
NAVAL POSTGRADUATE SCHOOL
oMonterey, California

0 1

CN

ThE14SIES
A PROTOTYPE FAULT DIAGNOSIS SYSTEM FOR NASA

SPACE STATION POWER MANAGEMENT AND CONTROL

by

Gina L. Hester

September 1988

Thesis Advisor: Robert B. McGhee

Approved for public release; distribution is unlimited.

: 8 12015

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification Unclassified lb Restrictive Markings
2a Security Classification Authority 3 Distribution Availability of Report
2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School (If Applicable) 39 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

(If Applicable)

8c Address (city, state, and ZIP code) 1 0 Source of Funding Numbers
nm_ Ean Number Pra No ITask No I Wcu Uni Ace*mon No

11 Title (Include Security Classification) A Prototype Fault Diagnosis System for NASA Space Station Power
Management and Control.
12 Personal Author(s) Gina L. Hester
13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) 15 Page Count
Master's Thesis IFrom To September 1988 1 145
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
17 Cosati Codes 18 Subject Terms (continue on reverse f necessary and identify by block number)
Field Group Subgroup Expert System, Computer Graphics, Communications, Space Station.

I
19 Abstract (continue on reverse if necessary and identify by block number

The Power Management and Distribution System (PMAD) Prototype utilizes a computer graphics interface
with a computer expert system running transparent to the user and a computer communications interface that links
the two together, all enabling the diagnosis of PMAD system faults. The prototype design is based on the concept
that an astronaut on a space station will instruct an expert system through a graphics interface to run a system or
component check on the PMAD system. The graphics interface determines which type of evaluations was
requested and sends that information through the communications interface to the expert system. The expert
system receives the information and, based on the type of evaluation requested, executes the appropriate rules in
the knowledge base and sends the resulting status back to the graphics interface and the astronaut. The PMAD
System Prototype serves as a proposed training tool for NASA to use in the training of new personnel who will
be designing and developing the NASA Space Station expert systems.

20 Distribution/Availability of Abstract 21 Abstract Security Classification

XD unclassified/unlimited 11same as rport1 DTIC users Unclassified
22a Name of Responsible Individual 22b Telephone (Include Area code) 22c Office Symbol
R. B. McGhee (408) 646-2095 52Mz
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unclassified

Ilml l llil l llllli llll i ll i nnaUli

Approved for public release; distribution is unlimited

A Prototype Fault Diagnosis System for NASA Space Station Power
Management and Control

Gina L. Hester
Lieutenant, United States Navy

B.S., United States Naval Academy, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY
(SPACE SYSTEMS OPERATIONS)

from the

NAVAL POSTGRADUATE SCHOOL
September 1988

Author: _ _ _ ___ _ _ _

A pproved by: _ _ _ _ _ _ _ _ _ _ _ _ _

/Robert B. McGh esis Advisor

~Lois M. runner, Second Reader

Michael J. ty, fl 'd Reader

Rudolf Panholzer, dairman,
Space Systems Academic Group

Gordon E. Schacher,
Dean of Science and Engineering

ii

ABSTRACT

The Power Management and Distribution System (PMAD) Prototype utilizes a

computer graphics interface with a computer expert system running transparent to

the user and a computer communications interface that links the two together, all

enabling the diagnosis of PMAD system faults. The prototype design is based on

the concept that an astronaut on a space station will instruct an expert system

through a graphics interface to run a system or component check on the PMAD

system. The graphics interface determines which type of evaluations was requested

and sends that information through the communications interface to the expert

system. The expert system receives the information and, based on the type of

evaluation requested, executes the appropriate rules in the knowledge base and

sends the resulting status back to the graphics interface and the astronaut. The

PMAD System Prototype serves as a proposed training tool for NASA to use in the

training of new personnel who will be designing and developing the NASA Space

Station expert systems.

,,.

r.r

/ " .

iii

TABLE OF CONTENTS

1. INTRODUCTION ... I

A. DESCRIPTION ... 1

B. PURPOSE .. 2

C. THESIS OUTLINE .. 2

II. NASA PROJECT BACKGROUND .. 3

A. AUTOMATION AND SPACE STATION .. 3

B. THE SADP ... 3

C. THE THERMAL CONTROL SYSTEM DEMONSTRATION 4

D. THE POWER CONTROL SYSTEM DEMONSTRATION 4

III. THE PMAD SYSTEM PROTOTYPE OVERVIEW 6

A. THE SYMBOLICS 3675 LISP MACHINE 6

B. THE SILICON GRAPHICS, INC., IRIS-3120 GRAPHICS

WORKSTATION ... 7

C. THE COMMUNICATIONS SOFTWARE INTERFACE 7

D. SUMMARY ... 7

IV. SYMBOLICS LISP MACHINE SOFTWARE ... 8

A. THE LAYERS ... 8

1. Genera Version 7.1 ... 8

2. Common LISP .. 8

3. The KEE Expert System Shell 3.1 ... 8

iv

4. The NASA Model Toolkit (MTK) ... 9

a. The PMAD System Knowlege Base 9

b. The PMAD System Library ... 11

c. The PMAD System Model ... 12

B. THE INTEGRATION OF THE LAYERS 12

V. THE IRIS GRAPHICS WORKSTATION ... 17

A. THE LAYERS ... 17

1. UNIX ATT Version 5.3 .. 17

2. The C Programming Language ... 17

3. The MEX Window Manager .. 17

4. The Silicon Graphics GL Package ... 20

B. THE INTEGRATION OF THE LAYERS 20

VI. THE COMMUNICATIONS INTERFACE .. 22

A. THE IRIS .. 22

B. THE SYMBOLICS ... 23

VII. THE INTEGRATED PMAD SYSTEM PROTOTYPE 25

A. THE MAN-MACHINE INTERFACE .. 25

B. FAULT DIAGNOSIS .. 27

C. THE PMAD SYSTEM ANALYSIS .. 29

D. THE PMAD SYSTEM MANUAL .. 30

V

VIII. CONCLUSIONS AND RECOMMENDATIONS 31

A. CONCLUSIONS .. 31

B. RECOMMENDATIONS ... 31

1. PMAD System Prototype Expansion 31

a. On the Symbolics .. 31

b. O n the IRIS ... 32

2. NASA Utilization of PMAD System Prototype 32

3. Practical Application to the United States Navy 33

APPENDIX A THE POWER MANAGEMENT AND DISTRIBUTION (PMAD)

SYSTEM PROTOTYPE MANUAL 34

APPENDIX B PMAD SYSTEM SOURCE LISTING 58

LIST OF REFERENCES ... 131

BIBLIOGRAPHY ... 132

INITIAL DISTRIBUTION LIST .. 133

vi

MM - III

LIST OF FIGURES

Figure 1. The PMAD System Knowledge Base .. 11

Figure 2. The PMAD System Library ... 13

Figure 3. The PMAD System Model .. 14

Figure 4a. CHARGE Parameter Slot for BATTERY. 1 Unit 15

Figure 4b. TREND.STATE Slot for BATTERY.1.CHARGE Unit 15

Figure 4c. POWERLOAD Parameter for BATTERY.1.VR.N Unit 16

Figure 4d. VALUE.STATE for BA'TTERY.1.VR.N.POWERLOAD Unit 16

Figure 5a. The PMAD System Graphics Interface Main Menu 18

Figure 5b. The PMAD System Graphics Interface Component Menu 18

Figure 6. The PMAD System Main and Subordinate Menus 19

Figure 7. The PMAD System Graphics Interface Screen 21

Figure 8. The Integrated PMAD System .. 26

Figure 9a. BATTERY. 1 Unit Facts ... 28

Figure 9b. BA'ITERY.1 Unit Tell and Ask Rule 28

Figure 9c. BATTERY. 1 Unit Backward Chaining Rule 29

Figure 10. FAULT.MODE Slot for BATTERY.1 Unit 29

vii

ACKNOWLEDGMENTS

I would like to thank NASA Ames Research Center in Sunnyvale, California

for the support and cooperation of its personnel during the course of this research.

Mr. Henry Lum, Chief of the Information Sciences Division, and Mrs. Carla Wong

and Mr. William Erickson of the Systems Automony Demonstration Project office

provided me with documents, computer resources and their time, all of which were

invaluable to me in the development of this prototype. I am thankful to Mr.

William McKellar (the NASA Ames staff assistant) and Mr. Robert Jay (the Naval

Postgraduate School (NPS) deputy comptroller) for setting up my travel funding

account at the Naval Postgraduate School for trips between NPS and NASA Ames.

I would also like to thank the entire NPS computer Science staff for their time

and patience in helping me upload and debug alpha-tested software, learn how to

utilize the resources in the AI and Graphics and Video labs and troubleshoot PC

modem problems over the phone. I would especially like to thank Lois Brunner,

Professor Robert McGhee and Professor Michael Zyda for their wonderful support

and for sharing their knowledge, wisdom and friendship with me.

I would like to thank Hania La Born for contributing her invaluable time,

extraordinary talent and everlasting patience in supporting me during this

endeavor. I would like to thank my parents for their calm support over the last two

years in comforting phone calls and pleasant visits. I am thankful for LT Beth

Allinder. She buoyed me during difficult times and provided me with the type of

honest and caring friendship like that of a sister. Finally, I would truly like to

thank LT Kevin Scott for his strength and support in helping me cope with and get

through unexpected surgery, his undying faith in me and my abilities and for his

loving friendship that I will cherish for a lifetime.

viii

Without all of the efforts of these individuals and organizations, none of this

would have been possible. Thank you.

ix

I. INTRODUCTION

A. DESCRIPTION

Space... the final frontier. Mankind has always had a desire to explore space.

This desire has been accompanied by a dream for a permanent structure in space on which

people can live while observing and collecting data on Earth's solar system. This dream

has already been realized by the Soviet Union with its currently operational manned MIR

Space Station. The United States is attempting to realize this same dream by striving to

develop, design and employ a manned space station by the late 1990's.

The space station will need a smooth mechanism for the collection, processing and

storage of data and dissemination of information. It will also need a method for monitoring

the major systems on the space station, isolating predicted and actual faults, diagnosing the

problem and providing a possible solution. Such a system would probably involve an

amalgam of three technologies: computer expert systems, computer graphics, and

computer networks.

Most major systems on the space station will utilize an expert system. This expert

system will contain specific knowledge about the major system to include an indepth

model, rules for the diagnosis of system or component failures and the capability to provide

possible solutions to diagnosed problems. There will be a simple graphics interface that

will be the main interface to the expert system for the astronauts. This will be necessary to

enable the United States to save resources on astronaut training on the expert systems.

This interface will require some form of networking to allow the graphics interface and the

expert system to communicate. It will provide autonomy on the space station, insuring a

safe environment that will allow the crew to perform to their maximum potential.

B. PURPOSE.

This thesis presents a high-level fault diagnosis prototype for the NASA Space Station

Power Management and Distribution (PMAD) system. This prototype serves as a

proposed training tool for NASA in the training of new personnel on space station expert

systems.

C. THESIS OUTLINE.

The following outline of this thesis lays a clear path for the discussion of the PMAD

system prototype. Chapter II provides a background on the NASA project and Chapter III

provides an overview of the PMAD system prototype. Chapters IV through VI describe

the software involved in the expert system, the graphics and communications interfaces,

respectively. Chapter VII presents the integrated PMAD system prototype utilizing a

consolidation of the concepts presented in Chapters IV through VI. It also provides an

analysis of the PMAD system prototype and briefly discusses the PMAD System Manual.

Chapter VIII closes the thesis with results and ideas for the expansion of the PMAD system

prototype. It also discusses proposed NASA utilization of the prototype as well as its

practical usage by the United States Navy.

2

II. NASA PROJECT BACKGROUND

A. AUTOMATION AND SPACE STATION

On July 18, 1984, the United States Congress passed Public Law 98-371 that stated

that NASA would identify "specific Space Station systems which advance automation and

robotics technologies, not in use in existing spacecraft, and that the development of such

systems shall be estimated to cost no less than 10 per centum of the total Space Station

costs." [Ref. l:pp. 80-81] In response to this legislation, NASA established an Advanced

Technology Advisory Committee (ATAC) with the express purpose of reporting on the

potential uses and impacts that automation and robotics could have in the Space Station

program [Ref. I:p. 81].

The Office of Aeronautics and Space Technology granted approval for the Systems

Autonomy Demonstration Program (SADP) in November 1985. The SADP was created to

address NASA's need to develop, integrate and demonstrate various technologies for

incorporation into the Space Station. The organization that was given the lead on the SADP

was the Ames Research Center Information Sciences Office. Four milestone

demonstrations are envisioned to occur from 1988 through 1996. Each demonstration

includes more difficult tasks in order to integrate more complex autonomous capabilities

into a technologically advancing society. [Ref. 1:p. 811

B. THE SADP

The SADP was set up as a joint venture between the Ames Research Center (ARC)

and the Johnson Space Center (JSC), research and operation centers, respectively. ARC

functions involve the following:

3

* "Program-wide planning, scheduling, budgeting, and evaluation

• In-house conduct of a significant portion of the core technology effort
* Coordination of the core technology efforts conducted at sites other that ARC
* Overall management of the development of the automation technologies into software

and hardware suitable for integration into the demonstration framework
" Provision of the technical support essential for facilitating the transfer of

technologies to future Space Station activities." [Ref. l:p. S 1

The role of JSC includes:

* "Supply of the application domain expertise necessary to guide the development of
software and hardware tools in order to support the demonstration

* Adaptation of the core technology products to the specific demands of the
demonstration environment

" Actual conduct of the milestone demonstrations
* Promotion of the transfer of the developed and demonstrated technologies into Space

Station applications." [Ref. l:pp. 81-82]

C. THE THERMAL CONTROL SYSTEM DEMONSTRATION

A major objective of the 1988 demonstration is the automated monitoring, operation,

and control of a complete mission operations subsystem [Ref. I :p. 821. The Space

Station Testbed Facility at JSC was identified as a demonstration site for the Space Station

Thermal Management System. A main goal of the Testbed is to develop, test and evaluate

these new technologies for the Space Station via ground-base simulations [Ref. I:p. 82].

As part of these simulations, "a knowledge-based support system has been developed to

provide fault recognition, diagnosis and isolation, monitoring and design and configuration

aids for the thermal testbed." [Ref. I:p. 82]

D. THE POWER CONTROL SYSTEM DEMONSTRATION

The 1990 demonstration will focus on the automated control of multiple subsystems.

It will show the coordinated control of multiple subsystems. It will also demonstrate

operator aids for unanticipated failures, planning and reasoning about nonstandard

4

procedures. NASA has already begun its preparation for this demonstration by beginning

the design of the Power Control System (PCS). The PCS Testbed Facility is located at the

Lewis Research Center while autonomous technologies for PCS are being developed by

ARC. This M.S. thesis presents a high-level prototype for the PCS, the Power

Management and Distribution (PMAD) system prototype. An overview of the PMAD

system prototype design and associated hardware and software will be discussed in

Chapter III. [Ref. 1:p. 83]

5

III. THE PMAD SYSTEM PROTOTYPE OVERVIEW

The PMAD system prototype involves the use of a LISt Processing (LISP) machine

(which runs expert system software), a color graphics workstation and associated

software. Paragraphs III.A through III.C discuss the roles played by these machines and

their software in comprising the PMAD System.

A. THE SYMBOLICS 3675 LISP MACHINE

The Symbolics 3675 LISP machine is manufactured by Symbolics, Inc. The PMAD

system utilizes the Symbolics because it has the largest memory and disk capacity of the

3600 series Symbolics machines, enabling it to accommodate the software necessary to run

the PMAD system.

The Symbolics runs the Genera 7.1 operating system and utilizes the LISP artificial

intelligence language. The expert system software available on this machine is the

Knowledge Engineering Environment (KEE) Expert System Shell. KEE is a window

(screen partition) and mouse oriented program that provides the functionality needed for

development of the PMAD system knowledge base. The mouse is a pointing device with

three buttons that can perform certain operations and that can be moved around on a flat

surface.

The NASA Model Toolkit (MTK) is additional support software for the PMAD system

which sets up a template for the development of a knowledge base for any type of system

that can be broken down into components. MITK enables the placement of general icons

(picture representations) for these components into a window called the Library. The icons

in this Library window are used to create specific instances of the components which,

when pieced together with connections and connection links, comprise a picture or

6

diagram of the system in another window called the Model. All of the Symbolics software

enables the setting up of an environment where fault diagnosis can be performed. The

performance of this fault diagnosis will be discussed in Chapter VII.

B. THE SILICON GRAPHICS, INC., IRIS-3120 GRAPHICS

WORKSTATION

The IRIS is a high performance color graphics workstation with mouse interface

manufactured by Silicon Graphics, Inc. The IRIS runs the ATT system 5.3 version of the

UNIX operating system. The IRIS comes with the Multiple EXposure (MEX) window

manager which provides a pop-up menu facility. The operating system and MEX both

utilize the C structured programming language. The IRIS's main feature is a set of

graphics and utility routines that provide high-level and low-level graphics support. All of

this software assists in providing the PMAD system with a simple color graphics interface.

C. THE COMMUNICATIONS SOFTWARE INTERFACE

Both of the aforementioned machines utilize the Transmission Control

Protocol/Internet Protocol (TCP/IP) standard to communicate with each other. The

Symbolics uses LISP functions written on top of TCP/IP to enable ease of use by the user.

The IRIS uses TCP/IP and an intercomputer communications package that can be

customized to communicate with other IRIS, Symbolics or Texas Instruments Explorer

machines.

D. SUMMARY

The associated software for the Symbolics and the IRIS have been discussed in a

general fashion in this chapter. In Chapters IV and V the software for these machines is

discussed in detail along with a brief discussion on how the different software layers

interrelate to support the PMAD system.

7

IV. SYMBOLICS LISP MACHINE SOFTWARE

A. THE LAYERS

There are four major software layers that the PMAD system utilizes on the Symbolics.

Each one plays a significant role in the support of the PMAD system. The following

paragraphs give a brief description of each layer.

1. Genera Version 7.1

The operating system on the Symbolics is Genera 7.1. It provides a total

operating environment for LISP processing. This includes manipulating the screen using

the mouse. The mouse is a pointing device with three buttons that can perform certain

operations and that can be moved around on a flat surface. Also, included in the

Genera 7.1 environment are the control of the keyboard and the creation and selection of

windows. [Ref. 2:pp. 6-9]

2. Common LISP

Common LISP is the result of an attempt to consolidate variations of LISP into a

collection of capabilities that could be considered a language. LISP functions are quite

similar to a glorified hand calculator; i.e., arguments and an operation to be performed are

typed in and LISP does the operation and prints out an answer. It is this evaluative

behavior that makes Common LISP a popular language in the Artificial Intelligence field.

[Ref. 3:p. xii]

3. The KEE Expert System Shell 3.1

KEE is a development system for building expert systems. An expert system has

a knowledge base that is composed of information blocks called units. These units contain

slots which represent information about these units and how that information relates to

8

other units. Slots have values that can contain descriptive information (facts) or procedural

information (rules). [Ref. 4:pp. 4-8]

KEE enables the user to not only organize facts and rules in the expert system's

knowledge base, but also allows their manipulation through the use of an inference engine.

[Ref. 5:p. 16]. An inference engine prioritizes facts and rules, executes them and based

on the rules' results, adds new facts to the knowledge base. Thus, KEE enables the easy

use and expansion of an expert system.

4. The NASA Model Toolkit (MTK)

The Model Toolkit (MTK) is a package developed to be closely integrated with a

number of KEE version 3.1 utilities (that provide basic support for a number of MTK

functions) in order to provide expert system developers support for designing and

implementing expert systems that utilize model-based reasoning. Such reasoning is

necessary since many expert system problems in simulation, monitoring, and fault

diagnosis concern physical systems. It is this model-based reasoning that MTK uses to

organize the PMAD system knowledge base. [Ref. 6:p. 21

a. The PMAD System Knowlege Base

MTK provides the basic organization for representing the physical and

conceptual components that comprise a physical system (structures), the ways that these

components interact with each other (connections) and the crucial measurements

(parameters) that define how these components can change over time. [Ref. 6:p. 2]

(1) Structures. MTK represents objects to be modelled in a system by units

called structures of which there are two types, component and functional (only component

structures will be discussed) [Ref. 6 :p. 5]. Component structures represent distinct

physical objects. Some examples of such objects in the PMAD system are joints,

switches and batteries.

9

i i I I I I I

(2) Connections. Within MTK there are units called connections which

represent how one structure may effect another. Such influences can be the transfer of

energy such as heat, electricity or force [Ref. 6:p. 6]. The PMAD system connections are

called electrical.connections.

(3) Parameters. Significant measurable values in the PMAD system are

represented in MTK by parameters. Two types of parameters are used, simple and

complex. Simple parameters are used to handle a single qualitative value. Complex

parameters are used to handle parameters that need to represent both quantitative and

qualitative values. Also, parameters can be associated with both structures and

connections. The PMAD system utilizes complex parameters. They are charge.level,

power.level and voltage.level. These examples, as well as those in paragraphs

IV.A.4.a(1) and IV.A.4.a(2) above, can be seen in the PMAD system knowledge base

representation in Figure 1. [Ref. 6:p. 71

10

FAJLT.RULES - O-EADGATTERY.RULE

PWRSYS.CONNECTIONS - ELECTRICAL.CONNECTIONS

P WRS S.VA U LT. MOOES
PWRSYS.GLOBALS CHAROE.LEVEL

PWASYS.PARAMETERS POW ER.LEVEL

<VOLTAGE.LEVEL

BATTERY

E PSB0A RD

IN VERTER

JON ,,,::ZL PHAJOINT

BTAJOINT

MAINDISTBOARD
P WA SYS. CO P ONE NT. STA UCTU R ES

. BA SICPDCA
PDCA -C= EPSPDCA

PVEOUIP

PWRSYS.STRUCTURES SEBOARD

_ASICS WITCH
SESWTCH-C:::BOARDS WITCH

VOLTREG

P W R S YS. F U N C TIO0N A L. S TARU C TU R E S

Figure 1. The PMAD System Knowledge Base

Within these parameter units are slots. The slots of the most importance are

called value, value.state and trend.state. The value slot contains the numerical or

range value of the parameter. The value.state slot contains the information on the

parameter labelled either negative, zero or positive. The trend.state slot has

information on the parameter of either steady, increasing or decreasing. Examples of

these slots are discussed later in this chapter. [Ref. 6:pp. 7-8]

b. The PMAD System Library

The library has knowledge bases and an icon window associated with it.

Collectively, the library builds domain-specific representations on top of MTh's generic

structures [Ref. 6:p. 11. The icons in the library window can be modified to exactly

resemble physical component structures and their associated connections. The PMAD

system library can be seen in Figure 2.

c. The PMAD System Model

The model is quite similar to the library, in that it uses definitions made in the

library knowledge base, except it contains specific instances of components and defines

how these components interact. The PMAD system model can be seen in Figure 3.

[Ref. 6:p. 1]

B. THE INTEGRATION OF THE LAYERS

Now that all of the major software layers for the Symbolics that relate to the PMAD

system have been explained, the integrated software environment will be discussed. The

battery component will be the source of the examples.

The battery component structure (or class) in the PMAD system knowledge base in

Figure 1 is represented in the PMAD system library by a battery class icon in Figure 2 that

has three connections, vr.n (voltage regulator node), n (negative) and p (positive). The

battery component is also represented in the PMAD system model in Figure 3 by another

icon that is an instance of the battery class icon in the library in Figure 2. This model icon

is shown to be linked or connected to the voltage regulator through the battery's vr.n

connection. The battery's n and p connections are unlinked. This instance of the battery is

known to the model knowledge base as battery.l.

12

rn

z
0

E

0
Z6

13

z

-C z
00

z0

acZ

14

Battery. I also has parameters that are associated with itself and its connections.

There is a unit called battery. Lcharge which contains information about the charge on

battery.l. The battery.1.charge unit mainly keeps track of the trend.state of the

charge on battery.l. The battery.1.vr.n connection unit has a parameter unit

associated with it called battery. 1.vr.n.powerload. This parameter unit's main

function is to keep track of the vaiue.state of the powerload on the vr.n connection on

battery.I.

Figures 4a and 4b show partial output of the battery.1 structure and the

battery. 1.charge parameter units and their important slots. Figures 4c and 4d show

partial output of the battery.1.vr.n connection and the battery.1l.vr.n.powerload

parameter units and their important slots.

*Own slot: C14ARGE from BATTERY. 1
*Inheritance: OVERRIOE.VALUES

ValueClas: CHARGE.LEVEL in PWR3YS
Card inality.Max. I
Cardisalaty.Mifn. I
Values. U AT TERY. I MHAROE

Figure 4a. CHARGE Parameter Slot for BATTERY. Unit

I I .t. M.MFI l m m -1I luyi

(30wn slot: TRENOSTATE fin BATTERY. I CARGE
SInheritance: OVERROEALUES

Avunits: (tIANDLE.PARAMETERSTATESAV in MOCCL-TOOUCJT ALL
NIL)

Values: STEADY

Figure 4b. TREND.STATE Slot for BATTERY.1.CHARGE Unit

15

SOwn 310t: POWERLOAD from BATTERY.Il.VR.N
Inheritance: OVERRIDE.VALUES
Valuelass: POWER.LEVEL In PWRSYS

Catialitymax: I
Cardinality.Ain: I

aPropagateYlaj. T
Values: BAT TERY. I .VR.N.POWERLOAD

Figure 4c. POWERLOAD Parameter for BATTERY.I.VR.N Unit

(3 OWn, 310t: VALLJESTATE from BATTERY. I.VR.N.POWERLOAD
litherjtanlce: OVERAIOE.VALUIES
Avun its: (HANLE.PARANETER.STATES.AV In MODIEL-70OLKIT ALL NIL)
C~imment: Negauve, zero, or positive, e.g."

EV21utus. NEGATIVE

Figure 4d. VALUE.STATE for BATTERY.1I.VR.N.POWERLOAD Unit

16

V. THE IRIS GRAPHICS WORKSTATION

This chapter discusses the various software layers of the IRIS and how they

interrelate.

A. THE LAYERS

There are four major software layers that the PMAD system utilizes on the IRIS. Each

one provides a building block on which the PMAD system can be firmly supported. The

following paragraphs give a brief descriptive of each layer.

1. UNIX ATT Version 5.3

The PMAD system relies on the UNIX operating system. UNIX allows the user

to set up a custom environment that allows more ease of use of the applications on the

IRIS. It also is the foundation for many programs since the operating system has many

useful tools that can be utilized with the C programming language, the primary language of

all UNIX operating system-based machines. [Ref. 7:p. ix]

2. The C Programming Language

C is a programming language that has economy of expression, modem flow of

control and data structures and a diverse set of operators. C is not considered a high-level

language and is not limited to any particular area of application. It is this generality that

makes C more effective and convenient for many tasks than supposedly more powerful

languages. [Ref. 7:p. ix]

3. The MEX Window Manager

MEX allows for the creation of several independent displays or windows on the

screen of an IRIS workstation [Ref. 8:p. 78]. One of the most useful features of MEX is

17

its pop-up menu facility which enables a clean interface with the three button mouse on the

IRIS.

Utilizing MEX and the mouse, the user can click on white space and select

options off the main menu depicted in Figure 5a or click on a component or connection (in

blue) and select options off the component menu shown in Figure 5b. The main menu and

its subordinate menus are displayed in Figure 6. Since the main menu contains all the

options that are available at lower level menus, it will drive the following discussion.

PMAD

HELP

POWER NETWORK CONTROL

STATUS PREDICTION

FAULT ISOLATION

POWER FLOW MANAGEMENT

Figure Sa. The PMAD System Graphics Interface Main Menu

Component Menu ,

HELP

STATUS PREDICTION

FAULT ISOLATION

Figure 5b. The PMAD System Graphics Interface Component Menu

18

A A A

z

D- u- z LU
ch L. z 4KO

z 0.ULU j L
z 0

0: 0 x Lu Q>U0

I- :) U. .4 o=4

M wLU 4U.woL UC 0 . W

0 M. ncc
CL C

6

o A C

0 ClZ
2 a

LUU

ou 400.

0
L

CLI

0.C

A A

0z z 1-4LL.o~ 2 j
.. I0. 2

0us 4 0 9.

e 0.Lu Z O a
cc 0. O CL

0. a. w U0

to Z

4 4U 9-.6CC4

LU(LU in

19

MEX allows the user to access the main menu help panel of the PMAD system,

lower level menus and their help panels. It also provides access to the animation panel that

depicts the flow of power through the system. The main menu enables the user to conduct

system evaluations to determine whether or not predicted or actual faults exits. Similarly,

the component menu enables the evaluation of predicted or actual single component

failures.

4. The Silicon Graphics GL Package

The PMAD system utilizes the graphics and utility routines provided on the IRIS

to support high- and low- level graphics. These routines support the use of C, FORTRAN

and Pascal language routines. The IRIS graphics package supports, but is not limited to,

the following routines: drawing, coordinate transformation, pattern and font, input and

output, object creation and editing, curve and surface and shading. [Ref. 8 :p. 21

B. THE INTEGRATION OF THE LAYERS

All four of the discussed layers work together to provide the simplicity in the PMAD

system graphics interface. The UNIX operating system, C programing language, MEX

and the graphics package enable the depiction of the PMAD system in Figure 7. The user

is able to have a color graphics interface and a pop-up menu facility in the same screen.

20

VI. THE COMMUNICATIONS INTERFACE

The PMAD system communications interface utilizes the Inter-computer

Communication Package (which is comprised of LISP and C code) developed by students

at the Naval Postgraduate School [Ref. 91. This package utilizes the TCP/IP standard and

the UNIX client/server socket stream capability. The high-level routines for this package

have been tested on different machines to include the Symbolics and the IRIS. An IRIS

can be either a server waiting for a client to call and establish a connection or the client.

The Symbolics LISP machine must always be the client. This is because "the IRIS

simulates the environment and the Symbolics simulates intelligence. The environment must

exist before intelligence can be applied to it." This package enables the passing of integers,

single floating point numbers, single characters and character strings from the IRIS to the

Symbolics and vice versa. [Ref. 10:p. 1]

The following is a brief discussion of the IRIS and the Symbolics portions of this

interface. The directory which contains all of the necessary code for the Inter-computer

Communications Package can be viewed on the IRIS (IRIS2) at the Naval Postgraduate

School Graphics and Video Laboratory. Additional details are available in [Ref. 91.

A. THE IRIS

In the utilization of TCP/IP and C, two ports are necessary to establish communication

with each machine. These ports are connected to sockets in TCP/IP (which can be

conceptually thought of as electrical sockets in a wall). Once the two channel link has been

established, each channel is used in an asynchronous mode; i.e., enabling reading and

writing of information as desired by both ends of the link. There are three different ways

to establish the link with another machine. The simplest is using the function

22

machinepath to create a link between two machines. Since this is the only method used

by the PMAD system it is the only one that will be discussed. [Ref. 10:p. 11

In utilizing the machinepath function certain rules must be followed. Once the call to

machinepath has been made, other dynamic allocation (such as makeobject calls to the

graphics library) cannot be made and only one machinepath call can be made in a

program. There are two independent processes, receive and send, that communicate

with the PMAD system C application program using the machinepath. Each receive

process sleeps after receiving a message for its socket until its buffer is emptied by the

application program and each send process sleeps after sending a message to its socket

until the application program requests that it send another message. This method reduces

processing overhead. Once finished with communications, the links created by

machinepath can be broken with the function deletemachinepath. This function

deletes the links from memory, kills the receive and send processes and shuts down and

closes the TCP/IP socket connections. [Ref. 10:pp. 1-2]

B. THE SYMBOLICS

Within the LISP artificial intelligence language exists the Flavor System. This system

is a "mechanism for defining and creating active objects, that is objects which 'remember'

their state and 'know' how to perform certain operations." A flavor is a class of such

objects, while conversely, each object of this type is an instance of that flavor. Two

primary characteristics of a flavor are the set of state variables that an instance of a flavor

has (instance variables) and the set of operations that may be performed on all instances of

that flavor. The operations that may be performed on these flavor instances are

implemented by functions called methods. These methods provide behavior for instances

of a flavor. [Ref. 1 1 :pp. 97-99]

23

The important flavor in the Inter-computer Communication Package implemented on

the Symbolics is called conversation-with-iris. There is a method called put-iris

which converts an argument of any type to a string and sends it to the IRIS host. The

method get-iris returns the proper type, depending on what was sent. [Ref. 9:p. 4]

24

VII. THE INTEGRATED PMAD SYSTEM PROTOTYPE

The expert system, graphics and communications interfaces come together smoothly to

create the integrated PMAD system prototype. A conceptual picture of how these three

portions of the PMAD system function together can be seen in Figure 8.

A. THE MAN-MACHINE INTERFACE

The man-machine interface is based on the concept that an astronaut on a space station

will utilize a graphics interface with an expert system running in the background and a

communications interface linking the two together. The astronaut will instruct the expert

system through the graphics interface to run a system or component check on the PMAD

system. The graphics interface determines which type of evaluation was requested and

send that information through the communications interface to the expert system. The

expert system receives the information and, based on the type of evaluation requested,

executes the appropriate rules in the knowledge base and sends the resulting status back to

the graphics interface and the astronaut. Based on the status of the component(s), the

graphics interface either flashes the component(s) red if failed or yellow if predicted to fail

for a system check [Ref. 12:p. 711. For a single component check, the graphics interface

flashes a component green if the component is functioning properly.

25

uAJ
z

U C,)

:i z
In>

0~ le
ou.J

(A
w

CD.
Ew z

zz

z
z wz

zz

400
z 4

C.)L

ww

a)a
z. w
0 Cl,

C.).

CL C
z
0

I.,

0 26

B. FAULT DIAGNOSIS

The expert system for the PMAD system receives information from the graphics

interface as stated in paragraph VI.A above. The expert system utilizes this information to

perform fault diagnosis by accessing facts that have been inserted into the knowledge base

(simulating sensors that gather information for the PMAD system) and by executing fault

diagnosis rules written in the KEE expert system shell Tell and Ask language. Tell and

Ask is a high level English-like language that enables the composition of if-then rules and

the use of the forward and backward chaining (part of the KEE inference engine). A

forward chaining algorithm searches through the knowledge base to find facts to satisfy the

if-portion of a rule. If it can satisfy all the conditions of the if-portion, the then-portion is

deduced to be true and is added as a fact to the knowledge base. A backward chaining

algorithm starts with the then-portion of a rule, also called the goal, and searches back

through the knowledge base to find the facts needed to prove the then-portion true. That

means finding all the facts to satisfy the if-portion or finding the then-portion as a fact

already in the knowledge base. The results are then sent back to the graphics interface via

the communications interface. The battery structure will be utilized to illustrate this fault

diagnosis concept.

The graphics interface, when queried by a user, will request a component check on

battery.1 (known to the graphics as #5). This component number and the type of check

(status prediction for predicted failure (0) or fault detection for actual failure (1)) are sent

via the communications interface to the expert system. In this case it will be a one (1) for

an actual failure.

Figure 9a shows the facts for battery.1 and its connections that were inserted into the

PMAD system knowledge base prior to establishing communications with the IRIS.

Figure 9b shows the external form of the Tell and Ask fault rule for battery.l. Figure 9c

27

shows the Tell and Ask backward chaining rule for battery.1. This backward chaining

rule, when executed, will use the asserted facts and the fault rule to determine if battery. 1

has failed. (Note that the backward chaining rule is written in a form that allows for a

complete system check or a single component check, whichever is requested.) If the then-

portion of the backward chaining rule is found to be true, then a slot in battery.1 called

fault.mode has its value changed to failed. This slot of battery.1 is shown in

Figure 10. This information is then sent back to the graphics interface in the form of a

component number (5) and a message containing the appropriate color to flash the

component and a status for the component ("R-The fault.mode of battery.1 is failed,"

the W in the message representing the color red).

(detun Init-vaIuesl ()
(msn '(the valUestate of battifry.I1vr.n.powerload to neatlv()
(assert '(the trendustate of battertyiCharge Is steady))

Figure 9a. BATTERY.1 Unit Facts

Own slot: EXTERHAL.FORM fr 0EADSATTERY. RULE

Inheritance: OVERRIO6.VALUES
Avurnts: RULEPARSE in RULESYSTEM3, RULE-COUPILER-AV in ACTIVEVALUES

Cardialty Max: 1
Cornnynt: 'The lext d Ihe rule in the tWirt the uwe ereered. The rule i aaWe by the RULEPARSE acitii Value.

Pared prwrue are ped in toe PREMISE aM ars4 wridusca we Placd in the IO)NCLUSION

Vaa: (IF ('PART IS IN CLASS SkAT~TRY)
(THIE VALLESSTATE OF (THE POWEROAD OF (THE VA.N OF ?PART)) IS NEGATIVE
(TW EN MSTATE OF (ThE Q4 OF 7WART) IS STEAUY)

(THE FALXT.MOOE OF ?PART 6 FAILEDI)

Figure 9b. BATTERY.1 Unit Tell and Ask Rule

28

(dafun startdiagnosis (user::*comp" rules world)
(setq comp (aret pwrsysarray" user::*comp*))
(query (a fault.mode of ,(If (null comp) 'comp comp is ?whet) rules world)

Figure 9c. BATTERY.I Unit Backward Chaining Rule

a 1.. AI UJ
0iOwn 310-: FAoLTMOVE from BATTERY. I

Intheritance: OVERRMEALUES
Commtent: 'Failure mode for this structure'
Value3: FAILED

Figure 10. FAULT.MODE Slot for BATTERY.! Unit

C. THE PMAD SYSTEM ANALYSIS

The PMAD system, being composed of an expert system, graphics interface and

communicatins interface, makes it very complex. Both the Symbolics and the IRIS rely on

mouse interfaces when dealing with the PMAD system. The use of so many different

interfaces causes the PMAD system to be a system with a delicate balance. If any one of

these interfaces fail,, that delicate balance will be disrupted and the PMAD system

prototype will not function.

The fault diagnosis rules for the component connections determine a failure or

predicted failure by utilizing probability routines called faultroutine and statusroutine

(both routines are listed in Appendix B) instead of actual Tell and Ask fault rules.

Having the IRIS with its MEX window manager pop-up menu facility, helps to make

the PMAD system environment easier to navigate and more organized. The help menus at

each level of the pop-up menus have a toggle feature that alternates between specific help

for that menu and information on the use of the mouse. This on-line help enables a new

user to more easily use the PMAD system. Therefore, although the PMAD system is

29

complex and needs total coordination between its several parts, its setup will enable it users

(astronaut trainees for the Space Station) to be more efficient at their main tasks by reducing

collateral duties pertaining to systems monitoring.

D. THE PMAD SYSTEM MANUAL

This manual, attached as Appendix A, contains information on how to utilize the

PMAD system. It also contains suggested ways to expand the existing system that will

make it more useful and efficient.

30

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The PMAD system prototype proved to be viable. Although not totally completed and

error-free, the PMAD system validated the concept of using graphics as a main interface

while leaving the expert system transparent to the user. Although KEE was utilized in the

design of this prototype, one other expert system shell, ART, was briefly considered.

Although a useful tool and faster in processing than KEE, ART did not provide the

necessary ease of use associated with KEE that is paramount in getting individuals quickly

up to speed on an expert system shell. Not only was the PMAD system a successful

prototype, it also enabled the expansion of knowledge in artificial intelligence, expert

systems and their software support tools.

B. RECOMMENDATIONS

1. PMAD System Prototype Expansion

In order to stay on the cutting edge of technology, one must be willing to expand

or improve. The following paragraphs contain ideas for possible expansion of the PMAD

system.

a. On the Symbolics

Currently, there is only one fault rule written for the PMAD system and that

is for the battery component. Fault rules need to be written for the other components and

their connections. Also, as was stated in Chapter VII, the fault rules for the connections of

the components in the PMAD system knowledge base can be written in the KEE Tell and

Ask Language, instead of using probability functions. Finally, the PMAD system library

31

and model icons can be modified to more closely resemble the components that they are

representing.

b. On the IRIS

Given more detailed information on the PMAD system, the current high level

diagram can be extended or PAN/ZOOM capabilities for individual components can be

developed. Extended screens can be implemented utilizing an icon in the middle of each

side of the screen or, as an option, off of the PMAD system main menu. PAN/ZOOM

options could be added to the existing pop-up component menu. Finally, a training

program could be a choice off the main or component menu that would allow users to

practice diagnosing component and system faults based on provided scenarios. This

program would be displayed in the lower left quadrant of the PMAD system graphics

interface display.

2. NASA Utilization of PMAD System Prototype

The NASA SADP had the concept of developing an expert system with color

graphics as a more clearly understandable side display. This prototype delivers a different

perspective on the foreseen interface by having the color graphics as the controller with the

expert system running transparently to the user. This prototype could enable the

accelerated training of new personnel on artificial intelligence projects by giving them a

prototype to learn on that is simple and in step with the current goals of NASA. It is a

prototype idea that can be expanded, modified and completedly changed. This flexibility is

the true beauty of the PMAD system prototype. It will provide the ability to stimulate ideas

for its improvemhent and, as a result, sharpen the minds of those who will design the actual

Power Control System.

32

3. Practical Application to the United States Navy

Today's Navy currently relies heavily on satellites for navigation. As a result,

there are many naval personnel that stand long hours of watch at ground statins, monitoring

the health and welfare of these satellites. If the idea of the PMAD system prototype was

modified to accomodate satellites (such as monitoring, change of station and fault

diagnosis) then many of the individuals already performing this task manually, as a full

time job, could be utilized in a more efficient capacity. It will be costly to incorporate such

a system into the existing framework but, it is foreseen that such systems as the PMAD

system prototype will reduce the wear and tear on a most precious resource, people.

33

APPENDIX A

THE POWER MANAGEMENT AND DISTRIBUTION (PMAD)

SYSTEM PROTOTYPE

MANUAL

34

TABLE OF CONTENTS

PMAD SYSTEM USER'S MANUAL ... 38

A. GETTING STARTED .. 38

1. Necessary Symbolics Files .. 38

2. Necessary IRIS Files ... 38

3. Logging On .. 39

a. The Symbolics ... 39

b. The IRIS .. 39

c. The Integrated PMAD System 40

4. Use of the Mouse ... 40

5. Select an Option .. 41

6. The Main Menu .. 41

7. Terminate Activity (CANCEL) .. 41

8. Help Menus ... 41

9. Exiting the PMAD System ... 41

B. PMAD SYSTEM OVERVIEW .. 42

1. PMAD System Main Menu ... 42

2. Power Network Control Menu ... 43

3. Health Management Menu ... 43

4. Maintenance Support Menu .. 44

5. Fault Management Menu ... 44

6. Power Flow Management .. 45

7. The Component Menu ... 45

C. ON-LINE HELP .. 46

35

11. PMAD SYSTEM PROGRAMMER'S MANUAL ... 47

A. SYMBOLICS APPLICATION SOFTWARE ORGANIZATION 47

1. Init-pw rsys.lisp .. 47

2. Keefiles.lisp .. 48

3. Pwrsys-net.lisp .. 49

4. Main-pwrsys.lisp ... 49

B. IRIS APPLICATION SOFTWARE ORGANIZATION 51

C. PMAD SYSTEM EXPANSION .. 52

1. PMAD Expert System Expansion ... 52

2. PMAD system IRIS Graphics Extended Screen and Pan/Zoom

Capabilities .. 53

3. PMAD System Training Program ... 54

4. PMAD System Help Files .. 54

III. USEFUL REFERENCE DOCUMENTS AND MANUALS 55

IV. IMPORTANT POINTS OF CONTACT .. 56

36

LIST OF FIGURES

Figure Al. PMAD System Mouse Help Menu .. 40

Figure A2. PMAD System Main Menu .. 42

Figure A3. Power Network Control Menu .. 43

Figure A4. Health Management Menu ... 44

Figure A5. Maintenance Support Menu ... 44

Figure A6. Fault Managment Menu ... 45

Figure A7. Power Flow Management Menu .. 45

Figure A8. PMAD System Component Menu .. 46

37

I. PMAD SYSTEM USER'S MANUAL

This manual is for those who will utilize the PMAD system. You should familiarize

yourself with the IRIS 3120 graphics workstation, the Symbolics 3675 LISP machine and

their associated software before trying to use the system. It may make the first few

accesses to the PMAD system more pleasant.

A. GETTING STARTED

In order to get started on using the PMAD system, you must have an account on both

the Symbolics and the IRIS and have access to the NASA directory on both machines.

Once you have become oriented on both machines, the following files should be copied to

your directory on the respective machine.

1. Necessary Symbolics Files

As was stated, access to the NASA directory on the Symbolics is needed. The

necessary files will be set up for use. Also the init.lisp file that sets up your Symbolics

environment should contain the following LISP command: (load

"syml:>sys>site>thermal.translations") to enable you to access the PMAD

system.

2. Necessary IRIS Files

Access to the NASA directory on the IRIS is needed. The necessary files will be

available for use. Your ,ogin file that sets up your IRIS environment should include the

following line:

alias pmad source runprog

to enable you to access the PMAD system with fewer commands.

38

3. Logging On

a. The Symbolics

Make sure the system in booted up in Genera 7.1 with KEE 3.1. At the

"Command:" prompt type "login" and a space. You will then be prompted for your user

name. Type in "NASA" and a CR. The Symbolics should run the init.lisp file and load the

syml::sys>site>thermal.translations file. Hit SELECT-K to bring up KEE. At the

LISP Listener window type the LISP command (load file kt:build-system :mtk) to bring up

MTK. Then click the left mouse button on the KEE icon, choose the load KB option and

load the following knowledge bases: syml:>NASA>pwrsys and

syml:>NASA>modelpwrsys. Once loaded, click the middle mouse button on the

MODELPWRSYS knowledge base in the KB window. Position the resulting window,

MODELPWRSYS UNITS, in a convenient location. Click the left mouse button on

MODELPWRSYS.GLOBALS and choose the send message option. On this window

choose the initialize parameters option. Now, at the LISP Listener window type the

command (SET PACKAGE COMMON-LISP-USER). Then type the command

(load "main-pwrsys.lisp"). After this file is loaded you are ready to proceed to

section I.A.3.b.

b. The IRIS

You will need both a side terminal and the IRIS graphics workstation. Since

the communications package sends status messages to the screen, the side terminal must be

used as the logon machine. So, at the "IRIS Login" prompt, input your account name and

a carriage return (CR). At the password prompt, input your password and a CR. You

will then be prompted for a terminal type. Type vtl00 and a CR. Change to the NASA

directory by typing cd /user/work/NASA and a CR.

39

c. The Integrated PMAD System

To run the PMAD system program, type "PMAD" at the IRIS system

prompt. The window manager, MEX, will be invoked on the IRIS workstation, making

its current screen CONSOLE and then the graphics interface of the PMAD system will be

displayed on the IRIS. Two messages should come up on the side terminal saying

"Awaiting connection with SYMI". At this time, go over to the Symbolics (SYMI) and

type the LISP command (sympwrsys) at the LISP Listener. This command starts the

Symbolics portion of the PMAD system running. Now the system is ready to use.

4. Use of the Mouse

The mouse has three buttons with functions as described in Figure AL.

LEFTMOUSE MIDDLEMOUSE RIGHTMOUSE

TERMINATE RETURN TO SELECT A
ACTIVITY MOUSE MENU MENU

(ONLY WHEN IN OPTION
(CANCEL) A HELP MENU)

Figure Al. PMAD System Mouse Help Menu

40

5. Select an Option

To select an option, press the right mouse button to bring up the desired menu

panel. Options with an arrow in the right hand comer have submenus that can be

displayed by scrolling off either end of that particular menu. Once you have reached an

option you desire, release the mouse button. Additionally, once done with a selected

option and the display, press LEFT MOUSE (CANCEL) to go back to the main menu

level.

6. The Main Menu

The main menu panel of the PMAD system can always be reached by: (1)

pressing the RIGHT MOUSE or, if several levels down, (2) rolling the mouse off of all

options letting go of right mouse and then pressing it again as in option 1.

7. Terminate Activity (CANCEL)

This option will terminate fault simulations, power flows and help menus. It

returns you to the main menu level which can be reached as explained in Section I.A.6.

8. Help Menus

To choose a particular help menu, press the RIGHT MOUSE, move cursor to the

HELP option and release the mouse button. The help menu has a toggle feature which lets

you toggle between the mouse diagram above and specific help for that menu. To leave a

help menu, press the cancel key, MIDDLE MOUSE.

9. Exiting the PMAD System

To exit the program, press the RIGHT MOUSE, place cursor on EXIT option

and release. The connections between the IRIS and the Symbolics will automatically be

closed.

41

B. PMAD SYSTEM OVERVIEW

This section provides an overview of the PMAD system. This includes all menus and

their options, along with a brief description of each.

1. PMAD System Main Menu

The PMAD system Main Menu represents a system based on a photovoltaic

power supply with battery back-up. It would normally include options for HELP,

POWER CONDITIONING, POWER DISTRIBUTION and POWER NETWORK

CONTROL. For simplicity, only the HELP and POWER NETWORK CONTROL

options were implemented. The STATUS PREDICTION and FAULT ISOLATION and

POWER FLOW MANAGEMENT options exists are lower level menus and were added to

the main menu for ease of access. POWER NETWORK CONTROL and POWER FLOW

MANAGEMENT have submenus. Flow of power through the system can be seen by

clicking menu option POWER FLOW MANAGEMENT and scrolling off of its left or right

side. STATUS PREDICTION and FAULT ISOLATION enable the running of a complete

system check to determine whether a predicted or an actual failure has occurred somewhere

in the PMAD system. A diagram of the PMAD System Main Menu can be seen in

Figure A2.

PMAD

HELP
POWER NETWORK CONTROL

STATUS PREDICTION
FAULT ISOLATION

POWER FLOW MANAGEMENT

Figure A2. PMAD System Main Menu

42

2. Power Network Control Menu

The Power Network Control menu is designed to break down system analysis

into smaller subtasks which can be managed independently and more efficiently. It would

normally include options for HELP, DISTRIBUTION MANAGEMENT, LOAD

MANAGEMENT, HEALTH MANAGEMENT and COMMAND/ DATA I/F. Again, only

the HELP and HEALTH MANAGEMENT options were implemented. HEALTH

MANAGEMENT has submenus. This menu can be seen in Figure A3.

POWER NETWORK CONTROL

POE HELP
HEALTH MANAGEMENT >

Figure A3. Power Network Control Menu

3. Health Management Menu

The Health Management menu's function is to monitor the health of the PMAD

system and to predict its future status to enable parts' replacement before failure. The

options are HELP, MAINTENANCE SUPPORT, FAULT MANAGEMENT and POWER

FLOW MANAGEMENT. POWER FLOW MANAGEMENT is not one of the original

options but was added to provide the user animation that shows the different ways power

may flow through the PMAD system. All options except HELP have submenus. This

menu can be seen in Figure A4.

43

HEALTH MANAGEMENT

HELP
MAINTENANCE SUPPORT •

FAULT MANAGEMENT
POWER FLOW MANAGEMENT •

Figure A4. Health Management Menu

4. Maintenance Support Menu

The Maintenance Support menu provides information needed to carry out service

procedures, both unscheduled and routine, and step-by-step instructions for these

procedures to include contingency information to handle foreseeable problems. The

options would normally be HELP, STATUS PREDICTION, PREVIOUS

MAINTENANCE SCHEDULING, NETWORK SOLUTION, MONITORING and

HISTORY RECORDS GENERATION. The only options implemented were HELP and

STATUS PREDICTION. This menu can be seen in Figure A5.

MAINTENANCE SUPPORTI ~HELP
STATUS PREDICTION

Figure AS. Maintenance Support Menu

5. Fault Management Menu

The Fault Management menu provides options that enable the detection of an

abnormal state in the PMAD system, the isolation of faults that cause this state and

suggested actions that could bring the system back to an operational state. The options that

would normally be present are HELP, FAULT DETECTION, FAULT ISOLATION,

44

FAULT COMPENSATION and FAULT LOGGING. The only implemented options are

HELP, FAULT DETECTION and FAULT ISOLATION, where FAULT DETECTION

and FAULT ISOLATION currently call the same detection routine. This menu can be seen

in Figure A6.

FAULT MANAGEMENT

I HELP
FAULT DETECTION
FAULT ISOLATION

Figure A6. Fault Managment Menu

6. Power Flow Management

The Power Flow Management menu's purpose is to show the flow of power

through the system. The options are HELP, CHARGE BATTERIES, DISCHARGE

BATTERIES, USE PHOTOVOLTAIC SOLELY, USE PHOTOVOLTAIC AND

BATTERIES. This menu can be seen in Figure A7.

POWER FLOW MANAGEMENT

HELP
CHARGE BATTERIES

DISCHARGE BATTERIES
USE PHOTOVOLTAICS SOLELY

USE PHOTOVOLTAICS AND
BATTERIES

Figure A7. Power Flow Management Menu

7. The Component Menu

The Component Menu provides options HELP, FAULT ISOLATION and

STATUS PREDICTION. These options when chosen from the Component menu enable

45

the checking of only a single component vice a complete system's check. This menu can

be seen in Figure A8.

Component Menu

HELP

STATUS PREDICTION

FAULT ISOLATION

Figure AS. PMAD System Component Menu

C. ON-LINE HELP

This manual, in its entirety, will be available in a file called README. It can be

viewed by typing the command pmadman.

46

H. PMAD SYSTEM PROGRAMMER'S MANUAL

This manual is for those who would like to modify the PMAD system. This manual

discusses applications software on the Symbolics and the IRIS and possible ideas for

PMAD system expansion. Before attempting modifications, it is recommended that the

following courses be taken before utilizing this system:

CS3313 - Introduction to Artificial Intelligence,

CS4202 - Introduction to Computer Graphics, and

CS4313 - Computers for Artificial Intelligence.

A. SYMBOLICS APPLICATION SOFTWARE ORGANIZATION

The application software developed on the Symbolics is consolidated into four LISP

files: init-pwrsys.lisp, keefiles.lisp, pwrsys-net.lisp and main-pwrsys.lisp.

The subroutines that these files consist of will be discussed in this section. Familiarization

with packages and how they interrelate on the Symbolics will be quite helpful, especially

the packages COMMON-LISP-USER and KEE, since the LISP command (zl:pkg-

goto [package name]) is used throughout the LISP files in order to transfer control

between these two packages.

1. Init-pwrsys.lisp

This file contains functions that are used to set up the initial PMAD system

environment under the package COMMON-LISP-USER, before package KEE functions

are utilized. This file consists of the following variable declarations (all variables with

asterisks (*) around them are global, known to all the files).

typenum - This variable holds the type of system check requested (zero (0) for fault
detection and one (1) for status prediction).

message out - This variable holds the message that is sent from the Symbolics to
the IRS containing the status of the component that was checked.

47

user::*comp* - This variable holds the component number sent from the IRIS to the
USER package on the Symbolics.

randnum - This variable holds the random number generated to determine if a
connections of component has failed.

user::*fault list* - This variable holds the list of failed components based on
backward chaining through the facts and rules of the PMAD system knowledge
base.

part - This variable holds the component from the pwrsys-array that corresponds to

the component number sent from the IRIS.
data in - This variable holds information sent from the IRIS to the Symbolics.
data out - This variable holds information sent from the Symbolics to the IRIS.

*finishedprocessing - This variable holds the flag sent from the Symbolics to the
IRIS to signal the end of processing for that particular system or component check.

The following functions are used:
randroutine - This routine generates the random number to be used by the

faultroutine and predictedroutine.

faultroutine - This routine determines, based on whether the random number from
randroutine was between 0.9 and 1.0, if the component connection in question
(*comp*) has failed.

predictedroutine - This routine determines, based on whether the random number
from randroutine was between 0.8 and 1.0, if the component connection in question
(*comp*) is predicted to fail.

process data - This routine determines whether the part in question is a component or
a component connection (part number 0 or 15 through 30). If the part is a
connection, it runs the appropriate probability function, depending on the type of
check desired.

2. Keefiles.lisp

This file contains those functions that need to run on the Symbolics under

package KEE. They are as follows:

start diagnosis - This routine sets a variable equal to a component or connection from
the PMAD system component and connection array.

pwrsysarray - That variable is used in the backward chaining rule that determines
fault occurrences.

init-valuesl - This routine inserts facts concerning the battery.1 component into the
PMAD system knowledge base.

reset-valuesl - This routine deletes facts concerning the battery.1 component from
the PMAD system knowledge base.

48

pwrsys array - An array of the components and connections of the PMAD system
knowledge base.

predicted array - This is an array of messages for the predicted failure of PMAD
system components and connections, using the names that correspond to those on
the graphics interface side of the PMAD system.

faultarray - This is an array of messages for the failure of PMAD system
components and connections, using the names that correspond to those on the
graphics interface side of the PMAD system.

okay.array - This array is only accessed when a single component check results in
a correctly functioning component.

check..predicted array - This routine determines which predicted failure message to
send back to tfhe IRIS.

check faultarray - This routine determines which failed message to send back to the
IRIS.

outputroutine - This routine takes a line in the fault list that is generated from the
results of backward chaining through the PMAD system knowledge base and, based
on whether it was an actual or predicted failure, runs the checkpredicted array
or check faultarray routine and sends the appropriate message to the IRIS.

process list - This routine cycles through the fault list, line by line, in order to provide
the IRIS with information on PMAD system components and connections.

3. Pwrsys-net.lisp

This file contains the functions, flavors and methods that run under package

COMMON-LISP-USER and that enable the Symbolics to communicate with the IRIS.

This code was developed by Sehung Kwak and Captain Andy Nelson. Please see Major

Ted Barrow's M.S. Thesis dated June 1988 for detailed descriptions of the functions in

this file. The following are two functions that were set up to provide ease in utilization of

this file.

receive data - Method for the Symbolics to receive information (integers, single
floating-point numbers, single characters and characters strings) from the IRIS.

senddata - Method for the Symbolics to send information to the IRIS.

4. Main-pwrsys.lisp

This file controls the Symbolics portion of the PMAD system. It loads the

previously mentioned files, connects the Symbolics to the IRIS by executing the

49

starttalking function which resides in pwrsys-net.lisp and contains the functions that

have primary control of the PMAD system on the Symbolics, sympwrsys.

Sympwrsys initializes the variables that signal the end of a system or

component check (*finished processing*) or the end of communications between the

two machines (*done*). It changes the current packages to KEE and inserts the facts

concerning battery.1 into the PMAD system knowledge base. It then returns the current

package to COMMON-LISP-USER.

The large do loop will loop until the *done* variable is set to true. Diagnostic

print messages are still in the code due to the debugging that was in process at the time of

the printing of this manual. Data is sent from the IRIS to the Symbolics in the form of the

type of check desired (predicted or actual failure or end of communications flag) and a

component number (corresponding to a component, connection or complete system check).

When the end of communication flag (999) is received, the stop-talking

function is executed, the *done* variable is set to true and communication is terminated.

Otherwise, the type of check and component number are saved in variables *typenum*

and user::*comp*, respectively. Sympwrsys then calls the process-data function.

The variable *part* is set to the input component number. If *part* corresponds to the

kee::*pwrsysarray entry 'nil' (for system check) then run the block LISP code

(progn) to process the fault list (if any) returned from the processdata function by

executing the kee::process-list function. Otherwise, run the progn that processes the

single message in the fault list using the kee::process list function.

Both progn sections send the component number and a status message back to

the IRIS. Before connection is broken, the facts concerning battery.I are retracted from

the PMAD system knowledge base using the reset-valuesl command and the current

package is changed back to COMMON-LISP-USER.

50

B. IRIS APPLICATION SOFTWARE ORGANIZATION

This section will provide more of an overview of IRIS application software since in-

line documentation is provided. Also, when possible, files of similar subject will be

grouped together.

Makefde - A file that enables an organized method for compiling files.
README - An on-line version of the entire PMAD system manual.
Header files - Shared.h contains information for the files that utilize communications

software. Pwrsys.h contains numerical definitions for the PMAD system parts, a
structure definition for these parts and other useful declarations.

Help files - Help.c contains the main control module for all the help menus called
help menu. It toggles between specific help and the mouse help. It also contains
the processhelp routine that enables the creation and display of specific help for the
current menu. faulthelp.c, healthhelp.c, mainhelp.c, maintspthelp.c,
mousemenhelp.c, nethelp.c and pwrflowhelp.c contain the help menu text
for their respective menus.

Executable files - Nasapwrsys brings up the PMAD system with communications
capability when executed. Nonetpwrsys brings up the PMAD system without the
communications. Runprog is a command file that invokes the MEX window
manager and that executes the nasapwrsys file.

Newpwrsys.c - This is the primary control module for the entire graphics interface. It
is mouse-oriented and utilizes the IRIS window manager, MEX.

Component files - The componenthit.c file contains routines that determine whether
the current mouse location corresponds to a component hit. The compmenu.c file
contains the routine that displays the menu that provides the choice of items that are
predicted to fail or that have actually failed. This menu is only seen when the
nonetpwrsys executable file is run.

Diagram.c - This file contains the routine that creates the different objects in the PMAD
system diagram, make diagram. It also contains the routines that change all
objects in the PMAD system diagram back to their original color after processing,
cleanupflow and cleanup-diagram, and that call all the objects in the PMAD
system for screen display, calldiagram.

Compstat.c - This file contains routines faultisolation and statusprediction that
check for actual and predicted faults in the system, respectively. The
componentstatus routine checks the status of individual components in the
diagram. Routine processmessage determines whether to flash a component
red, yellow or green and displays the status message, based on messages received
from the Symbolics.

51

Pwrflow.c - This file contains routines that show the flow of power from the
photovoltaic equipment to the battery (charge battery), the flow of power from
the batteries through the rest of the system (discharge battery), the flow of
power from the photovoltaic equipment throughout the rest of the system
(use pv only) and the flow of power from the photovoltaic equipment and the
batteiies throughout the rest of the system (usepv andbatteries).

Object files - All of the ".c" files discussed previously have a ".o" file associated with
them. These ".o" files are the compiled versions of their ".c" source code.

C. PMAD SYSTEM EXPANSION

Now that the applications software for each machine has been discussed, ideas for

PMAD system expansion will be presented. This presentation not only includes these

ideas, but also methods for their implementation.

1. PMAD Expert System Expansion

Currently there is only one fault rule written for the PMAD system knowledge

base and that is for the battery.1 component. Fault rules need to be written for the other

components and their connections. Before modifying the PMAD system, you should

understand the KEE Tell and Ask language and how to write the external.form of a

fault rule. Also, familiarity with the ZMACS editor on the Symbolics would be helpful.

The following paragraphs will explain how to add a fault rule to the PMAD system

knowledge base.

If your KEE environment does not have an output window displayed, choose the

desktop option in the top left-hand corner. Choose the create output window option and

follow the instructions provided by KEE.

Using the mouse, place the cursor on the PWRSYS knowledge base inside the

KB window and click the left mouse button. A PWRSYS menu will pop-up. Choose the

display option by placing the cursor there using the mouse and clicking the left mouse

button. The output window will display the contents of the PMAD system knowledge

base.

52

Place the cursor on the FAULT.RULES class at the top of the PMAD system

knowledge base and click the left mouse button. Choose the "create new unit" option off

of the pop-up menu and follow the instructions that are provided. When asked to input the

external.form of the rule, realize that if an input error is made it can be corrected by

backspacing or by saving what is already typed (with proper LISP syntax) and editing it

using the ZMACS editor.

2. PMAD System IRIS Graphics Extended Screen and Pan/Zoom

Capabilities

Given more detailed information on the PMAD system, a programmer can either

extend the current high-level diagram or develop Panrfoom capabilities for the individual

components. Extended Screens of the current high-level diagram can be done utilizing

icons in the middle of the four corners of the screen (which can be created as objects) or as

an option off of the PMAD system main pop-up menu. Depending on where the cursor is

positioned, a corresponding extended screen will appear.

Pan/Zoom options can be added to the existing component pop-up menu. When

chosen, that option could note the component in question and, based on that information,

bring up a detailed schematic of that component. In either case, extended screen or

pan/zoom, the following files should be considered for modification:

Diagram.c will need objects added to represent the new portion of the screen or the

detailed schematic of the component.

Pwrsys.h will need "#define" statements that represent these additions.

Newpwrsys.c wih need to call the Loutine that will perform these new tasks.

Compmenu.c and componenthit.c will need to reflect the additions of new
components.

53

3. PMAD System Training Program

A training program could be written for the PMAD system. It would be a choice

off of the main or component pop-up menu of the graphics interface. That would allow

practicing of diagnosing faults that are chosen from a data base of system fault scenarios.

This system can be displayed in the lower left quadrant of the IRIS screen. It could be an

independent program that is pulled into the PMAD system through the pop-up menus. It

would need to be incorporated into the graphics using the method already used by the

PMAD system help routines, while still displaying the portion of the system desired for

viewing.

4. PMAD System Help Files

The help files for the PMAD system on the IRIS can be expanded to contain

detailed information. The following suggested method for expansion will use mainhelp.c

for the example.

In the static str8O, array add the desired number of quoted lines of information,

not to exceed 80 characters per line. Change the NUMHELP1 definition at the top of the

file (from three (3)) to reflect that desired number.

54

HI. USEFUL REFERENCE DOCUMENTS AND MANUALS

The following list is provided to assist those who will be working with the PMAD

system prototype:

Barrow, T., Distributed Computer Communications in Support of Real- Time Visual
Simulations, Master's Thesis, Naval Postgraduate School, Monterey, California,
June 1988.

Bromley, H., and Lamson, R., LISP Lore: A Guide to Programming the LISP
Machine, Kluwer Academic Publishers, 1987.

Erickson, W., and Nienart, J., MTK Reference Manual and User Guide (draft), 10
April 1988.

Erickson, W., and others, "NASA Systems Autonomy Demonstration Program: A
Step Toward Space Station Automation," SPIE Space Station Automation II, v. 729,
1986.

IntelliCorp KEE Software Development System User's Manual, IntelliCorp, 1986.

IRIS User's Guide: Volume I Graphics Programming, Silicon Graphics, Inc., 1986.

Kernighan, B., and Ritchie, D., The C Programming Language, Prentice-Hall, Inc.,
1978.

Martin Marietta Denver Aerospace Task I Study Report MCR-86-583, Space Station
Automation of Common Module Power Management and Distribution, by Miller, W.,
and others, July 1986.

User's Guide to Symbolics Computers, Symbolics, Inc., July 1986.

Wilensky, R., Common LlSPcraft, W. W. Norton & Company, Inc., 1986.

55

IV. IMPORTANT POINTS OF CONTACT

In case the references listed in the previous section do not answer specific questions,

the following points of contact are provided:

Dr. Henry Lum
MS244-7
NASA Ames Research Center
Moffett Field, CA 94035
AUTOVON 359-6544
COMMERCIAL 1-415-694-6544

Ms. Carla Wong
MS244-18
NASA Ames Research Center
Moffett Field, CA 94035
COMMERCIAL 1-415-694-4294

Mr. William Erickson
MS244-18
NASA Ames Research Center
Moffett Field, CA 94035
AUTOVON 359-3369
COMMERCIAL 1-415-694-3369

Dr. Robert McGhee
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100
AUTOVON 878-2449
COMMERCIAL 1-408-646-2449

Dr. Michael Zyda
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5000
AUTOVON 878-2449
COMMERCIAL 1-408-646-2449

Lois Brunner
Joint Command, Control and Communications Academic Group
Naval Postgraduate School
Monterey, CA 93943-5000
AUTOVON 878-2618
COMMERCIAL 1-408-646-2618

56

LT Gina L. Hester
Fleet Surveillance Support Command
Chesapeake, VA 23322-5010
COMMERCIAL 1-804-421-8203

57

APPENDIX B

PMAD SYSTEM SOURCE LISTING

MAIN-P WRSYS.LISP

(load "init-pwrsys.lisp")

(load "pwrsys-net.lisp")

(load "keefiles.lisp")

(user: :start-talking)

(defun sympwrsys0

(setq *done* 'nil)
(setq *finished-processing* 555)

(zl:pkg-goto 'kee)

(kee: :imit-values 1)

(zl:pkg-goto 'common- lisp-user)

(do ()
(*done*)
(progn (princ "Awaiting data from LRIS2.")

(setq *data-in* (user: :receive data))

(if (= *dta-in* 999)
(progn (user.:stop-talldng)

(setq *done* 't)

(progn (setq *typenum* *data-in*)
(print *data-in*)
(setq *datamn* (user:receive_data))
(print *datamin*)
(setq user::*comnp* *datami*)
(process-data *typenum* *data_in* user::*comp*)

58

(print kee::*fault_list*)

(setq *part* (aref kee::*pwrsys-array* *datajn*))

(if (eq *part* 'nil)
(progn (if (car kee::*fault-list*)

(process-list kee::*faultjlist*)

(progn (zl:pkg-goto 'common-lisp-user)

(user::send-data "NO SYSTEM PROBLEMS")
(user:: send-data *finished-processing*)

(if (car kee::*faultJ ist*)
(kee::process -list kee::*fault-list*)
(progn (setq *data -out* *data-in*)

(print *data-out*)
(setq *riessge-out* (aref kee::*okay-array* *data~out*))
(princ *messageout*)

(zl:pkg-goto 'commnon-lisp-user)

(user::send -data *rnejsage -out*)
(user: send -data *data_out*)
(user::send -dama "END OF COMPONENT CHECK')
(user:send-data *finished-process jng*)

(kee:rest-vaues)
(zlpk-gto'omonlis-ue)

)5

INIT-PWRSYS.LISP

(load "sym I :>sys>site>thermnal. translations")

(defvar *done* nil)
(defvar *typernum* nil)
(defvar *message out* nil)
(defvar user::*cornp* nil)
(defvar *randnum* nil)
(defvar user::*fault-list* nil)
(defvar *part* nil)

(defvar *data-jn* nil)
(defvar *data-out* nil)

(defvar *fmished-processing* nil)

(defun randroutine ()
(setq user: :num, (random 1001))
(setq *randnum* (I user::num 1000))

(defun faultroutine, (user::*comp* rand)
(if (> rand 0.8)

(progn (zl:pkg-goto 'kee)
(assert '(a fault.mode of ,(aref *pwrsys-array* user:: *comp*) is failed))

(defun predictedroutine (user:: *comp* rand)
(if (> rand 0.9)

(progn (zl:pkg-goto 'kee)
(assert '(a fault.mode of ,(aref *pwrsys-aray* user:: *comp*)

is predictedjfailure))

60

(defun process-data (type partnuni user.:*comp*)
(cond ((or (= partnum 0) (and (>= partnum 15)

(<= partnuin 50)))
(randroutine)
(if (= type 0)

(faultroutine user::*comp* *randnuni*)
(predictedroutine user::*cornp* *randnumj*)

(setq user::*fault-list*
(kee: :start-diagnosis user: :*comp* 'kee::fault.rules 'kee: :basicworld))

61

PWRSYS-NET.LISP

-*- Mode: LISP; Syntax: Common-lisp; Package: USER -

handy macro to have in the send message farthur down

(defmacro loopfor (var init test exp I &optional exp2 exp3 exp4 exp5)
"(prog 0

(setq ,var ,init)
tag

,expl
,exp2
,exp3
,exp4
,exp5
(setq ,var (1+ ,var))
(if (= ,var ,test) (return t) (go tag))))

(defun convert-number-to-string (n)
(princ-to-string n))

(defun convert-string-to-integer (str &optional (radix 10))
(do ((j 0 (+ j 1))

(n 0 (+ (* n radix) (digit-char-p (char strj) radix))))
((= j (length str)) n)))

(defun find-period-index (str)
(catch 'exit

(dotimes (x (length str) nil)
(if (equal (char str x) (char "." 0))

(throw 'exit x)))))

(defun get-leftside-of-real (str &optional (radix 10))
(do ((j 0 (l+j))

(n 0 (+ (* n radix) (digit-char-p (char str j) radix))))
((or (null (digit-char-p (char str j) radix)) (= j (length str))) n)))

(defun get-rightside-of-real (sir &optional (radix 10))
(do ((index (1+ (find-period-index sir)) (1 + index))

(factor 0.10 (* factor 0.10))
(n 0.0 (+ n (* factor (digit-char-p (char str index) radix)))))

((= index (length str)) n

62

(defun convert- string-to-real (str &optional (radix 10))
(+ (float (get-leftside-of-real str radix)) (get-rightside-of-real str radix)))

(defvar *iris-.portl* 1027) ; this is the send port
(defvar *iis..prrt* 1026) ; this is the receive port
(defvar *local-talkc-port*I 1500) ;this is the local send port
(defvar *local-listen-port* 1501) ;this is the local receive port

(defflavor conversation-with-iris ((talldng-port-number *iris-portl *)
(listening-port-number *iris-.pot2*)
(local-talk-port-number *local..talk-port*)
(local-listen-port-number *local..listen..port*)
(talking-stream)
(listening-stream)
(destination-host-object)

0
:initable-instance-variables)

(defmethod (:init-destination-host conversation-with-iris)
(name-of-host)

(setf destination-host-object (net:parse-host namne-of-host)))

(defmnethod (:start-iris conversation-with-iris) 0
(setf talking-stream

(tcp:open-tcp- stream destination-host-object
talking-port-number
local-talk-port-number))

(setf listening-stream
(tcp:open-tcp- stream destination-host-object

listening-port-number
local-listen-port-number))

"A conversation with the iris machine has been established")

(defmnethod (:reuse-iris conversation-with-iris)
0

)st tphnlr (edi:*c-ade*:e-ot
(tq*tcphandler* (send ip::*tcphander* :get-port)

talking-port *tcp..halldlerl *
listening-port *tcp-handler2*))

63

(defun read-string (stream num-chars)
(let ((out-string ""))

(dotimes (i num-chars)
(setf out-string (string-append out-string (read-char stream))))

out-string))

(defmethod (:get-iris conversation-with-iris) 0
(let* ((typebuffer ..)

(lengthbuffer .)
(buffer "

(buffer-length 1))
(progn
(setf typebuffer

(read-string listening-stream 1))
(setf lengthbuffer

(read-string listening-stream 4))
(setf buffer-length

(convert-string-to-integer lengthbuffer))
(setf buffer

(read-string listening-stream buffer-length))

(cond ((equal typebuffer "I") (convert-string-to-integer buffer))
((equal typebuffer "R") (convert-string-to-real buffer))
((equal typebuffer "C") buffer)
(t nil)))))

(defvar *step-var* 0)

(defun my-write-string(string stream)
(let* ((num-chars (length string)))

(dotimes (i num-chars)
(write-char (aref string i) stream))))

(defmethod (:put-iris conversation-with-iis)
(object)

(let* ((buffer (cond
((equal (type-of object) 'bignum) (convert-number-to-string object))
((equal (type-of object) 'fixnum) (convert-number-to-string object))
((equal (type-of object) 'single-float) (convert-number-to-string object))
((equal (type-of object) 'string) object)

64

(t "error")))

(buffer-length (length buffer))

(typebuffer (cond ((equal (type-of object) 'bignum) "I")
((equal (type-of object) 'fixnum) "I")
((equal (type-of object) 'single-float) "R")
((equal (type-of object) 'string) "C")
(t "C")))

(lengthbuffer (convert-number-to-string buffer-length)))

(progn
(my-write-string typebuffer talking-stream)
(send talking-stream :force-output)

(if (= (length lengthbuffer) 4)
(write-string lengthbuffer talking-stream)
(progn

(loopfor *step-vat* (length lengthbuffer) 4
(write-string "0" talking-stream))

(my-write-string lengthbuffer talking-stream)

(send talking-stream :force-output)

(my-write-string buffer talking-stream)
(send talking-stream :force-output)

(defmethod (:stop-iris conversation-with-iris)
0

(progn (send talking-stream :close)
(send listening-stream :close)))

(setq *commhandler* (make-instance 'conversation-with-iris))
(send *commhandler* :init-destination-host 'iris2)

(defun start-talking 0
(send *commhandler* :start-iris))

65

(defun stop-talking0
(send *comrhandler* :stop-iris)
(send *conubandler* -reuse-iris))

(defun senddata Wx
(send *corm_handler* :put-iris x))

(defun receive--data 0
(send *comhandler* :get-iris))

;(setq myvar (receivejata))

;(senddata "1") ; 1 1.0 "1 11"o
;(send -data 1) ;1 1.0 "l is,"

;(send-data 1.0) 1 1.0 "1 1I"

KEEFILES.LISP

;*- Mode: LISP; Syntax: Common-lisp; Package: KEE -*-

(defun start-diagnosis (user.:*comp* rules world)

(setq comp (aref *pwrsys array* user::*comp*))

(query '(a fault.mode of ,(if (null comp) '?comp
comp) is ?what) rules world)

(defun init-valuesl 0
(assert '(the value.state of battery. l.vr.n.powerload is negative))
(assert '(the trend.state of battery. l.charge is steady)))

(defun reset-values 1 0
(initialize.keeworlds)
(retract '(the value.state of battery. l.vr.n.powerload is negative))
(retract '(the trend.state of battery. lcharge is steady)))

(defvar *pwrsys array* (make-array '(52) :initial-contents
•(epsboard. 1
pvequip. I
betajoint. I
voltreg. 1
battery. I
inverter. I
alphajoint. 1
maindistboard. 1
epspdca.1
basicpdca. 1
seboard.1
boardswitch. 1
basicswitch. 1
basicswitch.2
basicswitch.3
epsboard. 1.pvequipnode

67

epsboard. 1 betajointnode
epsboard. 1 inverternode
epsboard. 1. maindistboardnode
epsboard. 1 epspdcanode,
pvequip. 1 e.n
pvequip. 1.b.n
betajoint. 1 .
betajoint.1.e.n
betajornt. 1.0
voltreg. 1Li
voltreg. 1 .bt.n
voltreg. 1.0
battery. 1.vr.n
inverter. 1Li
inverter. 1 exn
inverter. 1.0
aiphajoint. 11.
alphajoint. 1.0
maindistboard. 1 .a.n
maindistboard. 1 exn
maindistboard.1.pl.n
maindistboard.l1.p2.n
epspdca. 1 .m.n
epspdca. 1 exn
epspdca. 1 sw 1
epspdca.l1.sw2
basicpdca.l1.m.n
basicpdca. 1. sw 1
basicpdca. 1 sw2
seboard.l1.bsw.n

boardswitch. 1Li
boardswitch. 1.seb.n
basicswitch. 1Li
basicswitch.2.i
basicswitch.3.i
nil))

(defvar *predicted.-array* (make-array '(5 1) :initial-contents
'("Y-THE FAULT.MODE OF EPSCNTL IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PVEQIJIP IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF BETAJ IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF VOLTREG IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF BATiTERIES IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF DC_AC_RNVERT IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF ALPHAJ IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF MAINDIST IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PDCA1 IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PDCA2 IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF SESWCNTL IS PREDICTED-FAILURE"

68

"Y-THE FAULT.MODE OF SWi_1 IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF SWI_2 IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF SW2_1 S PREDICTED-FAIILURE"
"Y-THE FAULT.MODE OF SW2_2 IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF EPSPVNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF EPSBJTNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF EPSIN4VERTNODE IS PREDICTED-FAILURE"
"Y-THE FAULTMODE OF EPSMDBNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF EPSPDCA1NODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PVEQUIPEPSNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PVEQUIPBJTNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF BJTPVEQUIPNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF BJTEPSNODE IS PREDICTED-FAI]LURE"
"Y-THE FAULTMODE OF BJTVOLTREGNODE IS PREDICTED-FAI]LURE"
"Y-THiE FAULT.MODE OF VOLTREGBJTNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF VOLTREGBA ITNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF VOLTREGINVERTNODE IS PREDICTED-FAI]LURE'
"Y-THE FAIJLT.MODE OF BA'ITVOLTREGNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF INYERTVOLTREGNODE IS PREDICTED-FAI]LURE"
"Y-THE FAULTMODE OF INVERTEPSNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF INVERTAJTNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF AJT[NVERTNODE IS PREDICTED-FAI]LURE"
"Y-THE FAULT.MODE OF AJTMDBNODE IS PREDICTED-FAI]LURE"
"Y-THE FAULTMODE OF MDBAJTNODE IS PREDICTED-FAI]LURE"
"Y-THE FAULT.MODE OF MDBEPSNODE IS PREDICTED-FAI]LURE"
"Y-THE FAULT.MODE OF MDBPDCA INODE IS PREDICTED-FAILURE"
"Y-THE FAULTMODE OF MDBPDCA2NODE IS PREDICTED-FAILURE",
"Y-THE FAULTMODE OF PDCA IMDBNODE IS PREDICTED-FAILURE"
"Y-THE FAULTMODE OF PDCA1EPSNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PDCA1SW1 INODE IS PREDICTED-FAILURE",
"Y-THE FAULTMODE OF PDCAISW12NODE IS PREDICTED-FAILURE"
"Y-THE FAULTMODE OF PDCA2MDBNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF PDCA2SW21NODE IS PREDICTED-FAI]LURE"
"Y-THE FAULTMODE OF PDCA2SW22NODE IS PREDICTED-FAIILURE"
"Y-THE FAULT.MODE OF SESWCNTLSW1 INODE IS PREDICTED-FAILURE"
"Y-THE FAULTMODE OF SW 11 PDCA1INODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF SWI 1SESWCNTLNODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF SW12PDCAINODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF SW21PDCA2NODE IS PREDICTED-FAILURE"
"Y-THE FAULT.MODE OF SW22PDCA2NODE IS PREDICTED-FAILURE"))

(defvar *fault-array* (make-mrry '(5 1) :initial-contents
("R-THE FAULT.MODE OF EPSCNTL IS FAILED"
"R-THE FAULT.MODE OF PVEQUIP IS FAILED"
"R-THE FAULTMODE OF BETAJ IS FAILED"
"R-THE FAULT.MODE OF VOLThEG IS FAILED"
"R-THE FAULTMODE OF BATT'ERIES IS FAILED"
"R-THE FAULTMODE OF DC_-AC_INVERT IS FAILED"
"R-THEE FAULT.MODE OF ALPHAJ IS FAILED"

69

"R-THE FAULTMODE OF MAINDIST IS FAILED"
"R-THE FAULT.MODE OF PDCA1 IS FAILED"
"R-THE FAULT.MODE OF PDCA2 IS FAILED"
"R-THE FALJLT.MODE OF SESWCNTL IS FAILED"
"R-THE FAULT.MODE OF SWI1 IIS FAILED"
"R-THE FAULT.MODE OF SWI_21IS FAILED":
"R-THE FAULT.MODE OF SW2_1l IS FAILED"
"R-THE FAULT.MODE OF SW2_2 IS FAILED"
"R-THE FAULT.MODE OF EPSPiVNODE IS FAILED"
"R-THE FAULT.MODE OF EPSBJTNODE IS FAILED"
"R-THE FAULT.MODE OF EPSINVERTNODE IS FAILED"
"R-THE FAULT.MODE OF EPSMDBNODE IS FAILED"
"R-THE FAULT.MODE OF EPSPDCA1NODE IS FAILED"
"R-THE FAULT.MODE OF PVEQUIPEPSNODE IS FAILED"
"R-THE FAULT.MODE OF PVEQUIPBJTNODE IS FAILED"
"R-THE FAULT.MODE OF BJTPVEQUIPNODE IS FAILED"
"R-THE FAULTMODE OF BJTEPSNODE IS FAILED"
"R-THE FAULT.MODE OF BJTVOLTREGNODE IS FAILED"
"R-THE FAULT.MODE OF VOLTREGBJTNODE IS FARLED"
"R-THE FAULT.MODE OF VOLTREGBAITNODE IS FAILED"
"R-THE FAULT.MODE OF VOLTREGINVERTNODE IS FAILED"
"R-THE FAULT.MODE OF BAITrVOLTREGNODE IS FAILED"
"R-THE FAIJLT.MODE OF IN4VERTVOLTREGNODE IS FARLED"
"R-THE FAULT.MODE OF INVERTEPSNODE IS FAILED"
"R-THE FAULT.MODE OF iVERTAJTNODE IS FAILED"
"R-THE FAULT.MODE OF AJTINVERTNODE IS FARLED"
"R-THE FAIJLT.MODE OF AJTMDBNODE IS FAILED"
"R-THE FAULT.MODE OF MDBAJTNODE IS FARLED"
"R-THE FAULT.MODE OF MDBEPSNODE IS FARLED"
"R-THE FAULT.MODE OF MDBPDCA1NODE IS FAILED"
"R-THE FAULT.MODE OF MDBPDCA2NODE IS FAILED"
"R-THE FAULT.MODE OF PDCAIMDBNODE IS FAILED"
"R-TH-E FAULT.MODE OF PDCA1EPSNODE IS FARLED"
"R-THE FAULTMODE OF PDCA1ISW11INODE IS FAILED"
"R-THE FAULTMODE OF PDCAISW12NODE 1S FAILED"
"R-THE FAULT.MODE OF PDCA2MDBNODE IS FAILED"
"R-THE FAULT.MODE OF PDCA2SW21NODE IS FAILED"
"R-THB FAULT.MODE OF PDCA2SW22NODE IS FAILED"
"R-THE FAULT.MODE OF SESWCNTLSW1 INODE IS FAILED"
"R-THE FAULT.MODE OF SWI 1PDCA1NODE IS FAILED"
"R-THE FAULT.MODE OF SWI ISESWCNTLNODE IS FAILED"
"R-THB FAULT.MODE OF SW12PDCAlNODE IS FAILED"
"R-THE FAULTMODE OF SW2IPDCA2NODE IS FAILED"
"R-THE FAULTMODE OF SW22PDCA2NODE IS FAILED"))

(defvar *okay-array* (make-array '(5 1) :initial-contents
'("G-THE FAULT.MODE OF EPSCNTL IS OKAY"

"G-THE FAULT.MODE OF PVEQUIP IS OKAY"
"G-THE FAULT.MODE OF BETMJ IS OKAY"

70

"G-THE FAULT.MODE OF VOLTREG IS OKAY"
"0-THE FAULT.MODE OF BAT TERLES IS OKAY"
"0-THE FAULT.MODE OF DC_-ACINVERT IS OKAY"
"0-THE FAULT.MODE OF ALPHA) IS OKAY"
"0-THE FAULT.MODE OF MAINDIST IS OKAY"
"0-THE FAULT.MODE OF PDCA I IS OKAY"
"G-THE FAULT.MODE OF PDCA2 IS OKAY"
"0-THE FAIJLT.MODE OF SESWCNTh IS OKAY"
"0-THE FAULT.MODE OF SWi_ IIS OKAY"
"0-THE FAULT.MODE OF SWi_2 IS OKAY"
"0-THE FAULT.MODE OF SW2_IuS OKAY"
"G-THE FAULT.MODE OF SW2_2 IS OKAY"
"0-THE FAIJLT.MODE OF EPSPVNODE IS OKAY"
"0-THE FAULT.MODE OF EPSBJTNODE IS OKAY"
"0-THE FAULT.MODE OF EPSINVERTNODE IS OKAY"
"0-THE FAULT.MODE OF EPSMDBNODE IS OKAY"
"0-THE FAULT.MODE OF EPSPDCA1NODE IS OKAY"
"G-THE FAULT.MODE OF PVEQUlPEPSNODE IS OKAY"
"G-THE FAULT.MODE OF PVEQUIPBJTNODE IS OKAY":
"0-THE FAULT.MODE OF BJTPVEQUIPNODE IS OKAY"
"0-THE FAULT.MODE OF BJTEPSNODE IS OKAY"
"0-THE FAULT.MODE OF BJTVOLTREGNODE IS OKAY"
"G-THE FAULT.MODE OF VOLTREGBJTNODE IS OKAY"
"G-THE FAULT.MODE OF VOLTREGBATTNODE IS OKAY"
"0-THE FAULT.MODE OF VOLTREOINVERTNODE IS OKAY"
"0-THE FAULT.MODE OF BAiTVOLTREGNODE IS OKAY"
"0-THE FAULT.MODE OF INVERTVOLTREGNODE IS OKAY"
"0-THE FAULT.MODE OF INVERTEPSNODE IS OKAY"
"G-THE FAULT.MODE OF INVERTAJTNODE IS OKAY"
"0-THE FAULT.MODE OF AJTINVERTNODE IS OKAY"
"0-THE FAULT.MODE OF AJTMDBNODE IS OKAY"
"0-THE FAULT.MODE OF MDBAJTNODE IS OKAY"
"0-THE FAULT.MODE OF MDBEPSNODE IS OKAY"
"0-THE FAULT.MODE OF MDBPDCA1NODE IS OKAY"
"0-THE FAULT.MODE OF MDBPDCA2NODE IS OKAY"
"0-THE FAULT.MODE OF PDCA1IMDBNODE IS OKAY"
"0-THE FAULT.MODE OF PDCAIEPSNODE IS OKAY"
"0-THE FAULT.MODE OF PDCA 1SW 11NODE IS OKAY"
"0-THE FAULT.MODE OF PDCA1ISW 12NODE IS OKAY"
"0-THE FAULT.MODE OF PDCA2MDBNODE IS OKAY"
"0-THE FAULT.MODE OF PDCA2SW2INODE IS OKAY"
"0-THE FAULT.MODE OF PDCA2SW22NODE IS OKAY"
"0-THE FAULT.MODE OF SESWCNTLSWI INODE IS OKAY"
"0-THE FAULT.MODE OF SWI IPDCA1NODE IS OKAY"
"0-THE FAULT.MODE OF SW11ISESWCNTLNODE IS OKAY"
"G-THE FAULT.MODE OF SW12PDCA INODE IS OKAY"
"0-THE FAULT.MODE OF SW21PDCA2NODE IS OKAY"
"0-THE FAULT.MODE OF SW22PDCA2NODE IS OKAY"))

71

(defun check-predicted-amry (comp)
(do (index 0 (1+ index)))

(> index 50)
(if (eq comp (aref *p wrsys.-array* index))

(progn (setq user::*message-out* (aref *p1.edicted array* index))
(princ *IP.-sage-out*)
(setq *data-out* index)
(print *dataout*)

(defun check _fault~array (comp)
(do (index 0 (1+ index)))

(> index 50)
(if (eq conmp, (aref *pwrsys-array* index))

(progn (setq *message--out* (aref *fault-array* index))
(princ *ip.esge-out*)
(setq *data-out* index)
(print *data-out*)

(defun output-routine (line)
(cond ((eq (sixth line) 'failed)

(check fault-array (fourth line))

((eq (sixth line) 'predicted-failure)
(check-predicted array (fourth line))

(zl:pkg-goto 'common-lisp-user)

(user::send-data *1pessage out*)
(user::send--data *clata~out*)

(defun processjlist (list)
(cond ((null (cdr list))

(outputroutine (car list))

(zl:pkg-goto 'common-lisp-user)

(user::send-data "END OF SYSTEM CHECK")

72

(user::send_data *finishedprocessing*))
(t outputroutine (car list)))

(processlist (cdr list))

73

MAKEFILE

CFLAGS = -Zg -Zf -Im -ldbm -g

COMM = /work/hester/commdir/

OBJS1I = newpwrsys.o\
compmenu.o\
componenthit.o\
compstat.o\
diagram.o\
faulthelp.o\
healthhelp.o\
help. o\
maintspthelp.o\
main help.o
mousemenhelp.o\
nethelp.o\
pwrflow.o\
pwrflowhelp.o

OBJS2 = $(COMM'Jao..Single.o\
$(COMM)mpath.o\
$(COMM)semaphore.o\
$(COMM)shareseg.o\
$(COMM)supporr.o

pwrsys: $(OBJS 1) $(OBJS2)
cc -o pwrsys $(OBJSI1) $(OBJS2) $(CFLAGS) -lbsd

$(OBJSI1): pwrsys.h

$(COMM)mpath.o: $(COMM)shared.h
cc -c -o $(COMM)mpath.o $(COMM)mpath.c $(CFLAGS)

$(COMM)support.o: $(COMM)shared.h
cc -c -o $(COMM)support.o $(COMM)support.c $(CFLAGS)

$(COMM)semaphore.o:
cc -c -o $(COMM)semaphore.o $(COMM)semaphore.c $(CFLAGS)

$(COMM)io-single.o: $(COMM)shared.h
cc -c -o $(COMM)io--single.o $(COMM)io-single.c $(CFLAGS)

$(COMM)shareseg.o:
cc -c -o $(COMM) shareseg.o $(COMM) sh areseg.c $(CFLAGS)

74

PWRSYS.H

#include <strings.h>
#include "stdio.h"
#include "gl.h"
#include "device.h"
#include "math.h"
#include "/work/hester/commdir/shared.h"
#define INrlXVALUE 0
#define INITYVALUE 0
#define menuymin 43.8
#define menuymax 131.5
#define menulxmin 43.0
#define menu2xmin 150.8
#define menu3xmin 322.5
#define menu4xmin 494.2
#define menu5xmin 665.9
#define menu6xmin 837.6

#define EPSCNTL 0
#define PVEQUIP 1
#define BETAJ 2
#define VOLTREG 3
#define BATTERIES 4
#define DCAC_INVERT 5
#defime ALPHAJ 6
#define MAINDIST 7
#define PDCA 1 8
#define PDCA2 9
#define SESWCNTL 10
#define SWI_1 11
#define SWI_2 12
#define SW2_1 13
#define SW2_2 14
#define EPSPVNODE 15
#define EPSBJTNODE 16
#define EPSINVERTNODE 17
#define EPSMDBNODE 18
#define EPSPDCA 1NODE 19
#define PVEQUIPEPSNODE 20
#define PVEQUIPBJTNODE 21
#define BJTPVEQUIPNODE 22
#define BJTEPSNODE 23
#define BJTVOLTREGNODE 24
#define VOLTREGBJTNODE 25

75

#define VOLTREGBATITNODE 26
#define VOLTREGLNVERTNODE 27
#define BATTVOLTREGNODE 28
#define INVERTVOLTREGNODE 29
#define INVERTEPSNODE 30
#define INVERTAJTNODE 31
#define AJTINVERTNODE 32
#define AJTMDBNODE 33
#define MDBAJTNODE 34
#define MDBEPSNODE 35
#define MDBPDCA1NODE 36
#define MDBPDCA2NODE 37
#define PDCA 1MDBNODE 38
#define PDCA 1EPSNODE 39
#define PDCA1SW1INODE 40
#define PDCA1SW12NODE 41
#define PDCA2MDBNODE 42
#defime PDCA2SW21NODE 43
#define PDCA2SW22NODE 44
#define SESWCNTLSW1 INODE 45
#define SWI1PDCA1NODE 46
#define SW11SESWCNTLNODE 47
#define SW12PDCA1NODE 48
#define SW21PDCA2NODE 49
#define SW22PDCA2NODE 50
#define EPSCN1 51
#define EPSCN2 52
#defime EPSCN3 53
#defime EPSCN4 54
#define EPSCN5 55
#define CNO 56
#define CN I a 57
#define CNlb 58
#define CN2 59
#define CN3 60
#define CN4 61
#define CN5 62
#define CN6 63
#define CN7a 64
#define CN7b 65
#define CN8a 66
#define CN8b 67
#define CN8c 68
#define CN8d 69
#define SESWCN 70
#define XMAXDIAGRAM 7.0
#define YMAXDIAGRAM 9.5
#define FLASHBLACKR 61
#define FLASHBLACKY 78
#define EXIT 99
#define PWRWINX 1 10

76

#define PWRWINX2 1000
#define PWR WINY 1 10
#define PWRWINY2 730
#define CHECKSYSTEM 51
#define FINISHEDPROCES SING 555

typedef char str80[801;

struct sysscomponent

Object objnaine;
Tag tagname;
int voltievel;
it fr-eqievel;

char volttype[4];
str80 compstatus;

struct sys...comnponent power[1001;

Machine reniotemnachine;

char comnbuffer[LARGESTREAD];

float commfloat;

int commint;

77

SHARED.H

******** *** ** ******** **************** ****** **************************

* TITLE : Inter-Computer Communication Package
*

* MODULE: shared.h
,

* VERSION: 4.0
,

* DATE : 15 December 1987
*

* AUTHOR: Theodore H. Barrow
******************* ***************** ****** ******** ** ******** **** ***

* HISTORY:
*

* VERSION: 1.0
.

* DATE : 6 February 1987
*

* AUTHOR : Michael J. Zyda
*

* DESC. : Contains all defines and special constants for shared
* memory socket system.

* VERSION: 2.0
,

* DATE :27May1987
,

* AUTHOR : Theodore H. Barrow
*

* DESC. : Added a typedef of structure for use by various routines.
* Added message types for high level read/write protocol.
*

* VERSION: 3.0

* DATE : 21 October 1987
,

* AUTHOR : Theodore H. Barrow
,

* DESC. : Changed dependencies of buffer calculation constants so that
* only one need change. Added additional message types.

* VERSION: 4.0
,

* DATE : 15 December 1987

78

m*

* AUTHOR: Theodore H. Barrow

* DESC. : Added field to buffer set so that each link would have its
* own area to handle partial receipt of messages.

************************ ** *********** ********* * ******* *** ***

1,
the following 3 defines are the changeable parameters

LARGESTREAD MUST be divisible by 4,/

#define SENDLOCATION "/work/hester/commdir/send" /* the name of the program
to run for the sender */

#define RECEIVELOCATION "/work/hester/commdi/rceive" /* the name of program
to run for the receiver */

#define LARGESTREAD 252 /* the largest read (i.e. buffer size) */

/* The following defines are constants or are derived from LARGESTREAD */

#define SENDEROFFSET (LARGESTREAD + 4) /* the sender data starts here */

#define WSENDEROFFSET (SENDEROFFSET / 4)/* long word offset for sender data */

#define RECEIVEROFFSET 0 /* the receiver data starts at byte 0 */

#define WRECEIVEROFFSET 0 /* the receiver data starts at long word 0 */

#define PROTOCOLHOLDOFFSET (SENDEROFFSET * 2) /* holding area starts after
sender area */

#define MAXSHAREDSIZE (PROTOCOLHOLDOFFSET + 12)/* the number of bytes in
the

shared segment */

#define CHARACTERTYPE 'B' /* code for characters */
#define INTEGERTYPE T /* code for integers */
#define FLOATTYPE 'R' /* code for floats */
#define CHARACTERARRAYTYPE 'C' /* code for character arrays */
#define INTEGERARRAYTYPE 'J' /* code for integer arrays *1
#define FLOATARRAYTYPE 'S' /* code for float arrays */

#define CHARACTERSIZE 1 /* character size in bytes */
#define INTEGERSIZE sizeof(1) /* integer size in bytes */
#define FLOATSIZE sizeof(1.0) /* float size in bytes */

/* the following is the structure type definition needed for each machine
you want to communicate to...

79

*/

typedef struct
char *segment; /* ptr to shared memory segment *1

int shmid; /* system generated shared mem. id */

hat sendsem; /* semaphore used to wakeup the sender
process.,/

int receivesem; /* semaphore used to wakeup the
receiver process...*/

} Machine;

80

HELP.C

#include "pwrsys.h"

HELPMENU

The main control module for help menus

help-menu(menunum)
int menunum;(

short data;
Boolean CANCEL;

CANCEL = FALSE;

mousemenuO;

while (!CANCEL)

if (qtesto)

switch(qread(&data))

/* Cancel to depart loop */

case REDRAW: reshapeviewportO;
break;

case LEFTMOUSE: CANCEL = TRUE;
break;

81

case RIGHTMOUSE: mousemenuo;
break;

case MIDDLEMOUSE: processhelp(menunum);
break;

default: break;}
}

1/* end while */
system("clear n");

}/* end help-menu */

** * * ****** ** * ** ** * *** ** ** * ** * ** ** ** ***** **** * ** * ** ** ** ** **** ** * ** *** ***

PROCESSHELP

Allows the creation and display of specific help for current
menu

processhelp(menunum)
int menunum;{
color(BLUE);
clear);
color(WHrT);

switch(menunum)
(

case 1: mainhelpo;
break;

case 2: nethelpo;
break;

case 3: healthhelpo;
break;

case 4: maintspthelpo;
break;

case 5: faulthelpo;
break;

82

case 6: pwrflowhelpo;
break;

/* end processhelp *

83

MAINHELP.C

#include <strings.h>
#include "stdio.h"
#include "gl.h"
#include "pwrsys.h"
#define NUMHELP1 3

mainhelp0{

static str8O helpmain[NUMHELPI] =I
"Hi, I'm main help.",
ft ,t

"Use RIGHT MOUSE to return to mouse help menu."

intj;
float incr,

for(= 0; j < NUMHELP; j =j + 1)

incr = 6.0 - (0.2 * (float)j);
cmov2(2.0, incr);
charstr(helpmainU]);}

swapbufferso;

}/* end mainhelp */

84

NETHELP.C

#include <strings.h>
#include "stdio.h"
#include "gl.h"
#include "pwrsys.h"
#defime NUMHELP2 3

nethelp0{

static str80 helpnet[NUMHELP2] =I
"Hi, I'm net help.",
It t

"Use RIGHT MOUSE to return to mouse help menu."1;

intj;
float incr,

for(j = 0; j < NUMHELP2; j =j + 1)I
incr = 6.0 - (0.2 * (float)j);
cmov2(2.0, incr);
charstr(helpnet[j]);I

swapbufferso;

}/* end nethelp */

85

HEALTHHELP.C

#include <strings.h>
#include "stdio.h"
#include "gl.h"
#include "pwrsys.h"
#define NUMHELP3 3

healthhelp0{

static str8O helphealth[NUMHELP3] =I
"Hi, I'm health help.",

"Use RIGHT MOUSE to return to mouse help menu."1;

intj;
float incr,

for(j = 0; j < NUMHELP3; j = j + 1){
incr = 6.0 - (0.2 * (float)j);
cmov2(2.0, incr);
charstr(helphealth[j]);}

swapbufferso;

}/* end healthhelp */

86

MAINTSPTHELP.C

#include <strings.h>
#include "stdio.h"
#include "gl.h"
#include "pwrsys.h"
#define NUMHELP4 3

mntspthelp()

static str8O helpmaintsptINUMHELP4]

"Hi, I'm maintspt help.",

"Use RIGHT MOUSE to return to mouse help menu."

int j;
float incr,

foroj = 0; j < NUMHELP4; j = j + 1)

iner = 6.0 - (0.2 * (float)j);
cmov2(2.0, incr);
charstr(helpmaintsptUjI);

swapbufferso;

/* end maintspthelp ~

87

FAULTHELP.C

#include <strings.h>
#include "stdio.h"
#include "gl.h"
#include "pwrsys.h"
#define NUMB-ELP5 3

faulthelp()

static str8O helpfault7NUMHELP5I

"Hi, I'm fault help.",

"Use RIGHT MOUSE to return to mouse help menu."

int j;
float incr,

foro =0; j <NUMHELP5; j =j+ 1)

incr = 6.0 - (0.2 * (float)j);
cmov2(2.0, incr);
charstr(helpfaultUl);

swapbufferso;

1/* end faulthelp *

88

PWRFLOWHELP.C

#include <strings.h>
#include "stdio.h"
*include "gl.h"
*include "pwrsys.h"
#define NUMHELP6 3

pwrflowhelp()

static str8O helppwrflow[NUMHELP6I

"Hi, I'm pwrflow help.",

"Use RIGHT MOUSE to return to mouse help menu."

int j;
float incr,

foroj =0; j < NUMHELP6; j =j+ 1)

incr = 6.0 - (0.2 * (float)j);
cmov2(2.0, incr);
charstr(helppwrflowU]);

swapbufferso;

1/* end pwrflowhelp ~

89

MOUSEMENHELP.C

#include <strings.h>
#include "stdio.h"
#include "gl.h"
#include "pwrsys.h"
#define NUMARRAY2 23

mousemenuo

static str80 mousemen[NUMARRAY2] =
I
', / /",

,, / /",
,, / /",

"t I I"
"t I I"
"t I I"',I I

IF I " ,

"1I I II r' ,

"I I LEFIOMOUSE I IMIDDLEMOUSE I I RIGHTMOUSE I I",
"011 1 I f",
"I 1 TERMINATE I I GO BACK I I SELECT I I",
"I I ACTIVITY I I TO MOUSE I I MENU I I","I I I I MENU WHEN I I OPTION I I",
I1 I (CANCEL) I I IN HELP I I I I",

I I I MENU I I I II,
I---II,

It
1 It

t ,lot

"Use MIDDLE MOUSE to go to help for this menu panel.",
"Use LEFT MOUSE to cancel back to previous menu."1;

intj;
float incr,

color(BLUE);
clearo;
color(WHITE);

90

for(j =0; j <NUMARRAY2; j j+ 1)

incr = 6.0 - (0.2 * (float)j);
cniov2(2.0, incr);
charstr(mousemenUl);

swapbufferso;

/* end mousemenu ~

91

NEWPWRSYS.C

#include "pwrsys.h"
**** *** ** ******* ***** ******** **** * *** * ** *** * *** * ** ** ** * *** ** * **** * ***

MAINO

This is the primary control module for the entire menu interface. It
is mouse-oriented and utilizes the IRIS window manager, MEX.

LEFT MOUSE (MOUSE3) -> Pop up a Menu (CANCEL)
RIGHT MOUSE (MOUSE1) -> Select a Menu

maino{

* *** ** * ** * *** * ** ** *** ** * ***** * *** ** ** * *** * *** * ***** *** * ** * *** * *** ** ***

/* menu item names */

short data;
static int pupval = 1;
int level l, level2, level3, level4a, level4b, level4c, leveld;
int compnum;

/* initialize the IRIS system */

initializeO;

/* orthographic projection 2D for world coordinate system */

ortho2(0.0, 9.5, 0.0, 7.0);

/* set mouse limits */

92

setvaluator(MOUSEX, INITX VALUE, 0, XMAXSCREEN);
setvaluator(MOUSEY, I-aTY VALUE, 0, YMAXSCREEN);

/* define two blinking colors -
one to flash between black and yellow for predicted faults
one to flash between black and red for actual faults *

mapcolor(FLASHBLACKY, 0, 0, 0);
mapcolor(FLASHBLACKR, 0, 0, 0);

blink(32, FLASHBLACKR, 255, 0, 0);
blink(32, FLASHBLACKY, 255, 255, 0);

/* build the system diagram ~

make~dagrang);

/* build pop-up menus ~

level4c = defpup("POWER FLOW %t I Help %x13 I Charge Battery %x14 r\
Discharge Battery %x15 I Use Voltaics %x16 t\
Use Voltaics & Batteries %x17");

level4b = defpup("FAUL.T MANAGEMENT %t I Help %xl 1 Nf
Fault Detection %xl2");

level4a = defpup("MAINTENANCE SUPPORT %t I Help %x9 I
Status Prediction %xlO");

level3 = defpup("HEALTH MANAGEMENT %t I Help %x5 f\
Maintenance Support %x6 %m I Fault Management %x7 %m r\
Power Flow %x8 %m", level4a, level4b, level4c);

level2 = defpup("POWER NETWORK CONTROL %t I Help %x3 N\
Health Management %x4 %m", level3);

levell = defpup("PMAD %t I Help %xl I Power Network Control %x2 %m r\
Status Prediction %xlO I Fault Detection %x12 N\
Power Flow %x8 %m I EXIT %x99", level.2, level4c);

leveld = defpup("COMPONENT STATUS %t I Help %x5 N\
Fault Detection %x12 I Status Prediction %xlO");

color(WHITE);
clew)O;
call-diagramO;
swapbufferso;

93

machinepath(7, "nps-syml ", 1026, 1027, Itserver",
&remotemachine);

while(pupval !=EXIT)

if (qtesto)

switch(qread(&data))

case REDRAW: reshapeviewporto;
break;

case RIGHTMOUSE: if (data =1

comnpnum = componenthito;

if(compnumn >= EPSCNTL
&& compnum <= SW22PDCA2NODE)

pupval = dopup(leveld);
else

pupval = dopupoevel I);

)processmenuhit(pupval, compnum);

break;

default: break;

color(WHIE);
clearo;
calldiagramo;
swapbufferso;

I I" end while *f

conimint = 999;
write-integer(&remotemachine, &cornmint);
deletemachinepath(&reniotemachine);

blink(0, FLASHBLACKR, 255, 0, 0);
blink(0, FLASHBLACKY, 255, 255, 0);
ginito;
textinito;
gexito;

system("gcleaiko");

/* end main *

94

PROCESSMENUIUIT(PUPVAL)

proc-essmenuhit(pupval, num)
it pupval;

it menunum;
char help-fle[80]; /* help file for each menu level *

switch(pupval)

case -1:
case 2:
case 4:
case 6:
case 7:
case 8:
case 99: break;

case 1: menunum = 1;
helpjiienu(menunum);
break;

case 3: mnenunum = 2;
help~menu(menunum);
break;

case 5: menunum = 3;
helpmenu(menunum);
break;

case 9: menunum = 4;
help-menu(menunum);
break;

case 10: statusprediction(num);
break;

case 11: rnenunum = 5;
help_-menu(menunum);
break;

case 12: faultisolation(num);
break;

case 13: menununi = 6;

95

help-menu(menunum);
break;

case 14: charge-batto;
break;

case 15: dischargeibatto;
break;

case 16: use-pv-onlyQ;
break;

case 17: use-pvj batto;
break;

default: break;

/* end processmenuhit *

INITIALIZE()

This subroutine executes several routines that set up the
graphics environment for this program.

initializeo

keepaspect(XMAXSCREEN + 1, YMAXSCREEN + 1);
prefposition(?VWRWINX 1, PWRWINX2, PWRWINY I, PWRWINY2);
winopen("power");
wintitle("SPACE STATION POWER MANAGEMENT & DISTRIBUTION SYSTEM

(PMAD)");
winattacho;
doublebuffero;
gconfigo;
qdevice(REDRAW);
qdevice(RIGHTMOUSE);
qdevice(MIDDLEMOUSE);
qdevice(LEFTMOUSE);

1* end initialize *

96

COMPONENTHIT.C

#include "pwrsys.h"

COMPONENTHIT

The following functions determines if the current mouse location
corresponds to a component item hit.

The assumption is made that the mouse moves in a world space
that is the same as the screen space.

int componenthit0

int i; /* temp loop counter */

int pos; /* location of hit menu item */

float x,y; /* location of valuator */

int inside recto; /* function that returns true if x,y is inside
the defined box */

int inside circ0; /* function that returns true if x,y is inside
the defined circle */

static float comppos[49][5] =
{ 0.4, 5.4, 8.0, 5.8, EPSCNTL,

0.4, 4.4, 1.4, 4.8, PVEQUIP,
2.5, 4.4, 2.9, 4.8, VOLTREG,
2.0, 3.5, 3.4, 3.8, BATTERIES,
3.2, 4.4, 4.2, 4.8, DCACINVERT,
6.4, 2.6, 6.8, 5.0, MAINDIST,
7.4, 4.2, 8.0, 4.8, PDCA1,
7.4, 3.0, 8.0, 3.6, PDCA2,
8.4, 5.4, 9.2, 5.8, SESWCNTL,
8.6, 4.6, 9.0, 5.0, SWI_1,
8.6, 4.0, 9.0, 4.4, SWI_2,
8.6, 3.4, 9.0, 3.8, SW2_1,
8.6, 2.8, 9.0, 3.2, SW2_2,

97

0.8, 5.3, 1.0, 5.4, EPSPVNODE,
1.9, 5.3, 2.1, 5.4, EPSBJTNODE,
3.6, 5.3, 3.8, 5.4, EPSINVERTNODE,
6.5, 5.3, 67, 5.4, EPSMDBNODE,
7.6, 5.3, 7.8, 5.4, EPSPDCAINODE,
0.8, 4.S, 1.0, 4.9, PVEQUIPEPSNODE,
1.4, 4.5, 1.5, 4.7, PVEQUIPBJTNODE,
1.7, 4.5, 1.8, 4.7, BJTPVEQUIPNODE,
1.9, 4.8, 2.1, 4.9, BJTEPSNODE,
2.2, 4.5, 2.3, 4.7, BJTVOLTREGNODE,
2.4, 4.5, 2.5, 4.7, VOLTREGBJTNODE,
2.6, 4.3, 2.8, 4.4, VOLTREGBA'ITNODE,
2.9, 4.5, 3.0, 4.7, VOLTREGINVERTNODE,
2.6, 3.8, 2.8, 3.9, BATTVOLTREGNODE,
3.1, 4.5, 3.2, 4.7, INVERTVOLTREGNODE,
3.6, 4.8, 3.8, 4.9, INVERTEPSNODE,
4.2, 4.5, 4.3, 4.7, INVERTAJTNODE,
5.3, 3.8, 5.4, 4.0, AJTINVERTNODE,
5.8, 3.8, 5.9, 4.0, AJTMDBNODE,
6.3, 3.8, 6.4, 4.0, MDBAJTNODE,
6.5, 5.0, 6.7, 5.1, MDBEPSNODE,
6.8, 4.4, 6.9, 4.6, MDBPDCA1NODE,
6.8, 3.2, 6.9, 3.4, MDBPDCA2NODE,
7.3, 4.4, 7.4, 4.6, PDCA1MDBNODE,
7.6, 4.8, 7.8, 4.9, PDCA1EPSNODE,
8.0, 4.6, 8.1, 4.8, PDCA1SW11NODE,
8.0, 4.2, 8.1, 4.4, PDCA1SWl2NODE,
7.3, 3.2, 7.4, 3.4, PDCA2MDBNODE,
8.0, 3.4, 8.1, 3.6, PDCA2SW2INODE,
8.0, 3.0, 8.1, 3.2, PDCA2SW22NODE,
8.7, 5.3, 8.9, 5.4, SESWCNTLSW11NODE.
8.5, 4.6, 8.6, 4.8, SW 1PDCAINODE,
8.7, 5.0, 8.9, 5.1, SW11SESWCNTLNODE,
8.5, 4.2, 8.6, 4.4, SW12PDCA1NODE,
8.5, 3.4, 8.6, 3.6, SW21PDCA2NODE,
8.5, 3.0, 8.6, 3.2, SW22PDCA2NODE

float Sx, Sy;

Sx = getvaluator(MOUSEX);
Sy = getvaluator(MOUSEY);

/* Compute world coordinates of mouse...*/

x = (((9.5 - 0.0)/(PWRWINX2 - PWRWINX 1)) * (Sx - PWRWINX 1)) + 0.0;
y = (((7.0 - 0.0)/(PWRWINY2 - PWRWINY1)) * (Sy - PWRWINY1)) + 0.0;

98

/* we assume that the mouse coordinates returned match world coords*/

/* say that we have not yet found the hit */

pos = -1;

for(i = 0; i <= 48; i = i+1)I
if(insiderect(x,y,comppos[i] [01,comppos[i] [1i],

comppos[i][2],comppos[i][3]))I
/* this is the guy we have selected...

set a flag indicating that this selection
is the current component item */

pos = comppos[i][41;
break;

}

if(insidescirc(x,y,2.0,4.6,0.2))
pos = BETAJ;

else
if(insidecirc(x,y,5.6,3.9,0.2))
pos = ALPHAJ;

return(pos);

}/* end componenthit */

INSIDERECT

this function determines if (x,y) is inside the box defined by
the coordinates (xmin,ymin)-(xmax,ymax)

int inside_rect(x,y,xmin,ymin,xmax,ymax)
float x,y; /* location of the cursor */
float xmin,ymin,xmax,ymax; /* bounding box to check if cursor

is inside */I
if(((x > xmin) && (x < xmax)) && ((y > ymin) && (y < ymax)))

return(TRUE);
else

99

retum(FALSE);)

INSIDECIRC

this function determines if (x,y) is inside the circle defined
by the center coordinates (xcent, ycent) and the radius

int inside circ(x,y,xcent,ycentradius)
float x,y; /* location of the cursor */
float xcent,ycent,radius; /* bounding box to check if cursor

is inside */I
float D;

D = sqrt(((x - xcent) * (x - xcent)) + ((y - ycent) * (y - ycent)));
if(D < radius)

return(TRUE);
else

return(FALSE);

100

COMPMENU.C

COMPMENU

Displays the menu that provides the choice of items that are
predicted to fail or that have actually failed

#include "pwrsys.h"
#define NUMARRAY 120

compmenu(type)
int type;(

static str80 compmenu[NUMARRAY1] -

_______ COMPONENTS MENU_ ___

EPS CONTROL BOARD - 0 SWITCH 2-1 - 18",
EPS CONNECTION I I SWITCH 2-2 - 19",
EPS CONNECTION 2 2 CONNECTION 0 - 20",
EPS CONNECTION 3 3 CONNECTION la - 21",
EPS CONNECTION 4 4 CONNECTION I b - 22",
EPS CONNECTION 5 5 CONNECTION 2 - 23",
PHOTOVOLTAIC EQUIP - 6 CONNECTION 3 - 24",
BETA JOINT - 7 CONNECTION 4 - 25",
VOLTAGE REGULATOR - 8 CONNECTION 5 - 26",
BATTERIES - 9 CONNECTION 6 - 27",
DC-AC-INVERTER - 10 CONNECTION 7a - 28",
ALPHA JOINT - 11 CONNECTION 7b - 29",
MAIN DISTRIB BOARD - 12 CONNECTION 8a - 20",
PWRDISTCNTL ASSEMI - 13 CONNECTION 8b - 31",
PWRDISTCNTL ASSEM2 - 14 CONNECTION 8c - 32",
SYS ELEM SW CNTL - 15 CONNECTION 8d - 33",
SWITCH 1-1 - 16 SYS ELEM CONN - 34",
SWITCH 1-2 - 17"

intj;
float incr,
char chr,

101

for(j =0;j < NUMARRAY1; j =j + 1){
incr = 6.0 - (0.2 * (float)j);
cmov2(2.0, incr);
charstr(compmenu U]);

}

if (type = 0)

j = NUMARRAYl + 2;
incr = 6.0 - (0.2 * (float)j);
cmov2(2.5, incr);
charstr("Enter the numbers corresponding to the items");
j=j+l;
incr = 6.0 - (0.2 * (float)j);
cmov2(2.5, incr);
charstr("that have failed, separated by commas.");

}

else

j = NUMARRAYI + 2;
incr = 6.0 - (0.2 * (float)j);
cmov2(2.5, incr);
charstr("Enter the numbers corresponding to the items that");
j =j + 1;
incr = 6.0 - (0.2 * (float)j);
cmov2(2.5, incr);
charstr("are predicted to fail, separated by commas.");

}/* end compmenu *1

102

DIAGRAM.C

#include "pwrsys.h"

MAKEDIAGRAM

Creates the thirty five different objects in the system
diagram.

make-diagram()

for(i = EPSCNTL; i <= SESWCN; i =i + 1)

powerllil.objname = genobjo;
makeobj(power[iI.objnanie);
power[i].tagname = gentago;
maketag(powerfiJ.tagname);

switch(i)

case EPSCNTL: color(BLACK);
rect(0.4, 5.4, 8.0, 5.8);

cmov2(2.3, 5.5);
charstr("ELECTRICAL POWER SYSTEM)
charstr("MANAGEMENT AND CONTROL");
break;

/* Photovoltaic equipment - the solar power source *

case PVEQUIP: color(BLACK);
rect(0.4, 4.4, 1.4, 4.8);

cmov2(0.8, 4.65);
charstrQ'PV");
cmov2(O.5, 4.5);

charstr("EQUIPMENT");
break;

103

/* Betajoint - secondary rotation joint for solar panels */

case BETAJ: color(BLACK);
circ(2.0, 4.6, 0.2);
cmov2(1.9, 4.55);
charstr("BJT");
break;

/* Voltage Regulator between PVEQUIP and BATTERIES *1

case VOLTREG: color(BLACK);
rect(2.5, 4.4, 2.9, 4.8);

cmov2(2.55, 4.65);
charstr("VOLT");
cmov2(2.55, 4.5);
charstr("REG");
break;

case BATTERIES: color(BLACK);
rect(2.0, 3.5, 3.4, 3.8);

cmov2(2.3, 3.6);
charstr("BATTERIES");
break;

/* Converter of DC power to AC power */

case DC_ACINVERT: color(BLACK);
rect(3.2, 4.4, 4.2, 4.8);
cmov2(3.45, 4.65);

charstr("DC-AC");
cmov2(3.3, 4.5);

charstr("INVERTERS");
break;

/* Alphajoint - primary rotation joint for solar panels */

case ALPHAJ: color(BLACK);
circ(5.6, 3.9, 0.2);
cmov2(5.5, 3.85);

charstr("AJT");
break;

/* Main Distribution Board - distributes power throughout the rest
of the system */

case MAINDIST: color(BLACK);
rect(6.4, 2.6, 6.8, 5.0);

cmov2(6.55,4.9);
charstr("M");
cmov2(6.55,4.75);

charstr("A");

104

cmov2(6.55,4.6);
charstr("I");
cmov2(6.55,4.45);
charstr("N");
cmov2(6.55 ,4.25);

charstr("D");
cmov2(6.55,4. 10);
charstr('T');
cmov2(6.55 ,3.95);
charstr("S ");
cmov2(6.55,3.80);
charstr("T");
cmov2(6.55,3.65);
charstr("R");
cmov2(6.55 ,3.50);
charstr("I");
cmov2(6.55,3.35);
charstr("B ");
cmov2(6.55,3.20);
charstr("U");
cmov2(6.55,3.05);
charstr("T");
cmov2(6.55,2.90);
charstrC"I");
cmov2(6.55,2.75);
charstr("O");
cmov2(6.55,2.6);
charstr("N");
break;

/* Power Distribution and Control Assemblies 1 and 2 *

case PDCA1I: color(BLACK);
rect(7.4, 4.2, 8.0, 4.8);
cmov2(7.45, 4.5);

charstr("PDCA I");
break;

case PDCA2: color(BLACK);
rect(7.4, 3.0, 8.0, 3.6);

cmov2(7.45, 3.3);
charstr("PDCA 2");
break;

/* System Element Switch Control *

case SESWCNTL: color(BLACK);
rect(8.4, 5.4, 9.2, 5.8);

cmov2(8.45, 5.65);
charstr("SYS ELEM");
cmov2(8.5, 5.5);

105

charstr("SW CNTL");
break;

/* The four switches coming off the PDCAs *

case SWi_: color(BLACK);
rect(8.6, 4.6,9.0, 5.0);

cmov2(8.65, 4.7);
charstr("SW11 H);

break;

case SWI_2: color(BLACK);
rect(8.6, 4.0, 9.0, 4.4);

cmov2(8.65, 4.2);
charstr("SW12");
break;

case SW2_1: zolor(BLACK);
rect(8.6, 3.4, 9.0, 3.8);

cmov2(8.65, 3.5);
charstr("SW21)

break;

case SW2_2: color(BLACK);
rect(8.6, 2.8, 9.0, 3.2);

cmov2(8.65, 3.0);
charstr("SW22");
break;

case EPSPVNODE: color(BLUE);
rectf(0.8,5.3, 1.0,5.4);

break;

case EPSBJTNODE: color(BLUE);
rectf(1 .9,5.3,2.1,5.4);

break;

case EPSLNERTNODE: color(BLUE);
rectf(3.6,5.3,3.8,5.4);

break;

case EPSMDBNODE: color(BLUE);
rectf(6.5,5.3,6.7,5.4);

break;

case EPSPDCA1NODE: color(BLUE);
rectf(7.6,5.3,7.8,5.4);

break;

106

case PVEQIJIPEPSNODE: color(BLUE);
rectf(O.8,4.8, 1.0,4.9);

break;

case PVEQUIPBJTNODE: color(BLUE);
rectf(1.4,4.5,1.5,4.7);

break;

case BJTPVEQUIPNODE: color(BLUE);
rectf(1 .7,4.5,1.8,4.7);

break;

case BJTEPSNODE: color(BLUE);
rectf(1 .9,4.8,2.1,4.9);

break;

case BJTVOLTREGNODE: color(BLUE);
rectf(2.2,4.5,2.3,4.7);

break;

case VOLTREGBJTNODE: color(BLUE);
rectf(2.4,4.5,2.5,4.7);

break;

case VOLTREGBATINODE: color(BLUE);
rectf(2.6,4.3,2.8,4.4);

break;

case VOLTREG1NVERTNODE: color(BLUE);
rectf(2.9,4.5,3.0,4.7);

break;

case BAiT VOLTREGNODE: color(BLIJE);
rectf(2.6,3.8,2.8,3.9);

break;

case INVERTVOLTREGNODE: color(BLUE);
rectf(3. 1,4.5,3.2,4.7);

break;

case INVERTEPSNODE: color(BLUE);
rectf(3.6,4.8,3.8,4.9);

break;

case INVERTAJTNODE: color(BLUE);
rectf(4.2,4.5,4.3,4.7);

break;

case MJTINVERTNODE: color(BLUE);
rectf(5.3,3.8,5.4,4.0);

107

case AJTMDBNODE: color(BLUE);
rectf(5.8,3.8,5.9,4.0);

break;

case MDBAJTNQDE: color(BLUE);
rectf(6.3,3. 8,6.4,4.0);

break;

case MDBEPSNODE: color(BLUE);
rectf(6.5,5.O,6.7,5. 1);

break;

case MD)BPDCA1NODE: color(BLUE);
rectf(6.8,4.4,6.9,4.6);

break;

case MDBPDCA2NODE: color(BLUE);
rectf(6.8,3.2,6.9,3.4);

break;

case PDCA1IMDBNODE: color(BLUE);
rectf(7.3,4.4,7.4,4.6);

break;

case PDCA1EPSNODE: color(BLUE);
rectf(7.6,4.8,7.8,4.9);

break;

case PDCAl1SWI INODE: color(BLUE);
rectf(8.0,4.6,8. 1,4.8);

break;

case PDCA1ISW1I2NODE: color(BLUE);
rectf(8.0,4.2,8. 1,4.4);

break;

case PDCA2MDBNODE: color(BLUE);
rectf(7.3,3.2,7.4,3.4);

break;

case PDCA2SW21NODE: color(BLUE);
rectf(8.0,3.4,8. 1,3.6);

break;

case PDCA2SW22NODE: color(BLUE);
rectf(8.0,3.O,8. 1,3.2);

break;

case SESWCNTLSW11INODE: color(BLUE);
rectf(8.7,5.3,8.9,5.4);

108

break;

case SWI IPDCA1NODE: color(BLUE);
recdf(8.5,4.6,8.6,4.8);

break;

case SW11SESWCNTLNODE: color(BLUE);
rectf(8.7,5.0,8.9,5.1);

break;

case SW12PDCA1NODE: color(BLUE);
rectf(8.5,4.2,8.6,4.4);

break;

case SW21PDCA2NODE: color(BLUE);
rectf(8.5,3.4,8.6,3.6);

break;

case SW22PDCA2NODE: color(BLUE);
rectf(8.5,3.0,8.6,3.2);

break;

/* The five connections from EPSCNTL to other components */

case EPSCNI: color(BLACK);
rectf(0.85, 4.9, 0.95, 5.3);

break;

case EPSCN2: color(BLACK);
rectf(1.95, 4.9, 2.05, 5.3);

break;

case EPSCN3: color(BLACK);
rectf(3.65, 4.9, 3.75, 5.3);

break;

case EPSCN4: color(BLACK);
rectf(6.55, 5.1, 6.65, 5.3);

break;

case EPSCN5: color(BLACK);
rectf(7.65, 4.9, 7.75, 5.3);

break;

/* CNO through CN8 - Connections between components that will show
power flow through the system *1

case CNO: color(BLACK);
rectf(1.5, 4.55, 1.7, 4.65);

break;

109

case CNIa: color(BLACK);
rectf(2.3, 4.55, 2.4, 4.65);

break;

case CN 1 b: color(BLACK);
rectf(2.65, 3.9, 2.75, 4.3);

break;

case CN2: color(BLACK);
rectf(3.0, 4.55, 3.1, 4.65);

break;

case CN3: color(BLACK);
rectf(4.3, 4.55, 4.8, 4.65);

break;

case CN4: color(BLACK);
rectf(4.7, 3.85, 4.8, 4.55);

break;

case CN5: color(BLACK);
rectf(4.8, 3.85, 5.3, 3.95);

break;

case CN6: color(BLACK);
rectf(5.9, 3.85, 6.3, 3.95);

break;

case CN7a: color(BLACK);
rectf(6.9, 4.45, 7.3, 4.55);

break;

case CN7b: color(BLACK);
rectf(6.9, 3.25, 7.3, 3.35);

break;

case CN8a: color(BLACK);
rectf(8.1, 4.65, 8.5, 4.75);

break;

case CN8b: color(BLACK);
rectf(8.1, 4.25, 8.5, 4.35);

break;

case CN8c: color(BLACK);
rectf(8.1, 3.45, 8.5, 3.55);

break;

case CN8d: color(BLACK);
rectf(8.1, 3.05, 8.5, 3.15);

break;

110

/* System Element Switch Connections *

case SESWCN: color(BLACK);
rectf(8.75, 5.1, 8.85, 5.3);

break;

default: break;

11* end switch *

closeobjO;
S/* end for *

}/* end rnakediagram ~

CLEANUPFLOW and CLEANUPDIAGRAM

Procedure that changes all objects in system diagram to
original color.

cleanup jlow()

int i;

for (i = CNO; i <= CN8d; i = i + 1)

editobj (power[iJ.objname);
objreplace(power[iI .tagname);
color(BLACK);

closeobjO;

)/* end cleanup-flow *

cleanup jiiagrani(

int i;

for (i = EPSCNTL; i <-- SW2_2; i =i + 1)

editobj(powerf ii.obj namie);
objreplace(power[i] .tagnaxe);
color(BLACK);

closeobjO;

for (i = EPSPVNODE; i <= SW22PDCA2NODE; i =i + 1)

editobj (power[i] .obj name);
objreplace(power[i].tagname);
color(BLUE);

closeobjo;

1/* end cleanup-diagrain *

CALL-DIAGRAM

Procedure that calls all the objects in the system diagram.

call-diagrarn(

int ;

for (i=O0; i <= 70; i= i+ 1)
callobj(power[i].objname);

1/* end call-diagranim

112

PWRFLOW.C

#include "pwrsys.h"

CHARGEBATTERY

Show the flow of power from the photovoltaic equipment to the
battery.

chargejbatt)

int flashpoint, i, num, min, max:

Boolean CANCEL;
short data;

min = CNO;
max =CN1b;

i= 0;
num = min;
flashpoint = 0;

CANCEL = FALSE;

while(!CANCEL)
I

1 i + 1;

/* Pause briefly, then move "electricity" flash */

sleep(l);

i =0;

113

switch (flashpoint)

case 0: editobj(power~num].objname);
objreplace(power[num].tagname);
color(RED);

closeobjo;

editobj(power[maxl.objname);
objreplace(powertmaxl.tagname);
color(B LACK);

closeobjo;
break;

case 1:
case 2: editobj(power[num].objname);

objreplace(power(numl.tagnaffne);
color(RED);

closeobjo;

editobj(powerj~num - IJ.objnarne);
obireplace(power~num - I I.tagnarne);
color(BLACK);

closeobjo;
break,

default: break;

) I" end switch *

call-diagrmo;
swapbufferso;

flashpoint = (flashpoint + 1) % 3;
if (num ==max)

num = min;
else

num =num + 1;

1/* end if *

if (qtesto)

switch(qread(&data))

case REDRAW: reshapeviewport();
break;

114

case LEFTMOUSE: CANCEL = TRUE;

break;

default: break;

}

}/* end while */

color(WITE);
clearo;
cleanupflowo;
swapbuffersO;

/* end charge-batt /

DISCHARGEBATtERY

Show the flow of power from the batteries through the rest of
the system.

discharge-batt0

int flashpoint, i, j, num, min, max;

Boolean CANCEL;
short data;

min =CN 1 b;
max - CN8d;
i= 0;
j= 0;

num = min;
flashpoint = 0;

CANCEL = FALSE;

115

while(!CANCEL)

1 =i1+ 1;

sleep(l);

switch(flashpoint)

case 0: editobj(power[num].objnanie);
objreplace(power[num] .tagname);

Color(RED);closeobjo;

for (j = num + 8; j <= num + 11; j = j + 1)

editobj(powerjj].objnanie);
objreplace(poweroI.tagnare);
color(BLACK);

closeobjo;

break;

case 1:
case 2:
case 3.
case 4:
case 5: editobj(powernuml~objname);

objreplace(power~num] .tagname);
color(RED);

closeobjo;

editobj(powerlnum - 1].objname);
objreplace(powerlnum - 1].tagname);
color(BLACK);

closeobjo;
break;

case 6: for j= num j <=num +1; j =j +1)

editobj(powerU] .objname);
objreplace(powerUjI.tagname);
color(RED);

closeobjo;

116

editobj(power[num - II.objname);
objreplace(power[num - I I.tagname);
color(BLACK);

closeobjO;
num = num + 1;
break;

case 7: for = num; j<= numn+3; j =j +1)

editobj(powero].objnaxne);
objreplace(powero].tagnamne);
color(RED);

closeobjo;

for 0 = num - 2 ; j <= nurn- 1; j = j + 1)

editobj (powerUII.obj name);
objreplace(powerUj].tagname);
color(BLACK);

closeobjo;

num = num + 3;
break;

default: break;

I 1" end switch *

caL-diagramo;
swapbufferso;

flashpoint =(flashpoint + 1) % 8;
if (num == max)

num = min;
else

num =num + 1;

)/* end if *

if (qtesto)

switch(qread(&data))

case REDRAW: reshapeviewportO;
break,

117

case LEFTMOUSE: CANCEL = TRUE;
break;

default: break;

I I" end while *

color(WHITE);
clearo;
cleanup-flowo;
swapbufferso;

1/* end discharge-batt *

118

USEPVONLY

Show the flow of power from the photovoltaic equipment
throughout the rest of the system.

use-pv-only0{
int flashpoint, i, j, num, min, max;

Boolean CANCEL;
short data;

min = CNO;
max = CN8d;
i= 0;
j= 0;

num = min;
flashpoint = 0;

CANCEL = FALSE;

while(!CANCEL)
{

1=I+ 1;

sleep(l);

i = 0;

switch(flashpoint)I
case 0: editobj(power[numl.objname);

objreplace(powernum].tagname);
color(RED);

closeobjo;

119

for (j= num + 10; j<= num + 13;j = j+ 1)

editobj(powerojI.objname);
objreplace(powerUjl.tagname);
color(BLACK);

closeobjo;

break;

case 1:
case 3:
case 4:
case 5:
case 6: editobj(power[numl.objname);

objreplace(power[num].tagname);
color(RED);

closeobjo;

editobj(power~num - 1].objname);
objreplace(power[num - 1].tagname);
color(BLACK);

closeobjo;
if (flashpoint = 1)

num =num + 1;
break;

case 2: editobj(power[nuni].objname);
objreplace(power[num].tagname-);
color(RED);

closeobjo;
callobj(power[nunil.objname);

editobj(power[num - 2].objname);
objreplace(power[num - 21.tagnazne);
color(BLACK);

closeobjo;
callobj(power[num - 21.objnarne);
break;

case 7: for j= numj <= num + 1; j =j+ 1)

editobj(powerUjl.objnanie);
objreplace(powerUl.tagname);
color(RED);

closeobjo;
callobj(powerfj].objname);

120

editobj(power[num - 1].objname);
objreplace(power[num - I].tagname);
color(BLACK);

closeobjo;
callobj(powerfnum - 1].objnanie);
num =num + 1;
break

121

case 8: for = num; j<= num +3; j =j +1)

editobj(powerU]I.objname);
objreplace(powerUjI.tagname);
color(RED);

closeobjo;
callobj(powerj.objnaxne);

for = num -2; j<= num -1; j=j +1)

editobj(powerU].objnaxne);
objreplace(powerU]I.tagnaxne);
color(BLACK);

closeobjo;
callobi(powerUl .obj name);

num = num + 3;
break;

default: break;

I/*" end switch *

calLd4iagranio;
swapbufferso;

flashpoint = (flashpoint + 1) % 9;
if (num == max)

num = min;
else

num = num + 1;

) P end if *

if (qtesto)

switch(qread(&data))

case REDRAW: reshapeviewportO;
break;

case LEETMOUSE: CANCEL= TRUE;
break;

default: break;

I/* end while *

122

color(WHITE);
clearo;
cleanup-flowO;
swapbufferso;

1/* end use-pv-only ~

USEPVANDBATlERIES

Show the flow of power from the photovoltaic equipment and the
batteries throughout the rest of the system.

use-pv-batt()

int flashpoint, i, j, num, nun, max;

Boolean CANCEL;
short data;

min C NO;
max =CN8d;

m= 0;
j =0;

num = min;
flashpoint = 0;

CANCEL = FALSE;

while(!CANCEL)

1 1 + 1;

sleep(l);

i = 0;

switch(flashpoint)

case 0: editobj(power~numl.objname);
objreplace(power[num].tagname);
color(RED);

closeobjo;

123

callobj(powertnum].objnane);

forj Q=num + 10;j <=num + 13;j =j + 1)

editobj (power U] .obj name);
objreplace(powerU]j.tagnanie);
color(BLACK);

closeobjO;
callobj(powerU]I.objnanie);

break-,

case 3:
case 4:
case 5:
case 6: editobj(power[num].objnarne);

objreplace(power(num].tagname);
color(RED);

closeobjo;
callobj(power[num].objname);

editobj(powerllnum - 1I.objnanie);
objreplace(power[num - I I.tagname);
color(BLACK);

closeobjo;
callobj(power[num - 1I.objname);
break,

case 2: editobj(power[num].objname);
objreplace(power[num].tagnanie);
color(RED);

closeobjo;
callobj(powertnuml.objname);

for 0 = num -2;j <z=num - 1; j =j + 1)

editobj(powerUjI.objname);
objreplace(powerUjl.tagnanie);
color(BLACK);

closeobjo;
callobj(power[nurn - 21.objname);

break,

124

case 1:
case 7: for j = num; j <= num + 1; j = j + 1)

editobj(powerU].objname);
objreplace(powerj] .tagnamfe);
color(RED);

closeobjO;
callobj(powerUjJ.objnanie);

editobj(power[num - 1I.objname);
objreplace(power~num - Ill.tagname);
color(BLACK);

closeobjo;
callobj(power[num - II.objnanie);
num = num + 1;
break;

case 8: for (j = num; j <= num + 3; j = j + 1)
I

editobj(powerUjI.objnanie);
objreplace(powerUj].tagname);
color(RED);

closeobjo;
callobj(powerUl.objname);

for (j = num - 2; j <= num - 1; j =j + 1)
I

editobj(powerj] .obj name);
objreplace(powerU].tagnaxne);
color(BLACK);

closeobjo;

Icallobj(powerUj].objname);
num =num + 3;
break;

default: break;

) P end switch *

call - iagramno;
swapbufferso;
flashpoint = (flashpoint + 1) % 9;
if (num = max)

num = mmi;
else

num =num + 1;

11* end if *

125

if (qtesto)

switch(qread(&data))

case REDRAW: reshapeviewporto;
break;

case LEFTMOUSE: CANCEL = TRUE;
break;

default: break;

}/* end while ~

color(NWHIE);
clear();
cleanup-jlowo;
swapbufferso;

/* end use-pv-batt ~

126

COMPSTAT.C

#include "pwrsys.h"

FAULT ISOLATION

Shows actual faults in systems

faultisolation(num)
int num;

int type;

type = 0;

componentstatus(type, num);

STATUS PREDICTION

Shows predicted faults in systems

statusprediction(num)

int num;

int type;

type = 1;

componentstatus(type, num);

1

127

COMPSTAT

Checks the status of individual components in the diagram.

componentstatus(type, num)
int type, nurn;

int i, index;
Boolean CANCEL;
short data;

comrmnt = type;

write-integer(&remtemachine, &commint);

if (sender -is-fr-ee(&remiotemachine))

if((num >= 0) && (num <= 50))

commint = num;

else

commint = CHECKSYSTEM;

writejnteger(&remotemachine, &commint);
process_ messageo;

CANCEL = FALSE;

while (!CANCEL)

if (qtesto)

switch(qread(&data))

case REDRAW: reshapeviewporto;
break;

128

case LEFTMOUSE: CANCEL = TRUE;
break;

default: break;

/ * end while *

system("clea%n");

color(WHIT);
clearo;
cleaIAjpjliagramo;
swapbufferso;

I/* end componentstatus *

processm-nessage()

Boolean done;
char compcolor, messpointer[80], conimessage[80];

while (!done)

while (!receiver-has,-data(&remotemachine));

read_ characters(&remiotemachine, commnbuffer,
number-received(&remotenmacbine));

while (!receiver -has -data(&renioteniachine));

read-integer(&remoternachine, comrnint);

compcolor = commbuffer[O];

if (compcolor = 'G' 11 compcolor == 'Y' 11 compcolor =='R')

editobj(powercommintj.objnanie);
objreplace(power[cofmint] .tagname);
switch(compcolor)

case 'G: color(GREEN);
break;

case 'Y': color(FLASHBLACKY);
break;

129

case 'R': color(FLASHBLACKR);
break;

default: break;

closeobjo;

strcpy(mess-pointer, strchr(commbuffer, '')
strcpy(commessage, mess-pointer);

else if (comniint = FINISHEDPROCESSING)

done = FALSE;
strcpy(commessage, commbuffer);

color(WHITE);
clearo;
swapbufferso;
clearO;
swapbuffersO;
calldiagramo;
color(BLACK);
cmov2(2.5, 1.0);
charstr(cominessage);
sleep(l);

/ * end processmressage *

130

LIST OF REFERENCES

1. Erickson, W., and others, "NASA Systems Autonomy Demonstration Program: A
Step Toward Space Station Automation," SPIE Space Station Automation II, v. 729,
1986.

2. User's Guide to Symbolics Computers, Symbolics, Inc., July 1986.

3. Wilensky, R., Common LLScraft, W. W. Norton & Company, Inc., 1986.

4. IntelliCorp KEE Software Development System User's Manual, IntelliCorp, 1986.

5. Winston, P. H., "Artificial Intelligence: A Perspective," Al in the 1980s and Beyond,
The MIT Press, 1987.

6. Erickson, W., and Nienart, J., MTK Reference Manual and User Guide (draft),
10 April 1988.

7. Kernighan, B., and Ritchie, D., The C Programming Language, Prentice-Hall, Inc.,

1978.

8. IRIS User's Guide: Volume 1 Graphics Programming, Silicon Graphics, Inc., 1986.

9. Barrow, T., Distributed Computer Communications in Support of Real- Time Visual
Simulations, Master's Thesis, Naval Postgraduate School, Monterey, California,
June 1988.

10. Barrow, T., "Inter-computer Communication Package," unpublished paper, Naval
Postgraduate School, Monterey, California, May 1988.

11. Bromley, H., and Lamson, R., LISP Lore: A Guide to Programming the LISP
Machine, Kluwer Academic Publishers, 1987.

12. Martin Marietta Denver Aerospace Task I Study Report MCR-86-583, Space Station
Automation of Common Module Power Management and Distribution, by Miller, W.,
and others, July 1986.

131

BIBLIOGRAPHY

Barrow, T., Distributed Computer Communications in Support of Real- Time Visual
Simulations, Master's Thesis, Naval Postgraduate School, Monterey, California,
June 1988.

Barrow, T., "Inter-computer Communication Package," unpublished paper, Naval
Postgraduate School, Monterey, California, May 1988.

Bromley, H., and Lamson, R., LISP Lore: A Guide to Programming the LISP
Machine, Kluwer Academic Publishers, 1987.

Erickson, W., and Nienart, J., MTK Reference Manual and User Guide (draft),
10 April 1988.

Erickson, W., and others, "NASA Systems Autonomy Demonstration Program: A
Step Toward Space Station Automation," SPIE Space Station Automation II, v. 729,
1986.

IntelliCorp KEE Software Development System User's Manual, IntelliCorp, 1986.

IRIS User's Guide: Volume I Graphics Programming, Silicon Graphics, Inc., 1986. r

Kernighan, B., and Ritchie, D., The C Programming Language, Prentice-Hall, Inc.,
1978.

Martin Marietta Denver Aerospace Task I Study Report MCR-86-583, Space Station
Automation of Common Module Power Management and Distribution, by Miller, W.,
and others, July 1986.

User's Guide to Symbolics Computers, Symbolics, Inc., July 1986.

Wilensky, R., Common LISEcraft, W. W. Norton & Company, Inc., 1986.

Winston, P. H., "Artificial Intelligence: A Perspective," Al in the 1980s and Beyond,
The MIT Press, 1987.

132

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Commander
Naval Space Command
Attn: Code N3
Dahlgren, VA 22448

4. Commander
United States Space Command
Attn: Technical Library
Peterson AFB, CO 80914

5. Navy Space System Division
Chief of Naval Operations (OP-943)
Washington, DC 20305-2000

6. Space Systems Academic Group
Attn: Prof. Panholzer (Code 72)
Naval Postgraduate School
Monterey, CA 93943

7. Mr. Henry Lum 2
MS244-7
NASA Ames Research Center
Moffett Field, CA 94035

8. Ms. Carla Wong 2
MS244-18
NASA Ames Research Center
Moffett Field, CA 94035

9. Mr. William Erickson 2
MS244-18
NASA Ames Research Center
Moffett Field, CA 94035

133

10. Department of Computer Science 5
ATI'N: Dr. Robert McGhee (Code 52MZ)
Naval Postgraduate School
Monterey, CA 93943-5100

11. Superintendent, Code 74 3
ATN: Lois Brunner
Naval Postgraduate School
Monterey, CA 93943-5000

12. Department of Computer Science 2
ATTN: Dr. Michael Zyda (Code 52ZK)
Naval Postgraduate School
Monterey, CA 93943-5100

13. Superintendent, Code 39
ATITN: LTC Linda Cromback
Naval Postgraduate School
Monterey, CA 93943-5000

14. LT Kevin Scott
Naval Postgraduate School
Hermann Hall
SMC #2847
Monterey, CA 93943

15. LCDR Graie Thompson
TAMPA MEPS
144 1st Avenue South
Room #315
St. Petersburg, FL 33701

16. LT Gina L. Hester 2
1408 Chesterbrook Drive
Virginia Beach, VA 23464

17. LT Beth Allinder
300 Glenwood Circle
Apt. #298
Monterey, CA 93940

134

