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Assisting Design Given Multiple Performance Criteria

Dennis C. Fogg

July 26, 1988

A design system that accepts multiple performance criteria faces the problem of trading
off one criterion for another. Understanding the user's preference about such tradeoffs is

essential to producing the most desirable design. An argument is made against specifying
preferences over all possibilities before the design process begins. The proposed solution
reduces its dependence on the specification's accuracy by encouraging interaction between
the user and the system. The system produces quick, high quality information about real-
izable designs and performance tradeoffs between them. The user interactively evaluates,
directs, and terminates the design exploration. Techniques called decoupled design, alter-
ation strategies, and sample search are key elements in the implementation. Decoupled
design generates a large number of designs efficiently (an alternative technique that uses
linear programming is also presented). Alteration strategies are abstract descriptions of
design modifications that assist in directing the design process and creating novel struc-
tures. Sample search is a framework to control search using domain specific heuristics. The
design system operates in the domain of non-regular, application specific, signal processing
architectures. The design process occurs in two phases: first, the architectural structure
with uninstantiated operators is created then each operator's implementation is selected. g -

Keywords: computer-aided design, artificial intelligence, linear programming, search,
computer architecture, application-specific integrated circuit.
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1 Introduction

Application specific, VLSI systems are significantly more efficient than their general pur-
pose, microprocessor based counterparts. Unfortunately, they also demand much more

design effort. This proposal investigates the use of Artificial Intelligence (AI) techniques to

reduce the cost of exploring different architectures.
The key difference between this design system and most previous Al design systems is

that the design specifications include multiple, interacting performance specifications in ad-
dition to the traditional functional specification. The ability to explicitly consider tradeoffs
between various performance factors changes both the designed object and the process by
which the object is designed. The system accepts a behavioral input describing the func-

tion of the architecture and a performance input describing the preferred tradeoff oetween
performance and resources; its output is a set of possible architectures. The functional
specification is described by a simple programming language which is easily translated into
a dataflow graph. In the ideal case, the description can include constructs for looping,
conditionals, and even non-recursive function calls. The system proposed here is more
modest but should be amenable to scaling. Evaluating a system's performance typically

involves many disparate factors including throughput rate, latency, chip area, power usage,

technology, and pin count. The system will assist the designer in deciding tradeoffs among
relevant factors. The user can influence the architectures by suggesting his own architecture

or proposing a partial architecture and letting the system attempt to finish and optimize
it. The system's domain is a niche of signal processing architectures in which computation
is the bottleneck and calculation involves heterogeneous operators.

Related work in the literature is reviewed in the remainder of this section. The next
section motivates the need for a new approach to multiple performance design and answers
the need by presenting an overview of a solution. The following three sections describe in

detail mechanisms that will be used to support the approach. Appendices contain additional
detail.

1.1 Related Work

1.1.1 Al Techniques for Design

Design for Functional Goals The two primary models of the design process are: the
refinement paradigm and the transformational paradigm ([Mos85] reviews both and dis-
cusses other issues in modeling the design process). According to the refinement paradigm,
design is refining the specification into its component parts each of which is closer to a

concrete implementation. Each part in turn is refined until every part of the specification
has been mapped into a concrete implementation. The design history resembles a tree with
the specification at the root and the implementation as the leaves. Note that component
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parts can only affect parts that are descendants of it. Often the model is augmented with
constraints, so communication can occur among parts in different branches of the tree. An
example of the refinement paradigm is [MSS841. [Roy83] expresses similar views on design
except he describes the refinement process differently. He views design as a mapping from
function to structure. The initial specification consists of a completely functional descrip-
tion of the design. The functional description is refined by substituting constructs that
are both functional and structural. Remaining functional descriptions are refined until the
implementation is completely structural.

The transformational paradigm views design as a series of transformations that convert
the specification into an implementation. Unlike refinements, which expanded a single
design component independent of other components, a transformation can replace any or
all the design components. Thus, the transformational paradigm can express designs that
the refinement paradigm cannot. Sometimes, the transformational paradigm also models
the process of deciding which transform to apply. A hierarchy of goals is created, and
when a goal can be satisfied by a transform it is applied. The design history has a tree

of goals with transforms at the leaves. The implementation is created by transforming the
specification by all the tree's leaves. Examples of the transformational paradigm are [Bal8l]
and [LM851.

Design under Performance Constraints The refinement and transformational paradigms
concentrate on creating a design to satisfy a functional goal. This proposal emphasizes per-

formance design, satisfying both a functional goal (what it should do) and performance
goals (how well it should do it). There are important benefits to encoding performance
preferences explicitly. A purely functional design system may create a design that uses too

much area or operates too slow. In either case, the design is unusable. The user's only
recourse is to tinker with the functional specifications and hope he can create a design that
comes close to his performance specifications. Since the system created the design, it has the

most information about it and is in the best position to modify it to meet the performance
specifications. To date, only a few researchers have explored performance design.

Two projects have attacked performance design in the VLSI domain. [KP86] uses a
STRIPS-like planner to determine the sequence of operations to apply. During the planning
phase the design's evolution is represented by states and an associated set of logic statements
describing the design. For example, the goal state might include the statement "(exist
PLA-Layout)." The planner simulates operation application by adding and deleting logic
statements. To execute a plan, operations are applied to the inputs to produce the actual

design. Thus, the planner is not building the design, but rather controlling which tools are
used. Planning and plan execution can be interleaved. The planner's search strategy is hill
climbing: at the current node the most promising operation is applied where promise is

measured by maximizing a weighted sum of performance measures. After the initial design
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is produced, it is compared with the target performance. Subsequent designs are created by
giving the operations different performance preferences. They are guided by interpolation
to converge on the target performance. The user's performance goals consist of weights for 4
performance factors: area, speed, power, and design time. The other project is [BG86]. Its
design model emphasizes that each refinement level has its own functional and performance
specification. Each level also communicates to its parent and children. A level's performance
specification can change depending on the resources handed down from its parent. Child

levels can request more resources from their parent. Propagating resource allocations up
and down refinement levels influences a design's performance, because different resource
allocations create different implementations. Initially, the system produces designs at the

extremes of the performance space. Interpolation creates new designs that are closer to the
user's desired tradeoff ratio between time and area.

Kant's LIBRA program ([KB81, Kan79]) operates in conjunction with a transforma-
tional paradigm automatic programmer. LIBRA controls the application of transformation
rules such that they create designs that are efficient and the design process itself is effi-
cient. LIBRA uses a variety of techniques: it sorts decisions based on how influential they
can be; it computes upper and lower bounds on partial implementations so search can be
pruned by branch and bound; it explicitly allocates and obeys time limits put on the de-
sign of subgoals; and it uses a knowledge base to instantiate an implementation given the

characteristics of the designed object and the amount of design resources left. LIBRA's
approach for addressing multiple performance criteria design is to combine all criteria into

a single evaluation function and maximize it. All three projects use a functional description
to specify performance. The disadvantages of using a function as a user interface will be

discussed in the next section.
Kowalski (Kow85] built a rule-based system to convert register tranfer level descriptions

into architectures. Its architectural modifications include mapping several virtual registers
and operators into one physical implementation and converting multiplexor structures into
bus based interconnect. Since the program did not incorporate a design simulator, adjusting
the design for performance was crude: users could specify limits on the number of operators
allowed in designs (eg: constrain the system to produce a design with no more than 4
adders). Also, it was not built with a general model of design in mind, so the ideas cannot
be used by design systems in other domains.

A new idea for design called emergent criteria is presented in [Nav87]. The assumption
is that there are too many goal criteria for the user to consider initially, so the system will

recall relevant ones when they are needed. His system creates a number of designs and
ranks them along several goal criteria. Designs that cannot be dominated by other designs
form a frontier of best designs for these goal criteria. The designs at the frontier as well
as those just below the frontier are selected for further discrimination. The system has a

.o
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memory of previous case studies. Each case includes the winning design and the goals that

were used to select it. If a goal criterion from an old case study can discriminate between

the designs in the current situation, then the user is asked if he wants to use this criterion

to discriminate the current designs. In its present state, the system may need the user to

manually augment each design for the new criteria.

1.1.2 Silicon Compilers

Another related area of research is silicon compilers [Sou83, DR85]. Silicon compilers map

hardware behavioral descriptions to layout. The input is a register transfer level description

of an architecture. Silicon compiler proponents point out that this is a high level language

because the input language's registers are virtual registers and do not necessarily correspond

to real hardware. Several virtual registers may share one physical register, or if a virtual

register does not need to store a value, it is deleted leaving only a wire. Unfortunately,

this is the only architectural change the system can make automatically. If the user wants

a different architecture to produce a different performance, he has to change the input

description himself.
A key organizational difference between the system presented in this proposal and silicon

compilers is that compilers have not integrated design evaluation into the design loop. In this

proposal provisions are made from the start to allow the design component to be influenced

by the design evaluator (simulator). The system can adjust the architecture based on the

user's performance goals and the results of the evaluator. In addition, the proposed system

has a much larger architectural vocabulary than a typical silicon compiler would.

1.1.3 Virtual Mapping Schemes

Another related area of research is the mathematical deduction of signal processing archi-

tectures. These methods will be referred to as virtual mapping schemes, because they map

one mathematical description of an architecture into another. The work of Cappello and

Steigliti [CS84] is representative of these schemes. They start by mapping an equational

description of a common signal processing computation into a recurrence relation. The

relationships between the input and output variables are plotted in an n-dimensional space.

There is one dimension for each index in the computation and an extra dimension repre-

senting time. The plot consists of points where computation occurs and lines for passing
variables between computations. The plot's orientation relative to its axes implicitly defines

an architecture. For example, all the computations in one time plane must occur before

any computation in the next plane. Similarly, computations located along the same spatial

index value will probably be implemented in the same processor. The diagram may not

specify all the details of the architecture. New architectures are automatically deduced

by rotating, translating, stretching, projecting, and swapping the axes of the plot, since
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these transformations change the plot's orientation and shape. They result in new tim-
ing relationships, different numbers of processors, introduction of pipelining, and different
orchestrations of data movements. The transformations can be represented by matrices.

Virtual mapping schemes have been successful in deriving known architectures and dis-
covering new ones. They are a step toward formalizing architectural design. Nevertheless,
they are severely limited in the types of architectures they can manipulate. They have
concentrated on signal processing architectures, because those computations have very reg-
ular structure. For example, Cappello and Steigltz illustrate architectures for matrix times
vector, convolution, matrix product, and matrix transpose. Extending the scheme to non-
regular or even slightly irregular computations is not clear.

2 A New Approach

2.1 The Difficulties in Specifying Multiple Performance Preferences

2.1.1 Representing Preferences by Constants

At first glance the method of specifying performance seems analogous to specifying func-
tional behavior. That is, the user simply dictates the functional operation and the per-
formance characteristics of the design to the system. The problem with this approach is
the performance specifications are completely divorced from what is physically realizable.
There is no reason to believe that a chip can be built to the user's performance specifications
other than the user wants it that way. In fact, if such a system did exist, the clever user
would demand that designs take zero time and occupy zero area.

Typically, one of two situations occurs: It may be impossible to build a design that
meets the specifications (over constrained) or there may be many designs that not only
meet the specification but do better (under constrained). If the design is over constrained,
a typical system would fail and give no hint about how to relax the specifications to create
a workable design. If the design is under specified, the system does not know which of the
better solutions to choose it because it does not know the user's preference on trading off
performance dimensions. More importantly, a system that has found an under constrained
solution may not search for better ones, so the user would not be told that better alternatives
exist.

2.1.2 Multiattribute Preference Functions

An alternative technique is to bundle all the performance factors into one function and
optimize it. This solution is often used when coarse comparisons are required. But when
a function is used to choose the best design, finding its form and coefficients is critical

and difficldt. Even with two performance factors, it is difficult to specify a mathematical
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relationship that precisely reflects the user's tradeoff preference. He may have a feel for the
general nature of the tradeoff or he may know which tradeoffs are obviously undesirable.
But, it is neither obvious nor natural for a designer to know the number of squared microns
he is willing to trade for a nanosecond speedup. This is aggravated by the lack of context to
make the decision. The function must be an exact description over all possible values of the
2 parameters. Even if the user actually produces a preference function, it's not clear that
he understands the implications of the new statement. Since this is not how users naturally
represent their tradeoff knowledge, statements made in this language are unreliable. The
preference function guides the creation of designs, so if it is inaccurate it guides the system
in the wrong direction. There has been some work on specifying perference functions using
properties of the desired function ([We1851), but they provide little assistance in guiding the

design process.
The performance preference problem for a VLSI system is further complicated by the

number of factors that might be included in the function, including: latency, throughput,
area, pin count, design cell count and availability, power, routing and layout issues, control
conplexity, I/O protocal, etc. This list is not exhaustive; each application may have factors
that are unique to that design. One might argue that the number of factors could be
reduced by considering only the "important" ones. The problem is that any factor can be
"important" if its influence grows large enough. Since the user does not have the design
in front of him, he does not know the magnitude of the factors and thus does not know
which ones are important. He has to specify when each factor becomes important and how
to trade it off when it is important.

When the user interface is a function, the user has to give a complete characterization
of his preference for all possible cases even though most situations will not appear. This is
an enormously difficult task that is certainly extremely error prone. The smart user will be
wary of a system that produces a "best" design according to his performance specifications.
Design assistants don't know what the best design is so they should not concentrate on pro-
ducing a single best design. The difficulties of specifying multiple performance preferences
will be referred to as the problem of unreliable performance specifications.

2.2 Framework for a Solution

There is fundamental barrier between the design system which cannot know what the user
wants and the user who does not know what designs are possible. A potential solution is to
create cooperative interaction between the two parties such that each gradually finds out
more about what the other knows. Given this view, the system's responsibilities change
substantially. Instead of asking the system to do the impossible (produce an optimal solution
given multiple criteria), the s) stem should help the user explore alternative designs and
provide information about tradeoffs among performance dimensions. The user and the



design system are in a feedback loop. The system creates and measures designs, and the
user evaluates the solutions and guides the search process. The information passed between
the user and the system includes not only the designs but also possible tradeoffs between

performance dimensions, the size of the search space, the method of producing the designs,

and ways to optimize the designs.

Incorporating feedback sharply contrasts systems that rely on accurate functional spec-
ifications. It is convenient to view the design process as consisting of 3 entities: the user,

the specification, and the implementation. A system that assumes it receives accurate func-
tional specifications from the user simplifies the interface between one pair of entities at the
expense of another. Its specification/implementation transformations can take advantage of
a well-defined evaluation criterion, a limited search space, possibly a termination condition,
and a wealth of knowledge on search and optimization. Unfortunately, the user/specification
interface shoulders the unreasonable burden of precisely quantifying the user's preferences.
By introducing feedback from the implementation to the user, the design process is less

dependent on the accuracy of the user/specification interface and more likely to identify
a preferred design. The design system, however, has less direction from the specifications.

New techniques are needed to prune the search space and to make each search step more

efficient.

There has always been interaction between user and design system, but previous systems
have not been designed to explicitly take advantage of it. The approach advocated here
anticipates its role in the partnership and capitalizes on it in several ways. First, tradeoffs

between real designs can be efficiently produced and are valuable to the user. Users prefer
choosing among actual designs rather than specifying tradeoff preferences over all possibili-
ties. Second, sometimes it is more important to get quick information even at the expense of
compromised solution quality. Given limited resources, a system that always produces the

best designs is not necessarily producing the best information. If the user is only interested

in whether he is "in the right ballpark" then a system that produces less optimal solutions
faster is preferred. This situation is often true in the initial phases of design when the user
is exploring the space. In later phases, the user will probably want high quality designs and

is willing to wait for them. The design system should be flexible enough to operate between

these extremes.

Third, the user/system interaction exposes the dual role of performance specifications.

Previous design systems have a single description of the desired performance. Those systems
direct the search for designs according to this goal and return the solution that fulfills it best.

Interactive specification forces a distinction between using a performance specification to
guide the search and using it to select the most desirable design. User interactions generate

many different performance goals all of which are only an approximation of the user's actual
preference. The interactions direct the system to explore different directions. Selecting the
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most desirable design is done by choosing from actual designs instead of maximizing an
abstract description of preference. Thus, performance goals in this project are similar to
those in previous systems in that the system strives to achieve them, but they are different

in that the system does not assume it has succeeded when it has achieve them.

2.3 Project Goals

This proposal is more than an outline of how to build a VLSI design tool or how to integrate
AI techniques into a design tool. The underlying goal is to investigate how computers

can assist (and possibly alter) the design process of real world objects. The main results
should be ideas on the nature of a human/computer interaction for design exploration and
techniques to implement them.

The general problem of assisting design is too broad for one thesis. This project explores
the design of objects whose specifications contain interacting and conflicting performance
preferences. The thesis proposed is:

The design of objects with multiple, interacting performance specifications can
be facilitated by encouraging feedback between the user and the computer. The
design system produces quick, high quality information about realizable designs
and performance tradeoffs between them. The three techniques of decoupled
design, sample search, and alteration strategies are useful in implementing such

a design system.

Other design automation projects have emphasized the role of the computer as an as-

sistant, one that helps the user do the mundane chores and leaves the hard things for the
user ([RSW79]). The system advocated by this thesis takes a more responsible role. As a
colleague the system is providing a service that complements the user's skills. It extends the
designer's capabilities by searching parts of the design space more quickly and thoroughly.

The design methods of the system should be explicitly encoded and program accessible;
there are several reasons for this. First, the explicit identification of design techniques will
add to the knowledge of the design process enabling future design programs to use a library
of design techniques instead of reinventing the same. Second, general design techniques lead
to the development and use of tools that speed up the development of other design systems.

Third, if the design techniques are explicitly encoded and accessible by the program, then
the system is not limited to making decisions about the designed object. It can expand its

domain to that of making decisions about which design technique to use (trying alternative
design strategies if the current one is faltering). Finally, since the techniques are known to
the program, it can use them in its explanation of the designed object. It is often necessary
to refer to the design process to explain the designed object. For example, if the user wants
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to be convinced that the system's design is of high quality, one answer would be to discuss
the design technique in general and this instance in particular.

2.4 The Domain

The proposed design system is not intended to be used for all signal processing algorithms.
Many popular algorithms consist of the regular application of simple operations (eg: FFT,
FIR filters). The best tool for these algorithms is either special purpose design programs
or the virtual mapping methods described in Subsection 1.1.3. The tool proposed in here
works for a small niche of application specific, signal processing where the computation does
not have regular structure or symmetry that can be easily exploited through a regular archi-
tecture. The algorithms should be complex enough for a large variation in architectures but
simple enough that a computer program can derive new architectures. Often the computa-
tion is complicated by unusual iteration patterns and interactions between heterogeneous
operators. Four such algorithms are described in Appendix A:

e QR: an algorithm to find the eigenvalues of a restricted type of matrix,

e HH: an algorithm to solve systems of linear equations using orthogonal methods,

9 EV: calculates the r largest eigenvalues, and

* CG: an indirect method to iteratively find the solution to a system of linear equations.

The design system assists in the high-level exploration of architectures. Its implementations
are d iscribed at the register transfer level. Fabrication technologies, clocking schemes,
and other implementation issues below the register transfer level are summarized by the
performance of the primitive functional blocks and their interconnection.

2.4.1 Terminology

It might be helpful to introduce some terms for the different types of architectures that will
be referred to. The input to the system is typically parsed into a dataflow graph which is
an implementation independent description of the input computation. A direct map archi-
tecture is the simplest implementation of a dataflow graph: hardware operators are created
for each graph node and wires are created for each graph arc. The direct map architec-
ture is the fastest and most parallel implementation of the graph. The architecture can
be pipelined and/or some operators can be shared into one physical operator, but this will
still be considered a direct map architecture. One distinctive feature of this architecture is
that there are no global buses; connections between operators are dedicated communication
lines. This is in contrast to the 3 bus and I bus architectures. The 3 bus architecture
has a memory and a processor. Two buses bring data from the memory to the processor
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and one bus returns the results; the 1 bus architecture has a single bus doing all the data
transfer. The memory and the processor parts of the architecture are not necessarily simple
units. There may be several heterogeneous processors and/or memories. The standard 3
bus architecture has a single uniform memory feeding a multi-functional ALU.

Another dimension to consider is the number of processors in the architecture. A multiple
processors architecture has more than one processor and those processors have the potential
to run in parallel. The "processors" in a multiple processors architecture are independent
hardware units that can do computation and can store results '. A typical multiple processor
architecture would have n 3 bus architectures running in parallel working on different parts
of the dataflow graph. Although the multiple processor architecture would work well on
algorithms with regular structure, these problems are not considered in this project because
they are best handled by virtual mapping schemes.

2.5 Overview of the Design Methods

The philosophy of this project is that the barrier between the user and the design system
can be assailed by encouraging close interaction and feedback between the user and the
system. The system contributes by producing high quality designs quickly and providing
information on performance tradeoffs. The user combines this information with his goals to
guide the search. The interaction is initiated when the user specifies his performance goals
and the system returns designs that try to meet them. The user can modify his request
after seeing a few designs and the system will produce designs targeted for his modified
goal. Alternatively, the user can find local improvements in a set of designs by sending
them to the local optimizer. The interaction continues until the user is satisfied.

The design process is split into 2 phases. The first phase, called architectural mod-
ification, transforms the user's specification into an architecture with abstract operators.
Abstract operators have their function specified but not their implementation or perfor-
mance. The second phase, operator selection, instantiates the operators so the performance
of the overall architecture can be ascertained. A technique called decoupled design takes
advantage of the fact that each abstract operator can be instantiated independent of the
others. Using many combinations of operator instances, decoupled design produces lots of
designs each of which operates at a different point in the performance space. The designs
cover a wide range of operating performances, so the user can select a design that is close
to his desired performance. Moreover, the group of designs gives the user an idea about
tradeoffs between performance dimensions.

If the designs do not reach the user's performance goals or if the user wants to explore
alternate designs, transformations can modify the architecture. Some sets of transforma-

'A pipelined, direct map architecture could be considered a multiple processor architecture, but it is a
special case and is more descriptively referred to as direct map.
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tions have a common intent; alteration strategies axe abstract descriptions that capture that
commonality. Alteration strategies allow the system to reason about the transforms as a
group, justify a transform to the user, and assist in conflict resolution. The alteration strate-
gies in this system are: refining structures into more detailed or concrete ones, physically
sharing two structures, interleaving the details of two structures so they operate faster, and
recognizing when a more efficient structure can be used.

The process of transforming the functional specification to a fully instantiated architec-
ture includes many opportunities for choices. The series of choices can be thought of as a
search tree. To avoid searching the entire space, traditional search methods must evaluate
non-leaf nodes. Only leaf nodes in this space can be evaluated accurately, so the design sys-
tem will use a technique called sample search. Instead of searching the entire subtree under
a node, a few alternatives are sampled. Heuristics guide the sampling process. Assuming
the samples can ascertain the design quality, the node can make more informed decisions
about which alternatives to search more thoroughly.

The design system produces thousands of designs and plots their performance charac-
teristics. The user can examine the schematic of his favorite design. He can explore other
designs by revising the performance goals or trying another functional specification.

3 Operator Selection

This phase of the design assumes the abstract operators axe fixed in an architectural struc-
ture and the only remaining decision is choosing operator implementations. Two solutions
will be discussed. The first, called decoupled design, creates a very large number of de-
signs but uses relatively few computational resources. Each design differs in detail from
the others so the collection supplies the user with designs that cover a large swath of the
performance space. The mass of designs is useful for finding a design at a particular point
in the performance space as well as for displaying feasible tradeoffs between performance
factors. The space of all possible decisions is huge, so heuristic methods shrink the space.
The second solution is to use the simplex linear programming algorithm. By encoding op-
erator selection with a linear objective function and linear constraints, optimal operator
assignments can be found.

3.1 Disconnected Decisions

The general methodology is to find some computational levd2rage point to assist performance
design. The aspect this proposal intends to exploit is disconnected decisions, a design deci-
sions that can be made independently from other decisions and can be easily incorporated
into the design regardless of the decision. It is independent in that it does not affect the
functionality of the design; it may influence the performance. The set of possible design
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choices are the instances of the disconnected decision. In this domain the disconnected
decisions are choosing the operator implementations. The direct map architecture provides
a good illustration. The decision about the operator implementations does not affect any
other design decision and the method of incorporating the decision into the rest of the de-
sign is the same regardless of the choice. For example, if the system decides to use add-shift
multipliers for every multiplier, the system could still choose any type of adder or could
pipeline the architecture in any way. Moreover, the process of assessing the performance
of the architecture would be the same for each implementation. Analogously, the decision
about the processor implementation in a 3 bus architecture is a disconnected decision for
the same reasons.

3.2 Decoupled Design

The main idea in decoupled design is to take advantage of the independence of disconnected
decisions so a large number of designs can be produced efficiently. When a design contains
2 independent disconnected decisions the set of designs produced is the cartesian product of
the disconnected decision sets. These designs are all different and occupy different positions
in the performance tradeoff space. For example, in the direct map architecture the adder
implementation is independent of the multiplier implementation. Instead of creating a
design by a selecting particular adder and multiplier, the system creates a whole family of
designs by using each adder/multiplier pair.

It is not enough for design creation to be efficient; design evaluation must be efficient too.
Design evaluation does not necessarily mean the system has to resort to time consuming
simulation. An alternative method is to produce parameterized functions to describe the
architecture's performance and then instantiate the function with instance values. Looping
through functions is much cheaper than simulating all the designs. The system can only
derive an architecture's performance behavior using this method. The functional behavior
is guaranteed because the system starts with a functionally correct architecture and changes
it with truth-preserving transformations. This is a common technique in Al design systems.

Sometimes the normal design process prevents decoupled design from being used because
design decisions are dependent on one another. Often decoupled design can be accommo-
dated by

1. altering the design process whereby it creates good but not optimal designs,

2. apply decoupled design, and then

3. select designs near the user's desired performance point and repair the sub-optimal
decisions introduced by the altered design process. This phase is performed by the
local optimizer, which is described in section 3.4.
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The pipelining process is an example. The optimal algorithm for pipelining a direct map

architecture is: given the pipeline cycle time, walk up from the graph output inserting

registers when one pipeline cycle time has been covered. This algorithm will produce an

architecture with the prescribed cycle time and minimum latency. The problem is that it

depends on the operator execution times making pipelining depend on operator selection.

So a decoupled designer cannot use the optimal algorithm and is forced to settle for less.

There are a number of ways to pipeline under the decoupled design conditions. One way
is to use nominal values for operators and place the pipeline registers using the optimal

algorithm. Another way is to look for regularities in the graph. If it notices a pattern

then put pipeline registers around it and then pipeline the rest of the graph using the
throughput time of the pattern as the standard. A third approach is not trying to pick the

best partition the first time. Instead, the system can try several placement combinations
and pick the best. A technique to support this is described in section 5. None of these

methods will yield the best pipeline register placement but often they will be good enough

to get an approximation of how that architecture will perform. A later process can jiggle
the registers into a more optimal placement if the user decides he is interested in it.

Decoupled design attacks performance design by generating large numbers of designs
quickly. Other approaches to multiple performance criteria modify a design to move it

along various performance dimensions searching for the optimal tradeoff. They fall prey
to the problems of unreliable performance specifications. Decoupled design does not force
the user to give a complete characterization of his performance preferences for all possible

cases. The system produces a large set of designs and the user simply picks the design that

is closest to his ideal. In addition, the mass of designs provides information about tradeoffs
between performance dimensions.

3.2.1 Reducing the Enumeration Space

The major stumbling block of decoupled design is that the enumeration space can be huge.
The most obvious way to combine instances from different disconnected decisions is to try

all combinations. This type of simple enumeration works fine for small numbers of decisions

and instances; however, as the number of possibilities grows, the number of combinations

grows exponentially. The key difference between decoupled design and simple enumeration
is that decoupled design explicitly represents and considers the size of the space before it

starts. Disconnected decisions are sets and decoupled design is combining sets into cartesian

products, so it is easy to compute the size of the potential space. The decisions about how

to reduce space are more complicated. Several heuristics have been identified to reduce
the enumeration space. The difficult part is how to select and instantiate heuristics such

that they shrink the space sufficiently and push the designs toward the user's performance

goals. The current plan is to use domain dependent, knowledge based methods to make
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these decisions. Heuristics currently being considered are listed below. The first set reduce

the number of instances in each disconnected decision:

1. Remove instances that are dominated in all performance characteristics (this has
. already been done for multipliers and adders in this system)

2. If 2 instances have very similar performance use only one, especially in the first pass

of the design process

3. Use fewer instances in each disconnected decision. There are various ways to prune
instances. For example, when the design process begins, thin out instances but keep
the dynamic range. In the later stages aim towards a particular performance range
(eg: fast implementations).

4. Use knowledge based inference and information about the variation of other discon-
nected decisions to narrow the number of instances.

The second set reduce the number of disconnected decisions:

1. Do empirical testing to find out which disconnected decisions are less influential and
bind those decisions to single values.

2. Do symbolic analysis of evaluation function to deduce which disconnected decisions
are less influential and bind them to single values. Look at the range of instances and
the relative weighting of disconnected decisions when they are combined.

3. Take 2 disconnected decisions of the same "type" that are independent and bind them
together to form 1 disconnected decision. For example, if the implementations of 2
adders are independent, bind them so that they always have the same implementation.
One heuristic is to bind all disconnected decisions of the same "type" together (eg:
bind all adders to be the same). This is often one reasonable way to re-configure
decisions but it is not the only way. Consider an architecture that has n operators
where n - 1 operators are used in a similar way but the nth is used in a different way.
Then, the nt h operator should not be in the same disconnected decision as the others.

4. Bind 2 decisions of different types by pre-enumerating the sensible combinations.
For example, match fast multipliers with fast adders and likewise for slow operators.
Maybe expand the matching by associating a fast multiplier with several fast adders.
This reduces the n x m combinations to max(n,m) combinations.
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3.3 An Example

A simplified, experimental version of decoupled design has been implemented. The intent is
to test decoupled design on simple cases, gain experience, and find limitations. The current
version works on very restricted architectures: no loops, no conditionals, and neither the
operators nor the architecture is pipelined. Multipliers and adders are the only functional
units used. Table 1 lists the performance characteristics for 16-bit implementations of each.
Although all architectures in this example are 16 bits wide, it would be straight forward to

Operator Time Area
(ns) (103 "2)

ripple carry adder 99 137
carry lookahead adder (CLA) 40 278
conditional sum adder 31 357
add-shift multiplier 644 470
shift Ly 3 non-overlapped bits multiplier 521 743
shift by 4 non-overlapped bits multiplier 434 880
shift by 6 non-overlapped bits multiplier 397 1154
shift by 8 non-overlapped bits multiplier 335 1428
Baugh-Wooley array multiplier 198 2083
Braun array multiplier 124 2371

Table 1: Library of 16-bit adders and multipliers.

parameterize the operators to create architectures of different widths.
Figure 1 shows the dataflow graph used in this example. It has the same structure as the

QR algorithm in Appendix A (Figure 15) except the operators are multipliers, adders, and
no-ops. If each operator was free to take on any implementation there would be over 352,000
possibilities. The system assists by helping answer the question: what is the best operator
assignment for the user's preference of time verses area? Decoupled design's solution is to
produce lots of choices for the user. One issue is how to control the enumeration to catch
most of the good ones.

The approach is to create an enumeration language to specify different ways operator
combinations can be generated. The current language is a list of terms. Each term in the
outer most list defines an operator binding. For example, the expression:

((m8 9) (npi (rp7 -i )) (3 m4 (2 -6 0)) (a6 1 2))

has 4 outer terms. Terms like (m8 9) bind the operators m8 and m9 to be the same
implementation. If =8 is an add-shift multiplier then so is m9. The (npi (np7 -1 1)) term
uses an implicit time ordering among the operators. np7 is bound to be one slower, the

I.
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Figure 1:

same, and one faster than npi for each instance of npl. These two terms can be combined
as in (m3 3s4 (. -7 0)) where .3 and .4 are bound together and .2 is bound to be all
the implementations slower than them (because there are 7 multiplier implementations).
Absolute assignments can also be made as in (.6 1 2) which binds a6 to the fastest and
second fastest adders. Operators not mentioned ae free to be any implementation.

The current language evolved from simpler constructs. The methodology has been
to create a language, use it to generate designs, and examine the results. Two types of
observations are sought: finding which combinations produce good designs and inferring
combinations that may produce good results but which cannot be expressed. The latter
motivates a change in the language.

hI this prototype stage, the user controls the enumeration generation via the language.
A, reasonable expression for Figure l's architecture is

C(m5 .9) (.3.u4 (.8 -2 2) (.2o -8 0)) (a6 1)).

The reasoning behind the expression is heuristic. If there ae 2 operators of the same type in
series, then when they are bound together they act like an operator that has twice the delay.
This is aa easy way to reduce the space without making too much sacrifice. This accounts
for (.5q !9) and (.3 .4). .2 operates in parallel with 2 multipliers, so its implementation
will certa~n~y be slower than theirs. Bottleneck operators should have fast implementations

$-. -- l i mm ml mm " m - m
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which accounts for a6. Ideally, m8 should vary independently but that would make the
enumeration space too large. It is set to vary such that the operators on the bottleneck

path are kept in the same range. The no-ops have only one implementation to choose
from. As more experience is accumulated, a subsystem will be developed that controls the
enumeration automatically. This system will likely be heuristic and may be implemented
as a rule based system.

Given the Figure l's architecture and the associated enumeration expression, the de-
coupled design system will produce performance plots of the designs. Parameterized time
and area functions are constructed from the architecture. The enumeration expression is
translated into a set of nested loops with the time and area functions at the core. The

decoupled design system compiles and evaluates the loop expression to produce the plot
in Figure 2. The points can be pruned by keeping only the ones that are not dominated
by other points (i.e.: keep points that are better in time or space or both). Figure 3 has

pruned away designs that are dominated.
The plot can be used as part of a design style that differs from the traditional approach.

A typical strategy in AI programs is to plan, infer, or reduce the difference towards a
single goal. As soon as one solution is found, the problem is solved. The more realistic
design process has multiple goals to meet. Decoupled design attacks the multiple goals
simultaneously by a producing large set of different architectures. The volume of designs
supports a more flexible design style. For example, the fringe of best designs gives the user
a sense of the global tradeoff between time and area which might be used to do "what if"
studies (what if the user had this much extra space, how much time would it buy?). The

global tradeoff might actually surprise the designer and suggest opportunities. There might
be a highly efficient design very close to the user's original performance preference and he

may be willing to adjust his performance to take advantage of it. But this can only occur
if the system finds the opportunity and tells the user.

Constrast the interaction encouraged by decoupled design with systems that specify
performance using constants or functions. Constant performance goals are either never
met (over specified) or are met with sub-optimal designs (under specified). Functional
performance goals force the user to make exacting specifications about design that have not
been created yet. Decoupled design allows the user to choose among concrete designs and
to redirect the design goals as designs are being created.

Decoupled design has been able to control the exponential growth of enumeration. The
352,000 possibilities have been cut to 812 and were produced in 25 seconds on a Symbolics
3650. A significantly larger number of design can be outputted without incurring much
time penalty: a less constraining expression that took 50 seconds produced 7200 designs.
Experience with several other architecture of approximately the same size has confirmed the
tractability of decoupled design. These result encourage further study in two areas: working

............
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with more complicated architectures and controlling the enumeration automatically.

3.4 The Local Optimizer and its Transforms

Although the decoupled design system produces a large number of designs, most will be

sub-optimal. To compensate, the designs closest to the user's goal are sent to a second
module that makes local improvements in the designs. This module is called the local opti-
mizer. When the optimizer receives them, the disconnected decisions have become fixed and

the architecture's efficiency can be improved by taking advantage of disconnected decision
interactions. The local optimizer should be able to improve the candidate's performance
along all dimensions. For example, instead of using the inefficient decoupled pipeline al-

gorithm, it can use the optimal pipeline algorithm to not only improve speed but also the
area by using fewer registers.

It is important to note that the decoupled system is critical to the optimizing module.
If the decoupled designer did not preview the search space, the optimizer could easily waste

its effort improving a design that is inherently inferior to some other design.
The optimizer consists of a set of transforms that watch for opportunities to do local

improvements. The transforms identified so far are:

1. If both an addition and a multiplication are done in the same pipeline stage, eliminate
the adder and time multiplex the multiplier's adder to do the addition.

2. if a pipeline register is connected to an operator and the operator stores its inputs
(or outputs) in registers, then there exists a sequence of 2 registers. Replace the 2
registers with one that does both functions.

3. If there exists a pipeline stage with extra time (ie: its delay time is less than the

longest pipeline stage) then try replacing its operators with slower implementations.

4. If there exist 2 or more adjacent adders in a stage, then replace the adders with a

CSA adder tree followed by a regular adder.

5. If both addition and multiplication are done in a stage and if the multiplier is a "shift

by 8 non-overlapped bits" type, then try to eliminate the adder by time multiplexing
the multiplier's adder (this is a specialization of another rule; it is included because
it works especially well).

6. If 2 adjacent pipeline stages have lots of extra time, try merging them.

7. Find the pipeline stage that is the bottleneck (ie: stage that has the longest delay)
and replace some operator in it with a faster one. Make sure the new architecture is
not already done by the decoupled designer.
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The interaction between the two design modules is not limited to the decoupled designer
feeding the optimizer; the local optimizer may want to influence the decoupled module too.

The emphasis of this project is decoupled design and not local optimization. Issues
raised by the optimizer will not be explored in great depth. There will be no attempt to
push the optimizer past the state of the art. The local optimizer will be implemented in
order to create a useful design tool.

The local optimizer is typically applied only to the designs that are close to the user's
preference. An objection to using only the best designs is: what if the optimizer is applied to
a bad architecture and the result is better than any other architecture? That is, why should
only the good architectures be optimized? This issue is not significant for two reasons.
First, the objection is simply expressing one extreme of the tradeoff between design time
and design quality. The more designs the user optimizes the more confidence he has in
the designs presented, but this information costs execution time. If the user wants to see
only highly optimized designs, then everything can be optimized. The system's philosophy
is that the user should have the option of getting quick feedback on designs or producing
highly optimal designs. Second, local optimization has limited effectiveness; the biggest
performance improvements are made by changing the global architecture. Resources should
be spent on architectural changes, not local ones. Methods to alter the architecture will be
discussed in the next section.

The optimizer improves the overall efficiency at two levels of architectural abstraction.
Some optimizations apply to the same level as the decoupled design. For example changing
operator types or altering pipelining stages can be done viewing operators as primitive
units. Unfortunately, relatively few optimizations apply at this level, so typically some part
of the architecture must be expanded to more detail. Examples of this type of optimization
are sharing registers between two adjacent operators or time multiplexing operators that
are used inside of other operators.

The optimization transforms listed above were applied, by hand, to several dozen de-
signs. It was somewhat surprising and disappointing that in general the optimizer could
not improve performance nearly as much as the user would hope. It is important to note,
however, that the architectures were not chosen randomly. Rather, they were selected be-
cause they were among the best architectures produced by the decoupled designer. It is also
important to point out that the optimizer cannot move architectures around the tradeoff
space nearly as effectively as the decoupled designer can produce them. This emphasizes
the virtues of the decoupled design technique over more standard design methods.

3.5 Linear Programming Approach to Operator Selection

Several cases of linear programming assisting computer architecture have been reported. Of
this work the most relevant has been the various versions of optimal workload scheduling
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of n jobs on m processors ([MiI82, Mei8l]). This subsection describes a new application
of linear programming in which optimal operator assignments are found. The section ends
with a comparison of the decoupled design and linear programming approaches.

A linear programming problem ([Thi79J,[1gn82]) fits the form: Given A, 9, and e, find
Y such that

minimize : z = e*.

subject to:

Ai < b

The less-than-or-equal constraint can also encode greater-than-or-equal and equal con-
straints. Although the worst case running time is exponential, experience has shown it
grows as 1.5 or 2 times the number of constraints.

Operator selection can be posed as a linear programming problem by choosing a fixed
delay time for the circuit and minimizing the circuit's area. Two realtionships must be
encoded. The first ensures that the circuit's delay time is bounded by the fixed delay. The
circuit's delay is the maximum of the path delays. A constraint for each path can force all
paths to be-bounded by the fixed delay. The second relationship is between time and area
for each operator. Figure 4 displays a point in a time verses area plot for each multiplier in
Table 1. A similar figure exists for other operator types. Although the system is constrained
to choose between discrete implementations, the linear programming formulation pretends
to offer a continuous set of operator choices. Imagine that an operator can be assigned
to any implementation which has performance characteristics that lie inside the convex
hull of these points. The convex hull describes a convex region with linear boundaries.
The boundaries can be encoded with inequality constraints. Each operator instance in
the circuit has its own convex hull so it can choose its own implementation. The linear
programming solution will specify the characteristics for each operator through the time and
area variables. Altough each solution will lie inside the convex hull, it may not correspond
to a realizable implementation. A post processing phase will have to map each operator to
one of the known implementations. Actually, since the overall linear programming problem
is minimizing area, solutions inside the convex hull will be dominated by those that are on
the minimum area boundary. Thus, all raw solutions will lie on the boundary and will be
mapped to known implementations by choosing the two closest implementations on either
side.

One of the advantages of decoupled design is that it produces a spectrum of designs so the
user can see the possible tradeoffs between performance dimensions. Linear programming
can provide the same benefit by iterating over a range of delay times. Alternatively, a
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more advanced use of linear programming, called parametric programming, can describe
the continuous behavior of the objective function as constraint values change. It can graph
a series of line segments to show how the minimum area depends on the delay time. The line
segment solution still must to be mapped to known operator implementations at periodic
intervals.

The basic linear programming approach has been implemented and the results for the
Figure 1 dataflow graph are given in Figure 5. The open squares are the linear programming
solutions and the solid diamonds are solutions that have been mapped to known operator
implementations. The results took 110 seconds to be generated.

The results in Figure 6 show that the decoupled design solutions compare favorably with
the linear programming solutions. The open squares are the decoupled design dominating
solutions of Figure 3, the diamonds are the linear programming raw results, and the trian-
gles are the linear programming mapped designs. In comparing the two approaches there
are several factors to consider. Linear programming's primary advantage is its guarantee
of optimality. The raw solution gives a lower bound on the performance tradeoff. The
linear programming mapped implementations are not guaranteed but the user can see how
close they are to the lower bound. The decoupled design issues become important when
the system becomes more complex. When more performance factors are considered, the
decoupled design style adapts easily. Linear programming, on the other hand, must iterate
over n - 1 dimensions while minimizing the n-th. Some initial thoughts on using these
methods to place pipelining registers produced non-linear terms. The non-linearity requires
substantial modification to the efficient linear programming scheme. Decoupled design does
not rely on linearity so it applies equally well. A disadvantage of decoupled design is its
long development time which cannot be transferred across domains. The developer must
iteratively refine the enumeration language so it can express the best designs, and then
build a system which controls the enumeration. The current preference is to use linear
programming because of its optimality. This does not condemn decoupled design. On the
contrary, as the design system becomes more complex the case for decoupled design will
become stronger. This is especially in light of the excellent results illustrated in Figure 6.
Another option is to use both methods, say, using linear programming on a few points to
see how good the decoupled design solution is.

4 Architectural Modifications

A design system needs to be able to modify structures so it can produce good designs in any
region of the performance tradeoff space. Different architectural structures cover different
performance ranges and have different resource needs. The best structure depends on the
user's needs.
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4.1 Alteration Strategies

Alteration strategies are abstract transformations that capture the commonality among
a set of more specific transformations. Since the specific tranformations may come from
different domains, alteration strategies are "domain independent" in that they apply to
many but not necessarily all domains. Every architectural change produced by the alteration

strategies preserves the design's functionality; only the performance will change. The system
can use this higher level representation in several ways. The commonality can justify a
transformation to the user, allow the user to specify a transformation in a convenient way,
and may allow the system to produce structural changes that were not anticipated. The
alteration strategies described in this section are refinement, sharing, synchronization, and
efficient constructs.

4.1.1 Refinement Strategy

Refining an object into its constituent parts can assist the design of efficient and novel
architectures. The use of refinement in this proposal will differ a bit from the traditional
approach in that it will make the distinction between 2 types of refinements: re-expression
and de-structuring. In this system every designed object has an input/output (I/O) lan-
guage describing its function. If the I/O language of the object is at the same level of
abstraction as the I/O language of its parts, then it is a re-expression refinement. If the
part I/O language is at a lower abstraction level, then it is a de-structuring refinement.

To clarify, let's give an example. The I/O languages of parts and wholes are trans-
formations of an input stream of some data type to an output stream. In a re-expression
refinement, the data types manipulated by the parts are the same as the whole's. Thus, the
re.expression of the summation operation ( F=1 a, ) into its parts ( al + a2 +... + an ) is a
re-expression refinement since the addends in both expressions are the same data type. An
obvious use of re-expression refinement is that it allows for more compact specifications, so
programs or people have less input to process. In de-structuring refinement, the data types
manipulated by parts are at a lower level of abstraction than those of the whole. There
is a rich hierarchy of data types in signal processing. If we start with bits as the lowest
data type we can combine bits into positive integers which can be used in signed integers
which can be generalized to fixed point or floating point numbers. Moreover, these data

types can be used in complex numbers which can be combined into vectors and further
combined into matrices. So, an example of de-structuring refinement is refining the dot

product operator which operates on vectors ( it. b ) into its part definition ( _ aibi ) which
is a part description that uses scalar data types. With respect to designing for different
performance tradeoffs the most important difference between the 2 refinements is that de-
structuring refinements often involve repetitive and regular instantiations of the part data
type to create the whole's data type. The repetitive and regular nature is usually reflected
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in the computational structure of the parts as they create the whole.

Since there are 2 types of refinements, there are also 2 types of aggregations or ways to

combine a set of parts into a whole. Re-expression aggregations combine parts into wholes

where both manipulate data types at the same level of abstraction. In practical terms

a re-expression operator can be created when any 2 adjacent operators appear together

frequently. It is very easy to create a re-expression aggregation. A common example is a

multiply/accumulate structure which is detected when there is a multiplier whose output

feeds an adder and the adder's other input is fed back from its output via an accumulating

register. Variants of this might replace the multiplier with a vector scale operator or even

a matrix multiplier.
The other type of aggregation is de-structuring where the data types of the parts and

wholes differ. The advantage of composing a set of de-structuring operators is that once the

higher level operator is discovered there is no reason to remain committed to that particular

refinement. There may be alternative ways to refine the higher level operator. This provides

additional degrees of freedom in the implementation. An example would be combining a

set of scalars into a vector and doing the corresponding vector operation 2

Refinement is not limited to operators. Both buses and memories can be refined or

aggregate,. For example, it is convenient to have the concept of a vector bus or a bus

that moves entire vectors at a time as, say, an input to a vector operator. Vector buses

can be refined into a set of buses each carrying an element. Each of these can be further

decomposed into buses carrying bits.

4.1.2 Sharing Strategy

The second alteration strategy is sharing of parts. If 2 parts of the design structure are the

same then it might be possible to share them. The benefit is the design has fewer physical

2 One could criticize the need for the aggregation abilities since if the scalars could have been combined into

a vector then the user would have specified them as such. But, often there is more than one way to express a

computation and one way might aggregate one data type at the expense of another. To illustrate, let's look at
N .(n)_a( -l) =Y(-)whr

the HH computation described in Appendix A.2. The calculation has a term: NL u, ah, = 'mwhere

m = n to N. This is the easiest way to represent the computation since i and m vary with n. If the index

m varied over a constant range, say, from I to N, then the computation describes a vector scale/accumulateN _(n)a4, 1
structure: E,=n fs , -- (n). A design system could get the effect of vector operators by aggregating

the a,,, 's into row vectors and padding them with zeros to get constant length vectors. Even though more

operations are required, the computation could be faster if special vector scale/accumulate hardware exists.

An alternative aggregation of the original computation is to view the am's as column vectors of length

N - n. In this case the system does not have to zero pad the vectors because they are to be dotted with

the 9 vector whose length varies in the same way. The computational structure is a set of m parallel dot
products where the length of the dotted vectors varies with n: (n. ) - y,. The dot product equation

does not show the dependency of the vector size to n. Notice that the different aggregation has changed the

computation structure to one that is easily parallelizable. A third alternative is to zero pad both the rows

and columns of the a matrix and do a full fledged matrix times vector operation.
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parts. But sharing often has a cost: typically there is extra hardware needed to implement
the sharing. Also, the 2 usages of the shared part must be temporally disjoint. Sometimes

2 parts don't have to be identical to be shared. If one part subsumes the functionality of
another or if they are both subsumed by a third, then the 2 parts can be replaced by one
and it is still considered sharing. Functional subsumption will be discussed in subsection
4.1.4. Sharing and refinement interact synergically. If part A and part B cannot be shared,
it may be possible to share sub-parts of A and B. For example, although a multiplier and an
adder cannot be shared at the top level of abstraction, they can be shared if the multiplier
is refined because there is an adder in the multiplier.

As an illustration of sharing interacting with refinement, let's look at the HH compu-
tation described in the footnote of the refinement subsection. The conclusion was that the
inner term ( u ' 1)) could be implemented with either dot products or a vector
scale/accumulate. The full computation has the form

(n) = - , ) , " (,) (n-) (n)
kl,m=Gk,m b u(")aim

where b, is a term that depends on n and can be considered constant within the nih iteration.

Once the summation is computed, the computation reduces to a(n) = a(n-1 ) bX ( uk( )

Now, the system can create a vector scale/add structure by aggregating the terms by either
k or m. Vector scale/add computation can be made identical to the summation's vector
scale/accumulate by feeding the adder output back to the adder. Thus a reasonable design
idea would be to use the vector scale/accumulate structure to compute the summation and
try to share it with the vector scale/add of the rest of the computation.

Just as refinement was not limited to operators, neither is sharing. If a vector bus is

refined into a set of element buses, then they can be efficiently shared as long as they are
temporally disjoint. Memory can also be shared.

4.1.3 Synchronization Strategy

The third alteration strategy is synchronization of parts. Synchronization uses de-structuring
refinements to create independent part computations that can take advantage of pipelining.

Unlike pipelining, it provides computational benefits even if there is only one instance. The
concept is best illustrated by an example. Given 3 n x n matrices to multiply together, the
obvious way to compute it is to multiply the first 2 matrices together and then multiply
the intermediate result with the third. The total time is 2n 3 multiplies. Synchronization
can cut the computation time to n 3 + n2 . The matrix multiply computation can be refined
into individual dot product calculations. Ear'h dot product produces an element for the

result matrix in n multiplies. Instead of waiting for all n 2 elements of the first result to be
computed, the computation of the second matrix multiply can begin as soon as the first
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row of the intermediate result is available. Assuming the speeds of the 2 matrix multiplies

is the same, when the second matrix multiply has produced the first row of the final answer

the second row of the intermediate result should be ready. Thus the second multiply lags

the first by one row. The total multiply time is n3 for the first multiply plus n2 for the

last row of the intermediate matrix for a total time of n3 + n2 . This example shows how

synchronizing pipelines the internals to decrease the overall computation time. It is re-

stricted to de-structuring refinements because they have regular structure. Synchronization

is also restricted to operators that are adjacent in the datafiow graph. Since synchroniza-

tion depends on refinement, it is sensitive to additional degrees of freedom introduced by

alternative refinements.

4.1.4 Efficient Implementation Constructs Strategy

The fourth alteration strategy is efficient use of implementation constructs. The idea is to

design with parts that use resources efficiently. Sometimes a construct's applicability or

functionality is very specialized and thus the user may not know about it, may not know

that it can be used in this design, or it may be difficult to express in the input language. Yet,

if this construct is extremely efficient it should be considered in implementations. Examples

of specialized constructs include: implementing multipliers and especially dividers using a

ROM to take the log and anti-log and using addition or subtraction to do the equivalent

logarithmic calculation; using a special adder that adds n numbers by columns instead of

a row at a time so computation time is log n instead of linear; special implementation

technologies like charged coupled devices (CCD) and surface acoustic wave (SAW) hard-

ware that compute convolution as an analog process and are therefore very fast; quantized

multipliers; using look-up tables to implement functions; truncating precision on operators;
widening accumulators for more precision; separating summations into pieces and doing

them in parallel; and doing summations in a different order.

The search for efficient constructs uses 2 mechanisms to find alternative implementa-

tions: aggregation and functional subsumption. Aggregation recognizes groups of operators

as implementations of a known operator. The system can substitute alternative implemen-

tations that are more efficient. Recognizing a convolution operation and substituting a CCD

is an example. A functional subsumption hierarchy can also find new implementations. Op-

erator A functionally subsumes operator B if A's function is a superset of B's. Functional

subsumption adds more options to the list of possible implementations of an operator. For

example, a two's complement multiplier functionally subsumes a negation operator, so it

could be used instead.
Another relevant distinction is between the specified function and the desired function.

The specified function is the user's functional specification; the desired function is the
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user's intent which is inaccessible to the program 3. The specified function is only an
approximation to the desired function, so a design that relaxes the specification may still
meet the user's needs. Often, functional subsumption improves efficiency by substituting
an approximating operator for the specified one

4.2 Alteration Strategies in Design

4.2.1 Advantages

Design could be done with a set of production rules or in some programming language.
Rules have the problem of conflict resolution. Programming languages have the problem
of having to specify exactly the order of operations. The steps in the design process often

depend on the input so a more flexible method of applying design knowledge is preferred.
Alteration strategies encode higher level knowledge which may be useful in design. The

potential benefits and uses described in this section constitute various directions that will
be explored in using alteration strategies. Some advantages are more certain than others.

Alteration strategies can be thought of as sets of transformational paradigm transforms.
The transforms are grouped according to domain independent features, and each alteration
strategy has properties that are common to the transforms in the set. The properties can
be used to eliminate from consideration an entire set of transforms. For example, no sharing
transform can be done unless there exist 2 objects that are sharable.

A Strategy can be interpreted as a justification for a transform. A justification can be
useful for several reasons. First, it provides an explanation to the user when he inquires
about what the transform is trying to achieve. Second, it can assist in transform conflict
resolution. A basic operation of a rule based systems is deciding which transform to apply.
Each transform has an antecedent (the "if" part). These conditions are necessary but not
sufficient for applying a rule. If several rules apply, conflict resolution must choose between
them. A simple scheme is to prefer antecedents with more terms. This ad hoc method
is based on the syntax of the transform instead of its semantics. Another possibility is
to treat conflict resolution, itself, as a problem to be solved using a set of meta-rules
([Dav80, LNR87]). Although meta-rules provide a mechanism for solving conflict resolution,
they provide little help about using the mechanism for multiple performance criteria design.

Explicit justifications allow the system to treat the qualifying rules as more than arbitrary

'This distinction is similar to that between specification and behavior described in [MSKC+83]
4A new alteration strategy organization is emerging: refine/aggregate using a library of known imple-

mentations, share/replicate resources, temporal parallelism by interleaving computational instances, and
functional subsumption. These changes to the architecture do not necessarily correspond to similar changes
for the data manipulation. For example, an architecture that processes data serially can still be shared,
and replicating a serial data architecture may not result in a parallel data architecture (it could be used for
interleaving).

Jl~ mmmmmm mm mmmm• n
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transforms. The justification can predict the effect of the transform without applying it.

Conflict resolution chooses the transform with the best predicted outcome. The decision

could be as simple as choosing a transform that affects the critical path over one that

changes a peripheral part of the design or preventing a subgoal from being clobbered. For

example, assume there are 2 applicable transforms: one that wants to share pieces of a

regular structure and another that gets rid of registers between operators to save both

time and space. Adding "dummy" registers between operators can be useful at times.

In particular, adding registers between operators in a regular structure (like a multiplier)

creates a structure where each piece is identical and isolated from other pieces. Identical

pieces can be multiplexed into one piece. This could provide a much bigger savings in space

than shaving a few registers. This would be especially important if the system needed to
reduce the area dimension.

An exciting direction to take alteration strategies is to emphasis their ability to separate
the transformation operation from the transformed object. The strategies are terms in
a language to describe change without referring to the objects being changed. When a
transformation is needed, the strategy and object are combined to select an appropriate
transform. The object can be specified by name or by object decription which is executed
at transform-time to determine the object to be changed. For example, alteration strategies
and object descriptions can be used to make statements like "share all the memories in
the system" or "share the matrix memories in the system" or even "share the 'expensive'
memories in the system." Another example would be "replicate all resources that are both
inexpensive and are involved in the bottleneck." Alteration strategies support a language
that can describe a range of design processes from extremely specific algorithms to a loose

sketch of what to do next. There are, of course, issues to resolve in directing the search in
the less directed plans; one idea is presented in section 5.

Alteration strategies can also bridge the gap between the user's intuition and a particular
transform. Strategies are domain independent so the same strategy vocabulary can be used

in many domains. In fact the same strategy term might have different meanings when
applied to different sub-domains of the same domain. In VLSI, sharing buses and sharing

memories imply 2 very different sets of transforms. In general, using alteration strategies as
generic transformation terms allows the user to refer to different set of transforms via the

commonality between them (ie: the domain independent aspects). This has the advantage
of hiding the details of how the transforms change structure and greatly reducing the user's

communication burden.
Finally, the commonality encoded in alteration strategies can be used as more than mere

summaries of domain specific transforms. Since the system will be constantly modifying

architectures, it is plausible that it will create a structure that was not anticipated by
the author of the transforms. Thus, none of the domain specific transforms will apply.
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But, since alteration strategies encapsulate generic transformations, it would make seise to

apply one of them. The strategy should be enough to create a new structure even though

no domain specific transform applied.

4.2.2 Discussion

Although the emphasis in this section has been on domain independent alteration strategies,

it should not imply that this design system has no need for domain specific transformations.

Simplification transforms are domain specific transforms that "tidy up" the design after the

alteration strategies have been applied. Simplification transforms are used to catch design

violations that are considered inappropriate no matter what the intended design is. A
common violation is a design fragment that is clearly inefficient. One of the requirements

for a design structure to be finalized (ready to be sent to the decoupled design module) is

that all simplification transforms have been tried but none can be applied. A simplification

transforms example is given in Appendix C.
How does the system choose among the alteration strategies in order to reach the user's

performance preferences? If the design's performance is an order of magnitude away from

the desired levels, then the transforms that reduce that difference should be applied. When
the design performance is closer to the user's target the decoupled design process make the

transform choice more difficult. For example, given that the system is constrained to use
the direct map architecture class, if the user wanted to make it faster the system could

pipeline it or if the user wanted to make it smaller the system could share it. But, what if

the system pipelined it and used slower operators or shared it and used faster operators?

The effect on both time and area are unknown. The designer could try to predict the effect

but that would be hard and unnecessary since it is easier to try the combinations. But then
the problem becomes lack of knowledge about which transform to apply for a particular

effect. There is no longer a strong correlation between goal and transform, so transforms

are less effective for targeting a design to a particular performance goal. An alternative

is opportunity-oriented transform application. If a transform results in a design that uses
its resources more efficiently then the transformed design is expected to have a better

performance verses resource tradeoff. The specific time or area values will be unknown,

but the tradeoff between the two will be better. This assumes, of course, that the range of

designs will fall somewhere near the user's goals.

4.3 Examples

This subsection will illustrate the alteration strategies creating different architectures f:m
the same dataflow graph. Specifically, the example will describe how the alteration strategies

map a dataflow graph into a standard 3 bus architecture and then describe how permutations

of the mapping can create different designs. The algorithm is the CG computation given
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in Appendix A.4 and shown in Figure 17. It should be emphasized that the system is not
expected to find the following transformation sequences without domain specific guidance.

The first step is to examine the dataflow graph for leverage points and opportunities.

Leverage points axe structures that will have a large effect on the entire design if they are

changed. Typically, they are structures that consume lots of resources or are bottlenecks

to performance. In the CG dataflow graph, the main leverage point is the matrix-times-

vector computation because it is the only operator that has computation time worse than
linear (in the size of the input vector). Other possible leverage points are the linear time
operators: dot product, vector scale, and vector addition/subtraction. Opportunities are
typically particular combinations of operators that can be taken advantage of. For example,
the CG graph has 3 instances of v-'ctor scale followed by vector add or subtract. Moreover,
there are no instances of the 2 operators outside of those 3 combinations. This suggests
building a fast operator to do both operations (ie: a re-expression aggregation). But if
there is a fast operator to do vector scale/add then refinement and sharing should recognize
that it would be advantageous to use it to implement the matrix-times-vector operator.

Actually, the matrix-times-vector operator uses a vector scale/accumulate operator but
an accumulator can be implemented with an adder. There may be some conflict. The
vector scale/accumulate might want to increase the throughput of the scaling operation
with pipelining, whereas the vector scale/add has only one input instance to scale. It would
want to take advantage of interaction between scaling and adding by sharing the adder.

This analysis requires sophisticated deduction. A pattern finding program would have
to notice that all instances of the vector scale operator are followed by a vector add or
subtract. It would suggest this as a re-expression aggregation. The aggregation process
should recognize this pair as a vector scale/add operator, and it should annotate the dataflow

graph with this information. Once the vector operator combination is in the dataflow
description it should be easy for the sharing alteration strategy to take advantage of the
opportunity.

The second step is to take advantage of the opportunities and leverage points while
transforming the design into a 3 bus architecture. A vector scale/add/accumulate operator
is built and it is used for both the matrix-times-vector operator and the vector scale/add
operators. They will all share one physical operator. The only remaining operators are dot
products and divisions. Since a serial architecture is being built, the remaining operator
instances should be shared into one dot product operator and one division operator. Each

physical operator is buffered by multiplexors at its inputs and outputs so it can be shared.
The transformations so far have changed the dataflow graph of Figure 17 into Figure 7. An
associated timing description must also be produced. This architecture should not be im-
plemented, because its irregular interconnection makes it inefficient. It can be transformed
into an intermediate representation that is more regular by changing the multiplexing units.
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First registers are inserted on the wires between every operator. Then all the multiplexors
are replaced with buses. This is shown in Figure 8. After creating this architecture, some
daemon might notice (use the same mechanism that looks for opportunities and leverage
points) that all the inputs to the division operator come form the dot product operator.
Thus, the 2 operators can be combined into a re-expression aggregation. It is not enough
to look once and find all possible opportunities, they also arise as the design evolves. The
2 operators can be combined by building a "mini" 3 bus architecture. The 2 operators are
accompanied by 3 registers to hold values as shown in Figure 9a. Figure 9b replaces one
bus with a multiplexor. This is the operator that will be used in the larger architecture. To
complete the transformation to a 3 bus architecture, all the registers that held intermediate
values in Figure 8 are combined into one large memory. The result is shown in Figure 10.
It has 2 specialized operators, 3 input buses, an output bus, and a large memory. This
structure is given to the decoupled design module which will try different implementations
of the primitive operators.

One problem with this architecture is the 3 input buses force the design to use a 3-port
memory. Three port memories are expensive. One remedy is to supply the input buses
from separate memories. That is, one of the known refinements of n-port memories is to
create n different memories where each memory contains only the variables that it needs.
The output bus is extended to feed all memories. Figure 11 shows the single large memory
split into 3 memories.

An alternative solution to the 3 port memory problem is to implement it with a less
expensive memory. The easiest and most obvious way is to use a 1 port memory to simulate
a 3 port memory. This design is straight forward and should be done by the system. It turns
out that a very elegant solution to the 3 port memory problem is found serendipitously when
the system solves a related problem. Buses occupy large swaths of area. Two of the three
buses of Figure 10 are significantly more efficient than the third, because they transport a
complete vector for every scaler the third transports. Therefore, it might be worthwhile to
share the scaler bus with one of the vector buses. Figure 12a shows a simplified architecture
with 2 of the 3 buses shared. It is plausible that the system will stop here and not produce
any more optimizations. If, however, this part of the architecture is a dominant part
then the system could explore the design space more thoroughly. If the system refines the
implementation of the 3 port memory into 3 single port memories as is done in Figure 12b,
then another inefficiency is uncovered. Two single port memories inside the 3 port memory
operate in parallel only to be serialized by the multiplexor; a single memory could perform
the same function. This violates an simplification transform (see Appendix C). So the 2 one
port memories, the 2 buffer registers, and the multiplexor are replaced by a single I port
memory. Figure 12c shows the result. Notice the system has eliminated the expensive 3 port
memory. Another simplification transform would notice that Figure 12c's architecture can
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Figure 10:

be further optimized by eliminating one of the registers after the demultiplexor. The vlues

that were buffered by that register could be sent directly from the memory. Removing the

vector register saves more time. The fully instantiated architecture is shown in Figure 13.

There are other ideas that can be explored for the CG computation:

* the dot product ad the matrix-times-vector could be shared leaving the vector

scale/add by itself.

* the division operator is slow because it is iterative; try making the dot/division oper-

ator a separate processor.

* all operators could be shared into one processor whose structure is customized for

them.

* split the datafow graph into parts that can be done in parallel and implement it with

multiple processors. Each processor can be customized for its datapath.

To summarize briefly, this example has shown how the ateration strategies can be used to

transform a dataflow description into several versions of a serial architecture. The process is

not a rigid step-by-step procedure since opportunities may ppear as the design progresses.

kadd/
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Figure 13:

The same process should work for other input datailow graphs as well as for other types of
architectures.

In conclusion, the essential ability provided by alteration strategies is to change a design's
structure. Other researchers have used the transformational paradigm to accomplish this

(EKow85, Bal8l]), so there is little doubt that structural alterations can be achieved by some
mechanism. The emphasis in alteration strategies is that a domain independent description

of the transform may be useful in other ways.

5 Controlling Search

The previous sections have described mechanisms to support designing for multiple perfor-
mance goals. Decoupled design casts the design process into independent decisions, makes
partial design choices to reduce the search space, and then enumerates the designs. Since
there may be several ways to combine the disconnected designs, the procedure is not fully

specified. Alteration strategies represent methods to change the structure of the design.
The alteration is represented abstractly, so there may be several ways to instantiate it for
the current design. When several alteration strategies apply, some mechanism must select
one. A common theme among these techniques is they describe ways to create designs, but

stutue Ote eerhrshvsdte rnfrainal- paradig to accomu~n~nmplsh thnis wam~nnlmmuanuummNN nm
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they do not specify how to control their application.
This section describes a search control method called sample search. The idea is that

only a fraction of the paths are sampled at each search node. The desirability of searching
that node further is judged by the samples returned.

5.1 Motivation

The design process can be cast in a search framework by viewing the input specification as
the start node, the best completed design as the goal node, and design transformations as
arcs. Each input specification defines a search space which is explored with either blind or
heuristic methods. Blind search systematically expands nodes and orders the alternatives.
The search methods include depth first, breadth first, and bi-directional search. Although
some of these methods apply to the search needed in this system, none take advantage of
the heuristics available, so they exhaustively search the space.

Heuristic search methods include best first, A* search, branch and bound, beam search
([New78]), and "bounded look-ahead plus partial backtrack" techniques s. They use infor-
mation from the domain to guide and prune search. The information is integrated into the
search procedure with an evaluation function that estimates the "promise" of a node. One
node's promise is compared to another's and the one with the greater potential is selected
for further exploration.

Traditional heuristic search will not be effective for this design system, because apply-
ing the evalution function to non-leaf nodes is unreliable. Each non-leaf node is a partial
design. Partial designs cannot be evaluated accurately. Bounds for partial designs could be
obtained, but they will be fairly loose. Decoupled design forces operator instantiation to
be done last, so all partial designs use abstract operators. As a consequence, most perfor-
mance bounds on partial designs must be parameterized by operator instance. The operator
instances are intentionally selected to produce large performance variances among instan-
tiations which is desirable for decoupled design but undesirable for obtaining performance
bounds. Thus, when decoupled design is used performance bounds will not be tight and the
bounds will not prune the space well. Another impediment to accurate evaluation is that
some non-leaf nodes are too uncommitted to provide a basis for reasonable bounds. The
application of an alteration strategy can, for example, completely change the structure of
an architecture. Precise bounds are difficult to get on a changing architecture. These fac-
tors make the evaluation of non-leaf nodes an ineffective foundation for pruning the search

SPearl ([PeaB4]) describes a general class of techniques called "bounded look-ahead plus partial backtrack"
search strategies. The example given by Pearl is a search method that does a depth-limited search and then
evaluates the current nodes. If the search is "doing well" so far, then it continues for another round of
depth-limited search. If it is not, then the branch is pruned and the search backtracks to a previous node.
In general, these methods can find near-optimal solutions with high probability.
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space.
Even if the performance of non-leaf nodes could be obtained, they cannot be compared.

The unreliable performance specification problem dictates that the system cannot tradeoff
heterogeneous performance factors to find the best solution unless a design dominates in
every dimension. Dominance between partial designs is not expected to be common, because
the transition from one non-leaf node to another will typically slide the design's performance
along a tradeoff curve instead of dropping it to an improved curve.

5.2 Generators

A generator is a mechanism to integrate the system's heterogeneous decision mechanisms
into a uniform search structure. Any part of the program that alters the design can be
considered a generator. Each generator defines a portion of the search space by offering
alternative ways to change the design. Conceptually, there is a separate generator for each
search node and the complete search space is a tree 6 of generators. Generators differ from
simple enumeration in that a generator uses feedback to decide what to generate next.
Specifically, it outputs a solution, tests the result, and then bases its next output on the
test result. This is like the generate and test paradigm where the tester is fed back to the
generator. The method for adapting the next output based on the previous output's result
is knowledge based and generator specific.

There are several different types of generators in this design system. The first generator
parses the input equation in different ways. There are many parses especially when the rules
for parenthesization are not strict. The issue of whether to collect common subexpressions
also changes the parse. Another generator is needed if a multiple processor architecture
is used. The system has to decide how many processors to use and how to split up the
dataflow graph for the processors. There is no optimal method for these decisions so the
generator searches for good combinations. A generator is also used when selection of al-
teration strategies is done. There are often many strategy combinations possible so the
generator tries to choose the best. In decoupled design if the search space is too big then
the system has to re-structure it. There are many possible ways to re-structure and some
are better than other. A generator should oversee the selection.

5.3 Sampling Methods

Sampling allows the system to investigate a decision without committing itself to it. By
scanning a fraction of the subtree the system can discover information about the node
without searching the full subtree. In addition, heuristic information is often available.
Nodes in the search space are grouped into different types, and the heuristics for each node

'The search space is actually a directed graph, but generators represent it as a tree.
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type make suggestions about which alternative to take. When the system scans a subtree,
it uses the heuristics to guide the sample to the best solutions first. If the sample results

are favorable then a more complete search can be initiated. Although the denser search
cannot re-use the work that was done by the sample, the hypothesis is that sampling gathers
information and the savings from sampling will be more than enough to make up for the
sample time.

5.3.1 Generator Size Parameter

Generators can implement sampling with the generator size parameter. All generators have
an input parameter that describes the size of the space that it should produce. Likewise,

for each output produced by the generator a size parameter is included as input to the
next level generator. Tentative semantics for the parameter are that a generator cannot
produce more designs than its size parameter. The parameter is like a budget where the
resource is the number of designs. The generator allocates "funds" to the most promising
alternatives which are, themselves, generators. The resource is successively divided with
each generator level until either the last generator is reached or until all generators receive
a size of 1. When a generator is restricted to a single design, the search forms a thread of
nodes from the generator to a leaf node. Sometimes a generator can deduce that it cannot
meet the user's goal, so it returns its unused allocation to the parent. Since generators wait
for the results of one alternative before exploring another, the tm d i 'ns 'ca'n b-eeasily
redistributed to other alternatives 7

In this domain, there are decision nodes that have a fundamentally different character
from a decision node with a disjoint set of alternatives. When designing a structure there
are often several simultaneous changes that can be made. Although the application of these
opportunities could be serialized, it may be advantageous to represent their simultaneous
application in a single generator. These powerset generators have a set of opportunities
that can be applied to the design in any combination. The decision node alternatives are
the powerset of the input opportunity set.

Another aspect to explore is whether the analysis of a previous generator can be re-used
to benefit the current one. For example, if an alteration strategy transforms an old architec-
ture into a new one, a reasonable action would be to re-use the old architecture's decoupled

design analysis. There is no guarantee that the analysis applies to the new architecture or
that it reduces the space sufficiently, but when generating lots of solutions often the current
solution is very similar to the previous one. The number of solutions and generators grows
,xponentially, so speeding up the generator analysis could be very important. Implementing
the re-use should be straight-forward. If there is only one generator for each node type,

?An alternative semantics for the size parameter would be to use Kant's idea of setting real-time deadlines
for generators to meet. This may be explored if the design cardinality interpretation runs into problems.
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then the generator could save the analysis as part of its state and try it when the generator

is called again.

5.4 Sample Search

Sample search uses the methods in the previous subsection to heuristically search a space.
The key assumption is that samples of a search space can ascertain the utility of searching
that space. In particular, if a space has good solutions then some of them will appear in
the sample, and if the sample does not discover any good solutions then none probably
exist. The extent to which this assumption is true determines the effectiveness of sample
search. The justification for the assumptions is that local heuristics exist at each decision
point to direct the sampling to the good solutions first. An alternative justification is that
oftentimes one of the node's alternatives will produce more efficient designs than the others.
By sampling bits of each alternative, sample search can find the alternative which has the
more efficient solutions clumped under it. Both of these justifications seems reasonable for
the niche of signal processing architectures addressed in this project.

Sample search involves more than just cutting the search space size through sampling;
the samples can be used in other ways:

9 Reason about how big the search space should be. It may be desirable to make the
space very small because the generator does not affect the outcomes much. If the
generator's ability to move the design's performance is slight, don't bother searching

a large space.

9 In a similar vein, if there is some reasonable heuristic or guarantee that can produce
a partial ordering of possible outputs, then the system should try the extremes. If
an extreme trial cannot produce a solution near the user's goal then this search path
is a deadend. For example, if the design is significantly oversized, the generator
should create an output which includes all possible alteration strategies that reduce
the design size. If it cannot alter the design's size sufficiently, then there is no use
trying other alteration strategy combinations. This heuristic and the previous one
show that generators don't simply shrink the design space by reducing the exponential
growth factor; both heuristics can dramatically reduce the search space by planning

experiments that eliminate the entire space.

* When the generator notices that a particular output has procuced an exceptional
result, it can take advantage of the good designs by either using a denser empirical
search or using analytical methods to determine why the design was a success.

* Sampling can be used to estimate the size of the space. This information helps the
generators to decide how much to increase the sampling next time.
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e Generators can empirically check the effectiveness of heuristics. It would be useful
to identify which heuristics were working well for this particular problem. As the

program gets more experience, it should emphasize the heuristics that are producing
the best results.

The theme in sample search is it may be better to find good designs empirically (using
sample search) than to deduce them. Empirical methods use experiments to both prune
search paths and capitalize on synergistic effects between opportunities. Deductive prun-
ing (constraints, TMS) relies contradiction which is ill-defined for multiple criteria search.
Deductive techniques to take advantage of synergies have been rare (maybe blackboard
model or least commitment). Moreover, the empirical approach does not simply abandon

the deductive approach's strength, namely, reasoning about an object's structure. Reason-
ing about structure is used after a good structure has been found, not for finding good
structures in the first place. The hypothesis is that analyzing synergistic structures and
using the analysis to generate more synergistic designs is more efficient than creating them
through deduction.

6 Conclusion

This project investigates the synergistic interaction between human designer and computer.
The particular issue explored is designing under multiple performance criteria. Trading off
different criteria is a troublesome but necessary part of finding good designs. The solution is
to encourage interaction between user and computer. To take advantage of its new role, the
system uses three techniques: decoupled design, alteration strategies, and sample search.
Although the system operates in the domain of application specific, non-regular, signal
processing architectures, the ideas may apply to other areas of design.
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A Signal Processing Examples

A.1 QR-algorithm for the Eigenvalue Problem

An upper Hessenberg matrix has zeros below the main diagonal except for the first sub-

diagonal. Finding the eigenvalues of an upper Hessenberg matrix using the QR-algorithm

involves the key transformation described in [Sch84, pages 91-951. Given an nx n Hessenberg

matrix Co, find Cn-1 where:

For r = 0,...,n - 2:
Cr+i = prCrPr

where for r =1,...,n - 2:
yyT

Pr =  I - 2YrYr

T = ... 0,1,Sr,tr, .. 0)
r, (t) (r)_

rC2,," l /(" 1+ S,.)

Sr = (c -.1)2 + ( + 2

s0 ,to, and So are computed from Co. The sign ambiguity is resolved by the

constraint: C(r)_ 4 S,. = C(,)_,I+S
r,r-- r,r-- rS

The dataflow graphs for computing Yr and Cr+i are shown in Figures 14 and 15. A

parallel version of this algorithm is given by:

Cr+1 = Cr- VrP - (qr - ctrYr)Vr

where

Pr = YrCr

qr = CrYr

Vr = 2Yr/llyr1 2

Tar = Prvr

Its dataflow graph is in Figure 16.
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A.2 Householder Transforms

If a matrix representation of a system of linear equations can be transformed into an upper

triangular matrix, then simple back substitution will yield the solution. Householder (HH)

transforms produce upper triangular matrices ([Sch84, pages 88-90]). To convert the N x N

matrix a:

For n=1,...,N:

N

(n-,1) 1nu 1 u(Z ) (-1)"--M k n-)k i aim

an(a( + a,) i=

for k =n,...,N and m =n..., N where

an Sign(an-)) Z?

and

00

= 0U n) 00

(n-1) + O 1ann 0

(n-1)
aNn 0

a(°) is the original matrix and a(N) is the upper triangular one.

A.3 Computing the r largest Eigenvalues

The following procedure calculates the r largest eigenvalues (EV) for a symmetric, positive

definite, n x n matrix ([Sch84, pages 103-104]). Let A be a symmetric, positive definite

matrix. Given A compute Z1 by

Zk = AXk_1

Xk = ZkRk1

where X 0 is an orthonormal matrix (XXo0 = I) of dimension n x r. Use Z to compute
the next X and R. as described below. As the number of iterations approaches infinity,

the column vectors of the Z matrix are the eigenvectors and the diagonal elements of the

R. matrix are the corresponding eigenvalues. The eigenvalues appear in decreasing order.
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Rk is a r x r, upper triangular matrix. The termination condition requires the sum of
the absolute values of the non-diagonal elements of Rk to be below a prescribed limit.
Numerical results encourage belief in its stability. X and R axe to be calculated from Z as
follows:

Let Zk = Z = [zi .. . ,Zrl and Xk = X = [xl, ... ,Xrl then

Zj - i= rijxi
xi =

r,, = xiTz for (i = 1... ,.j - 1)

ri [z -- ][Zj -Z rijxi]

where

xl
x 1  --

rll

l=

A.4 Conjugate Gradient Method

Conjugate Gradient (CG) [PFTV87] is an indirect method to iteratively find the solution to
a system of linear equations. It uses a steepest decent method where the decent directions
are conjugates of each other. Let Ax = y be a matrix representation of the equations.
Given A and y, guess x0 . Then,

eo = y - Axo

do = e0

and

Xn+i -- Xn + Qndn

len12
On = dnT ( Ad n )

en+1 = en - OnAdn
Ien+l{

dn+l = en+l + Jen 2duTen 2 

The dataflow graph is shown in Figure 17.
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B The ABU Design System

In this appendix a proposed design system called Artificial Build Up (ABU) will be de-
scribed. ABU uses the techniques from decoupled design, alteration strategies, and sample
search to create a system that provides quick feedback about high quality designs. This
appendix details the architectural description language, describes the program's output,
and discusses user/system interaction issues.

The purpose of the implementation is to prove that the concepts can be useful in a
design system; the purpose is not to build a commercially viable system that designers
can actually use. If the implementation reveals limitations to expanding the system then
hopefully the reasons can be elicitated and solutions suggested.

B.1 User Interaction

An unresolved issue is the extent to which the user can influence the design process. The
user influences the performance characteristics of the output by adjusting his goals. But can
he also influence the design process? That is, does the system allow the user language to
express constraints/preferences on design steps? Various levels of influence include: the user

approving the application of alteration strategies, the user recommending which alteration
strategies to apply, the user approving/suggesting the disconnected design bindings, or the
user expressing constraints on features of the architecture (eg: 32 bit data paths only,
fast multipliers only). After the designs are created the user might want to filter the
outputs. Separating the outputs by performance characteristic is straightforward, because
each design is indexed by all the performance dimensions. Extracting designs that fit
a structural attribute or that used a particular design process is more difficult. A query
language that is specialized for this domain would have to express filters like: remove all the
designs that use CCDs as operators or retrieve all the designs that use the synchronization
alteration strategy. Clearly, these features would be useful, but it is not obvious whether
they are necessary for establishing the utility of the design system. A decision will be made
later in the implementation process.

B.2 Details of the Design System Specification

The system's input language should be expressive enough to encode key parts of hetero-
geneous signal processing algorithms 8. The need for an expressive input language should
be balanced by the the necessity of a reasonable implemertation. This balance applies not
only to the input language but for all the specifications. Here are the current specifications
for the system:

Oit does not have to encode the entire algorithm; for example the initialization part can be ignored.
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* The user's functional input will be a restricted dataflow graph that contains only non-
branching computation fragments. This is a necessary part of implementing more
general computation, so it is a reasonable place to start. In later versions, adding
control constructs can be done without significant interaction with the computation
fragment. As the system's performance range is extended and as control constructs
increase the size of the graphs, it may be necessary to map several different compu-
tation fragments into one hardware structure so computation fragments and control
will interact. But, the system will be useful even at the stage where implementation
of fragments and control constructs are independent.

a The input language will include operators that manipulate "high level" data types:

- Matrix: addition, subtraction, multiplication (including matrix X vector and
vector x vector), matrix scale, transpose.

- Vector/sequence: addition, subtraction, dot product, vector scale, vector scale/accumulate,
vector magnitude, magnitude squared, shift (left, right; circular, linear), summa-
tion, linear and circular convolution.

- Scaler: addition, subtraction, multiplication, division, negation, squaring, raising
to the n t h power, square root, maximum, minimum, absolute value, logarithm,
reciprocal, increment, decrement, multiply by a power of 2, bit operations on
scalers, truncate, pad with zeros.

- Complex numbers: addition, subtraction, multiplication, division, real or imagi-
nary part, magnitude, magnitude squared, angle, conjugate.

- Bits: and, or, not, xor.

e Parenthesization of input expressions will be optional and the program will try differ-
ent parses. The HH and the EV computations (see Appendix A) require an especially
expressive language- variable length vectors and matrices, sophisticated matrix in-

dexing, etc.

, All operators will accept only one data type: fix-width integers. Adding boolean types
is straight forward and is necessary when implementing control constructs. Intelligent
processing of arrays can range from nonexistent to very sophisticated. An appropri-
ate compromise will be chosen. The ability to vary the data type along constrained
dimensions (eg: both 16-bit and 20-bit integers) is straight forward and fits nicely
into the flavor of the overall solution. Floating point numbers are important in signal
processing. Unfortunately, floating point operators have very different internal struc-
ture from their fixed point counterparts, and the methods in this proposal rely on
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knowledge about the internal structure. There is nothing about floating point opera-
tor structures that prevents them from using this method. The initial implementation
will have only fixed point operators.

* Later versions of the system will include a language to describe memory access patterns
so interleaved memories can be build. For the initial implementation, simple memories
with fixed fetch times will be used. A single design may have several memories of
different types.

s The performance specifications will consist of time (both throughput and latency),
chip area, power dissipation, bit accuracy, and number of design cells types. The
model for the throughput time is very simple. Each device is assigned a delay time.
There is no SPICE simulation and the capacitance of the output is not considered
in this model. Latency will differ from throughput because of pipelining. The chip
area will be a one dimensional sum instead of a 2 dimensional description. Routing
area and control circuitry will be allocated by assigning a constant fraction of the chip
area to these functions. The area dimension is assumed to be the area of a single chip
implementation. This may not be reasonable for larger architectures but it will give
a reasonable approximation for multi-chip implementations. Power consumption is
often the bottleneck in a system so it should be included. Bit accuracy is a measure
of numerical accuracy of the result. No sophisticated numerical analysis will be done.
Rules may be used to approximate the accuracy lost (eg: a multiplier looses top half
of the result). The number of design cells gives an indication of the complexity of
the design and layout. These simplifications are used by real designers ([RFS83]) and
are a standard way to make the problem tractable at a high-level. If more accurate
performance measurements are needed, additional detail can be added to the models.
For example, circuit area could be estimated using 2 dimensional rectangles. A scheme
would have to be devised to get a 2 dimensional estimate. Since the 2 dimensional
method would be slower than summing one dimensional areas, a mixed strategy could
use summation as a first pass and the more accurate evaluation for architectures close
to the user's goal.

The output of the program will be a set of architectures. Each architecture will imple-
ment the input's functional behavior but will differ from the others in performance.
For ease of display, the program will plot all the architectures on a grid (eg: time vs
area). The program is expected to automatically produce several radically different
architectures for the dataflow fragment. The user should be able to select a point
on the grid and see the details of the corresponding architecture. The architectural
description will consist of connected functional blocks, not a layout or floorplan. It
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will also include the control sequence 9 for the architecture.

9 As an alternative to specifying an input expression, the user can describe his own
architecture and let the program simulate it's performance. More generally the user
could partially specify an architecture and let the program complete and simulate it.

These restrictions should be relaxed one by one in later versions of the system.

C A Simplification Transforms Example

The following example shows the utility of simplification transforms. The sharing alteration
strategy is pictorially described in Figure 18 where resources A and B are any type of

Figure 18:

resource: operator, bus, or memory. Each resource must accept an input and produce an
output as shown in the figure. In this example, A and B will be buses. Figure 19a shows
a 2 port memory connected to a 2 port operator via 2 buses. If the system wanted to
share the buses it would interpret them into the resources A and B of Figure 18. The
knowledge base would know that buses are considered resources with 2 I/O ports. The
instantiated alteration strategy would transform the unshared configuration into the shared
configuration (Figure 19b).

Note that if the system implements the 2 port memory with a 1 port memory (as shown
in Figure 19c), then the architecture is ripe for simplification transforms to be applied.
Figure 19d shows the memory implementation spliced into the overall architecture. At
this point, some set of tools needs to simplify the architecture by getting rid of redundant
parts. Simplification transforms might notice that the register pairs R2/R4 and R3/R5

9The control sequence should not be confused with the control constructs in the functional specification.
Control constructs refer to conditionals and loops in the input specification. The control sequence coordinates
operator execution and data routing for a particular architecture.
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are redundant since there are no operators between them. A more traditional optimizing
compiler tool might look at the control flow and notice it could collapse the data trans-
fers Mem - R2 - R4 -- R9 to Meem -- R9 and similarly for Mem --+ R10. The tool

would also have to modify the design to remove redundant multiplexors. (It may be nec-

essary to use a combination of optimizing tools and simplification transforms to clean up

a transformed architecture.) A final simplification rule would put the finishing touch on
the architecture by removing one last register. Notice that the memory is acting as a serial

source whose purpose is to simulate a parallel source (2 port memory). The serial source

sequentially stores values in each register and then releases them when the last register is
updated. An simplification transform can eliminate the last register by insuring that the

serial source provides the last register's value. The final architecture is shown in Figure 19e.
As an aside, [Mos85] points out that a correctness-preserving transformation history is

useful to verify that the design implements the specification. But, the transformation of

the target design back to the source design may be more succinct. That is, 2 designs can

be shown to be equal by transforming one to the other. The transformation history is one

such justification, but it might be very long and/or complicated. A simpler justification

might be the transform history of the reverse engineered deduction. It is just as valid as
the forward history, and it maybe easier to design with. The reverse history can be used
in explanation, as the foundation for building compiled empirical associations, etc. The
reverse engineered justification for Figure 19e is: imagine a box around all the parts in the

design except the operator. The system can interpret the box as a simulation of a 2 port

memory by a one port memory. Then it is clear that Figure 19e is equivalent to Figure 19a
by replacing the simulated memory with a real 2 port memory. Contrast this justification
to the long winded derivation in the other direction.

Simplification transforms are similar to decoupled design's local optimizer. They both

transform inefficient structures into more efficient ones. But, there are a few differences.

Simplification transforms are applied to abstract designs. Since a change in an abstract
design may affect many instantiated designs, all simplification transforms probably should

be applied. Also, the justification of the two mechanisms is somewhat different which may
lead to different reasons for apply them. Normally, simplification transforms clean up the

inefficiencies left by the alteration strategies. But a simplification transform might be run

in reverse with the intent of making a structure less efficient but more structured so another

alteration strategy can apply. The local optimizer's transforms will not be reversed. Finally,
from an implementation point of view it might be desirable to keep optimizations of abstract

and concrete designs separate for efficiency.
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