
RSRE
MEMORANDUM No. 4213

ROYAL SIGNALS & RADAR
ESTABLISHMENT

THE APPLICATION OF A DISTRIBUTED ARRAY PROCESSOR (DAP)TO LINEAR ASSIGNMENT PROBLEMS IN RADAR TRACKING

Author: A J Stanley, P Slmp-,)n & J 1 G Roberts

"- DTI%.
PROCUREMENT EXECUTIVE, mELECTE

2,MINISTRY OF DEFENCE, NOA 8
R S RE MALVERN,

WORCS.

FU IT

O ': UNLIMITED Deq A , ., .-. .

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 4213

TITLE: THE APPLICATION OF A DISTRIBUTED ARRAY PROCESSOR (DAP)

TO LINEAR ASSIGNMENT PROBLEMS IN RADAR TRACKING

AUTHORS: A J Stanley*, P Simpson and J B G Roberts

DATE: July 1988

/SUMMARY

A Distributed Array Processor (DAP) is an SIMD parallel
processing machine composed of 1024 one-bit processing elements
(PEs). This Memorandum examines the application and detailed
performance of this machine to the linear assignment problem
with data arrays up to 256x256 in size. The linear assignment
problem is used in ESM, radar tracking, and other fields where
it is necessary to assign data from two or more classes to each
other. Since the assignment problem is solved by a computationally
intensive algorithm a comparison is made between the DAP and a
serial machine, a VAX 8600, to assess the speed gains obtained
from the DAP by executing instructions in parallel. The results
show that the DAP is far faster at solving this problem than the
VAX by up to two orders of magnitude. '., ", . ,,/

Access ion For
NTIS GRA&I

%A DTIC TAB

Unannounced 0
Justifloatlon

Distribution/
Availability Codes

* ' Aval and/ow
Currently at Sheffield City Polytechnic. it SpIo.8.

Copyright
C

Controller HMSO London
1988

S80/59

CONTENTS

1. Introduction

2. Introduction to the Distributed Array Processor (DAP)

2.1 DAP Fortran

2.2 Examples of DAP Fortran

3. Discussion of the Linear Assignment Problem

3.1 Criterion for Plot-Track Correlation

3.2 The Transformation to Linear Programming

4. Implementation

4.1 DAP Implementation for Linear Assignment problems up to 32*32

4.2 Conversion of Assignment Program for larger matrices

4.2.1 Sheet Mapping

4.2.2 Checking the Correctness of the DAP Assignment Program

4.2.3 Obtaining DAP Timings

4.3 Obtaining Timings on a Sequential Computer

5. Results

5.1 Results from DAP for matrices up to 32*32

5.2 Results from DAP for larger matrices

5.3 Results of Timings from the VAX-8600

6. Conclusion

7. Appendices

7.1 Average Times for matrices from 2*2 to 32*32 on the DAP

7.2 Timings for 256*256 32 bit matrix with varying range of input
data

7.3 Average Timings for matrices between 32*32 and 256*256 on the
DAP and VAX

8. References

1. Introduction

Linear assignment is the problem of taking values from two or more classes and
assigning these values to each other according to a given cost function. The
problem arises in a number of practical military applications such as radar
tracking where, for example, it may be required to assign radar plots from a
radar scan with earlier formed tracks in a single sensor system, or assign
radar tracks from multiple radar sensors. Its detailed application to radar
tracking will be explained in section 3.

The DAP Fortran code for the linear assignment problem, was based on a library
routine of the Hungarian Algorithm[l] written by Mr. J. Yadegar and Dr. A.
Frieze, Department of Computer Science and Statistics, Queen Mary College,
London. This code was written for a problem which 'fits' the physical
architecture of the DAP, i.e. a 64*64 matrix for the original DAP, a 32*32
matrix in the case of MilDAP.

The objective was to evaluate the library routine supplied by QMC by obtaining
timings for matrices of sizes up to 32*32 (the physical size of the DAP
available), and to generalise it for larger matrices and assess the DAP's
performance. These timings were to be compared with those from a sequential
computer running the assignment problem.

2. Introduction to the Distributed Array Processor (DAP)

The DAP is a computer which was designed to provide parallel processing
capabilities. It has a matrix of 32*32 one bit processing elements (PE's),
each having 8K bits of local store, giving a total of iM byte. It differs from
a serial processor in that it can perform the same operation on many items of
data in parallel. The simplicity of the PE's provides the user with
flexibility. A wide range of operational word lengths can be permitted,
allowing speed to be traded directly against arithmetic precision. The DAP is
attached to a single-user ICL PERO which acts as the host. This is responsible
for all program development (i.e. compilation, assembly, etc), input/output,
and initiates and controls the execution of any DAP program. The host also has
a DAP simulator, allowing precise timings of segments of DAP Fortran code,
although at a real time speed 31000 times slower than the DAP hardware.

2.1 DAP Fortran

The linear assignment algorithm was written in DAP Fortran, a version of
Fortran designed to take advantage of the parallel processing capabilities of
the DAP. The most important feature of DAP Fortran is the ability to
manipulate matrices and vectors. Matrices and vectors have their first
dimensions constrained to 32*32 and 32 respectively, to fit the DAP's
hardware. Problems requiring vectors or matrices larger than 32 or 32*32 must
be split into a number of vectors or 32*32 matrices.

DAP Fortran differs from Fortran in two main ways:

1. DAP Fortran allows the user to express parallel execution of either
an entire vector or matrix, or a subset of the component values of
a vector or matrix. A number of indexing techniques are provided
for selecting such subsets.

2. DAP Fortran does not have any input/output facilities, so all I/O
must be performed by the host program. Data has to be transferred
explicitly between the host and DAP programs. Such data must be
held in COMMON blocks in both the host and DAP programs.

2.2 Examples of DAP Fortran

Each node of a 32*32 grid has a value that represents the height above sea
level of land at that point. The mean height above sea level is calculated
in both DAP Fortran and Fortran to show the reduction in code complexity.

Fortran Code

real height(32,32),mean,sum

sum=O.O
do 10 j=1,32
do 10 i=1,32
sum=sum+height(i,j)

10 continue
mean=sum/1024

DAP Fortran Code

real height(,),mean

mean=SUM(height)/1024

SUM is a built-in DAP Fortran function that, in this example, takes a matrix
as argument and returns the sum of all the components of 'height'. DAP Fortran
has many other built-in functions that perform parallel operations on vectors
and matrices.

An important feature of DAP Fortran is the facility to perform operations only
on certain selected components of a vector or matrix. The different indexing
techniques are too numerous to detail. However, an example is given below
using a logical matrix to index components in an integer matrix.
e.g.

LM is a logical matrix, Ml and M2 are integer matrices.

2

M1= 1 1 1 1 M2= 1 2 3 4 LM= T F T T

2 2 22 5 678 F T T F

3 3 3 3 9 10 11 12 F F T F

4 4 4 4 13 141516 T F F F

The result of M1(LM)=M2 is:

1. LM and M2 are unchanged.

2. M1= 1 1 3 4

2672

3 3 11 3

13 4 4 4

3. Discussion of the Practical Uses of the Linear Assignment Problem

The linear assignment problem is not solely a theoretical exercise but has a
number of practical applications in which it is necessary to make an optimum
decision (in the sense of maximising the joint probability) about making
associations between objects drawn from two or more classes. In particular, at
RSRE linear assignment is of use in plot-track correlation which is used in
radar systems.

3.1 Criterion for Plot-Track Correlation[21

Consider a scanning radar sensor which makes estimates of the (x,y) positions
(and possibly velocity, altitude as well) of several targets at each scan.
Each parameter estimated is subject to error and the criterion of maximum
joint probability is used to determine the optimum associations between the
targets detected on each new scan and the target tracks built up from earlier
scans. Figure 1 shows a track(e.g. aircraft), T, with its forecast position F
deduced from the existing track parameters.

3

xPl

FIGURE 1
TRACK T1

.F

xP2

A plot from the next scan of the radar should lie in the vicinity of F. The
square box around F represents a gate in of which plots from the target are
expected to lie. The purpose of this gate is to reduce the number of plots to
be considered for association with a particular forecast. The gate should be
large enough to include any plots that could possibly be considered as
candidates, due allowance being made for noise on the plots, error- in the
forecast position, and for target manoeuvre.

Two plots, P1 and P2 9 lie inside the gate. A nearest neighbour correlation
algorithm would assign P2 to F, but if the true situation were as shown in
Figure 2, in which track T2 is in the vicinity of the first track, T, then
this algorithm would incorrectly assign P2 to FI and PI to F2 .

xPl FIGURE 2
TRACK Ti

Fl

P2x .F2

TRACK T2

Hence, an important principle in plot-track correlation is not to assign

nearest neighbour track but, wherever there is uncertainty, to consider all

4

plots and tracks together.

In the example of Figure 2, what is required is the calculation of four
probabilities, namely:

P11 the probability that P1 associates vith T1
P1 ,, T2
2 t " T1P 21 to to P2 T2

P2 2 2 2

The joint probability that P1 associates with T and P2 associates with T2 is
given by the product P11P2 2 . Similarly, the probability that P1 associates
with T2 and P2 with T1 is given by P12P g1 . In this case the better plot to
track assignment is the one whose joint probability is the larger.

3.2. The transformation to linear programming[2]

Consider a more general case with three plots P , P2,P 3, and three tracks TT 2
and T3. The individual probabilities can be vritlen in matrix form:

T1 T2 T3P1 P2
P1 P11 P1 P 13

P 2 P21 22 P2 3
P3 31 32 33

There are six different ways of assigning plots to tracks. Six joint
probabilities could therefore be calculated, each one of which is the product
of these factors. The objection to this method is the need to calculate joint
probabilities for all plot to track combinations in order to find the maximum.
This difficulty can be removed by transforming the problem from one which
requires products of the elements of a matrix to one which requires sum of
elements.

Let 0ij be defined by the relation

Oij = -logPij

where P.. is the probability that the i'th plot associates with the
j'th track.

If we write the matrix of 0iJ values for the above case of three plots and
three tracks we have:

T 1 T2 T

P Ol 12 0 13
F2 021 022 023
P3 031 032 033

The criterion for the assignment of plots to tracks changes to become the
minimum of the sum of elements of this matrix, one and only one element being
taken from each row and column. This is the linear assignment problem.

5

4. Implementation

4.1. DAP Implementation for Linear Assignment problems up to 32*32

The program was tested using an example 5*5 matrix as input, obtained from
QMC[1]. When the program was running correctly a random number generator was
added to the DAP program. A loop was added around the assignment procedure so
that timings could be obtained on the DAP Simulator for varying sizes of
matrices. Copies of the program were taken and it was amended so that it ran
on 24,16 and 8 bit integers and further timings taken for these.

4.2 Conversion of Assignment program for larger matrices

The previous DAP Fortran and host Fortran programs were rewritten to use
matrices of data between 33*33 and 64*64. It has already been noted that the
DAP consists of a 32*32 matrix of PE's. For problems which use matrices larger
than the 32*32 physical array of the DAP the matrix has to be subdivided into
32*32 patches for storage, and the row and column operations of the algorithm
re-organised to take account of this. This storage mode Is known as Sheet or
Window Mapping.

4.2.1 Sheet Mapping

Extra 32*32 matrices are set aside to store the data.
e.g.
A 64*64 matrix is held in four 32*32 matrices.

0 32 64

32

64

These four matrices would be defined in DAP Fortran as:
INTEGER*4 MAT(,,2,2)

and in the host program in Fortran:
INTEGER*4 MAT(32,32,2,2)

6

Any operation on the 64*64 matrix is applied to each of the four 32*32
matrices in turn. This introduces overheads into the execution of a DAP
program.

1. Each 32*32 matrix operates sequentially.
2. If the matrix is between 33*33 and 64*64 there are unused parts of

the matrices.
e.g.

33*33 matrix

0 32 33 64

32
33

64

The 33*33 matrix would execute an instruction in the following sequence.
1. Apply instruction in parallel to 1024 elements.
2. " " " 32
3. f" "i 32
4. to 1 element.

4.2.2 Thecking the Correctness of the DAP Assignment program

As before the DAP program was initially tested with the 5*5 matrix, since the
steps of the program when solving this matrix had been previously worked out.
The program was then tested for the case when the matrix of data overlapped
the 32*32 matrices.

As an additional check on the results, the linear assignment problem was run
on two locally available serial computers. Firstly a Pascal program running on
a VAX 8600, and secondly a Fortran 77 program running on a PERQ. Both these
programs solved the linear assignment problem with 32 bit integer matrices
using the Bradford Hethod[2],[3]. The DAP program was modified to output the
data matrix to a file. This file could be input to both the Pascal and Fortran
assignment programs. The parallel DAP algorithm produced results identical to
those from the serial Fortran 77 program, although the Pascal program showed a
small 'bug' which was programmed around to give a similar check. When the
program was running correctly it was amended so that it would work on matrices

7

up to 256*256.

4.2.3 Obtaining DAP Timings

The objective now was to obtain timings of the assignment procedure on the
DAP for the larger matrices, and to compare these timings with those of a
sequential computer (use of the DAP simulator would have been prohibitively
slow). The timing facilities on the PERQ were used as there were procedures in
C, Fortran and DAP Fortran available. The operation of these procedures is
similar to the use of semaphores (see Figure 3).

FIGURE 3.
OBTAINING TIMINGS USING THE PERO TIMER

PERO DAP

\1/
CALL DAP ------------------ > START DAP

INITIATE DATA TRANSFER
I i

time I
I\1/ \J/

I WAIT FOR FLAG < --------------- SEND FLAG TO PEROI I

ACK
START CLOCK ---------------- > START LINEAR

ASSIGNMENT PROBLEM
increment

I timer clock

\1/ END OF PROBLEM
STOP CLOCK < -------------- SEND FLAG TO PERO

It should be noted that the timer on the PERO is only accurate to 17ms. To
reduce the effect of any errors the times of the assignment procedure were
averaged over at least 10 runs. The average timing for each size of matrix was
obtained from at least 10 readings. Each time was obtained from an execution
of the linear assignment problem on a particular matrix of data.

Timings were obtained on matrices whose sizes ranged from 33*33 to 256*256.
The DAP program was amended to run on 16 bit integers. After being advised
that the run-time checks could be switched off new timings were obtained which
were about 30% faster! New timings were also obtained for 32*32 matrices
without run-time checks. The gain in speed of the assignments was less
significant, about 3%, because less run-time checks were originally used.
Matrices up to 32*32 did not use sheet mapping, and therefore didn't require
as many DO loops. The major run-time check for matrices larger than 32*32 was

8

to check the control parameters of DO loops.

Timings were obtained to show the difference when the range of values in the
input matrices was altered (see Table 2). The results were quite startling and
illustrated the dramatic effect the data dependency of the input matrix could
have upon the timings.
e.g.
A 256*256 matrix whose values were between 0 and 50 will probably find the
minimum assignment straight away, since it is likely to have more than one
equally low value in every row and column. If it doesn't find the 'best fit'
immediately the number of iterative loops required is limited by the maximum
value in the matrix, since the program contains code to repeatedly subtract
values from the matrix to find the minimum assignment. If the range of
values in the matrix was very large (i.e. between 0 and 100000) the number
of iterative loops to find the 'best fit' is likely to be much higher.

This wide variation had not been allowed for. In 'real life' it is unlikely
that the input data would be completely random so it was necessary to generate
more realistic data.

The host program was amended to simulate N aircraft in a co-ordinate system
with co-ordinates from 0,0 to 100,100. In this system there were two radar
ststems, A and B, as shown in Figure 4.

FIGURE 4.
x(Xi,Y1) x(X2 ,Y2) A= scanning station

x(X3,Y3) B= "
x= aircraft position

Z=x(X4,Y4)

x(X5,Y5)

A B

Each aircraft has its own set of co-ordinates (XIY XNYN). 'A' will have
a different pair of co-ordinates for aircraft Z than B because a random error
margin of up to 5% either way was introduced. The differences in the
co-ordinates obtained by A and B were saved in a matrix. This was the matrix
that the remaining timings were obtained from. For each run a new matrix was
created. Timings were taken for 32 and 16 bit signed integer matrices. It was
not possible to use 8 bit integers since the created matrix had values greater
than 127, thus causing numeric overflow.

4.3 Obtaining timings on a sequential computer

The host Fortran program (which set up the matrix of data and displayed the
results of the assignment) was run on the VAX-8600. This program was amended

9

so that the matrix was saved in a file which could be read in by the Pascal
program referred to in section 4.2.2. The reference program, written in Pascal
and run on the VAX-8600 is one currently in use for this type of radar
application. Its algorithm (based upon the Bradford method 131) may not be
strictly optimum but has been chosen with a sequential processor in mind. Both
DAP and Pascal programs used integer arithmetic.

To obtain the CPU time taken by the VAX, not real time since the VAX is time
shared, the control-t keys were used. This gave some information on the
current process, including the CPU time used. To check the accuracy of this
method the control-t keys were depressed after a delay of a few seconds with
no program running. The CPU time displayed only changed by one hundredth of a
second, thus providing confirmation of timing accuracy.

A second copy of the Pascal program was made and all calls to the assignment
procedure removed. There were therefore two programs, one which loaded the
matrix and ran the assignment procedure, and the other which only loaded the
matrix. The difference between the execution times of these two programs is
the time taken for the assignment.

Timings were obtained when the size of the matrix varied from 32*32 to
256*256, with all run-time checks removed (as for the DAP). Fewer timings were
taken because runs were longer and the matrices of data were chosen that gave
fairly average timing results on the DAP.

5. Results

5.1 Results from DAP for matrices up to 32*32

The results of the timings are included in the Appendix (see Table 1). It can
be seen from the table that there is a difference in speed between 32,24,16
and 8 bit integers.

e.g.
16 bit integers took between 61% to 81% of the time taken by 32 bit integers
8 " " " i 64% " 79% " " " " " 16 " "

The difference was not greater because a significant proportion of the
assignment procedure deals with logical matrices and vectors, and the speed of
logical operations is unaffected by the word length of the integers.

5.2 Results from DAP for matrices between 33*33 and 256*256

The results of these timings are in the Appendix (see Table 3), in both
tabular and graphic form. The relative difference between 32 and 16 bit
integer arithmetic has been calculated and is included in the table. Although
there are irregularites in these values it appears that as the matrix size
increases, the relative difference in speed between 32 and 16 bit integers
falls. As before, this difference is less than may have been expected.
e.g.
A 16 bit 33*33 matrix takes approximately 67% of the time taken for 32 bits

10

A 16 bit 256*256 matrix takes approximately 86% of the time taken for 32 bits

This can be explained by:
1. The larger the matrix the greater the number of DO loops, which

take the same time to execute (ignoring the instructions inside the
loop)

2. The larger the matrix the more searching is required to find the
optimum value. This search makes heavy use of logical matrices and
vectors whose execution time is unaffected by the word length of
the integers used.

At each multiple of 32 in the problem size, additional matrices are required
to hold the data, which gives rise to the characteristic 'step' shape as shown
in the timing graphs.

5.3 Results of timings on the VAX-8600

Results of the timings are given in the Appendix (see Table 3) in graphic and
tabular form. Although the timing method may appear inaccurate it should be
adequate given the high values of the times involved. However there may be
some small but noticeable errors for 32*32 and 64*64 matrices which had a fast
execution speed.

6. Conclusion

The timings of the VAX and the DAP show that the DAP is far faster at solving
the linear assignment problem for a wide range of matrix sizes. However, the
speed advantage is not a smooth function of the problem size. For a 32*32
matrix the DAP is approximately 40 times faster than the VAX, yet for a 64*64
matrix it is only about 11 times faster. This is due to the problem of data
being partitioned into blocks which fit the machine. Efficiency is best when
the problem requires an integral number of blocks (in this case for matrices
of size 32, 64, 96 etc), but the speed advantage over the VAX-8600 is
typically an order of magnitude, rising to two orders for matrices of 256*256.

Despite the inefficiencies of partitioning the problem the DAP still greatly
outperforms the VAX. As the matrices become larger the difference in times
between the two computers becomes even more marked. This is most noticeable
when the matrix becomes larger than 160*160.
e.g.

For a 64*64 matrix the DAP is approximately 11 times faster than the VAX
" " 256*256 " " " i 114 " it " "

The DAP is made up of 1024 relatively simple and slow processing elements
(PE's). Its large speed advantage is due to the parallelism that is used in
solving the assignment problem. The linear assignment problem involves many
simple arithmetical, logical or bit operations that can be applied
concurrently in each PE.

7. Appendix

7.1 Average Times for Matrices from 2*2 to 32*32 on the DAP

11

Table 1

These timings were from a program which:
1. Had run-time checks.
2. Used randomly generated data, max value 100.

The average timings for 32 bits were obtained from:
- 10 measurements for matrices of size 2*2 to 10*10
- 20 to " 11*11 " 32*32

The average timings for 24 bits were from:
- 10 measurements for matrices of size 2*2 to 14*14
- 20 " " I " " 15*15 " 32*32

The average timings for 16 and 8 bits were obtained from 20 runs for all
matrix sizes.
Times are given in milliseconds.

MATRIX
SIZE1 32 bits 24 bits 16 bits 8 bits

2 1.636 1.306 1.003 0.696
3 1.636 1.366 1.107 0.795
4 1.823 1.551 1.267 0.879
5 2.034 1.678 1.262 0.906
6 3.376 1.874 1.481 1.108
7 2.403 2.060 1.581 1.195
8 2.440 2.308 1.613 1.276
9 2.679 2.278 1.804 1.359
10 2.905 2.451 1.925 1.554
11 2.956 2.674 1.925 1.554
12 3.255 2.886 2.296 1.729
13 3.094 2.770 2.339 1.853
14 3.453 2.918 2.404 1.896
15 3.785 3.139 2.610 1.974
16 4.016 3.309 2.795 2.033
17 4.345 3.528 3.009 2.228
18 4.647 3.660 3.101 2.258
19 4.386 3.694 3.186 2.250
20 4.545 3.804 3.368 2.312
21 4.514 3.843 3.333 2.279
22 4.513 3.782 3.387 2.393
23 4.640 3.885 3.414 2.447
24 4.960 4.245 3.792 2.423
25 5.009 4.306 3.798 2.620
26 5.073 4.287 3.826 2.614
27 5.093 4.482 3.942 2.714
28 5.203 4.481 4.032 2.710
29 5.311 4.600 4.021 2.802
30 5.315 4.703 3.993 2.852
31 5.133 4.538 4.067 2.861
32 5.218 4.698 4.265 2.948

12

7.2 Timings for 256*256 32 bit Matrix with varying range of Input Data

Table 2

Times obtained with randomly generated data and no run-time checks.

MAX NUMBER TIME (SECONDS)

50 0.665

150 1.327

450 1.760

950 2.195

2000 3.277

5000 4.617

10000 6.975

50000 9.062

100000 10.477

200000 10.637

13

7.3 Average Timings for Matrices between 32*32 and 256*256 on the DAP and VAX

Table 3
AVERAGE(2)

SIZE OF DAP (1) DAP (1) RELATIVE VAX TIME SPEED UP OF DAP OVER VAX
MATRIX 32 BITS 16 BITS DIFFERENCE 32 BITS (NUMBER OF TIMES FASTER)

32 0.005 0.20 40

33 0.058 0.039 0.67 0.19 3

48 0.074 0.052 0.70

64 0.092 0.068 0.74 1.05 11

65 0.187 0.141 0.75 1.10 5

80 0.193 0.148 0.77

96 0.216 0.168 0.78 2.42 11

97 0.344 0.278 0.81 2.24 6

112 0.348 0.269 0.77

128 0.349 0.270 0.77 4.96 14

129 0.599 0.453 0.76 4.70 7

144 0.651 0.531 0.81

160 0.685 0.574 0.84 9.34 13

161 0.952 0.781 0.82 9.23 9

176 1.063 0.864 0.81

192 1.081 0.897 0.83 56.92 52

193 1.389 1.167 0.84 61.35 44

208 1.450 1.253 0.86

224 1.452 1.203 0.83 125.62 86

225 1.858 1.464 0.79 128.86 69

240 1.905 1.664 0.87

256 1.772 1.645 0.86 202.96 114

14

(1). The DAP timings:
1.1 Do not use run-time checks.
1.2 Use radar simulated data.
1.3 Are the average of

10 measurements for 32 bit matrices of size 33*33 to 192*192
15 " " " " " " 193*193 " 256*256
10 " 16 " " " " 33*33 " 256*256

(2). The VAX times:
2.1 Are the average of 4 measurements.
2.2 Do not use run-time checks.
2.3 Use the same radar simulated data as the DAP.

8. References

1] J.Yadegar,A.Frieze and S.T.Davies, H01 L ASSIGN. Subroutine to solve the
linear assignment problem. DAP Subroutine library. Queen Mary College,
London.

[21 S.Magowan. A method of plot to track correlation
RRE Memorandum 2153, January 1965

[3] C.Mack. Bradford method, Bradford Institute of Technology.

15

THIS PAGE IS LEFT BLANK INTENTIONALLY

U-)

b-Ci
IC-

CD

NJ

cCr)r

~ ; ;
nJ LL *0 IL)C) o r

(N

LL L.

r)

C)c)0m) r f
0(-J~i C - r ~

It- = . n .J-C> cc

(NJ

U-)

0C

GDD
0Ln

CD

LiL
GCD

0 r

CC)

LCQ.IiJLJD ZO

THIS PAGE IS LEFT BLANK INTENTIONALLY

DOCUMENT CONTROL SHEET

Overall security classification of sheet ... U ICLA.SS .EIED

(As far as possible this sheet should contain only unclassified Information. If it Is necessary to enter
classified information, the box concerned must be marked to Indicate the classification eg (A) (C) or (S)

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security
Memorandum 4213 Classification

IIUnclassified

5. Originator's Code (it 6. Originator (Corporate Author) lame and Location
known) Royal Signals and Radar Establishment

778400 St Andrews Road, Malvern, Worcestershire WR14 3PS

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location
Code (if known)

7. Title
THE APPLICATION OF A DISTRIBUTED ARRAY PROCESSOR (DAP)
TO LINEAR ASSIGNMENT PROBLEMS IN RADAR TRACKING

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference napers) Title. place and date of conference

8. Author 1 Surname. initials 9(a) Author 2 9(b) Authors 3,4... 10. Date po. ref.

Stanley A J Simpson P Roberts R B G 7.88 18

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

Unlimited

Descriptors (or keywords)

continue on separate piece of pcaer

Abtract

A Distributed Array Processor (DAP) is an SIMD parallel processing machine
composed of 1024 one-bit processing elements (PEs). This Memorandum examines the
application and detailed performance of this machine to the linear assignment

problem with data arrays up to 256x256 in size. The linear assignment problem is
used in ESM, radar tracking, and other fields where it is necessary to assign
data from two or more classes to each other. Since the assignment problem is
solved by a computationally intensive algorithm a comparison is made between the
DAP and a serial machine, a VAX 86G0, to assess the speed gains obtained from the
DAP by executing instructions in parallel. The results show that the DAP is far
faster at solving this problem than the VAX by up to two orders of magnitude.

S80/48

