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ABSTRACT

A point of commonality among sensor data understanding problems is the inability of any single
classical approach to illuminate clearly and robustly the amount of information that is inherent to
the data and is usually apparent to a human observer. Therefore, there is appreciable synergism
among various sensor data understanding approaches as they draw from the combined jields of
signal processing, image processing, pattern recognition, estimation and decision theory, and,
more recently, machine intelligence. Our particular application is in the area of range-Doppler
images of simple space objects. These images are characterized by their relatively sparse detail,
coupled with simple but rapid motion. The data is multidimensional in nature with additive
noise, distortion, and missing points. The relevant features to be extracted from the radar data
include the position of all scattering centers in body coordinates, identification of the scattering
center type (sphere, corner, edge, etc.), and motion parameters for the object.

Our goal is to produce a representation of the imaged 3-dimensional object that is appropriate
for recognizing the object as an example of something we have seen before and cataloged, recog-
nizing the object as an uncataloged object, or determining discrepancies between the recognized
object and our expectations of its appearance. The motivation in our approach is thus to combine
the power of classical methods with the flexible representations and control structures afforded
by the field of machine intelligence and to derive primitive features from which a semantic model
can be built. We have found that the semantic model is readily manipulated and interpreted by
a human observer as well as by recognition, discrimination, and generalization procedures.

We have built a recognition system with three major conceptual modules. The first of these
is a set of signal processing primitives that are directed at the data to select subsets of data,
extract features, and compare extracted features with the data to produce confidence measures.
The second major module is the semantic model building and matching scheme. This component
takes the data-derived features and produces a semantic model which is then matched against
a catalog of stored semantic models for object identification. The final conceptual module in
the system is the control structure which is based on a blackboard architecture from the field
of machine intelligence. In this report, we will discuss the issues in range-Doppler imaging and
describe the major system modules in more detail including motivations for our approach. We
will also provide some performance evaluation results. Finally, summary and directions for future
work will be presented.
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1. INTRODUCTION

The study of sensor data understanding is motivated by a variety of goals including discrimi-
nation, object identification, and threat assessment. The extent to which the primary goal affects
the technical direction is dependent upon the sensor physics and the nature of the observed ob-
jects. A point of commonality among sensor data understanding problems is the inability of
any single classical approach to illuminate clearly and robustly the amount of information that
is inherent to the data and is usually apparent to a human observer. Therefore, there is an
appreciable synergism among various sensor data understanding approaches as they draw from
the combined fields of signal processing, image processing, pattern recognition, estimation and
decision theory, and, more recently, machine intelligence [1).

Our particular application is in the area of image understanding. More specifically, we are
given a time sequence of range-Doppler images of simple space objects. These range-Doppler
images are characterized by their relatively sparse detail, coupled with simple but rapid motion.
The detail is on the order of 10 scaitering centers per image, with object spin and precession
at rates of a few cycles per second. The physical features of the vehicle typically present one
scattering center apiece, compared with the more complex detail of, for example, a spacecraft
solar panel. The data is multidimensional in nature with additive noise, distortion, and missing
points. The interesting features to be extracted from the radar data include the position of all
scattering centers in body coordinates, identification of the scattering center type (sphere, corner,
edge, etc.), and motion parameters for the object. A source of complexity is that the features
can be time-varying and change abruptly. Our goal is to produce a representation of the imaged
3-dimensional object that is appropriate for recognizing the object as an example of something
we have seen before and cataloged, recognizing the object as an occurrence of an uncataloged
object, or determining discrepancies between the recognized object and our expectations of its
appearance.

Conventional approaches typically involve comparing derived and cataloged representations
obtained from standard signal processing algorithms, parametric models, or geometric primitives.
Although these approaches can be very powerful, they are also computationally intensive, sensitive
to noise, and not representative of the signal in a form that is readily interpreted or edited. We
have examined a variety of scattering center histories and found that the human observer can
successfully extract an estimate of scattering center motion from even noisy data at low imaging
rates. This reinforces the claim that a knowledge-based approach can more successfully model
an observed object than can a more traditional signal processing approach.

The motivation in our approach is thus to combine the power of classical methods with the
flexible representations and control structures afforded by the field of machine intelligence. A
system goal is to derive primitive features from which a semantic model can be built. The semantic
model is readily manipulated and interpreted by a human observer as well as by recognition,
discrimination, and generalization procedures.

We have built a recognition system and interactive workstation which we call the Radar Object
Modeling Environment or ROME. There are three major conceptual modules in our current
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system. The first of these is a set of signal processing primitives that are directed at the data to
select subsets of data, extract features, and compare extracted features with the data to produce
confidence measures.

The second major module is the semantic model building and matching scheme. This com-
ponent takes the data-derived features and produces a semantic model which is then matched
against a catalog of stored semantic models for object identification. The semantic model rep-
resents the extracted information in terms of physical components, relationships between the
components, and properties of the components and their relationships. The extracted model and
the stored catalog model are in identical form and thus can readily be compared and contrasted.
In addition, several examples of semantic models can be handed to the system which will gener-
alize a single semantic model representation. This feature is useful when presented with data of
objects for which we do not have a priori information.

The final conceptual module in the system is the control structure which is based on blackboard
theory {2] from the field of machine intelligence. The blackboard structure consists of a global
memory (the “blackboard”) where information is posted as it is accumulated. Knowledge sources
which embody specific information processing algorithms check the state of the blackboard to see
if their expertise is needed. If a knowledge source is called on, it extracts information currently
on the bhlackboard, does its own processing, and posts its results back to the blackboard. The
control continues in this manner until there are no remaining candidate knowledge sources. A
scheduler maintains control of triggering knowledge sources in cases when more than one is ready
to perform some action. The blackboard design is inherently opportunistic and modular, and
allows for both data-driven and model-driven processing simultaneously.

The user interface for ROME displays the recognition and blackboard control operations as
they proceed. ROME'’s ability to exhibit the control actions facilitates the development of better
control strategies within the blackboard framework. In addition to its recognition capabilities,
ROME can act as a workstation for manual analysis of target characteristics. The menu-driven
workstation provides a useful interactive analysis tool and allows users to learn from the manual
operation how to build better deductive procedures.

In this report, we will discuss the issues in range-Doppler imaging and describe ROME’s major
system modules in more detail including motivations for our approach. We will also provide some
limited performance evaluation results. Finally, summary and directions for future work will be
presented.
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2. RADAR RANGE-DOPPLER IMAGING

The data used in this analysis is taken from a range-Doppler imaging radar, which produces a
sequence of two-dimeusional portraits of the target being observed. Refer to Figure 2-1, which
shows two scattering centers (i.e., points of reflection) on a target. Assume that the radar tracker
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Figure 2-1. Simplified Target Model.

has removed the gross target motion, and that we measure the relative range of scatterer B with
respect to scatterer A. Assume that the scatterers are part of a rigid body spinning about its
axis with angular rate Q radians per second. with B at axial disiance d and radial distance p
with respect to A, and with angle o between the spin axis and the radar line-of-sight (LOS). The
range increment from A to B along the radar LOS is given by

r(t) = dcos(a) + psin(a)sin(Q2t). (2.1)

Suppose that a sequence of pulses is collected at a fixed pulse repetition interval. Evaluating the
time-rate-of-change of this relative range, for example by performing an FFT of the time- and
range-sampled data, we obtain a range rate of v(t) = p(sin(a) cos(Q2t) for point B with respect
to point A, observed as a Doppler shift of

fo(t) = = gﬂstin(Oz)cos(Qt). (2.2)

Combining 2.1 and 2.2, we see that the locus of scatterer B forms an elliptical path in the range-
Doppler plane, as shown in Figure 2-2. Since the Doppler frequency fp is directly proportional
to p, the Doppler dimension is also commonly referred to as the crossrange axis. Note that for
a signal bandwidth of W Hertz and imaging interval of T seconds, with corresponding time and
frequency resolutions 6t = 1/W and éfp = 1/T, the range and crossrange resolutions

et ¢ _Xéfp A
br==3w M %=55 =57

(2.3)

are independent of the target range. The only assumption is that the imaging interval T is smaller
than the time taken by the imaged point to move from one range-Doppler cell to another. (For
more details and a relaxation of this requirement, see (3].) Note how this presentation of data
differs from the optical case — rather than the conventional angle-angle scan, we illuminate the
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Figure 2-2. Scatterer Locus.

object from the radar direction and project the reflection intensity onto a plane under the object,
parallel to the radar LOS. Note. too, that the assumed motion is necessary to form the image:
with = 0, no crossrange information is obtained.

We can use this analysis to model a complex rigid body as a collection of scatterers whose pro-
jections in the range-Doppler plane traverse elliptical paths, perhaps with occlusion as individual
scatterers are masked from the radar illumination by another part of the object. Looking at
successive range-Doppler images, we will observe motion of the rotating scattering centers. This
motion may be exhibited graphically as a plot of scattering center locations in range-Doppler-time
space, as seen in Figure 2-3—a rather confusing collection of points, each of which is associated

Figure 2-3. Scatterers in Range-Doppler-Time Space.




with an ampii.ude peak from a (complex-valued) image. This forms the input to our image
understar _.,ng system: given data such as that presented in Figure 2-3. our task is to produce a
model in the form of Figure 2-1 that explains this data. Qur task is complicated by the occurrence
of extra points due to noise-induced peaks in the range-Doppler plane, by missing data due to
dropped detections, and by the multi-valued nature of the data for each image time as scatterers
move in and out of shadows in the radar beam illumination.




3. CONTROL STRUCTURE: BLACKBOARD ARCHITECTURE

In the problem domain of signal interpretation, traditional approaches have avoided dealing
with control issues. The problem-solving process is typically treated as a sequential set of fixed
signal operations, numerical in nature. The order of events as well as the computational model
are prescribed at the onset. The data passes from the input state to the output state through
the same processing path irrespective of the data conditions, of any previous processing, or of the
quality of the output. Such a problem-solving model is rigid and is useful only for the particular
application for which it was designed. In addition, computational models make it difficult to
incorporate and accumulate specific domain knowledge that we as humans readily bring to bear
on the problem.

Developments in the field of machine intelligence have produced alternative models of the
problem-solving process. Such models organize reasoning steps and relevant domain knowledge
to produce a flexible means of controlling the events that lead to a satisfactory solution [2].
Current knowledge-based systems make use of a variety of problem-solving models, the most
well known being backward (or forward) reasoning used extensively in production systems. The
control works backward (or forward) from a goal (or initial) state reasoning to the desired final
state. The path of the solution is dependent on a variety of conditions, subsolutions, and known
facts about the current domain.

In addition to backward and forward reasoning approaches to the problem-solving process,
certain applications have demanded less directed forms of control where the reasoning may involve
a combination of backward and forward inferencing. Such control is an opportunistic reasoning
model whereby action occurs when needed depending on the state of the domain knowledge
and the partial solutions to the problem. Specific information processing is performed only at
“opportune” times.

The blackboard architecture is a specific structured form of opportunistic reasoning. In general.
as shown in Figure 3-1, the overall structure can be broken down into three main conceptual
and physical entities: the blackboard, the knowledge sources, and the control mechanism. The
blackboard is a structure which publically displays the relevant information that is known @ prior:
or is accumulated during the problem solving process. The blackboard is essentially a database
containing problem-specific data and the solution state. The organization of this database is
typically a hierarchy of subsolutions corresponding to the natural domain and solution space or-
ganization. The knowledge sources are independent information processing units that incorporate
problem-specific expertise and communicate directly with the blackboard. The knowledge source
composition and intent varies widely since no structure is imposed on its contents. Knowledge
sources are activated opportunistically, typically by matching the knowledge source requirement
pattern against the current state of the blackboard. When a knowledge source has finished its
processing, appropriate results are posted back to the blackboard, making them accessible to
all other knowledge sources. A control mechanism mediates the actions of the blackboard and
the knowledge sources. The controller activates all possible knowledge sources by matching all
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Figyre 3-1. Blackboard Processing Architecture.

available knowledge sources against the blackboard. When more than one knowledge source is ac-
tivated, the controller determines which knowledge source to fire, executes that knowledge source,
and then either keeps track of previously activated knowledge sources or refreshes the activation
list and starts over. This process continues until no more knowledge sources can be activated.
The conditions for knowledge source activation and execution are flexible and vary greatly among
applications.

One of the first applications of the blackboard model was on the Hearsay speech understanding
system [4]. The domain of speech understanding breaks down into a natural hierarchical repre-
sentation as the knowledge is distributed from the parametric, segmental, and acoustic levels up
through lexical, phrasal, etc., levels. Multiple, diverse kinds of specific expertise are needed to
incrementally solve this expansive problem. The blackboard architecture allows speech-specific
expertise to be embedded in knowledge sources that communicate with a structure emulating the




natural domain organization of the speech understanding problem. In a manner similar to the
speech domain problem, radar object modeling also requires multiple areas of expertise distributed
through several layers of abstraction in order to derive a physical model and a motion solution
from range-Doppler images. This observation has motivated our use of a similar architecture.

In the following sections, we will discuss our blackboard application in more detail. Our focus
will be on the domain of radar object modeling and the demands it places on the problem solving
strategy and architecture.

3.1 THE BLACKBOARD STRUCTURE

The blackboard structure currently in ROME is organized into domains that correspond to
subsolutions of the radar object modeling problem as shown in Figure 3-2. Evidence is accrued
into domains ranging from the lowest-level range-Doppler features and selected data segments
up through the symbolic representations of the object and its motion and the catalog matching
results. Each domain is further subdivided into types that distinguish classes within the domains
such' as spin estimates derived via different algorithms. When pieces of information on the
blackboard are used by other knowledge sources, they are tagged as such to distinguisi new
evidence from previously-derived information. This allows opportunistic refinements during the
problem solving process. The design of the blackboard does not dictate exclusively data-driven
or model-driven processing, since both strategies can be exercised in the same framework.

3.2 THE KNOWLEDGE SOURCE STRUCTURE

The knowledge sources are data processing structures that contain all the information necessary
for independently communicating with the blackboard and the controller and for its specific
information processing. The knowledge sources are directed to take information from and return
results to particular blackboard domains and subdomains. Patterns associated with individual
knowledge sources are matched against the current patterns on the blackboard. If there is a
match, the activation level for the knowledge source is set and the knowledge source is added to
the controller’s list of active knowledge sources to be scheduled or reset.

The majority of the knowledge sources point to algorithms which extract subsets of the data,
identify and parameterize spinning and slipping scatterers on the spinning and precessing rigid
body, and assess the fit of the derived features to the data. They encompass digital signal pro-
cessing operations such as LMS estimation, spectral analysis, linear and nonlinear filtering, data
transformations, clustering, etc. As different knowledge sources attempt to extract the same in-
formation using different techniques, additional knowledge sources serve to resolve redundant or
conflicting information. Our physical knowledge is incorporated as a rigid body motion solution
requires a unique spin rate for all scatterers. Additional knowledge sources build symbolic models
from the derived features and match those against catalog models stored in the identical sym-
bolic representation. The knowledge sources are independent and modular, thereby facilitating
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the work of multiple algorithm developers within the project, multiple approaches to the same
problem, and incremental changes and enhancements to the system.

3.3 THE CONTROL MECHANISM

The control mechanism dictates the sequence of operations. The controller first finds all pos-
sible active knowledge sources by matching the individual patterns within the knowledge sources
against those on the blackboard. These patterns consist of requirements that must be true about
the blackboard as well as conditions that must be met. When all possible knowledge sources
are activated, the controller calls on the scheduler to determine which single knowledge source
should be executed. The scheduler examines the scheduling syntax within all knowledge sources
and orders them accordingly. Perhaps the simplest scheduling mechanism is the preassignment of
fixed numerical priorities to each knowledge source. An alternative, which we have currently im-
plemented, is domain-dependent, specifying that knowledge sources of one domain should execute
before or after those of another domain. Eventually it might be appropriate to install dynamic
scheduling where the schedule information for a knowledge source depended on the data, the
blackboard, etc.

After scheduling a single knowledge source, the controller executes that knowledge source. All
of the knowledge source inputs are obtained through the pattern matching against the blackboard.
Remaining knowledge sources are ignored at this time. After the current knowledge source has
executed and posted its results to the blackboard, all knowledge source activation levels are reset
and the process is repeated starting from pattern matching all knowledge sources to determine
the activation list.

This control mechanism accommodates data-driven and model-driven processing. Its flexibility
stems from the modularity of the knowledge sources, the generic pattern matching and pattern
specifications, and the ability of the knowledge sources to communicate independently with the
domain-structured blackboard. We take advantage of this capability as initial attempts to match
derived models against the catalog can cue lower level algorithms to look for more specific features
or data segments.
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4. FEATURE EXTRACTION

The feature extraction algorithms are imbedded in the knowledge sources as discussed previ-
ously. Their primary function is to extract scattering centers which evidence body spin and to
extract slipping scatterers which exhibit precessing motion. The role of the feature extractors is
also to select subportions of the data that best exhibit these phenomena. In addition, there are
routines to resolve the results of redundant or conflicting knowledge sources. In this chapter, we
will discuss how radar data is processed and handed to ROME for feature extraction and present
detailed descriptions of the feature extraction algorithms that reside in the blackboard knowledge
sources.

4.1 INITIAL DATA PROCESSING

The wideband radar returns are preprocessed and compensated for gross motion to produce
images in range-Doppler space. Feature vectors extracted from images consist of local range
bin maxima and the corresponding Doppler neighbors. This is the format in which we initially
receive the data. From these local feature vectors, on a per image basis, scattering center peaks
are located in range-Doppler space and tagged with their range, Doppler, radar cross section
(RCS), polarization, and phase values. When all images have peak scattering centers marked, a
data track is formed as the input to the ROME recognition system. This track is presented to
the blackboard as the original set of range-Doppler features.

An example simulated data track is displayed in Figure 4-1, shown as Doppler vs. time with
range, RCS, polarization, and phase suppressed. There is little noise in this particular data

T DOPPLER

TIME

Figure 4-1. Typical Data Segment.

segment but the data does suffer from missing points and occlusion making the dimensionality of
the data time-varying. Note the periodic structure within the track due to the returns from point
scatterers rotating on the rigid body at the body spin rate. In this data, it is relatively simple for
a human observer to extract the data points associated with the rotating point scatterers as well
as the number and relative positions of the scatterers. The occlusion of the scatterers as they
rotate behind the body and the number of scatterers do not pose an interpretation problem for a
human observer who can resolve any ambiguities. However, these effects can cause irrecoverable
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problems for classical signal processing methods. Note, for example, in the data the low Doppler
returns from ring scatterers, such as manufacturing joins, exhibiting the precessing motion of the
i ' rigid body; these scatterers and their motion mnust be distinguished from the point scatterers.
These difficulties reinforce our inclination to employ a knowledge-based approach in our algorithm
design, control structure, and model representation strategies.

4.2 DATA CLUSTERING

The most challenging task in this modeling problem is to establish a correspondence between
a set of points in range-Doppler-time space and the corresponding physical feature in the model
space. Once points are assigned to the track of a given feature, extracting a parametric description
is relatively straightforward. Thus one low-level knowledge source is a clustering algorithm, which
attempts to partition the data space on the basis of range. An alternative approach is based on
a smoothed histogram of RCS values in range. Each point is modeled as an impulse in range
and then convolved with a smoothing function. Range partitions are determined by mimima or
zero-crossings in a thresholded version of the resulting function. The individual groups are now
assumed to contain either noise, tracks of spinning scatterers, or tracks of ring scatterers. Of
course, a group may contain multiple tracks, and a track may be split across two groups: the
subsequent processing must be robust enough to handle these cases. The partitioned data tracks
are reported to the selected data segments domain of the blackboard, and tagged with type names
corresponding to the type of further processing for which each track is most applicable.

4.3 SPIN EXTRACTION BY LPC FIT

In the data illustrated in Figure 4-1, the spinning scatterer tracks cover a wider Doppler
spread than do the precessing ring scatterers; thus the spin extraction knowledge sources are
next called to process the output of the clustering knowledge source (which has been posted
on the blackboard). Three techniques are applied independently; all model, in a sense, the
feature-extraction process applied by a human analyst. The first approach, discussed in this
section, searches for peaks in Doppler values, indicating the presence of a spinning scatterer
track. Modeling these tracks as sinusoids in Doppler-time space, we begin with three points near
the peak to estimate frequency using a 1-parameter linear predictive coding (LPC) fit. The track
is then extrapolated using a sinusoid model to locate successive points; as each successive point
is added to the track, the LPC fit is repeated to iteratively refine the frequency estimate. The
track search is terminated when we reach the break caused by occlusion of the spinning scatterer.
With a frequency estimate based on all points of the track segment, we now correlate against a
sine and cosine at that frequency to estimate the amplitude and phase of the best-fit sinusoid.

Moving one (estimated) period along the data, we now locate points which are hypothesized
to belong to the same track. The LPC fit is repeated independently of the first estimate, and
the two sinusoid parameter estimates are compared. If they are sufficiently close, the frequency
estimate is refined using the track zero-crossings, and the fit of amplitude and phase is repeated
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using the combined data from both segments. This process is repeated to the limits of the data
segment.

This process is termed “bottom-up” or “data-driven” —given the data points, we extract pa-
rameters according to some fit criterion. We now take a “top-down” viewpoint: expecting a
sinusoidal pattern, we compare the parametric fit with the data, identifying those points which
can be explained with the given model component. Since there will, in general, be more than one
scattering center track in a given data cluster, we must repeat the search procedure, successively
extracting tracks and interpreting them as spinning scatterers on the model. This stage of the
processing ends when no further tracks can be extracted; the remaining data points are assumed
to be anomalies (poor fits or noise) or the tracks of ring scatterers, which do not exhibit periodic
occlusion.

4.4 SPIN EXTRACTION USING THE HOUGH TRANSFORM

An alternative approach is based on the observation that the data of Figure 4-1 includes a
set of quasi-linear segments. This suggests that the Hough transform [5] may be employed to
map from time-Doppler to slope-intercept space, where the line segments may be detected as
local peaks. An interesting problem arises in the interpretation of the Hough transform peaks:
although we are interested in clustered points along regularly spaced lines with negative slope,
which the eye readily extracts from the data of Figure 4-1, a simple peak detection in the Hough
slope-intercept plane leads to the detection of many lines present in the data, but inconsistent with
our physical understanding. Here is where the machine intelligence component of the processing
becomes evident: even within the knowledge sources, we must often apply a significant amount
of reasoning in using the output of the signal processing algorithms. Thus a logical filter must be
applied to the Hough line detections on the basis of the time span of their associated points and
on the magnitude and sign of their slope. Figure 4-2 displays the selected Hough line detections
superimposed on the same segment of data as seen in Figure 4-1.

LA
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Figure 4-2. Hough Transform Line Detections.

An estimate of spin frequency may be made by observing that typically 40-50% of a period
is spanned by a line segment. Alternatively, an LPC frequency estimate may be applied to the
point cluster for each line. The number of spinning scatterers is then extracted by ar analysis
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of periodicities in the zero-crossings for a given spin frequency estimate, allowing for missed
line detections and for anomalous detections representing false lines, as seen in Figure 4-2. The
primary test in this portion of the modeling is one of consistency among the spin periods observed,
according to the implicit rigid body assumption.

4.5 DOPPLER-TIME CLUSTERING

A third approach is warranted in cases where the Doppler coordinates of the data points are too
noisy to link with the LPC approach and the presence of multiple scatterers leads to ambiguous
detections with the Hough transform line extraction. The Doppler-time clustering algorithm
begins with the evaluation of a track autocorrelation to detect periodic structure in the data.
An estimate is made of the fundamental body spin period (e.g., from the highest autocorrelation
peak or as evidenced by the amplitude spectrum of the track autocorrelation). If this estimate is
ambiguous, several alternative values of spin period might have to be carried in parallel through
succeeding processing stages before a fit estimate can resolve the uncertainty. The track data is
then wound up on the selected spin period T, with points at time t + nT overlaid on those at
time t.

A spreading function w(t, D) is then used to smooth the points in time and Doppler, yielding
the function

A(t,D) =) oww(t—t;, D - D;) (4.1)

. where o; and (¢;, D;) are the amplitude and (time, Doppler) coordinates of the ith track point,

and the sum is taken over all points on the wound-up track. The function A(.,.)is evaluated on a
fine grid in the time-Doppler plane, local peaks are identified, and (t, D) points are collected along
ridges emanating from each peak. A sinusoid of period T is fit to the points forming eact ridge.
This set of sinusoids is now compared with the original track data, and selected in the order of
best fit to data until a lower fit quality threshold is reached. Estimates of sinusoid amplitude and
phase are refined through comparison with close data points. It is at this point that ambiguities
in spin rate can be resolved to obtain the appropriate submultiple of the apparent repetition
frequency, also indicating the true number of discrete scatterers.

4.6 RESOLUTION OF SPIN EXTRACTION

The last three sections have outlined three different approaches to extracting the same infor-
mation from the data signature. The choice of fitting algorithm may be decided on an a prior:
basis, depending on the data or object type. Alternatively, the three algorithms may be run in
parallel on the same data, and an a posteriori selection made on the basis of fit quality. The spin
fit resolver could then be viewed as a fourth knowledge source. The results of the various spin
extraction algorithms are posted to the appropriate types within the spin estimates domain of
the blackboard. The spin fit resolver takes those pieces of evidence and reports a single evaluated
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result to the resolved motion domain of the blackboard. The flexibility of this modular struc-
ture has expedited the construction of our system, with algorithmic implementations by different
analysts merged at well-defined interfaces.

4.7 PRECESSION ESTIMATION

Since precession is variable in amplitude and frequency, especially in the presence of forces
induced by atmospheric interactions, an appropriate model must be chosen for its description.
Letting 9 be the precession magnitude, & the precession angle, d the distance from ring scatterer to
reference point, and « the aspect angle as before, we have a Doppler signature of (approximately)
fp(t) = %(t)8(2)d cos|(t)). Here, () and 6(t) are smooth functions of time (we chose low-order
polynomials over disjoint time intervals). The DSP operations employed include sign extraction
from a weighted sum of Doppler values for each time, median filtering to remove dropouts,
zero-crossing detection, sinusoidal fit over consecutive (estimated) half-periods, and an LMS
polynomial fit of magnitude and net angle for successive time segments. In the design of the fit
algorihm for this time-varying phenomenon, a balance must be struck between the closeness of
the match and the length of the time segment over which it is valid. The results of the precession
estimation algorithm are reported to the precession estimates domain of the blackboard. As with
spin extraction, a precession resolver knowledge source examines the results for ambiguities or
conflicts and posts final results to the resolved motion domain.
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5. MODEL REPRESENTATION AND MODEL MATCHING

The choices of a model representation and a model matching strategy are tightly coupled and
depend heavily on the objects being modeled, on the nature of the data, on the types of features
extractable from the data, and on the general approach to the problem (e.g., data-driven versus
model-driven). The characteristics of range-Doppler images of fairly simple rigid objects with a
tractable motion solution provide several specifications for a model representation. First, we can
image the entire object through several rotations since its spin rate is considerably lower than the
imaging rate and our observation time can be on the order of several periods of rotation. Thus, a 3-
dimensional description of the located scatterers can be derived. Second, the distinguishing factor
between different imaged objects is the general body structure and motion solution, as opposed
to more detailed numerical specifications. Therefore, a suitable object model should symbolically
represent the structural components, their interrelationships, and pointers to motion solutions
and numerical quantifiers. Finally, while there is a set of known objects for which we would like
to build and store models to be compared with imaged objects, we also need to acquire new
models from the data as new previously uncataloged objects are presented to the system. Thus,
it is important to be able to derive a workable model directly from the data. The data-derived
model should be identical in form to the stored catalog models, thus facilitating building and
generalizing new catalog entries directly from the data.

5.1 MODEL REPRESENTATION

The model representation currently in ROME is a simple version of a semantic network. A
semantic network is a network of nodes and links, with nodes typically corresponding to ob-
jects or concepts and links symbolizing relations between the nodes [6},(7]. In addition, unary
property nodes can point to and quantify either nodes or links. This is a fairly common model
representation for structured objects or scenes from imagery (8], [9].

The semantic network derived from images of simple objects consists of scatterers, the relation-
ships between them, their motion, and quantifiers associated with them as shown by the example
network in Figure 5-1.

Nodes in the network correspond to point scatterers, ring scatterers, extended returns, and the
entire rigid body. The relational links between the nodes represent relative differences in range
or angle. These are differential relationships, not absolute quantifiers. Quantifiers pointing to
the nodes contain more detailed positional information such as crossrange, radar cross section,
or range. The motion, particularly the spin rate, is a property attached to the entire body node,
as all scatterers extending from the body node must rotate at that spin rate. Thus, the scatterer
nodes inherit the motion solution from the rigid body node. An additional knowledge source
takes the current derived components and creates a semantic network. The data-derived features
are thus in the same format as the catalog of objects available for comparison.

Due to the relatively simple structure of objects such as reentry vehicles, the corresponding
semantic network representation is simple with few nodes, connections, and layers of abstraction.
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Figure 5-1. Rigid Body Semantic Network Model.
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As the system is exposed to more complex objects such as satellites, the semantic network will
provide a powerful means of representing and manipulating these complex structures, as well.

5.2 MODEL MATCHING

Once a data-derived semantic model exists, it can be matched against a catalog of semantic
models. The catalog models are established directly from known physical models or from data-
derived models that were interesting or different from current catalog models.

The matching strategy consists of finding the best correspondence between parts on the derived
model and the catalog model. This correspondence is evaluated and compared to the correspon-
dences from the other catalog models. Due to the symmetry of the objects and the occasional
discrepancy in number of parts between the derived model and the catalog model, there are usu-
ally several potential correspondences between point and ring scatterers. These correspondences
are based on the general structure rather than on quantifiers. The correspondences are con-
strained by the fact that range and angular position information limits the permutations possible
for these correspondences.

Once a set of realizable correspondences is established between the point/ring scatterers from
the derived model and the point/ring scatterers from the catalog model, these correspondences
must be evaluated and scored to assess the best fit. The basis for evaluation is finding the
correspondence that minimizes the distances in property space. For example, assume in a certain
correspondence that a ring from the derived model is associated with a ring from the catalog
model. The properties attached to both rings (such as range and RCS) are plotted in their
property space and Euclidean distances are computed between derived and cataloged properties.
This is done for all parts in the correspondence, and for all correspondences. The correspondence
with the greatest number of minimum distances across its parts is marked as best. The scoring
metric for each correspondence is the number of minimizations in property space less the number
of missing parts between the derived and catalog models. Some cost must be associated with
a derived model having either too few or too many parts compared to the catalog model. The
resulting normalized scores are compared across the catalog, and the maximum chosen as the best
match from the catalog to the derived model. Note that the spin rate and the apparent number
of point scatterers are mutually dependent pieces of evidence, which may be used to refine an
object model in a model-driven processing pass.

5.3 GENERALIZATION

Due to the variety of missions of the radars from which we obtain data, images of unknown
objects are often presented to the system. In these cases, the data corresponds to objects for
which no a priori models exist. An important part of our system s the ability to generalize a
semantic model from any number of data segments associated with a particular object.

Generalization is a subproblem in the more general field of learning {10]. Winston [11] advocates
an inductive learning strategy known as learning by example. An external teacher presents
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Figure 5-2. Winston's Learning the Structure of an Arch by Example.
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the system with examples and counterexamples and the system induces the general concept
description. Winston'’s classic analogy, as seen in Figure 5-2, is that of learning the structure of
an arch. The system is presented with the first two configurations as positive examples of what
an arch should look like. The third case is presented as a counterexample or how an arch should
not appear. From these examples, the system induces the general concept of an arch and builds
an internal representation of that concept. As new inputs are presented to the system, they are
matched against the current models and recognized as an example of an arch or not. New inputs
can also be used to continually refine the internal representations.

As opposed to a true learning system that continually changes its knowledge and performance
based on examples, we approach generalization chiefly as a way to train the system as to what
a particular uncataloged object should or should not look like. This information is then entered
into the current catalog. Once the training is complete, the system performs in its normal mode,
treating the generalized model as a catalog entry.

The generalization process is guided by a human operator who selects acceptable data-derived
models for a given object as well as counterexamples. Acceptable models as well as counterexam-
ples are determined based on the expertise of the human operator. The resulting models can thus
be ambiguous due to the complexity of the data and the inconsistency among experts. These am-
biguities are to be resolved through generalization. Two types of models are generalized through
the same procedure: example modeis and counterexamples models. All the data-derived models
selected are the results of the initial processing of the ROME system (up to the matching stage)
to produce semantic models just as discussed previously. The first derived model initializes the
generalized model. As other examples are presented, the generalization is applied to associate
new structural components with current structural components in the generalized model. When
an association is made (similar to the matching correspondence problem), the structural com-
ponents increases a number-of-occurrences counter. Each structural component keeps track of
the number of associated occurrences as well as the total number of training instances. Thus,
each component in the generalized model has a weight attached to it equal to the number of
occurrences divided by the number of training sets. This weight, which is between 0 ard 1, is
used to estimate the importance of that structural component in the matching. Components that
are not associated with existing parts in the generalized model are added as additional parts, but
their weight is low compared to parts that do find appropriate associations.

Once an example model and counterexample models are generalized for a particular object,
both types of models are entered as the catalog entry for the unknown object, and the system
performs its normal operations. As new data comes into the recognition system and a semantic
model is built, the derived model is compared against both example and counterexample models.
A possible match is considered when the derived model matches the example model better than
it matches the counterexample model. The number of counterexamples needed for a particular
object depends on the diversity of the models in the entire catalog and the inherent variability
in the data and in the data processing.

Initial results from the generalization of models have been encouraging. Inappropriate d: ta-
derived models are usually discarded, since they correspond more strongly to the counterexample
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models. Exceedingly well-derived models clearly stand out, since the margin between the example
model match and counterexample model matches is significant. A point of sensitivity in the
generalization scheme is careful selection of distinguishable counterexamples for generalization.
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6. PERFORMANCE EVALUATION

The ROME object modeling system has been evaluated on several sets of data including images
of objects with known dimensions as well as those with unknown characteristics. We have two
cataloged known objects, referred to here as Object A and Object B, as well as data for several
unknown objects. The appearance of the data varies from clean, simple, fixed scatterer returns
to noisy, sparse, flexible scatterer returns, as suggested by the simulated data segments shown in
Figure 6-1.

DOPPLER

SIMULATED DATA FOR OBJECT A

SIMULATED DATA FOR OBJECT 8

Figure 6-1. Simulated Data Examples.

In general, the results from testing the ROME system on real data have been encouraging. The
models produced agree with manual analysis in the case of unknown objects, and with known
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object dimensions in the case of Objects A and B. In addition, the model matching procedure
successfully associates the derived model with the correct model from the catalog despite anoma-
lies in the derived model. The addition of top-down processing (i.e., cueing the feature extractors
with high-level information from potential catalog matches) further enhances the matching re-
sults in cases where bad estimates of spin motion lead to erroneous models in terms of number
of spinning scatterers and crossrange dimensions. For the remainder of the evaluation, our focus
will be on the objects with known dimensions and motion. This provides a true reference from
which quantitative results can be assessed.

The objects with known dimensions, Object A and Object B, have nearly identical physical
dimensions and motion solution, with the exception of two additional point scatterers on Object
B. This similarity increases the difficulty in distinguishing these objects from each other. However,
the system’s ability to make this distinction gives us reassurance that the system will perform well
in foreseeable applications where a greater number of less correlated objects are to be classified.

The images for Objects A and B were subdivided into 24 and 10 test tracks, respectively. The
test tracks vary from one to four seconds (50 to 200 images) in duration. The catalog used in
the evaluation consisted of models for Objects A and B as well as models for 8 similar synthetic
objects. The synthetic models exhibit a realistic range of point and ring scatterer structures and
motion solutions. The system results are shown in Figure 6-2. The catalog model of Object A

CLASSIFIED AS

OBJECT A B8 OTHER
A (24) 63% 21% 16%
B (10) 0% 80% 20%

Figure 6-2. ROME Evaluation Results.

was correctly matched to the data-derived model 63% of the time. Misclassifications of data
from Object A were mostly due to errors in spin rate estimation, resulting in overestimates of the
number of spinning scatterers and the derived model appearing more like Object B. Classification
of Object A as one of the synthetic models stemmed from noisy data segments or data exhibiting
large precession motion interfering with spin and scatterer extraction. The data-derived models
for Object B were correctly classified 80% of the time. Interestingly enough, none of Object B’s
data was classified as Object A, perhaps due to the less structured nature of this data causing
overestimates in the number of spinning scatterers. Another point of interest in the matching
results is that the scores returned with each match accurately reflect the quality of match. This
gives us confidence that the scoring metric is meaningful in relation to distinguishing the objects
by their physical structure. Also, based on the returned match scores, it is possible to set a
threshold on acceptable matches or to determine the appropriateness of further processing.
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It should be emphasized at this point that the preceding results represent an initial evaluation
with limited data. The availability of data has been a limiting factor in development and evalua-
tion, but remedies to this shortage of data are forthcoming in the near future. At that time, the
system will be fully exercised and newer enhancements, such as top-down processing and model
generalization, will be thoroughly tested.
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7. SUMMARY

In this report, we have presented a unique approach to solving a radar object modeling problem.
The appropriateness of machine intelligence in this endeavor stems from three sources. First, in
the radar domain, manual analysis and interpretation of the imagery is straightforward and readily
learned. Second, machine intelligence methods are less sensitive to the condition and amount of
data. Finally, machine intelligence offers flexible representations and control structures in which
to imbed domain-specific techniques.

The overall goals of our project are, given range-Doppler images of a simple rotating object,
to extract primitive and high-level features from the images, formulate a rigid body model,
and identify the object with an interpretation consistent with that of a human analyst. Our
efforts have demonstrated the capabilities to extract and identify physical models from the radar
images through the use of appropriate signal processing primitives, knowledge representations,
and control structures. The machine intelligence approach enables ciassification of models with no
a priori statistical information, with minimal actual model expectations, and with uncertainties
in the data and parameter bounds. The power lies in the data-driven fashion in which signal
processing algorithms are directed and the ability to match ambiguous and partial derived models
at the symbolic level. The semantic model representation incorporates both static and dynamic
information. This representation is able to cope with a lack of information and lends itself
to generalization of unknown objects. The “semantics” of the 3-dimensional object are fully
imbedded in the representation and not interpreted by an external program. The blackboard
control philosophy allows for modular, task-specific expertise to be accessed opportunistically.
The problem solution is thus acquired incrementally as evidence is accumulated, implementing a
bootstrapping problem solving strategy.

As the development of the ROME system continues, we intend to acquire a larger database
of imaged objects in order to fully exercise the system’s capabilities. Initial evaluation results
are encouraging with a limited variety of data and object models. As more experience is gained
with generalization and model-driven processing as well, the system’s ability to deal with a broad
range of data conditions and uncataloged objects will be strengthened.

The ROME system is part of the ongoing activities in the Machine Intelligence group. Several
people have been involved in its development; among them, Don H. Johnson and Ellen M. Glover
contributed significantly to the architecture and algorithm design.
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