me enc rneY -

AFGL~TR-87-0094

A Projectile Probe for Measuring the
Electric Field Inside a Spacecraft Plasma Sheath

Mark N. Horenstein
Gary Freeman

AD-A200 957

Boston University
110 Cumington Street
Boston, MA 02215

3 March 1987

Final Report
14 February 1984 - 3 March 1987

Approved for public release; distribution unlimited

DTIC

MAELECTE
), DEC 05 1988

AIR FORCE GBOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE R
HANSOOM AIR FORCE BASE, MASSACHUSETTS 01731

-

88 12 ST




"This technical report has been reviewed and is approved for publication"

(:“‘/iji<?;? ,u///;4£;27;L£ 4422;; /i:;z%fi;%;;>/

GEORGE MURPHY WILL1IAM J. BURK
Contract Manager ; Branch Chief

FOR THE COMMANDER

2eC e ol

R1TA C. SAGALYN ’

Division Director

This report has been reviewed by the ESD Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS).

Qualitied requestors may obtain additional copies from the Defense Technical
Information Center. All others should apply to the National Technical
Intormation Service.

1t your address has changed, or it you wish to be removed from the mailing
list, or if the addressee is no longer employed by your organization, please
notify AFGL/DAA, Hanscom AFB, MA 01731. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specitic document requires that it be returned.




UNCLASSIFIED . - .
SECURITY CLASSIFICATION OF THIS PAGE AN G P55 T
REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION b, RESTRICTIVE MARKINGS
—IDNCIASSIETIED,
23. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release; Distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Unlimited
4, PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
AFGL-TR-87-0094
63. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL [ 7a. NAME OF MONITORING ORGANIZATION
(If applicable) B .
BOSTON University PP Air Force Geophysics Laboratory
" 16c ADDRESS {City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
110 Cummington Street Hanscom AFB

Boston, MA 02215 Massachusettes 01731

8a. NAME OF FIUNDING / SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
Air Force Svst.Cmd. /ESD F19628-84-K0033

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
AFGL /PHK PROGRAM PROJECT TASK WORK UNIT
HANSCOM AFB, MA 01731 ELEMENT NO.  INO. NO ACCESSION NO.

62101F 7661 12 AJ
11. TITLE {Include Security Classification)

A Projectile Probe fo- Measuring the Electric Field Inside a Spacecraft Plasma Sheath
(unclassified)

12. PERSONAL AUTHOR(S)

Mark N. Horenstein, Gary Freeman

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) §S. PAGE COQUNT
Final Report FROM 2/14/84 vo3/3/87 87-Mar-3 76

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18, SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Vi -
FIELD GROUP SUB-GROUP electric field measurements, plasma, sheath/ sensors.

probe; Surfacevcharge; sphere; projectile; floating -
(9

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

> A self contained electrically floating spherical electric field probe has been
developed use in volume regions where spatial field variation occurs on a length
scale larger than the sphere diameter. In plasma sheath, the sphere floats to the
local plasma potential, minimizing field perturbation, and provides a value of field
magnitude found from the Laplacian spherical harmonic field solution. The sphere
is also capable of monitoring the amount of charge collected on its own surface--a
quantity that can in principle be used to infer propertles of the ambient plasma.
The 15 cm battery operated aluminum sphere contains six miniature 800 Hz field J
©  mill sensors, a synchronous detection data acquisition system and A/D converter, and
) and 50 MHz digital fo transmitter. Data is sent at 1200 BAUD to a nearby receiver
and computer for processing in real time. Fields as low as 50 V/m can be detected
with a sampling time of about 1 second. At present the probe works well in air and
vacuum, but has been only partially successful in plasma.

[
20 G ST TION S AVAILABILITY OF ABST R‘CT 21 ABSTRACT SECURITY CLASSIFICATION
@ _nenasssEDNLInTED [ satce a5 RoT [Jotic usexs unclassified
223 M- 0R RIZPOMIBLE BCVIDUAL 225 TELEPHONE (IncJude Area Code) | 22¢ OFFICE SYMBOL
George Murphy AFGL/PHA
[}r“ CCRLI1372,82 000 B3 2fR e ticn may be used urtl exrauttad

SECURITY CLASSISICATION OF THIS Pa ~E—I
2l gtharedtang ar2 obiniata - — 2 OF I PAGE

; UNCLASSIFIL ‘




1. SUMMARY:

A completely self contained, electrically floating, spherical electric
field probe has been developed for measuring dc electric field magnitudes
in volume regions where the spatial field variation occurs on a length
scale larger than the sphere diameter. In plasma sheath, the sphere
floats to the local plasma potential, and thus minimizes perturbation of
the field existing in its absence. The field is inferred by solution of
the Laplacian spherical harmonic field equations, and thus provides a
means to unambiguously measure volume fields. The sphere is also capable
of monitoring the amount of charge collected on its own surface--a
quantity that can in principle be used to infer the properties of the
ambient plasma sheath using the theory of spherical Langmuir probes.

The 15 cm diameter aluminum sphere contains six miniature 800 Hz field
mill sensors, a synchronous detection data acquisition system and A/D
converter, a digital fm transmitter operating at 50 MHz, and batteries.

It sends data at 1200 BAUD to a nearby receiver and computer for real time
interpretation and processing. The probe is capable of measuring fields
as low as 50 V/m, with a time constant of about 1 second, and operates for
several hours on one set of batteries.

In its present configuration, the probe works well! in air and vacuum,

but has been only partially successful in plasma.
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2. PREFACE:

The purpose of the work performed under this AFGL contract was to
develop a laboratory prototype of a spherical electric field probe that
ultimately could be ejected from or tethered to a space vehicle, and used
to measure the dc electric field inside the surrounding plasma sheath.
The basic concept of a surface field sensor incorporating a vibrating reed
element was previously investigated under Grant ECS-81-06475 from the
National Science Foundation. Under this AFGL contract, the sensor on the
sphere were modified for use in plasma and upgraded to detect the low
electric field magnitudes typical of the space environment.

The results of this investigation have been encouraging, in that a
working prototype capable of measuring electric fields in air and vacuum
has been developed and tested. In addition, some measurements were
obtained in plasma, but not with complete success. At the present time,
the difficulty appears to be a problem in the design of the surface field
sensors which are contained within the spherical probe. When exposed to
plasma, these sensors exhibit a significant dc drift as plasma ions flow
into the apertures on the sphere surface. This problems appears to be a
solvable one, however, and ultimately should not prevent the spherical

probe from being a useful measuring tool.
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3. INTRODUCTION:

The interaction of both high and low altitude orbiting spacecraft with
ambient plasma, and the resulting phenomena of spacecraft charging, are
problems that have been well studied and investigated [12,13].
Considerable interest has focused on the structure and extent of the
plasma sheath that surrounds the space shuttle and other orbiting craft,
particularly in the wake region [14]. As an aid in the study of this
phenomena, it would be useful to obtain measurements of both the electric
field strength and the plasma parameters in the sheath region, and to do
so without disturbing the character of the plasma itself.

Obtaining electric field measurements in volume regions has always
been an elusive task, and one subject to much compromise and lack of
accuracy. The problem arises because to date all instruments designed to
measure volume fields have had to rely on a supporting arm or cable to
both enter the volume region and to provide a transmission medium to bring
the data signal from probe to recording instrument. The problem is
particularly difficult in a plasma, because the presence of space charge
further adds to the distortion of the electric field as ions collect on or
flow to the supporting structure.

Investigators who have attempted volume field measurements in air have
chosen probes with near spherical symmetry, because a sphere distorts an
otherwise uniform field in a precisely known way. One experiment [1] used
a small split sphere to monitor ac fields via the induced current between
hemispheres. The conducting support rod, which also carried the signal
wires, had to be located on an equipotential of the field system, so as
not to greatly perturb the field from the known spherically distorted
case. In another experiment [2], a rotating field mill sensor was
embedded inside a conducting electrode held atop an insulating rod,
together with a self contained, battery operated data acquisition system
which sent its signal to ground over a nonconducting fiber optic cable.
Other experimenters [3,4] have also utilized the fiber optic cable
isolation principle. In this case, the presence of the support rod and
fiber optic cable, though both insulating, still introduced a dielectric

(i.e. capacitive) perturbation to the field. Moreover, the small but




still finite conductance of the "insulating™ rod could in time force the
spherical probe to ground potential under dc conditions, thereby
diminishing the effect of its dielectric isolation. Still other
researchers [5] have used a combination of both techniques in the presence
of field and ions by covering a conducting support rod with a dielectric
outer covering.

The ability to develop a probe capable of measurements in air does not
necessarily guarantee an instrument that will function in plasma. As
Fahleson [15] points out in his review of ionospheric work, electric field
measurement techniques utilizing surface field sensors "work perfectly
well in a uniform atmosphere, but when immersed in a plasma serious
difficulties appear. One of these is that the field mill will be covered
by a plasma sheath that may change the field strength at the surface by
orders of magnitude®. The success of surface field probe techniques in a
plasma environment thus requires that reliable correction factors to field
mil] sensor readings be obtained, based on independently measured
conditions within the plasma and on theoretical calculations. In our
experiments in the lab, for example, the properties of the plasma sheath
field were estimated using simple one-dimensional plasma sheath models,
and compared to probe measurements using the theory of spherical Langmuir
probes.

As will be discussed in Section 6.7, correlation between theory and
experiment was hampered somewhat by a sensor saturation effect, which
occurred with varying severity in different types of plasma. In the work
reported in Section 6.8, this saturation effect was successfully model led
and correlated to actual measurements in plasma. Because the model for
the saturation effect predicts actual sensor behavior with surprising
accuracy, it is hoped that a revised sensor can be developed that will

eliminate the saturation problem.




4. THEORY OF OPERATION:

4.1 Space Charge Free Case (Measurements in Air):

If an isolated conducting sphere is placed in an otherwise uniform
electric field, the resulting field pattern, and in particular the field
incident on the surface of the sphere, can be computed in closed form from
Laplace’s equation. The problem is a classical one, known to every
student of elementary fieid theory. In specific, in the coordinate system

of Fig 1, the field in the neighborhood of the sphere is given by: [6]

Er = Eo cosf [ 2( Rg )3 +1 ] (1)
.
Eg = Eo sind [ (Rg )3 -1] (2)

r

where E, is the uniform ambient field that exists without the sphere
present, Ry is the radius of the sphere, and § is the angle measured
relative to the ambient field direction.

The field incident on the surface of the sphere at radius Rg is
obtained by substituting r=Rg into Eqn (1), to yield:

E(Rs) = 3 E, cosf 3)

Although the volume field loses its uniformity with the sphere
present, the distortion takes place in a precisely known way, so that
knowledge of the field magnitude at any known angle § on the surface of
the sphere leads directly, via Eqn(3), to a knowledge of the ambient field
E, that existed before the sphere was present. If the ambient field is
not everywhere uniform, the solutions (1) and (2) are still valid to
within 5% if the field is almost uniform over a space of about two sphere
radii. Hence the expressions (1) and (2) can be used to represent a field
that is slowly varying in space.

In principal, it is possible to construct a probe from such a sphere

by simply imbedding a surface field sensor at some known angle § to the
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Figure 1 - Field pattern and coordinate geometry system for a conducting
sphere in an otherwise uniform electric field, as given by Eqns (1) and (2).




field direction, and monitoring its output. As a practical matter, if a
spherical prohe is ejected without mechanical supports into a volume field
region, cirirol, or even knowledge, of the angle § is not possible. This
problen can be overcome by sampling the surface field magnitude at three
points, each lying on an end of one or the three orthogonal axes of the
sphere, as shown in Fig 2. If the polar z-axis of the sphere’s coordinate
system is inclined at an arbitrary angle ¢ to the ambient field direction,
and the sphere’s x-axis is rotated at an angle a relative to the plane of
the z-axis and the field direction, the resulting surface field
components, measured at the ends of the three orthogonal X, Y, and Z axes,

are given by:

X-axis: Ex = 3Eo sin ¢ cos a
Y-axis: Ey = 3Eo sin ¢ sin a
l-axis: Ez = 3Eo cos ¢ (4)

The magnitude E, of the ambient field can be determined from these X,
Y, and Z axis surface measurements by taking the square root of the sum of

squares, i.e.:

[Ex2 + Ey2 + Ez2]1/2

3Eo (sinZgcos?a + singsina + cos?p)

3to (5)

Note that the orientation angles ¢ and a do not appear in Egqn (5),
indicating that the field measurement can be obtained regardless of
orientation of the sphere relative to the ambient field direction. The
trade-off involved in the orthogonal axis sampling scheme is the loss of
information about the vector direction of the ambient electric field,

since Eqn (5) yields just its magnitude.
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Figure 2 - Coordinate system used in the derivation of Eqns (4) and (5, .
The angle between the sphere’s polar ("z") axis and the ambient field
direction is ¢, while a is the angle between the x-axis and the projection
onto the x-y plane of the z-E, plane.
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4.2 Theory With Space Charge Present

In a plasma, ions will impact on the spherical probe, causing it to
acquire a net charge which increases until the probe has reached the

floating plasma potential. This charging mechanism has been the subject

of considerable theoretical and experimental investigation, and is
discussed in more detail in Section 8. 1In this section, we discuss the
ability of the spherical field probe to measure the magnitude of the
collected charge.

Charge that does collect on the probe because of the presence of
plasma will distribute itself uniformly around the equipotential surface
of the sphere, so that a uniform radial field component will be

superimposed on the spherical harmonic radial field solution (1). This

extra radial field component will be equal to:
EQ = Q (7)
47e Rg2
and the resulting total field pattern will look something like that of Fig

3, which depicts the sphere with an arbitrary amount of positive collected
charge. Despite the seemingly asymmetric distortion of the electric
field, it is nevertheless composed of the odd-symmetric ambient field
solution (1) and (2), and the radially symmetric collected charge field
solution (7). These two field components can be separately measured on
the probe by sampling the sphere’s radial surface field at six, rather
than three sampling points, each located on one end of the sphere’s
orthogonal coordinate axes. A d/fferential measurement between any two
sensors on a given axis will cancel the EQ component, leaving only the E,
component, while a common mode measurement between two sensors on a given
axis will cancel the E; component, leaving only the EQ component. Thus,
for a given set of surface field measurements Ey, Ex’, Ey, Ey’, Ez, and
Ez’, taken at six orthogonal axes sampling points, the ambient field

magnitude E, and collected charge Q are given by:




surtace field A-E=0

-

Figure 3 - Field pattern for a conducting sphere in an otherwise uniform
electric field when the sphere also has charge collected on its surface, as
given by Eqns (1), (2) and (7). Shown here is an arbitrary amount of
positive collected charge less than Qg,¢.




Eo = _1 [ (Ex-Ex»)2 + (Ey-Ey»)2 + (Ez-Ez»)2 ] 1/2 ()
6

Q=_1 [ (Ex+Ex’) + (Ey+Ey’) + (Ez+Ez?) ] » 4750R52 (9)
6

where the primed quantities indicate the three extra "opposite-end"
surface field measurements, and where Eqns (5) and (7) have been utilized.
Once the collected charge Q is known, it can in principle be combined
with the plasma charging theories outlined in Section 8 to obtain
information about the properties of the ambient plasma in the vicinity of

the sphere.




5. INSTRUMENTATION

The ideas presented in the preceding sections have been incorporated into a
working probe, built inside a six inch diameter spherical aluminum sheli. The
the functional block diagram of the instrument is shown in Fig 4, while a
sketch of its basic layout is shown in Fig 5. The surface field sensors
consist of miniature, individually calibrated tuning fork electric field mills
operating at 800 Hz, with a field sensitivity as low as 100 V/m. Each field
mill at is present interfaced to a 1 Hz bandwidth synchronous detector,
although faster synchronous detection is possible at the expense of reduced
instrument sensitivity. Conversely, enhanced sensitivity is achievable with
smaller bandwidth synchronous detection. The six synchronous detector outputs
are fed to a microprocessor controlled data acquisition system, whose digital
output drives an fm frequency-shift-keyed, amplitude modulated carrier (fsk-am)
1200 baud radio transmitter and antenna. Although the antenna structure shown
in Fig 5 upsets slightly the spherical symmetry of the probe, the perturbation
is minor, and does not affect the field signals seen by each of the six surface
sensors. The receiving section consists of a phase-locked loop receiver,
digital decoder, and host computer, which collects and processes the raw sensor
data and performs the needed calculations (8) and (9) before data is displayed
or recorded.

To be useful, the collected field data must be coordinated with the
position at which the data is taken. If the position vs. time characteristic
of the probe is known, i.e. if the probe is sent on a known ballistic
trajectory through a given sheath region, then the time at which data is
received can be used to determine the position at which it was obtained. Thus
for each data point, the probe transmits a "time-mark" code word st the precise
instant that all six sensors are simultaneously interrogated. Errors caused by
the finite time lapse needed to serially transmit the data from the six sensors
are thus avoided. At the end of each data point sequence, the probe also
transmits a coded "status word", which indicates that al! systems inside the
sphere are functioning normally.

A summary of probe specifications and characteristics is given in Table I.
Details of the various component modules of the probe, including component

layouts and circuit schematics, are included in Appendix B.

10
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Figure 5 - Cutaway view of the spherical probe. Not all sensors -
batteries are shown.
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Table I - Summary of Probe Specification and Characteristics

PHYSICAL :
Sphere Diameter: 6 in. (15.2 cm)
Sphere Weight: 2.5 Ibs (6 kg)
ELECTRICAL:
Power Consumption: *1.7 Watts (probe only)

Battery Requirements: 6 07.0Vmin ("9V battery")
401.2Vmin ("AAA cell®)

SENSORS :
Field Mill Chopper Freq: 800 Hz
Chopper Excursion: 1 mm
Sensing Aperture: 4 mm dia
Field Resolution: 50 V/m
Maximum Scale Reading: 2 kV/m
Sensor Stability: 1 bit per 256 (1%)
Sync. Detector Time Constant: 1 sec
DATA LINK:
FM Transmitter Frequency: 49 MHz
Data Transmission Rate: 1200 baud
Probe Antenna Configuration: tuned open strip wire
13
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6. TESTS RESULTS

8.1 Test Results in Vacuum Without Plasma

Physical and electrical floating probe conditions are difficuit to
simulate in the gravity environment of the lab, because the transit time
of a free falling body is quite short. An approximate test procedure was
used as a means of testing the theory of probe operation in plasma. The
spherical probe was hung by a fine nylon thread between parallel plate
uniform field producing electrodes in a manner that simulated, to the
maximum degree possible, true electrically floating probe conditions. The
thread does distort the field a little, and over time does conduct charge
to the sphere. Nevertheless, the thread-hanging test procedure was used
because it allowed the various field and charge measuring systems and
algorithms to be functionally tested, as will be described shortly. The
field distortion problem was minimized by always situating the thread on a
known equipotential of the field system, i.e. parallel to the plate
electrodes and perpendicular to the sphere’s equator, and by attaching the
thread to the sphere at a point far removed from the surface sensors. The
charging of the sphere by the finite conductivity of the thread, which is
caused by surface moisture collected on the thread, is not easy to
eliminate in air--however in vacuum the thread surface conductivity
becomes very small. In addition, because the thread is so thin, the
effects of plasma interaction are minimal.

As a side note, when tests were performed in air, the charging time
constant of the thread-probe system could actually be monitored from the
increase of the EQ component over time. Since, in principle, the probe
capacitance can be estimated, the resistance of the thread can also be
found.

Fig 6 shows the sphere’s E, output in V/m as a function of both
positive and negative actual ambient fields, with the sphere held at a
constant orientation angle to the field. As expected, the relationship is
a linear one. Note that positive and negative applied fields both yield

positive sphere output, because the probe measures just the magnitude of

14
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Figure 6 - Measured ambient field versus applied ambient field, with the
sphere held at constant angle relative to the ambient field direction.
Since the probe provides a measure of field magnitude only, the output is
positive for both polarities of applied ambient field.
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the ambient field. Figure 7 shows the ambient field component E, measured
with the sphere’s polar axis oriented at various angles to the ambient
field direction for a constant ambient field magnitude of 800 V/m. Again,
as predicted by Eqn (5), the measurement is independent of angle.

The ability of the probe to measure its own collected charge was
tested using the experimental configuration of Fig 8, in which the probe
was grounded by a fine thread, again situated as much as possible along an
equipotential of the electrode system. The parallel plates, located at
distances dj and dy from the sphere center, were energized to different
voltages Vi and Vo relative to ground. An analysis of this electrode
system [5,6] shows that if the field distortion caused by the wire is
neglected, the potential and field solutions at the surface of the sphere

are given, for the case dy=do=d, by:

$=0 (10)
and
Er = 3 E; cosf + (Vi+V2) 1 (11)
— 1;;
where
Eo = V1-V2 (12)
2d

The second field component in (11) is a byproduct of the "floating"
potential that would exist between the plates at the sphere’s center in
the absence of the sphere. Note that this field component is independent
of angle around the sphere. It can thus be used to simulate the
collection by the sphere of a net charge Q. The values of the simulated
charge Q and field EQ are given, in terms of the imbalance between the

voltages V; and Vy, by:

17




4, R I

Figure 8 - Configuration and resulting field pattern used to sitmulate the
sphere with a known amount of collected charge. Surface field component s
given by Eqns (11) ang (12)




Q = 47e,Rg = (V1+V2)
2 (13)

EQ = Q = Vi+Vg o 1_
47e R 2 2 R (14)

Note that Q in fact does represent the net charge induced on the
sphere in the configuration of Fig 8. The value of Eq, the radial surface
field associated with this "simulated® Q, is given by the second term in
Eqn (11).

A plot of the measured Eq component as a function of the simulated EQ
component, calculated from Eqn (14) for various voltages Vy and Vp, is
shown in Fig 9, together with the simultaneously measured E, component
given by Eqn (12). The plot shows that the probe is indeed capable of
measuring its own collected charge while simultaneously measuring the

value of the local ambient field.

19
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6.2 Plasma Modelling and Measurements Without Probe

The characteristics of the plasma without the probe present were
investigated as a means of evaluating subsequent probe measurements. The
first step in the development of a model for the plasma is an
understanding of the dominant plasma properties in the test chamber. In
our case, the key processes are steady state, and involve low density,
partially ionized Argon gas. In order that the behavior of the probe be
evaluated, key scalar parameters such as density and temperature are
required for use in numerical simulations of the plasma sheath field. To
measure these parameters, conventional Langmuir probe tests were
performed, with the chosen plasma chamber that of parallel plate geometry,
so that the plasma sheath problem could be reduced to the one dimensional
case. As will be shown, the critical factors for the sheath simulation
are the proper choice of the ion and electron distributions as a function
of applied plate voltage.

The fundamental property of a plasma is its ability to shield out
electric potentials applied to it. If a given potential ¢ is applied to
an electrode in a plasma, charge of the opposite sign will collect around
the electrode. Thermal motions of the charged particles will cause the
charge cloud surrounding the electrode to be of a finite thickness on the
order of the Debye length. The standard derivation of the Debye length
commonly uses a zero ion temperature limit approximation that is valid for
a low density plasma. This approximation assumes the ion-electron mass
ratio to be so large that the inertia of the ions keeps them in relatively
fixed positions relative to the moving electrons. This mass ratio

information can be related to temperature by examining the case where

there is complete momentum transfer for electron-ion collisions, i.e.:
mve = Mv;
or
Vi = Mg ve
M;
21




In these equations, mg and vg are the electron mass and velocity, and M;
and v; are the ion mass and velocity.

The ion temperature is given by:

Thus, for the condition M;/mg > 1, it will be true that T >> T;. Using
this approximation, the ion density n; can be set equal to the plasma
density at infinity, i.e. to n,.

A second simplifying assumption often used in low-density plasma
calculations assumes the electron density distribution to be Maxwellian,

with electron density given by:

$/Vy,

Ng = Ng €

In this equation, the thermal voltage V¢ is equal to kTg/q. Note that for
the electron distribution is to be Maxwellian, the plasma must be
isotropic. The assumptions described above can be combined with the one-

dimensional form of Poisson’s equation to yield:

¢/v
4% = -q (nj - ne) = ano [e Y

dx?2 €o €o (1)

Linearizing Eqn (1) by a Taylor series taken about the point ¢ = O results

in:
fff = qnof
dx2 € th
or
+x/\
$(x) = ¢o © (2)

where A\ = [€,Vi/an,] is the Debye length.
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The potential ¢ falls off exponentially with the Debye length, and a
sheath region forms around the electrode. In the case where the electrode
is floating, so that no current flows to or from it, the electrode will
become negatively charged with respect to the plasma, forming an electron
sheath around it. This phenomenon occurs because the thermal velocity of
the electrons is much greater than that of the ions, hence the potential
drop of the sheath adjusts itself so that the total particle flux to the
electrode is zero. A practical technigue for electric field measurement
must provide some method for ®"zeroing-out® this potential which forms in
the absence of externally applied fields.

If the zero ion temperature approximation is used, the diffusion term
of the ion current equation can be neglected. This simplification leaves
only the drift term in the ion current equation. When a floating
electrode attains a negative potential, however, the sheath region extends
from the electrode only on the order of the Debye length; hence some other
mechanism must exist by which the ions are drawn to the sheath, where they
are subsequently accelerated toward the negative electrode. This
mechanism can be modeled by assuming a pre-sheath region in which the
fields are smal! compared to the main sheath, but of sufficient spatial
extent to accelerate the ions to some drift velocity v; at the edge of the
sheath region. Within the sheath region, conservation of energy requires
that the condition:

mv(x)2 = mvo2 - qp(x)
2 2 (3)

be met for a given particle species, where v, is the velocity at the
electrode surface. If the electron distribution is Maxwellian, the

distribution functions for the ion and electron species are, respectively:

filv(x)] = n,b [v(x)2 + 294 (x) ]1/2 - Ve
M; (4)

i.e., every ion has a constant velocity v,, and
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felv(x)] = ny kTg exp [ -mg  [v(x)2 + 2g¢(x)/me] ]
2mg 2kTq (5)

In Eqn (4), 6 represents the Dirac delta function. These expressions can

be integrated over velocity to yield expressions for the particle

densities as a function of potential:

¢/Vy
Ne = Ng @ (6)
and
ni =no [1- 2qf
[ Mivo2 )

If these density functions are to be applied to Poisson’s equation, the
ion velocity v; at the sheath edge must satisfy the following inequality:

vo > [ kTg }1/2 (8)
M;

i.e., the ions must stream into the sheath with an energy greater than
kTe/2, and the sheath edge must have a potential of -kTe/2q. This
inequality is called the Bohm sheath criterion. Note that the Bohm
criterion is dependent on the electron temperature only, and not on the
ion temperature. This fact is important in the determination of plasma

parameters.
6.3 Langmuir Probe Tests of the Plasma

The Langmuir probe method provides reasonably accurate values of the
plasma parameters provided thai the plasma meets certain conditions. A

Langmuir probe is an electrode that is ptaced in the plasma and biased to
various potentials with respect to the plasma. The resulting I-V plot
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provides information about the plasma parameters. The following

assumptions must be made if Langmuir probe theory is to be valid:

1) The plasma is isotropic.

2) Mean free paths are much greater than the Debye length, i.e. the
plasma is essentially collisionless, so that "free fall" conditions
prevail .

3) The zero ion temperature approximation is valid, i.e. Tg >> T;.

4) The electron distribution is Maxwellian.

If these assumptions are valid, the plasma can be completely specified by
just two scalar parameters, the electron temperature Tq and the plasma
density ng.

An ideal Langmuir probe I-V curve, taken from Ref [25], is depicted
in Fig 10. The voltage Vg represents the potential of the ambient plasma.
When the probe is forced to this potential, the field between the probe
and plasma becomes zero. Because T, »> T;, however, the electrons migrate
faster to the probe, causing a positive net flux of electrons to the probe
surface (i.e., a net negative current into the probe). Note that the
abscissa in Fig 10 represents Jgq, the current flux of electrons into the
probe. If the probe potential is increased above Vg (region A in Fig 10),
more electrons are attracted to it, and a sheath region develops around
the probe. Since the flow of electrons into the sheath is governed by
their thermal migration to the outer sheath edge, the resulting electron
current levels off at a relatively constant value.

If the probe potential is forced below Vg (region B in Fig 10), fewer
electrons reach the probe, and the magnitude of the probe current
decreases. If the electron distribution is Maxwellian and free-fall
conditions predominate, the curve in this region will be exponential. At
the floating potential V¢, i.e. the point where the probe current is zero,
the electron current becomes equal to the ion current.

Well below V¢ (region C in Fig 10), almost all the electrons are
repelled from the probe, and an ion sheath develops around it. Since the
flow of ions into the sheath is governed by their thermal migration to the

outer sheath edge, the resulting ion current levels off at a relatively
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constant value. Given that To >> T;, the magnitude of this ion saturation
current will be much smaller and more nearly constant than the analogous

electron saturation current.
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Figure 10 - Typical Langmuir Probe Curve

The traditional Langmuir probe methods described above were applied to
the measured I-V characteristics of a spherical probe placed in a plasma
produced in the "Jumbo" vacuum chamber at AFGL. The plasma was produced
by seeding the vacuum chamber with low pressure (about 200 mTorr)
background argon gas and injecting a weak (200V) electron beam toward a
passive, grounded target plate. Gaseous diffusion was assumed to produce
a relatively uniform plasma throughout the vacuum chamber.

The first step in the examination of the plasma parameters is the
determination of the electron temperature. As noted above, the measured
i-v curve is exponential in this region since the electron distribution is

Maxwellian; hence the probe current is given by:

vp/vt
I=1I,e (9)
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where Vp is the voltage of the probe with respect to the plasma. Taking
the natural log of Eqn (9) yields:

In (I) = In (Io) + Vp (10)
Vg

By measuring the logarithmic slope of the measured I-V characteristic in
region B, the factor 1/Vy, i.e. the inverse of the thermal voltage, can be
obtained. From the Langmuir probe data obtained in our experiment,l the
value Tg = 9.5 eV was found from a least squares fit of In(I) versus Vp
(see Figs 11 and 12). The correlation coefficient for the logarithmic
plot was 0.998, indicating that the measured curve in region B is truly
exponential; likewise, the assumptions implicit in Eqns (1), (2) and (4)
are verified.

Once the electron temperature is known, the plasma density n, can be
determined from the ion saturation current in region C. This ion
saturation current can be estimated theoretically by making use of the
Bohm sheath criterion derived previously [22] . Assuming that the ions
have some non-zero drift velocity obtained in the pre-sheath electric
field, and assuming that the electron current can be neglected for
Vp > 3kTg/q, it follows that:

vi = [ kTq 1/2
[ 5]

If the probe area is equal to A, then:

I=JA=angv; A=aqngA [kT, ]1/2 (11)
M;

where J and ng are the current density and particle density at the surface

of the probe. Note that ng also represents the ion density at the outer

1[pg 120, #17 of the data notebook]
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edge of the sheath region. In the derivation of the Bohm sheath
criterion, the sheath edge is defined as that point at which the potential
with respect to the neutral plasma is equal to -KTg/2q. Assuming a

Maxwel l-Boltzmann distribution, it therefore follows that:

Substituting this expression into Eqn (11) results in:

Ig = 0.61 gqngA [ kT, 1/2

M; (12)
where Ig, called the Bohm current, specifies the ion saturation current
flowing to the probe. Solving Eqn (12) for n,, given the data shown in
Fig 11, results in:

no=1.64 1 [ M; ]1/2 = 4.56 x 109 /n3 (13)
qA | kT,

In region C of the measured Langmuir plots of Fig 11, the current is
approximately constant, indicating that Eqn (3) represents a valid
assumption. Note that in region A of the plots, the current is roughly a
linear function of voltage, rather than a near constant current. This

effect is predicted by Langmuir probe theory for spherical probes (23],
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8.4 Electric Field Simulation Without Plasma

The plasma chamber geometry depicted in Fig 13 resembles an ideal
parallel plate configuration. In the ideal case, the uniform field
conditions and symmetry allow the plasma problem to be reduced to a one
dimensional problem that is easily solved using numerical methods. As
mentioned in a previous section, the field at the surface of the probe
under ideal conditions can be modelled by the solution to Laplace’s

equation for a perfectly conducting sphere in a uniform field, i.e.:
Esurface = Er = 