE
MANUAL

34

TABLE OF CONTENTS

PMAD SYSTEM USER'S MANUALccociiiiiiiiiiiiiiiiiine, 38
GETTING STARTED......citiiiiiiiiiiiiiiiiie et et e er e 38
1. Necessary Symbolics Files.......cccociiiiiiiiiiiiiiiiiiiiiiiiiiiiiniinn 38
2. Necessary IRIS Files...ccoccoiiiiiiiiiiiiiiiiiiiiinin . 38
3. LogEINng On.ciiiiiiiiiiiiiiiii e 39

2. TheSymbOHCS ...cccvvieiiiiiiiiiiiii i 39

D, TheIRIS ...ttt aenean s 39

c. The Integrated PMAD System........cccocoiiiiiriirinnininiinecnnnenn. 40
4. Use Of the MOUSE.....covvuruininiiiiiiiiiiiiiiiiii e eas 40
S. Select an OPtioN......cciiiiiiiiiiiiiiiii e 41
6. TheMain MEnU.ociuiniiiiiiiiiiiiiiiiiiiii it et reeneaes 41
7. Terminate Activity (CANCEL)...cccciiiiiiiiiiiiriiiiininiecinnneeneee. 41
8. HelpMenus....cooiiiiiiiiiiiiiiiiiiiiiiir 41
9. Exiting the PMAD System.......ccoiiuiiiiniiniiiiiiinniinininne, 41
PMAD SYSTEM OVERVIEW ...ttt 42
1. PMAD SystemMain Menu.......coooeiiiiiiiiiiiiiiiniiineneieeisneceanennnns 42
2. Power Network Control Menu.........cccccoiiiiirniieciiiriniiniiennnn. 43
3. Health Management Menu........ccooiiiiiiiiiiiiiiiiniiiiiiiiieneienneinns 43
4. Maintenance SUPPOTt MeNU.occieiniiiiiiiiiniiniiniiiiieeneneenns, 44
S. Fault Management Menu.......ccomiiiiinniiiiiiiiinniiiiiiinnnnn. 44
6. Power Flow Management.cooiviiiiiiiiiiiiiiiiiiiininciennnnn.. 45
7. The Component Menuocvvviiiiiiiiiiiiiiiiiiiiiiiiiiiisiiesiieenaane, 45
ON-LINE HELP. ..ottt e e 46

35

. PMAD SYSTEM PROGRAMMER'S MANUAL ..., 47
A. SYMBOLICS APPLICATION SOFTWARE ORGANIZATION 47
1. Indt-pWISYSJISP... v 47
2. Keeflles iSP...uouiiiiiiiiiiiiiiii i e 48
3. PWISYS-DEtliSP ..o 49
4. Main-pwrsys. ISPoiiiiiiiii e 49
IRIS APPLICATION SOFTWARE ORGANIZATIONoocivinininenen. 51
PMAD SYSTEM EXPANSIONot 52
1. PMAD Expert System EXpansionccocvoeiiiiiiiiiiininiinnenennn, 52
2. PMAD system IRIS Graphics Extended Screen and Pan/Zoom
Capabilities. .. veueieitii i e e e eae 53
3. PMAD System Training Programccociiiiiiiiiiiiinniiinn, 54
4. PMAD SystemHelpFiles........coocoiiiiiiiiiiiiiiiiiiiiiiiiiinine, 54
1. USEFUL REFERENCE DOCUMENTS AND MANUALScociiiiiiinannee. 55
IV. IMPORTANT POINTS OF CONTACT ..ottt 56
36

Figure Al.
Figurs A2.
Figure A3.
Figure A4.
Figure AS.
Figure A6.
Figure A7.
Figure AS8.

LIST OF FIGURES

PMAD System Mouse Help Menu.......cccvvniieniniiiiniicnininiiniinnen, 40
PMAD System Main Menuooviiiiiiiiiiiiiiiiiiiiiiiiiieriiene e nen 42
Power Network Control Menu.........oooiiiiiiiiiiiiiiiiiiiiiniiiiinnnenn. 43
Health Management Menu.........oooiiiiiiiiiiiiiiiiiiii e 44
Maintenance Support MenU.........cccooviiiiiiiiiiiiniininienimiii. 44
Fault Managment MenUocouiiininiiineiniiiiiiieiiii i eneaae 45
Power Flow Management Menu................ocioviiiiiininiiiinnn., 45
PMAD System Component Menucooviivuiiiiieiienieneineanennnns 46
37

I. PMAD SYSTEM USER'S MANUAL

This manual is for those who will utilize the PMAD system. You should familiarize
yourself with the IRIS 3120 graphics workstation, the Symbolics 3675 LISP machine and
their associated software before trying to use the system. It may make the first few

accesses to the PMAD system more pleasant.

A. GETTING STARTED
In order to get started on using the PMAD system, you must have an account on both
the Symbolics and the IRIS and have access to the NASA directory on both machines.
Once you have become oriented on both machines, the following files should be copied to
your directory on the respective machine.
1. Necessary Symbolics Files
As was stated, access to the NASA directory on the Symbolics is needed. The
necessary files will be set up for use. Also the init.lisp file that sets up your Symbolics
environment should contain the following LISP command: (load
"syml:>sys>site>thermal.translations") to enable you to access the PMAD
system.
2. Necessary IRIS Files
Access to the NASA directory on the IRIS is needed. The necessary files will be
available for use. Your .login file that sets up your IRIS environment should include the
following line:

alias pmad source runprog
to enable you to access the PMAD system with fewer commands.

38

3. Logging On
a. The Symbolics

Make sure the system in booted up in Genera 7.1 with KEE 3.1. At the
"Command:" prompt type "login" and a space. You will then be prompted for your user
name. Type in "NASA" and a CR. The Symbolics should run the init.lisp file and load the
syml::sys>site>thermal.translations file. Hit SELECT-K to bring up KEE. At the
LISP Listener window type the LISP command (load file kt:build-system :mtk) to bring up
MTK. Then click the left mouse button on the KEE icon, choose the load KB option and
load the following knowledge bases: syml:>NASA>pwrsys and
syml:>NASA>modelpwrsys. Once loaded, click the middle mouse button on the
MODELPWRSYS knowledge base in the KB window. Position the resulting window,
MODELPWRSYS UNITS, in a convenient location. Click the left mouse button on
MODELFWRSYS.GLOBALS and choose the send message option. On this window
choose the initialize parameters option. Now, at the LISP Listener window type the
command (SET PACKAGE COMMON-LISP-USER). Then type the command
(load "main-pwrsys.lisp"). After this file is loaded you are ready to proceed to
section 1.A.3.b.

b. The IRIS

You will need both a side terminal and the IRIS graphics workstation. Since
the communications package sends status messages to the screen, the side terminal must be
used as the logon machine. So, at the "IRIS Login" prompt, input your account name and
a carriage return (CR). At the password prompt, input your password and a CR. You
will then be prompted for a terminal type. Type vt100 and a CR. Change to the NASA
directory by typing cd /user/work/NASA and a CR.

39

¢. The Integrated PMAD System

To run the PMAD system program, type "PMAD" at the IRIS system
prompt. The window manager, MEX, will be invoked on the IRIS workstation, making
its current screen CONSOLE and then the graphics interface of the PMAD system will be
displayed on the IRIS. Two messages should come up on the side terminal saying
"Awaiting connection with SYM1". At this time, go over to the Symbolics (SYM1) and
type the LISP command (sympwrsys) at the LISP Listener. This command starts the

Symbolics portion of the PMAD system running. Now the system is ready to use.

4. Use of the Mouse

The mouse has three buttons with functions as described in Figure A1.

40

(LEFTMOUSEj rMIDDLEMOUSEN (RIGHTMOUSE)
TERMINATE RETURN TO SELECT A
ACTIVITY MOUSE MENU MENU

(ONLY WHEN IN OPTION

(CANCEL) A HELP MENV)

. J J L J

_

Figure Al. PMAD System Mouse Help Menu

5. Select an Option
To select an option, press the right mouse button to bring up the desired menu
panel. Options with an arrow in the right hand corner have submenus that can be
displayed by scrolling off either end of that particular menu. Once you have reached an
option you desire, release the mouse button. Additionally, once done with a selected
option and the display, press LEFT MOUSE (CANCEL) to go back to the main menu
levei.
6. The Main Menu
The main menu panel of the PMAD system can always be reached by: (1)
pressing the RIGHT MOUSE or, if several levels down, (2) rolling the mouse off of all
options letting go of right mouse and then pressing it again as in option 1.
7. Terminate Activity (CANCEL)
This option will terminate fault simulations, power flows and help menus. It
returns you to the main menu level which can be reached as explained in Section I.A.6.
8. Help Menus
To choose a particular help menu, press the RIGHT MOUSE, move cursor to the
HELP option and release the mouse button. The help menu has a toggle feature which lets
you toggle between the mouse diagram above and specific help for that menu. To leave a
help menu, press the cancel key, MIDDLE MOUSE.
9. Exiting the PMAD System
To exit the program, press the RIGHT MOUSE, place cursor on EXIT option
and release. The connections between the IRIS and the Symbolics will automatically be

closed.

41

B. PMAD SYSTEM OVERVIEW

This section provides an overview of the PMAD system. This includes all menus and
their options, along with a brief description of each.

1. PMAD System Main Menu

The PMAD system Main Menu represents a system based on a photovoltaic

power supply with battery back-up. It would normally include options for HELP,
POWER CONDITIONING, POWER DISTRIBUTION and POWER NETWORK
CONTROL. For simplicity, only the HELP and POWER NETWORK CONTROL
options were implemented. The STATUS PREDICTION and FAULT ISOLATION and
POWER FLOW MANAGEMENT options exists are lower level menus and were added to
the main menu for ease of access. POWER NETWORK CONTROL and POWER FLOW
MANAGEMENT have submenus. Flow of power through the system can be seen by
clicking menu option POWER FLOW MANAGEMENT and scrolling off of its left or right
side. STATUS PREDICTION and FAULT ISOLATION enable the running of a complete
system check to determine whether a predicted or an actual failure has occurred somewhere
in the PMAD system. A diagram of the PMAD System Main Menu can be seen in
Figure A2.

e ————

HELP
POWER NETWORK CONTROL >

STATUS PREDICTION
FAULT ISOLATION
POWER FLOW MANAGEMENT >

Figure A2. PMAD System Main Menu

42

2. Power Network Control Menu
The Power Network Control menu is designed to break down system analysis
into smaller subtasks which can be managed independently and more efficiently. It would
normally include options for HELP, DISTRIBUTION MANAGEMENT, LOAD
MANAGEMENT, HEALTH MANAGEMENT and COMMAND/ DATA I/F. Again, only
the HELP and HEALTH MANAGEMENT options were implemented. HEALTH
MANAGEMENT has submenus. This menu can be seen in Figure A3.

POWER NETWORK CONTROL

HELP
HEALTH MANAGEMENT »>

Figure A3. Power Network Control Menu

3. Health Management Menu
The Health Management menu's function is to monitor the health of the PMAD
system and to predict its future status to enable parts' replacement before failure. The
options are HELP, MAINTENANCE SUPPORT, FAULT MANAGEMENT and POWER
FLOW MANAGEMENT. POWER FLOW MANAGEMENT is not one of the original
options but was added to provide the user animation that shows the different ways power
may flow through the PMAD system. All options except HELP have submenus. This

menu can be seen in Figure A4,

43

HEALTH MANAGEMENT

HELP
MAINTENANCE SUPPORT _ >

FAULT MANAGEMENT >
POWER FLOW MANAGEMENT >

Figure A4. Health Management Menu
4. Maintenance Support Menu

The Maintenance Support menu provides information needed to carry out service
procedures, both unscheduled and routine, and step-by-step instructions for these
procedures to include contingency information to handle foreseeable problems. The
options would normally be HELP, STATUS PREDICTION, PREVIOUS
MAINTENANCE SCHEDULING, NETWORK SOLUTION, MONITORING and
HISTORY RECORDS GENERATION. The only options implemented were HELP and
STATUS PREDICTION. This menu can be seen in Figure AS.

MAINTENANCE SUPPORT

HELP
STATUS PREDICTION

Figure AS. Maintenance Support Menu

5. Fault Management Menu
The Fault Management menu provides options that enable the detection of an
abnormal state in the PMAD system, the isolation of faults that cause this state and
suggested actions that could bring the system back to an operational state. The options that

would normally be present are HELP, FAULT DETECTION, FAULT ISOLATION,

FAULT COMPENSATION and FAULT LOGGING. The only implemented options are
HELP, FAULT DETECTION and FAULT ISOLATION, where FAULT DETECTION
and FAULT ISOLATION currently call the same detection routine. This menu can be seen

in Figure A6.

FAULT MANAGEMENT

HELP
FAULT DETECTION
FAULT ISOLATION

Figure A6. Fault Managment Menu
6. Power Flow Management
The Power Flow Management menu's purpose is to show the flow of power
through the system. The options are HELP, CHARGE BATTERIES, DISCHARGE
BATTERIES, USE PHOTOVOLTAIC SOLELY, USE PHOTOVOLTAIC AND
BATTERIES. This menu can be seen in Figure A7.

POWER FLOW MANAGEMENT

HELP
CHARGE BATTERIES
DISCHARGE BATTERIES

USE PHOTOVOLTAICS SOLELY

USE PHOTOVOLTAICS AND
BATTERIES

Figure A7. Power Flow Management Menu
7. The Component Menu
The Component Menu provides options HELP, FAULT ISOLATION and

STATUS PREDICTION. These options when chosen from the Component menu enable

45

the checking of only a single component vice a complete system's check. This menu can

be seen in Figure A8.

Component Menu

STATUS PREDICTION

FAULT ISOLATION

Figure A8. PMAD System Component Menu

C. ON-LINE HELP
This manual, in its entirety, will be available in a file called README. It can be

viewed by typing the command pmadman.

46

II. PMAD SYSTEM PROGRAMMER'S MANUAL

This manual is for those who would like to modify the PMAD system. This manual
discusses applications software on the Symbolics and the IRIS and possible ideas for
PMAD system expansion. Before attempting modifications, it is recommended that the

following courses be taken before utilizing this system:
CS3313 - Introduction to Artificial Intelligence,

CS§4202 - Introduction to Computer Graphics, and
CS4313 - Computers for Artificial Intelligence.
A. SYMBOLICS APPLICATION SOFTWARE ORGANIZATION
The application software developed on the Symbolics is consolidated into four LISP
files: init-pwrsys.lisp, keefiles.lisp, pwrsys-net.lisp and main-pwrsys.lisp.
The subroutines that these files consist of will be discussed in this section. Familiarization
with packages and how they interrelate on the Symbolics will be quite helpful, especially
the packages COMMON-LISP-USER and KEE, since the LISP command (zl:pkg-
goto [package name]) is used throughout the LISP files in order to transfer control
between these two packages.
1. Init-pwrsys.lisp
This file contains functions that are used to set up the initial PMAD system
environment under the package COMMON-LISP-USER, before package KEE functions
are utilized. This file consists of the following variable declarations (all variables with

asterisks (*) around them are global, known to all the files).

*typenum® - This variable holds the type of system check requested (zero (0) for fault
detection and one (1) for status prediction).

message out - This variable holds the message that is sent from the Symbolics to
the IRIS containing the status of the component that was checked.

47

user::*comp* - This variable holds the component number sent from the IRIS to the
USER package on the Symbolics.

randnum - This variable holds the random number generated to determine if a
connections of component has failed.

user::*fault_list* - This variable holds the list of failed components based on
backward chaining through the facts and rules of the PMAD system knowledge
base.

part - This variable holds the component from the pwrsys_array that corresponds to
the component number sent from the IRIS.

data_in - This variable holds information sent from the IRIS to the Symbolics.
data_out - This variable holds information sent from the Symbolics to the IRIS.

*finished_processing - This variable holds the flag sent from the Symbolics to the
IRIS to signal the end of processing for that particular system or component check.

The following functions are used:

randroutine - This routine generates the random number to be used by the
faultroutine and predictedroutine.

faultroutine - This routine determines, based on whether the random number from
randroutine was between 0.9 and 1.0, if the component connection in question
(*comp*) has failed.

predictedroutine - This routine determines, based on whether the random number
from randroutine was between 0.8 and 1.0, if the component connection in question
(*comp*) is predicted to fail.

process_data - This routine determines whether the part in question is a component or
a component connection (part number 0 or 15 through 30). If the part is a
connection, it runs the appropriate probability function, depending on the type of
check desired.

2. Keefiles.lisp
This file contains those functions that need to run on the Symbolics under

package KEE. They are as follows:

start_diagnosis - This routine sets a variable equal to a component or connection from
the PMAD system component and connection array.

pwrsys_array - That variable is used in the backward chaining rule that determines
fault occurrences.

init-valuesl - This routine inserts facts concerning the battery.1 component into the
PMAD system knowledge base.

reset-valuesl - This routine deletes facts concerning the battery.1 component from
the PMAD system knowledge base.

48

*pwrsys_array® - An array of the components and connections of the PMAD system
knowledge base.

predicted_array - This is an array of messages for the predicted failure of PMAD
system components and connections, using the names that correspond to those on
the graphics interface side of the PMAD system.

fault_array - This is an array of messages for the failure of PMAD system
components and connections, using the names that correspond to those on the
graphics interface side of the PMAD system.

*okay_array® - This array is only accessed when a single component check results in
a correctly functioning component.

check_predicted_array - This routine determines which predicted failure message to
send back to the IRIS.

check_fault_array - This routine determines which failed message to send back to the
IRIS.

output_routine - This routine takes a line in the fault list that is generated from the
results of backward chaining through the PMAD system knowledge base and, based
on whether it was an actual or predicted failure, runs the check_predicted_array
or check_fault_array routine and sends the appropriate message to the IRIS.

process_list - This routine cycles through the fault list, line by line, in order to provide
the IRIS with information on PMAD system components and connections.

3. Pwrsys-net.lisp
This file contains the functions, flavors and methods that run under package
COMMON-LISP-USER and that enable the Symbolics to communicate with the IRIS.
This code was developed by Sehung Kwak and Captain Andy Nelson. Please see Major
Ted Barrow's M.S. Thesis dated June 1988 for detailed descriptions of the functions in

this file. The following are two functions that were set up to provide ease in utilization of

this file.

receive_data - Method for the Symbolics to receive information (integers, single
floating-point numbers, single characters and characters strings) from the IRIS.

send_data - Method for the Symbolics to send information to the IRIS.

4. Main-pwrsys.lisp
This file controls the Symbolics portion of the PMAD system. It loads the

previously mentioned files, connects the Symbolics to the IRIS by executing the

49

start_talking function which resides in pwrsys-net.lisp and contains the functions that
have primary control of the PMAD system on the Symbolics, sympwrsys.

Sympwrsys initializes the variables that signal the end of a system or
component check (*finished_processing®*) or the end of communications between the
two machines (*done®*). It changes the current packages to KEE and inserts the facts
concerning battery.1 into the PMAD system knowledge base. It then returns the current
package to COMMON-LISP-USER.

The large do loop will loop until the *done* variable is set to true. Diagnostic
print messages are still in the code due to the debugging that was in process at the time of
the printing of this manual. Data is sent from the IRIS to the Symbolics in the form of the
type of check desired (predicted or actual failure or end of communications flag) and a
component number (corresponding to a component, connection or complete system check).

When the end of communication flag (999) is received, the stop-talking
function is executed, the *done* variable is set to true and communication is terminated.
Otherwise, the type of check and component number are saved in variables *typenum*
and user::*comp®, respectively. Sympwrsys then calls the process-data function.
The variable *part* is set to the input component number. If *part* corresponds to the
kee::*pwrsys_array entry 'nil' (for system check) then run the block LISP code
(progn) to process the fault list (if any) returned from the process_data function by
executing the kee::process_list function. Otherwise, run the progn that processes the
single message in the fault list using the kee::process_list function.

Both progn sections send the component number and a status message back to
the IRIS. Before connection is broken, the facts concerning battery.1 are retracted from
the PMAD system knowledge base using the reset-valuesl command and the current

package is changed back to COMMON-LISP-USER.

50

B. IRIS APPLICATION SOFTWARE ORGANIZATION
This section will provide more of an overview of IRIS application software since in-

line documentation is provided. Also, when possible, files of similar subject will be

grouped together.

Makefile - A file that enables an organized method for compiling files.
README - An on-line version of the entire PMAD system manual.

Header files - Shared.h contains information for the files that utilize communications
software. Pwrsys.h contains numerical definitions for the PMAD system parts, a
structure definition for these parts and other useful declarations.

Help files - Help.c contains the main control module for all the help menus called
help_menu. It toggles between specific help and the mouse help. It also contains
the processhelp routine that enables the creation and display of specific help for the
current menu. faulthelp.c, healthhelp.c, mainhelp.c, maintspthelp.c,
mousemenhelp.c, nethelp.c and pwrflowhelp.c contain the help menu text
for their respective menus.

Executable files - Nasapwrsys brings up the PMAD system with communications
capability when executed. Nonetpwrsys brings up the PMAD system without the
communications. Runprog is a command file that invokes the MEX window
manager and that executes the nasapwrsys file.

Newpwrsys.c - This is the primary control module for the entire graphics interface. It
is mouse-oriented and utilizes the IRIS window manager, MEX.

Component files - The componenthit.c file contains routines that determine whether
the current mouse location corresponds to a component hit. The compmenu.c file
contains the routine that displays the menu that provides the choice of items that are
predicted to fail or that have actually failed. This menu is only seen when the
nonetpwrsys executable file is run.

Diagram.c - This file contains the routine that creates the different objects in the PMAD
system diagram, make_diagram. It also contains the routines that change all
objects in the PMAD system diagram back to their original color after processing,
cleanup_flow and cleanup_diagram, and that call all the objects in the PMAD
system for screen display, call_diagram.

Compstat.c - This file contains routines faultisolation and statusprediction that
check for actual and predicted faults in the system, respectively. The
componentstatus routine checks the status of individual components in the
diagram. Routine process_message determines whether to flash a component
red, yellow or green and displays the status message, based on messages received
from the Symbolics.

51

Pwrflow.c - This file contains routines that show the flow of power from the
photovoltaic equipment to the battery (charge_battery), the flow of power from
the batteries through the rest of the system (discharge battery), the flow of
power from the photovoltaic equipment throughout the rest of the system
(use_pv_only) and the flow of power from the photovoltaic equipment and the
batteries throughout the rest of the system (use_pv_and_batteries).

Object files - All of the “.c" files discussed previously have a ".0" file associated with
them. These ".0" files are the compiled versions of their ".c" source code.

C. PMAD SYSTEM EXPANSION

Now that the applications software for each machine has been discussed, ideas for
PMAD system expansion will be presented. This presentation not only includes these
ideas, but also methods for their implementation.

1. PMAD Expert System Expansion

Currently there is only one fault rule written for the PMAD system knowledge
base and that is for the battery.1 component. Fault rules need to be written for the other
components and their connections. Before modifying the PMAD system, you should
understand the KEE Tell and Ask language and how to write the external.form of a
fault rule. Also, familiarity with the ZMACS editor on the Symbolics would be helpful.
The following paragraphs will explain how to add a fault rule to the PMAD system
knowledge base.

If your KEE environment does not have an output window displayed, choose the
desktop option in the top left-hand corner. Choose the create output window option and
follow the instructions provided by KEE.

Using the mouse, place the cursor on the PWRSYS knowledge base inside the
KB window and click the left mouse button. A PWRSYS menu will pop-up. Choose the
display option by placing the cursor there using the mouse and clicking the left mouse
button. The output window will display the contents of the PMAD system knowledge

base.

52

Place the cursor on the FAULT.RULES class at the top of the PMAD system
knowledge base and click the left mouse button. Choose the "create new unit" option off
of the pop-up menu and follow the instructions that are provided. When asked to input the
external.form of the rule, realize that if an input error is made it can be corrected by
backspacing or by saving what is already typed (with proper LISP syntax) and editing it
using the ZMACS editor.

2. PMAD System IRIS Graphics Extended Screen and Pan/Zoom

Capabilities

Given more detailed information on the PMAD system, a programmer can either
extend the current high-level diagram or develop Pan/Zoom capabilities for the individual
components. Extended Screens of the current high-level diagram can be done utilizing
icons in the middle of the four corners of the screen (which can be created as objects) or as
an option off of the PMAD system main pop-up menu. Depending on where the cursor is
positioned, a corresponding extended screen will appear.

Pan/Zoom options can be added to the existing component pop-up menu. When
chosen, that option could note the component in question and, based on that information,
bring up a detailed schematic of that component. In either case, extended screen or

pan/zoom, the following files should be considered for modification:

Diagram.c will need objects added to represent the new portion of the screen or the
detailed schematic of the component.

Pwrsys.h will need "#define" statements that represent these additions.
Newpwrsys.c wili need to call the routine that will perform these new tasks.

Compmenu.c and componenthit.c will need to reflect the additions of new
components.

53

o

3. PMAD System Training Program
A training program could be written for the PMAD system. It would be a choice
off of the main or component pop-up menu of the graphics interface. That would allow

practicing of diagnosing faults that are chosen from a data base of system fault scenarios.

This system can be displayed in the lower left quadrant of the IRIS screen. It could be an
independent program that is pulled into the PMAD system through the pop-up menus. It
would need to be incorporated into the graphics using the method already used by the
PMAD system help routines, while still displaying the portion of the system desired for
viewing.
4. PMAD System Help Files

The help files for the PMAD system on the IRIS can be expanded to contain
detailed information. The following suggested method for expansion will use mainhelp.c
for the example.

In the static str80, array add the desired number of quoted lines of information,
not to exceed 80 characters per line. Change the NUMHELP1 definition at the top of the
file (from three (3)) to reflect that desired number.

54

III. USEFUL REFERENCE DOCUMENTS AND MANUALS
The following list is provided to assist those who will be working with the PMAD
system prototype:

Barrow, T., Distributed Computer Communications in Support of Real- Time Visual
Simulations, Master's Thesis, Naval Postgraduate School, Monterey, California,
June 1988.

Bromley, H., and Lamson, R., LISP Lore: A Guide to Programming the LISP
Machine, Kluwer Academic Publishers, 1987.

Erickson, W., and Nienart, J., MTK Reference Manual and User Guide (draft), 10
April 1988.

Erickson, W., and others, "NASA Systems Autonomy Demonstration Program: A
Step Toward Space Station Automation," SPIE Space Station Automation 11, v. 729,
1986.

IntelliCorp KEE Software Development System User's Manual, IntelliCorp, 1986.
IRIS User’s Guide: Volume 1 Graphics Programming, Silicon Graphics, Inc., 1986.

Kernighan, B., and Ritchie, D., The C Programming Language, Prentice-Hall, Inc.,
1978.

Martin Marietta Denver Aerospace Task I Study Report MCR-86-583, Space Station
Automation of Common Module Power Management and Distribution, by Miller, W.,
and others, July 1986.

User's Guide to Symbolics Computers, Symbolics, Inc., July 1986.

Wilensky, R., Common LISPcraft, W. W. Norton & Company, Inc.,-1986.

55

IV. IMPORTANT POINTS OF CONTACT

In case the references listed in the previous section do not answer specific questions,
the following points of contact are provided:

Dr. Henry Lum

MS244-7

NASA Ames Research Center
Moffett Field, CA 94035
AUTOVON 359-6544
COMMERCIAL 1-415-694-6544

Ms. Carla Wong

MS244-18

NASA Ames Research Center
Moffett Field, CA 94035
COMMERCIAL 1-415-694-4294

Mr. William Erickson

MS244-18

NASA Ames Research Center
Moffett Field, CA 94035
AUTOVON 359-3369
COMMERCIAL 1-415-694-3369

Dr. Robert McGhee

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100
AUTOVON 878-2449
COMMERCIAL 1-408-646-2449

Dr. Michael Zyda

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5000
AUTOVON 878-2449
COMMERCIAL 1-408-646-2449

Lois Brunner

Joint Command, Control and Communications Academic Group
Naval Postgraduate School

Monterey, CA 93943-5000

AUTOVON 878-2618

COMMERCIAL 1-408-646-2618

56

LT Gina L. Hester

Fleet Surveillance Support Command
Chesapeake, VA 23322-5010
COMMERCIAL 1-804-421-8203

57

APPENDIX B

PMAD SYSTEM SOURCE LISTING

MAIN-PWRSYS.LISP

(load "init-pwrsys.lisp")
(load "pwrsys-net.lisp™)
(load "keefiles.lisp™)
(user::start-talking)
(defun sympwrsys ()

(setq *done* 'nil)
(setq *finished_processing* 555)

(zl:pkg-goto 'kee)
(kee::init-values1)
(zl:pkg-goto ‘common-lisp-user)

(do)
(*done*)
(progn (princ "Awaiting data from IRIS2.")
(setq *data_in* (user::receive_data))

(if (= *data_in* 999)
(progn (user::stop-talking)
(setq *done* 't)

)
(progn (setq *typenum* *data_in*)
(print *data_in*)
(setq *data_in* (user::receive_data))
(print *data_in*)
(setq user::*comp* *data_in*)
(process_data *typenum* *data_in* user::*comp*)

58

(print kee::*fault_list*)
(setq *part* (aref kee::*pwrsys_array* *data_in*))

(if (eq *part* 'nil)
(progn (if (car kee::*fault_list*)
(process_list kee::*fault_list¥)

(progn (zl:pkg-goto ‘common-lisp-user)

(user::send_data "NO SYSTEM PROBLEMS")
(user::send_data *finished_processing*)
)
)
)

(if (car kee::*fault_list*)
(kee::process_list kee::*fault_list*)
(progn (setq *data_out* *data_in*)
(print *data_out*)
(setq *message_out* (aref kee::*okay_array* *data_out*))
(princ *message_out*)

(zl:pkg-goto 'common-lisp-user)
(user::send_data *message_out*)
(user::send_data *data_out*)

(user::send_data "END OF COMPONENT CHECK")
(user::send_data *finished_processing*)

(kee::reset-values1)

(zl:pkg-goto 'common-lisp-user)

39

INIT-PWRSYS.LISP

(load "sym1:>sys>site>thermal.translations™)

(defvar *done* nil)

(defvar *typenum* nil)
(defvar *message_out* nil)
(defvar user::*comp* nil)
(defvar *randnum?* nil)
(defvar user::*fault_list* nil)
(defvar *part* nil)

(defvar *data_in* nil)
(defvar *data_out* nil)

(defvar *finished_processing* nil)

(defun randroutine ()
(setq user::num (random 1001))
(setq *randnum* (/ user::num 1000))

(defun faultroutine (user::*comp* rand)
(if (> rand 0.8)
(progn (zl:pkg-goto 'kee)
(assert “(a fault.mode of ,(aref *pwrsys_array* user::*comp¥) is failed))
)

)

(defun predictedroutine (user::*comp* rand)
(if > rand 0.9)
(progn (zl:pkg-goto 'kee)
(assert " (a fault.mode of ,(aref *pwrsys_array* user::*comp*)
is predicted_failure))

(defun process_data (type partnum user::*comp*)
(cond ((or (= partnum 0) (and (>= partnum 15)
(<= partnum 50)))
(randroutine)
Gf (= type 0)
(faultroutine user::*comp* *randnum*)
(predictedroutine user::*comp* *randnum*)

(setq user::*fault_list*
(kee::start_diagnosis user::*comp* 'kee::fault.rules 'kee::basicworld))

61

PWRSYS-NET.LISP

;3 -*- Mode: LISP; Syntax: Common-lisp; Package: USER -*-

; handy macro to have in the send message farthur down

(defmacro loopfor (var init test expl &optional exp2 exp3 exp4 exp5)
“(prog O o

(setq ,var ,init)

tag
.expl
,£xp2
,exp3
,exp4
,€Xp3
(setq ,var (1+ ,var))
(if (= ,var test) (return t) (go tag))))

(defun convert-number-to-string (n)
(princ-to-string n))

(defun convert-string-to-integer (str &optional (radix 10))
(do (GO(+j 1))
(n O (+ (* n radix) (digit-char-p (char str j) radix))))
((=j (length sur)) n)))

(defun find-period-index (str)
(catch ‘exit
(dotimes (x (length str) nil)
(if (equal (char str x) (char "." 0))
(throw 'exit x)))))

(defun get-leftside-of-real (str &optional (radix 10))
(do (GO (1+))
(n 0 (+ (* n radix) (digit-char-p (char str j) radxx)))
((or (null (digit-char-p (char str j) radix)) (= j (length str))) n)))

(defun get-rightside-of-real (str &optional (radix 10))
(do ((index (1+ (find-period-index str)) (1+ index))
(factor 0.10 (* factor 0.10))
(n 0.0 (+ n (* factor (digit-char-p (char str index) radix)))))
((= index (length str)) n)))

62

(defun convert-string-to-real (str &optional (radix 10))
(+ (float (get-leftside-of-real str radix)) (get-rightside-of-real str radix)))

(defvar *iris-port1* 1027) ; this is the send port

(defvar *iris-port2* 1026) ; this is the receive port
(defvar *local-talk-port* 1500) ; this is the local send port
(defvar *local-listen-port* 1501) ; this is the local receive port

(defflavor conversation-with-iris ((talking-port-number *iris-port1¥*)
(listening-port-number *iris-port2*)
(local-talk-port-number *local-talk-port*)
(local-listen-port-number *local-listen-port*)
(talking-stream)

(listening-stream)
(destination-host-object)
)

0

:initable-instance-variables)

(defmethod (:init-destination-host conversation-with-iris)
(name-of-host)
(setf destination-host-object (net:parse-host name-of-host)))

(defmethod (:start-iris conversation-with-iris) ()
(setf talking-stream
(tcp:open-tcp-stream destination-host-object
talking-port-number
local-talk-port-number))
(setf listening-stream
(tcp:open-tcp-stream destination-host-object
listening-port-number
local-listen-port-number))
"A conversation with the iris machine has been established")

(defmethod (:reuse-iris conversation-with-iris)

0

; (setq *tcp-handler1* (send ip::*tcp-handler* :get-port)
; *cp-handler2* (send ip::*tcp-handler* :get-port)

; talking-port *tcp-handlerl*

; listening-port *tcp-handler2*))

63

(defun read-string (stream num-chars)
(let ((out-string ""))
(dotimes (i num-chars)
(setf out-string (string-append out-string (read-char stream))))
out-string))

(defmethod (:get-iris conversation-with-iris) ()
(let* ((typebuffer " ")
(lengthbuffer " ")
(buffer ")
(buffer-length 1))
(progn
(setf typebuffer
(read-string listening-stream 1))
(setf lengthbuffer
(read-string listening-stream 4))
(setf buffer-length
(convert-string-to-integer lengthbuffer))
(setf buffer
(read-string listening-stream buffer-length))

(cond ((equal typebuffer "I") (convert-string-to-integer buffer))
((equal typebuffer "R") (convert-string-to-real buffer))
((equal typebuffer "C") buffer)

(t nil)))))

(defvar *step-var* 0)

(defun my-write-string(string stream)
(let* ((num-chars (length string)))
(dotimes (i num-chars)
(write-char (aref string i) stream))))

(defmethod (:put-iris conversation-with-iris)
(object)

(let* ((buffer (cond
((equal (type-of object) 'bignum) (convert-number-to-string object))
((equal (type-of object) 'fixnum) (convert-number-to-string object))
((equal (type-of object) 'single-float) (convert-number-to-string object))
((equal (type-of object) 'string) object)

(t "error")))
(buffer-length (length buffer))

(typebuffer (cond ((equal (type-of object) 'bignum) "I")
((equal (type-of object) 'fixnum) "I")
((equal (type-of object) 'single-float) "R")
((equal (type-of object) 'string) "C")
®"C"M)

(lengthbuffer (convert-number-to-string buffer-length)))

(progn . .
(my-write-string typebuffer talking-stream)
(send talking-stream :force-output)

(if (= (length lengthbuffer) 4)
(write-string lengthbuffer talking-stream)
(progn
(loopfor *step-var* (length lengthbuffer) 4
(write-string "0" talking-stream))

(my-write-string lengthbuffer talking-stream)
)

(send talking-stream :force-output)
(my-write-string buffer talking-stream)
(send talking-stream :force-output)

)

(defmethod (:stop-iris conversation-with-iris)
(progn (send talking-stream :close)
(send listening-stream :close)))
(setq *comm_handler* (make-instance ‘conversation-with-iris))

(send *comm_handler* :init-destination-host 'iris2)

(defun start-talking ()
(send *comm_handler* :start-iris))

65

(defun stop-talking ()
(send *comm_handler* :stop-iris)
(send *comm_handler* :reuse-iris))

(defun send_data (x)
(send *comm_handler* :put-iris x))

(defun receive_data ()
(send *comm_handler* :get-iris))

;(setq myvar (receive_data))
;(send_data"1") ;1 1.0"111"

;(send_datal) ;1 1.0"111"
i(send_data 1.0) ;1 10"111"

KEEFILES.LISP

33» -*- Mode: LISP; Syntax: Common-lisp; Package: KEE -*-

(defun start_diagnosis (user::*comp* rules world)
(setq comp (aref *pwrsys_array* user::*comp*))

(query "(a fault.mode of ,(if (null comp) '?comp
comp) is ?what) rules world)

)

(defun init-valuesl1 ()
(assert '(the value.state of battery.1.vr.n.powerload is negative))
(assert '(the trend.state of battery.1.charge is steady))

)

(defun reset-valuesl ()
(initialize keeworlds)
(retract '(the value.state of battery.1.vr.n.powerload is negative))
(retract '(the trend.state of battery.1.charge is steady))

)

(defvar *pwrsys_array* (make-array "(52) :initial-contents

“(epsboard.1
pvequip.1
betajoint. 1
voltreg.1
battery.1
inverter.1
alphajoint.1
maindistboard. 1
epspdca.l
basicpdca.1
seboard.1
boardswitch. 1
basicswitch. 1
basicswitch.2
basicswitch.3
epsboard. 1.pvequipnode

67

epsboard.1.betajointnode
epsboard.1.inverternode
epsboard. 1. maindistboardnode
epsboard. 1.epspdcanode
pvequip.l.e.n
pvequip.1.b.n
betajoint.1.i
betajoint.1.e.n
betajoint.1.0

voltreg.1.i

voltreg.1.bt.n
voltreg.1.0
battery.l.vr.n
inverter.1.i
inverter.l.e.n
inverter.1.0
alphajoint.1.i
alphajoint.1.0
maindistboard.1.a.n
maindistboard.1.e.n
maindistboard.1.pl.n
maindistboard.1.p2.n
epspdca.l.m.n
epspdca.l.e.n
epspdca.l.swl
epspdca.l.sw2
basicpdca.l.m.n
basicpdca.l.swl
basicpdca.l.sw2
seboard.1.bsw.n
boardswitch.1.i
boardswitch.1.seb.n
basicswitch.1.i
basicswitch.2.i
basicswitch.3.i
nil))

(defvar *predicted_array* (make-array “(51) :initial-contents
*("Y-THE FAULT. MODE OF EPSCNTL IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PVEQUIP IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF BETAJ IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF VOLTREG IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF BATTERIES IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF DC_AC_INVERT IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF ALPHAJ IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF MAINDIST IS PREDICTED-FAILURE" -
"Y-THE FAULT.MODE OF PDCAI1 IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PDCA2 IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF SESWCNTL IS PREDICTED-FAILURE"

68

"Y-THE FAULT.MODE OF SW1_1 IS PREDICTED-FAILURE"

"Y-THE FAULT.MODE OF SW1_2 IS PREDICTED-FAILURE"

"Y-THE FAULT.MODE OF SW2_1 IS PREDICTED-FAILURE"

"Y-THE FAULT.MODE OF SW2_2 IS PREDICTED-FAILURE"

"Y-THE FAULT.MODE OF EPSPVNODE IS PREDICTED-FAILURE"

"Y-THE FAULT.MODE OF EPSBJITNODE IS PREDICTED-FAILURE"

"Y-THE FAULT.MODE OF EPSINVERTNODE IS PREDICTED-FAILURE"
"Y-THE FAULT MODE OF EPSMDBNODE IS PREDICTED-FAILURE"

"Y-THE FAULT MODE OF EPSPDCA INODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PVEQUIPEPSNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PVEQUIPBJTNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF BJTPVEQUIPNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF BJTEPSNODE IS PREDICTED-FAILURE"

"Y-THE FAULT.MODE OF BITVOLTREGNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF VOLTREGBJTNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF VOLTREGBATTNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF VOLTREGINVERTNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF BATTVOLTREGNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF INVERTVOLTREGNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF INVERTEPSNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF INVERTAJTNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF AJTINVERTNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF AJTMDBNODE IS PREDICTED-FAILURE"

"Y-THE FAULT.MODE OF MDBAJTNODE IS PREDICTED-FAILURE"

"Y-THE FAULT.MODE OF MDBEPSNODE IS PREDICTED-FAILURE"

"Y-THE FAULT.MODE OF MDBPDCA INODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF MDBPDCA2NODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PDCA1MDBNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PDCA1EPSNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PDCA1SW11NODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PDCA1SW12NODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PDCA2MDBNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PDCA2SW2INODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PDCA2SW22NODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF SESWCNTLSW11NODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF SW11PDCA1NODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF SW11SESWCNTLNODE IS PREDICTED-FAILURE"
"Y-THE FAULT. MODE OF SW12PDCA INODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF SW21PDCA2NODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF SW22PDCA2NODE IS PREDICTED-FAILURE"))

(defvar *fault_array* (make-array “(51) :initial-contents

“("R-THE FAULT.MODE OF EPSCNTL IS FAILED"
"R-THE FAULT.MODE OF PVEQUIP IS FAILED"
"R-THE FAULT.MODE OF BETAJ IS FAILED"
"R-THE FAULT.MODE OF VOLTREG IS FAILED"
"R-THE FAULT.MODE OF BATTERIES IS FAILED"
"R-THE FAULT.MODE OF DC_AC_INVERT IS FAILED"
"R-THE FAULT.MODE OF ALPHAJ IS FAILED"

69

"R-THE FAULT.MODE OF MAINDIST IS FAILED"

"R-THE FAULT.MODE OF PDCAL1 IS FAILED"

"R-THE FAULT.MODE OF PDCA2 IS FAILED"

"R-THE FAULT.MODE OF SESWCNTL IS FAILED"

"R-THE FAULT.MODE OF SW1_1 IS FAILED"

"R-THE FAULT.MODE OF SW1_2 IS FAILED"

"R-THE FAULT.MODE OF SW2_11S FAILED"

"R-THE FAULT.MODE OF SW2_2 IS FAILED"

"R-THE FAULT.MODE OF EPSPVNODE IS FAILED"

"R-THE FAULT.MODE OF EPSBJTNODE IS FAILED"

"R-THE FAULT.MODE OF EPSINVERTNODE IS FAILED"
"R-THE FAULT.MODE OF EPSMDBNODE IS FAILED"
"R-THE FAULT.MODE OF EPSPDCAINODE IS FAILED"
"R-THE FAULT.MODE OF PVEQUIPEPSNODE IS FAILED"
"R-THE FAULT.MODE OF PVEQUIPBJTNODE IS FAILED"
"R-THE FAULT.MODE OF BJTPVEQUIPNODE IS FAILED"
"R-THE FAULT.MODE OF BJTEPSNODE IS FAILED"

"R-THE FAULT.MODE OF BJTVOLTREGNODE IS FAILED"
"R-THE FAULT.MODE OF VOLTREGBJTNODE IS FAILED"
"R-THE FAULT.MODE OF VOLTREGBATTNODE IS FAILED"
"R-THE FAULT.MODE OF VOLTREGINVERTNODE IS FAILED"
"R-THE FAULT.MODE OF BATTVOLTREGNODE IS FAILED"
"R-THE FAULT.MODE OF INVERTVOLTREGNODE IS FAILED"
"R-THE FAULT.MODE OF INVERTEPSNODE IS FAILED"
"R-THE FAULT.MODE OF INVERTAJTNODE IS FAILED"
"R-THE FAULT.MODE OF AJTINVERTNODE IS FAILED"
"R-THE FAULT.MODE OF AJTTMDBNODE IS FAILED"
"R-THE FAULT.MODE OF MDBAJTNODE IS FAILED"
"R-THE FAULT.MODE OF MDBEPSNODE IS FAILED"
"R-THE FAULT MODE OF MDBPDCA INODE IS FAILED"
"R-THE FAULT.MODE OF MDBPDCA2NODE IS FAILED"
"R-THE FAULT.MODE OF PDCA IMDBNODE IS FAILED"
"R-THE FAULT.MODE OF PDCA1EPSNODE IS FAILED"
"R-THE FAULT.MODE OF PDCA1SW11NODE IS FAILED"
"R-THE FAULT.MODE OF PDCA1SW12NODE IS FAILED"
"R-THE FAULT.MODE OF PDCA2MDBNODE IS FAILED"
"R-THE FAULT.MODE OF PDCA2SW21NODE IS FAILED"
"R-THE FAULT.MODE OF PDCA2SW22NODE IS FAILED"
"R-THE FAULT.MODE OF SESWCNTLSW11NODE IS FAILED"
"R-THE FAULT.MODE OF SW11PDCA1NODE IS FAILED"
"R-THE FAULT.MODE OF SW11SESWCNTLNODE IS FAILED"
"R-THE FAULT.MODE OF SW12PDCA1NODE IS FAILED"
"R-THE FAULT.MODE OF SW21PDCA2NODE IS FAILED"
"R-THE FAULT.MODE OF SW22PDCA2NODE IS FAILED"))

(defvar *okay_array* (make-array “(51) :initial-contents
*("G-THE FAULT.MODE OF EPSCNTL IS OKAY"
"G-THE FAULT.MODE OF PVEQUIP IS OKAY"

"G-THE FAULT.MODE OF BETAJ IS OKAY"

70

"G-THE FAULT.MODE OF VOLTREG IS OKAY"

"G-THE FAULT.MODE OF BATTERIES IS OKAY"

"G-THE FAULT MODE OF DC_AC_INVERT IS OKAY"
"G-THE FAULT.MODE OF ALPHAJ IS OKAY"

"G-THE FAULT.MODE OF MAINDIST IS OKAY™"

"G-THE FAULT.MODE OF PDCA1 IS OKAY"

"G-THE FAULT.MODE OF PDCA2 IS OKAY"

"G-THE FAULT.MODE OF SESWCNTL IS OKAY"

"G-THE FAULT.MODE OF SW1_1IS OKAY"

"G-THE FAULT.MODE OF SW1_2 IS OKAY"

"G-THE FAULT.MODE OF SW2_1 IS OKAY"

"G-THE FAULT.MODE OF SW2_2 IS OKAY"

"G-THE FAULT.MODE OF EPSPVNODE IS OKAY"

"G-THE FAULT.MODE OF EPSBJITNODE IS OKAY"

"G-THE FAULT.MODE OF EPSINVERTNODE IS OKAY"
"G-THE FAULT.MODE OF EPSMDBNODE IS OKAY"
"G-THE FAULT.MODE OF EPSPDCAINODE IS OKAY"
"G-THE FAULT.MODE OF PVEQUIPEPSNODE IS OKAY"
"G-THE FAULT.MODE OF PVEQUIPBJTNODE IS OKAY"
"G-THE FAULT.MODE OF BJTPVEQUIPNODE IS OKAY"
"G-THE FAULT.MODE OF BJTEPSNODE IS OKAY"

"G-THE FAULT.MODE OF BITVOLTREGNODE IS OKAY"
"G-THE FAULT.MODE OF VOLTREGBJTNODE IS OKAY"
"G-THE FAULT.MODE OF VOLTREGBATTNODE IS OKAY"
"G-THE FAULT.MODE OF VOLTREGINVERTNODE IS OKAY"
"G-THE FAULT.MODE OF BATTVOLTREGNODE IS OKAY"
"G-THE FAULT.MODE OF INVERTVOLTREGNODE IS OKAY"
"G-THE FAULT.MODE OF INVERTEPSNODE IS OKAY"
"G-THE FAULT.MODE OF INVERTAJTNODE IS OKAY"
"G-THE FAULT.MODE OF AJTINVERTNODE IS OKAY"
"G-THE FAULT.MODE OF AJTMDBNODE IS OKAY"
"G-THE FAULT.MODE OF MDBAJTNODE IS OKAY"
"G-THE FAULT.MODE OF MDBEPSNODE IS OKAY"
"G-THE FAULT.MODE OF MDBPDCAINODE IS OKAY"
"G-THE FAULT.MODE OF MDBPDCA2NODE IS OKAY"
"G-THE FAULT.MODE OF PDCAIMDBNODE IS OKAY"
"G-THE FAULT.MODE OF PDCA1EPSNODE IS OKAY"
"G-THE FAULT.MODE OF PDCA1SW11NODE IS OKAY"
"G-THE FAULT.MODE OF PDCA1SW12NODE IS OKAY"
"G-THE FAULT.MODE OF PDCA2MDBNODE IS OKAY"
"G-THE FAULT.MODE OF PDCA2SW21NODE IS OKAY"
"G-THE FAULT.MODE OF PDCA2SW22NODE IS OKAY"
"G-THE FAULT.MODE OF SESWCNTLSW11NODE IS OKAY"
"G-THE FAULT.MODE OF SW11PDCAINODE IS OKAY"
"G-THE FAULT.MODE OF SW11SESWCNTLNODE IS OKAY"
"G-THE FAULT.MODE OF SW12PDCAINODE IS OKAY"
"G-THE FAULT MODE OF SW21PDCA2NODE IS OKAY"
"G-THE FAULT.MODE OF SW22PDCA2NODE IS OKAY"))

71

(defun check_predicted_array (comp)
(do ((index O (1+ index)))
(> index 50)
(if (eq comp (aref *pwrsys_array* index))
(progn (setq user::*message_out* (aref *predicted_array* index))
(princ *message_out*)
(setq *data_out* index)
(print *data_out*)
)
)
)

(defun check_fault_array (comp)
(do ((index O (1+ index)))
(> index 50)
(if (eq comp (aref *pwrsys_array* index))
(progn (setq *message_out* (aref *fault_array* index))
(princ *message_out*)
(setq *data_out* index)
(print *data_out*)
)
)
)

(defun output_routine (line)
(cond ((eq (sixth line) 'failed)
(check_fault_array (fourth line))

)
((eq (sixth line) 'predicted_failure)
(check_predicted_array (fourth line))
)

)

(zl:pkg-goto ‘common-lisp-user)
(user::send_data *message_out*)
(user::send_data *data_out*)
)
(defun process_list (list)
(cond ((null (cdr list))
(output_routine (car list))
(zl:pkg-goto ‘common-lisp-user)

(user::send_data "END OF SYSTEM CHECK")

72

(user::send_data *finished_processing*)
)

(t output_routine (car list))

)
(process_list (cdr list))

73

MAKEFILE

CFLAGS = -Zg -Zf -lm -ldbm -g
COMM = /work/hester/commdir/

OBJS1 = newpwrsys.o\
compmenu.o\
componenthit.o\
compstat.o\
diagram.o\
faulthelp.o\
healthhelp.o\
help.o\
maintspthelp.o\
mainhelp.o\
mousemenhelp.o\
nethelp.o\
pwrflow.o\
pwrflowhelp.o

OBJS2 = $(COMMji0_single.o\
$(COMM)mpath.o\
$(COMM)semaphore.o\
$(COMM)shareseg.o\
$(COMM)support.o

pwrsys: $(OBJS1) $(OBJS2)
cc -o pwrsys $(OBJS1) $(OBJS2) $(CFLAGS) -lbsd

$(OBJS1): pwrsys.h

$(COMM)mpath.o: $(COMM)shared.h
cc -¢ -0 $(COMM)mpath.o $(COMM)mpath.c $(CFLAGS)

$(COMM)support.o: $(COMM)shared.h
cc -¢ -0 $(COMM)support.o $(COMM)support.c $(CFLAGS)

$(COMM)semaphore.o:
cc -¢ -0 $(COMM)semaphore.o $(COMM)semaphore.c $(CFLAGS)

$(COMM)io_single.o: $(COMM)shared.h
cc ¢ -0 $(COMM)io_single.o $(COMM)io_single.c $(CFLAGS)

$(COMM)shareseg.o:
cc -¢ -0 $(COMM)shareseg.o $(COMM)shareseg.c $(CFLLAGS)

74

PWRSYS.H

#include <strings.h>
#include "stdio.h"
#include "gl.h"

#include "device.h"
#include "math.h"
#include "/work/hester/commdir/shared.h"”
#define INITXVALUE O
fidefine INITYVALUE O
#define menuymin 43.8
#define menuymax 131.5
#define menulxmin 43.0
#define menu2xmin 150.8
#define menu3xmin 322.5
#define menud4xmin 494.2
#define menuSxmin 665.9
#define menu6xmin 837.6

#define EPSCNTL 0

#define PVEQUIP 1

#define BETAJ 2

#define VOLTREG 3

#define BATTERIES 4
#define DC_AC_INVERT 5
fidefine ALPHAJ 6

#tdefine MAINDIST 7

#define PDCA1 8

#define PDCA2 9

#define SESWCNTL 10
#define SW1_1 11

##define SW1_2 12

#define SW2_1 13

#define SW2_2 14

#define EPSPVNODE 15
#define EPSBITNODE 16
#define EPSINVERTNODE 17
#define EPSMDBNODE 18
#define EPSPDCAINODE 19
#define PYVEQUIPEPSNODE 20
#define PVEQUIPBJTNODE 21
#define BITPVEQUIPNODE 22
#define BITEPSNODE 23
#define BITVOLTREGNODE 24
#define VOLTREGBJTNODE 25

75

#define VOLTREGBATTNODE 26
#define VOLTREGINVERTNODE 27
#define BATTVOLTREGNODE 28
#define INVERTVOLTREGNODE 29
#define INVERTEPSNODE 30
#define INVERTAJTNODE 31
#define AJTINVERTNODE 32
#define AITTMDBNODE 33
#define MDBAJTNODE 34
#define MDBEPSNODE 35
#define MDBPDCAINODE 36
#define MDBPDCA2NODE 37
#define PDCAIMDBNODE 38
#define PDCA1EPSNODE 39
#define PDCAISW1INODE 40
#define PDCAISW12NODE 41
#define PDCA2MDBNODE 42
#define PDCA2SW2INODE 43
#idefine PDCA2SW22NODE 44
#define SESWCNTLSW11NODE 45
#define SW11PDCAINODE 46
#define SW11SESWCNTLNODE 47
fidefine SW12PDCAINODE 48
#define SW21PDCA2NODE 49
#idefine SW22PDCA2NODE 50
#define EPSCNI1 51

#define EPSCN2 52

#define EPSCN3 53

#define EPSCN4 54

#define EPSCN5 55

#tdefine CNO 56

#define CN1la 57

fidefine CN1b 58

#define CN2 59

#define CN3 60

#define CN4 61

#define CN5S 62

#define CN6 63

#define CN7a 64

#define CN7b 65

#define CN8a 66

#define CN8b 67

#define CN8c 68

#define CN8d 69

#define SESWCN 70

#idefine XMAXDIAGRAM 7.0
#define YMAXDIAGRAM 9.5
#define FLASHBLACKR 61
fidefine FLASHBLACKY 78
#define EXIT 99

#define PWRWINXI1 10

76

#define PWRWINX2 1000

#define PWRWINY1 10

#define PWRWINY2 730

#define CHECKSYSTEM 51

#define FINISHED_PROCESSING 555

typedef char str80[80];
struct sys_component
Object objname;
Tag tagname;
int voltlevel;
int freglevel,;
char volttype[4];
str80 compstatus;
K
struct sys_component power[100];
Machine remotemachine;
char commbuffer{LARGESTREAD];
float commfloat,

int commint;

77

o

SHARED.H

/***
e 3 28 2 2 2 e 2k ke 3 2k 3 2k 2k ke e 2 e 2 2 20e e e e e 26 ¢ e e e 2 2 3 3¢ 3¢ 2 2 2 26 3¢ 2 2k 2 e e e 2k 2k 2 2 e 3¢ o 3 ok e e ek e 3k 3 A e A e 3k ok ok 3k ke ok

* TITLE : Inter-Computer Communication Package
*

* MODULE : shared.h

*

* VERSION: 4.0

*

* DATE : 15 December 1987
*

* AUTHOR : Theodore H. Barrow

e 6 2 39 3 e s e s e s b 3 e e 3 e o e e 3 o s e s e s o o e 3 ke o e o e ok o o o s e o e o e ok e ok ok s ke o ke o ke o ke o e 3k ke ok ok o ok o sk ok

* HISTORY:

*

VERSION: 1.0
DATE : 6 February 1987
AUTHOR : Michael J. Zyda

DESC. : Contains all defines and special constants for shared
memory socket system.

VERSION: 2.0
DATE :27 May 1987
AUTHOR : Theodore H. Barrow

DESC. : Added a typedef of structure for use by various routines.
Added message types for high level read/write protocol.

VERSION: 3.0
DATE : 21 October 1987
AUTHOR : Theodore H. Barrow

DESC. : Changed dependencies of buffer calculation constants so that
only one need change. Added additional message types.

VERSION: 4.0
DATE : 15 December 1987

LK I I I I N S EE 2R SR BE B B RN WK R B N R B R K B B

78

AUTHOR : Theodore H. Barrow

DESC. : Added field to buffer set so that each link would have its

own area to handle partial receipt of messages.
3k 2k 2k 3 3 3k 2 e e 2 e 3k ke 3k e 2k b 2 2k e 3k e e ke ok b 3k 3k e Ak 3k 2 2k b e e 2 e 2k ke 24 3k ke e ok 2k Ak 2k dk ke A 2k 3k 3k 3k 2 2k Ak ke ke b k k k¢ ke Ak Ak e sk sk ke K

e 2 2 3k e 2 2 e e 3k 2§ 2k 2 2 e 2 e e 2k e s 2 2k 3 3¢ ke e 2 2 2o 3k 2k 2 2 e 2k ke 30 2 2k 2k 3k 3 2 2k 2 3k 3 2k ok abe 2 2k 2k 3k ok ok 3k 2k 3k e ok 2k 3k 3k ok 3 ok Ak ok ok ok

% ¥ H X *

the following 3 defines are the changeable parameters
LARGESTREAD MUST be divisible by 4
*/
#define SENDLOCATION "/work/hester/commdir/send” /* the name of the program
to run for the sender */

#define RECEIVELOCATION "/work/hester/commdir/receive” /¥ the name of program
to run for the receiver */

#define LARGESTREAD 252 /* the largest read (i.e. buffer size) */

/* The following defines are constants or are derived from LARGESTREAD */

#define SENDEROFFSET (LARGESTREAD + 4) /* the sender data starts here */
#define WSENDEROFFSET (SENDEROFFSET / 4) /* long word offset for sender data */
#define RECEIVEROFFSET 0 /* the receiver data starts at byte 0 */

#define WRECEIVEROFFSET 0 /* the receiver data starts at long word 0 */

#define PROTOCOLHOLDOFFSET (SENDEROFFSET * 2) /* holding area starts after
sender area */
#define MAXSHAREDSIZE (PROTOCOLHOLDOFFSET + 12) /* the number of bytes in
the
shared segment */

#define CHARACTER_TYPE '‘B' /* code for characters */

#define INTEGER_TYPE 'T" /* code for integers */

#define FLOAT_TYPE 'R' /* code for floats */

#define CHARACTER_ARRAY_TYPE 'C' /* code for character arrays */
#idefine INTEGER_ARRAY_TYPE 'J' /* code for integer arrays */
#define FLOAT_ARRAY_TYPE 'S' /* code for float arrays */

#define CHARACTER_SIZE 1 /* character size in bytes */
#define INTEGER_SIZE sizeof(1) /* integer size in bytes */
#define FLOAT_SIZE sizeof(1.0) /* float size in bytes */

/* the following is the structure type definition needed for each machine
you want to communicate to...

79

*/

typedef struct {
char *segment; /* ptr to shared memory segment */

int shmid; /* system generated shared mem. id */

int sendsem; /* semaphore used to wakeup the sender
process.

*/

int receivesem; /* semaphore used to wakeup the
Teceiver process...
*/
} Machine ;

80

HELP.C

#include "pwrsys.h"

/**
b 30 38 3 2 2k ok 3k e 2k 2k ke 3k e 2k 3 e ke 3k e 2 2 e e e 2 sk sk e 2k 3¢ 3k 3k 3k 2k e e e 2k 3 e 3k e 3 2k 2k 3 3k ke 3k e 2k 3k e 3k 3k 2k Ak e 3k 3k 3k ke o e 3k ke ok e Aok

HELP_MENU

The main control module for help menus

3k 2 2 a3k 3k 3k ke 2k 3k 3 2 2 ke e e ke 3k 2 s 2 2 2k sk 3 2k e 3 3 e e s 2 e 2k 3k e 2k 2 ke ke ke e 2 e 3k 3 3k 3 3k 3k ak 3k e afe 3l 2k 2k Ak 3k 3k ok e ok ok ke ok ok o ok
**l

help_menu(menunum)
int menunum;

{

short data;
Boolean CANCEL,;

CANCEL = FALSE;

mousemenu();
while ({CANCEL)
if (qtest()
[switch(qread(&data))
/{* Cancel to depart loop */
case REDRAW: reshapeviewport();
break;

case LEFTMOUSE: CANCEL = TRUE;
break;

81

case RIGHTMOUSE: mousemenu();
break;

case MIDDLEMOUSE: processhelp(menunum);
break;

default: break;
)

)
i } /* end while */
system("clear\n");
} /* end help_menu */

/**#**#************************
A ke 3 ke o e 3k 2 sk e 3 e abe 3k b e o 3 3k 2 ok 3 a2k sk ke 3k 3 2k 2k A 3k 3k e 3 e o ke ok ok a3k o 3k 3 ok 3 2 ke ke 2k ok ak ok 0 ok 3k 3k ok ok 3k ok ok ok ok ok ke ok ok ¢

PROCESSHELP

Allows the creation and display of specific help for current
menu

3 e 2k 2k e s 3k 3 de ok e de o e e s e 3 sk 2 3 3 2 3k e a2 3 e ak e 3 2 2k e e 3k ae ale 3 ak e e e ake o ke e ok ok e e sk e 2 a3k b ke 3k 3k 3 3 3k e s sk e e ok ok
**/

processhelp(menunum)
int menunum;

{
color(BLUE);

clear();
color(WHITE);

switch(menunum)

case 1: mainhelp();
break;

case 2: nethelp();
break;

case 3: healthhelp();
break;

case 4: maintspthelp();
break;

case 5: faulthelp();
break;

82

case 6: pwrflowhelp();
break;

}
} /* end processhelp */

83

MAINHELP.C

#include <strings.h>
#finclude "stdio.h”
#include "gl.h"
#include "pwrsys.h"
#define NUMHELP1 3

r{nainhelp()

static str80 helpmain[NUMHELP1] =

"Hi, I'm main help.",

"Use,RIGHT MOUSE to return to mouse help menu."”
K

int j;
float incr;

for(j =0; j <NUMHELPI;j=j+ 1)
incr = 6.0 - (0.2 * (float)j);
cmov2(2.0, incr);
charstr(helpmain(j]);

swapbuffers();

} /* end mainhelp */

84

NETHELP.C

#include <strings.h>
#include "stdio.h"

- #include "gl.h"
#include "pwrsys.h"
#define NUMHELP2 3

r{1ethelp()

static str80 helpnet(NUMHELP2] =
"Hi, I'm net help.",

"Use RIGHT MOUSE to return to mouse help menu.”
5
int j;

float incr;

for(j=0; j <NUMHELP2;j=j+ 1)
incr = 6.0 - (0.2 * (float)j);

cmov2(2.0, incr);
charstr(helpnet(j]);

swapbuffers();

} /* end nethelp */

85

HEALTHHELP.C

#include <strings.h>
#include "stdio.h"
#include "gl.h"
#include "pwrsys.h"
#define NUMHELP3 3

l{lealthhelp()

static str80 helphealthNUMHELP3] =
"Hi, I'm health help.",

"Use RIGHT MOUSE to return to mouse help menu.”
I

int J;
float incr;

for(j =0; j < NUMHELP3;j=j+ 1)
incr = 6.0 - (0.2 * (float)));
cmov2(2.0, incr);
charstr(helphealth(j]);

swapbuffers();

} /* end healthhelp */

86

MAINTSPTHELP.C

#include <strings.h>
#include "stdio.h"
#include "gl.h"
#include "pwrsys.h"
#define NUMHELP4 3

r{naintspthelp()

static str80 helpmaintspt{f NUMHELP4] =
"Hi, I'm maintspt help.",

"Use RIGHT MOUSE to return to mouse help menu."
)

int j;
float incr;

for(j=0; j < NUMHELP4; j=j+ 1)
incr = 6.0 - (0.2 * (float)));
cmov2(2.0, incr);
charstr(helpmaintspt[j]);

swapbuffers();

} /* end maintspthelp */

87

FAULTHELP.C

#include <strings.h>
#include "stdio.h"
#include "gl.h"
#include "pwrsys.h"
#idefine NUMHELPS 3

?aulthclp()

static str80 helpfaultf NUMHELPS] =
"Hi, I'm fault help.",

} "Use RIGHT MOUSE to return to mouse help menu."”

int j;
float incr;

f{'or(j =0; j < NUMHELPS;j=j+1)
incr = 6.0 - (0.2 * (float)j);
cmov2(2.0, incr);
charstr(helpfault[j]);
)
swapbuffers();
} /* end faulthelp */

88

PWRFLOWHELP.C

#include <strings.h>
#include "stdio.h”
#include "gl.h"
#include "pwrsys.h"
#define NUMHELP6 3

;[awrflowhelp()

static str80 helppwrflow[NUMHELP6] =
"Hi, I'm pwrflow help.",

"Use RIGHT MOUSE to return to mouse help menu."
)

int j;
float incr;

for(j=0; j <NUMHELPS6; j=j+ 1)
incr = 6.0 - (0.2 * (float)j);
cmov2(2.0, incr);

| charstr(helppwrflow(j]);

swapbuffers();

} /* end pwrflowhelp */

89

MOUSEMENHELP.C

#finclude <strings.h>

#include "stdio.h"

#include "gl.h"

#include "pwrsys.h"

#define NUMARRAY?2 23

mousemenu()

static str80 mousemen[NUMARRAY?2] =
{

" / /",
! /I,
) r
" ' ll),
" l l"’
" N
" l l H,
"l I",
"l |ll,
" | I | | b,
"I ILEFTMOUSE | IMIDDLEMOUSE | | RIGHTMOUSE | l|",
"l !) J I AN
"I I TERMINATE | | GOBACK ! | SELECT I
"I I ACTIVITY | | TOMOUSE | I MENU b,
" I | MENU WHEN | | OPTION I,
“I 1 (CANCEL) | | INHELP | | U
"I [I MENU i I I

"| l"’

" "

’
”" "

"Use MIDDLE MOUSE to g0 to help for this menu panel.",
"Use LEFT MOUSE to cancel back to previous menu."

);

int j;

float incr;
color(BLUE),

clear();
color(WHITE);

90

for(j =0; j < NUMARRAY2;j=j+1)
incr = 6.0 - (0.2 * (float);j);
cmov2(2.0, incr);
charstr(mousemen(j});

swapbuffers();

} /* end mousemenu */

91

NEWPWRSYS.C

a6 2k o 2 e 2 e 3 2k 2 2 2 2 2 3 e e i ke e e e ke e e 3 e e e 3 e e 286 2 e 36 36 2 2 2 3 e 2 2 2k 3k 3 e 2 e 3 e 2 o 2 3 3 ke ke a2 ke 3 ok e o ak ok ke ok ok
#**#**********/

#finclude "pwrsys.h”

/***
20 2 2k 2k e 2 2k 3 3 e 2 2 2k 3 3 e ke e 2 ke 3¢ 30 e 2k b 3 e 34 2 2 2 e 3¢ e S e 3 e 2 2 3 e 3 o b 3e 3 abe 3 2 2 ke ake ol e a3k e e 3k ok ok sk ke e ok ke e ke sk

MAIN()

This is the primary control module for the entire menu interface. It
is mouse-oriented and utilizes the IRIS window manager, MEX.

LEFT MOUSE (MOUSE3) -> Pop up a Menu (CANCEL)
RIGHT MOUSE (MOUSE1) -> Select a Menu

30 3e 3¢ 2 e 2k 2 30 e e e 2 e 2 e e ¢ 2 e 2k 3¢ e 3¢ ahe e 2 3 3 e e 2k 2k 0 2k 3 2k 3 3 e 2 2 3 ke sk ke 2 2 e 3 3k e e 2 3k e ke e e e 3k e e ok 3k e Ak A e ek
***/

main()
{

/***
e 2k 206 e e e 2k e 20 e Sk ke e e 2k 2k ke 3¢ 3 o s 3k e 3k e 3 Sk sk e ke e 2 e e e sk e 3 3 3k 2k 2 2 ke e e e 3k 3 e 2 2k e 3 A ok e e e 3k e 3k e e e ke ok ok ek

/* menu item names */

short data;

static int pupval = 1;

int levell, level2, level3, levelda, level4b, leveldc, leveld;
int compnum;

/* initialize the IRIS system */

initialize();

/* orthographic projection 2D for world coordinate system */
ortho2(0.0, 9.5, 0.0, 7.0);

/* set mouse limits */

92

setvaluator(MOUSEX, INITXVALUE, 0, XMAXSCREEN);
setvaluator(MOUSEY, INITYVALUE, 0, YMAXSCREEN);

/* define two blinking colors -
one to flash between black and yellow for predicted faults
one to flash between black and red for actual faults */

mapcolor(FLASHBLACKY, 0, 0, 0);
. mapcolo(FLASHBLACKR, 0, 0, 0);

blink(32, FLASHBLACKR, 255, 0, 0);
blink(32, FLASHBLACKY, 255, 255, 0);

/* build the system diagram */
make_diagram();
/* build pop-up menus */

leveldc = defpup("POWER FLOW %t | Help %x13 | Charge Battery %x14 \
Discharge Battery %x15 | Use Voltaics %x16 N
Use Voltaics & Batteries %x17");

leveldb = defpup("FAUL.T MANAGEMENT %t | Help %x11 N
Fault Detection %x12");

level4a = defpup("MAINTENANCE SUPPORT %t | Help %x9 I\
Status Prediction %x10");

level3 = defpup("HEALTH MANAGEMENT %t | Help %x5 N\
Maintenance Support %x6 %m | Fault Management %x7 %m N
Power Flow %x8 %m", level4a, level4b, leveldc);

level2 = defpup("POWER NETWORK CONTROL %t | Help %x3 N\
Health Management %x4 %m", level3);

levell =defpup("PMAD %t | Help %x1 | Power Network Control %x2 %m N
Status Prediction %x10 | Fault Detection %x12 N\
Power Flow %x8 %m | EXIT %x99", level2, leveldc);

leveld = defpup("COMPONENT STATUS %t | Help %x5 N\
Fault Detection %x12 | Status Prediction %x10");

color(WHITE);
clear();

call_diagram();
swapbuffers();

machinepath(7, "nps-sym1”, 1026, 1027, "server",
&remotemachine);

while(pupval != EXIT)
{
i{f (qtest())
switch(qread(&data))

case REDRAW: reshapeviewport();
break;

case RIGHTMOUSE: if (data == 1)
{

compnum = componenthit();

if(compnum >= EPSCNTL

&& compnum <= SW22PDCA2NODE)
pupval = dopup(leveld);

else
pupval = dopup(levell);

processmenuhit(pupval, compnum);
break;

default: break;
)

}
color(WHITE);
clear();
call_diagram();
swapbuffers();

} /* end while */

commint = 999;
write_integer(&remotemachine, &commint);
deletemachinepath(&remotemachine);

blink(0, FLASHBLACKR, 255, 0, 0);
blink(0, FLASHBLACKY, 255, 255, 0);
ginit();

textinit();

gexit();

system("gclear\n");

} /* end main */

94

/**
a6 3k 2k ak 3 a3 s 3k abe 2k e 3 2k 3¢ 3k 2k e 2 2k e 2k e e e e s 2k e e e e e e 2 e s e 2be e 3¢ b e e e e s e e 2e e 2 e e s e e e e e 2k A e ke Ne o Kk K ok Kk ok

PROCESSMENUHIT(PUPVAL)

ok a3k 3k s ¢ a8 3k 2 ok s 3 ok 2k 3k sk 2 e ake 3 afe 3k e o ke ol s e ke e e e e e e e 2k e e e e e e e e 3 e 3¢ s ke 3 2k e e Ak e s e e s e e e e o e e ke Kk Ak
**/

processmenuhit(pupval, num)
int pupval;

int menunum;
char help_file[80]; /* help file for each menu level */

switch(pupval)
{

case -1:
case 2:
case 4:
case 6:
case 7:
case 8:
case 99: break;

case 1: menunum = 1;
help_menu(menunum);
break;

case 3: menunum = 2;
help_menu(menunum);
break;

case 5: menunum = 3;
help_menu(menunum);
break;

case 9: menunum = 4;
help_menu(menunum);
break;

case 10: statusprediction(num);
break;

case 11: menunum = §5;
help_menu(menunum);

case 12: faultisolation(num);
break;

case 13: menunum = 6;

95

help_menu(menunum);
break;

case 14: charge_batt();
break;

case 15: discharge_batt();
break;

td

case 16: use_pv_only();

?

case 17: use_pv_batt();
break;

default: break;

} /* end processmenuhit */

/**********************#***
3 e 2 ke 2 e 3k o 3 ok 3 o e sk e ok e 3 gk e e 3 s b ok e e abe e s 3 2 2 2 2k e 2k 2k 3 2 e 2 3 3k 2 e e e e e e 2k 3k ok 3l b ok ae sk 3 o ok ae ok ak ok ke ok ok ok

INITIALIZE()

This subroutine executes several routines that set up the
graphics environment for this program.

e e 2 2 20 2 2 2k e 2k a2 e e e sfe ke s ol e e s o e 3k sk o e ae e o e e 2 o s e 3 ok o 3k 3 sk o e ke 3k ok 3k e ok 3k ok ae o ok o 3 ok ok ok 3K o ok ke o ok ok ok ok ok
**/

initalize()

keepaspect(XMAXSCREEN + 1, YMAXSCREEN + 1);

prefposition(t PWRWINX 1, PWRWINX2, PWRWINY 1, PWRWINY?2);

winopen("power");

wintitle("SPACE STATION POWER MANAGEMENT & DISTRIBUTION SYSTEM
(PMAD)");

winattach();

doublebuffer();

geonfig();

qdevice(REDRAW);,

qdevice(RIGHTMOUSE);

qdeviceMIDDLEMOUSE),

qdevice(LEFTMOUSE);
} /* end initialize */

96

COMPONENTHIT.C

#include "pwrsys.h"

/#t#*t*tt*tt#**tt***t*#t******#*****#*t**t*##********#**#**#*********
2 20 3 2 20t ke e e e e e 2 2 o 2 2k b 2 sk 2 2 2 2 3 2k 3 o o 2 o 2k 3l 20 2 38 38 2he 2 3k 25 2 3k e e 2 e e ok ok o ok ok ke ok ok ok 3k 2k sk b ak ale ke ok ak ok Ak k

COMPONENTHIT

The following functions determines if the current mouse location
corresponds to a component item hit.

The assumption is made that the mouse moves in a world space
that is the same as the screen space.

a8 206 2k 2k e 3k e e 2 2k ahe sk abe abe e 2k 3k afe 2k ok 2k ok ok ok ke ke b ke b 3k ke ke akk k Ak ke 3 3k 3k e bk 3 3 Ak e 3 e e ke ke ek e e e A s e 2 e 3k 2k e e 3 Ak Kk ok
**********#************************#***********************#********/

int componenthit()
inti; /* temp loop counter */
int pos; /* location of hit menu item */
float x,y; /* location of valuator */

int inside_rect(); /* function that returns true if X,y is inside
the defined box */

intinside_circ(); /* function that returns true if x,y is inside
the defined circle */

static float comppos[49][5] =
{ 04,5.4,8.0,5.8, EPSCNTL,

04,44, 1.4, 4.8, PVEQUIP,
2.5,44,29, 4.8, VOLTREG,
2.0,3.5, 34,338, BA'I'I'ERIES
3.2,4.4,4.2,4.8, DC_AC_ INVERT
6.4, 2.6, 6.8, 5.0, MAINDIST,
74,42, 8.0,48, PDCAI,

7.4, 3.0, 8.0, 3.6, PDCA2,
8.4,54,92, 5.8, SESWCNTL,
8.6, 4.6,9.0, 5.0, SW1_1,
8.6,4.0,9.0,44, SW1_2,
8.6,3.4,9.0, 3.8, SW2_1,

8.6, 2.8,9.0, 3.2, SW2_2,

97

, EPSPVNODE,
, EPSBJTNODE,
EPSINVERTNODE,
EPSMDBNODE,
, EPSPDCAINODE,
, PVEQUIPEPSNODE,
, PVEQUIPBJTNODE,
, BITPVEQUIPNODE,
» BITEPSNODE,
BJTV OLTREGNODE,
, VOLTREGBJTNODE,
VOLTREGB A’I'I'NODE
, VOLTREGINVERTNODE,
, BATTVOLTREGNODE,
INVERTVOLTREGNODE,
, INVERTEPSNODE,
INVERTAJTN ODE,
, AJTINVERTNODE,
, AITMDBNODE,
MDBAJTNODE,
» MDBEPSNODE,
'MDBPDCAL NODE
» MDBPDCA2NODE,
PDCAIMDBNODE,
, PDCA1EPSNODE,
, PDCA1SW11INODE,
, PDCA1SW12NODE,
PDCA2MDBNODE,
, PDCA2SW21 NODE
, PDCA2SW22NODE,
SESWCNTLSWI1INODE,
, SW11PDCA1NODE,
, SW1 ISESWCNTLNODE
, SW12PDCAINODE,
, SW21PDCA2NODE,
, SW22PDCA2NODE

-
-
-

-
-
-

YN

-
-
-

B

-
-

-
-

‘O:W JOO—aO
kA

-
-
-

N 500\ h o 0 oo

-
-
-

m@umywwwbu

Mo
y‘}”h—tmu

-
-

-
-
-

-
-
-

‘\IO\IA\I\IO\)\)

—~ O
L 0o th W i
N 00 © 00

-
v
-

-
-
-

-
-
-

00 00 90 {n 0o
OOO\I\O

-
-
-

-
-
-

-
-
-

-
-
-

L3 00 00 th W 00 W P O

‘O\#O\—-

WWANBUWWWARAARLAUNRRBRRARWARADA L LLLLNNLULG

-
-

-
-
-

S phooUroORL®

-

[SENY- - S

-

P noolo

-
-

By
-
-

-
-

-
-
-
-

-
-

-
-

WBENBNNWWARARRPUNWWWAARWARADLLLRLNULLGL

-

0000000000000 NWONNARNARANUNBLWNWRNPDN YR~ NOAWN —~

-

AN OONO
o W QRSN ST

-
-
-

00000000000 NWENNARAAANVLMUNBULWRNNNON L= ~ONAW=O

Lhhrhuahuoowooo
Ohidooiwor

o

&

-

5
float Sx, Sy;

Sx = getvaluator(MOUSEX);
Sy = getvaluator(MOUSEY);

/* Compute world coordinates of mouse...*/

x = (((9.5 - 0.0)/(PWRWINX2 - PWRWINX1)) * (Sx - PWRWINX1)) + 0.0;
y = (((7.0 - 0.0)/(PWRWINY2 - PWRWINY1)) * (Sy - PWRWINY1)) + 0.0;

98

/* we assume that the mouse coordinates returned match world coords*/

/* say that we have not yet found the hit */

pos =-1;
for(i=0;1<=48;i=i+1)
{

if(inside_rect(x,y,comppos[i][0],comppos[i]{1],
comppos|i][2],compposl[i]{3]))

/* this is the guy we have selected...
set a flag indicating that this selection
is the current component item */

pos = comppos[i]{4];
break;

if(inside_circ(x,y,2.0,4.6,0.2))
pos = BETAJ;
else
if(inside_circ(x,y,5.6,3.9,0.2))
pos = ALPHAJ;

return(pos);
} /* end componenthit */

/**
s ke 3k sk 3k 3 3k k¢ 3l e 3k 3k o ke sk 2k 2k 3k 3¢ 3k ke 3k ok 3 sk e e e ok s ok 3k 3k o o e e ke e sk e 2k e ok e 3 o e e sk 3 e o 3 sk e Ak ok ke e 3k N ok ok Ak ok Kk ¥k

INSIDE_RECT

this function determines if (x,y) is inside the box defined by
the coordinates (xmin,ymin)-(xmax,ymax)

o e ke 2 3 ok ae 2 30 2 3 2 s e ofe b 3¢ afe 3 e 3 30 o e o6 s 3 o 2 e a3 2 2k 2 2 3k e e e ok e ol e 3 o 3 ale 2 ke sk 3 ale e 3 o ok e sk e ale a3 ok e ke ok ke ok
***************#**/

int inside_rect(x,y,xmin,ymin,xmax,ymax)
float x,y; /* location of the cursor */
float xmin,ymin,xmax,ymax; /* bounding box to check if cursor
is inside */
{
if(((x > xmin) && (x < xmax)) && ((y > ymin) && (y < ymax)))

return(TRUE);
else

99

| return(FALSE);

/******#****************************#**#**********#******************
330 3 2k 2 3 2 e 20 e e 2 2 e e 20 2 s 3 e e 3¢ 3 3 s e 2k e e 2 2 e 3 ok e 2k e 3k ale e s e ke ke abe 2k sk 2 ke ok 3k e a2 ke ok ok a2k ak ak ok ok s ak ok ok ok ok

INSIDECIRC

this function determines if (x,y) is inside the circle defined
by the center coordinates (xcent, ycent) and the radius

e a6 e ke e 3 i 2 2 2 3 3 3 e 3 3k 2k 2 e 2 e 2 a2 2be e 2 a2 2ie e 2o 30 2 3¢ e ol ol e sl e 2w e e e 3 e 3 3 3 3 2 ol db e e 2 o afe o afe ke afe ok ke ke ke Nk ok
*********************************#**#**#*******#********************/

int inside_circ(x,y,xcent,ycent,radius)
float x,y; /* location of the cursor */
float xcent,ycent,radius; /* bounding box to check if cursor
is inside */
float D;
D = sqrt(((x - xcent) * (x - xcent)) + ((y - ycent) * (y - ycent)));
if(D < radius)
return(TRUE);

else
return(FALSE);

100

COMPMENU.C

/****t****#*****##***********#*************t*********ti**#****#**#*****
30 2 2 24 20 e afe 2 e 2k 2 3 38 2 e 36 sk e 3k e o ok 26 28 2 e 36 2 ke 2 3 e 2 b ok 3 2l 2 e 2k e abe 2 3l 2 3k 2 s akk a3 ok 3 ke 3 2k 3 o 2k ke 3 3 3k o e ok o 3 ok ok ok

COMPMENU

Displays the menu that provides the choice of items that are
predicted to fail or that have actually failed

ke sk o o ae o b o e s sk o o ae o o o ol oo a0 ol oo e o ol o o o ok oo o s o o ol o s o ok ol o o ok o o ok o ok o ook o o o o o ok ok ok ok ok ok
*****t****t***************#***************i#***********#****#****t#***/

#include "pwrsys.h"
#define NUMARRAY1 20

compmenu(type)
{ int type;

static str80 compmenufNUMARRAY1] =
{
) COMPONENTS MENU

" EPS CONTROL BOARD - 0 SWITCH2-1 - 18",

" EPSCONNECTION1 - 1 SWITCH2-2 -19",

" EPS CONNECTION2 - 2 CONNECTIONO -20",

" EPS CONNECTION 3 - 3 CONNECTION la -21",
" EPS CONNECTION 4 - 4 CONNECTION 1b - 22",
" EPS CONNECTIONS - 5 CONNECTION2 -23",

" PHOTOVOLTAIC EQUIP- 6 CONNECTION 3 -24",

" BETA JOINT - 7 CONNECTION 4 -25",
" VOLTAGE REGULATOR - 8 CONNECTIONS -26",
" BATTERIES - 9 CONNECTION 6 - 27",

" DC-AC-INVERTER - 10 CONNECTION 7a - 28",

" ALPHA JOINT - 11 CONNECTION 7b - 29",

" MAIN DISTRIB BOARD - 12 CONNECTION 8a - 20",

" PWRDISTCNTL ASSEM1 - 13 CONNECTION 8b - 31",
" PWRDISTCNTL ASSEM2 - 14 CONNECTION 8¢ - 32",
" SYSELEMSWCNTL -15 CONNECTION 8d - 33",

" SWITCH 1-1 -16 SYS ELEM CONN - 34",
" SWITCH 1-2 -7
);
int j;
float incr;
char chr;
101

for(j = 0; j < NUMARRAY1; j = j + 1)

incr = 6.0 - (0.2 * (float)j);
cmov2(2.0, incr);
charstr(compmenu(j});

i{f(type==0)

j=NUMARRAY1 + 2;

incr = 6.0 - (0.2 * (float)j);

cmov2(2.5, incr);

charstr("Enter the numbers corresponding to the items");
j=j+ 1

incr = 6.0 - (0.2 * (float)));

cmov2(2.5, incr);

charstr("that have failed, separated by commas.");

else

j=NUMARRAY]1 +2;

incr = 6.0 - (0.2 * (float)j);

cmov2(2.5, incr);

charstr("Enter the numbers corresponding to the items that");
j=j+1;

incr = 6.0 - (0.2 * (float)j);

cmov2(2.5, incr);

charstr(“are predicted to fail, separated by commas.");

)

} /* end compmenu */

102

DIAGRAM.C

#include "pwrsys.h"

/**
ok e 20 ok s 2k 3 2 e o 2 3k ok 2k 3 s e e e 3 3k 2 3 sk e 3k 2 e e 2 e ae e ke e e dbe 2 e e e 2k e 3 e 29 s e 3 e 3¢ e e e 2 e e ke e e e v e ek ok ok ok

MAKE_DIAGRAM

Creates the thirty five different objects in the system
diagram.

e 2 2k ok 3k 2k 2k 2 3k 2 3 3 3k ¢ 2 2 sk e 3k A ok 2 2 e e ok ok s 3 2 ke 3 2k 2 3k e ke 2 2k e e 3k afe a3 3k e a sk 2k e 3k 3k e ke a3k ke sl e ke e e ale A s 3k ok ke 3k ke
**/

make_diagram()

{
int 1;
for(i = EPSCNTL; i <= SESWCN;i=i+1)
{

power{i].objname = genobj();
makeobj(power(i).objname);
power(i].tagname = gentag();
maketag(powerli).tagname);

switch(i)

case EPSCNTL: color(BLACK);
rect(0.4, 5.4, 8.0, 5.8);
cmov2(2.3, 5.5);
charstr("ELECTRICAL POWER SYSTEM ");
charstr("MANAGEMENT AND CONTROL");
break;

/* Photovoltaic equipment - the solar power source */

case PVEQUIP: color(BLACK);
rect(0.4, 4.4, 1.4, 4.8);
cmov2(0.8, 4.65);
charstr("PV");
cmov2(0.5, 4.5);
charstr("EQUIPMENT™),
break;

103

/* Betajoint - secondary rotation joint for solar panels */

case BETAJ: color(BLACK);
circ(2.0, 4.6, 0.2);
cmov2(1.9, 4.55);
charstr("BJT");
break;

/* Voltage Regulator between PVEQUIP and BATTERIES */

case VOLTREG: color(BLACK);
rect(2.5, 4.4, 2.9, 4.8);
cmov2(2.55, 4.65);
charstr("VOLT");
cmov2(2.55, 4.5);
charstr("REG");
break;

case BATTERIES: color(BLACK);
rect(2.0, 3.5, 3.4, 3.8);
cmov2(2.3, 3.6);
charstr("BATTERIES");
break;

/* Converter of DC power to AC power */

case DC_AC_INVERT: color(BLACK);
rect(3.2,4.4,4.2,4.8);
cmov2(3.45, 4.65);
charstr("DC-AC");
cmov2(3.3, 4.5);
charstr("INVERTERS");
break;

/* Alphajoint - primary rotation joint for solar panels */

case ALPHAJ: color(BLACK);
circ(5.6, 3.9, 0.2);
cmov2(5.5, 3.85);
charstr("AJT");
break;

/* Main Distribution Board - distributes power throughout the rest
of the system */

case MAINDIST: color(BLACK);
rect(6.4, 2.6, 6.8, 5.0);
cmov2(6.55,4.9);
charstr("M");
cmov2(6.55,4.75);
charstr("A");

104

cmov2(6.55,4.6);
charstr("1");
cmov2(6.55,4.45);
charstr("N");
cmov2(6.55,4.25);
charstr("D");
cmov2(6.55,4.10);
charstr("I");
cmov2(6.55,3.95);
charstr("S");
cmov2(6.55,3.80);
charstr("T");
cmov2(6.55,3.65);
charstr("R");
cmov2(6.55,3.50),
charstr("I");
cmov2(6.55,3.35);
charstr("B");
cmov2(6.55,3.20);
charstr("U");
cmov2(6.55,3.05);
charstr("T");
cmov2(6.55,2.90);
charstr("I");
cmov2(6.55,2.75);
charstr("O");
cmov2(6.55,2.6);
charstr("N");
break;

/* Power Distribution and Control Assemblies 1 and 2 */

case PDCATL: color(BLACK);
rect(7.4, 4.2, 8.0, 4.8);
cmov2(7.45, 4.5);
charstr("PDCA 1");
break;

case PDCA2: color(BLACK);
rect(7.4, 3.0, 8.0, 3.6);
cmov2(7.485, 3.3);
charstr("PDCA 2");
break;

/* System Element Switch Control */

case SESWCNTL: color(BLACK);
rect(8.4, 5.4,9.2, 5.8);
cmov2(8.45, 5.65),
charstr("SYS ELEM");
cmov2(8.5, 5.5);

105

charstr("SW CNTL");
break;

/* The four switches coming off the PDCAs */

case SW1_1: color(BLACK);
rect(8.6, 4.6, 9.0, 5.0);
cmov2(8.65, 4.7);
charstr("SW11");
break;

case SW1_2: color(BLACK);
rect(8.6, 4.0, 9.0, 4.4);
cmov2(8.65, 4.2);
charstr("SW12");
break;

case SW2_1: color(BLACK);
rect(8.6, 3.4, 9.0, 3.8);
cmov2(8.65, 3.5);
charstr("SW21");
break;

case SW2_2: color(BLACK);
rect(8.6, 2.8, 9.0, 3.2);
cmov2(8.65, 3.0);
charstr("SW22");
break;

case EPSPVNODE: color(BLUE);
rectf(0.8,5.3,1.0,5.4);
break;

case EPSBJITNODE: color(BLUE);
rectf(1.9,5.3,2.1,5.4);
break;

case EPSINVERTNODE: color(BLUE);
rectf(3.6,5.3,3.8,5.4);
break;

case EPSMDBNODE; color(BLLUE);
rectf(6.5,5.3,6.7,5.4);
break;

case EPSPDCAINODE: color(BLUE);
rectf(7.6,5.3,7.8,5.4);
break;

106

case PVEQUIPEPSNODE: color(BLUE);
rectf(0.8,4.8,1.0,4.9);
break;

case PVEQUIPBJTNODE: color(BLUE);
rectf(1.4,4.5,1.5,4.7);
break;

case BITPVEQUIPNODE: color(BLUE);
rectf(1.7,4.5,1.8,4.7);
break;

case BITEPSNODE: color(BLUE);
rectf(1.9,4.8,2.1,4.9);
break;

case BITVOLTREGNODE: color(BLUE);
rectf(2.2,4.5,2.3,4.7);
break;

case VOLTREGBJTNODE: color(BLUE);
rectf(2.4,4.5,2.5,4.7);
break;

case VOLTREGBATTNODE: color(BLUE);
rectf(2.6,4.3,2.8,4.4);
break;

case VOLTREGINVERTNODE: color(BLUE),
rectf(2.9,4.5,3.0,4.7);
break;

case BATTVOLTREGNODE: color(BLUE);
rectf(2.6,3.8,2.8,3.9);
break;

case INVERTVOLTREGNODE: color(BLUE);
rectf(3.1,4.5,3.2,4.7);

break;
case INVERTEPSNODE: color(BLUE);
rectf(3.6,4.8,3.8,4.9);
break;
case INVERTAJTNODE: color(BLUE);
rectf(4.2,4.5,4.3,4.7);
break;
case AJTINVERTNODE: color(BLUE);
rectf(5.3,3.8,5.4,4.0);
break;

107

case AT TMDBNODE: color(BLUE);
rectf(5.8,3.8,5.9,4.0);
break;
case MDBAJTNODE: color(BLUE);
rectf(6.3,3.8,6.4,4.0);
break;
!
case MDBEPSNODE: color(BLUE);
rectf(6.5,5.0,6.7,5.1);
break;
case MDBPDCAI1NODE: color(BLUE);
rectf(6.8,4.4,6.9,4.6);
break;
case MDBPDCA2NODE: color(BLUE);
rectf(6.8,3.2,6.9,3.4);
break;
case PDCAIMDBNODE.: color(BLUE),
rectf(7.3,4.4,7.4,4.6),
break;
case PDCA1EPSNODE: color(BLUE);
rectf(7.6,4.8,7.8,4.9);
break;

case PDCA1SWI11INODE: color(BLUE);
rectf(8.0,4.6,8.1,4.8);
break;

case PDCA1SW12NODE: color(BLUE);,
rectf(8.0,4.2,8.1,4.4);

break;
case PDCA2MDBNODE: color(BLUE);
rectf(7.3,3.2,7.4,3.4);
break;

case PDCA2SW21NODE: color(BLUE),
rectf(8.0,3.4,8.1,3.6);
break;

case PDCA2SW22NODE: color(BLUE),
rectf(8.0,3.0,8.1,3.2);
break;

case SESWCNTLSWI1INODE: color(BLUE);
rectf(8.7,5.3,8.9,5.4); .

break;
case SW11PDCAINODE: color(BLUE);
rectf(8.5,4.6,8.6,4.8);
break;
case SW11SESWCNTLNODE: color(BLUE);
rectf(8.7,5.0,8.9,5.1);
break;
case SW12PDCAINODE: color(BLUE);
rectf(8.5,4.2,8.6,4.4);
break;
case SW21PDCA2NODE: color(BLUE);
rectf(8.5,3.4,8.6,3.6);
break;
case SW22PDCA2NODE: color(BLUE);
rectf(8.5,3.0,8.6,3.2);
break;

/* The five connections from EPSCNTL to other components */

case EPSCN1: color(BLACK);
rectf(0.85, 4.9, 0.95, 5.3);
break;

case EPSCN2: color(BLACK);
rectf(1.95, 4.9, 2.05, 5.3);
break;

case EPSCN3: color(BLACK);
rectf(3.65, 4.9, 3.75, 5.3);
break;

case EPSCN4: color(BLACK);
rectf(6.55, 5.1, 6.65, 5.3);
break;

case EPSCNS: color(BLACK);
rectf(7.65, 4.9, 71.75, 5.3);
break;

/* CNO through CN8 - Connections between components that will show
power flow through the system */

case CNO: color(BLACK);

rectf(1.5, 4.55, 1.7, 4.65),
break;

109

case CN1la:

case CN1b:

case CN2:

case CN3:

case CN4:

case CNS5:

case CN6:

case CN7a:

case CN7b:

case CN8a:

case CN8b:

case CN8c:

case CN8d:

color(BLACK);
rectf(2.3, 4.55, 2.4, 4.65);
break;

color(BLLACK);
rectf(2.65, 3.9, 2.75, 4.3);
break;

color(BLACK);
rectf(3.0, 4.55, 3.1, 4.65);
break;

color(BLLACK);
rectf(4.3, 4.55, 4.8, 4.65);
break;

color(BLACK);
rectf(4.7, 3.85, 4.8, 4.55);
break;

color(BLACK);
rectf(4.8, 3.85, 5.3, 3.95);
break;

color(BLACK);
rectf(5.9, 3.85, 6.3, 3.95);
break;

color(BLACK);
rectf(6.9, 4.45, 7.3, 4.55);
break;

color(BLACK);
rectf(6.9, 3.25, 7.3, 3.35);
break;

color(BLACK);
rectf(8.1, 4.65, 8.5, 4.75);
break;

color(BLLACK);
rectf(8.1, 4.25, 8.5, 4.35);
break;

color(BLACK);
rectf(8.1, 3.45, 8.5, 3.55);
break;

color(BLACK);

rectf(8.1, 3.05, 8.5, 3.15);
break;

110

F)

.

/* System Element Switch Connections */

case SESWCN: color{BLACK);
rectf(8.75, 5.1, 8.85, 5.3);
break;

default: break;
} /* end switch */

closeobj();
} /* end for */

} /* end makediagram */

/#*********************##****************t**#**t***********************
2k 2k a8 356 2 3¢ 3k 3 sk 2 3c 3k ok 3 ok o e s 2 2k 2 3e ok 3k ke o e ke 2 3¢ 2k 3k ke sk 3l 2 3 e 3k 3 o e ok ke 3 o 3 e 3k 3 ok ok ke ok e ke e ok ok 3 ok e e ok ok ok e A ok ok ok

CLEANUP_FLOW and CLEANUP_DIAGRAM

Procedure that changes all objects in system diagram to
original color.

s ke o 3¢ 20k o ale o b e 28 e 2k 3 o 3 sk a0 e a3 ak e 2k e 2k 2 e o ade 2 ok e 2l ol e 20 e 2 e o 2 e o ke a2l ae ok e ol e s e o o e o e o ok o ke ok ke o ok
**********#*********#**#*****#*********‘********#**#t**#**************/

cleanup_flow()

inti;
for i=CNO;i<=CN8d;i=i+ 1)
editobj(power[i).objname),
objreplace(power{i].tagname);
color(BLACK);
closeobj();

} /* end cleanup_flow */
cleanup_diagram()
{
int i;
for i=EPSCNTL;i<=SW2_2,i=i+1)
{
editobj(power{i].objname);
objreplace(power(i).tagname);
color(BLACK);
closeobj();

}

1

for (i = EPSPVNODE; i <= SW22PDCA2NODE;i=i+ 1)
editobj(power[i).objname);
objreplace(power{i).tagname);
color(BLUE);
closeobj();
}
} /* end cleanup_diagram */

/*************************************t*****##*************************
e o 2 e 3 2 2 2 2 2 2k 3k 2k 2 20 2 e e e dhe 2 2 2k e 24 2 2k 3 2 o 2 2 3 2k 2k 2k 2k abe 2k a2 ke ok 2k ab e 3 2k 3k 3k 2k ak ok 2 a3k e 3k ok ae 2k 3k 2 e ok e ke ok ok ok

CALL_DIAGRAM
Procedure that calls all the objects in the system diagram.

e 2 8¢ 2k ek o 3 e sk 3 o 2k 2 o 2 3 o s 26 e e 2k sk 2e e e ke 2 e o 2 s s 3k e ke ol ok 3 2 e abe 2k ok ale 2k ok 2k 3l ok 3 ok a3k o o ke o 3 e o 3k e 3k ok 3 e ok ok ok
****************#**************#**************************************/

c[:all_diagram()
int 1;

for(i=0;i<=70;i=i+1)
callobj(power(i].objname);

} /* end call_diagram */

112

1

PWRFLOW.C

#include "pwrsys.h"

/**
e 2 2k 3k 3k 2k 2 34 2 2 2 e 2k 2 s 2 2 3 ke 2 2 e e 26 3k 2 2 3 ake 2 2 e e she 2k e e e 2 2 2 ke 23 2 2k 3 e 3k 3k e ke 3k ok 3 ke 3k e ok e 3k ak 3k ok ok ok ak ak 3k ok ok ok

CHARGE_BATTERY

Show the flow of power from the photovoltaic equipment to the
battery.

3 3 e 3 3 2k 2k 3 2k s 3 3¢ ok s e ke 3k 35 2 sk 3k 3k 3 e sk 2 3 e ake s 3 ke 3k afe a3 3k ok 3 2 3k ke o e e 3 2k 2k e e ke 3 2 2 e e 3 ke ok 2k e ke sl ke ok ke Ak ke ok ok ok
**/

charge_batt()
{
int flashpoint, i, num, min, max;

Boolean CANCEL,;
short data;

min = CNO;
max = CN1b;

i= 0
num = min;
flashpoint = 0;
CANCEL =FALSE;

while(!{CANCEL)
{
i=i+1;
/* Pause briefly, then move "electricity" flash */

sleep(1);
{
i=0;

113

switch(flashpoint)
{

case 0: editobj(power[num].objname);
objreplace(power{num].tagname);
color(RED),
closeobj();

editobj(power{max].objname);
objreplace(power|max].tagname);
color(BLACK);

closeobj();

break;

case 1:
case 2: editobj(power[num].objname);
objreplace(power(num].tagname);
color(RED);
closeobj();

editobj(power[num - 1].objname);
objreplace(power(num - 1].tagname);
color(BLACK);
closeobj();
brc .
default: break;

} /* end switch */

call_diagram();
swapbuffers();

flashpoint = (flashpoint + 1) % 3;
if (num == max)

num = min;
else

num = num + I;

} /* end if */

if (qtest())
switch(qread(&data))
case REDRAW: reshapeviewport();
break;

114

r-------------------------*

case LEFTMOUSE: CANCEL = TRUE;
break;

default: break;

- }
}

} /* end while */

color(WHITE),
clear();
cleanup_flow();
swapbuffers();

} /* end charge_batt */

/**********#***
28 e 2 26 3 2 2k 2 e o 2k 3k 3k Sk e ok 36 ok ok e e e 3k 3k e 3 sk 2k 3 3 ke 2k ke ke 3k 38 3k 3k ok 2 ke ke 3 e sk e e k3 e ke ke a3 ok e ke ke ke ok o e ok ke Sk o 3 ok ok ok

DISCHARGE_BATTERY

Show the flow of power from the batteries through the rest of
the system.

30 3 e 2 e e 20 2 e a0 s 2 o e 3 3k 2 s 2k ke ke 2 e 2 e e o e afe 2 3 2 3 2 2 3 e e e s e e 2 e 2 b 2 2k ok sl e ol o ake abe e ol a3 ake o e a3k e o e ok ok ok
#**##***************#***************#**#**#***********************/

discharge_batt()
{
int flashpoint, i, j, num, min, max;

Boolean CANCEL;
short data;

min = CN1b;
max = CN8d;
i=0;
i=0;
num = min;
flashpoint = (;

CANCEL = FALSE;

115

while(\CANCEL)
{

i=i+1;

s{lecp(l);
i=0;
switch(flashpoint)

case 0: editobj(power[num].objname);
objreplace(power{num].tagname);
color(RED);
closeobj();

forG=num+8;j<=num+11;j=j+1)

editobj(power(j].objname);
objreplace(power{j].tagname);
color(BLACK);

closeobj();

break;

case 1:

case 2:

case 3:

case 4.

case 5: editobj(power[num].objname);
objreplace(power[num].tagname),
color(RED);

closeobj();

editobj(power[num - 1].objname);
objreplace(power[num - 1].tagname);
color(BLACK);

closeobj();

break;

case 6: for (j=num; j<=num+1;j=j+1)
editobj(power{j].objname);
objreplace(power(j].tagname);

color(RED);
closeobj();

116

editobj(power[num - 1].objname);
objreplace(power[num - 1].tagname);
color(BLACK);

closeobj();

num = num + 1;

break;

case 7: for(=num;j<=num+3;j=j+1)
editobj(power(j}.objname);
objreplace(power|[j].tagname);
color(RED);
closeobj();
for(j=num-2;j<=num-1;j=j+1)
editobj(power[j].objname);
objreplace(power(j].tagname);
color(BLACK);
closeobj();

num = num + 3;
break;

default: break;
} /* end switch */

call_diagram();
swapbuffers();

flashpoint = (flashpoint + 1) % 8;
if (num == max)
num = min;
else
num =num + 1;
} /* end if */
if (qtest())
switch(gread(&data))
{

case REDRAW: reshapeviewport();
break;

117

—-—

case LEFTMOUSE: CANCEL =TRUE;
break;

default: break;

}
}

} /* end while */

color{WHITE);
clear();
cleanup_flow();
swapbuffers();

} /* end discharge_batt */

118

/***************************************#******#***********************
ke 2k 2 2 28 ok 2 e s 3 ok ak ke sk ke 3¢ ok e e 2 e ok e 26 3 e 3k 2 3 3 e s 2k 20 s 3 3 e 3 2 3k ake 2 28 2 e 3 2k ke 2k 3k ke abe e abe a3 3k Ak 2 ak b ok 3k e ke Ak ke ok ke

USE_PV_ONLY

Show the flow of power from the photovoltaic equipment
throughout the rest of the system.

e o 2 e 2 2 a2k a3 2 e 2 o 2 2 3 3 s 2 29 3 ok ke ok 2 2 2 ke a3 a2 s 2 2 a2 e o e e 3 e a abe a2 e ok e ok ok o 2k 3 sk ko ok o ok ok ok ak ok ok ok ok ok
#*#****#*******************t*#***********t************************/

l{lse_pv_only()
int flashpoint, i, j, num, min, max;

Boolean CANCEL;
short data;

min = CNO;
max = CN8d;
i= 0;
i=0;
num = min;
flashpoint = 0;

CANCEL = FALSE;
v{vhile(!CANCEL)

i=i+1;
sleep(1);
{ i=0;
switch(flashpoint)
[case 0: editobj(power[num].objname);
objreplace(power{num].tagname);

color(RED);
closeobj();

119

for G=num + 10; j<=num + 13; j=j + 1)

editobj(power{j].objname);
objreplace(powerf{j].tagname);
color(BLACK);

closeobj();

break;

case 1:

case 3:

case 4:

case 5:

case 6: editobj(power[num].objname);
objreplace(power{num).tagname);
color(RED);

closeobj();

editobj(power[num - 1].objname);
objreplace(power[num - 1].tagname);
color(BLACK);

closeobj();

if (flashpoint == 1)
num = num + 1;

break;

case 2: editobj(power[num].objname);
objreplace(power{num).tagname);
color(RED);
closeobj();
callobj(power{ num]).objname);

editobj(power[num - 2].objname);
objreplace(power[num - 2}.tagname);
color(BLACK);

closeobj();

callobj(power[num - 2].objname);

break;

case 7: for j=num; j<=num+ I;j=j+1)

editobj(power{j].objname);
objreplace(power{j].tagname);
color(RED);
closeobj);
callobj(power{j].objname);
}

120

editobj(power[num - 1].objname);
objreplace(power[num - 1].tagname);
color(BLLACK);

closeobj();

callobj(power[num - 1].objname);

num = num + 1;

break;

121

case 8: forj=num; j<=num+3;j=j+1)

editobj(power(j].objname);
objreplace(power{j].tagname);
color(RED);
closeobj();
c}allobj(power[i].objnamc);
forG=num-2;j<=num-1;j=j+1)
editobj(power(j].objname);
objreplace(power{j].tagname);
color(BLLACK);
closeobj();
c]allobj(power[j].objname);

num = num + 3;
break;

default: break;
} /* end switch */

call_diagram();
swapbuffers();

flashpoint = (flashpoint + 1) % 9;
if (num == max)

num = min;
else

num =num + 1;

} /* end if */

i{f (qtest())
s{witch(qrcad(&data))

case REDRAW: reshapeviewport();
break;

case LEFTMOUSE: CANCEL = TRUE;
break;
default: break;
)
)

} /* end while */

122

»

[

rr—_—,—,—,——

color(WHITE);
clear();
cleanup_flow();
swapbuffers();

} /* end use_pv_only */

/******#**#********************t***********#**#*********‘**************
ke e ok 3k 2 2k 2 2k afe 2 3k o ok 2k 3k 2 2k 2 e abe 3 e 3 2 38 2 2 2 3 2l 2 e 2 e 26 2 2 24 3¢ 2 e e 2 e e 2 3 3 3 e e ke 2 3k e 2 e abe ok e ok e e e sk ok e ok ok ok

USE_PV_AND_BATTERIES

Show the flow of power from the photovoltaic equipment and the
batteries throughout the rest of the system.

a5 2 e e 2 3k afe 2 e a3 2 afe abe 2k e 3 e e 2 e 2 2 e 3 e 3 3 e e e 2he 2 e s S 300 2e 30 e 2 e 2 e 2 e 2 2 e 2 e e 2 3 2 e e s e e 3k 3 o e e abe e e e ok K
********************************#*************************************/

use_pv_batt()
int flashpoint, 1, j, num, min, max;

Boolean CANCEL,;
short data;

min = CNO;
max = CN8d;
i=0;
i=0
num = min;
flashpoint = 0;

CANCEL = FALSE;
while(!CANCEL)
{

i=i+ 1,
sleep(1);
{ i=0;
switch(flashpoint)
. case 0: editobj(power{num].objname);
objreplace(power{num).tagname);

color(RED);
- closeobj();

123

callobj(power{num].objname);
for=num +10; j<=num+13;j=j)+1)

editobj(power(j].objname);
objreplace(power(j].tagname);
color(BLACK),
closeobj();
] callobj(power{j].objname);

break;

case 3:
case 4:
case 5:
case 6: editobj(power[num].objname);
objreplace(power{num].tagname);
color(RED);
closeobj();
callobj(power[num).objname);

editobj(power[num - 1].objname);
objreplace(power{num - 1].tagname);
color(BLACK);

closeobj();

callobj(power{num - 1].objname);

break;

case 2: editobj(power[num].objname);
objreplace(power[num].tagname);
color(RED);
closeobj();
callobj(power{num].objname);

forG=num-2;j<=num-1;j=j+1)
editobj(power(j].objname);
objreplace(power(j].tagname);
color(BLACK),
closeobj();
c}allobj(power[num - 2].objname);

break;

124

—>

case 1:
case 7. for(j=num;j<=num+1;j=j+1)
{
editobj(power{j]l.objname);
objreplace(power[j].tagname);
. color(RED);
closeobj();
) callobj(power{j].objname);

editobj(power[num - 1].objname);
objreplace(power{num - 1].tagname);
color(BLACK);

closeobj();

callobj(power[num - 1].objname);

num = npum + 1;

break;

case 8: for (j=num;j<=num+3;j=j+1)

editobj(power{j].objname);
objreplace(power[j].tagname);
color(RED);

closeobj();
callobj(power(j].objname);
)

for=num-2;j<=num-1;j=j+1)

editobj(power{j].objname);
objrcplace(powcrh] tagname);
color(BLACK);
closeobj();
| callobj(powerfj].objname);

num = num + 3;
break;

default: break;
} /* end switch */

call_diagram();
swapbuffers();
flashpoint = (flashpoint + 1) % 9;
if (num == = max)
num = min;
else
num = num + 1;

} /* end if */

125

i[f (qtest()
s{witch(qrcad(&data))

case REDRAW: reshapeviewport();
break;

case LEFTMOUSE: CANCEL = TRUE;
break;

default: break;

}
}

} /* end while */

color(WHITE);
clear();
cleanup_flow();
swapbuffers();

} /* end use_pv_batt */

126

COMPSTAT.C

#include "pwrsys.h"”

/*************************#***************#************#******#********
e b ok 3 xe ofe 2k ok 2 3k 3 o s o ok 3 ok o 3 ok e ak ok 3 sk 3 2k ik 3k ake 2k 2k e 2k o 3k 2k 2k sk ok 2k sl sk 3k e s e 2k e e sk e d ok ok b 3k sk e ak ke de ok A e e 2k ek

FAULT ISOLATION

Shows actual faults in systems

a3k 3k 3k 2k 3k afe a2 3k 3k 3 ok 2k ale ok 3 i d e s 2k 3k e ok 2k 3k sk 3 2 e e 2k ale sl e afe 2k e a2 e e e ae e e ke 2 2k e ale sk e e 2 e e e 3 2 e e 3 e e e e e e
**l

faultisolation(num)
int num;
{

int type;
type = 0;

componentstatus(type, num);

/************************************#*********************************
sk 2k 2k 3k s 3 3 2 e 3 e 3 a2 akc o 3 e o 2 3k o 3k ok 3k ake o 3 o 3k 3k sk 3 sfe s ok s ke 3k 2 26 e e s 2 3k a3 3k e 3 sk ke 3k ok ok e ke o e e 2 Ak 3k Ak ok ke ke e Kk

STATUS PREDICTION

Shows predicted faults in systems

s ke b ke 3 ke ok 2 ok ok s abe 2 ok 3k 3k ke 2 3k 2k 3k 3k sk 3k o a2 sk a2k ok e ok 3l o ol 3k 2k 2k e s 3k sk a3k sk 2 3 ok e e b o ke 2k sk ke sk e e ok 3 s 3 A ke e ok 3k e ok ke
#**#**********************/

statusprediction(num)
int num;
{

int type;
type = 1;

componentstatus(type, num);

127

/**
206 20 2l 2 2 b 3 2k e 286 2 e e 2k 2 e 2w 2 s 2 3 e a9 20 o s e 2 o o ae o e ok e ok e e e 2 a2k e ok ok ae ak ae ake ok sk ok ak a3k e e dke ak ok ok ok o ok ak o ke ok ok ok

COMPSTAT

Checks the status of individual components in the diagram.

akc 2 2 2k 2k 2 a2k 2 2 2 2 ak 2k e e 3 2 2 2 2k e e e e e s e 2l 20e 2 2 2 3 20e e 2 3 36 o o 2 2 2 ol e a2 e e e o 2 2 e e 3k ok a2 3 3k ok sk e 3 ke ke ok ok
****************************#*t*******#**#*##****#***#******t********#/

componentstatus(type, num)
int type, num;
{
int i, index;
Boolean CANCEL;
short data;

commint = type;
write_integer(&remotemachine, &commint);
if (sender_is_free(&remotemachine))
{ if((num >= 0) && (num <= 50))

{ commint = num,;

)

else

{
commint = CHECKSYSTEM;

}

write_integer(&remotemachine, &commint);
} process_message();
CANCEL = FALSE;

while ({CANCEL)
{

i{f (qtest())
s{witch(qread(&data))
case REDRAW: reshapeviewport();
break;

128

ﬁ*

case LEFTMOUSE: CANCEL = TRUE;
break;

default: break;

}
}

} /* end while */

system("clear\n");
color(WHITE);
clear;
clear.up_diagram();
swapbuffers();
} /* end componentstatus */
process_message()

Boolean done;
char compcolor, mess_pointer[80], commessage[80];

while (!done)

while ('receiver_has_data(&remotemachine));

read_characters(&remotemachine, commbuffer,
number_received(&remotemachine));

while (‘receiver_has_data(&remotemachine));
read_integer(&remotemachine, commint);
compcolor = commbuffer{0];
if (compcolor == 'G’ il compcolor == "Y' Il compcolor == 'R’)
editobj(power{commint].objname);
objreplace(power{ commint].tagname);
switch(compcolor)

case 'G": color(GREEN);
break;

case 'Y': color(FLASHBLACKY),
break;

129

case 'R": color(FLASHBLACKR);
break;

default: break;
}
closeobj();

strcpy(mess_pointer, strchr(commbuffer, '-'));
strcpy(commessage, mess_pointer);

else if (commint = FINISHED_PROCESSING)

done = FALSE,;
strcpy(commessage, commbuffer);

color(WHITE);
clear();
swapbuffers();
clear();
swapbuffers();
call_diagram();
color(BLACK);
cmov2(2.5, 1.0);
charstr(commessage);
sleep(1);

} /* end process_message */

130

10.

11.

12.

LIST OF REFERENCES

Erickson, W., and others, "NASA Systems Autonomy Demonstration Program: A
Step Toward Space Station Automation," SPIE Space Station Automation I, v. 729,
1986.

User's Guide to Symbolics Computers, Symbolics, Inc., July 1986.
Wilensky, R., Common LISPcraft, W. W. Norton & Company, Inc., 1986.
IntelliCorp KEE Software Development System User’s Manual, IntelliCorp, 1986.

Winston, P. H., "Artificial Intelligence: A Perspective,” Al in the 1980s and Beyond,
The MIT Press, 1987.

Erickson, W., and Nienart, J., MTK Reference Manual and User Guide (draft),
10 April 1988.

Kernighan, B., and Ritchie, D., The C Programming Language, Prentice-Hall, Inc.,
1978.

IRIS User's Guide: Volume 1 Graphics Programming, Silicon Graphics, Inc., 1986.

Barrow, T., Distributed Computer Communications in Support of Real- Time Visual
Simulations, Master's Thesis, Naval Postgraduate School, Monterey, California,
June 1988.

Barrow, T., "Inter-computer Communication Package," unpublished paper, Naval
Postgraduate School, Monterey, California, May 1988.

Bromley, H., and Lamson, R., LISP Lore: A Guide to Programming the LISP
Machine, Kluwer Academic Publishers, 1987.

Martin Marietta Denver Aerospace Task I Study Report MCR-86-583, Space Station
Automation of Common Module Power Management and Distribution, by Miller, W.,
and others, July 1986.

131

BIBLIOGRAPHY

Barrow, T., Distributed Computer Communications in Support of Real- Time Visual
Simulations, Master's Thesis, Naval Postgraduate School, Monterey, California,
June 1988.

Barrow, T., "Inter-computer Communication Package,” unpublished paper, Naval
Postgraduate School, Monterey, California, May 1988.

Bromley, H., and Lamson, R., LISP Lore: A Guide to Programming the LISP
Machine, Kluwer Academic Publishers, 1987.

Erickson, W., and Nienart, J., MTK Reference Manual and User Guide (draft),
10 April 1988.

Erickson, W., and others, "NASA Systems Autonomy Demonstration Program: A
Step Toward Space Station Automation," SPIE Space Station Automation II, v. 729,
1986.

IntelliCorp KEE Software Development System User's Manual, IntelliCorp, 1986.
IRIS User's Guide: Volume I Graphics Programming, Silicon Graphics, Inc., 1986.

Kernighan, B., and Ritchie, D., The C Programming Language, Prentice-Hall, Inc.,
1978.

Martin Marietta Denver Aerospace Task I Study Report MCR-86-583, Space Station
Automation of Common Module Power Management and Distribution, by Milier, W.,
and others, July 1986.

User’s Guide to Symbolics Computers, Symbolics, Inc., July 1986.
Wilensky, R., Common LISPcraft, W. W. Norton & Company, Inc., 1986.

Winston, P. H., "Artificial Intelligence: A Perspective," Al in the 1980s and Beyond,
The MIT Press, 1987.

132

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

Commander

Naval Space Command
Attn: Code N3
Dahlgren, VA 22448

Commander

United States Space Command
Attn: Technical Library
Peterson AFB, CO 80914

Navy Space System Division
Chief of Naval Operations (OP-943)
Washington, DC 20305-2000

Space Systems Academic Group
Attn: Prof. Panholzer (Code 72)
Naval Postgraduate School
Monterey, CA 93943

Mr. Henry Lum

MS244-7

NASA Ames Research Center
Moffett Field, CA 94035

Ms. Carla Wong

MS244-18

NASA Ames Research Center
Moffett Field, CA 94035

Mr. William Erickson
MS244-18

NASA Ames Research Center
Moffett Field, CA 94035

133

10.

11.

12.

13.

14.

15.

16.

17.

Department of Computer Science

ATTN: Dr. Robert McGhee (Code 52MZ)

Naval Postgraduate School
Monterey, CA 93943-5100

Superintendent, Code 74
ATTN: Lois Brunner
Naval Postgraduate School
Monterey, CA 93943-5000

Department of Computer Science

ATTN: Dr. Michael Zyda (Code 52ZK)

Naval Postgraduate School
Monterey, CA 93943-5100

Superintendent, Code 39

ATTN: LTC Linda Cromback

Naval Postgraduate School
Monterey, CA 93943-5000

LT Kevin Scott

Naval Postgraduate School
Hermann Hall

SMC #2847

Monterey, CA 93943

LCDR Gracie Thompson
TAMPA MEPS

144 1st Avenue South
Room #315

St. Petersburg, FL. 33701

LT Gina L. Hester
1408 Chesterbrook Drive
Virginia Beach, VA 23464

LT Beth Allinder

300 Glenwood Circle
Apt. #298

Monterey, CA 93940

134

