ine f1LE CORY APPROVED FOR PUBLIC RELEASE
DISTRIBUTIG:! U AITED

MASSACHUSETTS INSTITUTE OF TECHNOLOGW VLSI PUBLICATIONS

VLSI Memo No. 88-470
August 1988

MICRO-OPTIMIZATION OF FLOATING-POINT OPERATIONS

AD-A202 001

William J. Dally

Abstract

‘ -~ - p This paper describes micro-optimization, a technique for reducing the operation count
and time required to perform fioating-point calculations. Micro optimization involves
breaking floating-point operations into their constituent micro-operations and optimizing
the resulting code. Exposing micro-operations to the compiler creates many
opportunities for optimization. Redundant normalization operations can be eliminated or
combined. Also, scheduling micro-operations separately results allows dependent
operations to be partially overlapped. A prototype expression compiler has been written
to evaluate a number of micro-optimizations. On a set of benchmark expressions
operation count is reduced by 33% and execution time is reduced by 40%. .f’iqg ! “—

88 1122 0449

*Microsystems Massachusetts Cambridge Telephone R
Research Center Institute Massachusetts {617)2 38128
Room 39-321 of Technology 02139

i Aczesion for ,
,_an CRAAI o
0

' DFIC 7148

f Unaroo ood 0

R
' ———]
L ey i
; :3” = ’_.—_———._‘

’ SN |
i
.
! !

e

—

(Eﬂ\
~ 0
N

This work was supported in part by the Defense Advanced Research Projects Agency
under contracts NOOO14-80-C-0622, N0O0014-87-K-0825 and NOOO14-85-K-0124 and in
part by a National Science Foundation Presidential Young Investigators Award with
matching funds from General Electric Corporation and IBM Corporation.

Acknowledgements

Author Information

Dally: Department of Electrical Engineering and Computer Science, Artificial Intelligence
Laboratory, MIT, Room NE43-417, Cambridge, MA 02139, (617) 253-6043.

Copyright® 1988 MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy is for
private circulation only and may not be further copied or distributed, except for
government purposes, if the paper acknowledges U. S. Government sponsorship.
References to this work should be either to the published version, if any, or in the form
“private communication.” For information about the ideas expressed herein, contact the
author directly. For information about this series, contact Microsystems Research
Canter, Room 39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

Micro-Optimization of Floating-Point Operatidns!

William J. Dally

Artificial Intelligence Laboratory and
Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract

This paper describes micro-optimization, a technique for reducing the operation count and
time required to perform floating-point calculations. Micro optimization involves breaking
floating-point operations into their constituent micro-operations and optimizing the resulting
code. Exposing micro-operations to the compiler creates many opportunities for optimiza-
tion. Redundant normalization operations can be eliminated or combined. Also, scheduling
micro-operations separately results allows dependent operations to be partially overlapped. A
prototype expression compiler has been written to evaluate a number of micro-optimizations.
On a set of benchmark expressions operation count is reduced by 33 % and execution time is
reduced by 40 %.

1 Introduction

Many unneeded operations are performed during the evaluation of floating point expressions
because existing compilers and floating point units consider these operations to be atomic. By
decomposing floating point operations into their constituent integer micro-operations, many
opportunities for optimization are exposed. Redundant shift operations may be eliminated,
parts of the computation may be done with a block exponent, common subexpressions in the
mantissa or exponent calculation are exposed, and additional flexibility in scheduling operations
is possible.

This paper describes methods for micro-optimizing floating point expressions. Each operation in
the expression is decomposed into its primitive integer micro-operations. For example a floating
point add is decomposed into an exponent subtract, mantissa alignment, mantissa add, leading
zero’s count, exponent adjust, and mantissa normalization. Optimizations are performed on
the resulting micro-operations. For example, a normalizing left shift from one FP add may be
combined with the aligning right shift of a subsequent FP add resulting in a single shift. The
entire expression is scheduled as a unit resulting in better hardware utilization.

On a set of benchmark expressions, micro-optimization reduces operation count by 33 % and
execution time by 40 % compared to conventional floating point execution with identical

!The research described in this paper was supported in part by the Defense Advanced Research Projects
Agency under contracts N00014-80-C-0622 and N00014-85-K-0124 and in part by a National Science Founda-
tion Presidential Young Investigator Award with matching funds from General Electric Corporation and IBM
Corporation.

Submitted to ASPLOS '88

function unit performance and register bandwidth.

To fully exploit micro-optimization, a micro floating point unit (4FPU) is required. The in-
struction set of a uFPU consists of the micro-operations required for floating point arithmetic
(e.g., alignment shifts that maintain guard, round, and sticky bits). These operations are per-
formed out of a set of mantissa and exponent registers. By providing the appropriate primitive
operations, no comprimises are made in terms of accuracy, rounding, adherence to standards,
and performance.

This work is motivated by recent progress on RISC (8] and VLIW (3] architectures. RISC
machines eliminate the complex addressing modes found in CISC machines [9]. Address calcu-
lations are performed using integer arithmetic instructions rather than by microcode or special
hardware. Exposing these calcuiations to the compiler often improves performance. Micro
optimization applies this technique to floating point operations. As with address calculations,
breaking these operations into their primitive components has the disadvantage of decreasing
code density and increasing instruction bandwidth.

Micro-optimization borrows from VLIW technology, in that several micro-operations may be
performed simultaneously. Also, some of the optimizations described here schedule code across
basic blocks. However, the technique used is different from trace scheduling.

The idea of using a compiler to optimize a function normally considered a primitive arithmetic
operation has been applied to integer multiplication by a constant [5).

The next section illustrates the basic concepts of micro-optimization by means of a few simple
examples. A prototype expression compiler written to test these concepts is described in Section
3. Section 4 describes the architecture of an exemplary uFPU. The compder and uFPU are
evaluated on a number of benchmark programs in Section 5.

2 Micro-Optimizations

This section illustrates micro-optimizations by means of examples given in uFP assembly code
(see Section 4). The code for a single add (A = B + C) and a single muitiply (A = B * C)
are shown below. The subtract operation is similar to add. The optimizations start from

concatenations of these sequences and perform transformations to reduce the number of micro-
operations.

ADD MULTIPLY
Lo: EO =EB E- EC , BNEG L1 LO: E1 = EB E+ EC
MO = MC SHR EO Mi =MB M« NC
M1 = MO M+ MB , BR L2 E2 = FF1 M1
L1: MO = MB SHR- EO EA = E1 E- E2
M1 =MB M+ MO MA = M1 SHL E2
L2: Ef = FF1 Nt
EA =EB E- El
MA = M1 SHL El

In this section optimizations will be evaluated by comparing the path lengths of the optimized
and unoptimized uFP code. Timings for different micro-operations will be discussed in Section
4.

Three instructions, at least half the total, in each sequence are used to normalize the result.
Many of the optimizations described below are methods to eliminate unneccessary normaliza-
tions.

Automatic Block Exponent

The alignment operations of cascaded additions can be simplified if the largest exponent is
identified and used as a block exponent for the additions. All mantissas are aligned using this
exponent and added without normalization. Only the final sum is normalized.

The following code shows an application of this technique to the expression (TO = A + B +
C). Only the code for the case where A has the largest exponent is shown. By eliminating the
normalization and realignment of the intermediate result, this path through the sum has been
reduced from 12 instructions to 9.

LO: E1 =EA E- EB , BNEG L1

E2 = EA E- EC , BNEG L2

Mi = MB SHR Et

M2 =MA M+ M1

M3 = MC SHR E2

Md = M2 M+ M3 , BR L4

<Li and L2 omitted for clarity>
L4: E4 =FF1 M1

ETO = EA E- E4

MTO = M4 SHL E4

The use of automatic block exponent requires that extra mantissa bits to the left of the binary
point be maintained in case the adds result in an increased exponent. If n adds are performed
in sequence, log,n extra bits must be maintained.

In some cases, the use of an automatic block exponent can increase rounding errors. In the
above example, if A & =B and IC| << |A|, the intermediate result is badly undernormalized
and valuable bits of C will be lost when it is aligned with the original exponent. The effect is
the same as if the addition were performed in the order (A + C + B). This technique treats
floating point addition as if it were associative and commutative and has the same effect as
reordering the additions to give the largest possible rounding error.

Even with these limitations, automatic block exponent is a very effective optimization. Many
computations include long sequences of adds (e.g., dot products) where operand ordering is
not critical. In these cases, the use of a Llock exponent reduces the path length by from 6n to
3n + 3, a savings of 50%!

Shift Combining

Shift combining is an alternative to automatic block exponent that can be used in cases where
the order of the operations must be preserved. When adding three or more floating point
numbers, redundant shifts may be performed when a mantissa is shifted left for normalization
and then immediately shifted right for alignment. To recognize redundant shifts, the mantissa
left shift in the first add is moved below the branch of the second add. This requires copying
the shift into both paths of the branch. The shift will be eliminated in one of the two paths.

The following code fragment, taken from the compilation of A + B + C, illustrates this tech-
nique. The fragment begins after the B and C mantissas have already been aligned and added.
It ends after the final mantissa sum is computed but before the normalization.

BEFORE OPTIMIZATICN AFTER OPTIMIZATION
L2: E1 = FF1 M1 L2: El1 = FF1 M1

ET0O = EB E- E1 ETO = EB E- E1l

MTO = M1 SHL E1 E2 = EA E- ETO, BNEG L3

E2 = EA E- ETO, BNEG L3 E3 = EA E- EB

M2 = MTO SHR E2 M2 = Mi SHR E3

M3 = M2 M+ MA, BR L4 M3 = M2 M+ MA, BR L4
L3: M2 = MA SHR- E2 L3: MTO = M1 SHL Ei,

M3 = MNTO M+ M2 M2 = MA SHER- E2

M3 = MTO M+ M2

The left shift of M1 has been pushed below the branch on (EA >= ETO). If the branch is not
taken, the shift is combined with the alignment right shift. An additional exponent subtract
is required to calculate the shift count. If the branch is taken, the shifts operate on different
mantissas and cannot be combined. The path length of the optimized code is unchanged, but
an expensive mantissa shift is replaced with an inexpensive exponent subtract.

Post Multiply Normalization

A multiply operation can denormalize its result by at most one bit position. If a few extra
guard bits to the right of the mantissa are maintained, the results of multiplication can be used
without normalization with no loss of accuracy. Only the final result must be normalized. For
example, the code for A * B * C is shown below.

Lo: E1 =EB E+ EC
M1 = MB Ms NC
E2 = Ef E+ EA
M2 = KA N& N1
E3 = FF1 N2
ETO = E3 E- E2
MTO = M2 SHL E3

This optimization also handles the ubiquitous case of multiply-add. If a multiply is followed by
an add, its normalization can be eliminated as the final result will be normalized by the add.

For a sequence of multiplies, this optimization reduced the number of intructions from 5n to
2n + 3, a savings of 60%. The savings in terms of time is somewhat less since the mantissa
multiply M* is an extremely costly operation.

Conventional Optimizations

Decomposing floating-point operations exposes the resulting micro-operations to conventional
compiler optimizations such as constant folding, common subexpression elimination, and dead
code elimination. Consider for example, the expression (A + B)*(A - B). When reduced to
micro-operations the alignment of A and B can be recognized as a common subexpression and
eliminated. The optimization reduces the path length from 17 to 15, a 12% improvement. A
source level compiler can find no common subexpressions and will perform the alignment twice.

Scheduling

More efficient use of floating point hardware can be made by scheduling the micro-operations
of an entire floating-point expresion as a unit rather than scheduling each add or multiply
separately. The pops of one floating point operations can be used to fill idle cycles in the
evaluation of other floating point operations even if there are dependencies between the two
operations.

Consider for example the case of a multiply-add (A * B + C). A reservation table for this
operation is shown below. Once the exponent addition for the multiply is completed (A), the
exponent subtract for the add may be performed (C). If EA + EB > EC, the alignment shift for
the add (D) may also be performed in parallel with the multiply (B). In a conventional floating
point unit, the multiply has to complete before any part of the add can be performed.

Unit 12345678910 A: E2 = EA E+ EB

B: M1 = MA Me MB
M= BBBB C: E2 = Ef E- EC, BNEG L1
M+ EE D: M2 = MC SHR E2
M SH DD HAE E: M3 = M1 M+ M2, BR L2
M FF1 FF
E+- AC G

3 The Micro-Optimizer

An experimental micro-optimizer has been implemented to evaluate the optimizations described
above. The program accepts a restricted LISP expression as input and produces optimized
uFPU assembly code as output.

The compilation is performed in the following steps

1. The expression is compiled into standard three address macro floating-point assembly
code.

2. A data flow graph is constructed and used to recognize (1) sequences of cascaded additions
and (2) non-terminal multiplies.

3. With the aid of the data flow graph, the macro assembly code is translated into uFP code.
Automatic block exponent and post multiply normalization optmizations are performed
during this step.

4. Shift combining is performed by checking each shift to determine if its result is used as
input to another shift.

W

. A control flow graph is constructed and each statement is labeled with an identifier spec-
ifying the paths that pass through that statement.

6. With the aid of the control flow graph, common subexpression elimination is performed.
Expressions are eliminated outside of basic blocks if they are labeled with the same path
identifier.

7. The optimized uFP code is scheduled into horizontal microinstructions using a greedy
algorithm that schedules an operation as soon as its inputs and required resources are
available.

4 A Micro Floating Point Unit

A micro floating point unit (uFP) is required to efficiently execute the code produced by
the micro-optimizer. Micro-optimization reduces floating point operations to their constituent
integer operations; however an integer processor does not support features such as sticky bits
that are required to round according to existing standards [2]. This section describes the
architecture of a uFP suitable to execute the code described above. The purpose of this design
is to serve as a basis for the evaluation made in Section 5. This description is a paper design,
no uFPU has been constructed.

The uFP contains a 31-word by 12-bit exponent register file, and a 31-word by 64-bit mantissa
file. Each register file has two read ports and a single write port. The exponent registers contain
12-bit 2's complement numbers. These numbers are converted to/from offset format during load
and store operations. The mantissa registers have the format shown below. A 55-bit mantissa
(M) includes the implied bit (I), and sign bit S. The mantissa is protected above by three A bits
and below by three B bits as well as the standard guard, round, and sticky bits (R).

ISTAAALIZIN.M|IBBBIRRR|

63 62 59 65420

The A bits allow up to four aligned mantissa additions to be performed before normalizing the
result. The possible one-bit overflows are accumulated in the A bits for later normalization.
The B bits allow up to four multiplies to be performed before normalizing. The bits that shift
off to the right because of the possible one-bit denormalization are accumulated in the B bits
and the guard bit.

The exponent and mantissa data paths are shown in Figure 1. The exponent path has an
adder/subtractor and can receive data from the find-first-one (FF1) unit in the mantissa path.
The mantissa path includes a multiplier, an adder, a shifter, and a find-first-one unit. The
multiplier, adder, shifter, and FF1 unit are pipelined with latencies of 4,2,2, and 2 (see below).
The shifter sets the sticky bit of the result if any ones are discarded from the right side of the
operand. The adder uses the round and sticky bits to round each addition. The multiplier both
produces the rounding bits and uses them to round the resuit.

There are two crossovers between the exponent and mantissa data paths. The mantissa shift
is controlled by an exponent shift count, and the find-first-one unit takes a mantissa as input
and produces an exponent result.

The clock cycle is determined by the time required for a 12-bit exponent add (= 15nsin a 1
CMOS technology). Assuming a carry lookahead adder and a Wallace-tree multiplier [4], times
for mantissa multiply, add, shift, and find-first-one are estimated to be 4, 2, 2, and 2 cycles
respectively. A register read or write takes one clock cycle, and a register can be read in the
same cycle it is written. There is full bypassing under compiler control (no comparators).

The format of a uFP instruction is shown below. Each instruction specifies sources and des-
tinations for the mantissa and exponent register files, the exponent and mantissa operations,
and a branch specifier. Specifying a register address of all ones (0x1F) selects a bypass from
the result bus. Branches have no delay if not taken and a one cycle delay if taken.

Instruction Format:

| EA | EB | EC | MA | MB | MC | EOP | MOP | BOP | BDST |

The units perform the following operations. Each unit also has a NOP operation.

Exponent e
Register
File
S
Exp Adder
D—
FF1
Py
|
/‘ g
Shifter
Mantissa b Mantissa Multiplier
Register
File

b ‘

Mantissa Adder

Figure 1: uFPU Data Paths

Exponent OPs

E+, E- Exponent add/subtract (EC <- EA op EB).

FF1 Returns the shift required to normalize mantissa MA (EC <- FF1
MA). In the range {-3,57). Returns the largest positive number if no
ones are found.

LDE, STE Load or store exponent as an integer.

Mantissa OPs

M+, M~, M» Mantissa add, subtract, and multiply (4C <- MA op MB).

SHR, SHL Mantissa right and left shift (MC <- MA >> EA) or (MC <- MA <<
EA). A negative exponent shifts in the opposite direction.

ABS, NEG Zeros and complements the mantissa sign bit.

LDM, STM Load or store mantissa as an integer.

LDF, STF Load or store mantissa and exponent formatted as a standard float-

ing point number.

Branch OPs BR Unconditional branch.

BXEG Branch on exponent negative (EC < 0).
Bcond Branch on exponent and mantissa compare (EA, MA) relop (EB,
MB).

This instruction set is the minimum required to perform the evaluation in the next section. In
certain applications additional instructions would be useful. For example, if divides were used
frequently a mantissa divide M/ could be realized with an SRT divide array. If divides are less
frequent, a reciprocal approximation can be programmed using the instructions above.

This instruction set is intended to complement a simple integer instruction set (7] [1] [6]. For
operations such as reciprocal and square root that are often performed using Newton’s method,
there is no need to implement an initial approximation lookup table in the uFPU. These tables
can be kept in main memory and accessed using integer instructions. By exposing the algo-
rithms for reciprocal, square root, and other floating-point functions, the compiler can perform
optimizations that are not possible if these functions are hidden in microcode.

5 Evaluation

To evaluate micro-optimizations, the uFPU described in Section 4 is compared against a con-
ventional floating point unit (cFPU) with the same micro-operation times and register file
bandwidth. The two units were compared on a series of benchmark expressions. For each
expression and each unit, the total number of micro operations operation count and the total
number of clock cycles required time to execute the longest path through the expression is
measured.

The following assumptions are made:

e The two units have identical clock rates and micro operation times.

9

Each cycle, each unit can read two mantissas and two exponents and write one mantissa
and one exponent.

o All units are pipelined and can accept a new input each cycle.

Branches have no delay if not taken and a delay of one if taken.

e Common subexpression elimination is performed on the macro floating point operations
for both units.

o The operations on each unit were scheduled us. g a greedy algorithm.

The benchmarks are summarized in the following table:

—
*
—

<)ol o]] o] co| =]+

[BenchmarkJ Description

1 (+ (» aa) (*bb)))
(+abcd)

(* abc d)

Simple MOSFET Equation
3-D dot product
Acceleration Calculation
Magnitude of Butterfly

8 Tap FIR Filter

00| O] oo W Wlw|Oo| N

[o o RN] e 0 .Y F o VST I U

The operation counts and times for the twelve cases are tabulated below along with total lengths
and times for the two units.

Over the six benchmarks, micro-optimizations resulted in a 33 % reduction in operation count
and 2 40 % reduction in time. The reductions are largest for large expressions with long
sequences of adds or multiplies.

Expressions with a great deal of internal parallelism give a smaller reduction in execution time.
The parallelism in these expressions can keep a conventional floating point pipeline very busy
reducing the advantage gained by independently scheduling micro-operations. For example, the
FFT butterfly operation (benchmark 7) calculates the real and imaginary components of its two
outputs in parallel. A pipelined FPU can execute these four calculations in parallel. Because the
pFPU consumes register bandwidth handling intermediate results, it cannot initiate operations
as quickly. Because of the register bandwidth bottleneck, this benchmark has a typical reduction
in operation count (30%), but only a 25% reduction in execution time.

All benchmarks other than number 7 show a greater improvement in execution time than in
operation count. This data suggests that register bandwidth is not an issue for most scalar
expressions. The two units were compared with identical and realistic register file bandwidth.
Data dependencies prevent the conventional FPU from exploiting all of this bandwidth. If
memor: bandwidth is equal to register bandwidth, a conventional FPU will outperform a
uFPU on vector operations. The conveniional unit can start an operation each cycle while the

10

pFPU will use some register bandwidth for intermediate results. When register bandwidth is
at least twice memory bandwidth, the uFPU becomes competitive even on vector operations.

[Operation Count |

[Benchmark | cFPU | uFPU | % Reduction |
1 [16 10] 38
2 18] 15 17
3 15 9 40
4 33| 26 21
5 27| 17 37
6 82| 56 32
7 94| 67 29
8 82| 47 43
TOTAL 367 | 247 33

[Time (cycles) |
| Benchmark | cFPU | uFPU [% Reduction |

1 21 13 38
‘ 2 30 19 37
3 30 16 47
4 50 31 38
5 32 17 47
6 94 52 45
7 73 55 25
8 87 a7 46
TOTAL 217|250 40

6 Conclusion

A technique for micro-optimizing floating-point expressions has been described. Micro-optimization
involves reducing floating-point expressions to their constituent micro-operations and optimiz-
ing the resulting sequence. By exposing the micro-operations to the compiler many redun-
dant operations can be eliminated. Scheduling of individual micro-operations allows dependent
macro operations to be partially overlapped.

An evaluation of micro-optimization shows that it reduces operation count by 33 % and exe-
cution time bv 40 % compared to conventional floating-point execution. The operation count
reduction is largely due to the elimination of unecessary normalization operations. Elimination
of common exponent subexpressions contributes a small amount. The improvement in execu-
tion time is d:1e to the elimination of these operations and the increased overlap of operations
. resulting from scheduling micro-operations separately. In some cases exponent calculations are
scheduled in such a manner that the execution time is entirely due to mantissa calcu.ations.

11

A micro floating-point unit is required to execute these floating-point micro-operations. Al-
though they are integer operations, appropriate word lengths and support for rounding are
required to maintain accuracy. Also, separate mantissa and exponent paths are required to
give performance competitive with conventional floating point units.

A uFPU breaks the pipeline of a conventional floating-point unit into separately schedula-
ble function units. The additional scheduling flexibility can be exploited through micro-
optimization. The penalty for this separation is potentially higher registor {ile bandwidth,
higher instruction bandwidth and increased control complexity.

The flexibility inherent in a uFPU has many advantages other than performance. For example,
it can be used to gracefully support high precision floating point numbers. If provision is made
in the uFPU to recover the low bits of a multiply and to link carry bits between adds, high-
precision floating point arithmetic can be implemented at about the same cost as high-precision
integer arithmetic.

A pFPU can also make tradeoffs between area and performance. For example, a smaller unit
could be constructed that performs mantissa multiply with two or four multiply step operations.
The resulting unit would be significantly smaller and would be slower only in those cases where
two mantissa multiplies can be overlapped.

The work described here is an effort to integrate floating-point arithmetic into RISC computer
architecture (8]. Conventional RISCs operate with a scalar and/or vector floating point unit that
is operated separately from the RISC pipeline. A uFPU integrates floating point operations into
the pipeline so that only one execution controller is required. Floating-point micro-operations
are handled in the same manner as integer operations.

Most floating point calculations are limjted by memory bandwidth rather than by arithmetic
capability. By integrating floating-point and address calculation in one unit, the coupling
between the FPU and the memory system can be made tighter. For example, micro-operations
can be used to fill the delay slots of a delayed load. Because these operations are scheduled
by the compiler, no time and bandwidth is lost synchronizing data arrival with a separately
scheduled floating point pipeline.

Much work remains to be done on micro-optimizations. Extending the expression compiler of
Section 3 into a full compiler will create opportunities for additional optimization. For example,
loops that iterate over arrays accumulating a running sum can be optimized with a technique
similar to automatic block exponent. Other optimizations become possible if the compiler is
extended to infer the signs and relative magnitudes of some variables. If the two inputs to a
mantissa add can be shown to have the same sign, the result will not be denormalized (it may
overflow one bit), and the sign of the result can be inferred. If exponent values can be inferred
or computed early, block exponents can be applied across large expressions. If the relative
magnitudes of exponents can be inferred, branches on exponent comparison can be eliminated.

Floating point numbers are popular because they free the programmer from the tedious task
of scaling integers. Scaling need not be performed entirely at run-time by hardware, however.
A suitable division of effort between a micro-optimizing compiler and hardware with some
primitive support for floating point can result in substantial performance improvement.

12

Acknowledgement

The work presented here has benefited from discussions with Anant Agarwal, Tom Knight,
Scott Wills, and Steve Ward.

References

(1] AMD, AMD 29000 User’s Manuai, 1987.
[2) ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating- Point Arithmetic.

(3] Colwell, R.P., et.al., “A VLIW Architecture for a Trace Scheduling Compiler,” IEEE
Trans. Computers, C-37(8), August 1988, pp. 967-979.

[4] Hwang, K. , Computer Arithmetic: Principles, Architecture, and Design, Wiley, 1979.

[5]) Magenheimer, et.al., “Integer Multiplication and Division on the HP Precision Archi-
tecture,” IEEE Trans. Computers, C-37(8), August 1988, pp. 980-990.

(6] Motorola, MC88100 32-bit Third-Generation RISC Microprocessor: Technical Sum-
mary, Document BR588/D, 1988.

[7] Moussouris, J. et.al, “A CMOS RISC Processor with Integrated System Function,”
COMPCON, 1986, pp. 126-131.

[8] Patterson, David A., “Reduced Instruction Set Computers,” CACM, 28(1), January
1985, pp. 8-21.

(9] Strecker, W.D., “VAX-11/780, A Virtual Address Extension to the PDP-11 Family”,
Proc. NCC, 1978, pp. 967-980.

13

