
NAVAL POSTGRADUATE SCHOOL
Monterey, California

to

0

THESIS
A SURVEY OF AUTOMATIC CODE

GENERATING SOFTWARE

by

Sherman L. O'Brien

September 1988

Thesis Advisor: Daniel R. Dolk

Approved for public release; distribution is unlimited

DTIC
/, ELECTEf

J J AN 1989

89~~ O4O4

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a, NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School 54 Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Sc. ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO NO ACCESSION NO.

11. TITLE (Include Security Classification)

A SURVEY OF AUTOMATIC CODE GENERATING SOFTWARE

12. PERSONAL AUTHOR(S), O'Brien, Sherman L.

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month,Day) 15 PAGE COUNT
Master's Thesis FROM TO 1988 September 81
16. SUPPLEMENTARY NOTATIONThe views expressed in this thesis are those of the author
and do not reflect the official policy or position of the Department of
Thnfg ,RP evv th II Cq (2, ,7zI',r m~nI

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Automatic code generation

Automatic programming
Computer languages

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The advances made in computer hardware development have long outdistanced
the computer software needed to make that hardware perform useful work for
the user. This has precipitated a software crisis in the industry and
spawned many potential solutions for alleviating the crisis. Among the
various solutions are software systems that will automatically write program
code. This thesis examines four such software systems currently available
to a system developer giving a brief description of the product, principle
behind its operation and possible applications. Additionally, it provides
the reader background information on computer programming languages, reasons
for the software crisis, the software development life cycle, and a method
of classification and taxonomy of software development tools. The thesis
concludes that these tools, properly applied, can be useful in relieving
the software crisis in an organization but will not eliminate the crisis

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UXUNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) &2c OFFICE SYMBOL
Daniel R. Dolk (408)646-2260 54Dk
DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete e u.S. Government Printi,, office l90"O6.24.

UNCLASSIFIED

UNCLASSIFIED
suu6m1111.uV ' claIS WOF T$i PA6E

Block 18 continued: Software crisis; Software Development Life Cycle (SDLC);
Software development tools; Taxonomy of software tools

Block 19 continued: or the need for programmers.

Accession For

*-T 1I S GRA&I

DTIC TAB
Unannounced
justification

Distribution/

coor

AvallabilitY Codes

IJ,(TASST FT Ch

SECURITY CLASSIFICATION OF THIS PAGE

Approved for public release; distribution is unlimited

A Survey of Automatic Code Generating Software

by

Sherman L. O'Brien
Lieutenant Commander, United States Navy

B.S., Iowa State University, 1974

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1988

Author: icJ .(1AL)

Sherman L. O'Brien

Approved by: j i
aniel R. Dolk, Thesis Advisor

Ronald E. Rautenberg, Sec nd Reader

Department of Admini tive Sciences

Dean of Information and Policy iences

iii

The advances made in computer hardware development have

long outdistanced the computer software needed to make that

hardware perform useful work for the user. This has

precipitated a software crisis in the industry and spawned

many potential solutions for alleviating the crisis. Among

the various solutions are software systems that will auto-

matically write program code.

This thesis examines four such software systems

currently available to a system developer giving a brief

description of the product, principle behind its operation

and possible applications. Additionally, it provides the

reader background information on computer programming

languages, reasons for the software crisis, the software

development life cycle, and a method of classification and

taxonomy of software development tools. The thesis con-

cludes that these tools, properly applied, can be useful in

relieving the software crisis in an organization but will

not eliminate the crisis or the need for programmers. / .

iv

MEO

TABLE OF CONTENTS

I. INTRODUCTION--- 1

A. THE ROLE OF SOFTWARE------------------------------ 1

B. PURPOSE OF THE THESIS---------------------------- 2

C. SCOPE OF THE THESIS--------------------------------3

D. ORGANIZATION OF THE THESIS----------------------- 3

II. KEY SOFTWARE ISSUES------------------------------------5

A. INTRODUCTION-------------------------------------- 5

B. THE SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) -- 5

C. THE SOFTWARE "CRISIS"---------------------------- 9

D. COMPUTER LANGUAGES------------------------------- 12

E. AUTOMATIC CODE GENERATION----------------------- 19

F. SUMMARY--- 20

III. CLASSIFICATION AND TAXONOMY OF SOFTWARE
DEVELOPMENT TOOLS------------------------------------- 22

A. INTRODUCTION-------------------------------------- 22

B. GENERAL CLASSES OF SOFTWARE TOOLS-------------- 22

C. TAXONOMY OF SOFTWARE TOOLS---------------------- 23

D. SUMMARY--- 30

IV. REVIEW OF AUTOMATIC CODE GENERATING SYSTEMS-------- 32

A. INTRODUCTION-------------------------------------- 32

B. USE.IT---33

C. COGEN---40

D. INFORMIX/4GL-------------------------------------- 45

E. GENIFER--- 49

V

F. FEATURES OF SYSTEMS---------------------------- 55

G. SUMMARY--- 56

V. CONCLUSIONS AND RECOMMENDATIONS-------------------- 59

A. INTRODUCTION------------------------------------ 59

B. CONCLUSIONS------------------------------------- 59

C. RECOMMENDATIONS--------------------------------- 62

APPENDIX: AUTOMATIC CODE GENERATING SYSTEMS------------- 64

LIST OF REFERENCES-- 70

INITIAL DISTRIBUTION LIST--------------------------------- 72

vi

LIST OF TABLES

4.1 SYSTEM FEATURES-------------------------------------- 56

vii

LIST OF FIGURES

2.1 Historical Life Cycle Model ---------------------- 6

2.2 Programming Language Abstraction ----------------- 18

2.3 Historical User--Programmer--Application Link 20

3.1 Software Tool Taxonomy --------------------------- 24

4.1 Functional Life Cycle Process -------------------- 33

4.2 Hierarchical Control Map ------------------------- 35

4.3 Nodal Relationships ------------------------------ 35

4.4 USE.IT Control Map Example ----------------------- 37

4.5 Ring Menu -- 47

4.6 MAIN Menu Routine -------------------------------- 47

4.7 GENIFER Main Menu -------------------------------- 50

5.1 Programmer, User, Software Perspective ------------ 61

viii

I. INTRODUCTION

A. THE ROLE OF SOFTWARE

Until a computer is given a set of explicit instructions

telling it exactly what to do and in what order, the user

will not receive any of its potential benefits. Contempo-

rary computer users know the single device that releases its

potential power is software.

Software is what makes the computer perform useful

work. It includes but is not limited to the data,

algorithms, and programming code used to tell the computer

what to do. In today's marketplace many users are familiar

with the standard floppy disk used by microcomputers to

store programs and data. In larger computer systems the

programs may be on tape or some other storage medium.

Dedicated computers such as those used in a fire control

system aboard a warship may have their software written

directly onto a silicon chip--something more commonly

associated with hardware. Regardless of the medium used to

introduce the program into the computer it can all be termed

software.

The overall importance of software in the computer

industry is difficult to underestimate. A readily

understandable measure is money. Software is big business

and indications are that it has surpassed hardware as the

1

most expensive part of a contemporary computer system. Over

10 years ago estimates for the World Wide Military Command

and Control System (WWMCCS) were put at $50 to $100 million

for hardware and $722 million for software [Ref. l:p. 41].

More recently the Strategic Defense Initiative (SDI) has

been deemed impossible because development of the required

software is considered impossible [Ref. 2:p. 46]. Develop-

ing software involves the following steps:

1. Problem definition;

2. Software design;

3. Coding;

4. Testing;

5. Implementation;

6. Maintenance.

While some software projects may be larger than others these

steps are involved in finding and developing a computer

solution to a problem.

B. PURPOSE OF THE THESIS

Vendors claim that part if not all of the software

development process can be automated with products they have

introduced to the marketplace. This thesis will attempt to

explore many of these products and answer the following

questions.

1. What part of the development process does the product
automate and what exactly does automate mean in the
particular application?

2

2. To what degree does the product surveyed meet the need
for a programmer interface between the user and the
application?

3. Do products that claim to produce code automatically
in fact write error free, syntactically correct code?
How "automatic" is automatic ,de generation software?

4. If the answer to 3 is yes, what input is required to
produce a computer program? What techniques are used
to generate code?

C. SCOPE OF THE THESIS

This research project is limited to a static evaluation

of commercially available software tools. Primary emphasis

will be placed on products that generate computer code such

as FORTRAN, PASCAL, or COBOL. Also included are fourth

generation language application generators and microcomputer

application program generators. Specifically excluded from

the research project are compilers.

D. ORGANIZATION OF THE THESIS

The presentation of this thesis is organized into five

chapters including this introduction. In Chapter II a

number of key issues associated with software development

will be presented including the Software Development Life

Cycle (SDLC), the Software Crisis, and a brief look at the

evolution of computer programming languages. The third

chapter is a presentation of a classification and taxonomy

of software development tools that was published by Raymond

C. Houghton. The fourth chapter is a review of commercially

available automatic code generating software systems. The

3

final chapter contains conclusions and recommendations based

on this study with suggestions for areas of further study

related to this topic. The Appendix is a listing of other

software systems that fit the automatic code generating

classification.

.M m iai l l ul ii i gn a m "4

II. KEY SOFTWARE ISSUES

A. INTRODUCTION

The introduction highlighted the important role software

plays in a computer system. This chapter provides a more

in-depth look at software and some of the key issues

involved in its development. It will describe the software

development life cycle, identify the stages of the life

cycle that are the most likely candidates for automation,

define the "software crisis," and offer reasons for the

existence of the crisis. Finally, it presents a brief look

at the problem of communicating with a computer in a

language it understands and some of the solutions currently

in use.

B. THE SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

When viewing a problem for which a computer solution is

being considered or has been found it is common to think in

terms of a system, a collection of components assembled to

interact and achieve some goal. In a computer system the

components are computer equipment or hardware, programs,

data, procedures, and personnel. [Ref. 3:p. 25]. The

program component is often looked upon as a system itself.

The development of the program, or software, system is known

as the software development life cycle. The historical life

cycle model (Fig. 2.1) is the view most often taken in the

5

REQUI REMENTS

11> SPECIFICATION

K> DESI GN

K I MPLEMENTAT I ON

-:0 INTEGRATION

K> TESTING
K>.DEPLOYMENT

SMA INTENANCE

Figure 2.1 Historical Wife Cycle Model

development of a software system. It is this life cycle

model, or a variation thereof, that is the candidate for

overhaul in the software development process. Automating

all or part of the process can reduce errors, speed

development, and reduce the cost. (Ref. 4:p. 26].

In the introduction to this thesis software development

was presented as a six step process. As presented they are

simply a variation of the historical life cycle process:

1. Problem definition;

2. Software design;

3. Coding;

4. Testing;

5. Implementation;

6. Maintenance.

6

All of these activities are labor intensive, costly, and

prone to error. The prospect of automating them is exciting

but may not be feasible.

The definition of the problem itself seems an unlikely

candidate for automation. Technology in use today still

requires that the user identify the problems that are

candidates for a computer solution whether it be a business

payroll system, an inventory system, or a game.

Once the problem has been identified, a method of

solving it using a computer must be developed. Given that a

computer solution must input certain data elements,

manipulate the data, and return a solution identifies it as

a known, structured activity. As such it can be looked upon

as a candidate for automation. [Ref. 5:p. 1].

Coding in a software system is the act of putting the

problem solution into a form understandable by the computer.

It too is a structured task. In fact many of the languages

used to program a computer are known as structured languages

referring to the strong procedural and data structuring

capabilities.

After a computer program has been coded, it must be

thoroughly tested to validate the design and coding of the

program. The importance of testing in the software

development life cycle cannot be overemphasized. Estimates

are that as much as 40% of the entire software development

effort is expended on testing [Ref. 6:p. 89). Because of

7

the intense resource expense involved in testing, any

automation of testing can prove of great value. Many

categories of automated tools exist including test data

generators and test file generators [Ref. 6:p. 316].

Automated testing tools will not be examined in this thesis

unless the automated tools under examination include some

automated testing features.

Implementation of the software system refers to the act

of putting the system into regular use. The methods of

implementation can vary as can the impact of the system on

the users. The actual motion of putting the software in the

computer and getting it to run will not usually involve the

user except in microcomputer based systems or user developed

systems. Automation therefore will likely be limited. The

inclusion of training in the implementation step opens

possibilities of on-line tutorials and computer-aided

instruction as examples of automation.

The maintenance of software refers to the act of making

some sort of alteration to existing software. This action

takes different forms. Corrective maintenance fixes errors

in the software while adaptive maintenance refers to

modifications made so the software will properly interface

with a changing environment. Recommendations for new

features or modifications of existing functions comprises

perfective maintenance. A rarer form of maintenance is

preventive maintenance that is performed to enhance future

8

maintainability or reliability. Research indicates that the

major proportion of the maintenance effort is devoted to

perfecting existing software. [Ref. 6:pp. 323-326]. It can

be seen that the automation of software maintenance is

dependent on the type of maintenance being performed.

Rewriting code as a result of a change to factors in the

algorithm, say a different method of figuring a sales

commission, is similar to automating code generation. On

the other hand, the design of an enhancement feature may be

less adaptive to automation.

C. THE SOFTWARE "CRISIS"

In the evolution of the computer industry software has

lagged behind hardware to the point that the problem is

often referred to as a crisis (Ref. 6:p. 22). It is not

that the software available does not do what is intended but

refers instead to the development and maintenance of

software to meet a rapidly escalating demand from the user

community.

The evidence to support the allegation that software is

indeed in a crisis situation is ample. An early example of

the difficulties involved with software development is found

in a project that goes back over 20 years. The development

of the IBM Operating System 360 fell far behind schedule in

development and is a classic example in the software

development literature of the problems associated with

software project development (Ref. 7:p. 35].

9

More common in the current literature though are the

backlogs of applications development. Carl Flood of Trans

World Airlines states that the applications backlog at his

organization is "tremendous" [Ref. 8:p. 651]. Other

authorities simply state that there are backlogs of several

years [Ref. 9:p. 60]. The applications backlog that is

documented reveals only a part of the overall backlog.

Frustrated users may look at the backlog as impossible to

overcome and as a result stop making requests of the data

processing shop of an organization. This invisible backlog

may rival the documented backlog in size. [Ref. 10:p. 4].

There are many reasons for the software crisis. For one

thing, after software is developed it requires maintenance.

The force of personnel needed for maintenance is the same as

the one used in the initial development. As a consequence,

the size of the force available for further software

development decreases as more applications are developed.

A dramatic increase in the amount of potential computing

power in the hands of users has also contributed to the

crisis. One measure of computing power that can be used is

the amount of main memory available to the user. In 1981

International Business Machines (IBM) offered their personal

computer (PC) with 64 kilobytes of main memory at a retail

price of about $3000.00. In contrast, the Atari Corporation

recently introduced their 1040ST model PC with one megabyte

of main memory at a suggested retail price of $999.00.

10

[Ref. ll:p. 87]. Similarly, Digital Equipment Corporation's

MicroVAX computer provides power similar to that of the

larger VAX line of computers, but at about $30,000 is only a

sixth the price of the larger machine [Ref. 12:p. 44).

In this price range the user community widens to include

individuals and smaller business entities. While this trend

may be hailed by some, it further complicates the software

crisis by diversifying the application demand. The

traditional scientific applications are joined by a

stockbroker's client tracking system and dispatching and

billing systems for transportation companies. [Ref. 12:p.

44].

Another factor contributing to the software crisis is

the overall shortage of development personnel. With the

increase in demand from the aforementioned new user

community, many companies that previously maintained an in

house development team are finding it no longer economically

possible. Experienced software developers are lured away to

more lucrative jobs with software development firms that are

dedicated to the development of software for a larger group

of users.

There is no simple solution to the software crisis,

because the causes are so diverse. Among the many

ingredients that could possibly help the software crisis are

better and more diverse software development tools. The

remainder of this thesis will focus on various software

11

development tools currently available from commercial

vendors.

D. COMPUTER LANGUAGES

Unleashing the potential problem solving power of a

computer requires that the computer be told what to do in a

manner that it understands. In this section, a brief review

of the languages that have been developed to communicate

with a computer will be presented. The review will include

a brief description of the language, its uses, strengths and

weaknesses.

Because of the overwhelming number of languages that

have evolved in the short history of digital computers it

would be impossible to present them all here. In fact, it

is realistic to say that a comprehensive presentation of all

computer languages ever developed could never be made,

simply because some are developed for one time special

applications or solely for research purposes. As such they

may never come to the attention of the community at large.

The languages chosen for presentation here were selected

because they represent a major milestone in language

development, are in such wide use throughout the software

development community that they represent a significant

percentage of the overall market, or have some other

attribute that makes it significant to this study.

At the heart of every computer is the machine language.

The language is used by the programmer to communicate with

12

the computer at the most basic hardware unit, the logic

gate. It is characterized by binary code, strings of O's

and l's, and any program written in machine language is

referred to as an object program (Ref. 13:p. 145]. The

strength of machine language is that well written and

documented programs can make efficient use of a computer's

main memory and optimize execution of the program. The

advantages of machine language are offset by the many

disadvantages, however. In an environment where labor

resources are already used intensively, machine language

programming only adds to the problem. The resultant code is

difficult to read, test, and maintain. Because the

programmer specifies exactly what operation is to take place

and the address of the data to be operated on, the simple

act of inserting or removing a single line of the program

will result in the addresses of all other instructions to be

incorrect. Finally, machine language programs are hardware

specific and portable only to other processors that share

exactly the same instruction set. [Ref. 4:p. 11).

Currently machine language is seldom used and for most

applications would be inappropriate.

Closely associated with the machine language of a

particular processor is the assembly language. The most

noticeable characteristic of assembly language is its

mnemonic form. Instead of working with binary strings the

programmer writes the program using shorthand style words

13

for each instruction in the program. The other advantages

and disadvantages associated with machine language also

apply to assembly language. Assembly language is still used

for writing applications; at Trans World Airlines, for

instance, most applications are still written in assembly

language because of a need for processing efficiency [Ref.

8:p. 657].

There is a fine line between what has previously been

cited as machine language and assembly language. The merits

of the debate put forth by the various factions is not

germane to this thesis. What the reader must remember is

that any other symbolic or artificial means of programming a

computer must eventually be translated into this machine

understandable form. The methods in use are compilers and

interpreters. These are also software components but the

difference between them is subtle. An interpreter will read

a program statement-by-statement, convert it to machine

code, and executing the statement "on-the-fly." A compiler

on the other hand will read the entire program before it is

executed and can thus realize efficiency in execution speed

and memory optimization.

The first artificial language to be developed and gain

widespread use is Formula Translating (FORTRAN) System that

was developed by an IBM research group headed by John

Backus. The language specifications were first published in

1956 and pertained only to the IBM Model 704 computer. From

14

this humble beginning, the language grew to become what is

widely recognized as the most popular programming language

among the engineering and scientific communities. Some of

the criticisms of FORTRAN were that it lacked direct support

of the structured constructs, had poor data typing, and

could not easily support string handling. Some of these

deficiencies have been corrected in newer standards of the

language.

Perhaps the most widely implemented language is the

Common Business Oriented Language (COBOL). As the name

implies this language is oriented towards business data

processing applications. COBOL was developed for

applications with relatively simple algorithms, but a high

degree of input and output such as a payroll or inventory

for instance. COBOL is also characterized by its English-

like syntax that makes the statements somewhat easier to

read and understand. Though the syntax makes COBOL programs

fairly easy to write, even the simplest of programs can

become quite lengthy.

A common first language for beginning programmers, and

one that is usually available on all microcomputers, is

BASIC, the Beginner's All Purpose Symbolic Instruction Code.

It was developed at Dartmouth College in 1965 as an easy to

learn, easy to use first language that could serve as a

stepping stone to the more powerful languages such as

FORTRAN. The language constituents, LET, RETURN, IF, etc.,

15

are easy to understand, but many versions of the language

have developed over the years and fluency in the language by

a user still requires dedicated study.

A language that has gained prominence recently, particu-

larly in Department of Defense arenas, is ADA. Named for

Lady Ada Lovelace, it was developed by the Department of

Defense as the standard language for embedded computers,

i.e., computers that are integral parts of larger systems.

It imitates other languages in structure and notation, but

supports many features to assist in interrupt handling,

multitasking, and operations at a machine dependent level.

Because ADA is required for use in many Department of

Defense applications, it can be assured of a strong future.

An important aspect of ADA is that strong measures are being

taken to insure standardization. The Department of Defense

registered ADA as a trademark and will not permit use of the

name on a compiler unless it has been validated by them.

Finally, the current vogue in computer languages is what

are termed fourth generation languages, 4GLs for short. The

first generation of languages was machine code, the second

generation assembly language, and the third generation those

machine independent languages such as FORTRAN, COBOL, BASIC,

and others. An exact definition of 4GLs is difficult. Some

would call them data base languages but not all use a data

base. Others call them nonprocedural languages, but many

contain a procedural code. James Martin uses the following

16

benchmark to define 4GLs: if a language cannot produce

results for its users in one-tenth the time required using

COBOL it should not be called a fourth generation language.

[Ref. 10:p. 28]. Whether it is a data base language or

nonprocedural language is really not important. The

distinguishing feature of a 4GL is that it allows the user

to specify the desired solution and not break the problem

into an algorithm. Their strength is in the English-like

statements that provide fast, efficient development of

applications using high-level, nonprocedural specification

syntax. [Ref. 9:pp. 48-49). Commercial examples of 4GLs

are IBM's Structured Query Language (SQL) and Cincom's

MANTIS. In the microcomputer inventory of software

Ashton-Tate's dBASE relational database software could be

classified a 4GL. There are no standards yet for these

languages, although SQL is currently under consideration.

As each generation of computer language has evolved, the

level of abstraction associated with it has increased.

Figure 2.2 shows the relationship between the level of

abstraction and the generation of the programming language.

On the vertical axis the value LOW corresponds to the binary

code of O's and l's while HIGH equates to the vernacular.

It is emphasized that this evolution is not a continuous

function and the exact slope of the curve is likely to be a

matter of debate. However, the relative position of the

poin~ts is accurate. The fourth generation languages with

17

their strong English-like statements are further from the

binary machine code that the computer understands than any

other language to date. This level of abstraction and

sophistication means that the user, more than ever, is

reliant on compilers to carry out the detailed translation.

HIGH

X

Level
of

Abstract ion X

X

LOW X

Ist 2nd 3rd 4th

Language Generation

Figure 2.2 Programming Language Abstraction

Generally it can be said that successive generations of

software serve as "automatic" code writers for the preceding

generation. Development of each language is usually an

attempt to provide the user with a more powerful method of

communicating instructions to the computer. However,

because each language brings with it a particular syntax and

lexicon the common errors involved with coding a computer

program remain. Full realization of the potential power of

18

, . ---- - . mm m u ~ m~ mmmun ~ nm u l "i " *

a language requires extensive training on the part of the

user. Still, even among the most knowledgeable of

programmers errors continue to occur and software

development costs continue to rise because of the interface

between the human code writer and the exact requirements of

the language.

E. AUTOMATIC CODE GENERATION

In the preceding section describing the SDLC, each of

the stages was assessed regarding its candidacy for

automation. Many developers have chosen to automate the

task of coding. Utilizing an automatic code generator in

the software development process can attack some of the

causes associated with the software crisis. First, because

of the precise manner in which computers perform a task,

many of the errors related to syntax and vocabulary can be

eliminated. Although the debugging process of software

development involves much more than eliminating errors of

this type, the error reduction of any type is most cost

effective the earlier it is accomplished. In addition, it

is probably safe to assume that a computer can write code at

a rate that exceeds that of even the most proficient coder.

A second important point to consider in the automatic

generation of code is the possibility of eliminating the

programmer as the link between the user and his application.

The historical SDLC and its derivatives imply the use of a

programmer/analyst to guide the user's specification to an

19

application as depicted in Figure 2.3. The user's level of

participation in the process is variable and often is a

cause for many disgruntled customer's complaints that what

was received was not what they specified. With the user in

a position to utilize a tool that can automatically put a

specification into code, such problems could be avoided. It

is likely too that the application backlog would decline and

an already austere supply of programmer/analysts would be

available for newer applications.

USER

SPECIFICATILN

------ SPECI FICATION
PROGRAMMER/ + APPLICATION
ANALYST SDLC

Figure 2.3 Historical User--Programmer--
Application Link

F. SUMMARY

This chapter has focused on some of the many issues

involved with the development of software. It has reviewed

the Software Development Life Cycle (SDLC) and assessed the

likelihood of automating the different stages. A look at

20

the software crisis followed where causes were identified

and possible solutions presented. The third section

reviewed the way man communicates with the computer, through

computer languages. A short review of the evolution of the

languages from first generation machine code to the more

recent fourth generation languages was presented. Finally,

the automation of the code writing stage of the SDLC was

presented along with potential areas of savings in the

development of software.

In the next chapter a taxonomical view of commercially

available automatic code generating software will be

presented. In addition, specific products will be reviewed

and classified.

21

III. CLASSIFICATION AND TAXONOMY OF SOFTWARE
DEVELOPMENT TOOLS

A. INTRODUCTION

The previous chapter presented a number of issues

related to the development of software systems and

introduced software systems that automatically generate the

code required by the system. This chapter will make a

general classification of software development tools and

follow with a detailed breakdown of the features that may be

found among them. The primary source for the information in

this chapter is from work by Raymond C. Houghton, Jr. for

the National Bureau of Standards (NBS). It is published

in NBS Special Publication 500-88, "Software Development

Tools." The study presents a solid base for software

development tool classification and taxonomy. However,

because it was issued in 1982 after 3 years of study, many

of the currently available tools, particularly the 4GLs,

were not available at that time and are not included in the

study. Where necessary to accommodate this new technology,

Houghton's work will be appropriately expanded.

B. GENERAL CLASSES OF SOFTWARE TOOLS

It has already been shown that automation of every stage

of the SDLC has been attempted. The earliest and most

common to most users are the compilers, debuggers, and

22

editors. Currently the inventory includes program

generators, application generators, and software systems

design development tools. Houghton put these tools into a

classification scheme of six categories. They are:

1. Software Management, Control, and Maintenance Tools;

2. Software Modeling and Simulation Tools;

3. Requirements/Design Specification and Analysis Tools;

4. Program Construction and Generation Tools;

5. Source Program Analysis and Testing Tools;

6. Software Support System/Programming Environment Tools.

In Houghton's work, two-thirds of the tools studied were

from categories (1) and (5). One of the less populated

environments he noted was category (4). The tools studied

in this thesis all belong in this class.

C. TAXONOMY OF SOFTWARE TOOLS

To provide users with a more useful method of

determining tools of interest, a taxonomy of their features

was developed by Houghton. Each of the tools studied was

then classified by features. Classification is a hierarchi-

cal arrangement (Figure 3.1) with the highest level being

the most abstract and including all features. The second

level covers the basic processes of a tool; input, function,

and output. Note that these are the basic functions common

to any system and particularly a software system. At the

third level of the taxonomy are the classes of tool

features. They are:

23

1. Subject (I) ;

2. Control input (C);

3. Transformation (T);

4. Static analysis (S);

5. Dynamic analysis (D);

6. User output (U);

7. Machine output (M).

From this level Houghton identified a total of 53 tool

features that are at the bottom of the hierarchy.

input function ou ut

(I) (C) (T) (S) (D) (U) (M)

(1-4) (1-2) (1-7) (1-19) (1-10) (1-5) (1-6)

Figure 3.1 Software Tool Taxonomy

The following paragraphs will detail this taxonomy of tool

features, with definitions of most of the terms used in this

classification.

24

1. Input~
The forms of input to the software tool fall into

two classes. Control input (C) is defined as how the tool

should operate, and subject (I) is based on what the tool

should operate on. The latter of these is usually the main

input to the tool, and according to Houghton has four types:

code, very high level language (VHLL), data, and text. Code

is a high level, assembly, or object level language while

VHLL, according to Houghton, refers to languages that are

not in an executable form. Many of the systems that use

VHLL input are oriented to specifications, descriptions, or

requirements. Of the 37 automatic code generating software

systems catalogued by Houghton, only one did not use either

code or VHLL as subject input.

2. Fncio

Input to a software system is processed by functions

that fall into three classes: transformation, static

analysis, or dynamic analysis. Of the 53 tool features

listed in Houghton's study, over two-thirds are subsets of

this basic tool process. Among the automatic code

generating systems the most common are the formatting,

translation, and synthesis features in the transformation

class. Very few of the automatic code generating systems

utilize the features found in the static and dynamic

analysis classes.

25

As noted, formatting, translation, and synthesis are

the most common function features of the automatic code

generator systems. Formatting refers to the arranging of a

program according to predefined or user defined conven-

tions. Examples seen in tools using this feature are

alphabetized variable declarations and indenting state-

ments. The translation function is the conversion from one

language to another. Tools that use the synthesis feature

are generating an application or program from a specifica-

tion or from an intermediate language. Houghton identified

this feature as one that was found in application and

program generators, and that much promise for increased

programmer productivity was associated with these tools.

Restructuring, optimization, editing, and instrumentation

are the other features in the subset of the transformation

function.

Static analysis features describe the operations on

the subject with no regard to the executability of the

subject. Houghton identified 19 features in this class. Of

the tools in the automatic code generating class, only 21%

display any static analysis features; of those that do,

management and error checking are the most common. The many

features of static analysis and their definitions are:

1. Management--aiding the control of software
development.

2. Cross reference--logical reference of entities to
other entities.

26

3. Scanning--sequential examination of an entity to
identify key areas or structure.

4. Auditing--an examination to determine adherence to
predefined rules.

5. Data flow analysis--graphical analysis of the
sequential patterns of definitions and references of
data.

6. Consistency checking--determines if each entity is
internally consistent with uniform notation and
terminology, and is consistent with its specification.

7. Statistical analysis--performs data collection and
analysis for statistical purposes.

8. Error checking--determination of discrepancies, their
importance and/or cause.

9. Structure checking--detection of structural flaws
within a program.

10. Comparison--determining and assessing the differences
between two or more items.

11. Completeness checking--determining if an entity has
all its parts present and if its parts are fully
developed.

12. Complexity measurement--determining how complicated
an entity is by evaluating some number of associated
characteristics.

13. Tracking--following the development of an entity
through the life cycle.

14. Interface analysis--checking for consistency and
adherence to predefined rules along the interfaces
between program elements.

15. I/O specification analysis--analysis for the purpose
of generating input data.

16. Type analysis--evaluating the domain of values
attributed to an entity to ensure proper and
consistent definition.

17. Cost estimation--assessing the behavior of variables
that impact the life cycle cost.

27

18. Units analysis--determining if the units of physical
dimension of an entity are properly defined and
consistently used.

19. Scheduling--assess software development schedule and

its impact on the life cycle.

The final features in the function class are those

defined as dynamic analysis. These are operations that are

determined during or after execution. It requires some form

of symbolic or machine execution and provides information

about the program's execution behavior. Houghton's study

found only one system in the application and automatic code

generation class that made use of any sort of dynamic

analysis features. The 10 features in this class and their

definition's are:

1. Coverage analysis--used to determine the adequacy of
a test run by determining and assessing measures
associated with the invocation of program structural
elements.

2. Tracing--making a historical record of execution of
a program.

3. Tuning--specifying which parts of a program are
executed most often.

4. Simulation--computer generated representations of
features of a system.

5. Timing--reporting the CPU times associated with the
program.

6. Resource utilization--analysis of the use of
hardware or software resources.

7. Symbolic execution--utilization of symbolic rather
than actual data values to reconstruct logic and
computations along a program path.

8. Assertion checking--checks user-embedded assertion
statements between elements of a program.

28

9. Regression testing--detects errors that may have
been caused by changes or corrections made during
software development or maintenance, by rerunning test
cases that have been previously properly executed.

10. Constraint evaluation--generates and/or solves input
or output constraints to determine test input or to
prove correctness of the programs.

3. Output

The links between the tools and both the user and

the computer make up the output features. Features take on

different types and different forms.

User output is the type that the tool returns to the

human user. According to Houghton it falls into one of the

five following types:

1. Listings--probably the most familiar form to most
users, and lists the source programs or data.

2. Tables--exhibition of facts or relations in a
definite, compact, and comprehensive form arranged in
columns.

3. Diagnostics--machine output that indicates the
discrepancies in a system.

4. Graphics--graphic presentation of operations, flow,
etc., such as flow charts, hierarchical Lree, and
control maps.

5. User-oriented text--natural language (English)
output, such as documentation and reports.

Application and program generating systems catalogued by

Houghton incorporate all of these features, except user-

oriented text, with two-thirds of the systems utilizing

listings and diagnostics as their user output.

Machine output features are those that manage the

interface between the tool and the computer or another

29

non-human user, another tool perhaps. In Houghton's study

six features are identified. They are:

1. Source code--a program written in a language that
must be translated before execution; COBOL for
instance.

2. Data--meaningful representations of characters or
numeric values.

3. Object code--machine language output; normally the
output of a translation process.

4. Intermediate code--code that is classified between
source code and machine code.

5. VHLL--a program written in a very high level
language.

6. Prompts--operators that interactively prompt the
system operating the tool that it is ready for the
next input.

The overwhelming machine output feature found in the

application and code generating systems by Houghton is

source code. None of the systems produced VHLL or prompts

as their machine output.

The many features presented serve as one means by

which software development tools can be evaluated by a

potential user. Others that must also be considered are the

environmental factors of portability, hardware requirements,

and implementation language. And, of course, a tool must be

available.

D. SUMMARY

This chapter has presented the reader with a detailed

look at the many features identified by Raymond C. Houghton,

Jr. in his study of software development tools. In

30

.
....

addition, the features most commonly found among the tools

identified as Program Construction and Generation Tools have

been noted. Though the study is somewhat dated,

particularly in computer technology terms, the taxonomy

developed is sound and can be applied to the tools that are

the subject of the following chapter.

The next chapter will review four software development

tools that fit in the Program Construction and Generation

Tools category and that are currently available in the

commercial marketplace.

31

IV. REVIEW OF AUTOMATIC CODE GENERATING SYSTEMS

A. INTRODUCTION

Thus far this thesis has presented the problem of

software development and how it has contributed to the

software crisis. One possible remedy to the crisis is the

automation of the SDLC or some parts thereof. Among the

many automation tools available to software developers are

those that automatically generate code. This chapter will

review four commercially available products that fit into

this category. The four systems are:

1. USE.IT from Higher Order Software, Inc.;

2. COGEN from Bytel Corporation;

3. INFORMIX/4GL by Relational Database Systems, Inc.;

4. GENIFER from Bytel Corporation.

Primary sources for the information presented are user

documentation and library sources. Additionally, two users

with USE.IT experience shared their thoughts. A

demonstration and hands-on experience with GENIFER was also

available.

The systems reviewed are by no means the only ones

available nor are they presented here because they are

either the best or worst examples. They do, however,

represent two distinct subsets of Houghton's Program

Construction and Generation Tools classification. USE.IT

32

and COGEN both generate application program source code

written in third generation languages, USE.IT in COBOL,

FORTRAN, PASCAL, ADA, or C and COGEN in COBOL. INFORMIX/4GL

and GENIFER are fourth generation language application

development tools. The source code produced by GENIFER is

the Ashton-Tate dBASE programming language. INFORMIX/4GL

uses as its program source code Relational Database System's

RDSQL.

B. USE.IT

Higher Order Software, Inc. introduced USE.IT in 1982 as

an integrated systems development tool. Based on the

functional life cycle process (Figure 4.1), USE.IT is an

automated systems engineering tool that is incorporated by

the analyst to design, analyze, and implement the desired

system.

I ,0T GE
DEFINE ANALYZE ALLOCATEEXCT

Figure 4.1 Functional Life Cycle Process

33

The functional life cycle model is defined by Hamilton and

Zeldin as a formal model of the functions and the

relationships between those functions which exist in a

system for effectively developing a system. It could be a

model for developing a software system, a hardware system,

or some combination thereof. It can also include a system

of people. [Ref. 4:p. 38].

USE.IT, in the role of manager in the functional life

cycle model, automates the functional life cycle as follows.

The system analyst translates user requirements into the

USE.IT requirements definition language, AXES. Once the

requirements have been defined, analysis of the requirements

by the Analyzer component of USE.IT insures logical

completeness and consistency. Finally, the Resource

Allocation Tool (RAT) transforms the analyzed Axes

specification to another representation. This is usually

third generation language computer code but other options

exist. A more detailed description of this process follows.

Specification of the system requirements is accomplished

using a graphical representation of the functional breakdown

of the system known as a hierarchical control map (Figure

4.2).

Decomposition continues from root node to the leaf nodes

where further decomposition is not required. Every node of

the control map is specified in terms of data types,

function, and control structure (Figure 4.3).

34

Parent Node

Figure 4.2 Hierarchical Control Map

Members of Members of

Output Data Type(s) Function input Data Type(s)

Parent

Node

Controt

Struc tur'e

Offspring

Nodes

outputs =Function (Inputs)

Figure 4.3 Nodal Relationships

35

Input and output values are individual data types and

can be integers, rational numbers, Boolean values, or other

data types. A function relates the input to the output.

The control structure specified at each node defines the

control relationship between a parent node and its

offspring. In USE.IT technology there are three primitive

control structures: Join (J), where offspring are processed

in sequence, Include (I), where offspring are processed in

parallel, and Or (0), where a choice must be made between

offspring. There are more complex control structures that

can be defined in terms of these primitive structures.

The leaf nodes fall into four categories: primitive

operations, defined operations, external operations, or

recursion. Primitive operations, labeled (P) on the control

map, are the lowest level of decomposition. They are very

low-level functions frequently performed. Common primitives

can be collected in a system library. The defined

operations, labeled (OP) on the control map, represent a

call to a user-defined operation or subroutine. External

operations, labeled (XO) on the USE.IT control map,

represent calls to user-supplied subroutines not generated

by other USE.IT specifications. Leaf nodes that are called

recursively by a higher level node are labeled (R) on the

control map.

A simple example of the USE.IT control map is presented

in Figure 4.4. The control map is a decomposition of a

36

TAX CALCTAX GROSSPAYI J
F TAXCOMP GROSSPAYFAEDTAX ... I

TAX FEDTAX
| ADD i STATETAX

P

FEDTAX I FEDTAX I GROSSPAY STATETAX LI GROSSPAY
OP P ".0575"

Figure 4.4 USE.IT Control Map Example

function that figures federal and state tax to be deducted

from gross pay. In the example all inputs to the process

and outputs from the function are defined at the top node.

In the example the input is gross pay and the output is tax.

In every nodal family the offspring receive inputs from the

parent. The function is broken into two offspring func--

tions, TAXCOMP and ADD. They are performed in sequence in a

join control relationship. The TAXCOMP node is further

decomposed into two other offspring nodes, MUL and FEDTAX,

that operate in parallel using an include control

relationship. Calculation of the STATETAX is a primitive

function that multiplies the grosspay input by 0.0575 to

output the tax. A defined operation, probably a table look-

up, is used in the FEDTAX function to produce the output

federal tax. Another control map would be needed to show

the detailed decomposition of the FEDTAX function.

37

The user can call on the analyst at any time to perform

an analysis of the specifications created with the graphic

editor. A specification that is found to be logically

complete and consistent is converted into the specification

language AXES. The analyzer tests the specification for

logical completeness by detecting missing functions or

missing data and by guaranteeing that the hierarchical

control map stops at primitive operations on defined data

types. Consistency is insured by enforcing correct

interfaces and data flow. Errors are corrected by the

analyst with the graphic editor. Early incorporation of

this feature allows the programmer/analyst to prototype the

target application giving the end-user an early look at the

application. Any needed modifications can then be made

early in the development process.

An AXES specification that has been proven logically

correct and consistent is passed to the Resource Allocation

Tool. It is the function of the RAT to automatically

generate either source code or object code for the target

machine. The RAT accomplishes this by translating the Axes

language specification into the target language by means of

a general purpose translating algorithm. Detailed

description of the algorithm is proprietary information

presently unavailable. The source code that the RAT

produces is guaranteed by USE.IT to be "bug-free." Specifi-

cations that are processed for one environment (e.g.,

38

FORTRAN) can be processed to another (e.g., COBOL). This

feature gives management the flexibility of transferring a

system from one environment to another. Potential errors in

coding can thus easily be avoided. USE.IT does not allow

the user to reverse engineer a system. Taking an existing

program and generating a corresponding control map would

give a programmer/analyst such options as verifying that the

system is, in fact, logically complete and consistent,

producing documentation for an undocumented system, or

making modifications and insuring completeness and

consistency.

The source code produced by the RAT can be manually

modified. In general, however, it is the intention of

USE.IT to perform all programming, including modifications

and other maintenance, at the graphical level to maintain

completeness and consistency.

Documentation is produced by USE.IT in the form of a

documented hierarchy of requirements. The analyzer will

produce documented error messages or report the fact that no

errors exist if that is the case. Documented code from the

RAT can be requested. The graphically represented system

specification requires a plotter to produce.

USE.IT is available under the DEC VAX/VMS operating

system and can generate COBOL, FORTRAN, ADA, and PASCAL

source code. Under the IBM MVS operating system it

constructs COBOL source code. A complete system, including

39

AXES generator, analyzer, and RAT (for one language only) is

approximately $100,000.

C. COGEN

COGEN is an automated COBOL program generator developed

and marketed by Bytel Corporation. COGEN's target for

generation is standard COBOL business applications such as

file maintenance, inquiries, and reports. COGEN works

interactively with menus and data entry screens to produce

files that are stored for use in independent programming or

by COGEN to produce a source program. Code produced by

COGEN can be modified if necessary and incorporated into

other routines.

The series of main menus around which COGEN is organized

includes five modules:

1. Data Dictionary;

2. Screen Processor;

3. Report Writer;

4. Batch Processor;

5. Program Generators.

Each of these main menu selections leads the user to a

series of data entry screens that generate the modules,

referred to as copy files, that are later used to generate

applications.

A Data Dictionary selection by the programmer will

result in program modules for file and record layouts. Data

definitions are entered that describe the fields in the

40

record layout. Special options and extensions can be

included for data validation and default values. COGEN

generates three COBOL files, FILE SELECT, FILE DESCRIPTIONS,

and FILE DECLARATIVES, when data is defined. These files

can then be included in any further program generation.

The Screen Processor selection produces files for screen

input and output. These screens are then used for

interactive input/output operations when COGEN-generated

programs are executed. The first step taken by the

programmer is to paint an image of the screen specifying the

input/output fields. After the screen has been painted,

COGEN presents the programmer with a series of questions

that complete screen definition including validations and

computations. The data dictionary is consulted for data

definitions. A printer option allows a printout of the

screen image together with field definitions. Files

produced include the screen storage layout and input/output

logic.

Production of printed reports comes from the files

produced from the Report Writer. Report Writer uses one

master file and multiple reference files to construct the

program. Through a series of prompts to the programmer,

COGEN defines headers, report layouts, conditional printing,

control breaks, page size, reference file data selection,

and so forth. After a report name is defined, the name and

type of master file are designated. Report parameters can

41

be printed using the print option. The report working

storage and input/output logic files are produced with this

option.

Processes that can be run in batch without operator

intervention are created by the programmer/analyst with the

Batch Processor. The copy files produced by the module

access data files, select input records, perform

computations, and update output data files. The copy files

produced by the module are batch working storage and update

logic.

Production of source code for business applications

programs is the function of the Program Generators module.

Creation of the application programs uses the copy files

that are produced in the other modules. Programs that can

be produced are Maintenance, Inquiry, Report, or Batch.

After making the selection, the programmer must then name

the program and designate the copy files and screens to be

used. Independent copies of the previously created copy

files are copied into the final program.

As an example, the tax calculation model illustrated in

the previous section could be coded with COGEN. After

making a thorough design of the application the programmer/

analyst would be ready to begin with COGEN. The first step

is to specify data definitions such as GROSSPAY and TAX

using the data dictionary module. In this module the

programmer works in an interactive environment to describe

42

each element with respect to level, type, and other

appropriate COBOL language requirements. Default values and

validation arguments can be specified when appropriate in

this module. Depending on the user requirements, the

process would be further developed for either a batch or

interactive environment. An interactive environment would

require screen design and field definition including

required validations and computations. Data obtained while

working the COGEN tutorial indicates that in the validation

field at least two validation criteria could be specified.

The format is an IF-THEN-ELSE type of statement. A

determination of further nesting of arguments could not be

made. A batch process would require the user to specify the

input files to be read, computations to be performed and

desired output.

In comparison to USE.IT, the COGEN process is strictly a

code generator. It does not automate system definition or

perform a completeness and consistency analysis. Therefore,

the programmer/analyst retains the responsibility for system

design. This evaluation was confirmed during a visit with

Mr. Dan Pines, President of Bytel. Mr. Pines stated that

COGEN is strictly a programmer's tool and is not intended to

remove the programmer from the user-programmer-application

loop. A user with at least an introductory course of study

in COBOL would be able to use COGEN with success. In

addition, while it is capable of producing applications in

43

total, Mr. Pines affirmed that in some instances the

programmer would be required to modify the 20% or so that

COGEN could not produce. Above all else though, Mr. Pines

ardently believes that the key to success in any programming

endeavor is complete and proper data description. It is his

belief that once a programmer has a complete, accurate

design then COGEN will be of value in relieving the chore of

writing code [Ref. 15]. Like USE.IT, COGEN produces "bug-

free" code. The code can be modified as needed and

incorporated into other routines.

In summary, COGEN is designed to improve programmer

productivity. Through each section of the main menu the

programmer/analyst specifies a library of files that can be

assembled into an application program. By design, COGEN is

a tool limited to the business application environment.

USE.IT, on the other hand, is capable of a wider variety of

applications making it more general in its design purpose.

Because of the different design purposes of the two systems,

determining which of the two systems, USE.IT or COGEN, is

better cannot fairly be stated. A prospective user must

evaluate needs against the potential solutions and make the

appropriate decision.

COGEN runs on mini- and microcomputers under a variety

of operating systems including VAX/VMS, CP/M and CP/M-86,

UNIX, MS-DOS, and others. COBOL source code produced

44

adheres to ANSI-74 COBOL standards. Fees for COGEN vary

between $950-$7,500.

D. INFORMIX/4GL

Informix-4GL from Relational Database Systems, Inc. is

designed as an application development package. It's

intended to ease the programmer's job when it comes to

creating menus or submenus, designing screens for data entry

and retrieval, extracting information, and formatting

reports. Relational Database Systems built Informix-4GL

using their database management language, RDSQL. RDSQL is

based on the Structured Query Language (SQL) developed by

IBM. SQL is proposed as the ANSI standard for SQL

implementations and RDSQL conforms to the draft standard.

A key feature in the description of a fourth generation

language is that it must allow the programmer to specify the

desired results without detailing the algorithm needed to

accomplish the result. With Informix-4GL the programmer can

accomplish a number of functions using a few brief

statements. Among the functions that can be performed are:

1. Create menus;

2. Collect input from screen forms;

3. Use SQL to manipulate a database;

4. Call for help screens;

5. Create reports;

6. Collect multi-row data from a single form with
scrolling;

45

7. Provide query-by-example forms;

8. Trap user-entered function and control keys;

9. Set up conditional screen attributes;

10. Access debugging tools;

11. Call 4GL or C library functions.

Creating applications with Informix-4GL is accomplished

through an application development interface called the

Programmer's Environment. Modules are created, compiled,

and linked to the other modules of the application. This

can also be accomplished with library functions. A variety

of utility programs are included with the full Informix-4GL

package.

The basis for automating the application development

process comes from the use of terse keywords such as MENU,

COMMAND, and HELP. Using these commands and their syntax,

Informix-4GL accesses the organization's databases in its

application program. The most important concept to note in

using Informix-4GL to develop an application is that the

data to be processed in the application is independent of

the application. Because of this, different applications

can access the same data using different views.

Creation of a ring menu can easily be accomplished using

the keyword MENU. The user can make a selection by entering

the first letter of the available options or by using the

keyboard spacebar to move to the desired option and pressing

46

return to confirm the request. Figure 4.5 illustrates a

typical ring menu.

MAIN: Customer Orders Stock Reports Exit
Enter and maintain customer data

Figure 4.5 Ring Menu

The creation of the illustrated menu requires only a few

lines of code using the Informix-4GL language. Figure 4.6

shows the code needed to create this menu. In the example

the name of the menu appears after the keyword MENU. The

options available to the user appear after the keyword

COMMAND. A string following the command is listed on the

second line of the screen below the menu options when that

option is highlighted (see Figure 4.5).

MENU "MAIN"
COMMAND "Customer" "Enter and maintain customer data"

CALL cust()
COMMAND "Orders" "Enter and maintain orders"

CALL ord()
COMMAND "Stock" "Enter and maintain stock list"

CALL stock()
COMMAND "Reports" "Print reports and mailing labels"

CALL rept()COMMAND "Exit. "Exit program and return to operating
system"

Figure 4.6 MAIN Menu Routine

47

Below the COMMAND line are a series of steps that the

program will execute for that particular option. In this

case a function is called and when the function returns the

menu is redrawn on the screen. Coding the same menu screen

in a third generation language, C in this instance, requires

about 44 lines of code.

Many other functions can be performed with a very few

lines of code. In screens, default values can be designated

and commands can be specified to automatically advance the

cursor to the next field. Screens are created by writing a

form specification file.

Other features that are of note are that Informix-4GL is

case insensitive. In the examples presented the keywords

were in uppercase for illustrative purposes only. Also,

interfacing with routines written in the C programming

language is possible when necessary. Since the language

supports only addition, subtraction, multiplication,

division, and exponentiation, a C routine would be required

for any other calculation, such as returning a cosine value.

Informix-4GL is a programming language and therefore

does not produce any code, in the traditional sense,

automatically. Realization of the full power of the

language requires the skill of a trained programmer/analyst.

The tax calculation model would be a good candidate for

Informix-4GL. Databases can be developed for employees in

the Informix-4GL environment with the 'CREATE DATABASE'

48

command. A process to compute their gross pay and tax

liability could be developed using the query language to

manipulate the database. Reports could then be generated as

necessary. As with COGEN, there is no analysis for

completeness and consistency. Thus once again, the

responsibility for good design rests with the

programmer/analyst.

Informix-4GL is available for a variety of environments

including a variety of micro-, mini-, and mainframe

computers. Prices range from $995 for IBM PC type

environments to $72,000 for IBM mainframe environments such

as the Naval Postgraduate School's.

E. GENIFER

The final product is another from Bytel Corporation

called GENIFER. With this software development tool the

user can automatically create command files, or programs,

using the dBASE III programming language from Ashton-Tate.

Though GENIFER can alleviate many of the error-prone tasks

that accompanies conventional programming methods, it does

not relieve the programmer of the responsibility for good

design. Before starting the task of developing an

application program care must be taken in establishing

database files and the relationships among them.

From the Main Menu shown in Figure 4.7, the user begins

the development task. Application building with GENIFER is

a three stage process. First, the specifications for the

49

MAIN MENU
1. Data Dictionary
2. Definitions
3. Pro ram Generators
4. Cu.-tomizer
5. Help
Q. Exit GENIFER

Figure 4.7 GENIFER Main Menu

database file must be entered via the data dictionary.

Among the specifications are field names and types, picture

templates, validation criteria, and aliases. Second, the

menus, maintenance screens, and reports are defined.

Finally, the actual dBASE III programs are generated.

For each field the data dictionary maintains the

following:

1. Type--character, numeric, date, or logical;

2. Length;

3. Decimal;

4. Default value;

5. Validations--range, list, or file;

6. Picture--any acceptable dBASE III picture template
without quotes.

The data dictionary does not support memo field types.

Selecting the definitions option the user defines menus,

help screens, maintenance and inquiry screens, and report

layouts for applications. Menus and help programs that are

generated by GENIFER are dBASE III command files. Generated

maintenance, inquiry, and report programs are procedures

50

maintenance, inquiry, and report programs are procedures

that are executed from menus.

Programs are generated automatically by GENIFER from

user specifications utilizing the data dictionary and

definitions specified. Programs consist of dBASE III source

code and can be compiled using dBASE III compilers such as

Clipper. Any sort of data processing that involves the

manipulation of data from one or more databases can be

programmed using GENIFER. The tax calculation model that

has been cited previously is a good example.

If option 4 is selected from the Main Menu the user can

customize Genifer for a particular environment. Among the

environment options that must be customized for Genifer to

execute properly is the specification of a text editor. The

text editor is used to paint screens for menus, reports, and

maintenance and inquiry. The text editor is called from

within Genifer as needed by the user. Any text editor that

returns an ASCII file can be used. Among the more common

are WordStar, WordPerfect, and Edlin.

Using GENIFER, the FEDTAX example previously used was

developed into a simple dBase III program. The programming

task started with a design of the databases and the

relationships between them. In this case, one database for

the employees was created with fields for name, ID number,

grosspay, and federal tax category. A second database with

the fields federal tax category and federal tax rate was

51

created. Genifer was used to create both databases. The

first choice on the Genifer's Main Menu was selected and

from there the process was a simple "fill in the blanks"

operation. After the database was named, given an alias,

and briefly described the fields were defined using an

option called 'ZOOM' by Genifer. With this option the user

is carried to the inner maintenance level of the Data

Dictionary module to maintain the fields of the current

database. The database is actually created with the

'INIT'(iate) option.

The next step in the programming process was to create a

menu that listed the options available to the user. Once

the menu is generated and the programs that support the

options available are generated the programs are executed

under dBASE III with the command "DO file-name", where file-

name is the name selected for the generated program. For

the example FEDTAX the menu has four choices, figure an

employee's tax, update the employee database, update the

federal tax database, and quit.

Option 2 from the Genifer Main Menu leads the user to

another menu where the type of screen to be painted is

designated. In addition to the menus and help screens

option the user can also select maintenance and inquiry

screens, reports, or quit. Like the data dictionary module,

the definitions module is a two-tiered maintenance program.

The top layer is used to define the screen and specify its

52

parameters and the inner screen is used to paint the layout

using the selected text editor. To define the menu screen

it must be given a name, an exit key, a default select key,

and the user will be asked if the screen is to be cleared

before display. After definition, painting the screen is

via the text editor. The user again selects the 'ZOOM'

option to get to the editor. The only restriction here is

that a 'field painting' character must appear somewhere on

the screen. The character is defined in the Environment

Customizer and the default value is the underscore.

Once the screen has been painted it must be defined.

Definition indicates what action is to be taken when a user

enters a particular selection from the menu. In the case of

the tax example, selection 1, 2, or 3 will call dBASE

procedures. Option 4, Quit, terminates the program and

returns the user to the dBASE dot prompt.

To complete the programming exercise screens have to be

painted and defined for maintenance of the two databases and

the report. The procedure is basically the same for all

with the report definition the most complex and powerful.

After the report screen has been defined and painted

line assignments must be made. Each line can be designated

in a variety of ways such as a report header that appears

only on the first page of the report, a page header for each

page, and so forth. The detail option is the selection that

designates the actual contents of the report. It contains

53

fields from the records in the databases or computed fields.

For the tax example the name, id, grosspay, and federal tax

fields were written directly and the state tax and total tax

were computed. Designating each blank in a line of the

report is done via another fill-in-the-blank menu that

appears at the bottom of the screen during the report line

assignment.

Generating the dBASE III code is done by Genifer through

the use of skeleton files and the databases, definitions,

and assignments made previously by the user. After

selecting the program generation module the user is again

taken to another menu to select either a menu and help

screen program, maintenance or inquiry program, or a report

program. Each of the options has a unique fill-in-the-blank

screen that is completed by the user before Genifer creates

the program. The menus and help screens are the simplest

with no further action required other than selection of the

menu program to be generated from the list of menu or help

screens that have been defined. For maintenance programs

the user has the option of generating programs that maintain

more than one database.

In summary, program generation with Genifer is a

somewhat repetitive task of moving through menus and filling

in the blanks. Key to success, however, is again design.

Genifer was not difficult to learn to use. Knowledge of

dBASE III made it easier and it is probably not reasonable

54

to expect it to eliminate the programmer from the

user-programmer-application loop.

An additional feature of GENIFER is the security

software distributed with the program. It allows

installation of a password-protected user interface for the

developed application with no additional programming. A

user will be allowed four tries before termination.

Successful access requires that the user provide an ID that

matches a name in the user's database file and must then

match the password specified for that user. A successful

login will allow access to specified menus.

GENIFER comes with a tutorial disk and is not copy-

protected. Although the system can be run on a minimum two

floppy disk configuration, a hard disk is recommended.

GENIFER is priced at $395.

F. FEATURES OF SYSTEMS

The systems discussed can all be evaluated by the

features presented in the previous chapter. Table 1 lists

the features applicable for the systems discussed in this

chapter. The dominant input feature of these systems is

VHLL. This supports Houghton's observation that automatic

programming systems display this trend. The most common

output feature remains listings with VHLL gaining in

prominence. As 4GLs mature VHLL will most likely continue

to display growth.

55

TABLE 4.1

SYSTEM FEATURES

Sys t ern Features
Name Input Function output

USE.IT code formatting listings
VHLL translation graphics

synthesis user text
cross ref. source code
error check data
interface
analysis

simulation
COGEN code formatting listings

VHLL synthesis source code
_,error check

INFORMIX-4GL code synthesis listings
VHLL error check VHLL

GENIFER VHLL formatting listings
synthesis VHLL
error check

There may be other features that could be identified

through dynamic analysis and benchmarking. Resource

constraints prevented such study. As a result of the static

nature of the reviews, some desired information was

unavailable due to its proprietary nature.

G. SUMMARY

This chapter has presented a review of four software

development tools that are available from industry sources.

Appendix A is a listing of other software development

systems that are classified with the systems reviewed as

Automatic Code Generators. Two of them, USE.IT and COGEN,

produce applications in third generation languages.

56

INFORMIX-4GL and GENIFER work with the more recent fourth

generation languages. All of the systems interface with the

programmer through menus prompting for inputs. None of the

products purport to eliminate the programmer from the user-

programmer-application link that was presented in Chapter

II. With the exception of USE.IT, all of the systems are

available to the microcomputer user.

Comparing the four systems briefly it can be seen that

USE.IT displays the most potential for accommodating a wide

variety of applications. It is also the most costly and

suffers from a fairly long learning curve according to

interviews with two users (Refs. 16,17]. USE.IT along with

COGEN and INFORMIX-4GL seem to be tools geared more to the

larger production environments. GENIFER would be considered

more of an individual productivity enhancement tool. A

decision by management to make one of these tools a standard

for development would require an in-depth cost-benefit

analysis prior to capital investment. USE.IT with its

complex, long learning curve and relatively high cost would

seem most attractive to a large production software

environment or one where a specific software language, say

ADA perhaps, environment has been designated. On the other

hand, COGEN is attractive to many software development

centers where the COBOL language is in use. A larger

business that has yet to develop a standard language tool

may be inclined to select the INFORMIX-4GL environment and

57

gain the flexibility that accompanies the separation of data

from applications. Finally, GENIFER will be attractive to a

production center in the microcomputer environment.

Individual users as well as application development centers

will find GENIFER an attractive option.

The following chapter presents the conclusions and

recommendations based on the findings of this study.

58

V. CONCLUSIONS AND RECOMMENDATIONS

A. INTRODUCTION

This thesis has discussed the important role of software

in a computer system, the development of software, and the

software crisis faced by the information systems manager.

Among the potential solutions to the software crisis is the

automation of some or all parts of the SDLC. This thesis

has concentrated on the software development tools that have

automated the coding stage of the SDLC. Chapter III

presented a taxonomy of software development tools which was

developed by the National Bureau of Standards. The

features identified in that study were compared to those

of four commercially available automatic code generators in

Chapter IV.

B. CONCLUSIONS

From the data gathered in this thesis explicit answers

to the thesis questions can be presented. First, it appears

that most products available concentrate on the automation

of the code writing stage of the SDLC. USE.IT, however,

takes a more ambitious approach by attempting automation of

the entire life cycle. Although COBOL code generating

systems are more widespread, the fourth generation language

application development systems are rapidly gaining

prominence.

59

The primary reason for considering automatic code

generators is to relieve the burden on the programmer and

thereby relieve the software crisis being experienced by an

organization and if possible to eliminate the programmer

altogether. Generally, the systems considered by this

thesis can contribute partially to this end. The U.S.

Army's First Recruiting Brigade at Fort Meade, MD increased

their programmer productivity 800% with GENIFER [Ref.

14:p. 46]. This more than meets the criteria set forth by

Martin to define a fourth generation language. While this

is a startling improvement it did not eliminate the need for

a programmer in the application development. None of the

systems reviewed claimed that the programmer could be

eliminated and have application development become

exclusively a user responsibility. The use of 4GLs and

application development systems have moved the industry

closer to that position. Figure 5.1 illustrates a relative

relationship between the software systems reviewed in this

thesis and their user audience. It verifies that the fourth

generation type tools are closer to eliminating the

programmer but it also verifies that the programmer still

has a large role to play in the development of software

applications.

There is a learning curve associated with using all of

these programs and a manager must decide whether the users

can effectively and efficiently develop their own

60

USE.IT COGEN INFORMIX-4GL GENIFER

Pr ogr amfime r User

Figure 5.1 Programmer, User, Software Perspective

applications. The pressure to decide in favor of user

developed applications will mount as the software crisis

deepens.

All of the products that claim to produce error-free

code do in fact write code that is ready to be compiled and

executed. All programs require that the user provide a good

design of the system to the generator to produce the code.

Through the use of menus and an interactive environment the

programmer provides the information to the development tool

that is usually used as input to some sort of skeleton file

to write the code.

Among the benefits that can be realized from the use of

automatic code generating systems is standardization.

Applications developed will all be written in the same style

and those that document will provide standardized

documentation. With personnel turnover a fact of life, the

training of replacement personnel will be standardized also.

Lower cost of development is another of the benefits to

be realized with automated code generating systems. A

shorter SDLC will reduce development personnel costs and

deliver software to the user sooner. This quicker

61

turnaround from requirement to application brings the

benefits of the program into use sooner and contributes to a

shorter payback period for the investment in the

application. Additionally, maintenance becomes a task where

savings can be realized.

Disadvantages are also associated with the use of

automatic code generators. Many have an initial capital

outlay that is significant. A shortcoming that is evident

in the COGEN system is that it is designed for use in the

development of business applications. A system that can

develop applications for any type of problem is desirable.

Finally, another disadvantage associated with automatic code

generators is the learning curve associated with them.

USE.IT is a complex system that requires a skilled

programmer/analyst to realize its full potential. GENIFER

is not nearly as complex but neither is it as potentially

powerful.

In summary, the automatic code generators have potential

to relieve the software crisis to some degree. They are

not, however, the panacea.

C. RECOMMENDATIONS

The use of automatic code generating system, can relieve

an organization's software crisis. Before moving to put

this tool into inventory, however, a complete cost/benefit

analysis must be performed. A tool must then be fully

utilized to realize the available benefits.

62

Fourth generation languages and associated programming

tools are the level of technology that should be sought by

organizations, particularly smalle,, newer organizations.

Establishing databases independent of the applications may

help the organizations avoid the software crisis to some

extent. The lack of a fourth generation language standard

may deter some organizations unnecessarily. A sound

evaluation by management and commitment to the chosen

product will establish the product as the standard within

the organization.

Further study areas related to this thesis include

dynamic evaluation of the tools and benchmarking. A dynamic

evaluation would help the user determine all features,

length of the learning curves, limitations, and other items.

A particularly interesting determination would be the level

of sophistication needed by a user to develop applications

using these tools thereby eliminating the programmer from

the development loop. A benchmark test would provide

measures to compare the different tools to one another. One

possible benchmark test would be to determine the efficiency

of the code the system produced.

It is clear that automation of software development must

play a significant role in future system development. The

length of the list of systems available in the Appendix

supports this statement and indicates that the future holds

many more such systems.

63

APPENDIX

AUTOMATIC CODE GENERATING SYSTEMS

This appendix lists additional software systems that

fall into the categories of automatic code generating

software examined in this thesis. The system title,

publisher, business address and telephone numbers are

listed.

STRUCTURES

Ken Orr and Associates
1725 Gage Boulevard
Topeka, KS 66604-3379
913-273-0653
800-255-2459

THE GENERATOR

Computer Technology, Inc.
11101 NE 8th
Belevue, WA 98004
206-455-1700

CODE SHELL/COBOL

Morrison-Rooney Associates, Ltd.
910 S. Michigan Ave., Suite 520
Chicago, IL 60605
312-922-5980

CL-I

Software Design Associates, Inc.
71 Fifth Ave.
New York, NY 212-741-5200

64

FASTBASE FASTBASE III

Fourcolor Data Systems, Inc.
7011 Malabar St.
Dayton, OH 45459
513-433-3780

CRT (COBOL Reprogramming Tool)

Cybernetics, Inc.
8041 Newman Ave., Suite 208
Huntington Beach, CA 92647
714-848-1922

QUICKCODE

Fox and Geller, Inc.
604 Market St.
Elmwood Park, NJ 07407
201-794-8883

PEARL SD PROGRAM GENERATOR

Pearlsoft, Inc.
25195 Southwest Parkway
P.O. Box 638
Wilsonville, OR 97070
503-682-3636

DATA MASTER 1 REV 3

Applied Micro Business Systems, Inc.
177-F Riverside Ave.
Newport Beach, CA 92663
714-759-0582

BUSIGEN/CS PROXI/PROXI COBOL PROGRAM GENERATOR

Data General, Corp.
4400 Computer Drive
Westboro, MA 01581
617-366-8911

65

EZ PROG

New England Systems Technology, Inc.
226 South St.
Hopkinton, MA 01748
617-435-9031

FORCE

Point 4 Data Corp.
2569 McCabe Way
Irvine, CA 92714
714-863-1111

COBOL PROGRAM GENERATOR/INFORMATION SUPPORT SYSTEM
David R. Black and Associates, Inc.
P.O. Box 44146
Pittsburgh, PA 15205
412-787-5100

AMS AUTOMATIC TEST PROGRAM GENERATOR

AMS--Advanced Microsolutions
1100 Alma St.
Menlo Park, CA 94025
415-325-7694

THE BALER

Brubaker and Associates, Inc.
116 W. Main St.
P.O. Box 511
Delphi, IN 46923
317-564-2584

COBFORMAT

Barratt Edwards International Corp.
2921 Eastlake Ave. E.
Seattle, WA 98102
206-325-1011

66

FASTBALL--76

Brown Bros. Enterprises
8079 Wabasis Ave., NE
Rockford, MI 49341
616-691-7193

HIBOL

Delphi Data Systems, Inc.
9615 Girard Ave. S.
Bloomington, MN 55431
612-881-4666
800-328-4827

KOPE

KOS and Associates, Inc.
McKnight Park Dr.
Suite 203
Pittsburgh, PA 15237
412-367-7444

PROMACS/CICS

Management and Computer Services, Inc.
Great Valley Corporate Center
P.O. Box 826
Valley Forge, PA 19482
215-648-0730

GENPREP-1

Miroda Software Corp.
P.O. Box 10089
Chicago, IL 60610
312-743-2755

PRO-2

Prodata, Inc.
4477 Emerald
Suite C-100
Boise, ID 83706
208-342-6878

67

GTP

Allen, Emerson Franklin, Inc.
P.O. Box 928
Katy, TX 77449
713-391-8570

CLARION

Barrington Systems, Inc.
150 East Sample Road
Pompano Beach, FL 33064
305-785-4555
800-354-5444

PRO-IV

Honeywell Inc.
Information Technology Center
120 Howard Street
San Francisco, CA 94105
415-974-4304

CLINE/CENGLISH

Cline, Inc.
3550 Camino del Rio North
San Diego, CA 92108
800-544-1104

EXCELERATOR

Index Technology Corp.
5 Cambridge Center
Cambridge, MA 02142

BASIS

Information Dimensions, Inc.
655 Metro Place South
Dublin, OH 43017-1396
800-328-2648

68

NOMAD2

D and B Computing Services
187 Danbury Rd.
Wilton, CT 06897
203-762-2511

CONSENSUS

Martin-Marietta Data Systems
CONSENSUS INFO
P.O. Box 2392
Princeton, NJ 08540
800-257-5171

MANTIS
CINCOM
2300 Montana Avenue
P.O. Box 11189
Cincinnati, OH 45211
513-662-2300

69

LIST OF REFERENCES

1. Boehm, Barry W., "Software and Its Impact: A Quantita-
tive Assessment," Daamtin, Vol. 19, p. 23, May 1973.

2. Lin, Herbert, "The Development of Software for Ballistic
Missile Defense," Scientific American, Vol. 253, p. 56,
December 1985.

3. Kroenke, David M., Business Computer Systems, p. 25,
Mitchell Publishing Inc., 1984.

4. Hamilton, M. and Zeldin, S., "The Functional Life Cycle
Model and Its Automation: USE.IT," The Journal of
Systems and Software, Vol. 3, pp. 25-61, Marc 1983.

5. Keen, Peter G.W. and Scott Morton, Michael S., Decision
SuDvort Systems: An Organizational Perspective, pp. 11-
12, Addison-Wesley Publishing Company, Inc., 1978.

6. Pressman, Roger S., Software Engineering: A Practition-
er's Approach, p. 289, McGraw-Hill Book Co., 1982.

7. Brooks, Jr., Frederick P., "The Mythical Man-Month,"
Datamation, Vol. 20, p. 35, December 1974.

8. Gifford, David and Spector, Alfred, "The TWA Reservation
System," Communications of the ACM, Vol. 27, p. 651,
July 1984.

9. Martin, James and Hershey, Al, "Software Engineering
Depends on Information Engineering," Software News, Vol.
5, p. 60, March 1986.

10. Martin, James, Application Development Without Program-
mers, p. 4, Prentice-Hall, Inc., 1982.

11. Robinson, Philip and Edwards, Jon R., "The Atari
1040ST," BYTE, Vol. 11, p. 87, March 1986.

12. Sippl, Roger J., "Marketing Trends Launch a New Era for
Software Developers," Hardcopy, Vol. 6, p. 44, June
1986.

13. Malvino, Albert P., Digital Computer Electronics, Vol.
2, p. 145, McGraw-Hill Book Co., 1983.

70

. i - - • r • i

K

14. "Brigade Tackles Backlog with Application Generator,"
Government Computer News, Vol. 5, 4 July 1986.

15. Personal interview between Dan Pines, Bytel Corporation,
Berkeley, CA and the author, 17 September 1986.

16. Telephone interview between Shirley Jahn, Navy
Management Systems Support Office, and the author, 15
June 1986.

17. Telephone interview between Frank T. Lawrence, U.S. Army
Logistics Center, and the author, 16 June 1986.

71

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Director, Information Systems (OP-945) 1
Office of the Chief of Naval Operations
Navy Department
Washington, D.C. 20350-2000

4. Chairman, Computer Technology Programs 1
Code 37
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor Dan K. Dolk, Code 54Dk 2
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

6. LCDR Sherman L. O'Brien, USN 2
710 Winfred Dr. N.
Orange Park, Florida 32073

72

