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1. SUMMARY:

A completely self contained, electrically floating, spherical electric

field probe has been developed for measuring dc electric field magnitudes

in volume regions where the spatial field variation occurs on a length

scale larger than the sphere diameter. In plasma sheath, the sphere

floats to the local plasma potential, and thus minimizes perturbation of

the field existing in its absence. The field is inferred by solution of

the Laplacian spherical harmonic field equations, and thus provides a

means to unambiguously measure volume fields. The sphere is also capable

of monitoring the amount of charge collected on its own surface--a

quantity that can in principle be used to infer the properties of the

ambient plasma sheath using the theory of spherical Langmuir probes.

The 15 cm diameter aluminum sphere contains six miniature 800 Hz field

mill sensors, a synchronous detection data acquisition system and A/D

converter, a digital fm transmitter operating at 50 MHz, and batteries.

It sends data at 1200 BAUD to a nearby receiver and computer for real time

interpretation and processing. The probe is capable of measuring fields

as low as 50 V/m, with a time constant of about 1 second, and operates for

several hours on one set of batteries.

In its present configuration, the probe works well in air and vacuum,

but has been only partially successful in plasma.
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2. PREFACE:

The purpose of the work performed under this AFGL contract was to

develop a laboratory prototype of a spherical electric field probe that

ultimately could be ejected from or tethered to a space vehicle, and used

to measure the dc electric field inside the surrounding plasma sheath.

The basic concept of a surface field sensor incorporating a vibrating reed

element was previously investigated under Grant ECS-81-06475 from the

National Science Foundation. Under this AFGL contract, the sensor on the

sphere were modified for use in plasma and upgraded to detect the low

electric field magnitudes typical of the space environment.

The results of this investigation have been encouraging, in that a

working prototype capable of measuring electric fields in air and vacuum

has been developed and tested. In addition, some measurements were

obtained in plasma, but not with complete success. At the present time,

the difficulty appears to be a problem in the design of the surface field

sensors which are contained within the spherical probe. When exposed to

plasma, these sensors exhibit a significant dc drift as plasma ions flow

into the apertures on the sphere surface. This problems appears to be a

solvable one, however, and ultimately should not prevent the spherical

probe from being a useful measuring tool.
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3. INTRODUCTION:

The interaction of both high and low altitude orbiting spacecraft with

ambient plasma, and the resulting phenomena of spacecraft charging, are

problems that have been well studied and investigated [12,13).

Considerable interest has focused on the structure and extent of the

plasma sheath that surrounds the space shuttle and other orbiting craft,

particularly in the wake region (14]. As an aid in the study of this

phenomena, it would be useful to obtain measurements of both the electric

field strength and the plasma parameters in the sheath region, and to do

so without disturbing the character of the plasma itself.

Obtaining electric field measurements in volume regions has always

been an elusive task, and one subject to much compromise and lack of

accuracy. The problem arises because to date all instruments designed to

measure volume fields have had to rely on a supporting arm or cable to

both enter the volume region and to provide a transmission medium to bring

the data signal from probe to recording instrument. The problem is

particularly difficult in a plasma, because the presence of space charge

further adds to the distortion of the electric field as ions collect on or

flow to the supporting structure.

Investigators who have attempted volume field measurements in air have

chosen probes with near spherical symmetry, because a sphere distorts an

otherwise uniform field in a precisely known way. One experiment (1] used

a small split sphere to monitor ac fields via the induced current between

hemispheres. The conducting support rod, which also carried the signal

wires, had to be located on an equipotential of the field system, so as

not to greatly perturb the field from the known spherically distorted

case. In another experiment [2], a rotating field mill sensor was

embedded inside a conducting electrode held atop an insulating rod,

together with a self contained, battery operated data acquisition system

which sent its signal to ground over a nonconducting fiber optic cable.

Other experimenters (3,4] have also utilized the fiber optic cable

isolation principle. In this case, the presence of the support rod and

fiber optic cable, though both insulating, still introduced a dielectric

(i.e. capacitive) perturbation to the field. Moreover, the small but
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still finite conductance of the "insulating' rod could in time force the

spherical probe to ground potential under dc conditions, thereby

diminishing the effect of its dielectric isolation. Still other

researchers (5] have used a combination of both techniques in the presence

of field and ions by covering a conducting support rod with a dielectric

outer covering.

The ability to develop a probe capable of measurements in air does not

necessarily guarantee an instrument that will function in plasma. As

Fahleson [15] points out in his review of ionospheric work, electric field

measurement techniques utilizing surface field sensors 8work perfectly

well in a uniform atmosphere, but when immersed in a plasma serious

difficulties appear. One of these is that the field mill will be covered

by a plasma sheath that may change the field strength at the surface by

orders of magnitude". The success of surface field probe techniques in a

plasma environment thus requires that reliable correction factors to field

mill sensor readings be obtained, based on independently measured

conditions within the plasma and on theoretical calculations. In our

experiments in the lab, for example, the properties of the plasma sheath

field were estimated using simple one-dimensional plasma sheath models,

and compared to probe measurements using the theory of spherical Langmuir

probes.

As will be discussed in Section 6.7, correlation between theory and

experiment was hampered somewhat by a sensor saturation effect, which

occurred with varying severity in different types of plasma. In the work

reported in Section 6.8, this saturation effect was successfully modelled

and correlated to actual measurements in plasma. Because the model for

the saturation effect predicts actual sensor behavior with surprising

accuracy, it is hoped that a revised sensor can be developed that will

eliminate the saturation problem.
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4. THEORY OF OPERATION:

4.1 Space Charge Free Case (Measurements in Air):

If an isolated conducting sphere is placed in an otherwise uniform

electric field, the resulting field pattern, and in particular the field

incident on the surface of the sphere, can be computed in closed form from

Laplace's equation. The problem is a classical one, known to every

student of elementary field theory. In specific, in the coordinate system

of Fig 1, the field in the neighborhood of the sphere is given by: [6]

Er = Eo cos [2( Rs ) 3 +1 (1)

r

E0 = Eo sinG [ ( Rs )3 -1 ] (2)

r

where E0 is the uniform ambient field that exists without the sphere

present, Rs is the radius of the sphere, and 0 is the angle measured

relative to the ambient field direction.

The field incident on the surface of the sphere at radius Rs is

obtained by substituting r=R s into Eqn (1), to yield:

E(Rs) = 3 Eo cosO (3)

Although the volume field loses its uniformity with the sphere

present, the distortion takes place in a precisely known way, so that

knowledge of the field magnitude at any known angle 0 on the surface of

the sphere leads directly, via Eqn(3), to a knowledge of the ambient field

Eo that existed before the sphere was present. If the ambient field is

not everywhere uniform, the solutions (1) and (2) are still valid to

within 5% if the field is almost uniform over a space of about two sphere

radii. Hence the expressions (1) and (2) can be used to represent a field

that is slowly varying in space.

In principal, it is possible to construct a probe from such a sphere

by simply imbedding a surface field sensor at some known angle 0 to the

3
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Figure 1 - Field pattern and coordinate geometry system for a conducting
sphere in an otherwise uniform electric field, as given by Eqns (1) and (2).
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field direction, and monitoring its output. As a practical matter, if a

spherical proke is ejected without mechanical supports into a volume field

region, c.rKrol, or even knowledge, of the angle 0 is not possible. This

problen, can be overcome by sampling the surface field magnitude at three

points, each lying on an end of one of the three orthogonal axes of the

sphere, as shown in Fig 2. If the polar z-axis of the sphere's coordinate

system is inclined at an arbitrary angle 0 to the ambient field direction,

and the sphere's x-axis is rotated at an angle a relative to the plane of

the z-axis and the field direction, the resulting surface field

components, measured at the ends of the three orthogonal X, Y, and Z axes,

are given by:

X-axis: EX = 3Eo sin 0 cos a

Y-axis: Ey = 3Eo sin 0 sin a

Z-axis: EZ = 3Eo cos 0 (4)

The magnitude E. of the ambient field can be determined from these X,

Y, and Z axis surface measurements by taking the square root of the sum of

squares, i.e.:

[EX2 + Ey2 + EZ21/2 = 3Eo (sin 2 ocos2a + sin 2 osin 2a + cos 2o)

= 3Eo (5)

Note that the orientation angles 0 and a do not appear in Eqn (5),

indicating that the field measurement can be obtained regardless of

orientation of the sphere relative to the ambient field direction. The

trade-off involved in the orthogonal axis sampling scheme is the loss of

information about the vector direction of the ambient electric field,

since Eqn (5) yields just its magnitude.
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Figure 2 -Coordinate system used in the derivation of Eqns (4) and (5,.
The angle between the sphere's polar ("z") axis and the ambient field
direction is 0, while a is the angle between the x-axis and the projection
onto the x-y plane of the z-E0 plane.



4.2 Theory With Space Charge Present

In a plasma, ions will impact on the spherical probe, causing it to

acquire a net charge which increases until the probe has reached the

floating plasma potential. This charging mechanism has been the subject

of considerable theoretical and experimental investigation, and is

discussed in more detail in Section 8. In this section, we discuss the

ability of the spherical field probe to measure the magnitude of the

collected charge.

Charge that does collect on the probe because of the presence of

plasma will distribute itself uniformly around the equipotential surface

of the sphere, so that a uniform radial field component will be

superimposed on the spherical harmonic radial field solution (1). This

extra radial field component will be equal to:

Eq = Q (7)

and the resulting total field pattern will look something like that of Fig

3, which depicts the sphere with an arbitrary amount of positive collected

charge. Despite the seemingly asymmetric distortion of the electric

field, it is nevertheless composed of the odd-symmetric ambient field

solution (1) and (2), and the radially symmetric collected charge field

solution (7). These two field components can be separately measured on

the probe by sampling the sphere's'radial surface field at six, rather

than three sampling points, each located on one end of the sphere's

orthogonal coordinate axes. A differential measurement between any two

sensors on a given axis will cancel the Eq component, leaving only the Eo

component, while a common mode measurement between two sensors on a given

axis will cancel the Eo component, leaving only the Eq component. Thus,

for a given set of surface field measurements EX, EX', Ey, Ey', EZ, and

EZ', taken at six orthogonal axes sampling points, the ambient field

magnitude Eo and collected charge Q are given by:

7
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Figure 3 - Field pattern for a conducting sphere in an otherwise uniform
electric field when the sphere also has charge collected on its surface, as
given by Eqns (1), (2) and (7). Shown here is an arbitrary amount of
positive collected charge less than Qsat.
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Eo = (Ex-Ex,) 2 + (Ey-Ey,) 2 + (EZ-EZ,) 2 ] 1/2 (8)

6

_ 1 ( (EX+EX,) + (Ey+Ey,) + (Ez+Ez,) 4 R 2  (9)

6

where the primed quantities indicate the three extra "opposite-end"

surface field measurements, and where Eqns (5) and (7) have been utilized.

Once the collected charge Q is known, it can in principle be combined

with the plasma charging theories outlined in Section 8 to obtain

information about the properties of the ambient plasma in the vicinity of

the sphere.

9



5. INSTRUMENTATION

The ideas presented in the preceding sections have been incorporated into a

working probe, built inside a six inch diameter spherical aluminum shell. The

the functional block diagram of the instrument is shown in Fig 4, while a

sketch of its basic layout is shown in Fig 5. The surface field sensors

consist of miniature, individually calibrated tuning fork electric field mills

operating at 800 Hz, with a field sensitivity as low as 100 V/m. Each field

mill at is present interfaced to a 1 Hz bandwidth synchronous detector,

although faster synchronous detection is possible at the expense of reduced

instrument sensitivity. Conversely, enhanced sensitivity is achievable with

smaller bandwidth synchronous detection. The six synchronous detector outputs

are fed to a microprocessor controlled data acquisition system, whose digital

output drives an fm frequency-shift-keyed, amplitude modulated carrier (fsk-am)

1200 baud radio transmitter and antenna. Although the antenna structure shown

in Fig 5 upsets slightly the spherical symmetry of the probe, the perturbation

is minor, and does not affect the field signals seen by each of the six surface

sensors. The receiving section consists of a phase-locked loop receiver,

digital decoder, and host computer, which collects and processes the raw sensor

data and performs the needed calculations (8) and (9) before data is displayed

or recorded.

To be useful, the collected field data must be coordinated with the

position at which the data is taken. If the position vs. time characteristic

of the probe is known, i.e. if the probe is sent on a known ballistic

trajectory through a given sheath region, then the time at which data is

received can be used to determine the position at which it was obtained. Thus

for each data point, the probe transmits a "time-mark" code word at the precise

instant that all six sensors are simultaneously interrogated. Errors caused by

the finite time lapse needed to serially transmit the data from the six sensors

are thus avoided. At the end of each data point sequence, the probe also

transmits a coded "status word", which indicates that all systems inside the

sphere are functioning normally.

A summary of probe specifications and characteristics is given in Table I.

Details of the various component modules of the probe, including component

layouts and circuit schematics, are included in Appendix B.

10
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batteries are shown.
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Table I - Summary of Probe Specification and Characteristics

PHYSICAL:

Sphere Diameter: 6 in. (15.2 cm)
Sphere Weight: 2.5 lbs (6 kg)

ELECTRICAL:

Power Consumption: =1.7 Watts (probe only)

Battery Requirements: 6 0 7.0 V min (99V battery")

4 0 1.2 V min ("AAA cell")

SENSORS:

Field Mill Chopper Freq: 800 Hz

Chopper Excursion: 1 mm

Sensing Aperture: 4 mm dia
Field Resolution: 50 V/m

Maximum Scale Reading: 2 kV/m

Sensor Stability: 1 bit per 256 (1%)
Sync. Detector Time Constant: 1 sec

DATA LINK:

FM Transmitter Frequency: 49 MHz

Data Transmission Rate: 1200 baud
Probe Antenna Configuration: tuned open strip wire

13



6. TESTS RESULTS

6.1 Test Results in Vacuum Without Plasma

Physical and electrical floating probe conditions are difficult to

simulate in the gravity environment of the lab, because the transit time

of a free falling body is quite short. An approximate test procedure was

used as a means of testing the theory of probe operation in plasma. The

spherical probe was hung by a fine nylon thread between parallel plate

uniform field producing electrodes in a manner that simulated, to the

maximum degree possible, true electrically floating probe conditions. The

thread does distort the field a little, and over time does conduct charge

to the sphere. Nevertheless, the thread-hanging test procedure was used

because it allowed the various field and charge measuring systems and

algorithms to be functionally tested, as will be described shortly. The

field distortion problem was minimized by always situating the thread on a

known equipotential of the field system, i.e. parallel to the plate

electrodes and perpendicular to the sphere's equator, and by attaching the

thread to the sphere at a point far removed from the surface sensors. The

charging of the sphere by the finite conductivity of the thread, which is

caused by surface moisture collected on the thread, is not easy to

eliminate in air--however in vacuum the thread surface conductivity

becomes very small. In addition, because the thread is so thin, the

effects of plasma interaction are minimal.

As a side note, when tests were performed in air, the charging time

constant of the thread-probe system could actually be monitored from the

increase of the ER component over time. Since, in principle, the probe

capacitance can be estimated, the resistance of the thread can also be

found.

Fig 6 shows the sphere's Eo output in V/m as a function of both

positive and negative actual ambient fields, with the sphere held at a

constant orientation angle to the field. As expected, the relationship is

a linear one. Note that positive and negative applied fields both yield

positive sphere output, because tha probe measures just the magnitude of

14
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Figure 6 - Measured ambient field versus applied ambient field, with the

sphere held at constant angle relative to the ambient field direction.

Since the probe provides a measure of field magnitude only, the output is

positive for both polarities of applied ambient field.
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Figure 7 - Output of the probe at constant ambient field of 800 V/m, with
the sphere held at different angles relative to the ambient field direction.
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the ambient field. Figure 7 shows the ambient field component Eo measured

with the sphere's polar axis oriented at various angles to the ambient

field direction for a constant ambient field magnitude of 800 V/m. Again,

as predicted by Eqn (5), the measurement is independent of angle.

The ability of the probe to measure its own collected charge was

tested using the experimental configuration of Fig 8, in which the probe

was grounded by a fine thread, again situated as much as possible along an

equipotential of the electrode system. The parallel plates, located at

distances d, and d2 from the sphere center, were energized to different

voltages V1 and V2 relative to ground. An analysis of this electrode

system (5,6] shows that if the field distortion caused by the wire is

neglected, the potential and field solutions at the surface of the sphere

are given, for the case dl=d2=d, by:

= 0 (10)

and

Er = 3 Eo cos9 + (VI+V2) 1 (11)

2 Rs

where

Eo = V1-V2  (12)

2d

The second field component in (11) is a byproduct of the "floating"

potential that would exist between the plates at the sphere's center in

the absence of the sphere. Note that this field component is independent

of angle around the sphere. It can thus be used to simulate the

collection by the sphere of a net charge Q. The values of the simulated

charge Q and field ER are given, in terms of the imbalance between the

voltages V1 and V2 , by:

17
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Figure 8 -Configuration and resulting field pattern used to Siffulate the
sphere with a known amlount of collected charge. Surface fiedcmoetigiven by Eqns (11) and (12) 
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= 4roRs • (V1+V2)

2 (13)

Eq = :Vl+V2 • 1

4 2 2 IRS (14)

Note that Q in fact does represent the net charge induced on the

sphere in the configuration of Fig 8. The value of EQ, the radial surface

field associated with this "simulated" Q, is given by the second term in

Eqn (11).

A plot of the measured EQ component as a function of the simulated Eq

component, calculated from Eqn (14) for various voltages V1 and V2 , is

shown in Fig 9, together with the simultaneously measured Eo component

given by Eqn (12). The plot shows that the probe is indeed capable of

measuring its own collected charge while simultaneously measuring the

value of the local ambient field.

19
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6.2 Plasma Modelling and Measurements Without Probe

The characteristics of the plasma without the probe present were

investigated as a means of tvaluating subsequent probe measurements. The

first step in the development of a model for the plasma is an

understanding of the dominant plasma properties in the test chamber. In

our case, the key processes are steady state, and involve low density,

partially ionized Argon gas. In order that the behavior of the probe be

evaluated, key scalar parameters such as density and temperature are

required for use in numerical simulations of the plasma sheath field. To

measure these parameters, conventional Langmuir probe tests were

performed, with the chosen plasma chamber that of parallel plate geometry,

so that the plasma sheath problem could be reduced to the one dimensional

case. As will be shown, the critical factors for the sheath simulation

are the proper choice of the ion and electron distributions as a function

of applied plate voltage.

The fundamental property of a plasma is its ability to shield out

electric potentials applied to it. If a given potential 0 is applied to

an electrode in a plasma, charge of the opposite sign will collect around

the electrode. Thermal motions of the charged particles will cause the

charge cloud surrounding the electrode to be of a finite thickness on the

order of the Debye length. The standard derivation of the Debye length

commonly uses a zero ion temperature limit approximation that is valid for

a low density plasma. This approximation assumes the ion-electron mass

ratio to be so large that the inertia of the ions keeps them in relatively

fixed positions relative to the moving electrons. This mass ratio

information can be related to temperature by examining the case where

there is complete momentum transfer for electron-ion collisions, i.e.:

mve = Mvi

or

vi= me Ve

Mi

21



In these equations, me and ve are the electron mass and velocity, and Mi

and vi are the ion mass and velocity.

The ion temperature is given by:

Ti = Mivi
2 = me Te

3k Mi

Thus, for the condition Mi/me ) 1, it will be true that Te >> Ti. Using

this approximation, the ion density ni can be set equal to the plasma

density at infinity, i.e. to no.

A second simplifying assumption often used in low-density plasma

calculations assumes the electron density distribution to be Maxwellian,

with electron density given by:

O/vt
ne = no e

In this equation, the thermal voltage Vt is equal to kTe/q. Note that for

the electron distribution is to be Maxwellian, the plasma must be

isotropic. The assumptions described above can be combined with the one-

dimensional form of Poisson's equation to yield:

#/vt
d2# = -q (n i - ne) = qno [e - 1)

dx2  Eo (1)

Linearizing Eqn (1) by a Taylor series taken about the point # = 0 results

in:

d2o = qnoO

dx2  EoVt

or

O(x) = 00 e (2)

where X = [EoVt/qno] is the Debye length.

22



The potential 0 falls off exponentially with the Debye length, and a

sheath region forms around the electrode. In the case where the electrode

is floating, so that no current flows to or from it, the electrode will

become negatively charged with respect to the plasma, forming an electron

sheath around it. This phenomenon occurs because the thermal velocity of

the electrons is much greater than that of the ions, hence the potential

drop of the sheath adjusts itself so that the total particle flux to the

electrode is zero. A practical technique for electric field measurement

must provide some method for "zeroing-out" this potential which forms in

the absence of externally applied fields.

If the zero ion temperature approximation is used, the diffusion term

of the ion current equation can be neglected. This simplification leaves

only the drift term in the ion current equation. When a floating

electrode attains a negative potential, however, the sheath region extends

from the electrode only on the order of the Debye length; hence some other

mechanism must exist by which the ions are drawn to the sheath, where they

are subsequently accelerated toward the negative electrode. This

mechanism can be modeled by assuming a pre-sheath region in which the

fields are small compared to the main sheath, but of sufficient spatial

extent to accelerate the ions to some drift velocity vi at the edge of the

sheath region. Within the sheath region, conservation of energy requires

that the condition:

mv(x)2 = mv02 - qo(x)

2 2 (3)

be met for a given particle species, where vo is the velocity at the

electrode surface. If the electron distribution is Maxwellian, the

distribution functions for the ion and electron species are, respectively:

(v(x)] = n06 [[(x)2 + -q~x (4)

[Mr I- (4)

i.e., every ion has a constant velocity vo, and
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fe[v(x)] = no kTe exp [-me[ v(x) 2 + 2q#(x)/me] 1
2m, [2kTe (5)

In Eqn (4), 6 represents the Dirac delta function. These expressions can
be integrated over velocity to yield expressions for the particle

densities as a function of potential:

O/Vt
ne = no e (6)

and

MinVo 2  (7)

If these density functions are to be applied to Poisson's equation, the
ion velocity vi at the sheath edge must satisfy the following inequality:

Vo > [ kTe 1/2  (8)

i.e., the ions must stream into the sheath with an energy greater than

kTe/2, and the sheath edge must have a potential of -kTe/2q. This

inequality is called the Bohm sheath criterion. Note that the Bohm

criterion is dependent on the electron temperature only, and not on the

ion temperature. This fact is important in the determination of plasma

parameters.

6.3 Langmuir Probe Tests of the Plasma

The Langmuir probe method provides reasonably accurate values of the

plasma parameters provided thaL the plasma meets certain conditions. A

Langmuir probe is an electrode that is placed in the plasma and biased to

various potentials with respect to the plasma. The resulting I-V plot
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provides information about the plasma parameters. The following

assumptions must be made if Langmuir probe theory is to be valid:

1) The plasma is isotropic.

2) Mean free paths are much greater than the Debye length, i.e. the

plasma is essentially collisionless, so that "free fall' conditions

prevail.

3) The zero ion temperature approximation is valid, i.e. Te >> Ti.

4) The electron distribution is Maxwellian.

If these assumptions are valid, the plasma can be completely specified by

just two scalar parameters, the electron temperature T. and the plasma

density no.

An ideal Langmuir probe I-V curve, taken from Ref (25], is depicted

in Fig 10. The voltage Vs represents the potential of the ambient plasma.

When the probe is forced to this potential, the field between the probe

and plasma becomes zero. Because Te >> Ti, however, the electrons migrate

faster to the probe, causing a positive net flux of electrons to the probe

surface (i.e., a net negative current into the probe). Note that the

abscissa in Fig 10 represents Je, the current flux of electrons into the

probe. If the probe potential is increased above V. (region A in Fig 10),

more electrons are attracted to it, and a sheath region develops around

the probe. Since the flow of electrons into the sheath is governed by

their thermal migration to the outer sheath edge, the resulting electron

current levels off at a relatively constant value.

If the probe potential is forced below Vs (region B in Fig 10), fewer

electrons reach the probe, and the magnitude of the probe current

decreases. If the electron distribution is Maxwellian and free-fall

conditions predominate, the curve in this region will be exponential. At

the floating potential Vf, i.e. the point where the probe current is zero,

the electron current becomes equal to the ion current.

Well below Vf (region C in Fig 10), almost all the electrons are

repelled from the probe, and an ion sheath develops around it. Since the

flow of ions into the sheath is governed by their thermal migration to the

outer sheath edge, the resulting ion current levels off at a relatively
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constant value. Given that Te >> Ti, the magnitude of this ion saturation

current will be much smaller and more nearly constant than the analogous

electron saturation current.

I ,

R GGi4 I4

RE( IO 3 C"-'

Figure 10 - Typical Langmuir Probe Curve

The traditional Langmuir probe methods described above were applied to

the measured I-V characteristics of a spherical probe placed in a plasma

produced in the 'Jumbo' vacuum chamber at AFGL. The plasma was produced

by seeding the vacuum chamber with low pressure (about 200 mTorr)

background argon gas and injecting a weak (200V) electron beam toward a

passive, grounded target plate. Gaseous diffusion was assumed to produce

a relatively uniform plasma throughout the vacuum chamber.

The first step in the examination of the plasma parameters is the

determination of the electron temperature. As noted above, the measured

i-v curve is exponential in this region since the electron distribution is

Maxwellian; hence the probe current is given by:

Vp/Vt

I = 10 e (9)
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where VP is the voltage of the probe with respect to the plasma. Taking

the natural log of Eqn (9) yields:

In (I) = In (Io) + V p (10)
Vt

By measuring the logarithmic slope of the measured I-V characteristic in

region B, the factor 1/Vt, i.e. the inverse of the thermal voltage, can be

obtained. From the Langmuir probe data obtained in our experiment,1 the

value Te = 9.5 eV was found from a least squares fit of In(I) versus Vp

(see Figs 11 and 12). The correlation coefficient for the logarithmic

plot was 0.998, indicating that the measured curve in region B is truly

exponential; likewise, the assumptions implicit in Eqns (1), (2) and (4)

are verified.

Once the electron temperature is known, the plasma density no can be

determined from the ion saturation current in region C. This ion

saturation current can be estimated theoretically by making use of the

Bohm sheath criterion derived previously [22]. Assuming that the ions

have some non-zero drift velocity obtained in the pre-sheath electric

field, and assuming that the electron current can be neglected for

Vp > 3kTe/q, it follows that:

i [kTe]1/2

If the probe area is equal to A, then:

I = JA = qns v i A = qns A [kTe 1/2 (11)

L'MiI

where J and ns are the current density and particle density at the surface

of the probe. Note that ns also represents the ion density at the outer

1(pg 120, 917 of the data notebook)
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edge of the sheath region. In the derivation of the Bohm sheath

criterion, the sheath edge is defined as that point at which the potential

with respect to the neutral plasma is equal to -KTe/2q. Assuming a

Maxwell-Boltzmann distribution, it therefore follows that:

-1/2

ns = no e =0.61 no

Substituting this expression into Eqn (11) results in:

IB = 0.61 qnoA [ kTe 1/ 2

Mi 1 (12)

where IB, called the Bohm current, specifies the ion saturation current
flowing to the probe. Solving Eqn (12) for no, given the data shown in

Fig 11, results in:

no = 1.64 1 [ M1 j1/2 = 4.56 x 10g /m3  (13)

qA [kTeJ

In region C of the measured Langmuir plots of Fig 11, the current is

approximately constant, indicating that Eqn (3) represents a valid

assumption. Note that in region A of the plots, the current is roughly a

linear function of voltage, rather than a near constant current. This

effect is predicted by Langmuir probe theory for spherical probes [23].

28



QL.

c~. -o

E

-3

0 f-4

29C



43

CL

0

42

17 10

cc.

300



6.4 Electric Field Simulation Without Plasma

The plasma chamber geometry depicted in Fig 13 resembles an ideal

parallel plate configuration. In the ideal case, the uniform field

conditions and symmetry allow the plasma problem to be reduced to a one

dimensional problem that is easily solved using numerical methods. As

mentioned in a previous section, the field at the surface of the probe

under ideal conditions can be modelled by the solution to Laplace's

equation for a perfectly conducting sphere in a uniform field, i.e.:

Esurface = Er = 3Eo cos9 (14)

where Eo is the unperturbed uniform field. As evident from the geometry

of Fig 13, the actual chamber configuration was not symmetrical; hence

field uniformity cannot be assumed.

Given these experimental conditions, the absolute scale factors for

each sensor on the probe had to be determined by experimental measurement

and numerical modelling of the actual fields at the surface of the probe.

Given the computation complexity of obtaining an accurate three-

dimensional simulation of the actual electric fields in the chamber, a

two-dimensional simulation was instead performed to determine the absolute

scale factors of the six probe sensors. In transforming from three to two

dimensions, the problem is essentially becomes that of a perfectly

conducting cylinder, rather than a sphere. This change in geometry can be

approximately accommodated by including a multiplicative constant of 1.5,

since surface field on a cylinder in a uniform field is given by Er = 2Eo

cosO. Additionally, the signal from sensors canted relative to the

vertical in the actual three dimensional problem must be multiplied by a

factor of cos(53.50 ) = 0.6 to account for the relative sensor rotation.

The potential distribution in the test chamber was numerically modeled

with the plate held at SOOV using the finite difference simulation

technique. Since the probe was floating in the actual plasma experiments,

the plasma free field simulation assumed the probe to float to its local

ambient potential.
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Figure 13 - Layout of the probe and energized plate in the vacuum chamber.
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The actual grid layout used in the simulation are shown in Fig 14. As

evident from the figure, much of the area in the stimulation is not of

use, thus unnecessarily lowering the resolution. To obtain higher

resolution, a lower resolution (4 cm) grid was first used to obtain

potential values for the points along a square perimeter around the plasma

probe. The simulation was then run again at a higher resolution using

these potential values for the points along the outer equipotential

surfaces, thus providing a higher resolution grid (0.5 cm . From

printouts of the fine-mesh simulation, the ambient field in the region of

the probe was found to be fairly uniform, and equal to:

Eo = 444 V/m

The resulting values for the two-dimensional surface fields Ei at the

projected locations of each sensor are listed in Table 2. The approximate

three-dimensional surface fields Ei', computed by multiplying the values

of Ei by a factor of 1.5, are tabulated in the second column. The third

column lists the relative scale factors Si of each sensor as determined by

direct measurement in a test fixture. These scale factors are expressed

in units of a maximum binary count of 256. In obtaining these relative

scale factors, a constant field is applied to each sensor individually

using a small shielded probe. The measured signals Di obtained from each

sensor in response to a -SOV step in plate voltage 2 are shown in the

fourth column of Table 2. These signals are also expressed in units of a

maximum binary count of 256. Finally, the computed absolute sensitivities

Fi of the sensors are shown in the last column of the table. These Fi

factors are computed by the relation:

F i = E i

Di

2(see pg 98 in the databook)
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Table 2 - Sensor Calibration Measurements From Test Chamber Data

Sensor f Ei  Ei' = 1.5E i  Relative Scale -500V Step Absolute Scale
Factor Si  Signal Di  Factor Fi

1 512 V/m* 456 V/m* 33 counts -2.1 counts 217 V/m per

count

2 890 794 125 15.4 51.6

3 444 666 72 -5.6 119

4 366 549 71 9.4 58.4

5 337 506 98 -5.0 101

6 370 554 42 3.1 - 179

* The Ei values from sensors #1 and #2 are also multiplied

by the factor cos530

A check of the measured absolute scale factors Fi against the relative

scale factors Si is provided in Table 3. In the ideal case, each of the

products SiF i should have the same value. In the third column of the

table, the percentage errors relative to sensor #2 (sensor with the

largest Si) are indicated.

Table 3 - Product of Relative and Absolute Sensor Scale Factors

Sensor f Ratio Si/F i  % Difference Relative

to Sensor f2

1 7160 11

2 6450 0

3 8570 33

4 4146 -36

5 9900 53

7520 17
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From the results of Table 3, it is readily apparent that a more

accurate means of measuring the absolute sensor scale factors in the

vacuum chamber must be found. The results shown in Table 3 do not show

good correlation with the calibration experiments run under ideal

geometric conditions, as reported in Section 5. The calibration

measurements obtained in the vacuum chamber could better be accomplished

by either accurate three-dimensional modelling of the fields in the

vicinity of the probe or by design of a calibration procedure in which

applied sensor fields can be known precisely. One possible design for

such a calibration system might involve the construction of a hollow

conducting sphere of radius greater than the plasma probe. The

calibration sphere would enclose the plasma probe, but be insulated from

it. The resulting spherical capacitor could be used to impose known

fields at the sensor sites simultaneously.

6.5 Plasma Field Simulation Without Plasma Probe

To simplify analysis of the plasma system including the probe, the

fields within the plasma can be modelled as a one-dimensional problem. In

such a case, Poisson's equation can be solved simultaneously with the

electron and ion density functions. Since the ion and electron

distributions are a function of potential, Poisson's equation becomes

nonlinear, but can be solved using Newton's method [12]. If the electron

and ion densities are explicitly included, the one-dimensional Poisson

equation becomes:

d2o = -_ [ni (o) - ne(o)] = -_ ntot(o) (16)

dx Co Co

No-te that the total density ntot is expressed as a function of #, a

necessary step in modelling the properties of the plasma. As noted in the

discussion of Langmuir probe th3ory, the electron and ion densities, in

general, will depend on the potential of the plasma relative to the

unperturbed ambient. When the plate in the test chamber is negative, so
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that it is primarily "collecting" ions, the conditions correspond to those

used in deriving Eqns (6) and (7), i.e:

O/Vt
ne = no e

and

ni = no [ 1 - 2q'1 1/2

In this case, the sheath edge is a somewhat arbitrary construct since the

potential distribution is continuous. In the literature [22,23,24], it is

often assumed for computational convenience that the Bohm sheath criterion

expresses an equality. Thus Eqn (7) becomes:

ni = no 1 - 2q

For the case of negative plate voltage in the test chamber, Poisson's

equation thus becomes:

=q 0 [e - 11/21
L/ [ (18)

where Vt = kTe/q.

In preparing Eqn (18) for numerical integration, we note that:

2 d~ d d rdo 12
dx dx2  dxL dx I

Thus Eqn (18) becomes:

[ do do d2qno e ON [1~. /

dxl dxi dx e [(9
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Integrating Eqn (19) results in:

[do 2 = 2qno FVte /t + Vt C

dx E 3[1 - 20/Vt] 1 .5  (20)

In this equation, C is a constant of integration determined by the

boundary conditions at infinity. If it is assumed that the sheath field

around the high voltage plate chamber decays to zero before reaching the

ground plate (in the one-dimensional case), then the boundary conditions

away from the plate can be taken as those at infinity, i.e., as do/dx = 0

and 0 = 0 . It therefore follows that:

#/vt

do = 2qnVt [e + 1 _41/2

dx E [ 3(1 - 20/Vt)1/ 2  3J (21)

It is important to note that Eqn (21) was derived by assuming that ion

sheath formed around the negatively energized plate. For the case of a

positive plate, an electron sheath forms, and a second derivation must be

performed to find the ion and electron densities as a function of

potential. Such a derivation can be based, in part, on the Child-Langmuir

formulation for space-charge limited electron current. In performing this

derivation, the plasma chamber is again modelled as two infinite parallel

plates.

It is first assumed that the plate potential is large enough so that

almost all the ions are repelled; their distribution, if originally

Maxwellian with the probe present, is given by:

p/vt
ni(o) = no e (22)

The electrons will be accelerated by electric field with velocity:
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Ve 2q O(x 11/2
me  (23)

Equation (23) assumes that collisional effects can be neglected. Under

these conditions, the current density becomes:

J = qn(O) ve(O)

so that the electron density becomes:

ne(O) = J [e2q ]1/2 (24)

q I.me

For the case of electron space-charge limited current in one-dimensional

geometry, Langmuir found the following relationship: (12]

J =4qe 2r (V -Vm) 1 F + 2.661

9 meq (d - xm) I (V/Vt)1/2 (25)

where d is plate spacing, and V is the applied plate voltage. The

constants Vm and xm are empirical correction factors. It has been found
(23] that for practical cases Vm and xm are small and may be neglected, as

is done in this derivation. Substituting Eqn (25) into Eqn (24) results

in:

ne( ) = 4 L F 1 + 2.66 1
9 (qd) L (Vt/0)1/ 2 J (26)

The same steps are performed as in the previous derivation for the ion

sheath, resulting in:

do ]2 = 2q [ 4 (2/2 + 1.7701"5 Vtl/ 2  + C

dx E L (qd) 2  J (27)

where C is a constant. Since 0 = 0 at x = *, it follows that:
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do= F [2 + 31.92Vtl/ 2 1 5  - 2q e + .31/2

dx L d2  E 1 (28)

This equation was solved numerically for several values of a plate

voltage between -500V and +500V, using the plasma parameters found in

Section 6.3. The source code of the sheath simulation program is found in

Appendix A. The results show that the fields originating on the energized

plate do not decay to zero before reaching the ground plate. Note that

solving for the sheath fields, including the boundary conditions at the

ground plate, where a sheath region will also form, requires more

sophisticated numerical methods than those used here. The sheath region

surrounding the ground plate will extend only on the order of a Debye

length into the space between the plates. As previously calculated, the

Debye length is equal to X = 15 cm if the electron temperature is equal to

Te = 9.5eV and the plasma density to no = 4.56 x log/m 3 . Thus, in the

region occupied by the spherical probe, i.e. on the order of a meter from

the ground plate, the perturbation due to the ground plate will be

minimal.

The fact that the plasma probe, located about 50 cm from the energized

plate, is well within the sheath region could explain an unexpected effect

observed during Langmuir probe tests. When the Langmuir probe data was

taken (see Fig 11), the slope of the I-V curve for V > 0 was inversely

proportional to the voltage applied to the plate. For regions well within

the sheath of the energized plate, ne will be greater than ni, and ne will

decrease for positions farther into the sheath region. The current to the

Langmuir probe is proportional to ne in region A of Fig 10, however.

Therefore, the probe current in region A will be inversely proportional to

the plate voltage.
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8.8 Saturation Effect With Probe Present in Plasma

When plasma was introduced into the chamber with the probe present,

some sensors exhibited an exponential-like response curve, as depicted in

Fig 15 for sensors #4 and #6.

sensor 4

B

from probe5. dat #2

Figure 15 - Output from sensors #4 and #6 as a function of time

The following theory is proposed to explain this undesired anomaly: The

surface field sensors are imbedded in a potting compound which encloses

the sensor electronics and related components. Only the outer surface of

the sensing electrode is exposed via the sensor aperture on the surface of

the sphere. The exposed surface of the insulating dielectric is capable

of collecting surface charge. It was hypothesized that surface charge of

large enough magnitude (either ion or electron) was being deposited on the

dielectric to cause the observed sensor saturation effect.

The curves of Fig 15 were plotted on a semi-log scale using least

squares methods in order to verify the hypothesis that the curves were

exponential. The resulting plots are shown in Fig 16. From the least

squares analysis of x versus ln(Ymax - y), the time constants and

correlation coefficients for sensors #2 and #6 were obtained, and are

listed in Table 4.
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Table 4 - Measured Sensor Saturation Time Constants (Sensors #2 and #6)

Sensor # seconds correlation coefficient

2 46.2 -0.993

6 72.6 -0.984

From the correlation coefficients in Table 4, it was concluded that

the probe-plasma interaction did exhibit an exponential dynamic response.

A simple theoretical model, based on the sensor geometry of Fig 17, was

developed to explain the initial saturation charging curves of Fig 15.

The model also yielded a quantitative value for the exponential time

constant which compares favorable with the measured values listed in

Table 4. In formulating the model, the following assumptions were made:

1) The initial surface charge on the dielectric is zero.

2) The area of the surface field electrode is negligible in

comparison to the area of the dielectric (i.e., (rd >> rs) so that most of

the charge collects on the dielectric.

3) The current density J, when present, is uniform into the surface of

the dielectric.

4) The dielectric constant of the potting compound is much greater

than eo.

5) The dielectric constant of the plasma is equal to Eo (zero magnetic

field case).

6) The ion current is negligible (zero ion temperature approximation).

The introduction of plasma into the chamber is modelled as a step in

charge at the probe surface (x = 0). Due to assumption (6) and the fact

that the probe is at the plasma potential, only the electron diffusion

term becomes non-zero in the current equation. The electron surface

charge which collects on the dielectric causes an electric field, which,

in turn, causes a deceleration of the electrons. The latter can be

modelled as a drift term in the current equation. The accumulated surface

charge is related to the current density normal to the dielectric surface,

as expressed by:

da = J dt
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Figure 17 - Physical model for sensor charging

If Epot >> Co, then the field associated with this surface charge will

be given by:

E = o do Jdt
Epl Co Eo Eo

The time rate of change in the electric field is thus given by:

dE= J =-q nueE- Dedn1

dt Eo Eo dx (29)

or

dE + qn# E = -qDe dn

dt Co Co dx (30)

where Pe is the mobility of the electrons and De the diffusion constant of

the electrons. From reference (25], the mobility of electrons in Argon

gas at 2.5 x 10-4 Torr (the Argon neutral pressure in the chamber) was

taken to be I#e = 3.33 cm2 /V-s. Similarly, the diffusion constant was
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taken to be De = KTo/q = 21.66 cm2/s. A time constant results from the

homogeneous solution to Eqn (30), given by:

' = fo =36.4 s

qn/4e

This theoretical time constant is in good agreement with the measured

values given in Tabl 4. It is likely that even better agreement between

theoretical and actual values could be achieved for the condition

rd t rs . In this latter case, not all current entering the sensor

aperture would reach the dielectric and the theoretical time constant

would increase. Based on the assumption that the dielectric charging

model is a reasonable approximation of the saturation effect, corollaries

to the dielectric charging model were developed in order to predict

saturation charging of the sensors when potentials were applied to the

high-voltage plate.

H V
PLATE

Figure 18 -Model for plasma charging of the sphere in the test chamber

This situation is depicted in Fig 18. When a positive potential is

applied to the high-voltage plate, field lines terminate on the side of
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the probe containing the even-numbered sensors (side A) and field lines

originate on the side containing the odd-numbered sensors (side B). Thus

side A will have a net negative surface charge and side B will have a net

positive surface charge. When field lines originate on a sensor

electrode, the sensor output signal increases. Conversely, when field

lines are terminated on a sensor electrode, the sensor output signal

decreases. Given the orientation of the probe sphere in the experimental

setup of the vacuu, chamber, it follows that the net output signal from

even numbered sensors should be negative, and the net output signal from

odd numbered signals should be positive when a positive voltage is applied

to the energized plate.

Due to the net surface charge on the probe, the sheath regions for the

even and odd numbered sensors will be of a fundamentally different nature:

an ion sheath will exist on side A and an electron sheath will exist on

side B. When the sheath charge enters the sensor apertures and collects

on the potting dielectric it will cause an added surface charge on the

electrode of the opposite sign. Thus the effects due to the termination

of the field lines and the accumulation of saturation charge will be

additive.

When a potential is applied to the high-voltage plate there will thus

be an immediate discontinuity in sensor signal due to the termination of

the field lines on the probe, followed by a saturation process where some

asymptotic value is reached with a time constant on the order of 30s.

When the plate voltage is switched from SOOV to OV, the even-numbered

sensors are observed to saturate upward while the odJ-numbered sensors

saturate downward. This result could be explained using the above model by

noting that when the plate voltage equals OV, the dielectrics of the even-

numbered sensors have become positively charged with respect to the plasma

and thus attract electrons from the plasma. This net electron flux to the

dielectrics will in turn cause an upward drift in the readings. The

2ownward drift in sensor tl can be explained with the same reasoning if

the negatively charged dielectric is considered to attract positive ions.

The initial discontinuity is cf primary interest since from it can be

determined the surface field on the probe due to the potential applied to

the high- voltage plate. The magnitudes of these discontinuities, as well

46



as the corresponding jumps in surface field values, are listed in Table 5
for plate voltage steps of 100V over the range 0 - 500V. Because of the
observed saturation effects, only a limited number of data values were

obtainable for each sensor.
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Table 5 - Change in Sensor Readings versus Change in Applied Plate Voltage

Sensor # Plate Voltage Change Sensor Output Surface E-field Change

1 0 - 100 V 8.0 rnts 1562 V/m

1 100 - 200 6.67 1302

2 100 - 200 -4.44 -229

2 200 - 300 -5.33 -275
4 300 - 400 -4.44 -403

4 400 - 500 -4.88 -443

4 500 - 0 14.65 1329

6 0 - (-100) 2.79 427
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6.7 Secondary Sheath Surrounding Probe

As shown in Fig 18, when the probe is inserted into the plasma sheath,

secondary sheath regions will form around the probe. In order to obtain

accurate quantitative values for the effect these secondary sheaths cause

on the readings, the two-dimensional, nonlinear Poisson and charge

conservation equations must be solved simultaneously. As a means of

simplifying the problem, it will be assumed that nonlinearities are

negligible (an unverified assumption), so that the system can be modelled

using superposition. If superposition of the primary and secondary fields

is applicable, then the one-dimensional simulation, with the plate voltage

set to 500V, for example, yields a field of Eo = 399 V/m at the position

of the probe. Converting this result to three dimensions yields a probe

surface field of:

Es = 3Eo cos(53.5
0 ) = 711 V/m

The spherical probe will take on the potential of the undisturbed

plasma measured at the location of the sphere's center. There will thus

be a potential difference Vpp between the surface of the probe (7.5 cm

from its center) and the potential that would exist in the undisturbed

plasma, resulting in a secondary sheath surrounding the probe. Using the

values obtained from the one-dimensional sheath simulation with the plate

voltage set to 50OV, the difference in potential between the location at

the probe's center and location at its surface is found to be about 29V.

Converting to the equivalent three dimensional case yields the value

V = 87V. Using Eqn (26), no was calculated at the probe surface for

Eo = 398V/m, resulting in the value no = 1.88 x 10
10/m3 .

The surface field Es ' due to the secondary sheath surrounding the

probe was calculated using Eqn (21) with no = 1.88 x 10
10 /m3 and the

initial potential 0 = Vpp = 87V, yielding the result:

Es ) = 417 V/m
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Assuming superposition holds, the total field at the surface of the probe

becomes:

Etot = Es + Es' = 711 + 417 = 1128 V/m

As indicated in Table 4, the measured field value obtained from Sensor #4

was 1329 V/m, i.e. the predicted and measured field values differ by about

15%.

For the case of the measurements taken from sensor #1 or #6 in Table

4, an electron sheath is formed around the sensors as opposed to an ion

sheath for sensors #2 and #4. The theoretical model for the surface field

due to the secondary electron sheaths was developed using the distribution

function for electron collection with a spherical probe in the thick

sheath limit [23]. For 0 > Vt, the electron density is given by:

ne = qno0

Vt

so that the approximate Poisson's equation becomes:

d2o = qn 0
dx2  Vt

Applying the same development used on Eqns (21) and (27) results in:

do = qn

dx EVt

The surface field for sensor #6, with = Vpp = 18.9 V, can thus be

calculated:
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Es = 3 (81.9) cos (53.50) = 146 V/m

and

Es ' = (18.9 V) (3/m) = 56.7 V/m
or

Etot = Es + Es ' = 203 V/m

As indicated in Table 4, the measured value of Etot for sensor #6 was 427

V/m, i.e. the predicted and measured field values differ by about 52%.

For sensor #1, with Vpp= 19.8V:

Es = 3(87.5) cos (53.50) = 156 V/m

and

Es ' = 59.4 V/m

or

Etot = 215.6 V/m.

For sensor #1, the measured and theoretical values differ by

approximately a factor of six.

The large discrepancy between theoretical and measured values for

sensors #1 and #6 could be explained by the fact that for both sensors the

secondary sheaths were electron sheaths. The detection electronics

averages the signal over a period of approximately one-second. During

this one-second interval, however, charge is being deposited on the

dielectric surfaces surrounding the sensors. Since the mobility of the

electrons is much greater than that of the ions, the effects due to the

secondary electron sheath should also be seen sooner than the effects due

to the secondary ion sheath. It is hypothesized that for sensors

surrounded by secondary electron sheaths non-negligible dielectric

charging effects occur during the first detection period before E-field

values can be output.
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7. CONCLUSION

The experiments reported here show that it is indeed possible to build

a free floating, self-contained spherical electric field probe capable of

measuring both volume field magnitudes and the amount of collected probe

charge. These quantities can be useful in evaluating the parameters of

the plasma sheath surrounding the spherical probe.

Models for simulating both static and dynamic plasma conditions within

the test chamber have been developed. The time constant for the

saturation effect which dominates probe behavior was predicted by

theoretical models to be within 30% of the actual measured value.

Electric field readings for secondary ion sheaths were predicted with an

accuracy of 15%. This relative small value for the error in E-field

prediction indicates that with suitable knowledge of plasma conditions

more accurate calibration factors can be determined for the sensor

readings.

Further directions for work on the probe include:

1. Development of simpler, more accurate methods for calibrating the

probe, and determining the absolute scale factors. One possibility might

be to use a concentric spherical electrode for establishing a known field.

2. Redesign of the sensor modules to aliminate the observed saturation

effect caused by the buildup over time of charge on the dielectric

surrounding the sensor electrode during plasma tests.

3. Modification of the plasma density and electron temperature to test

the robustness of the sheath simulation, and to more closely approximate

the plasma in low earth orbit.
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APPENDIX A - SOURCE CODE OF PROBE MICROPROCESSOR

c SHEATH
c CALCULATES E-FIELD AND POTENTIAL BETWEEN PARALLEL PLATES IN A PLASMA
C

c set constants in mnks
eps= 8.85e-12
pi= 3.14159
q= 1.6e-19

C

c set plasma parameters
vtherm= 40.
dens = 1.e12

C

c set plate voltage
vplate = -500.

C

cset integration constants
wr ite(5, 98)

98 format(' input value of dx in meters, finax ("print every *l~

read(5,97) dx,max
97 format(f20.15, ilO)
C

c initialize Integration:
m=0
X=0.
ph ivp late
cosh= (exp(phi/vtherm) + exp(-phi/vtherm))/2.
e= -sqrt(4.*vtherm*q-dens*(cosh-1)/eps)
wr ite (5, 103) e,phi

103 format(' initial field:',f15.1,5x, 'initial pot:',flO.2)
C

c begin integration
300 continue

m=m+ 1
sinh= (exp(phi/vtherm) - exp(-phi/ 'eri))/2.

c
phi = phi - e*dx
e = e + (-dens*q*2.*sinh/eps)*dx
X=X~dx

if(m.lt.max) go to 300
write(5,200) m,x,phi,e

200 format(' ',110,' x=',flO.8,' pot= 'Jf15.1'' E= J,15.1)
m=0
goto300
end
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APPENDIX B - DETAILS OF PROBE MODULES AND COMPONENTS
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FIgure A7 - Details of Field Mill Chopper located at each sensor

aperture.
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Figure A8 -Magnified detail of tuning fork chopper used to drive field
mill sensors. (American Time Products).
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Figure A9"- Layout of Sphere Modules seen from Center Level.
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Figure A10 Layout of Sphere Modules seen fromr mezzanine level about
2.5 cm~ up, from center.
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Fig~re All -Detail showing position of ont of six batteries relative to

Low pass filter stack in central core of sphere.
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