
JTJC FILE COPY

LABORATORY FOR MASSACHUSETTS
1IjINSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-367

Io ;

COMMUTATIVITY-BASED
CONCURRENCY CONTROL FOR

ABSTRACT DATA TYPES

William E. Weihl

DTICSELECTE D
August 1988 C

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

88 12
IN pak I -=4 so



SECURITY CLASSIFICATION OF THIS PAa'

REPORT DOCUMENTATION PAGE hO' 7Q,
lI& REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS,
Unclassif ied

2a. SECURITY CLSSIFICATION AUTHORITY 3. DISTRIBUTION I AVAILABIMTY OF REPORT

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM-367 N00014-83-K-0125

So. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
MIT Laboratory for Computer ( ap abl) Office of Naval Research/Department of Navy
Science f

6c. ADDRESS (09ty, State, and ZIP Code) 7b. ADDRESS (C01y; State, and ZIP Code)j
545 Technology Square Information Systems Program
Cambridge, MA 02139 Arlington, VA 22217

Ga. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION If applicable)
DARPA/DOD I

S. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM IPROJECT TASK IWORK UNIT
Arlington, VA 22217 ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (hiclude Secunty Cazsfscation)

Commutativity-Based Concurrency Control for Abstract Data Types

12. PERSONAL AUTHOR(S)
Weihli William E.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
Technical I FROM TO 1988 August 29

16. SUPPLEMENTARY NOTATION L1 -7
/

17. COSATI CODES, 18. SUBJECT TERMS (Co71"nue on revere if necessary and identify by block number)
FIELD GROUP SUB-GROUP atomic transActions, concurrency control, locking, local

P atomicity" dynamic atomicity, abstract data types, recov-

ery, u 0 logs intentions lists
19. ABSTRACT on reverse if necessary and den block number)

Ve-presenttwo novel concurrency control algorithms for abstract data types. The
algorithms ensure serializability of transactions by using conflict relations based on the
commutativity of operations. W6 proveAthat both algorithms ensure a local atomicity
property called dynamic atomicity. This means that the algorithms can be used in combina-
tion with each other and with other algorithms, as long as the other algorithms also en-
sure dynamic atomicity. (Dynamic atomic concurrency control algorithms include most two-
phase locking algorithms, as well as some non-conflict-based algorithms and some optimis-
tic algorithms.) The algorithms are quite general, permitting operations be be both par-
tial and non-deterministic. In addition, the results returned by operations can be used
in determining conflicts, thus permitting higher levels of concurrency than is otherwise
possible. In contrast to most other work, our descriptions and proofs encompass recovery
as well as concurrency control. ' J.. ,r / (' 2 ....

The two algorithms use different recovery methods: One uses intentions lists, and the
other eg-q tinrin 1n&o hW. ahinu that- .'nnflini T.1-f-4nn-y tha-. wnr c -#,h nn (rn-i,,A '

20. OSTRIBUTIONfAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[3UNCLASSIFIED0UNLIMITED 03 SAME AS RPT. -- OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Includle Area Code) I 22c. OFFICE SYMBOL
Judy Little. Publications Coordinator (617) 253-5894

0D FORM 1473. 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

etu& aSm mm oww um5-4s7.4
Unclassified



19. recovery method do not necessarily work with the other, thus illustrating

the subtle interactions between concurrency control and recovery. In

addition, we identify a general correctness condition that must be satisfied

by the combination of a recovery method and a conflict relation; we hope

that this correctness condition will serve to simplify the analysis of

other algorithms as well.



Commutativity-Based Concurrency Control
for

Abstract Data Types

William E. Weihll

Abstract
We pre-sent two novel concurrency control algorithms for abstract data types. The algorithms ensure

serializability of transactions by using conflict relations based on the commutativity of operations. We prove that
both algorithms ensure a local atomicity property called dynamic atomicity. This means that the algorithms can be
used in combination with each other and with other algorithms, as long as the other algorithms also ensure dynamic
atomicity. (Dynamic atomic concurrency coiarol algorithms include most two-phase locking algorithms, as well as
some non-conflict-based algorithms and some optimistic algorithms.) The algorithms are quite general, permitting
operations to be both partial and nondeterministic. In addition, the results returned by operations can be used in
determining conflicts, thus permitting higher levels of concurrency than is otherwise possible. In contrast to most
other work, our descriptions and proofs encompass recovery as well as concurrency control.

The two algorithms use different recovery methods: one uses intentions lists, and the other uses undo logs. We
show that conflict relations that work with one recovery method do not necessarily work with the other, thus
illustrating the subtle interactions between concurrency control and recovery. In addition, we identify a general
correctness condition that must be satisfied by the combination of a recovery method and a conflict relation; we
hope that this correctness condition will serve to simplify the analysis of other algorithms as well.

£eoeslo n For

XTIS GRAjI
OTIC DTIC TAB

copy Uulnounoed Q
,Tustifioatton ,

Distributi1on/

Dist loa,

'Author's address: MIT Laboratory for Computer Science, Room 524, 545 Technology Square, Cambridge, MA 02139. E-mail (Arpanet):
wcihl@xx.lcs.mit.edu.

This research was supported in part by the National Science Foundation under Grants DCR-8510014 and CCR-8716884, in part by the Defense
Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-01 25, and in part by an IBM Faculty Development Award.



1. Introduction
Atomic transactions have been widely studied for over a decade as a mechanism for coping with concurrency and

failures, particularly in distributed systems (14, 27, 8, 11. A major area of research during this period has involved
the design and analysis of concurrency control algorithms, for which an extensive theory has been developed (e.g.,
see [22, 31). Initial work in the area left the data uninterpreted, or viewed operations as simple reads and writes.
Recently, a number of researchers have considered placing more structure on the data accessed by transactions, and
have shown how this structure can be used to permit more concurrency [11,28,29,25, 1,2, 19, 32,31,21]. For
example, in our own work we have shown how the specifications of abstract data types can be used to permit high
levels of concurrency [28, 29]. These techniques have been used in existing systems to deal with "hot-spots." In
addition, such techniques are useful in general distributed systems, and may also prove useful in object-oriented
database systems.

In this paper we present two new concurrency control algorithms for abstract data types. Both are locking
algorithms: to execute an operation on an object, a transaction must acquire a lock on the object in a mode
appropriate for the operation. Conflicts between lock modes for operations on an object are determined based on an
analysis of the specification of the object's data type. Unlike algorithms based on reads and writes, the algorithms
permit a high level of concurrency. Informally, two operations are required to conflict only if they do not
"commute"; thus, concurrent transactions are allowed to update the same entity as long as the updates commute.

We describe our algorithms formally, and prove them correct. Our descriptions and proofs cover both
concurrency control and recovery; indeed, as we discuss in more detail below, it is our belief that concurrency
control and recovery interact in subtle ways, and that they need to be analyzed together. (Our analysis covers only
recovery from aborts of transactions; we are working on developing a formal model for crashes and on analyzing
crash recovery algorithms.)

We prove that both algorithms ensure dynamic atomicity, which is one of several local atomicity properties
defined in [28,29]. It is well-known that different "correct" concurrency control algorithms cannot be used in the
same system and still ensure serializability. Local atomicity properties are interesting because different algorithms
can be used in a single system, as long as the algorithms satisfy the same local atomicity property. Thus, by proving
that our algorithms ensure dynamic atomicity, we show that they can be used in combination with a variety of other
dynamic atomic concurrency control algorithms, including the non-locking algorithms in [28] and some optimistic
algorithms [12]. The two algorithms themselves, even though they differ in the level of concurrency they support,
can even be used in the same system. This is an important modukrity result, since different algorithms may be most
appropriate for different parts of a system.

Our algorithms generalize most known two-phase locking algorithms, such as those in [6, 11, 25, 21.2 Unlike
these other algorithms, both of our algorithms permit the results returned by al operation execution, as well as its
name and arguments, to be used in determining the lock required by the operation. As illustrated in the body of the
paper, this allows us to provide greater concurrency while still ensuring serializability, since the concurrency control
algorithm has more information to work with. Some other algorithms (e.g., see [251) achieve the effect of using
information about results by acquiring a restrictive lock when an operation starts running, and then "down-grading"
the lock depending on how the operation actually execute,. The resulting protocol violates tro-phase locking, and
as a result ad hoc correctness arguments are usually given. Our algorithms show how results of operations, as well
as names and arguments, can be used systematically.

2 Our algorithms use strict two-phase locking; i.e., locks acquircd by a transaction are not released until the end of the transaction. The
algorithms in 161 permit locks to be released before the end of a transaction. The restriction ti rtrict two-phase locking is useful for dealing with
aborts, since it is not necessary to re-acquire lock, to undo the effects of an aborting transaction
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Our algorithms arc also quite general: they work for arbitrary data types, including ones with partial and
non-deterministic operations. Most previous work deals only with total, detenninistic operations. Examples of
interesting data types with partial and non-deterministic operations can be found in [28, 291.

While an extensive theory has been developed for concurrency control, thcre has been less theoretical analysis of

recovery algorithms, although some work does exist (e.g., see [9, 5]). One notable aspect of most work on
concurrency control and recovery is that the two are treated as separate problems. Concurrency control is analyzed

assuming that recovery is correct, and vice-versa. Indeed, it is almost a folk theorem in the field that a correct

two-phase locking algorithm is obtained if operations are required to conflict whenever they do not cummute.

Unfortunately, as is well-known, concurrency control and recovery interact in subtle ways. This is particularly true

for concurrency control algorithms that permit concurrent updates, such as the ones described in this paper.

For example, a "correct" recovery algorithm such as value logging [8,241 does not work in combination with a

concurrency control algorithm that permits concurrent updates. Consider an execution in which two concurrent
transactions A and B modify the same entity X. Suppose A modifies X first, saving the initial value of X to be
restored when A aborts. When B modifies X, it saves the value written by A. Now suppose B commits and then A
aborts. The value saved by A will be restored, thus restoring X to its initial value and erasing both updates. More

complex recovery algorithms, based on intentions lists or undo operations, have been designed for these more
sophisticated concurrency control algorithms that permit concurrent updates. However, a theory of their interactions

is sadly lacking.

The two algorithms presented in this paper use two different recovery algorithms: one uses intentions lists, and
one uses undo logs. The fundamental difference between these two recovery algorithms lies in the "state" used to

execute an operation for a transaction. Using intentions lists, an operation is executed for a transaction in a state that
reflects the effects of the committed transactions, and of the transaction itself, but not of other active transactions.

Using undo logs, an operation is executed in a state that reflects the effects of the committed transactions and all
active transactions. As we show below, this difference between the two recovery algorithms has a subtle impact on
concurrency control. In particular, while both algorithms use a conflict relation based on commutativity--two

operations conflict if they do not "commute"--the precise definitions of commutativity needed are different for the
two recovery algorithms. Thus, the truth of the folk theorem mentioned above depends in subtle ways on the precise
definition of commuativity, and on the assumptions being made about recovery. Our descriptions of the algorithms

are designed to highlight these assumptions.

This paper represents the start of an effort to develop a better understanding of the interactions between

concurrency control and recovery. The examples in this paper illustrate that there is no single notion of correctness
such that any "correct" concurrency control algorithm can be used with any "correct" recovery algorithm and
guarantee that transactions are atomic. Our approach in this paper is formal in part because the interactions between
concurrency control and recovery are very subtle. It is easy to be informal and wrong, or to avoid stating critical
assumptions that are necessary for others to be able to build on the work.

One of the contributions of this paper is a correctness theorem (Theorem 14) that appears to capture the property

that must be ensured by concurrency control and recovery together. (A similar invariant is used by O'Neil for a
different algorithm [211].) We are currently studying other algorithms to see if this property applies to them as well.

The formal model used in this paper, and the definitions of atomicity and related properties, are taken

from [28, 291. We summarize the relevant material in Sections 2 and 3. Then, in Section 4, we define the two
notions of commutativity used in the two algorithms. The two algorithms check for conflicts in essentially the same
way, so in Section 5 we present a general conflict-based locking algorithm, ignoring recovery. Next, in Section 6,
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we describe how the two recovery techniques can be added to the general locking algorithm from Section 5, and
prove the two algorithms correct. Finally, we conclude with a summary and discussion.

2. Model
Our model of computation is taken from [28,29]; in this section we describe the details relevant to this paper.

There are two kinds of entities in our model, transactions and objects. We assume that each object provides
operations that can be called by transactions to examine and modify the object's state, and furthermore that these
operations constitute the sole means by which transactions can access the state of the object. We will typically use
the symbols A, B, and C for transactions, and X, Y, and Z for objects. We use ACT to denote the set of transactions.

Our model of computation is event-based, focusing on the events at the interface between transactions and
objects. There are four kinds of events of interest:

* Invocation events, corresponding to the invocation of an operation by a transaction A at an object X,
and denoted <invX,A>, where inv records the name of the operation and its arguments.

* Response events, corresponding to an object X returning a response to an operati3n invoked by a
transaction A, and denoted <ret,X,A> where ret records the results of the operation.

" Commit events, corresponding to an object X learning that a transaction A has committed, and denoted
<commit,X,A>.

" Abort events, corresponding to an object X learning that a transaction A has aborted, and denoted
<aboMtX,A>.

We refer to commit and abort events collectively as completion events. Each event indicates the transaction and
object that participated in it; given an event <e,X,A>, we say that the event involves X and A.

We model a computation as a sequence of events. If H is a sequence of events and Xis a set of objects, we dfine
HLX("H restricted to X') to be the subsequence of H consisting of the events involving objects in X, if A is a set of
transactions, we define HiA similarly. If X is an object and A is a transaction, we will write HIX for HI{X}, and HIA
for HI (A). We define committed(H) to be the set of transactions that commit in H (i.e., for which a commit event
occurs in H), and aborted(H) to be the set of transactions that abort in H. We also define completed(H) to be the set
of transactions that complete (i.e., commit or abort) in H; that is, completed(H) = committed(H)uaborted(H).

We will use the following notation for sequences: the symbol "." denotes concatenation of sequences, and the
symbol "A" denotes the empty sequence.

Not all event sequences make sense as computations: each transaction is supposed to be a sequential process.3

Thus, we require event sequences to be well-formed, as defined below. We refer to a well-formed event sequence as
a history.

Wcll-formedness is a restriction on the individual transactions, not on their interactions at the objects. Thus, we
define well-formedness first for sequences involving only a single transaction; an event sequence H is then well-
formed if HIA is well-formed for every transaction A. HIA is well-formed if it satisfies the following conditions:

• The transaction A must wait for the response to one invocation before invoking another operation, and
an object can generate a response for A only if A has a pending invocation. More precisely, let
op-events(HIA) be the subsequence of HIA consisting of all invocation and response events; then
op-events(HIA) must consist of an alternating sequence of invocation and response events, beginning
with an invocation event. In addition, an invocation event and the immediately succeeding response

3WC view concurrency within a transaction as something to be achieved with nested transactions Ji8, 23, 141, but the formal model used here
does not include nesting. See (171 for a formal model of nested transactions.
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event must involve the same object.

e The transaction A can commit or abort in H, but not both; i.e., committed(HIA) n aborted(HIA) = 0. 4

* The transaction A cannot commit if it is waiting for the response to an invocation, and cannot invoke
any operations after it commits. More precisely, if AE committed(HIA), then HIA consists of op-
events(HIA) followed by some number of commit events, and op-events(HIA) ends in a response event.

These restrictions on transactions are intended to model the typical uses of transactions. A transaction executes by
invoking operations on objects, receiving results when the operations finish. Since we disallow concurrency within
a transaction, a transaction is permitted at most one pending invocation at any time. After receiving a response from
all invocations, a transaction can commit at one or more objects.

We make very few restrictions on aborted transactions; for example, a transaction can continue to invoke
operations after it has aborted. We have two reasons for avoiding additional restrictions. First, we have no need for
them in our analysis. Second, and more important, additional restrictions might be too strong to model systems with
orphans [20, 15, 10].

3. Global and Local Atomicity
In this section we define atomicity and several related properties. The definitions are taken from [28, 29].

Abstraction, and in particular data abstraction, plays an important role in these definitions. In particular, the
definition of atomicity is based on the specifications of the objects in a system: transactions are atomic if their
execution appears to be serializable and recoverable, as far as the transactions can tell given the specifications of the
objects. For example, a system may be atomic at one level of abstraction and non-atomic at lower levels (cf.
[2, 191).

Since specifications play a central role in our definitions, we begin in Section 3.1 by describing our model of
specifications for objects. Then, in Section 3.2, we define global atomicity. Next, in Section 3.3, we define
dynamic atomicity, a local atomicity property. Dynamic atomicity, however, does not lend itself directly to
inductive proofs. Thus, in Section 3.4 we define online dynamic atomicity, which is a strengthening of dynamic
atomicity that captures the additional properties guaranteed by pessimistic conc.urrency control algorithms, and is
more easily proved inductively.

3.1. Specifications

Our specifications take the form of sets of sequences. A set of sequences is a language, and can be conveniently
described by an automaton. In addition, we will describe algorithms using automata, showing that all the sequences
accepted by an automaton satisfy certain correctness conditions.

Atomicity, as defined in the next sectinn, is based on a specification of how objects are permitted to behave in the
absence of concurrency and failures. This specification, which we call the serial specification of an object, is quite
like the specification of an ordinary data abstraction in a sequential, failure-free environment. In addition to its
serial specification, an object will usually have a behavioral specification, which is a set of histories that
characterizes the object's behavior in the face of failures and concurrent access by transactions. The distinction
between the serial and behavioral specification of an object, which was introduced in [28, 29], is useful for
structuring the design process. In addition, the serial specification of an object is typically much simpler than the
behavioral specification, yet to reason about many properties of a transaction system it is often sufficient to use only

4"rhis requirement, called atomic commutment, can be implemcntcd using a commitment protocol such as two-phase commit [7. 131 or
three-phase commit 1261.



the serial specifications for objects. For the purposes of this paper, we will describe only the serial specifications;
the details of the behavioral specifications are not important.

The serial specification of an object X is intended to capture the acceptable behavior of X in a sequential,

failure-free environment. We could model the serial specification of X as a set of histories, where the histories
satisfy certain restrictions (e.g., all transactions commit, and events of different transactions do not interleave). We
have found it convenient, however, to use a slightly different model for serial specifications. Instead of a set of

histories, we will use a set of operation sequences. An operation is a pair consisting of an invocation and a response
to that invocation; in addition, an operation identifies the object on which it is executed. An operation does not
identify a transaction; we have found no need to date for the serial specification of an object to vary depending on
which transaction executes an operation, and indeed find it more convenient to describe serial specifications in a
way that is independent of transactions.

We often speak informally of an "operation" on an object, as in "the insert operation on a set object." An
operation in our formal model is intended to represent a single execution of an "operation" as used in the informal
sense. For example, the following might be an operation (in the formal sense) on a set object X:

X:[insert(3),ok]

This operation represents an execution of the insert operation (in the informal sense) on X with argument "3" and
result "ok."

As mentioned earlier, an automaton is a convenient tool for describing a set of sequences. In this paper we use a
particular kind of automaton, called a state machine. A state machine consists of a (potentially infinite) set of states,
a set of transitions, an initial state, and a partial transition function. The transition function maps (state,transition)
pairs to states; if the transition function is defined on a given pair (s,t), we say that t is defined in s. The transition
function can be extended in the obvious way to finite sequences of transitions. If T is a sequence of transitions and s
is a state, we write T(s) for the value of the transition function on the pair (s,T). We use the notation T(s) = _L to
indicate that T is not defined in s.

We say that a sequence of transitions is accepted by a state machine M if it is defined in the initial state of M. We
define the language of a machine M, denoted L(M), to be the set of finite sequences of transitions that are accepted
by M.

In this paper, we will describe transition functions by specifying the triples (s',t,s) such that t(s') = s. In each case
it should be clear that for each s' and t there is at most one triple of the form (s',t,s), so the transition functions are
well-defined. A more general model, permitting transition relations, is described in [161; the greater generality is
not needed for our purposes here.

From this point on, we assume that the serial specification of an object X is defined to be the language of a state
machine S(X),5 where the transitions of S(X) are the operations on X. We use Is(x) to denote the initial state of
S(X). For example, consider an integer set object SET, initially empty, with operations to insert an element, to delete
an element, and to test for membership. S(SET) is defined as follows. A state s of S(sET) is a set of integers; the
initial state is the empty set. The transition function of S(SET) is defined by the preconditions and postconditions
below; if op is an operation of SET, then op(s')=s if s' satisfies the precondition for op and s' and s satisfy the
postcondition. We follow the convention here and throughout the paper that if a component of the state is not

5lhi% assumption is not essential; all the definitious and results can he stated purefy in terms of the serial spceification as a set of operation
sequences, without relying on a particular prescmiation in terms of a slatc machine. Ilowever, the use of a state machine makes the presentation
somewhat more concrete, and hence (we hope) clearer.
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mentioned in the postcondition, it is the same in s and s'; also, if no precondition is given, it is assumed to be the

predicate "true".

SET [insert(i),ok]
Postcondition:

s = s'u[i}

SET:[delete(i),ok]
Postcondition:

s = s'-(i)

SET: [meniber(i),truel
Precondition:

iE S'

sET: [member(i),false]
Precondition:

i0s'

L(S(SET)) includes the following sequence of operations:

SET: [member(2),false]
SET:[member(3),false]

SET:. [insert(3),ok]
sET:[membr(3),true]

However, it does not include the following sequence:

SET:[member(2),true]
SET: [member(3),false]

sET:.[insert(3),ok]
SET:[member(3),false]

The member operation returns true if and only if its argument has been inserted and not subsequently deleted; the
first sequence above satisfies this constraint, while the second does not.

As an example of an object with partial and non-deterministic operations, we give the specification of a
semi-queue object SFMIQ, adapted from [30]. A semi-queue is similar to a FIFO queue in that it provides operations
to enqueue and dequeue items. However, it differs in that the operation to dequeuc an item is non-deterministic: it
is permitted to remove and return any item in the semi-queue. The non-determinism in the specification of the
dequeue operation allows us to permit more concurrency among transactions using the semi-queue than we could
permit among transactions using a FIFO queue. In addition, the dequeue operation is specified to be partial: if the
semi-queue is empty, there is no possible result. In a concurrent setting, one could ensure atomkiity relative to this
specification by having an invocation of the dequeue operation block when the semi-queue is empty. In more detail,
S(sEMIQ) is defined as follows. A state s of S(SEMIQ) is a multi-set (or bag) of items; the initial state is the empty
bag. The transition function is defined by the preconditions and postconditions below:

SEMIQ:[enqueue(i),ok]
Postcondition:

s = s'u(i)

SE 1Q:[dequeue,i)
Precondition:

iEs '
Postcondition:

s= s'-(i)

Enqueueing an item simply adds tho item to the state; any iicm in the state can he returned by the dequeue operation,
which also removes the item from tic state.
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Notice that restricting ourselves to transition functions, instead of relations, does not prevent us from specifying
objects with partial and non-deterministic operations (in the informal sense). An invocation may have many

possible results (or none) in a given state; each such result corresponds to a different operation (in the formal sense),
and the transition function gives the new state for each operation.

3.2. Global Atomicity
Informally, a history of a system is atomic if the committed transactions in the history can be executed in some

serial order and have the same effect. In our model, the permissible serial executions are characterized by the serial

specifications of the objects. Thus, whether a history is atomic depends on these serial specifications. In this
section we provide a formal definition of atomicity in terms of the serial specifications of the objects in a system.

Since serial specifications are sets of operation sequences, not sets of histories, we need to establish a

correspondence between histories and operation sequences. We do this as follows. We say that a history is serial if
events for different transactions are not interleaved. If H is a serial history, and A1, ..., A, are the transactions in H

in the order in which they appear, then we can write H as HIA 1o....HIA n. We say that a history H is failure-free if
aborted(H) = 0. Now, if H is a serial failure-free history, we define OpSeq(H) (the operation sequence
corresponding to H) as follows. For a transaction A, OpSeq(HIA) is the operation sequence obtained from HIA by
pairing each invocation event with its corresponding termination event, and discarding commit events and pending
invocation events. Let A1, ..., A. be the transactions in H in the order in which they appear, then OpSeq(H) is
defined to be OpSeq(HlA 1)*...oOpSeq(HfA,).

For example, if H is the serial failure-free history
<insert(3),sE.T,B>

<ok,SET,B>
<commitsET,B>

<member(3),SET,A>
<true,SET,A>

<commit,SET,A>

then OpSeq(H) is the operation sequence

SET: [insert(3), ok]
sE[member(3), true]

We say that a serial failure-free history H is acceptable at X if OpSeq(HIX) is an element of the serial

specification of X; in other words, if the sequence of operations in H involving X is permitted by the serial

specification of X. A serial failure-free history is acceptable if it is acceptable at every object X.

Equivalently, given our assumption that the serial specification of X is defined as the language of a state machine

S(X), then a serial failure-free history H is acceptable at X if OpSeq(HIX) is defined in ISM*

We say that two histories H and K are equivalent if every transaction performs the same steps in H as in K; i.e., if

HIA = KIA for every transaction A. If H is a history and T is a total order on transactions, we define Serial(H,T) to

be the serial history equivalent to H in which transactions appear in the order T. Thus, if A1 ... , An are the
transactions in H in the order T, then Serial(HT) = HIAI*...eHIAn.

If T is a total ordering of transactions, we then say that a failure-free history H is serializable in the order T if

Serial(H,T) is acceptable. In other words, H is serializable in the order T if, according to the serial specifications of
the objects, it is permissible for the transactions in H, when run in the order T, to execute the same steps as in H. We _

say that a failure-free history H is serializable if there exists a total order T on transactions such that H is serializable

_q
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in the order T.

Now, define permanent(H) to be Hlcommitted(H). We then say that H is atomic if permanent(H) is serializable.
Thus, we formalize recoverability by throwing away events for non-committed transactions, and requiring that the
committed transactions be serializable.

3.3. Local Atomicity
The definition of atomicity given above is global: it applies to a history of an entire system. To build systems in

a modular, extensible fashion, it is important to define local properties of objects that guarantee a desired global
property such as atomicity. In this section we define a particular local atomicity property, which we call dynamic

atomicity. A local atomicity property is a property P of specifications of objects such that the following is true: if
the specification of every object in a system satisfies P, then every history in the system's behavior is atomic. As an
aside, we remark that dynamic atomicity is an optimal local atomicity property: no strictly weaker local property

suffices to ensure global atomicity [28, 29].

The problem that must be solved in designing a local atomicity property is to ensure that the objects agree on at
least one serialization order for the committed transactions. Solving this problem can be difficult because each
object is aware of only the events in which it participates. In other words, each object has purely local information;
no object has complete inlormation about the global computation of the system. As illustrated in [28, 291, if
different objects use "correct" but incompatible concurrency control methods, non-serializable executions can result.
A local atomicity property describes how objects agree on a serialization order for committed transactions.

We will define dynamic atomicity as a property of the local history at an individual object, in such a way that if
the local history at each object is dynamic atomic, then the history of the entire system will be atomic. An object is
then said to be dynamic atomic if every history permitted by its behavioral specification is dynamic atomic.

Most concurrency control algorithms, including two-phase locking [6,4, 11], determine a serialization order for
transactions dynamically, based on the order in which transactions invoke operations and obtain locks on objects.
Dynamic atomicity characterizes the behavior of algorithms that are dynamic in this sense. Informally stated, the

fundamental property of protocols characterized by dynamic atomicity is the following: if the sequence of
operations executed by one committed transaction conflicts with the operations executed by another committed
transaction, then some of the operations executed by one of the transactions must occur after the other transaction
has committed. In other words, if two transactions are completely concurrent (neither executes an operation after
the other commits), they must not conflict. Locking protocols (and all pessimistic protocols) achieve this property
by delaying conflicting operations; optimistic protocols [12] achieve this property by allowing conflicts to occur, but
aborting conflicting transactions to prevent conflicts among committed transactions.

We can describe dynamic atomicity precisely as follows. If H is a history, define precedes(H) to be the following
relation on transactions: (A,B)E precedes(H) if and only if there exists an operation invoked by B that responds after
A commits in H. The events need not occur at the same object. The relation precedes() captures the concept of one
transaction occurring after another: if (A,B)E precedes(H), then some operation executed by B occurred in H after A
committed. This could have happened because B started after A finished or ran more slowly than A, or because B
was delayed because of a conflict with A.

The following lemma from (28, 29] provides the key to our definition of dynamic atomicity.

Lemma 1: If H is a history and X is an object, then precedes(HIX) Q precedes(H).

If H is a history of the system, each object has only partial information about precedes(H). However, if each object



9

X ensures local serializability in all orders consistent with precedes(HIX), by the lemma we are guaranteed global
serializability in all orders consistent with precedes(H). (It is easy to show that precedes(H) is a partial order if H is
well-formed, so such orders exist.) To be precise, we have the following definition of dynamic atomicity: we say
that a history H is dynamic atomic if permanent(H) is serializable in every total order consistent with precedes(H).
In other words, every serial history equivalent to permanent(H), with the transactions in an order consistent with
precedes(H), must be acceptable.

The following theorem, taken from [28,29], justifies our claim that dynamic atomicity is a local atomicity
property:

Theorem 2: If every local history in the behavioral specification of each object in a system is dynamic
atomic, then every history in the system's behavior is atomic.

3.4. Online Dynamic Atomicity
Dynamic atomicity is ensured by many algorithms, including most pessimistic algorithms and some optimistic

ones. The algorithms to be presented later in this paper are pessimistic. To prove then, correct, it is useful to
strengthen dynamic atomicity in two ways. First, dynamic atomicity does not constrain the active transactions.
However, pessimistic concurrency control algorithms have the property that once a transaction executes an
operation, it can commit at any time. Second, dynamic atomicity requires the permanent part of a history H to be
serializable in all orders consistent with precedes(H); it is possible, however, for the different orders to be
distinguishable by later transactions. (For example, if two concurrent transactions enqueue items on a queue and
commit, they are serializable in both possible orders, since it is always possible to enqueue. Later transactions,
however, care about the order, and hence will never be able to dequeue.) Most practical concurrency control and
re4overy algorithms retain only a single "state" that represents the effects of the committed transactions. To ensure
that we can schedule later transactions by looking only at this state, and not at more detailed history information, we
need to ensure that all required serializations of the committed transactions are equivalent in the sense that they are
indistinguishable by later transactions (i.e., they result in the same final state).

In this section we define online dynamic atomicity, which strengthens dynamic atomicity to avoid these two
problems. First, if H is a history and C is a set of transactions, we say that C is a commit set for H if committed(H)
c C and C r-' aborted(H) = 0. In other words, C is a set of transactions that have already committed or might
commit. We then say that a history H is online dynamic atomic at X if the following conditions are satisfied for
every commit set C for H:

* HIXIC is serializable in every total order consistent with precedes(HIX).

* if T and U are total orders consistent with precedes(HIX), then OpSeq(Serial(HIXIC,T))(Is(x) =

OpSeq(Serial(HIXC,U))(Is(X).
In other words, regardless of which active transactions commit, the resulting history will be dynamic atomic, and
furthermore the different serialization orders cannot be distinguished by future transactions. The first constraint is
necessary for a pessimistic algorithm to ensure dynamic atomicity; the second constraint allows an algorithm to
summarize the effects of the committed transactions with a single "state."

We say that H is online dynamic atomic if, for all objects X, it is online dynamic atomic at X. The following
lemma is immediate:

Lemma 3: If H is onli".e dynamic atomic, H is also dynamic atomic.

Online dynamic atomicity seems to be a fundamental invariant preserved by pessimistic algorithms that guarantee
dynamic atomicity. We will demonstrate the correctness of the algorithms presented later by showing that they
guarantee online dynamic atomicity.



10r

4. Commutativity
Both algorithms described later in this paper use conflict relations based on "commutativity:" two operations

conflict if they do not "commute." However, the different recovery algorithms require subtly different notions of
commutativity. In this section we describe the two definitions and give some examples to illustrate how they differ.

It is important to point out that we define the two notions of commutativity as binary relations on operations in the
sense of our formal definition, rather than simply for invocations as is usually done. Thus, the locks acquired by an
operation can depend on the results returned by the operation. In addition, it is convenient to phrase our definitions
in terms of sequences of operations, not just individual operations. The definitions below are given in terms of
general state machines; they are applied in subsequent sections to the serial specifications of objects.

4.1. Forward Cornmutativity
If M is a state machine, and R and S are two sequences of transitions of M, we say that R and S commute forward

if, for every state s in which R and S are both defined, R(S(s)) = S(R(s)) and R(S(s)) * -L. The motivation for our
choice of terminology is the following: if R and S are both defined in a state s, we can "push R forward over S"
(and vice-versa) to show that R is defined in S(s), S is defined in R(s), and the final states are the same in the two
cases. Notice that the forward commutativity relation is symmetric.

For example, consider the set object SET whose serial specification was described earlier in Section 3.1. The
forward commutativity relation on operations of SET is described by the table in Figure 4-1. For example, the insert
operation commutes forward with the member operation if they involve different elements, or if the member
operation returns true; similarly, the delete operation commutes forward with the member operation if they involve
different elements, or if the member operation returns false. The insert and delete operations commute forward only
if they involve different elements.

SET:[insert(j),ok] SET:[delete(j),ok] sET:[member(j),true] SET:[member(j),false]

SET: [insert(i),ok] i=j i=j

SET: [delete(i),ok] i=j i=j

SET: [member(i),true] i=j

SET. [member(i),falsel i=j

An entry indicates that the operations for the given row and
column do not commute forward if the indicated condition is true.

Figure 4-1: Forward Commutativity Relation for SET

As another example, consider a bank account object BA, with operations to deposit and withdraw money, and to
retrieve the current balance. Assume that a withdrawal has two possible results, OK and NO. We take the serial
specification of BA to be the language of a machine S(BA), which is defined as follows. A state s of S(BA) is a
positive integer, the initial state is 0. The transition function of S(BA) is defined by the preconditions and
postconditions below:



BA:[deposit(i),ok], i>O
Postcondition:

S = s'+i

BA:[withdraw(i),OKI, i>O
Precondition:

s'> !i
Postcondition:

S = s'-i

BA:[withdraw(i),NO], i>O 4

Precondition:
s' < i

BA:[balanceXi
Precondition:

s'= i

The forward commutativity relation on operations of BA is given by the table in Figure 4-2. Deposits and
successful withdrawals do not commute with balance operations, since the former change the state. Similarly,
successful withdrawals do not commute with each other; for example, BA:[withdraw(i),OK and
BA:[withdraw(j),OKI are both defined in any state s a max(ij), but if s<i+j then the two operations cannot be
executed in sequence starting in state s.

BA:[deposit(j),ok] BA:[withdraw(j),OK] BA:[withdraw(j),NO] BA:[balancej]

B:[deosit(i),ok] x x

BA:iwithdraw(i),OK x x
BA:[withdraw(i),NO] X

BA: [balanceJ x X

x indicates that the operations for the given row
and column do not commute forward. -4-

Figure 4-2: Forward Commutativity Relation for BA

We include here some lemmas about forward commutativity that will be useful later on.

The first lemma provides an inductive technique for proving that two sequences commute forward:

Lemma 4: Let R and S, for ij c [0,1), be sequences of transitions. If Ri commutes forward with S,
for all i and j, then Ro*R l commutes forward with So0 Sj.

Proof: Straightforward from the definitions. o

The following corollary extends the lemma to sequences composed of more than two parts.

Corollary 5: Let Ri, lif.-m, and Sj, lYj<n, be sequences of transitions, and let R = Ri*..Rm and S =
Sl*...*S n. If Ri commutes forward with S. for all i and j, then R commutes forward with S.

The following lemma addresses the situation when we have a collection of more than two sequences that
commute forward pairwise.

Lemma 6: Let s hc a siate, and let Si, l <i!n, be scqucnces of transitions such that:
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1. Si is defined in s for all i.

2. Si commutes forward with Sj for all i and j, 1!i<j-n.
Lt i,i 2 ...4 n be a permutation of 1,2.....n. Then.

1. S 2S2 e....Sn(s) * I

2. S. S. o....S. (s)=S 1*S2o...oS.(s)

Proof: The proof proceeds by induction on n. The case when n=1 is trivial. The case when n=2
follows directly from the definition of forward commutaivity.

For the induction step, assume that the lemma holds for fewer than n sequences. Let j be such that ij= 1
(so Sij = S 1). By the induction hypothesis, S2°S3*...°Sn(s)*-.L, and Si *..*S ii i0...S Si (s) = S2e...eSn(s).

Now let sI = Si I a... Sj0(s). Since Site... eSij. *Sijje...*Si (s) # I, it follows that s*I. and Sii* ...*eSi is

defined in s1.

By Corollary 5. SI commutes forward with Se ...*S., Si ,.. S i,, and Sij °...OS . Since SI is defined in

s, and so is S2*...*S n, it follows from the definitions that S2°...*Sn(SI(s)) * .L This proves the first half of

the lemm&
6

Now, since S1 is defined in s, and so is Si °...*Si , it follows from the definition of forward

commutativity that S, is defined in s,. By the commutativity relationships argued in the previous
paragraph and the definition of forward commutativity, Sl(SiilO...eSi(sI)) = Si*...OS A(Sl(sl)).

The following equalities show the second half of the lemma:

S I *S2 -..-*S(s) = Se,...,S,(Sl(s))
= S1(S2"...*S,(s))

= S1 (Sil e.,..aSij- o jl ,... ns

= s x(S ii *" "*Si=(sl )) ,

= Si*...*Si (S1 (sl))

i U I ~ J-1

=S 0 ...°Si(S. (Si ... Si& (s))
= S *S...

The second line follows since S, commutes forward with S2°..."*. The remaining lines follow from
equalities argued above. 3

4.2. Backward Commutativity

If M is a state machine, and R and S are two sequences of transitions of M, we say that R and S commute
backward if R(S(s)) = S(R(s)) for every state s. The motivation for this terminology is that we will apply the
definition in situations in which we know that R(S(s)) * _; from the definition we can "push R backward over S" to
show that S(R(s)) * I, and that R(S(s)) = S(R(s)). The backward commutativity relation, like the forward

commutativity relation, is symmetric.

The backward commutativity relations for sets and bank accounts are described in Figures 4-3 and 4-4. For

example, let P=SET:[insert(i),ok] and let Q-SET:[member(i),trucj. Notice that P(s) = su[i), while Q(s) is s if ies,

6 Nbtice that "*" denotes concatenation, not functional composiLion, so S. S 2.... 6S (s) = S2"...oS.(SI($)).
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and is -± otherwise. Thus, P(Q(s)) is s if ies, and is -L otherwise, while Q(P(s)) = sv(i). Hence Pand Qdo not
commute backward. In other words. knowing that we can execute P and then Q does not tell us that we can execute
Q and then P. Similarly, if P=BA:(depositki),okj and Q=-BA:[withdrawOj),OK], then P(s) = s+i, and Q(s) is s-j if s>-j,
and is -L otherwise. Thus, P(Q(s)) is s-j+i if s2J, and is -L otherwise, while Q(P(s)) is s+i-j (=s-j+i) if s+i~j. and is I-
otherwise. Hence, while P.Q and Q.P give the same result when both ame defined, they are not defined over the
same domain, and thus P and Q do not commute backward.

SET.insert(j),ok] SET.[deleteaj),ok] SET: Emeznber(j),truel SETrlmemnberfJ),falsel
sErlinsert(i).ok] ______ i=j i--j i--j
SET.[delete(i),okl i--j _______ijij

SE'rmember(i),true] i1j -i ______ _________

rSEi lmember(i),false] i--j i=J _______

An entry indicates that the operadons for the given row and
column do not commute backward if the indicated condition is true.

Figure 4-3: Backward Commutativity Relation for SET

BA: [deposit(j),okj BA: [withdrawO),OCI BA: [withdrawoj),NO] BA:[balancejj

BA:[Ideposit(i),ok] x X

BA:[withdraw(i),OK] x X

BA:[withdraw(i),NO] x A
BA: tbalanCe~i] X XA

x indicates that the operations for the given row
and column do not commute backward

Figure 4-4: Backward Commutativity Relation for BA

The rather subtle differences between the two notions of commutativity are shown by comparing Figures 4-3 and
4-4 to Figures 4-1 and 4-2. Interestingly, for the object SET, the forward commutativity relation is strictly larger
than the backward commutativity relation: more operations commute forward than commute backward. For the
object BA, however, the two relations are incomparable.

We now present a series of lemmas about backward commutativity that will prove useful later. The ffirs lemma
provides an inductive technique for showing that two sequences commute backward.

Lemma 7: Let R1 and Sj for ij E (0,1), be sequences of transitions. If R, commutes backward withS
for all i and j, then R0.R1 commutes backward with S0.S,.

Proof. If s is a state, we need to show that R00R10S0.S,(s) = S0.S1.R~j*R 1(s). The following equalities
follow from the definition of backward commutativity, and show the desire result:

R0.Ri*S~OS 1(s) = S, (So ( RI (RO (s)))

= S, (R1 (R% ( So (s) ))
= R1 (SI (R0 (S (s))))
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=R t (Ro(S t (S0(s))))

= S0eS 1.Ro0 RI(s)
0

The following corollary extends the lemma to sequences composed of more than two parts.

Corollary 8: Let Ri, l.S!m, and S,, lj.n, be sequences of transitions, and let R = RIO...ORm and S =
SI1 ...OSn. If R, commutes backward with Sj for all i and j, then R commutes backward with S.

The final lemma handles the case when there are more than two sequences. Unlike the corresponding lemma for

forward commutativity, it does not require that all pairs of sequences commute backward. Instead, we can supply a

partial order on the sequences, with the constraint that sequences unrelated by the partial order commute backward.

The lemma then shows that if we pick a total order consistent with the partial order, and concatenate the sequences
in the given total order, the function on the state corresponding to the concatenation of the sequences does not

depend on the particular choice of total order. This result will be quite useful in our correctness proof of the undo

log algorithm.

Lemma 9: Let s be a state, and let Si be sequences of operations, for l_<i:n. Let P be a partial order on

the integers such that if (ij)eP and (j,i)e P then Si commutes backward with S i. Let T and U be total
orders on the integers consistent with P, let i1, ..., in be the integers from 1 to n inclusive ordered by T, and
let j ..., Jn be the integers from I to n inclusive ordered by U. Then

Si ...OS. (s) = Sj ...oS. (s).

Proof: The proof is by induction on n. The case when n=l is trivial. The case when n=2 follows
directly from the definition of backward commutativity.

For the induction step, assume that the lemma holds for fewer than n sequences. Let k be such that Jk =

in. By induction the lemma holds for the n-1 sequences Si, ...' Si.,. Therefore, Si * ...oS. (s) =

St o ...9S5jk 4 S4 o...oS 4 (s). Furthermore, since U orders Jk+1l ...- Jn after Jk (=in), T orders in after them, and
T and U are both consistent with P, S must commute backward with S S 4.2 and Si. Therefore, by

Corollary 8, Si, commutes backward with S J* o.... The following equations complete the proof:
s io ... OS in(S) = Si n( Si °*...°*S+.i (s))

= SJ i . SD~lO l .. Si S= si) ( s,. ..... s. (s))

. Jl€ c J1  sk-i
-- S il l"t. .. .°S j. ( S i , ( S it o ... S jk- t (s ) )

= Si....,S ,.SiS,+....Si (s))
= Sj ... S in (s)

5. Conflict-based Locking
The two algorithms to be presented in this paper are quite similar. They differ primarily in how they perform

recovery, and in the particular conflict relations used for concurrency control. To exploit this common structure in

our correctness proofs, and to highlight the differences between the two algorithms, we describe in this section a

general conflict-based locking algorithm, and prove some properties about its behavior. Our description here covers
only concurrency control, and not recovery. In addition, the locking algorithm described in this section uses an
arbitrary conflict relation to decide when two locks conflict. In the next section, we show how particular conflict
relations, based on the two notions of commutativity defined earlier, can be used with particular recovery techniques

to ensure online dynamic atomicity. Like most algorithms based on two-phase locking, the algorithms described

here are subject to deadlock; the usual remedies (e.g., timeout or detection) can be used to resolve deadlocks when
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they occur or to avoid them.

A locking concurrency control algorithm must keep track of the locks held by each transaction, as well as which
transactions have committed and which have aborted. In addition, a response to an invocation should be generated
for a transaction only if the transaction has a pending invocation; thus, we need to keep track of the pending
invocations. Finally, since the two algorithms described in the next section maintain similar information about the
"committed state" of the object, we describe how that information is maintained as part of the algorithm described in
this section. In part, this allows us to prove a general theorem that shows what must be guaranteed by concurrency
control and recovery together to ensure online dynamic atomicity; we then prove the correctness of the two
algorithms in the next section by showing that they ensure this property.

Given an object X with its serial specification described by a state machine S(X), the conflict-based locking
algorithm is defined by a state machine CBL(X). CBL(X) has a parameter CONFLICT, which is a binary relation
on the operations of X. We assume that CONFLICT is a symmetric relation, and say that 01 conflicts with 02 if

(01,02) r CONFLICT.

The transitions of CBL(X) are the events involving X. A state s of CBL(X) has five components, denoted
s.permanent, s.pending, s.log, s.committed, and s.aborted. s.permanent is either 1 or a state of S(X), used to keep
track of the state resulting from the execution of the committed transactions. s.pending is a partial mapping from
transactions to invocations; it is intended to record the pending invocation (if any) for each transaction. s.log is a
mapping from transactions to sequences of operations; it is intended to record the sequence of operations executed
by each transaction. s.committed and s.aborted are sets of transactions; they record the committed and aborted
transactions, respectively. In the initial state so of CBL(X), so.permanent is the initial state Is(x) of S(X), s0 .pending
is undefined everywhere, so.log maps each transaction to the empty sequence, and so.committed and so.aborted are
both the empty set.

The transition function of the state machine CBL(X) is defined by the preconditions and postconditions below.
The notation m[x--+y], where m is a (possibly partial) mapping, denotes the mapping that is identical to m except on
x, which it maps to y.

PI
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<commit, X, A>
Postcondition:

s.committod - s'.committcdu(A)
if Ae s'.committed then s.pcrmancnt s'.log(A)(s'.pcrmanent)

<abort, X, A>
Postcondition:

s.aborted = s'.abortedu ( A)

<inv, X, A>
Postcondition

s.pending = s'.pending[A-.inv]

<ret, X, A>
Precondition:

s'.pending(A) * .
new-op = X:[s'.pending(A),ret]
new-log = s'.log(A) * new-op
V B e s'.committed u s'.aborted u (A)

V Op E s'.log(B)
(new-op, op) e CONFLICT

Postcondition:
s.pending = s'.pending[A-+.L]
s.iog = s'.log[A-+new-log]

In this conflict-based locking algorithm, the set of lock modes is taken to be the set of operations (in our formal

sense) on X. Conflicts between lock modes are defimed by the relation CONFLICT. To return a response to an
invocation, a lock must be acquired in the mode appropriate for the operation. Thus, to return a response ret to an
invocation inv for transaction A, A must first acquire a lock on X in mode X:[invret]. The set of locks held by an
active (i.e., not completed) transaction is represented by the set of operations in its log. Thus, the precondition on
response events requires that no other active transaction hold a lock that conflicts with the lock needed for the given.
response.

The rest of the description of the algorithm is straightforward. We view invocation and completion events as

controlled by the transactions, so their preconditions are true, indicating that they can always happen. 7 Invocation
events simply record the pending invocation. Similarly, commit and abort events simply record that the transaction
has committed or aborted; in addition, commit events update the permanent component of the state by applying the
committing transaction's log to it (assuming this is the first time the object has learned that the transaction has

committed).

The remaining preconditions on response events simply require that the transaction have a pending invocation.
The postcondition for a response event erases the record of the pending invocation, and appends the operation to the
transaction's log.

Notice that we have not described how an object can tell what response events make sense. We have described

some preconditions on response events - in particular, the transaction must have a pending invocation, and the
operation formed by pairing the pending invocation and the response event in question must not conflict with any

71n describing the algorithm, we focus on what is controlled by the object, so we assume that events controlled by the transactions can always
happen. In analyzing the algorithm later, we will only concern ourselves with histories - i.e., well-formed evuit w.quences - penmued by the
algorithm. The well-formedness constraints could be described aq additional preconditions on the events in the description of the algorithm. This
would ensure that all event sequences in the language of CBL(X) are well-formed. Adding the additional preconditions would be
straightforward, and would simply clutter the description of the algorithm. It seems more convenient to deal with them as we have here.
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operations already executed by other active transactions. As described, however, any response event that satisfies
these two constraints could be produced by CBL(X). Additional constraints are needed for the algorithm to be
correct; for example, if a transaction writes a value into X and then tries to read the value, it should see the value it
wrote. In the next section, we will describe how a response event is determined by "executing" the pending
invocation against a "state" of the object. The reason we have not done so here is that the two recovery algorithms
described in the next section differ in the state used to execute a pending invocation.

It is worth noting that a practical implementation would not maintain the committed and aborted sets forever, or
even do so explicitly. Similarly, the log would not be maintained forever. We could describe the algorithm in a way
that avoided this seeming inefficiency, but the resulting description would be more complex and harder to analyze.
It is not hard to show that an efficient implementation that discards such information implements the algorithms as
they are described here.

We now present a series of lemmas, culminating in a theorem that provides us with a "correctness condition" that
a recovery algorithm and concurrency control algorithm must satisfy together. The first lemma states some simple
invariants relating a history in L(CBL(X)) to the state in which it leaves the machine.

Lemma 10: Let H be a history in L(CBL(X)), let s be the state of CBL(X) after H, and let A be a
transaction. Then:

OpSeq(HIA) = s.log(A)

2. op-events(HIA) ends in an invocation event <inv,XA> iff s.pending(A) = inv

3. committed(H) = s.committed

4. aborted(H) = s.aborted
Proof: Straightforward by induction on the length of H. o

The next lemma relates the "permanent" component of the state of CBL(X) to the operations executed by
committed transactions, showing that s.permanent is the result of executing the committed transactions, starting in
the initial state of S(X), in the order in which they commit. First, if H is a history, define commit-order(H) to be the
partial order on transactions containing all pairs (A,B) such that A and B both commit in H and the first commit
event for A appears before the first commit event for B.

Lemma 11: Let H be a history in L(CBL(X)), let s be the state of CBL(X) after H, and let T be a total
order on transactions consistent with commit-order(H). Then s.permanent =
OpSeq(Serial(HIcommitted(H),T))(Is(x).

Proof: The proof is by induction on the length of H. The basis case, when H = A, is trivial. For the
inductive step, suppose H = Kee, where e is a single event, and assume that the lemma holds for K. Let SK

be the state of CBL(X) after K. Notice that commit-order(K) g commit-order(H), so T is also consistent
with commit-order(K). Since K is shorter than H, it follows from the induction hypothesis that
sK.permanent = OpSeq(Scrial(Klcommitted(K),T))(Is(x). There are now two cases.

First, if e is an invocation, response, or abort event, then committed(H) = committed(K), commit-
order(H) = commit-order(K), Hlcommitted(H) = Klcommitted(K), and s.permanent = sK.permanent. The
result now follows from the induction hypothesis.

Second, suppose e = <commitX,A>. There are two subcases. If An committed(K), then committed(H)
- committed(K), commit-order(H) = commit-order(K), Hlcommitted(H) = Klcommitted(K), and
s.permanent = SK.permanent. As above, the result now follows from the induction hypothesis.

Otherwise, assume Ae committed(K). Then committed() = committed(K) u (A), commit-order(H) =
commit-order(K) u (committed(K) x {A)), and s.permanent = SK.log(A)(sK.permanent). Furthermore,
OpSeq(HIA) = OpSeq(KIA). Since commit-order(H) orders A after everything in committed(K), and T is
consistent with commit-ordcr(H),
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OpSeq(Serial(Hicommitted(H),T)) = OpSeq(Serial(Klcommitted(H),T))
= OpSeq(Serial(Klcotnmitted(K),T)) * OpSeq(KIA)

Thus,

OpSeq(Serial(Hlcommitted(H),T)) (Is(x)
[ [ OpSeq(Serial(Klcommiued(K),T)) * OpSeq(KIA) ] (Is(x)

= OpSeq(KIA) (OpSeq(Serial(Klcommitted(K),T)) (Is(P)
OpSeq(KIA) (SK.permanent), by the induction hypothesis

= SK.lOg(A) (sK.permanent), by Lemma 10
= s.permanent, by the definition of CBL(X)

This completes the proof. a

The next lemma states a simple invariant guaranteed by the test for conflicts in the precondition for response

events: operations executed by distinct active transactions do not conflict. The proof relies on the assumption that

the conflict relation is symmetric.

Lemma 12: Let H be a history in L(CBL(X)), let s be the state of CBL(X) after H, and let A and B be
transactions such that A*B, Ae completed(H), and Be completed(H). Then no operation in s.log(A)
conflicts with an operation in s.log(B).

Proof: Straightforward by induction on the length of H. c

The next lemma uses the previous lemma to show a fundamental property of conflict-based locking: operations

executed by distinct transactions that are unrelated by the precedes order do not conflict.

Lemma 13: Let H be a history in L(CBL(X)), and let A and B be transactions such that A*B,
Aeaborted(H), Beaborted(H), (A,B)eprecedes(H), and (B,A)eprecedes(H). Then no operation in
OpSeq(HIA) conflicts with an operation in OpSeq(HIB).

Proof: Let K be the longest prefix of H such that neither A nor B commits in H. Since A and B are
unrelated by precedes(H) and H is well-formed, OpSeq(HIA) = OpSeq(KIA), and similarly for B. Since
neither A nor B is in completed(K), the result follows from Lemma 12. 0]

The final theorem in this section provides us with a correctness condition for the recovery algorithms to be

presented in the next section: to ensure online dynamic atomicity, it is sufficirmat to guarantee that any subset of the

active transactions can be executed in any serial order starting in the "committed state" (i.e., s.permanent), and that
the final state resulting from that execution does not depend on the order.

Theorem 14: Let H be a history in L(CBL(X)). Suppose that the following holds for all prefixes K of
H, where sK is the state of CBL(X) after K:

V commit sets C for K,
V total orders T,

OpSeq(Serial(KIC-commiued(K),T))(SK.permanent) * .
and does not depend on T.

Then H is online dynamic atomic.

Proof: The proof is by induction on the length of H. The basis case, when H = A, is trivial. For the
inductive step, suppose that H = K * e, where e is a single event, and assume that the theorem holds for K.
Let sK be the state of CBL(X) after K, and let s,, be the state of CBL(X) after H. If the hypothesis of the
theorem is true for H, it is also true for K, since every prefix of K is a prefix of H. Thus, by the induction
hypothesis, K is online dynamic atomic.

Referring to the definition of online dynamic atomicity, we need to show that, for all commit sets C for
H, and for all total orders T consistent with precedes(H), OpScq(Serial(H1C,T)XIs( x)) is defined and does
not depend on T. So let C be a commit set for H, and let TI and T2 be total orders consistent with
precedes(H). Then C is a commit set for K, and TI and T2 are consistent with precedes(K). There are
now two cases.
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First, if e is a commit, abort, or invocation event, notice that OpSeq throws away pending invocation
events (those without corresponding response events) and completion events. Thus,
OpSeq(Serial(HC,Ti)) = OpSeq(Serial(KIC,Ti)), and the result follows from the induction hypothesis.

Second, suppose e = <retX,A>, where ret is a response to an invocation. If Ae C, HIC = KIC, and the
result follows from the induction hypothesis. So assume Ae C.

Let T be a total order such that the committed transactions in H are ordered by commit-order(H), A is
ordered after the committed transactions, and all other transactions are ordered after A in some order.
Notice that T is consistent with precedes(H). We will show that HIC is serializable in the order T, and
then show that for any total order U consistent with precedes(H), OpSeq(Serial(HC,T))(Is 5x) =
OpSeq(Serial(HICU))(Is ). If we substitute first T1 and then 12 for U in this equation, the result
follows from the transitivity of equality.

To show that HIC is serializable in the order T, notice that OpSeq(Serial(HICT)) =
OpSeq(Serial(Hlcommitted(H),T)) - OpSeq(Serial(HIC-committed(H),T)). Thus, OpSeq(Serial(HIC,T))
(Is) -- OpSeq(Serial(HIC-committed(H),T)) (sH.permanent), by Lemma 11. But by the hypotheses of
the theorem, OpSeq(Serial(HIC-committed(H),T)) (SH.permanent) is defined, so HIC is serializable in the
order T.

Now let U be consistent with precedes(H). Let CI be the subset of C ordered before A by U, and let C2
be the subset of C ordered after A by U. If we let G1 = OpSeq(Serial(HICIU)) and G2 =
OpSeq(Serial(HIC2,U)), then OpSeq(Serial(HICU)) = GI * OpSeq(HIA) * G2.

Notice that since e is a response event, precedes(H) = precedes(K) u (committed(H)xA). Therefore,
committed(H) c Cl, so C1 is a commit set for H. Also, since Ae CluC2, Gi = OpSeq(Serial(KCi,U)) for
i=1,2.

Now, let V be a total order consistent with commit-order(H) in which the elements of committed(H) are
ordered before the remaining elements of Cl. Notice that V is consistent with precedes(H) (and hence
precedes(K)). Let F1 = OpSeq(Serial(KIC1,V)). By the induction hypothesis, Fl(Isx) = Gl(Is(x). Now
let F2 = OpSeq(Serial(KICl-committed(K),V)); then F1 = OpSeq(Serial(Klcommitted(K),V)) 9 F2; since
KICi = HICi and committed(K) = committed(H), we can also write this as FI =
OpSeq(Serial(Hlcommitted(H),V)) @ F2, and F2 = OpSeq(Serial(HICI-committed(H),V)).

We now show that OpSeq(Serial(HIC,U)) (Is)) = OpSeq(Serial(HICT)) (Is). The following
equations follow directly from the definitions above and the fact that FI(Isoc) = G I (I :

OpSeq(Serial(HIC,U)) (Ioo
= G* OpSeq(HIA) * G2 ( sy)
= G2 (OpSeq(HIA) (G 1 (Is) )
= G2 (OpSeq(HIA) (Fl (IS,¢)))
= G2 (OpSeq(HIA) (OpSeq(Serial(Hlcommitted(H),V)),F2 (Is(x))))
= G2 (OpSeq(HIA) (F2 (OpSeq(Serial(Hlcommitted(H),V)) (s(x)))
= G2 (OpSeq(HIA) (F2 (SH.permanent))), by Lemma 11
= P2 * OpSeq(HIA) * G2 (sH.permanent)

Now let W be a total order that orders the elements of Cl-committed(H) before A and A before the
elements of C2, and is consistent with V on Cl-committed(H) and with U on C2. Then F2 * OpSeq(HIA)
* G2 = OpSeq(Serial(HIC-committed(H),W)). By the hypotheses of the lemma, OpSeq(Serial(HIC-
committed(H),W)) (sH.permanent) is defined and does not depend on W. The following equations show
the desired result:

F2 e OpSeq(HIA) * G2 (sH.pcrmanent)
= OpSeq(Serial(HIC-committed(H),W)) (str-permanent), as shown above
= OpSeq(Serial(HIC-commited(H),T)) (SH.permanent),

since it does not depend on W
= OpSeq(Serial(HIC-committed(H),T))(OpSeq(Scrial(Hcommitted(H),T))(Is(x))),
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by Lemma 11
= OpSeq(Serial(Hlcommitted(H),T) . OpSeq(Serial(HIC-committcd(H),T))(Is(x)
= OpSeq(SerI(HT)Is(x)

Let us say that an algorithm is correct if every history it permits is online dynamic atomic. The theorem shows a
sufficient condition for correctness. In fact, this condition is necessary for an online algorithm. The set of histories
permitted by an online algorithm is closed under the operation of taking prefixes; thus, if H is permitted by a online

algorithm, so is every prefix of H. Therefore, if H is permitted by a correct online algorithm, H and each of its
prefixes is online dynamic atomic. The condition stated in the theorem for each prefix K of H follows immediately
from the definition of online dynamic atomicity.

6. Recovery
In this section we describe and prove correct the two recovery algorithms. The intentions list algorithm was

originally presented in [281; the undo log algorithm is presented here for the first time. The intentions list algorithm
works with a conflict reLtion based on forward commutativity, while the undo log algorithm works with a conflict
relation based on backward commutativity. Let NFC(X) ("non-forward-commuting") be the binary relation on the
operations of X such that (01,02) e NFC(X) if 0, does not commute forward with 02 as transitions of S(X).
Similarly, let NBC(X) ("non-backward-commuting") be the binary relation on the operations of X such that (0, 02)
e NBC(X) ff 0 1 does not commute backward with 02 as transitions of S(X). The intentions list algorithm works as
long as NFC(X) c CONFLICT, while the undo log algorithm works as long as NBC(X) c CONFLICT. At the end
of the section we present some examples that illustrate that the two other combinations of recovery algorithms with
conflict relations do not work correctly.

6.1. The Intentions Lists Algorithm
Using intentions lists for recovery, when a transaction executes an operation (i.e., a return value is generated for

the operation), the operation is simply recorded in the log for the transaction; the permanent state is not modified
until the transaction commits. In addition, to choose a return value for the operation, the operation is executed in a
state derived from the permanent state by applying the transaction's prior operations (i.e., the operations already in
its log). Thus, as discussed earlier, an operation does not see the effects of operations executed by other active
transactions.

The intentions list algorithm is described by a state machine [LIST(X). ILIST(X) has the same transitions as
CBL(X). A state s of ILIST(X) has the same five components as a state of CBL(X), and the initial state is the same
as for CBL(X). The transition function for ILIST(X) is the same as that for CBL(X), except for response events,
which have the additional precondition shown below. (For brevity, and to highlight the differences between the two

algorithms, we list only the modifications to the description of CBL(X).)

<ret, X, A>
Precondition:

new-log(s'.permanent) * 1

Using intentions lists, a transaction's view is the committed state, modified by its log. Thus, the possible responses
to an invocation are those that are permitted in the transaction's view. This constraint is embodied in the
precondition above.

We now show that the intentions list algorithm is correct as long as NFC(X) Q CONFLICT.

We begin with two lemmas describing the relationship between ILIST(X) and CBL(X); their proofs are
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straightforward. The first lemma shows that every history in L(ILIST(X)) is also in L(CBL(X)); in other words,
ILIST(X) simply restricts the behavior of CBL(X).

Lemma 15: L(ILIST(X)) c L(CBL(X)).

The second lemma shows that the state of ILIST(X) after a history H is the same as the state of CBL(X) after the
same history.

Lemma 16: Let H be a history in L(ILIST(X)), let SIL be the state of ILIST(X) after H, and let sCBL be
the state of CBL(X) after H. Then SL = SCBL.

The two lemmas above allow us to apply the results of the previous section about CBL(X) to ILIST(X); in the
remainder of this section we will do so implicitly, without referring directly to the two lemmas above.

The next lemma shows that an active transaction's log is defined in the committed state. This is clearly true as
long as no transaction commits, given the precondition on response events. The key to the lemma is that when a
transaction commits, none of its operations conflict with the operations executed by other active transactions; thus,
the operations executed by the other active transactions will still be defined in the new committed state.

Lemma 17: Suppose NFC(X) a CONFLICT. Let H be a history in L(ILIST(X)), let s be the state of
ILIST(X) after H, and let A be a transaction such that A a completed(H). Then s.log(A) is defined in
s.permanent.

Proof: The proof is by induction on the length of H. The basis, when H = A, is trivial. For the
induction step, assume that H = Kee, where e is a single event, and that the lemma holds for K. Let SK be
the state of ILIST(X) after K. There are 3 cases, depending on the type of e:

1. If e is an invocation or abort event, s.permanent = sK.permanent, and s.log = SK.lOg. Thus, the
result follows from the induction hypothesis.

2. If e = <retX,B> where ret is a response to an invocation, then s.permanent = SK.permanent. If
B*A, s.log(A) = SK.log(A), and the result follows from the induction hypothesis. Otherwise, the
precondition for e guarantees the desired result.

3. If e = <commitX,B>, then s.log = SK-lOg. If Be committed(K) then s.permanent = sK.permanent,
and the result follows from the induction hypothesis. Otherwise, s.permanent =
s.log(B)(SK.permanent). Since Ba committed(K) and At committed(H), (B,A)9 precedes(H) and
(A,B)eprecedes(H). Therefore, by Lemma 13, no operation in s.log(A) conflicts with an
operation in s.log(B). Since NFC(X) Q CONFLICT, every operation in s.log(A) commutes
forward with every operation in s.log(B). Therefore, by Corollary 5, s.log(A) commutes forward
with s.log(B). By the induction hypothesis, s.log(A) and s.log(B) are both defined in
SK.pemnanent. Thus, by the definition of forward commutativity, s.log(A) is defined in
s.log(B)(SK.permanent), which % argued above is simply s.permanent.

03

We now show that the intentions list algorithm meets the criteria established in Theorem 14, as long as NFC(X)
CONFLICT.

Lemma 18: Suppose NFC(X) c CONFLICT. Let H be a history in L(ILIST(X)), let s be the state of
ILIST(X) after H, and let C be a commit set for H. Then for all total orders T on transactions,
OpSeq(Serial(HIC-committed(H).T))(s.permanent) ;* I and doeMs not depend on T.

Proof: The result follows directly from Lemmas 17, 12, and 6.03

The final theorem demonstrates the correctness of the intentions list algorithm.

Theorem 19: Suppose NFC(X) - CONFLICT. Let H be a history in L(ILIST(X)). Then H is online
dynamic atomic.

Proof: The result follows directly from Lemma 18 and Theorem 14. 0
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6.2. The Undo Log Algorithm
The undo log algorithm keeps track of the "current" state of the object, which is the state obtained by executing

the committed and active transactions starting in the initial state. When a transaction executes an operation (i.e., a
return value is generated for the operation), the operation is recorded in the log for the transaction, and the current
state is modified to reflect the effects of the operation. A return value for an operation is chosen by executing the
operation in the current state, so an operation's view includes the effects of other active transactions.

We describe the handling of recovery in a very general way. Rather than postulating the existence of "undo
operations" for each ordinary operation executed by a transaction, we describe the effect that such undo operations
must achieve. We will explain how recovery is handled in more detail after we present the algorithm.

The undo log algorithm is described by a state machine ULOG(X). ULOG(X) has the same transitions as
CBL(X). A state s of ULOG(X) has the same five components as a state of CBL(X), and in addition a component
s.current, which is a state of S(X). The initial states of the first five components are the same as for CBL(X), and the
initial state of the last component is IS(x). The transition function for ULOG(X) is the same as that for CBL(X),
except for response and abort events, which have the additional preconditions and postconditions shown below. (As
for ILIST(X), we list only the modifications to the description of CBL(X).)

<abort, X, A>
Postcondition:

s.current = active(s'.permanent),
where active is any concatenation of the sequences in the set
(s'.log(B) IB s'.committedus'.abortedu{A) }

<ret, X, A>
Precondition:

new-op(s'.current) J
Postcondition:

s.current = new-op(s'.current)
The current state reflects the operations executed by both committed and active transactions. The responses
permitted for an invocation are those that are permitted in the current state, as indicated by the precondition for
response events. The postcondition for a response event indicates that the current state is modified to reflect the
effects of the operation just executed when a response is returned. Aborts are handled by finding a new current state
that bears the appropriate relationship to the permanent state.

We should point out that a real implementation would probably maintain only the current state, along with a log
that allows it to undo operations in the event of an abort. Thus, the permanent state need not be stored expiidtly
(although it must be computable from stored information, since all active transactions could abort). The presence of
the permanent state as a component of the state of ULOG(X) allows us to state the effect that must be achieved by
an abort, without indicating how an implementation must achieve it. For example, we do not need to postulate the
existence of undo operations corresponding to each ordinai y operation.

We now show that the undo log algorithm :s correct as long as NBC(X) _ CONFLICT.

As in our proof of ILIST(X), we begin with two lemmas describing the relationship between ULOG(X) and
CBL(X); their proofs are straightforward. The first lemma shows that every history in L(ULOG(X)) is also in
L(CBL(X)); in other words, ULOG(X) simply restricts the behavior of CBL(X).

Lemma 20: L(ULOG(X)) Q L(CBL(X)).

The second lemma shows the relationship between the state of ULOG(X) after a history H and the state of
CBL(X) after the same history.
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Lemma 21: Let H be a history in L(ULOG(X)), let SUL be the state of ULOG(X) after H, and let SCBL

be the state of CBL(X) after H. Then SUL.permanent = scBLpermanent, SUL.pending = SCBL.pending,
SUL.lOg = SCBL.h,, SUL.committed = SCBL.committed, and sUL.aborted = scBl.aborted.

The two lemmas above allow us to apply the results of the previous section about CBL(X) to ULOG(X); in the

remainder of this section we will do so implicitly, without referring directly to the two lemmas above.

The next lemma describes an important invariant about the "permanent" and "current" components of the state of

ULOG(X).

Lemma 22: Suppose NBC(X) g CONFLICT. Let H be a history in L(ULOG(X)), let s be the state of
ULOG(X) after H, and let Active = ACT-committed(H)-aborted(H). Then for all total orders T consistent
with precedes(H):

1. s.permanent = OpSeq(Seria](HIcommitted(H),T))(1sx) * £

2. s.current = OpSeq(Serial(HlActive,T))(s.permanent) * -

Proof: The proof is by induction on the length of H. The basis, when H = A, is trivial. For the
induction step, let H = Kee, where e is a single event, and assume that the lemma holde for K. Let SK be
the state of ULOG(X) after K.

Suppose that T and U are consistent with precedes(H). Since NBC(X) c CONFLICT, it follows from
Lemmas 9 and 13 that OpSeq(Serial(Hlommitted(H),T))(Is) =

OpSeq(Serial(HIcommitted(-),U))(Is 5 c), and that OpSeq(Serial(HtActiveT))(s.permanent) =

OpSeq(Serial(HIActive,U)Xs.permanent). Thus, it suffices to find a single total order T consistent with
precedes(H) such that the two conditions in the statement of the lemma hold for T. There are now four
cases, depending on the type of e:

1. If e = <inv,XA>, where inv is an invocation, and T is any total order on transactions, then
s.permanent = SK.permanent, s.current = SK.current, OpSeq(Serial(Hlcommitted(H),T)) =
OpSeq(Serial(Klcommitted(K),T)), and OpSeq(Serial(HiActive,T)) = OpSeq(Serial(KActive,T)).
Thus, the result follows from the induction hypothesis.

2. Suppose e = <commitXA>. If Aecommitted(K), then s.permanent = SK.permanent, s.current

SK.current, OpSeq(Serial(Hlcommitted(H),T)) = OpSeq(Serial(Klcommitted(K),T)), and
OpSeq(Serial(HIActive)) = OpSeq(Serial(KIActive,T)). Thus, the result follows from the
induction hypothesis. Otherwise, let T be a total order consistent with commit-order(H) that
orders the elements of committed(H) before all other transactions.

By Lemma 11, s.permanent = OpSeq(Serial(-lcommitted(),T))(Is(x). Thus, for the first part of

the lemma, it suffices to show that s.permanent * 1. By the induction hypothesis, SK.current =
OpSeq(Serial(KIActiveu(A),T))(SK.permanent) * 1. By construction, T orders A before the
elements of Active. Therefore, OpSeq(Serial(KlActiveu(A) ,T)) =

OpSeq(KIA).OpSeq(Serial(KIActive,T)). But OpSeq(KIA) = OpSeq(HA). Therefore,
OpSeq(HIA) is a prefix of a sequence defined in sK.permanent, and hence is itself defined in
SK.permanent. By the postconditions for e, s.permanent = OpSeq(HIAXsK.permanent). Since
OpSeq(HIA) is defined in sK.permanent, s.permanent * ..

Now we show that s.current = OpSeq(Serial(HIActive,T))(s.permanent) * 1. Notice that s.current

= sK.current, and s.permanent = sK.log(A)(sK.permanent). By the induction hypothesis,

SK.curent 1. Therefore, it suffices to show that SK.current =

OpSeq(Scrial(HIActive,T))(s.permanent). By the induction hypothesis, sK.current =
OpSeq(Serial(KlActiveu (A),T))(SK.permanent). Since T orders A before the elements of Active,

sK.current = OpSeq(Scrial(KIActiveu[A},T))(sK.permanent)
= OpSeq(KIA) * OpSeq(Scrial(KIActive,T))(SK.permanent)
= OpSeq(Serial(KIActive,T)) (OpSeq(KIA) (sK.permanent))
= OpSeq(Serial(HIActiveT)) ( OpSeq(KIA) (sK.permanent))
= OpSeq(Serial(HiActive,T)) (sK.log(A) (sK.permanent))

I l l~liNl llll
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= OpSeq(Serial(H~lAtiveT)) ( s.permanent)

This completes the argument for e = <commit,X,A>.

3. Suppose e = <retX,A>, where ret is a response to an invocation. Let op = X:tsK.pending(A),rctj.
First, note that s.permanent = sK.permanent. Furthermore, committed(H) = committed(K), and
Hlcommitted(H) = Klcommitted(K). Thus, the first half of the lemma follows from the induction
hypothesis.

Now, by the preconditions for e, OP(sK.current) * 1. By the postconditions, s.current =

op(sK.curren 0). Thus, s.current * 1. Now let T be a total order that orders A after all other
elements of Active. The following equations show that OpSeq(Serial(HActive,T))(s.permanent)
- s.current:

OpSeq(Serial(HIActive,T)) (s.permanent)
= OpSeq(Serial(HIActive- (A) ,T))*OpSeq(HIA) (s.permanent)
= OpSeq(HIA) (OpSeq(Serial(HIActive-[A),T)) (s.permanent))
= OpSeq(KIA)-op (OpSeq(Serial(KiAcive-(A),1)) (s.permanent))
= op (OpSeq(KIA) (OpSeq(Serial(KlActive-[A),T)) (s.permanent)))
= op (OpSeq(Serial(KActive- (A),T))*OpSeq(KIA) (s.permanent))
= op (OpSeq(Serial(KAczive,T)) (s.permanent))
= op (sK.current)
= s.current

4. Finally, suppose e = <abortX,A>. Then s.permanent = SK.permanent, committed(H) =

committed(K), and Hlcommitted(H) = Klcommiued(K). Thus, the first half of the lemma follows
from the induction hypothesis.

Now, by the postconditions for e, there exists a total order T such that s.current =

OpSeq(Serial(HIActive,T))(SK.permanent). Since s.permanent = sK.penanent, it suffices to
show that OpSeq(Serial(HlActive,T))(sK.pemanent) * 1. Let U be a total order consistent with T
on Active that orders A after the elements of Active. By the induction hypothesis, sK.current * 1.
But

SK.current = OpSeq(Serial(KIActiveu[ A) ,U))(sK.permanent),
by the induction hypothesis

= OpSeq(Serial(KiActive,U))*OpSeq(KIA) (SK.permanent)

= OpSeq(Serial(HIActive,T)).OpSeq(HIA) (s.permanent)
= OpSeq(HIA) ( OpSeq(Serial(HiActive,T)) (s.permanent))

Therefore, OpSeq(Serial(HIActive,T))(SK.permanent) * £.

0

The final lemma shows that ULOG(X) meets the criteria established in Theorem 14.

Lemma 23: Suppose NBC(X) c CONFLICT. Let H be a well-formed sequence in L(ULOG(X)), let s
be the state of ULOG(X) after H, and let C be a commit set for H. Then for all total orders T on
transactions, OpSeq(Serial(HIC-committed(H),T))(s.permanent) 1 and does not depend on T.

Proof: Since NBC(X) Q CONFLICT, it follows from Lemmas 9 and 13 that OpSeq(Serial(HIC-
committed(H),T)Xs.permanent) does not depend on T. To show that OpSeq(Serial(HC-
committed(H),T))(s.permanent) * _, let Active = ACT-committed(H)-aborted(H), and let U be a total
order consistent with precedes(H) that is also consistent with T on C-committed(H), such that U orders the
elements of C-committed(H) before the other elements of Active. By Lemma 22,
OpSeq(Serial(HiActive,U)Xs.permanent) * ._ By choice of U, OpSeq(Serial(HlActiveU)) =
OpSeq(Serial(HIC-committed(H),T)) * OpSeq(Serial(HIActive-C,U)). Thus, OpSeq(Serial(HIC-
committed(H),T)) is a prefix of a sequence that is defined in s.permanent, and hence is itself defined in
s.permanent. 0

Finally, we show that ULOG(X) is correct.

Theorem 24: Suppose NBC(X) c CONFLICT. Let H bc a well-formed sequence in L(ULOG(X)).
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Then H is online dynamic atomic.
Proof: The result follows directly from Lemma 23 and Theorem 14. o

6.3. Remarks
The theorems above show that the intentions list algorithm works as long as the CONFLICT relation includes all

non-forward-commuting pairs of operations, and that the undo log algorithm works as long as the CONFLICT
relation includes all non-backward-commuting pairs of operations. One might ask whether the other combinations
of recovery algorithms and conflict relations are guaranteed to work. The answer, unfortunately, is no.

For example, consider the bank account object Y defined earlier. Successful withdrawal operations commute
backward, but not forward. Suppose we use a conflict relation equal to NBC(Y) in ILIST(Y). Suppose one
transaction deposits, say, $3, and then commits, so the permanent state is $3, and then two transactions concurrently
each withdraw $3. Each operation is defined in the appropriate transaction's view (which is just the permanent
state). If the two transactions then commit, however, the resulting execution is not dynamic atomic; in fact, it is not
even atomic, since there is no order in which the committed transactions can be serialized without violating the

serial specification of Y.

Similarly, notice that successful withdrawals commute forward with deposits, but not backward. A scenario
similar to that above demonstrates that a conflict relation equal to NFC(Y) does not work in ULOG(Y).

7. Discussion
We have presented two novel concurrency control algorithms for abstract data types that use conflict relations

derived from the specifications of the types to permit high levels of concurrency. The two algorithms use different
recovery methods, and consequently require subtly different conflict relations. The algorithms generalize prior work

by permitting operations to be both partial and non-deterministic, and by allowing information about the results of
an operation to be used in determining the lock required by the operation. We have proved that the two algorithms
ensure online dynamic atomicity, thus demonstrating not just that they ensure atomicity, but that they do so in any
system in which each object uses a dynamic atomic concurrency control algorithm. Thus, the choice of a particular

concurrency control algorithm can be made locally for each object in a system, rather than requiring the entire
system to use the same algorithm. This flexibility is particularly important in loosely coupled distibuted systems.

One area for further work involves nested transactions [18,23, 14]. Working with Alan Fekete, Nancy Lynch,

and Michael Merritt, we have generalized the definitions of dynamic atomicity in this paper to a system involving
nested transactions. We have also generalized the intentions list algorithm described in this paper to handle nested
transactions, and have proved it correct. We expect to be able to generalize the undo log algorithm in a similar way.

While we have shown that the intentions list algorithm works with a conflict relation based on forward

commutativity, and the undo log algorithm with one based on backward commutativity, and furthermore that the
other combinations are not correct, we do not know whether the two notions of commutativity are in any sense
"optimal" for their respective recovery algorithms. However, it should be possible to generalize the examples in
Section 6.3 to obtain some sort of optimality results.

It is sometimes convenient to combine different recovery methods in the same system. For example, some
operations on an object might be handled using intentions lists, while others might be handled using undo logs. The
algorithms we have presented in this paper allow different recovery methods to be used in distinct objects, but not in
the same object. We are currently working on an algorithm that permits the two methods to be combined by using a
slightly more complicated concurrency control technique.
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In this paper we have discussed only recovery from aborts of transactions; the model wc used does not covcr
crashes. Crash recovery is similar to, but typically more complex than, recovery from aborts. Further work is
needed to study the aplicabilUy of our algoithms to crash recovery, 4d to analyze the inte~ctios of crash
recovery with abort recovery and concurreny control.

While other work on commetativity-based concwrency control treats recoyay separately or ignores it altogether,
most of it seems to be assuming that recovery is performed using the ido log algorithm above, in the sense that
operations are executed in the current state. The alproujthms in this paper demonstrate that the choice of recovery
algorithm has a subtle impact on the concurrency contol algorithm.

We have identified a fundamental difference in the two recovery algorithms, namely the "view" used to choose
the results of an operation. We have also presented a correctness condition that concurrency control and recovery
must ensure together to satisfy online dynamic atomicity. We are currntly stpdying whether this condition applies
to other algorithms.
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