
UNCLASSIFIED
IIECUSIT CO ASIC I ______________________

READ INSTRUCTIONSREPO BEFORE COMPLETING FORM

- . itn H'-70 goD.A2 1J5.' RECIPIENT'S CATALOG NUMBER

LJ4. TITLE (and Subliffi) 111 TYPE OF REPORT a PERIOD COVERNED

___ Scheme 86: An Architecture for Microcoding a mmrnu

L&-. Scheme Interpreter
S. PERFORMING ORG. REPORT NUMBER

*7. AUJTINO341) 11. CONTRACT OR GRANT NuM1191R(e)

- ~ Henry7 M. Wu NOQO 14-8W*-0 180

9. PERFORMING ORGANIZATION "AM& AND ADDRESS SO. PROGRtAM ELEMENT. PROJECT. TASK
AREA G WORK UNIT NUMBERS

Artificial Intelligence Laboratory
545 Technology Square
Cambridge,_MA__02139 ______________

II, CONTROLLING OFFICE NAME AMC ADORESS* II. REPORT DATE

Advanced Research Projects Agency August 1988
1400 Wilson Blvd. IS. NUMBER OF PAGES

Arlington, VA 22209 40
14. MONITORING AGENCY NAMIES ADORESS(aE dt~femt tim Comefrt.fi 0DOUG*) IS. SECURITY CLASS. lo114 roepeet)

Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, VA 22217 Its. 091 ASIITONDoONADING

16. DISTRIBUTION STATEMELNT (fe this RepeeiJ

Distribution is unlimited

rLCT

*Unlimited 1

None

19. Kay WORDS (CeeOIOMM on teem.. Oldo, 141101su onifeeemte Byd 9..I 9.e* urn.)

scheme interpreters
computer architecture
LISP machine

10. AISTRACT (Coe'*tw. On teeme.11 014111 ff ROCOOMY gold 0~.P11? 07 6#0911 InOW..

See back page

ID gro 3 EITOom1OV5I SOLT JCLASIIE
S/l 9143 EIN alp I NO 660 is 09306iIr UNCASSFIE

SECURITY CLASSIFICATION OF 5 IAOEh9 w

I describe the design and implementation plans for a computer

that is optimized as microcoded interpreter for Scheme. The native

language of this computer is SCode, a tree-structured, typed-pointer

representation of Scheme. The memory system is built with high speed

RAM and offers low-latency aa well as high throughput. Multiple exe-

cution units in the processor c lp.EWomplaft operations in less than

one memory cycle to allow efficient use of memory bandwidth. The

processor provides hardware support for tagged data objects and run-

time type checking. I will discuss the motivation for such a machine,

its architecture, why it is expected to interpret Scheme efficiently, and

the computer aided design tools I have developed for building this com-

puter.

Accession For

DTIC TAB
unannounced 3

a " "ijustfication,

AvailabllitY Codos
/or

D~ist special

I.---~- ~ ~ - --- ----

Scheme86
An Architecture for Microcoding a Scheme Interpreter

Henry M. Wu

Artificial Intelligence Laboratory

and
Department of Electrical Engineering and Computer Science

Massachusetts Institute of technology

A.I. Memo No. 953 August, 1988

(~Abstract -r- ~ltO~

+'"-describe-he design and impleme ation plans for a computer~that is optimized as microcoded interp ter for Scheme. The native

language of this computer is SCode,/ tree-structured, typed-pointer
representation of Scheme. The memo y system is built with high speed
RAM and offers low-latency as wel as high throughput. Multiple exe-
cution units in the processor com /ete complex operations in less than

r

one memory cycle to allow effi ent use of memory bandwidth. The
processor provides hardware s /port for tagged data objects and run-
time type checking. the motivation for such a machine,
its architecture, why it is expected to interpret Scheme efficiently, and
the computer aided design tools I have developed for building this com-
puter.

Original thesis awarded the MIT Elliot Organick Prize for Outstanding Bachelor's
thesis in Computer Systems, 1986. Memo revised in August, 1988.

This report describes research done at the Artificial Intelligence Laboratory of theMassachusetts Institute of Technology. Support for the Laboratory's artificial intelli-

gence research is provided in part by the Advanced Research Projects Agency of theDepartment of Defense under Office of Naval Research contract N00014-86-K-0180.

88 1027 02 4

-' ' ' " , , ,*' , , np j - .. -- . -, ' . .' '- . :. "

1. IntroductionK

Scheme86 is an architecture designed to execute Scheme programs efficiently.
Unlike many modern computer designs which stress the use of simplified instruc-

tions and clever compilation techniques to improve performance, Scheme86 executes
a powerful instruction set called SCode. SCode is a typed-pointer, tree-structured
representation of Scheme. Scheme86 uses wide micro-instructions to interpret SCode,

and hence Scheme. Scheme86 is designed as a back-end processor using Advanced

Schottky TTL technology.

I will discuss the problems addressed by this machine, its architecture, the

reasons why it is expected to interpret Scheme efficiently, and the computer-aided
design tools implemented for completing the project.

1.1 Background

Optimizing the execution of a high level language at the architectural level
is not a new idea. As early as the 60's Burroughs produced the B6500, a stack

machine aimed at running Algol. The CADR processors of the LISP Machine system

use an architecture tailored to running LISP code [Knight 1979]. Machines with the

same architecture are still being produced by both the LISP Machine Incorporated
and Texas Instruments. The Symbolics 3600 descended from the CADR and has

become the industry's standard in the performance of LISP workstations [Moon 1985,

Symbolics 1983]. The SPUR project at the University of California at Berkeley is

experimenting with a new class of LISP engines based on simplified instructions [Katz

19851.

In 1979 and 1982 two attempts were made to implement an SCode interpreter
in microcode on a microprocessor. Dubbed the SCHEME-79 and SCHEME-81 chips,

these VLSI projects produced evidence that a properly designed architecture, run-
ning microcode that interprets SCode, can execute Scheme as efficiently as compiled
implementations on conventional hardware [Steele 79, Holloway 80, Batali 82]. How-

ever, both chips were plagued by fabrication problems and the limitations of VLSI

technology at the time. A comple~c Scheme system never ran on any of them and
extensive performance testing was not completed.

"" . .. :". . . ' '<' ' ' " ' =: " . . . - ' " " . . . ' - ' ' ". ' ' " " ' -' " -1

- < " " : "" ;' :- , ,. , 't :i - ,l l " I i i " ' m : -:'= , " :- ...

1.2 The Scheme86 Architecture

Similar to the SCHEME chips, Scheme86 is an SCode interpreter implemented

with a microcoded finite state machine in hardware. The proposed implementation

of the architectural ideas expects the use of currently available TTL technology. The

amount of parallelism stressed by Scheme86's design would also make its implemen-

tation difficult with 1986 VLSI technology.

SCode is a typed-pointer variant of Scheme. Each SCode instruction mirrors

a Scheme special form. Using a powerful instruction set such as SCode seems to run

against the common notion that implementing complicated instructions slows down

the speed of a computer. In fact, many SCode instructions and Scheme primitives

specify a substantial amount of computation along with the inherent fine-grain par-

allelism. This means that most of the time Scheme86 is executing simple, uniform

microcode instructions hand-optimized to take advantage of the architecture.

Scheme86 is designed mindful of the fact that interpreting SCode is a memory

intensive process, and that several levels of indirect references typically occur while

fetching operands in LISP programs. A high speed main memory system, to be

built entirely using static RAM chips1 , is therefore chosen. Parallel hardware in the

processor allow concurrent operations. This takes on the form of four relatively simple

execution units that can be made very fast. These execution units ensure that few

wasted memory cycles will result. In addition, Scheme86 is designed so that data

returning from a memory request can be used to start the next memory reference as

quickly as possible.

To summarize, Scheme86 can best be described as a machine with an ex-
tremely powerful instruction set, several parallel execution units and a low-latency

main memory system optimized to execute LISP efficiently.

We believe that our requirements can also be met by a well-designed dyvf.mic
RAM system using high-speed parts.

2

2. Principles of the Architecture

The Scheme86 processor is an attempt to arrive at an architecture which, given

restrictions in technology, will interpret Scheme as fast as possible. Not only must

individual Scheme expressions run fast, the kind of programs that lend themselves to

implementation in Scheme must run efficiently as well.

In Scheme86 user programs are stored as SCode items. SCode is to Scheme86

as the traditional machine language is to a more traditional processor. An SCode

interpreter resides in the native control-store of the processor. We call this the mi-

crocode of the machine. Microcode instructions are interpreted directly by the hard-

ware; each micro-instruction bit controls a physical control wire in the data paths. I

will use the term "machine language" to mean the level of instructions that a soft-

ware programmer is likely to use. The "microcode" is the program that interprets

those instructions. Some machines use machine language instructions to manipulate

hardware directly. Some machines interpret their microcode with another program

called the nanocode.

2.1 The Ultimate Sequential Machine

Conceptually, the fastest sequential machine we can build is one which wastes

no time performing useless work, and which performs as much of the work in parallel

as it can, executing in sequence only those actions that depend on a previous result.

Of course, approaching this extreme requires an enormous amount of hardware and/or

pipelining in the processor, but it is indeed the ideal case.

Conventional von Neumann architectures have two critical parts: the execution

unit, where operations are performed on data, and the memory system, where the

data is kept and the state of the process is maintained. Each operation involves first

transferring data from the memory system into the execution unit, operating on it,

and then updating the memory system to store the freshly created result. Operations

cannot start until the memory system has finished delivering the required data into

the execution unit, and the operation hasn't ended until the result is transferred back

to the memory system.

Since conventional machines usually require more than one memory cycle to

complete an operation, fast registers are placed inside the execution unit so that

during the course of an operation, the memory system is untouched. The execution

3

unit operates on cached data sequentially, and only when it finishes does it write the

result back to the memory system. This is, however, not the best a machine can

do. Assuming that we are willing to put in enough hardware to ensure parallelism,

we can arrange for even the most complicated operations on a reasonable amount

of data to take only a very short time. This is particularly true if we notice that

the common operations a machine encounters are mostly simple ones, such as sim-

ply moving data around, adding, bit manipulation, and multiplication1 . Registers

maintain the execution unit's internal state, which sometimes must be changed be-

fore memory needs to be accessed again. However many of these changes can occur

simultaneously with useful data manipulation. The only truly sequential operations

are thus memory transactions. This argument is more convincing when we consider

that it is really only memory transactions that change the state of the computation.

All other operations are functional in nature. The merit of an architecture must then

be gauged by how often it is able to change the state of the computation, in other

words, how fast it can issue sequential memory accesses, or how well it can keep the

memory working. Beyond that we are limited by the technology available to con-

struct a memory system that is as fast possible. The fastest computer given a certain

technology must be memory bound.

A corollary of this argument is that since the memory system should always be

fulfilling a data reference, there ought to be no time left for instruction fetches. The

machine should use all available memory bandwidth for actual data transfer between
the execution unit and storage system. Any other type of activity must be counted

as overhead. Following from this a separate control store must be built to supply

instructions. Of course keeping instructions in the primary storage has its advantages.

A microcoded architecture combines the benefits of storing user instructions in the

main memory system while delegating the burden of controlling the cycle-to-cycle

operation of the machine to the microcode store.

Conventional architectures attempt to efficiently use the memory system with-

out putting an extraordinary amount of hardware in the execution unit by noticing
that in many cases memory reference patterns can be predicted. Registers are put

inside the processor to cache operands. Before starting to operate on the cached
data, the processor issues a memory request for the next operation, and while the
memory system is working the processor carries on the current execution. Because of

this approach the emphasis on the memory system is its throughput, rather than its
1 The Scheme86 design does not specify a multiplier, though we believe one can

be added without any penalty in speed.

4

latency. In this scheme it is not important how long it takes for a given memory ref-
erence to return, as long as memory references can be initiated frequently. However,
this approach is effective only if the subsequent memory request does not depend on

the result of the first operation. If the memory address or data is the result of the
first instruction, then the processor must wait for it to complete before the second
memory transaction can start. This phenomenon occurs frequently in LISP. As a
matter of fact we found that in critical sections of the SCode interpreter the proces-
sor frequently has no work to do pending the return of operands from the memory
system. This is also true in the garbage collector, and in general for code that relies

on CAR-CDR chaining. For this kind of application a machine must therefore stress not
only the throughput, but also the latency of the memory system.

Although it is true that adding extra hardware will increase the processor's
ability to issue memory requests more frequently, a complicated processor may have

a huge propagation delay, and in the end the memory system is not efficiently used.
Since most operations encountered in the execution of LISP programs are simple ones
such as dispatching and register shuffles, an efficient architecture should not spend

its hardware dollars optimizing the execution of complex atomic functions which may
take a long time. It should focus on a lot of execution paths to allow many simple

events to happen concurrently.

2.2 The Scherne86 approach

Scheme86 is a particular application of the above ideas. It recognizes that
LISP programs frequently manipulate structures made up of pointers to other chunks
of data. A substantial part of the work in executing LISP is thus to resolve chains of

pointer references to reach a piece of data. The memory system in a LISP computer
must then be of extremely high bandwidth. Moreover, successive memory requests
for dereferencing pointers are chronologically dependent, requiring that the memory
system to not only have high throughput, but very low latency as well. To prevent
wasted memory cycles, any processor hardware which increases the utilization of

memory is a worthwhile investment.

Accordingly Scheme86 uses multiple execution units to ensure that minimal
time is spent inside the processor between dependent memory transactions. In a
single cycle it can perform both address and data calculations in parallel, while still
being able to do some internal house keeping computation. The memory system is

interfaced to the processor in a way that memory requests issued in one cycle returns

= " ' ' ' " ' , ' ,-" -" , . . ;' . ' - . / . ". i ,' - - : i : :5~

with valid data in the next cycle. The next request can start, using processed data

from the first request, in this second cycle. The memory system is built with fast

static memory with a total latency of less than 90 nanoseconds.

Scheme86 has four distinct execution units. A complete functional description

of each unit appears in the next chapter. Three of these units work on full machine

words, with the fourth one specialized to handle only the type code part. Sixty

internal registers in a register array are attached to each execution unit. In addition

each unit is fed by different, specialized external registers, with the Memory Data

Register, which contains data returning from memory, common to all of the units.

Execution Unit 1 (mu) has a full arithmetic unit and feeds one of two Memory Address

Registers. BU2 has a similar arithmetic unit and feeds one of two Memory Buffer

Registers. The third execution unit has dedicated hardware to detect pointer equality

and with its two operands supplies the remaining Memory Address and Memory

Buffer Registers. One of the operands can also be routed back into the register array

to implement a register transfer.

With the above arrangement a memory transaction can start once the address

and/or data arrives at the Memory Address/Buffer Registers. It need not return until

the next cycle when other operands from the register array have been fetched. The

cycle time of memory and hence the machine is thus determined by adding the latency

of the memory subsystem, a couple of interface registers, and the propagation delay of

the arithmetic unit. With the technology we are using the number is approximately

150 to 165 nanoseconds. Note that during this time two arithmetic operations plus

one register transfer have occurred. The next memory reference can start using results

from the first.

The power of this arrangement can be exemplified by characteristic portions

of microcode. Consider an operation like pushing the sum of two registers onto a

post-increment stack. In Scheme86 this sequence of events can all occur in one single

cycle:

(defino-s.ate PUSH
(assigp SP (+ (fetch SP) 1)) ; BU
(assip lBF (+ (fetch UZG1) (fetch REG2))) ; BU2

(assign MAR (fetch SP))) ; BUS

A common LISP indirect data reference such as the expression (cdadr x) with

type checking can be coded as follows:

6

(define-state DO-CDR-1

(assign MAR (cdr (fetch X))) ; CDR is 1+ on addresses

(if (not (eq? (type (fetch X)) (type CONS-CELL)))

(goto ERROR-WRONG-TYPE)))

(define-state DO-CAR-i
(assign MAR (car (fetch MDATA))) ; CAR passes pointer only

(it (not (eq? (type (fetch MDATA)) (type CONS-CELL)))

(goto ERROR-WROG-TYPE)))
(define-state DO-CDR-2
(assign MAR (cdr (fetch MDATA)))

(if (not (eq? (type (fetch IDATA)) (type COS-CELL)))
(goto ERROR-WRONG-TYPE)))

It is often desirable to have runtime array bounds checking. Assuming that

each array contains a header specifying its length, an array reference takes at least

two memory references and some arithmetic comparisons. In Scheme86 the primitive

functions VECTOR-REF and VECTOR-SET! can be coded in three instructions, the last of

which is so trivial that it can be merged into subsequent instructions:

.
;;; Vector is in Argl. Index is Arg2. Result returned in Val.
;;; Vector length in vector header.

(define-state VECTOR-REF
;; Get address of cell. +CARRY a carry to bump past header.

(assign Tp (+carry (integer (fetch Argl))

(integer (fetch Arg2)))) ; EU1
; Set up test for whether index is negative

(assign Arg2 (fetch Arg2) (test VECTOR-REF)) ; EU2
;; Fetch header

(assign MAR (pointer (fetch Argi))) ; EU3
(if (or (not (eq? (type Argl) (type VECTOR))) ; TCU

(not (eq? (type Arg2) (type INTEGER))))

(goto VECTOR-REF-WRONG-ARG)))

(define-state VECTOR-REF-2
;; Test index against length of actual vector
(assign Tap (- (integer (fetch EDATA)) (integer (fetch Arg2)))

(test VECTOR-RE-2))
;; Fetch cell. This is bogus if tests fails.
; For a VECTOR-SET! the vaiua can flow through EU3 or EU2 into
; the meory buffer register and hence be written out.
(assign MAR (pointer (fetch Tap))) ; 1U3
(if (negative? (test VECTOR-REF))

(goto OUT-OF-BOUNDS)))

7

(define-state VECTOR-REF-3
Transfer result to Val. This cycle can be merged with real work.

Its only real function is see whether the previous bounds check

has failed.

(assign Val (fetch HDITA))

(it (>? (test VECTOR-REF-2))

(goto OUT-OF-BOUNDS)))

Even more revealing is the microcode for the LISP function Assq, an example

of an algorithm which has chronologically dependent memory references:

;;; A-LIST is a register for holding the pointer to the association

;;; list.
;;; KEY holds the value to match against.

(define-state ASSQ-LOOP-1
; Assume we just read the association list from memory, so it

;; is in EDATA at this point.

Take its CAR to read in the association pair.

(assign MAR (car (fetch MDATA))) ; EUI (or EU3)
Store the list for later use

(assign A-LIST (fetch MDATA)) ; EU2

;; Check for the end of the list

(if (eq? (fetch MDATA) (fetch Null-Reg)) ; EU3

(goto LOSING-TERNINATIOI)))

(define-state ASSQ-LOOP-2
;; Take CAR of pair to read in the key

(assign MAR (car (fetch IDATA))) ; EUI
;; Save association pair, in case we match

(assign VAL (fetch MDATA))) ; EU2 (or EU3)

(define-state ASSQ-LOOP-3
;; CDR down the list for next value, in case we don't match

(assign MAR (cdr (fetch A-LIST))) ; EUI
;; Try to match key in pair against required key.
(if (eq? (fetch NDATA) (fetch KEY)) ; EU3

(goto WINNING-TERMINATION)
(goto ASSQ-LOOP-1)))

As is evident, a ".ree cycle loop is required to implement ASSQ. Since this can be put in

the microcode, there is no time penalty for instruction fetching. Each iteration hence

takes 450 nanoseconds. In other words we can search through a one million element

list is less than a second. The same inner loop, written in the Motorola MC68020

assembly language, requires five instructions and more than forty cycles, or a total of

over 1.6 microseconds.

8

.. .

2.3 Scode: The Scheme86 Instruction Set

Because of the amount of parallelism and flexibility inherent in the Scheme86
architecture, its native control instruction must be wide. In order that all of the
available memory bandwidth be usable for data references rather than instruction
fetches, instructions should be placed in a separate control store so that fetching can
be performed in parallel with ordinary memory transactions. Because of the width
of each instruction, the control store must be compact, and fast. It must also have a
wide interface to the rest of the processor. These requirements point to a design that

uses microcode to interpret user instructions (assembly code).

Common microcode architectures have certain serious pitfalls. They offer a
large number of machine instructions, often of long and variable length. The proces-
sor has to spend considerable time fetching an instruction and decoding it to figure
out what to do next. Since each instruction is atomic, the programmer cannot freely
schedule each microcycle to make use of memory and branch interlocks. These draw-
backs have led designers to turn to machines with a small number of fixed length
machine instructions that can be completed in a single cycle. These instructions
control the hardware directly without the need for further microcode interpretation.

By using SCode as its machine language, Scheme86 combines the benefits of

both of these approaches. Since SCode instructions are few in number (less than 256)
and are fixed in length (8 bits), a fast hardware dispatch mechanism can be used
to interpret them. Each SCode instruction has powerful semantics. That means a
large number of microcycles will elapse before an instruction completes. The ratio of
microcode instructions versus machine instructions is thus considerable, implying that
only a small overhead for interpretation has to be paid in comparison to the amount of
useful work that actually is performed between machine instructions. This also means
that most of the time the machine is executing microinstructions, which can be hand-
optimized to make use of scheduling and other heuristics like memory fetch prediction,
thereby fully utilizing the hardware. Since microinstructions, being fetched from
the control store, can be a lot wider than machine instructions, parallelism can be
exploited and fine grain control can be kept.

Like in FORTRAN, a large number of library functions are provided in LISP.
With a microcoded architecture, frequently used functions can be hand written in
microcode for maximum efficiency and utility of the hardware. The ASSQ function
given above is ati example.

9

_:. , .] .] o mm i _1 1 I I li . -, . m . .

2.4 Support for Scheme

Scheme is a lexically scoped dialect of LISP which features runtime data typ-

ing, tail recursion, and dynamic storage allocation. To implement some of these

features efficiently, hardware support is indispensable.

Scheme86 is built around a tagged architecture. Each word, or item, has an

8 bit type code field and a 24 bit datum field. The datum field contains either an

immediate piece of data or a pointer to another cell. The type code field is used to

identify the type of the datum, in the case of an immediate object, or the type of the

reference, in the case of a pointer. For SCode items an "opcode" is placed in the type

code field.

Scheme86 maintains separate data paths for the type code portion and the

pointer portion of a word. On each microcode instruction, separate operations are

specified in each execution unit for the two parts. Arithmetic is performed only on

the datum field, while type code generation is handled by dedicated hardware. This

approach eliminates the need in conventional architectures to mask, insert, or alter

type information before and after operating on a cell.

In addition, one of the execution units in Scheme86 is dedicated to testing

the type portion of a word. During every cycle, the types of two operands can be

tested for equality with two microcode specified constants. Not only is the microcode

allowed to branch on any logical combination of the two results, the machine can

trap on these combinations to move execution to any one of eight microcode specified

handlers. All of this can happen in a single cycle, concurrent with full cell operations

taking place in the other three execution units. The result is a powerful mechanism

for performing dynamic type checking and implementing generic operations without

any cost in speed.

Because the type code is kept in the same part of a cell as SCode instructions,

the instruction decoding hardware can be used to implement an N-way dispatch for

type codes. This is important for a stop and copy garbage collector like the one

to be used for :is implementation. Combined with the low latency of the memory

and all the parallelism available for doing pointer manipulation and data transfer

concurrently, garbage collection will be very efficient.

1

10

3. The SCode Instruction Set

The instruction set that Scheme86 executes is SCode, which is a typed-pointer,
tree-structured representation of Scheme. SCode instructions may recursively point

to other SCode forms as arguments. The type on the pointer serves as the "opcode"

to be dispatched on by the machine. Scheme86 interprets the tree-structured SCode

expressions recursively. Translating Scheme into SCode is called "syntaxing".

3.1 SCode Instructions

Each SCode instruction corresponds to a special form in Scheme. There are

instructions for procedure calls, conditionals, variables, primitives, and other Scheme
features. The following are some of the essential SCode forms:

1. AsSIGNXENT. Corresponds to SET! in Scheme. The instruction points to a pair
containing the variable to change and the value to change to.

2. CONINIATIONN. Corresponds to a procedure call. The operator and operands,

themselves SCode expressions 1, are kept in a vector pointed to by the instruction.

There are special SCode instructions for short, fixed length combinations.

3. CONDITIONAL. Used for conD, IF, and AnD. The arguments, kept in a triple, are

the predicate, the consequent, and the alternative. Related is the DISJUNCTION

instruction used to implement OR efficiently.

4. DEFINITION. Extends the current environment, binding a name to a value. This

is the Scheme form DEFINE.

5. ENVIRo0xmTS. Each Scheme environment is represented as a vector containing the
bound values and some housekeeping information. Matching this vector against

the parameter list kept in a LAMBDA creates an association between names and

values.

6. LAMBDA. A PRocEDuRE object is created by associating the current execution envi-
ronment with a LAMBDA expression.

7. PRIMITIVE. An implementation primitive operator. On Scheme86 this would be a
microcoded routine. The pointer rontains an entry point that can be dispatched

to by the microcode.

Scheme has a uniform namespace for operators and operands; the operator is

evaluated to give a procedural value just like its arguments.

I1

El I I I II . . lii I i I

8. PnIuITIVlcOwINATIo0. Similar to COBIIATIO-1_, except that the operator is

known to be a primitive. Up to three arguments are currently supported. This

is a major optimization performed by the syntaxer: known primitive calls are

integrated into this instruction rather than a counira-i0 . The primitive to be

called is pointed to by the first argument.

9. PMCEDURE. It points to a LAJIDA expression and its parent MIvRON0 rr2. When it

is applied, a new environment frame is created, with uviacTu as parent.

10. sEQuEcE_. This is a collection of expressions to be executed one by one. Scheme

requires that the execution of sequences be tail recursive, meaning that minimum

state should be kept around when the expressions are evaluated.

11. VARIABLE. Corresponds to identifiers which are not special forms in Scheme. The
value of a variable is initially found by searching down the environment chain,
matching parameter names in lambda lists to the identifier. This process is called
a "deep search". The frame and slot offsets are then cached inside VARIABLE, so

the next time through indexing can be used to fetch the value. This is called a
"compiled" lookup. However, the ability to incrementally modify Scheme envi-
ronments makes it possible for this mechanism to fail. The remedy is an extra
bit, called the "danger bit", which is allocated for each Scheme object to mark
whether compiled lookup is safe for this value.

As is evident, SCode instructions correspond closely to Scheme special forms.
Interpreting SCode is recursive; evaluating an SCode form might lead to the in-
terpreter first having to "reduce" another sub-expression. Since SCode is just like

Scheme , the evaluation rules are also the same [Abelson 19851.

3.2 The Case for SCode

SCode has two major problems making it an unobvious choice as an instruction
set for a fast computer. First it is merely a typed-pointer variant of Scheme. Little
optimization is performed during the translation. It is also too complicated to be
used to control I trdware directly. A layer of interpretation by microcode is necessary.

The second problem is that the tree-structured rather than linear organization makes
instruction fetching expensive and caching extremely difficult.

In fact SCode could be expanded so that traditional techniques of compilation
2 Since Scheme is lexically scoped, the parent environment is the one in which the

LuMxIA was evaluated.

12

can be used to generate more efficient code. For example we can add SCode instruc-

tions that encapsulate special cases of argument evaluation or sequencing which are

trivial and do not require that the processor save its current state. This would reduce

stack usage and also result in a more compact SCode sequence and shorter execu-

tion times. However, compiling Scheme is not a trivial task itself [Rozas 1984, Miller

19851. In many cases a good interpreter can match compiled code's performance on

a poorly designed machine.

Interpretive code leaves a lot more state and debugging information behind.

Since SCode is so similar to Scheme, it is possible to reverse the syntaxing process

and produce equivalent source text from SCode expressions. When an error occurs

the debugger can then pinpoint the irritant and print it out to the user at source

level. If we consider also that syntaxing is fast and incremental, we can see why

an efficient implementation of an SCode interpreter such as Scheme86 makes the

perfect development environment for software [Miller 1985]. Block or cross-procedure

compilation relied upon by many architectures to ensure performance takes a lot of

time, is not incremental, and thus not suitable for languages such as LISP which

stress an interactive user environment.

Some optimizations cannot be performed during compilation but can easily

be done dynamically. The "rack" idea used in the SCHEME81 implementation is an

on-the-fly optimization for reducing stack operations. Although a similar hack is not

expected for Scheme86, using SCode as its instruction set certainly opens doors for

such optimizations.

13

' ": ' " : " " " " - ' -'"7: ' i " :. : . .';'-

4- 0

1N I

- - 7J

~z 0

ICI-

Figure 1. Block Diagram of the Scheme86 data path architecture.
The micromachine and clock are not shown.

., 4. The Scheme86 Architecture

4.1 Rationale

Although the basic Scheme86 architecture was arrived at after considering the

principles outlined in the previous chapter, actual microcode was written and evalu-

ated before the design was finalized. Since the machine is designed to execute SCode,

critical sections of a Scheme interpreter using the SCode abstraction were studied.

These included code for performing function calling, variable lookup, conditional dis-

patches, and garbage collection. A pipelined and a non-pipelined memory model

were both investigated. At first we assumed the existence of as many data paths

and execution units as were needed, and then the code was analyzed to try to find a

reasonable number to implement.

These points were evident from the code written:

1. Interpreting Scheme is memory intensive. With few exceptions the interpreter

would be able to start a memory reference on every cycle, if not more.

2. It is not easy to utilize memory interlocks in a pipelined memory model to do
useful work. After a memory reference is initiated, the processor frequently

must stay idle until the memory transaction is completed. To start the next

request requires first operating on the result from the previous transaction.

3. In order that memory cycles can be initiated as frequently as possible, two to

four distinct paths for operating on data are required.

4. The most frequent addressing mode is "indexed indirect". This is not sur-

prising since SCode is tree-structured. Executing SCode requires that the

processor follow pointers through chunks of SCode structure.

These findings more or less agree with the theory described in Chapter Two.

4.2 Constraints

Although the initial investigation of Scheme86's architecture centered on a

machine with an infinite number of 4atapaths and an extremely wide microcode, real

life constraints were considered when the architecture was being finalized. These

points were the most important:

1. It should be possible to build a Scheme86 prototype from stock parts. TTL

15

,- .-.- .".' -. ". '_ " "- .. , .. , ,

technology will primarily be used. This precludes the use of custom VLSI or

even gate array chips. A further limitation is that only currently available

parts must be considered.

2. The design should fit on a single printed circuit board. The consensus is that

a more ambitious attempt is inappropriate for a thesis. This constraint limits

the degree of parallelism that we can afford.

3. Scheme86 will work as a back-end processor to a host computer. This way all of

the I/O operations can be delegated to a commercially available machine. The

processor can also have all of its microcode be downloaded from the host. Both

aspects are important to an experimental architecture. A parallel interface is

chosen because it is easy to implement.

4.3 The Datapath Architecture

A Scheme86 machine word consists of 24 bits of datum and 8 bits of tag

information. Since word addressing is used, the machine can address 16 Megawords or

64 Megabytes of data. All addresses are physical - virtual addressing is not supported.

Scheme86's main memory system is built entirely out of high speed static

RAM chips. Using 64K x 1 static RAM with an access time of 45 nanoseconds,
the memory system as a whole is expected to have a latency of around 80 to 90

nanoseconds. Each memory board contains 2 Megabytes. The processor/memory

bus is synchronous. Since the main memory system already offers extremely high

throughput and low latency, the need for a cache is eliminated. The control store

(where the microcode resides) is separately implemented using 35 nanosecond static

RAM. Twelve bits of address provide a maximum of 4 Kilowords of microcode. Each
,: microcode word is 160 bits in width.

Because analysis have shown that memory interlocks cannot be usefully em-

. ployed, Scheme86's timing requires that memory references take only one cycle to

complete. A request initiated in the current cycle is fulfilled and the data is ready

* for use in the next.

The Scheme86 processor has four distinct function units. Sixty general reg-

isters are implemented using 64 x 18 bit register files that are dual ported for both

read and write. Four more special purpose registers may be mapped into the register

address space to make up a total of 64 registers per execution units. One of the exter-

aW registers present on all four execution unit is the Memory Data Register (reATA)

16

' " - : " -:. .-" -- '::.:', '- ', ',." ' . .":,'' .,-" " .' T , ' .. . "" - ' - _.7"1-4-

which is the interface to data returning from memory.

Each execution unit takes two independent operands (A and B) and generates

results and conditions. The four execution units are:

1. Execution Unit 1 (ui). It incorporates a full 24 bit arithmetic logic unit with

carry lookahead generation. Both operands can be any of the 60 internal reg-

isters. Three external registers are available on the A operand bus. They are

the memory input data register (MDATi1), the PcLsn register, and the NARLOSER

register. The latter two capture the most recent microinstruction address and

memory bus address prior to an exception. A two-to-one multiplexer selects

whether the resulting type code from this execution unit is the one supplied

as operand A of the ALU or a constant supplied by the microcode. The result

can be written back into the general registers. It can also be used to load the

first of two possible memory address registers (mo), and the Host Output

Register (zOMT) for sending data to the host computer. The memory address

registers only hold the 24 bit pointer portion of the result, so no explicit mask-

ing of the type code is necessary. The top bit of operand A is routed to the

micromachine as the danger bit flag.

2. Execution Unit 2 (u2). Similar to Eui. The external registers, besides the

xDATA2, are the host input register (DATAIN), a 16 bit constant register (cO1sT),

whose value is a concatenation of the two 8 bit type code constants supplied

to EU1 and EU2, and a software (Scheme) interrupt register (UT-INT). Full

word (32 bit) constants are obtained by assembling two 16 bit chunks over

two cycles. The result can be loaded into one of the two memory write buffer

registers (UFo), in case the current cycle initiates a memory write. Before the

result is written back into the register array, it is passed through a 32 bit barrel

shifter for an arbitrary amount of shift or rotation. As in Rui the danger bit

is routed to the sequencer.

3. Execution Unit 3 (mu3). This execution unit contains only a 32 bit identity

comparator for generating the LISP EQ? function. Operand A can be written

back into the register array and so provides an extra path for performing

register transfers. It is also loadable into KARl. Operand B is loadable into unFI.

The top 8 bits of Operand A are sent to the microsequencer for dispatching.

This execution unit has UDATA3 as the sole external register, which can feed

operand A.

17

% ' - i I i
"

- '' ''• " .. .
' . .' "" " ' " " - ' '' -. . . " '

4. Type Code Unit (TCU). The operands are 8 bits wide and contain only the tag

portion of the registers. Operand A is tested for equality against the type code
constant supplied to sui and operand B is tested against the one supplied to

EU2. Distinct condition flags are set according whether either, both, or each of
*the pairs are equal. These condition flags are supplied to the microsequencer

both as branch conditions and as addresses into a handler table for type code

dispatches.

The two arithmetic execution units generate sign, carry and overflow informa-
tion that can be used in the next cycle to conditionalize branching. However, the

special EQ?, danger bits, and type code flags can be used in the current cycle to de-
termine what the next instruction is. In addition the microcode can enable the type

code flags to signal an exception.

A memory transaction can be initiated using the address and data latched in

either wAo, mARl, No, or NF1. On a memory read the data returns in the next cycle

in NDATAl, NDATA2, NDATA3, and NDATA-TC for each of the execution units.

A major cycle of the processor can be divided into four phases:

I. Register Read Phase. Delimited by the signal RzGLB. Data is read from the

registers into the arithmetic or predicate unit. Data from a memory request

issued during the previous cycle returns and is loaded into and read from the
MDATA registers.

2. Operation Phase. The arithmetic and predicate units do their job. Odtput is
valid at the end of this phase. This phase starts on the falling edge of RE GE

and ends on the rising edge of Roviu.

3. Register Writeback Phase 1. The result from the operand A bus of EsM (a

register transfer) is written back into the register file. All other results are

loaded into selected external registers, and. memory transactions can start

immediately. The barrel shifter on EU2 starts operating. All condition and
interrupt flags 1 are latched and supplied to the microsequencer, which can

then star.t computing the next microaddress. This phase is delimited by RGum.

For arithmetic couditions, the flags are the ones generated in the previous

cycle. The EQ? and type code flags are those generated in the first two phases of the

same cycle.

18

16-

16

V0)

3

• --

Figure 2. T1 ning Diagram The various signl ane generated
by taking ECLOCK and pawsing it through a delay line and combinational
logic. These signals are used to trigger various events within a microcycle.

4. Register Writeback Phase 2. Since three result must be written back into the

dual ported register files, a second register write phase is used. The result
from zul and the barrel shifter are written in this phase. By the end of phase

4 the next instruction is fetched from the control store and ready for latching

when phase 1 starts up again in the next cycle. This phase starts on the rising

edge of RzGv3 and ends on its falling edge.

Each phase takes about 30 nanoseconds to complete. Since the architecture

specifies that memory references complete in one cycle, the minimum cycle time is

determined by how long that takes. Using 45 nanosecond memory parts and assuming

two levels of buffers driving the address to memory and receiving data from it, the
memory board should have a latency of about 85 nanoseconds. Memory address

decoding occurs in parallel with the operation of the memory chips and need not be

entered into consideration. The received data on the processor must be buffered and

clocked into nDATA prior to the operation phase (20 n). It can then pass through

the ALU and be docked into the memory output registers (35ns). Another layer

of buffering conditions the signal to be sent onto the bus again (10ns). Adding the

propagation delays gives a cycle time of 150 nanoseconds. These numbers are derived

using worse than the maximum propagation delays of components in the Advanced
Schottky logic family used and already allow for slack on the bus and circuit board
traces.

4.4 The Microcontroller Architecture

The microcontroller used for controlling the data paths is a fairly generic finite
state machine built using memory chips and pipeline latches. Complications aise only

to implement microcode loading from the host, the instruction dispatch and typecode

instruction dispatch, and non-existent memory exception.

Since all the microcode resides in RAM, the host computer is responsible for
coordinating the microcode transfer. For purposes of control the host communicates

with Scheme86 through eight synchronous status lines. Another 16 ines supply data

in two chunks to make up a full 32 bit word on the processor. These lines are

bidirectional to implement a similar pathway back from the processor to the host. Five

32 bit chunks of loading latches with 3-state output supplies the microcode memory

chip I/O bus. The latches are loaded with appropriate data when they are addressed

through the status word and a write enable line is asserted. Loading these chunks

sequentially assembles a full 160 bit microword. The microcode address can then be

20

forced to any specified location by loading it into the BoOT register and asserting a

BOOT interrupt. This is the highest level priority and ensures that the microaddress
correspond to the one residing in BOOT. At this point a write enable line can be asserted
to write the microcode word into the control store at the microinstruction specified.

Booting the microsequencer is a similar process. A desired address is clocked
into the BOOT register. When the BOWT interrupt line is taken high by the host, execution

is forced to and held at that address. The host can then release BOOT to resume
execution starting at the same address.

There is only one type of instruction in the Scheme86 micro-machine. Each
instruction explicitly specifies the address for the next instruction. Also specified is
an alternative address to use if some condition is false. Each address is 12 bits long,

making it possible to address four kilowords of instructions. The remaining 136 bits

in each instruction are assertion signals. They are used to specify the operands and
functions of the execution units, control loading of registers, select branch conditions,
and enable interrupts. Using only one type of microinstruction with explicit addresses
may at first seem like a waste of hardware and instruction width. However the

increased decoding speed and the removal of complicated sequencing hardware make
the increased width worthwhile.

After each instruction, execution continues at nT if the branch condition
being tested is true, and ALT if it is false. There are four more sources of address that
can determine the next state of the controller. The DISP address, supplied by the top 8

bits of operand A in an, when enabled, replaces the lower 8 bits in both NExT and ALT.

This implements a 256-way dispatch into two possible dispatch tables depending on a
branch condition. The top four bits of TC-XC,-Anlt is loadable from ALT, while the lower

eight bits are made up of one constant bit, three microcode controlled signals, and
four conditions generated by Tcu. TC-XCP-ADR is enabled if one of the four conditions

(or their complements) matches one specified by the microcode. The third source is
the IXN-XCP-ADR. It is loadable from ALT and is enabled if a reference into non-existent
memory occurs. This exception can be disabled. The fourth source is BOOT described

above. BOOT takes the highest priority, followed by NX-UCP-AhD, TC-XCP-AD, DISP, and

the normal addresses.

The operation of the sequencer can also be described in four phases:

1. Execution Phase. A microinstruction is read and latched into loading registers.

Control signals propagate to control various parts of the datapath and the

sequencer. This phase is marked by mxi.

21

2. Address Latch Phase. With the current instruction safely clocked inside hold-
ing registers, all microcode address sources are clocked with addresses for the

next state. This phase starts on the falling edge of i and ends on its rising

edge.

3. Decision Phase. Depending on interrupt and branch conditions, one of the

address sources is selected. Enables for these sources are clocked. This means
that all condition flags that may affect the next state must be valid at the
beginning of this phase. Phase 3 and phase 4 are not well delimited.

4. Instruction Fetch Phase. After the address has stabilized, it is used to index

into the microstore to produce the next instruction. Phase 4 ends at the start

of the next cycle.

A cycle starts on the rising edge of the main clock signal (scL0o) which has a

duty cycle of 50 percent. The other clock signals used to signify the start and end of
the various phases are derived from Em using a delay line and combinational logic.

Positive multiphase clocking is used throughout the design. In fact the machine can
tolerate skews of up to 10 percent of the main cycle time.

Ar

22

5. The Logic Simulator

Scheme86's design was entered into a simulator to verify the logic design and

timing analysis. The simulator was based on a similar system by Gerald J. Sussman
and Michael Douglas for testing the Digital Orrery. The original version was written

using Portable Standard Lisp and a message passing system developed at the Hewlett

Packard Laboratories. A simplified implementation in Scheme appears in [Abelson

1985]. For Scheme86, this simulator was rewritten using Scheme and the "class"

object-oriented programming system designed by Chris Hanson for implementing the

Scheme text editor Edwin.

5.1 Overall Design

The simulator works at the logic level and is event driven. Each node in

the circuit is entered as a wire, represented in the simulator by an instance of the
wire type. Each wire object keeps its internal state with instance variables. The

-, information includes what signal level it is at (high, low, unknown, or undriven),

which gates are driving it, and which gates receive input from it. Each wire instance

can represent a single wire or a bus of arbitrary width. In the case of buses, the

integer value of all the bits, rather than just a binary value, is maintained. The value
may also be symbolic, but this requires the components attached to the wire to be

able to handle non-integer values. Operators exist to merge a number of narrower
buses into a wide bus and to break a bus down into smaller buses.

Gates are also instances of objects. They are associated with methods that
produce output signals computed from input signals. The output signals may be

delayed by an amount depending on the type of the component. A number of com-

ponent types are currently implemented, and new types can easily be added when

the need arises. The components are sliced according to the width if the wire they
are connected to, rather than individually or according to actual physical packages.

This provides a lot of convenience entering the circuit while ensuring a more mean-

ingful and efficient simulation. Complicated component types can be constructed by
internally wiring together primitive functional elements. The new compound type is

then modeled by the internal circuit of sub-components. This hierarchical abstraction

mechanism can be generalized to implement complex components which represent an

entire sub-system in an overall design.

23

- t

When a component is added to the system, it notifies the wires it is attached

to by sending the wire objects an appropriate message. To wires it receives input

from, it passes a handler that will trigger a response by the component when the wire

switches state. The handlers are recorded in the wires. Whenever the logic level or

status of a wire changes, it executes the handlers one by one, thereby propagating the

signal along. When a component wants to alter the logic level of a wire, it sends the

wire object a message along with the desired signal. The system hence propagates by
first having components drive and change the state of wires, and then allowing the
wires to in turn trigger attached components and drive their output nodes. This way
a single change in one node of the circuit influences the entire network of components

to respond according to their functional specification.

The concept of propagation delay is implemented by maintaining an agenda
of pending actions. The component handlers can respond to changes in their input

not only by performing the triggered action immediately, but also by encapsulating
tue desired action in a thunk' submitted to the agenda with a specified amount of
delay. The system executes each thunk in the agenda in chronological order. At

the same time it accumulates the specified delays to maintain a notion of elapsed

time. Timing jiggles are modeled by inserting or deleting a random amount from the F
specified delays.

The hold-time requirement of monostable devices are checked for by thunks
delayed by the hold-time. Setup times are ensured by inserting a delay equal to the

minimum setup requirement between when the input wires change state and when
the actual inputs to the gates are affected.

Normally only one gate can drive a wire at a time, and the wire object com-
plains if this is not the case. Tri-state buses are implemented by temporarily lifting

this constraint so that there may be some minimum overlap.

Any node in the circuit can be monitored by attaching a probe component
to it. The handler for probes simply notifies the user with typeout when the signal

changes, informing him of the old and new values and the current time. The trace

component can ctually plot the signal level versus elapsed time on the screen. This

implements a simulated logic analyzer for debugging clock generation and timing

constraints.

A thunk may be viewed as an object encapsulating both code to be run and

the execution environment. In Scheme they are implemented as closures.

24

.:.,,i~ .m , . N, mma i ~ i li im l~ i ~ m i~li ka - : '.. . " '• '
"

" -"

5.2 Results and Evaluation

The simulator helped catch a handful of mistakes, all concerned with clocking

and timing. I was able eventually to simulate the execution of many microinstruc-

tions to ensure that critical sections of the hardware have no basic design flaws. In

particular the microcode loading sequence is thoroughly tested, the sequencer was

found to be bug free, and the datapath design correctly produced results with no

apparent race conditions.

The operation of the simulator was sufficiently efficient. When simulating all

of the processor board design the simulator can execute one microinstruction every

second. Since the system was implemented in Scheme it is also easy to replace working

subsystems by custom written component modules with similar behaviour but are

no longer faithfully represented by large numbers of primitive logic elements. This

greatly speeded up the simulation process. For example, once the microcode loading

sequence was certified to work, the ten minute process in the simulator was replaced

by a procedure that took negligible time to complete. Further simulation was then

centered around the datapath design.

25

26

71L

- 6. The Layout System

An important computer-aided design tool implemented was the procedural lay-

out system used to specify the design of the printed circuit boards on which Scheme86

is to be built. Graphical features on each board is described with Scheme code. The

layout system evaluates the Scheme expressions and then either displays the design

on a graphics monitor or generates CIF, a low level specification language recognized

by the printed circuit board manufacturing facility. The system provides means of

combining primitive geometric figures into compound structures which in turn can

be cut and pasted to form yet more abstract structures. Locations within structures

can be referred to symbolically.

The system bears resemblance to the Design Procedure Language, a similar

tool developed at the MIT Artificial Intelligence Laboratory [Batali 1980]. Some

features and functionality were inspired by EARL, another layout language [Kingsley

1982]. Currently the system is oriented towards laying out printed circuit boards.

Adapting it for VLSI development or as a general graphics language should not be

difficult.

6.1 Implementation

The system is embedded in a Scheme interpreter. A handful of new special

forms and functions that explicitly manipulate the layout are made available to the

user. Since the geometric objects are represented as Scheme objects, all the power of
the Scheme language can be used in conjunction with the layout functions to describe

and manipulate the geometry of the design. For example, buses can be constructed

by iteratively calling a Scheme procedure that produces one wire, each time with
slightly different arguments.

There are two kinds of primitives. There are purely geometric structures, such

as lines, boxes, and points. There are board primitives, for example vias, standard
plated-through holes, ground connections, and wires. Conceptually board primitives

can be constructed as compound structures of geometric primitives, but this was not

done because of efficiency reasons. Each primitive is a Scheme procedure. Instances

of a primitive can be made by applying the procedure with where it is to be placed

*and other relevant parameters. Primitives know how to draw themselves relative to
the point they are placed.

27

- 1 . .A :. "

Compound objects are called structures. The special form DFIIn-s uCTURm

creates an environment in which primitives or other structures can be placed. Co-

ordinates specified inside this environment are relative to the structure only. Once

made, the entire structure can be instantiated like a primitive, i.e. it can be ro-

tated, translated and incorporated into other structures. Because structures are just

like primitives, they are also implemented as procedures. Drawing a structure sim-

ply involves translating to the correct origin and then recursively drawing the sub-

structures. When a primitive is reached drawing actually occurs.

Several instances can be glued together and manipulated as one through the
use of the a,-w operator. It is a procedure that takes instances as arguments which

it incorporates into a new instance. The difference between these compounds and
structures is that the latter become system primitives which can be instantiated and

translated, while the former cannot.

An instance is implemented as a closure. Its Scheme environment captures

its internal states, for example where it is, which layer it is on, and an association

list of its inferior structures and their names. The procedure implements a message

dispatcher as described in [Abelson 1985]. By applying the closure with messages we

can inquire about an instance's internal parameters or cause it to draw itself.

The position of any instance can be found by using the e special form. The
name of the instance and the list of structures which hierarchically contains it is sup-

plied as arguments. * expands into the function Lwc which traces down the chain of

structures, maintaining the correct coordinate transformation, and finally returns the

location of the required instance in the coordinate system of the calling environment.

The lookup occurs when the Scheme expressions describing the structure are evalu-

ated. This means the symbolic locations must already be defined. It also has the

property that when the actual location of a symbolic reference changes through the
use of incremental definitions, the new coordinate will not propagate to places that

are referencing it. All dependent structures must be evaluated again to capture the

new change.

The layout system uses Scheme's graphical interface to plot structures on

video monitors and hardcopy devices in color or monochrome. The ability to display
structures as they are being defined into the system makes it possible to delug the

layout interactively and incrementally. The user can choose a structure to display, -

and instruct the system to either fit the entire structure on the display or zoom in to

examine details.

28

* *".. ., .; " -" - ' ' . ' . .. ". . '. .i : "
°

.. . " 7 ., -, : .,7,. ,

Ultimately the system generates Caltech Intermediate Form, a low level graph-

ics language that specifies the geometry of the board in a format that the fabrication

facility can read. CIF differs from a high level specification like the Scheme layout

language in that it does not have symbolic references, procedures or iterative con-

structs. CIF resembles commands sent to a low level graphics system. The CIF code

generator in the layout system is implemented by consistently replacing each primi-

tive's drawing function with a procedure that writes out an equivalent CIF command

to a file. Since each primitive in the system has a counterpart in CIF, the translation

process is simple.

29

:-

6.2 Example

The following piece of code places a couple of chips side by side. It is assumed
that UTPASSm-wD-24 is a defined structure that creates a 24-pin DIP package oriented

in the upright direction.

(defiae-structure two-chip.
;; Place f irst chip, call it U001
(add-component I 'U001

(bypassed-ud-24 (make-point 0 0)))
;; Place U002 one chip spacing on the right Of U001
(dd-cmponest I OU002

(bypassed-ud-24 (+point (0 (UO01 chip pin2O))
(ake--point *chip-spacifg* 0))))

Ground certain pins

(add-componen i 'ground-pins
Ground things on the solder side of the board. P1IO is chip ground

(all-of (solder-connect (0 (M001 chip pinS))
(0 (UOO. chip pIlo)))

(solder-connect (4 (UO02 chip p"nil))

(4 (13002 chip p:nIO)))))
Routs pin 13 to top of the chip, on coponent sf

(add-compone 'e J mable
;; Notice use of Scheme language features

(lot ((from (0 (U0O1 chip pin13)))

(end (0 (UO01 chip pin2O))))
;; We clear the pin itself by I iniais clearance in the -diiection

(component-connect from (pad-clear 1 0 frog)
(pad-clear 1 1 nd))))

End DRFZIN-SThUCTUU
)

30

A2 .

7. Results and Conclusion

A preliminary layout of the processor board was completed. Based on the

experience designing this prototype, we believe that a working version running at

the speed claimed by the simulation results can indeed be built. A memory board

meeting our specifications was constructed.

A Scheme interpreter was written and simulated. Results show that Scheme86

can indeed execute Scheme with a speed competitive with that of compiled systems

on modem workstations [Berlin 88].

3.

31

32

8. Possible Improvements and Future Work

Because of the severe time constraint imposed on the project, some compro-
mises in the architecture have to be made. A few genuine errors were also made in
the design.

Owing to some bad experiences dealing with memory systems, I have chosen

to map all of the specialized I/O and debugging registers into the register array
space rather than the memory space. This moved a lot of hardware and wiring into
the processor area, severely complicating the layout process. While this approach is

efficient for the memory interface, non-critical registers should not take up space in

the execution units.

The type code exception mechanism, though elaborate, is very difficult to
make use of in software. A better design of this part of the architecture should be

* worked on once there is more microcode written.

Due to inexperience, the memory bus was not very well designed from both a
software and electrical point of view. A minimal handshaking protocol is supported,
and it will not be an easy task to implement coprocessors for this architecture. A
better design of the bus can speed it up and hence improve the overall performance

of the processor.

The timing of the processor will be a lot simpler if I can use a register file with
one more write port. Using the dual ported register fie we have, two register write-

back cycles are needed. Given this situation a fourth write-back, possibly for another
register transfer or the result of a floating point unit or a multiplier, could have been

implemented. This was not done to reduce hardware and microcode width. Adding
the extra write-back would have improved the potential performance substantially.
Alternatively the processor's cycle time can be shortened with an extra write port.
It will then be able to go through two cycles for each memory reference. This way
the memory throughput can be increased without sacrificing its latency. This may
however introduce pipeline interlocks in the sequencer, complicating the software

model of the microcode.

The microcode address space is a little too small. Although it will not take
~more than the four kilowords available to code an SCode interpreter, more space will

allow more primitives to be microcoded. If a path from the main memory to the
control store is put in, it will even be possible to micro-compile user code. When fast

33

,.L] , . - . . * * E E I-. * * a 1'W - ._*

static RAM chips with more storage are available', this machine can be redesigned

to contain more microcode mmory.

We conservatively decided to using a four-layered (with two signal planes plus

power and ground) circuit board for laying out the components. This turned out to

be extraordinarily difficult, given the number of pin-grid array chips and crossing data
buses in the design. Although the conservatism will eventually buy us the ability to
correct bugs after the board has been fabricated, we also ended up making its area so

large that propagation delay across the traces may become a problem. Not only will
we be able to pack the components denser on a six or eight layered board, routing

the individual lines and buses will also become much easier.

The layout system is procedurally driven. This makes the layout easy to
comprehend, but the code is very tedious to write. A more graphics oriented approach

may make the work easier, with the penalty that finished pieces may not be very

maintainable. Basically the current layout system is adequate for small designs, but
a more robust system is desperately needed for projects of this magnitude.

The simulator has some of the-same problems. Entering the schemxtic pro-
cedurally is a mundane process. The simulator should be integrated with the layout

system so that even the final layout could be checked. The trace feature was a good
idea for complicated multi-phase timings like the one in this design, but better trig-
gering control could be added to make it easier to use.

As a result of a lack of time, the SCode abstraction was taken wholesale from
previous implementations of Scheme as the instruction set for this machine. While

we are certainly experienced in implementing SCode and it is desirable in many ways,

extensions could be added to make the machine run more efficiently. Future work on
this type of architecture must focus on designing an instruction set that fully exploits

the architecture and many known techniques of compiling Scheme.

The design of the architecture, was based on intuition and on our experience
with large programs and LISP implementations. The performance expectations were

derived from looking at small sections of frequently called routines and critical paths

of the interpreter. No empirical data has been taken, and the actual execution of
substantial programs has not been simulated. To prove the merits of the design,
extensive tests and benchmarks must be done. A comparison of the general architec-

1 An 8K x 9 NMOS chip made by Toshiba is expected to be available end of

this year.

34

tural principle against other popular designs is necessary. Such a comparison must

try to factor out the technology used and constraints in actual implementations to

reveal the full potential of each design.

35

~.- ..

H i Sil :I N ¥ -'. .

Acknowledgerents

I would like to thank Professor Gerald J. Susman for supervising this project.

He-helped come up with the basic architecture, wrote the fist version of the simulator,

and got me started writing the layout system.

Much gratitude is due to Dr. Yekta Girsel, who did the preliminary layout

of Scheme86. He gave many suggestions for improving the layout language and con-

tributed code and algorithms with which I refined the system.

Chris Hanson made numerous important contributions to the Scheme86 ar-
chitecture. He provided lots of ideas while the sample microcode was written and

analyzed. Jim Miller participated in discussions on the feasibility and practicality of

this architecture. Bill Roza, the resident Scheme wizard, taught me a lot about the

SCode implementation. David Espinosa wrote the first pass of a simplified Scheme
interpreter for this machine and, together with Oded Feingold, performed the design

of the memory board. Professor Rich Zippel graded and provided valuable comments

on an earlier paper on this architecture.

After the thesis portion of this work was done, Andy Berlin signed on as a prin-
cipal on this project. Mark Miller, and Steve Codell also contributed significant time.

Special thanks is due to Thomas Simon, who wrote the final version of the Scheme

interpreter, implemented most of the optimizations, and assisted in the performance

analysis.

36

References
(Abelson 1985]

Abelson, Harold, and Gerald Jay Sussman, with Julie Sussman. 1985. Struc-
tures and Interpretation of Computer Programs. Cambridge, Mass.: MIT
Press.

[Batali 1980].
Batali, John, and Anne Hartheimer. 1980. The Design Procedural Language.
Memo 598, MIT Artificial Intelligence Laboratory.

[Batali 1982]
Batali, John, Edmund Goodhue, Chris Hanson, Howie Shrobe, Richard M.
Stallman, and Gerald Jay Sussman. 1982. The SCHEME-81 Architecture -
System and Chip. In Proceedings of the MIT Conference on Advanced Research
in VLSI, edited by Paul Penfield, Jr. (Dedham, Mass.: Artech House).

[Berlin 1988]
Berlin, Andrew, Henry M. Wu. 1988. Scheme86 - A System for Interpret-
ing Scheme. In Proceedings of the 1988 Conference on LISP and Functional
Programming. ACM.

[Holloway 1980]
Holloway, Jack, Guy Lewis Steele, Gerald Jay Sussman, and Alan Bell. 1980.
The SCHEMF-79 Chip. Memo 559, MIT Artificial Intelligence Laboratory.

[Katz 1985]
Katz, Randy H., editor. 1985. SPUR Architecture Design Rationale. Com-
puter Science Division, Electrical and Computer Science Department, Univer-
sity of California, Berkeley.

(Kingsley 19821
Kingsley, Chris. 1982. EARL: An Integrated Circuit Design Language. Mas-
ter's thesis, Computer Science Department, California Institute of Technology.

[Knight 1979]
Knight, Thomas F., Jr., David A. Moon, Jack Holloway, and Guy L. Steele,
Jr. 1979. CADR. Memo 528, MIT Artificial Intelligence Laboratory.

[Miller 19851
Miller, James S. 1985. Ph. D. Area Examination paper. Department of Elec-
trical Engineering and Computer Science, MIT. Private communications.

[Moon 19851
Moon, David A. 1985. Architecture of the Symbolics 3600. Submitted to the
12th IEEE International Symposium on Computer Architecture, April 3, 1985.

[Rozas 1984]
Rozas, Guillermo J. 1984. Liar: An Algol-like Compiler for Scheme. S.B.
thesis, Department of Electrical Engineering and Computer Science, MIT.

[Steele 1979]
Steele, Guy Lewis, Jr., and Gerald Jay Sussman. 1979. Design of LISP-based
Processors or, A dielectric LISP or, Finite Memories Considered Harmful,
or LAMBDA: The Ultimate Opcode. Memo 514, MIT Artificial Intelligence
Laboratory.

37

